1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
|
/* audioopmodule - Module to detect peak values in arrays */
#define PY_SSIZE_T_CLEAN
#include "Python.h"
typedef short PyInt16;
#if defined(__CHAR_UNSIGNED__)
#if defined(signed)
/* This module currently does not work on systems where only unsigned
characters are available. Take it out of Setup. Sorry. */
#endif
#endif
static const int maxvals[] = {0, 0x7F, 0x7FFF, 0x7FFFFF, 0x7FFFFFFF};
/* -1 trick is needed on Windows to support -0x80000000 without a warning */
static const int minvals[] = {0, -0x80, -0x8000, -0x800000, -0x7FFFFFFF-1};
static const unsigned int masks[] = {0, 0xFF, 0xFFFF, 0xFFFFFF, 0xFFFFFFFF};
static int
fbound(double val, double minval, double maxval)
{
if (val > maxval)
val = maxval;
else if (val < minval + 1)
val = minval;
return (int)val;
}
/* Code shamelessly stolen from sox, 12.17.7, g711.c
** (c) Craig Reese, Joe Campbell and Jeff Poskanzer 1989 */
/* From g711.c:
*
* December 30, 1994:
* Functions linear2alaw, linear2ulaw have been updated to correctly
* convert unquantized 16 bit values.
* Tables for direct u- to A-law and A- to u-law conversions have been
* corrected.
* Borge Lindberg, Center for PersonKommunikation, Aalborg University.
* bli@cpk.auc.dk
*
*/
#define BIAS 0x84 /* define the add-in bias for 16 bit samples */
#define CLIP 32635
#define SIGN_BIT (0x80) /* Sign bit for an A-law byte. */
#define QUANT_MASK (0xf) /* Quantization field mask. */
#define SEG_SHIFT (4) /* Left shift for segment number. */
#define SEG_MASK (0x70) /* Segment field mask. */
static const PyInt16 seg_aend[8] = {
0x1F, 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF
};
static const PyInt16 seg_uend[8] = {
0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF
};
static PyInt16
search(PyInt16 val, const PyInt16 *table, int size)
{
int i;
for (i = 0; i < size; i++) {
if (val <= *table++)
return (i);
}
return (size);
}
#define st_ulaw2linear16(uc) (_st_ulaw2linear16[uc])
#define st_alaw2linear16(uc) (_st_alaw2linear16[uc])
static const PyInt16 _st_ulaw2linear16[256] = {
-32124, -31100, -30076, -29052, -28028, -27004, -25980,
-24956, -23932, -22908, -21884, -20860, -19836, -18812,
-17788, -16764, -15996, -15484, -14972, -14460, -13948,
-13436, -12924, -12412, -11900, -11388, -10876, -10364,
-9852, -9340, -8828, -8316, -7932, -7676, -7420,
-7164, -6908, -6652, -6396, -6140, -5884, -5628,
-5372, -5116, -4860, -4604, -4348, -4092, -3900,
-3772, -3644, -3516, -3388, -3260, -3132, -3004,
-2876, -2748, -2620, -2492, -2364, -2236, -2108,
-1980, -1884, -1820, -1756, -1692, -1628, -1564,
-1500, -1436, -1372, -1308, -1244, -1180, -1116,
-1052, -988, -924, -876, -844, -812, -780,
-748, -716, -684, -652, -620, -588, -556,
-524, -492, -460, -428, -396, -372, -356,
-340, -324, -308, -292, -276, -260, -244,
-228, -212, -196, -180, -164, -148, -132,
-120, -112, -104, -96, -88, -80, -72,
-64, -56, -48, -40, -32, -24, -16,
-8, 0, 32124, 31100, 30076, 29052, 28028,
27004, 25980, 24956, 23932, 22908, 21884, 20860,
19836, 18812, 17788, 16764, 15996, 15484, 14972,
14460, 13948, 13436, 12924, 12412, 11900, 11388,
10876, 10364, 9852, 9340, 8828, 8316, 7932,
7676, 7420, 7164, 6908, 6652, 6396, 6140,
5884, 5628, 5372, 5116, 4860, 4604, 4348,
4092, 3900, 3772, 3644, 3516, 3388, 3260,
3132, 3004, 2876, 2748, 2620, 2492, 2364,
2236, 2108, 1980, 1884, 1820, 1756, 1692,
1628, 1564, 1500, 1436, 1372, 1308, 1244,
1180, 1116, 1052, 988, 924, 876, 844,
812, 780, 748, 716, 684, 652, 620,
588, 556, 524, 492, 460, 428, 396,
372, 356, 340, 324, 308, 292, 276,
260, 244, 228, 212, 196, 180, 164,
148, 132, 120, 112, 104, 96, 88,
80, 72, 64, 56, 48, 40, 32,
24, 16, 8, 0
};
/*
* linear2ulaw() accepts a 14-bit signed integer and encodes it as u-law data
* stored in an unsigned char. This function should only be called with
* the data shifted such that it only contains information in the lower
* 14-bits.
*
* In order to simplify the encoding process, the original linear magnitude
* is biased by adding 33 which shifts the encoding range from (0 - 8158) to
* (33 - 8191). The result can be seen in the following encoding table:
*
* Biased Linear Input Code Compressed Code
* ------------------------ ---------------
* 00000001wxyza 000wxyz
* 0000001wxyzab 001wxyz
* 000001wxyzabc 010wxyz
* 00001wxyzabcd 011wxyz
* 0001wxyzabcde 100wxyz
* 001wxyzabcdef 101wxyz
* 01wxyzabcdefg 110wxyz
* 1wxyzabcdefgh 111wxyz
*
* Each biased linear code has a leading 1 which identifies the segment
* number. The value of the segment number is equal to 7 minus the number
* of leading 0's. The quantization interval is directly available as the
* four bits wxyz. * The trailing bits (a - h) are ignored.
*
* Ordinarily the complement of the resulting code word is used for
* transmission, and so the code word is complemented before it is returned.
*
* For further information see John C. Bellamy's Digital Telephony, 1982,
* John Wiley & Sons, pps 98-111 and 472-476.
*/
static unsigned char
st_14linear2ulaw(PyInt16 pcm_val) /* 2's complement (14-bit range) */
{
PyInt16 mask;
PyInt16 seg;
unsigned char uval;
/* u-law inverts all bits */
/* Get the sign and the magnitude of the value. */
if (pcm_val < 0) {
pcm_val = -pcm_val;
mask = 0x7F;
} else {
mask = 0xFF;
}
if ( pcm_val > CLIP ) pcm_val = CLIP; /* clip the magnitude */
pcm_val += (BIAS >> 2);
/* Convert the scaled magnitude to segment number. */
seg = search(pcm_val, seg_uend, 8);
/*
* Combine the sign, segment, quantization bits;
* and complement the code word.
