1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
|
/*
** Routines to represent binary data in ASCII and vice-versa
**
** This module currently supports the following encodings:
** uuencode:
** each line encodes 45 bytes (except possibly the last)
** First char encodes (binary) length, rest data
** each char encodes 6 bits, as follows:
** binary: 01234567 abcdefgh ijklmnop
** ascii: 012345 67abcd efghij klmnop
** ASCII encoding method is "excess-space": 000000 is encoded as ' ', etc.
** short binary data is zero-extended (so the bits are always in the
** right place), this does *not* reflect in the length.
** base64:
** Line breaks are insignificant, but lines are at most 76 chars
** each char encodes 6 bits, in similar order as uucode/hqx. Encoding
** is done via a table.
** Short binary data is filled (in ASCII) with '='.
** hqx:
** File starts with introductory text, real data starts and ends
** with colons.
** Data consists of three similar parts: info, datafork, resourcefork.
** Each part is protected (at the end) with a 16-bit crc
** The binary data is run-length encoded, and then ascii-fied:
** binary: 01234567 abcdefgh ijklmnop
** ascii: 012345 67abcd efghij klmnop
** ASCII encoding is table-driven, see the code.
** Short binary data results in the runt ascii-byte being output with
** the bits in the right place.
**
** While I was reading dozens of programs that encode or decode the formats
** here (documentation? hihi:-) I have formulated Jansen's Observation:
**
** Programs that encode binary data in ASCII are written in
** such a style that they are as unreadable as possible. Devices used
** include unnecessary global variables, burying important tables
** in unrelated sourcefiles, putting functions in include files,
** using seemingly-descriptive variable names for different purposes,
** calls to empty subroutines and a host of others.
**
** I have attempted to break with this tradition, but I guess that that
** does make the performance sub-optimal. Oh well, too bad...
**
** Jack Jansen, CWI, July 1995.
**
** Added support for quoted-printable encoding, based on rfc 1521 et al
** quoted-printable encoding specifies that non printable characters (anything
** below 32 and above 126) be encoded as =XX where XX is the hexadecimal value
** of the character. It also specifies some other behavior to enable 8bit data
** in a mail message with little difficulty (maximum line sizes, protecting
** some cases of whitespace, etc).
**
** Brandon Long, September 2001.
*/
#define PY_SSIZE_T_CLEAN
#include "Python.h"
#include "pystrhex.h"
#ifdef USE_ZLIB_CRC32
#include "zlib.h"
#endif
typedef struct binascii_state {
PyObject *Error;
PyObject *Incomplete;
} binascii_state;
/*
** hqx lookup table, ascii->binary.
*/
#define RUNCHAR 0x90
#define DONE 0x7F
#define SKIP 0x7E
#define FAIL 0x7D
static const unsigned char table_a2b_hqx[256] = {
/* ^@ ^A ^B ^C ^D ^E ^F ^G */
/* 0*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
/* \b \t \n ^K ^L \r ^N ^O */
/* 1*/ FAIL, FAIL, SKIP, FAIL, FAIL, SKIP, FAIL, FAIL,
/* ^P ^Q ^R ^S ^T ^U ^V ^W */
/* 2*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
/* ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */
/* 3*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
/* ! " # $ % & ' */
/* 4*/ FAIL, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
/* ( ) * + , - . / */
/* 5*/ 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, FAIL, FAIL,
/* 0 1 2 3 4 5 6 7 */
/* 6*/ 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, FAIL,
/* 8 9 : ; < = > ? */
/* 7*/ 0x14, 0x15, DONE, FAIL, FAIL, FAIL, FAIL, FAIL,
/* @ A B C D E F G */
/* 8*/ 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D,
/* H I J K L M N O */
/* 9*/ 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, FAIL,
/* P Q R S T U V W */
/*10*/ 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, FAIL,
/* X Y Z [ \ ] ^ _ */
/*11*/ 0x2C, 0x2D, 0x2E, 0x2F, FAIL, FAIL, FAIL, FAIL,
/* ` a b c d e f g */
/*12*/ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, FAIL,
/* h i j k l m n o */
/*13*/ 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, FAIL, FAIL,
/* p q r s t u v w */
/*14*/ 0x3D, 0x3E, 0x3F, FAIL, FAIL, FAIL, FAIL, FAIL,
/* x y z { | } ~ ^? */
/*15*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
/*16*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
};
static const unsigned char table_b2a_hqx[] =
"!\"#$%&'()*+,-012345689@ABCDEFGHIJKLMNPQRSTUVXYZ[`abcdefhijklmpqr";
static const unsigned char table_a2b_base64[] = {