*/
if (seg >= 8) /* out of range, return maximum value. */
return (unsigned char) (0x7F ^ mask);
else {
uval = (unsigned char) (seg << 4) | ((pcm_val >> (seg + 1)) & 0xF);
return (uval ^ mask);
}
}
static const PyInt16 _st_alaw2linear16[256] = {
-5504, -5248, -6016, -5760, -4480, -4224, -4992,
-4736, -7552, -7296, -8064, -7808, -6528, -6272,
-7040, -6784, -2752, -2624, -3008, -2880, -2240,
-2112, -2496, -2368, -3776, -3648, -4032, -3904,
-3264, -3136, -3520, -3392, -22016, -20992, -24064,
-23040, -17920, -16896, -19968, -18944, -30208, -29184,
-32256, -31232, -26112, -25088, -28160, -27136, -11008,
-10496, -12032, -11520, -8960, -8448, -9984, -9472,
-15104, -14592, -16128, -15616, -13056, -12544, -14080,
-13568, -344, -328, -376, -360, -280, -264,
-312, -296, -472, -456, -504, -488, -408,
-392, -440, -424, -88, -72, -120, -104,
-24, -8, -56, -40, -216, -200, -248,
-232, -152, -136, -184, -168, -1376, -1312,
-1504, -1440, -1120, -1056, -1248, -1184, -1888,
-1824, -2016, -1952, -1632, -1568, -1760, -1696,
-688, -656, -752, -720, -560, -528, -624,
-592, -944, -912, -1008, -976, -816, -784,
-880, -848, 5504, 5248, 6016, 5760, 4480,
4224, 4992, 4736, 7552, 7296, 8064, 7808,
6528, 6272, 7040, 6784, 2752, 2624, 3008,
2880, 2240, 2112, 2496, 2368, 3776, 3648,
4032, 3904, 3264, 3136, 3520, 3392, 22016,
20992, 24064, 23040, 17920, 16896, 19968, 18944,
30208, 29184, 32256, 31232, 26112, 25088, 28160,
27136, 11008, 10496, 12032, 11520, 8960, 8448,
9984, 9472, 15104, 14592, 16128, 15616, 13056,
12544, 14080, 13568, 344, 328, 376, 360,
280, 264, 312, 296, 472, 456, 504,
488, 408, 392, 440, 424, 88, 72,
120, 104, 24, 8, 56, 40, 216,
200, 248, 232, 152, 136, 184, 168,
1376, 1312, 1504, 1440, 1120, 1056, 1248,
1184, 1888, 1824, 2016, 1952, 1632, 1568,
1760, 1696, 688, 656, 752, 720, 560,
528, 624, 592, 944, 912, 1008, 976,
816, 784, 880, 848
};
/*
* linear2alaw() accepts a 13-bit signed integer and encodes it as A-law data
* stored in an unsigned char. This function should only be called with
* the data shifted such that it only contains information in the lower
* 13-bits.
*
* Linear Input Code Compressed Code
* ------------------------ ---------------
* 0000000wxyza 000wxyz
* 0000001wxyza 001wxyz
* 000001wxyzab 010wxyz
* 00001wxyzabc 011wxyz
* 0001wxyzabcd 100wxyz
* 001wxyzabcde 101wxyz
* 01wxyzabcdef 110wxyz
* 1wxyzabcdefg 111wxyz
*
* For further information see John C. Bellamy's Digital Telephony, 1982,
* John Wiley & Sons, pps 98-111 and 472-476.
*/
static unsigned char
st_linear2alaw(PyInt16 pcm_val) /* 2's complement (13-bit range) */
{
PyInt16 mask;
short seg;
unsigned char aval;
/* A-law using even bit inversion */
if (pcm_val >= 0) {
mask = 0xD5; /* sign (7th) bit = 1 */
} else {
mask = 0x55; /* sign bit = 0 */
pcm_val = -pcm_val - 1;
}
/* Convert the scaled magnitude to segment number. */
seg = search(pcm_val, seg_aend, 8);
/* Combine the sign, segment, and quantization bits. */
if (seg >= 8) /* out of range, return maximum value. */
return (unsigned char) (0x7F ^ mask);
else {
aval = (unsigned char) seg << SEG_SHIFT;
if (seg < 2)
aval |= (pcm_val >> 1) & QUANT_MASK;
else
aval |= (pcm_val >> seg) & QUANT_MASK;
return (aval ^ mask);
}
}
/* End of code taken from sox */
/* Intel ADPCM step variation table */
static const int indexTable[16] = {
-1, -1, -1, -1, 2, 4, 6, 8,
-1, -1, -1, -1, 2, 4, 6, 8,
};
static const int stepsizeTable[89] = {
7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
};
#define GETINTX(T, cp, i) (*(T *)((unsigned char *)(cp) + (i)))
#define SETINTX(T, cp, i, val) do { \
*(T *)((unsigned char *)(cp) + (i)) = (T)(val); \
} while (0)
#define GETINT8(cp, i) GETINTX(signed char, (cp), (i))
#define GETINT16(cp, i) GETINTX(short, (cp), (i))
#define GETINT32(cp, i) GETINTX(PY_INT32_T, (cp), (i))
#if WORDS_BIGENDIAN
#define GETINT24(cp, i) ( \
((unsigned char *)(cp) + (i))[2] + \
(((unsigned char *)(cp) + (i))[1] << 8) + \
(((signed char *)(cp) + (i))[0] << 16) )
#else
#define GETINT24(cp, i) ( \
((unsigned char *)(cp) + (i))[0] + \
(((unsigned char *)(cp) + (i))[1] << 8) + \
(((signed char *)(cp) + (i))[2] << 16) )
#endif
#define SETINT8(cp, i, val) SETINTX(signed char, (cp), (i), (val))
#define SETINT16(cp, i, val) SETINTX(short, (cp), (i), (val))
#define SETINT32(cp, i, val) SETINTX(PY_INT32_T, (cp), (i), (val))
#if WORDS_BIGENDIAN
#define SETINT24(cp, i, val) do { \
((unsigned char *)(cp) + (i))[2] = (int)(val); \
((unsigned char *)(cp) + (i))[1] = (int)(val) >> 8; \
((signed char *)(cp) + (i))[0] = (int)(val) >> 16; \
} while (0)
#else
#define SETINT24(cp, i, val) do { \
((unsigned char *)(cp) + (i))[0] = (int)(val); \
((unsigned char *)(cp) + (i))[1] = (int)(val) >> 8; \
((signed char *)(cp) + (i))[2] = (int)(val) >> 16; \
} while (0)
#endif
#define GETRAWSAMPLE(size, cp, i) ( \
(size == 1) ? (int)GETINT8((cp), (i)) : \
(size == 2) ? (int)GETINT16((cp), (i)) : \
(size == 3) ? (int)GETINT24((cp), (i)) : \
(int)GETINT32((cp), (i)))
#define SETRAWSAMPLE(size, cp, i, val) do { \
if (size == 1) \
SETINT8((cp), (i), (val)); \
else if (size == 2) \
SETINT16((cp), (i), (val)); \
else if (size == 3) \
SETINT24((cp), (i), (val)); \
else \
SETINT32((cp), (i), (val)); \
} while(0)
#define GETSAMPLE32(size, cp, i) ( \
(size == 1) ? (int)GETINT8((cp), (i)) << 24 : \
(size == 2) ? (int)GETINT16((cp), (i)) << 16 : \
(size == 3) ? (int)GETINT24((cp), (i)) << 8 : \
(int)GETINT32((cp), (i)))
#define SETSAMPLE32(size, cp, i, val) do { \
if (size == 1) \
SETINT8((cp), (i), (val) >> 24); \
else if (size == 2) \
SETINT16((cp), (i), (val) >> 16); \
else if (size == 3) \
SETINT24((cp), (i), (val) >> 8); \
else \
SETINT32((cp), (i), (val)); \
} while(0)
static PyObject *AudioopError;
static int
audioop_check_size(int size)
{
if (size < 1 || size > 4) {
PyErr_SetString(AudioopError, "Size should be 1, 2, 3 or 4");
return 0;
}
else
return 1;
}
static int
audioop_check_parameters(Py_ssize_t len, int size)
{
if (!audioop_check_size(size))
return 0;
if (len % size != 0) {
PyErr_SetString(AudioopError, "not a whole number of frames");
return 0;
}
return 1;
}
/*[clinic input]
module audioop
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=8fa8f6611be3591a]*/
/*[clinic input]
audioop.getsample
fragment: Py_buffer
width: int
index: Py_ssize_t
/
Return the value of sample index from the fragment.
[clinic start generated code]*/
static PyObject *
audioop_getsample_impl(PyModuleDef *module, Py_buffer *fragment, int width,
Py_ssize_t index)
/*[clinic end generated code: output=3995e189fdc8ec16 input=88edbe2871393549]*/
{
int val;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
if (index < 0 || index >= fragment->len/width) {
PyErr_SetString(AudioopError, "Index out of range");
return NULL;
}
val = GETRAWSAMPLE(width, fragment->buf, index*width);
return PyLong_FromLong(val);
}
/*[clinic input]
audioop.max
fragment: Py_buffer
width: int
/
Return the maximum of the absolute value of all samples in a fragment.
[clinic start generated code]*/
static PyObject *
audioop_max_impl(PyModuleDef *module, Py_buffer *fragment, int width)
/*[clinic end generated code: output=85047ee1001f2305 input=32bea5ea0ac8c223]*/
{
Py_ssize_t i;
unsigned int absval, max = 0;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
for (i = 0; i < fragment->len; i += width) {
int val = GETRAWSAMPLE(width, fragment->buf, i);
if (val < 0) absval = (-val);
else absval = val;
if (absval > max) max = absval;
}
return PyLong_FromUnsignedLong(max);
}
/*[clinic input]
audioop.minmax
fragment: Py_buffer
width: int
/
Return the minimum and maximum values of all samples in the sound fragment.
[clinic start generated code]*/
static PyObject *
audioop_minmax_impl(PyModuleDef *module, Py_buffer *fragment, int width)
/*[clinic end generated code: output=ae8f5513c64fd569 input=89848e9b927a0696]*/
{
Py_ssize_t i;
/* -1 trick below is needed on Windows to support -0x80000000 without
a warning */
int min = 0x7fffffff, max = -0x7FFFFFFF-1;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
for (i = 0; i < fragment->len; i += width) {
int val = GETRAWSAMPLE(width, fragment->buf, i);
if (val > max) max = val;
if (val < min) min = val;
}
return Py_BuildValue("(ii)", min, max);
}
/*[clinic input]
audioop.avg
fragment: Py_buffer
width: int
/
Return the average over all samples in the fragment.
[clinic start generated code]*/
static PyObject *
audioop_avg_impl(PyModuleDef *module, Py_buffer *fragment, int width)
/*[clinic end generated code: output=7fccd645c95f4860 input=1114493c7611334d]*/
{
Py_ssize_t i;
int avg;
double sum = 0.0;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
for (i = 0; i < fragment->len; i += width)
sum += GETRAWSAMPLE(width, fragment->buf, i);
if (fragment->len == 0)
avg = 0;
else
avg = (int)floor(sum / (double)(fragment->len/width));
return PyLong_FromLong(avg);
}
/*[clinic input]
audioop.rms
fragment: Py_buffer
width: int
/
Return the root-mean-square of the fragment, i.e. sqrt(sum(S_i^2)/n).
[clinic start generated code]*/
static PyObject *
audioop_rms_impl(PyModuleDef *module, Py_buffer *fragment, int width)
/*[clinic end generated code: output=7b398702c81b709d input=4cc57c6c94219d78]*/
{
Py_ssize_t i;
unsigned int res;
double sum_squares = 0.0;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
for (i = 0; i < fragment->len; i += width) {
double val = GETRAWSAMPLE(width, fragment->buf, i);
sum_squares += val*val;
}
if (fragment->len == 0)
res = 0;
else
res = (unsigned int)sqrt(sum_squares / (double)(fragment->len/width));
return PyLong_FromUnsignedLong(res);
}
static double _sum2(const short *a, const short *b, Py_ssize_t len)
{
Py_ssize_t i;
double sum = 0.0;
for( i=0; i<len; i++) {
sum = sum + (double)a[i]*(double)b[i];
}
return sum;
}
/*
** Findfit tries to locate a sample within another sample. Its main use
** is in echo-cancellation (to find the feedback of the output signal in
** the input signal).
** The method used is as follows:
**
** let R be the reference signal (length n) and A the input signal (length N)
** with N > n, and let all sums be over i from 0 to n-1.
**
** Now, for each j in {0..N-n} we compute a factor fj so that -fj*R matches A
** as good as possible, i.e. sum( (A[j+i]+fj*R[i])^2 ) is minimal. This
** equation gives fj = sum( A[j+i]R[i] ) / sum(R[i]^2).
**
** Next, we compute the relative distance between the original signal and
** the modified signal and minimize that over j:
** vj = sum( (A[j+i]-fj*R[i])^2 ) / sum( A[j+i]^2 ) =>
** vj = ( sum(A[j+i]^2)*sum(R[i]^2) - sum(A[j+i]R[i])^2 ) / sum( A[j+i]^2 )
**
** In the code variables correspond as follows:
** cp1 A
** cp2 R
** len1 N
** len2 n
** aj_m1 A[j-1]
** aj_lm1 A[j+n-1]
** sum_ri_2 sum(R[i]^2)
** sum_aij_2 sum(A[i+j]^2)
** sum_aij_ri sum(A[i+j]R[i])
**
** sum_ri is calculated once, sum_aij_2 is updated each step and sum_aij_ri
** is completely recalculated each step.
*/
/*[clinic input]
audioop.findfit
fragment: Py_buffer
reference: Py_buffer
/
Try to match reference as well as possible to a portion of fragment.