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,62, -1,-1,-1,63,
52,53,54,55, 56,57,58,59, 60,61,-1,-1, -1, 0,-1,-1, /* Note PAD->0 */
-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,12,13,14,
15,16,17,18, 19,20,21,22, 23,24,25,-1, -1,-1,-1,-1,
-1,26,27,28, 29,30,31,32, 33,34,35,36, 37,38,39,40,
41,42,43,44, 45,46,47,48, 49,50,51,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
};
#define BASE64_PAD '='
/* Max binary chunk size; limited only by available memory */
#define BASE64_MAXBIN ((PY_SSIZE_T_MAX - 3) / 2)
static const unsigned char table_b2a_base64[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static const unsigned short crctab_hqx[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0,
};
/*[clinic input]
module binascii
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=de89fb46bcaf3fec]*/
/*[python input]
class ascii_buffer_converter(CConverter):
type = 'Py_buffer'
converter = 'ascii_buffer_converter'
impl_by_reference = True
c_default = "{NULL, NULL}"
def cleanup(self):
name = self.name
return "".join(["if (", name, ".obj)\n PyBuffer_Release(&", name, ");\n"])
[python start generated code]*/
/*[python end generated code: output=da39a3ee5e6b4b0d input=3eb7b63610da92cd]*/
static int
ascii_buffer_converter(PyObject *arg, Py_buffer *buf)
{
if (arg == NULL) {
PyBuffer_Release(buf);
return 1;
}
if (PyUnicode_Check(arg)) {
if (PyUnicode_READY(arg) < 0)
return 0;
if (!PyUnicode_IS_ASCII(arg)) {
PyErr_SetString(PyExc_ValueError,
"string argument should contain only ASCII characters");
return 0;
}
assert(PyUnicode_KIND(arg) == PyUnicode_1BYTE_KIND);
buf->buf = (void *) PyUnicode_1BYTE_DATA(arg);
buf->len = PyUnicode_GET_LENGTH(arg);
buf->obj = NULL;
return 1;
}
if (PyObject_GetBuffer(arg, buf, PyBUF_SIMPLE) != 0) {
PyErr_Format(PyExc_TypeError,
"argument should be bytes, buffer or ASCII string, "
"not '%.100s'", Py_TYPE(arg)->tp_name);
return 0;
}
if (!PyBuffer_IsContiguous(buf, 'C')) {
PyErr_Format(PyExc_TypeError,
"argument should be a contiguous buffer, "
"not '%.100s'", Py_TYPE(arg)->tp_name);
PyBuffer_Release(buf);
return 0;
}
return Py_CLEANUP_SUPPORTED;
}
#include "clinic/binascii.c.h"
/*[clinic input]
binascii.a2b_uu
data: ascii_buffer
/
Decode a line of uuencoded data.
[clinic start generated code]*/
static PyObject *
binascii_a2b_uu_impl(PyObject *module, Py_buffer *data)
/*[clinic end generated code: output=e027f8e0b0598742 input=7cafeaf73df63d1c]*/
{
const unsigned char *ascii_data;
unsigned char *bin_data;
int leftbits = 0;
unsigned char this_ch;
unsigned int leftchar = 0;
PyObject *rv;
Py_ssize_t ascii_len, bin_len;
binascii_state *state;
ascii_data = data->buf;
ascii_len = data->len;
assert(ascii_len >= 0);
/* First byte: binary data length (in bytes) */
bin_len = (*ascii_data++ - ' ') & 077;
ascii_len--;
/* Allocate the buffer */
if ( (rv=PyBytes_FromStringAndSize(NULL, bin_len)) == NULL )
return NULL;
bin_data = (unsigned char *)PyBytes_AS_STRING(rv);
for( ; bin_len > 0 ; ascii_len--, ascii_data++ ) {
/* XXX is it really best to add NULs if there's no more data */
this_ch = (ascii_len > 0) ? *ascii_data : 0;
if ( this_ch == '\n' || this_ch == '\r' || ascii_len <= 0) {
/*
** Whitespace. Assume some spaces got eaten at
** end-of-line. (We check this later)
*/
this_ch = 0;
} else {
/* Check the character for legality
** The 64 in stead of the expected 63 is because
** there are a few uuencodes out there that use
** '`' as zero instead of space.
*/
if ( this_ch < ' ' || this_ch > (' ' + 64)) {
state = PyModule_GetState(module);
if (state == NULL) {
return NULL;
}
PyErr_SetString(state->Error, "Illegal char");
Py_DECREF(rv);
return NULL;
}
this_ch = (this_ch - ' ') & 077;
}
/*
** Shift it in on the low end, and see if there's
** a byte ready for output.
*/
leftchar = (leftchar << 6) | (this_ch);
leftbits += 6;
if ( leftbits >= 8 ) {
leftbits -= 8;
*bin_data++ = (leftchar >> leftbits) & 0xff;
leftchar &= ((1 << leftbits) - 1);
bin_len--;
}
}
/*
** Finally, check that if there's anything left on the line
** that it's whitespace only.
*/
while( ascii_len-- > 0 ) {
this_ch = *ascii_data++;
/* Extra '`' may be written as padding in some cases */
if ( this_ch != ' ' && this_ch != ' '+64 &&
this_ch != '\n' && this_ch != '\r' ) {
state = PyModule_GetState(module);
if (state == NULL) {
return NULL;
}
PyErr_SetString(state->Error, "Trailing garbage");
Py_DECREF(rv);
return NULL;
}
}
return rv;
}
/*[clinic input]
binascii.b2a_uu
data: Py_buffer
/
*
backtick: bool(accept={int}) = False
Uuencode line of data.