[clinic start generated code]*/
static PyObject *
audioop_findfit_impl(PyModuleDef *module, Py_buffer *fragment,
Py_buffer *reference)
/*[clinic end generated code: output=609eedf5d823d6dd input=62c305605e183c9a]*/
{
const short *cp1, *cp2;
Py_ssize_t len1, len2;
Py_ssize_t j, best_j;
double aj_m1, aj_lm1;
double sum_ri_2, sum_aij_2, sum_aij_ri, result, best_result, factor;
if (fragment->len & 1 || reference->len & 1) {
PyErr_SetString(AudioopError, "Strings should be even-sized");
return NULL;
}
cp1 = (const short *)fragment->buf;
len1 = fragment->len >> 1;
cp2 = (const short *)reference->buf;
len2 = reference->len >> 1;
if (len1 < len2) {
PyErr_SetString(AudioopError, "First sample should be longer");
return NULL;
}
sum_ri_2 = _sum2(cp2, cp2, len2);
sum_aij_2 = _sum2(cp1, cp1, len2);
sum_aij_ri = _sum2(cp1, cp2, len2);
result = (sum_ri_2*sum_aij_2 - sum_aij_ri*sum_aij_ri) / sum_aij_2;
best_result = result;
best_j = 0;
for ( j=1; j<=len1-len2; j++) {
aj_m1 = (double)cp1[j-1];
aj_lm1 = (double)cp1[j+len2-1];
sum_aij_2 = sum_aij_2 + aj_lm1*aj_lm1 - aj_m1*aj_m1;
sum_aij_ri = _sum2(cp1+j, cp2, len2);
result = (sum_ri_2*sum_aij_2 - sum_aij_ri*sum_aij_ri)
/ sum_aij_2;
if ( result < best_result ) {
best_result = result;
best_j = j;
}
}
factor = _sum2(cp1+best_j, cp2, len2) / sum_ri_2;
return Py_BuildValue("(nf)", best_j, factor);
}
/*
** findfactor finds a factor f so that the energy in A-fB is minimal.
** See the comment for findfit for details.
*/
/*[clinic input]
audioop.findfactor
fragment: Py_buffer
reference: Py_buffer
/
Return a factor F such that rms(add(fragment, mul(reference, -F))) is minimal.
[clinic start generated code]*/
static PyObject *
audioop_findfactor_impl(PyModuleDef *module, Py_buffer *fragment,
Py_buffer *reference)
/*[clinic end generated code: output=5566a8c55de54f99 input=816680301d012b21]*/
{
const short *cp1, *cp2;
Py_ssize_t len;
double sum_ri_2, sum_aij_ri, result;
if (fragment->len & 1 || reference->len & 1) {
PyErr_SetString(AudioopError, "Strings should be even-sized");
return NULL;
}
if (fragment->len != reference->len) {
PyErr_SetString(AudioopError, "Samples should be same size");
return NULL;
}
cp1 = (const short *)fragment->buf;
cp2 = (const short *)reference->buf;
len = fragment->len >> 1;
sum_ri_2 = _sum2(cp2, cp2, len);
sum_aij_ri = _sum2(cp1, cp2, len);
result = sum_aij_ri / sum_ri_2;
return PyFloat_FromDouble(result);
}
/*
** findmax returns the index of the n-sized segment of the input sample
** that contains the most energy.
*/
/*[clinic input]
audioop.findmax
fragment: Py_buffer
length: Py_ssize_t
/
Search fragment for a slice of specified number of samples with maximum energy.
[clinic start generated code]*/
static PyObject *
audioop_findmax_impl(PyModuleDef *module, Py_buffer *fragment,
Py_ssize_t length)
/*[clinic end generated code: output=01fe796fad2573bb input=2f304801ed42383c]*/
{
const short *cp1;
Py_ssize_t len1;
Py_ssize_t j, best_j;
double aj_m1, aj_lm1;
double result, best_result;
if (fragment->len & 1) {
PyErr_SetString(AudioopError, "Strings should be even-sized");
return NULL;
}
cp1 = (const short *)fragment->buf;
len1 = fragment->len >> 1;
if (length < 0 || len1 < length) {
PyErr_SetString(AudioopError, "Input sample should be longer");
return NULL;
}
result = _sum2(cp1, cp1, length);
best_result = result;
best_j = 0;
for ( j=1; j<=len1-length; j++) {
aj_m1 = (double)cp1[j-1];
aj_lm1 = (double)cp1[j+length-1];
result = result + aj_lm1*aj_lm1 - aj_m1*aj_m1;
if ( result > best_result ) {
best_result = result;
best_j = j;
}
}
return PyLong_FromSsize_t(best_j);
}
/*[clinic input]
audioop.avgpp
fragment: Py_buffer
width: int
/
Return the average peak-peak value over all samples in the fragment.
[clinic start generated code]*/
static PyObject *
audioop_avgpp_impl(PyModuleDef *module, Py_buffer *fragment, int width)
/*[clinic end generated code: output=06c8380fd6e34207 input=0b3cceeae420a7d9]*/
{
Py_ssize_t i;
int prevval, prevextremevalid = 0, prevextreme = 0;
double sum = 0.0;
unsigned int avg;
int diff, prevdiff, nextreme = 0;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
if (fragment->len <= width)
return PyLong_FromLong(0);
prevval = GETRAWSAMPLE(width, fragment->buf, 0);
prevdiff = 17; /* Anything != 0, 1 */
for (i = width; i < fragment->len; i += width) {
int val = GETRAWSAMPLE(width, fragment->buf, i);
if (val != prevval) {
diff = val < prevval;
if (prevdiff == !diff) {
/* Derivative changed sign. Compute difference to last
** extreme value and remember.
*/
if (prevextremevalid) {
if (prevval < prevextreme)
sum += (double)((unsigned int)prevextreme -
(unsigned int)prevval);
else
sum += (double)((unsigned int)prevval -
(unsigned int)prevextreme);
nextreme++;
}
prevextremevalid = 1;
prevextreme = prevval;
}
prevval = val;
prevdiff = diff;
}
}
if ( nextreme == 0 )
avg = 0;
else
avg = (unsigned int)(sum / (double)nextreme);
return PyLong_FromUnsignedLong(avg);
}
/*[clinic input]
audioop.maxpp
fragment: Py_buffer
width: int
/
Return the maximum peak-peak value in the sound fragment.
[clinic start generated code]*/
static PyObject *
audioop_maxpp_impl(PyModuleDef *module, Py_buffer *fragment, int width)
/*[clinic end generated code: output=c300c0bd7e8535c0 input=671a13e1518f80a1]*/
{
Py_ssize_t i;
int prevval, prevextremevalid = 0, prevextreme = 0;
unsigned int max = 0, extremediff;
int diff, prevdiff;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
if (fragment->len <= width)
return PyLong_FromLong(0);
prevval = GETRAWSAMPLE(width, fragment->buf, 0);
prevdiff = 17; /* Anything != 0, 1 */
for (i = width; i < fragment->len; i += width) {
int val = GETRAWSAMPLE(width, fragment->buf, i);
if (val != prevval) {
diff = val < prevval;
if (prevdiff == !diff) {
/* Derivative changed sign. Compute difference to
** last extreme value and remember.
*/
if (prevextremevalid) {
if (prevval < prevextreme)
extremediff = (unsigned int)prevextreme -
(unsigned int)prevval;
else
extremediff = (unsigned int)prevval -
(unsigned int)prevextreme;
if ( extremediff > max )
max = extremediff;
}
prevextremevalid = 1;
prevextreme = prevval;
}
prevval = val;
prevdiff = diff;
}
}
return PyLong_FromUnsignedLong(max);
}
/*[clinic input]
audioop.cross
fragment: Py_buffer
width: int
/
Return the number of zero crossings in the fragment passed as an argument.
[clinic start generated code]*/
static PyObject *
audioop_cross_impl(PyModuleDef *module, Py_buffer *fragment, int width)
/*[clinic end generated code: output=99e6572d7d7cdbf1 input=b1b3f15b83f6b41a]*/
{
Py_ssize_t i;
int prevval;
Py_ssize_t ncross;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
ncross = -1;
prevval = 17; /* Anything <> 0,1 */
for (i = 0; i < fragment->len; i += width) {
int val = GETRAWSAMPLE(width, fragment->buf, i) < 0;
if (val != prevval) ncross++;
prevval = val;
}
return PyLong_FromSsize_t(ncross);
}
/*[clinic input]
audioop.mul
fragment: Py_buffer
width: int
factor: double
/
Return a fragment that has all samples in the original fragment multiplied by the floating-point value factor.
[clinic start generated code]*/
static PyObject *
audioop_mul_impl(PyModuleDef *module, Py_buffer *fragment, int width,
double factor)
/*[clinic end generated code: output=1c7c31191ac86b10 input=c726667baa157d3c]*/
{
signed char *ncp;
Py_ssize_t i;
double maxval, minval;
PyObject *rv;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
maxval = (double) maxvals[width];
minval = (double) minvals[width];
rv = PyBytes_FromStringAndSize(NULL, fragment->len);
if (rv == NULL)
return NULL;
ncp = (signed char *)PyBytes_AsString(rv);
for (i = 0; i < fragment->len; i += width) {
double val = GETRAWSAMPLE(width, fragment->buf, i);
val *= factor;
val = floor(fbound(val, minval, maxval));
SETRAWSAMPLE(width, ncp, i, (int)val);
}
return rv;
}
/*[clinic input]
audioop.tomono
fragment: Py_buffer
width: int
lfactor: double
rfactor: double
/
Convert a stereo fragment to a mono fragment.
[clinic start generated code]*/
static PyObject *
audioop_tomono_impl(PyModuleDef *module, Py_buffer *fragment, int width,
double lfactor, double rfactor)
/*[clinic end generated code: output=553f547c5e29e3b6 input=c4ec949b3f4dddfa]*/
{
signed char *cp, *ncp;
Py_ssize_t len, i;
double maxval, minval;
PyObject *rv;
cp = fragment->buf;
len = fragment->len;
if (!audioop_check_parameters(len, width))
return NULL;
if (((len / width) & 1) != 0) {
PyErr_SetString(AudioopError, "not a whole number of frames");
return NULL;
}
maxval = (double) maxvals[width];
minval = (double) minvals[width];
rv = PyBytes_FromStringAndSize(NULL, len/2);
if (rv == NULL)
return NULL;
ncp = (signed char *)PyBytes_AsString(rv);
for (i = 0; i < len; i += width*2) {
double val1 = GETRAWSAMPLE(width, cp, i);
double val2 = GETRAWSAMPLE(width, cp, i + width);
double val = val1*lfactor + val2*rfactor;
val = floor(fbound(val, minval, maxval));
SETRAWSAMPLE(width, ncp, i/2, val);
}
return rv;
}
/*[clinic input]
audioop.tostereo
fragment: Py_buffer
width: int
lfactor: double
rfactor: double
/
Generate a stereo fragment from a mono fragment.
[clinic start generated code]*/
static PyObject *
audioop_tostereo_impl(PyModuleDef *module, Py_buffer *fragment, int width,
double lfactor, double rfactor)
/*[clinic end generated code: output=697bb6ba41e9dd2c input=27b6395ebfdff37a]*/
{
signed char *ncp;
Py_ssize_t i;
double maxval, minval;
PyObject *rv;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
maxval = (double) maxvals[width];
minval = (double) minvals[width];
if (fragment->len > PY_SSIZE_T_MAX/2) {
PyErr_SetString(PyExc_MemoryError,
"not enough memory for output buffer");
return NULL;
}
rv = PyBytes_FromStringAndSize(NULL, fragment->len*2);
if (rv == NULL)
return NULL;
ncp = (signed char *)PyBytes_AsString(rv);
for (i = 0; i < fragment->len; i += width) {
double val = GETRAWSAMPLE(width, fragment->buf, i);
int val1 = (int)floor(fbound(val*lfactor, minval, maxval));
int val2 = (int)floor(fbound(val*rfactor, minval, maxval));
SETRAWSAMPLE(width, ncp, i*2, val1);
SETRAWSAMPLE(width, ncp, i*2 + width, val2);
}
return rv;
}
/*[clinic input]
audioop.add
fragment1: Py_buffer
fragment2: Py_buffer
width: int
/
Return a fragment which is the addition of the two samples passed as parameters.
[clinic start generated code]*/
static PyObject *
audioop_add_impl(PyModuleDef *module, Py_buffer *fragment1,
Py_buffer *fragment2, int width)
/*[clinic end generated code: output=fe6c12f143e0b027 input=4a8d4bae4c1605c7]*/
{
signed char *ncp;
Py_ssize_t i;
int minval, maxval, newval;
PyObject *rv;
if (!audioop_check_parameters(fragment1->len, width))
return NULL;
if (fragment1->len != fragment2->len) {
PyErr_SetString(AudioopError, "Lengths should be the same");
return NULL;
}
maxval = maxvals[width];
minval = minvals[width];
rv = PyBytes_FromStringAndSize(NULL, fragment1->len);
if (rv == NULL)
return NULL;
ncp = (signed char *)PyBytes_AsString(rv);
for (i = 0; i < fragment1->len; i += width) {
int val1 = GETRAWSAMPLE(width, fragment1->buf, i);
int val2 = GETRAWSAMPLE(width, fragment2->buf, i);
if (width < 4) {
newval = val1 + val2;
/* truncate in case of overflow */
if (newval > maxval)
newval = maxval;
else if (newval < minval)
newval = minval;
}
else {
double fval = (double)val1 + (double)val2;
/* truncate in case of overflow */
newval = (int)floor(fbound(fval, minval, maxval));
}
SETRAWSAMPLE(width, ncp, i, newval);
}
return rv;
}
/*[clinic input]
audioop.bias
fragment: Py_buffer
width: int
bias: int
/
Return a fragment that is the original fragment with a bias added to each sample.
[clinic start generated code]*/
static PyObject *
audioop_bias_impl(PyModuleDef *module, Py_buffer *fragment, int width,
int bias)
/*[clinic end generated code: output=ac1f4dda20a01c26 input=2b5cce5c3bb4838c]*/
{
signed char *ncp;
Py_ssize_t i;
unsigned int val = 0, mask;
PyObject *rv;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
rv = PyBytes_FromStringAndSize(NULL, fragment->len);
if (rv == NULL)
return NULL;
ncp = (signed char *)PyBytes_AsString(rv);
mask = masks[width];
for (i = 0; i < fragment->len; i += width) {
if (width == 1)
val = GETINTX(unsigned char, fragment->buf, i);
else if (width == 2)
val = GETINTX(unsigned short, fragment->buf, i);
else if (width == 3)
val = ((unsigned int)GETINT24(fragment->buf, i)) & 0xffffffu;
else {
assert(width == 4);
val = GETINTX(PY_UINT32_T, fragment->buf, i);
}
val += (unsigned int)bias;
/* wrap around in case of overflow */
val &= mask;
if (width == 1)
SETINTX(unsigned char, ncp, i, val);
else if (width == 2)
SETINTX(unsigned short, ncp, i, val);
else if (width == 3)
SETINT24(ncp, i, (int)val);
else {
assert(width == 4);
SETINTX(PY_UINT32_T, ncp, i, val);
}
}
return rv;
}
/*[clinic input]
audioop.reverse
fragment: Py_buffer
width: int
/
Reverse the samples in a fragment and returns the modified fragment.
[clinic start generated code]*/
static PyObject *
audioop_reverse_impl(PyModuleDef *module, Py_buffer *fragment, int width)
/*[clinic end generated code: output=6ec3c91337f5925e input=668f890cf9f9d225]*/
{
unsigned char *ncp;
Py_ssize_t i;
PyObject *rv;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
rv = PyBytes_FromStringAndSize(NULL, fragment->len);
if (rv == NULL)
return NULL;
ncp = (unsigned char *)PyBytes_AsString(rv);
for (i = 0; i < fragment->len; i += width) {
int val = GETRAWSAMPLE(width, fragment->buf, i);
SETRAWSAMPLE(width, ncp, fragment->len - i - width, val);
}
return rv;
}
/*[clinic input]
audioop.byteswap
fragment: Py_buffer
width: int
/
Convert big-endian samples to little-endian and vice versa.
[clinic start generated code]*/
static PyObject *
audioop_byteswap_impl(PyModuleDef *module, Py_buffer *fragment, int width)
/*[clinic end generated code: output=bfe4aa584b7a3f5b input=fae7611ceffa5c82]*/
{
unsigned char *ncp;
Py_ssize_t i;
PyObject *rv;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
rv = PyBytes_FromStringAndSize(NULL, fragment->len);
if (rv == NULL)
return NULL;
ncp = (unsigned char *)PyBytes_AsString(rv);
for (i = 0; i < fragment->len; i += width) {
int j;
for (j = 0; j < width; j++)
ncp[i + width - 1 - j] = ((unsigned char *)fragment->buf)[i + j];
}
return rv;
}
/*[clinic input]
audioop.lin2lin
fragment: Py_buffer
width: int
newwidth: int
/
Convert samples between 1-, 2-, 3- and 4-byte formats.
[clinic start generated code]*/
static PyObject *
audioop_lin2lin_impl(PyModuleDef *module, Py_buffer *fragment, int width,
int newwidth)
/*[clinic end generated code: output=cb6ca950d1df9898 input=5ce08c8aa2f24d96]*/
{
unsigned char *ncp;
Py_ssize_t i, j;
PyObject *rv;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
if (!audioop_check_size(newwidth))
return NULL;
if (fragment->len/width > PY_SSIZE_T_MAX/newwidth) {
PyErr_SetString(PyExc_MemoryError,
"not enough memory for output buffer");
return NULL;
}
rv = PyBytes_FromStringAndSize(NULL, (fragment->len/width)*newwidth);
if (rv == NULL)
return NULL;
ncp = (unsigned char *)PyBytes_AsString(rv);
for (i = j = 0; i < fragment->len; i += width, j += newwidth) {
int val = GETSAMPLE32(width, fragment->buf, i);
SETSAMPLE32(newwidth, ncp, j, val);
}
return rv;
}
static int
gcd(int a, int b)
{
while (b > 0) {
int tmp = a % b;
a = b;
b = tmp;
}
return a;
}
/*[clinic input]
audioop.ratecv
fragment: Py_buffer
width: int
nchannels: int
inrate: int
outrate: int
state: object
weightA: int = 1
weightB: int = 0
/
Convert the frame rate of the input fragment.
[clinic start generated code]*/
static PyObject *
audioop_ratecv_impl(PyModuleDef *module, Py_buffer *fragment, int width,
int nchannels, int inrate, int outrate, PyObject *state,
int weightA, int weightB)
/*[clinic end generated code: output=59e1787bfa49b9d9 input=aff3acdc94476191]*/
{
char *cp, *ncp;
Py_ssize_t len;
int chan, d, *prev_i, *cur_i, cur_o;
PyObject *samps, *str, *rv = NULL;
int bytes_per_frame;
if (!audioop_check_size(width))
return NULL;
if (nchannels < 1) {
PyErr_SetString(AudioopError, "# of channels should be >= 1");
return NULL;
}
if (width > INT_MAX / nchannels) {
/* This overflow test is rigorously correct because
both multiplicands are >= 1. Use the argument names
from the docs for the error msg. */
PyErr_SetString(PyExc_OverflowError,
"width * nchannels too big for a C int");
return NULL;
}
bytes_per_frame = width * nchannels;
if (weightA < 1 || weightB < 0) {
PyErr_SetString(AudioopError,
"weightA should be >= 1, weightB should be >= 0");
return NULL;
}
assert(fragment->len >= 0);
if (fragment->len % bytes_per_frame != 0) {
PyErr_SetString(AudioopError, "not a whole number of frames");
return NULL;
}
if (inrate <= 0 || outrate <= 0) {
PyErr_SetString(AudioopError, "sampling rate not > 0");
return NULL;
}
/* divide inrate and outrate by their greatest common divisor */
d = gcd(inrate, outrate);
inrate /= d;
outrate /= d;
/* divide weightA and weightB by their greatest common divisor */
d = gcd(weightA, weightB);
weightA /= d;
weightB /= d;
if ((size_t)nchannels > PY_SIZE_MAX/sizeof(int)) {
PyErr_SetString(PyExc_MemoryError,
"not enough memory for output buffer");
return NULL;
}
prev_i = (int *) PyMem_Malloc(nchannels * sizeof(int));
cur_i = (int *) PyMem_Malloc(nchannels * sizeof(int));
if (prev_i == NULL || cur_i == NULL) {
(void) PyErr_NoMemory();
goto exit;
}
len = fragment->len / bytes_per_frame; /* # of frames */
if (state == Py_None) {
d = -outrate;
for (chan = 0; chan < nchannels; chan++)
prev_i[chan] = cur_i[chan] = 0;
}
else {
if (!PyArg_ParseTuple(state,
"iO!;audioop.ratecv: illegal state argument",
&d, &PyTuple_Type, &samps))
goto exit;
if (PyTuple_Size(samps) != nchannels) {
PyErr_SetString(AudioopError,
"illegal state argument");
goto exit;
}
for (chan = 0; chan < nchannels; chan++) {
if (!PyArg_ParseTuple(PyTuple_GetItem(samps, chan),
"ii:ratecv", &prev_i[chan],
&cur_i[chan]))
goto exit;
}
}
/* str <- Space for the output buffer. */
if (len == 0)
str = PyBytes_FromStringAndSize(NULL, 0);
else {
/* There are len input frames, so we need (mathematically)
ceiling(len*outrate/inrate) output frames, and each frame
requires bytes_per_frame bytes. Computing this
without spurious overflow is the challenge; we can
settle for a reasonable upper bound, though, in this
case ceiling(len/inrate) * outrate. */
/* compute ceiling(len/inrate) without overflow */
Py_ssize_t q = 1 + (len - 1) / inrate;
if (outrate > PY_SSIZE_T_MAX / q / bytes_per_frame)
str = NULL;
else
str = PyBytes_FromStringAndSize(NULL,
q * outrate * bytes_per_frame);
}
if (str == NULL) {
PyErr_SetString(PyExc_MemoryError,
"not enough memory for output buffer");
goto exit;
}
ncp = PyBytes_AsString(str);
cp = fragment->buf;
for (;;) {
while (d < 0) {
if (len == 0) {
samps = PyTuple_New(nchannels);
if (samps == NULL)
goto exit;
for (chan = 0; chan < nchannels; chan++)
PyTuple_SetItem(samps, chan,
Py_BuildValue("(ii)",
prev_i[chan],
cur_i[chan]));
if (PyErr_Occurred())
goto exit;
/* We have checked before that the length
* of the string fits into int. */
len = (Py_ssize_t)(ncp - PyBytes_AsString(str));
rv = PyBytes_FromStringAndSize
(PyBytes_AsString(str), len);
Py_DECREF(str);
str = rv;
if (str == NULL)
goto exit;
rv = Py_BuildValue("(O(iO))", str, d, samps);
Py_DECREF(samps);
Py_DECREF(str);
goto exit; /* return rv */
}
for (chan = 0; chan < nchannels; chan++) {
prev_i[chan] = cur_i[chan];
cur_i[chan] = GETSAMPLE32(width, cp, 0);
cp += width;
/* implements a simple digital filter */
cur_i[chan] = (int)(
((double)weightA * (double)cur_i[chan] +
(double)weightB * (double)prev_i[chan]) /
((double)weightA + (double)weightB));
}
len--;
d += outrate;
}
while (d >= 0) {
for (chan = 0; chan < nchannels; chan++) {
cur_o = (int)(((double)prev_i[chan] * (double)d +
(double)cur_i[chan] * (double)(outrate - d)) /
(double)outrate);
SETSAMPLE32(width, ncp, 0, cur_o);
ncp += width;
}
d -= inrate;
}
}
exit:
PyMem_Free(prev_i);
PyMem_Free(cur_i);
return rv;
}
/*[clinic input]
audioop.lin2ulaw
fragment: Py_buffer
width: int
/
Convert samples in the audio fragment to u-LAW encoding.
[clinic start generated code]*/
static PyObject *
audioop_lin2ulaw_impl(PyModuleDef *module, Py_buffer *fragment, int width)
/*[clinic end generated code: output=26263cc877c5e1bc input=2450d1b870b6bac2]*/
{
unsigned char *ncp;
Py_ssize_t i;
PyObject *rv;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
rv = PyBytes_FromStringAndSize(NULL, fragment->len/width);
if (rv == NULL)
return NULL;
ncp = (unsigned char *)PyBytes_AsString(rv);
for (i = 0; i < fragment->len; i += width) {
int val = GETSAMPLE32(width, fragment->buf, i);
*ncp++ = st_14linear2ulaw(val >> 18);
}
return rv;
}
/*[clinic input]
audioop.ulaw2lin
fragment: Py_buffer
width: int
/
Convert sound fragments in u-LAW encoding to linearly encoded sound fragments.
[clinic start generated code]*/
static PyObject *
audioop_ulaw2lin_impl(PyModuleDef *module, Py_buffer *fragment, int width)
/*[clinic end generated code: output=9864cb34e3a1d876 input=45d53ddce5be7d06]*/
{
unsigned char *cp;
signed char *ncp;
Py_ssize_t i;
PyObject *rv;
if (!audioop_check_size(width))
return NULL;
if (fragment->len > PY_SSIZE_T_MAX/width) {
PyErr_SetString(PyExc_MemoryError,
"not enough memory for output buffer");
return NULL;
}
rv = PyBytes_FromStringAndSize(NULL, fragment->len*width);
if (rv == NULL)
return NULL;
ncp = (signed char *)PyBytes_AsString(rv);
cp = fragment->buf;
for (i = 0; i < fragment->len*width; i += width) {
int val = st_ulaw2linear16(*cp++) << 16;
SETSAMPLE32(width, ncp, i, val);
}
return rv;
}
/*[clinic input]
audioop.lin2alaw
fragment: Py_buffer
width: int
/
Convert samples in the audio fragment to a-LAW encoding.
[clinic start generated code]*/
static PyObject *
audioop_lin2alaw_impl(PyModuleDef *module, Py_buffer *fragment, int width)
/*[clinic end generated code: output=d5bf14bd0fe6fdcd input=ffb1ef8bb39da945]*/
{
unsigned char *ncp;
Py_ssize_t i;
PyObject *rv;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
rv = PyBytes_FromStringAndSize(NULL, fragment->len/width);
if (rv == NULL)
return NULL;
ncp = (unsigned char *)PyBytes_AsString(rv);
for (i = 0; i < fragment->len; i += width) {
int val = GETSAMPLE32(width, fragment->buf, i);
*ncp++ = st_linear2alaw(val >> 19);
}
return rv;
}
/*[clinic input]
audioop.alaw2lin
fragment: Py_buffer
width: int
/
Convert sound fragments in a-LAW encoding to linearly encoded sound fragments.
[clinic start generated code]*/
static PyObject *
audioop_alaw2lin_impl(PyModuleDef *module, Py_buffer *fragment, int width)
/*[clinic end generated code: output=d2b604ddd036e1cd input=4140626046cd1772]*/
{
unsigned char *cp;
signed char *ncp;
Py_ssize_t i;
int val;
PyObject *rv;
if (!audioop_check_size(width))
return NULL;
if (fragment->len > PY_SSIZE_T_MAX/width) {
PyErr_SetString(PyExc_MemoryError,
"not enough memory for output buffer");
return NULL;
}
rv = PyBytes_FromStringAndSize(NULL, fragment->len*width);
if (rv == NULL)
return NULL;
ncp = (signed char *)PyBytes_AsString(rv);
cp = fragment->buf;
for (i = 0; i < fragment->len*width; i += width) {
val = st_alaw2linear16(*cp++) << 16;
SETSAMPLE32(width, ncp, i, val);
}
return rv;
}
/*[clinic input]
audioop.lin2adpcm
fragment: Py_buffer
width: int
state: object
/
Convert samples to 4 bit Intel/DVI ADPCM encoding.
[clinic start generated code]*/
static PyObject *
audioop_lin2adpcm_impl(PyModuleDef *module, Py_buffer *fragment, int width,
PyObject *state)
/*[clinic end generated code: output=93f0996f592b5ce5 input=12919d549b90c90a]*/
{
signed char *ncp;
Py_ssize_t i;
int step, valpred, delta,
index, sign, vpdiff, diff;
PyObject *rv = NULL, *str;
int outputbuffer = 0, bufferstep;
if (!audioop_check_parameters(fragment->len, width))
return NULL;
/* Decode state, should have (value, step) */
if ( state == Py_None ) {
/* First time, it seems. Set defaults */
valpred = 0;
index = 0;
}
else if (!PyTuple_Check(state)) {
PyErr_SetString(PyExc_TypeError, "state must be a tuple or None");
return NULL;
}
else if (!PyArg_ParseTuple(state, "ii", &valpred, &index)) {
return NULL;
}
else if (valpred >= 0x8000 || valpred < -0x8000 ||
(size_t)index >= Py_ARRAY_LENGTH(stepsizeTable)) {
PyErr_SetString(PyExc_ValueError, "bad state");
return NULL;
}
str = PyBytes_FromStringAndSize(NULL, fragment->len/(width*2));
if (str == NULL)
return NULL;
ncp = (signed char *)PyBytes_AsString(str);
step = stepsizeTable[index];
bufferstep = 1;
for (i = 0; i < fragment->len; i += width) {
int val = GETSAMPLE32(width, fragment->buf, i) >> 16;
/* Step 1 - compute difference with previous value */
if (val < valpred) {
diff = valpred - val;
sign = 8;
}
else {
diff = val - valpred;
sign = 0;
}
/* Step 2 - Divide and clamp */
/* Note:
** This code *approximately* computes:
** delta = diff*4/step;
** vpdiff = (delta+0.5)*step/4;
** but in shift step bits are dropped. The net result of this
** is that even if you have fast mul/div hardware you cannot
** put it to good use since the fixup would be too expensive.
*/
delta = 0;
vpdiff = (step >> 3);
if ( diff >= step ) {
delta = 4;
diff -= step;
vpdiff += step;
}
step >>= 1;
if ( diff >= step ) {
delta |= 2;
diff -= step;
vpdiff += step;
}
step >>= 1;
if ( diff >= step ) {
delta |= 1;
vpdiff += step;
}
/* Step 3 - Update previous value */
if ( sign )
valpred -= vpdiff;
else
valpred += vpdiff;
/* Step 4 - Clamp previous value to 16 bits */
if ( valpred > 32767 )
valpred = 32767;
else if ( valpred < -32768 )
valpred = -32768;
/* Step 5 - Assemble value, update index and step values */
delta |= sign;
index += indexTable[delta];
if ( index < 0 ) index = 0;
if ( index > 88 ) index = 88;
step = stepsizeTable[index];
/* Step 6 - Output value */
if ( bufferstep ) {
outputbuffer = (delta << 4) & 0xf0;
} else {
*ncp++ = (delta & 0x0f) | outputbuffer;
}
bufferstep = !bufferstep;
}
rv = Py_BuildValue("(O(ii))", str, valpred, index);
Py_DECREF(str);
return rv;
}
/*[clinic input]
audioop.adpcm2lin
fragment: Py_buffer
width: int
state: object
/
Decode an Intel/DVI ADPCM coded fragment to a linear fragment.
[clinic start generated code]*/
static PyObject *
audioop_adpcm2lin_impl(PyModuleDef *module, Py_buffer *fragment, int width,
PyObject *state)
/*[clinic end generated code: output=236cf6dc2c829181 input=f5221144f5ca9ef0]*/
{
signed char *cp;
signed char *ncp;
Py_ssize_t i, outlen;
int valpred, step, delta, index, sign, vpdiff;
PyObject *rv, *str;
int inputbuffer = 0, bufferstep;
if (!audioop_check_size(width))
return NULL;
/* Decode state, should have (value, step) */
if ( state == Py_None ) {
/* First time, it seems. Set defaults */
valpred = 0;
index = 0;
}
else if (!PyTuple_Check(state)) {
PyErr_SetString(PyExc_TypeError, "state must be a tuple or None");
return NULL;
}
else if (!PyArg_ParseTuple(state, "ii", &valpred, &index)) {
return NULL;
}
else if (valpred >= 0x8000 || valpred < -0x8000 ||
(size_t)index >= Py_ARRAY_LENGTH(stepsizeTable)) {
PyErr_SetString(PyExc_ValueError, "bad state");
return NULL;
}
if (fragment->len > (PY_SSIZE_T_MAX/2)/width) {
PyErr_SetString(PyExc_MemoryError,
"not enough memory for output buffer");
return NULL;
}
outlen = fragment->len*width*2;
str = PyBytes_FromStringAndSize(NULL, outlen);
if (str == NULL)
return NULL;
ncp = (signed char *)PyBytes_AsString(str);
cp = fragment->buf;
step = stepsizeTable[index];
bufferstep = 0;
for (i = 0; i < outlen; i += width) {
/* Step 1 - get the delta value and compute next index */
if ( bufferstep ) {
delta = inputbuffer & 0xf;
} else {
inputbuffer = *cp++;
delta = (inputbuffer >> 4) & 0xf;
}
bufferstep = !bufferstep;
/* Step 2 - Find new index value (for later) */
index += indexTable[delta];
if ( index < 0 ) index = 0;
if ( index > 88 ) index = 88;
/* Step 3 - Separate sign and magnitude */
sign = delta & 8;
delta = delta & 7;
/* Step 4 - Compute difference and new predicted value */
/*
** Computes 'vpdiff = (delta+0.5)*step/4', but see comment
** in adpcm_coder.
*/
vpdiff = step >> 3;
if ( delta & 4 ) vpdiff += step;
if ( delta & 2 ) vpdiff += step>>1;
if ( delta & 1 ) vpdiff += step>>2;
if ( sign )
valpred -= vpdiff;
else
valpred += vpdiff;
/* Step 5 - clamp output value */
if ( valpred > 32767 )
valpred = 32767;
else if ( valpred < -32768 )
valpred = -32768;
/* Step 6 - Update step value */
step = stepsizeTable[index];
/* Step 6 - Output value */
SETSAMPLE32(width, ncp, i, valpred << 16);
}
rv = Py_BuildValue("(O(ii))", str, valpred, index);
Py_DECREF(str);
return rv;
}
#include "clinic/audioop.c.h"
static PyMethodDef audioop_methods[] = {
AUDIOOP_MAX_METHODDEF
AUDIOOP_MINMAX_METHODDEF
AUDIOOP_AVG_METHODDEF
AUDIOOP_MAXPP_METHODDEF
AUDIOOP_AVGPP_METHODDEF
AUDIOOP_RMS_METHODDEF
AUDIOOP_FINDFIT_METHODDEF
AUDIOOP_FINDMAX_METHODDEF
AUDIOOP_FINDFACTOR_METHODDEF
AUDIOOP_CROSS_METHODDEF
AUDIOOP_MUL_METHODDEF
AUDIOOP_ADD_METHODDEF
AUDIOOP_BIAS_METHODDEF
AUDIOOP_ULAW2LIN_METHODDEF
AUDIOOP_LIN2ULAW_METHODDEF
AUDIOOP_ALAW2LIN_METHODDEF
AUDIOOP_LIN2ALAW_METHODDEF
AUDIOOP_LIN2LIN_METHODDEF
AUDIOOP_ADPCM2LIN_METHODDEF
AUDIOOP_LIN2ADPCM_METHODDEF
AUDIOOP_TOMONO_METHODDEF
AUDIOOP_TOSTEREO_METHODDEF
AUDIOOP_GETSAMPLE_METHODDEF
AUDIOOP_REVERSE_METHODDEF
AUDIOOP_BYTESWAP_METHODDEF
AUDIOOP_RATECV_METHODDEF
{ 0, 0 }
};
static struct PyModuleDef audioopmodule = {
PyModuleDef_HEAD_INIT,
"audioop",
NULL,
-1,
audioop_methods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC
PyInit_audioop(void)
{
PyObject *m, *d;
m = PyModule_Create(&audioopmodule);
if (m == NULL)
return NULL;
d = PyModule_GetDict(m);
if (d == NULL)
return NULL;
AudioopError = PyErr_NewException("audioop.error", NULL, NULL);
if (AudioopError != NULL)
PyDict_SetItemString(d,"error",AudioopError);
return m;
}
|