[clinic start generated code]*/
static PyObject *
binascii_b2a_uu_impl(PyObject *module, Py_buffer *data, int backtick)
/*[clinic end generated code: output=b1b99de62d9bbeb8 input=b26bc8d32b6ed2f6]*/
{
unsigned char *ascii_data;
const unsigned char *bin_data;
int leftbits = 0;
unsigned char this_ch;
unsigned int leftchar = 0;
binascii_state *state;
Py_ssize_t bin_len, out_len;
_PyBytesWriter writer;
_PyBytesWriter_Init(&writer);
bin_data = data->buf;
bin_len = data->len;
if ( bin_len > 45 ) {
/* The 45 is a limit that appears in all uuencode's */
state = PyModule_GetState(module);
if (state == NULL) {
return NULL;
}
PyErr_SetString(state->Error, "At most 45 bytes at once");
return NULL;
}
/* We're lazy and allocate to much (fixed up later) */
out_len = 2 + (bin_len + 2) / 3 * 4;
ascii_data = _PyBytesWriter_Alloc(&writer, out_len);
if (ascii_data == NULL)
return NULL;
/* Store the length */
if (backtick && !bin_len)
*ascii_data++ = '`';
else
*ascii_data++ = ' ' + (unsigned char)bin_len;
for( ; bin_len > 0 || leftbits != 0 ; bin_len--, bin_data++ ) {
/* Shift the data (or padding) into our buffer */
if ( bin_len > 0 ) /* Data */
leftchar = (leftchar << 8) | *bin_data;
else /* Padding */
leftchar <<= 8;
leftbits += 8;
/* See if there are 6-bit groups ready */
while ( leftbits >= 6 ) {
this_ch = (leftchar >> (leftbits-6)) & 0x3f;
leftbits -= 6;
if (backtick && !this_ch)
*ascii_data++ = '`';
else
*ascii_data++ = this_ch + ' ';
}
}
*ascii_data++ = '\n'; /* Append a courtesy newline */
return _PyBytesWriter_Finish(&writer, ascii_data);
}
/*[clinic input]
binascii.a2b_base64
data: ascii_buffer
/
Decode a line of base64 data.
[clinic start generated code]*/
static PyObject *
binascii_a2b_base64_impl(PyObject *module, Py_buffer *data)
/*[clinic end generated code: output=0628223f19fd3f9b input=5872acf6e1cac243]*/
{
assert(data->len >= 0);
const unsigned char *ascii_data = data->buf;
size_t ascii_len = data->len;
/* Allocate the buffer */
Py_ssize_t bin_len = ((ascii_len+3)/4)*3; /* Upper bound, corrected later */
_PyBytesWriter writer;
_PyBytesWriter_Init(&writer);
unsigned char *bin_data = _PyBytesWriter_Alloc(&writer, bin_len);
if (bin_data == NULL)
return NULL;
unsigned char *bin_data_start = bin_data;
int quad_pos = 0;
unsigned char leftchar = 0;
int pads = 0;
for (size_t i = 0; i < ascii_len; i++) {
unsigned char this_ch = ascii_data[i];
/* Check for pad sequences and ignore
** the invalid ones.
*/
if (this_ch == BASE64_PAD) {
if (quad_pos >= 2 && quad_pos + ++pads >= 4) {
/* A pad sequence means no more input.
** We've already interpreted the data
** from the quad at this point.
*/
goto done;
}
continue;
}
this_ch = table_a2b_base64[this_ch];
if (this_ch >= 64) {
continue;
}
pads = 0;
switch (quad_pos) {
case 0:
quad_pos = 1;
leftchar = this_ch;
break;
case 1:
quad_pos = 2;
*bin_data++ = (leftchar << 2) | (this_ch >> 4);
leftchar = this_ch & 0x0f;
break;
case 2:
quad_pos = 3;
*bin_data++ = (leftchar << 4) | (this_ch >> 2);
leftchar = this_ch & 0x03;
break;
case 3:
quad_pos = 0;
*bin_data++ = (leftchar << 6) | (this_ch);
leftchar = 0;
break;
}
}
if (quad_pos != 0) {
binascii_state *state = PyModule_GetState(module);
if (state == NULL) {
/* error already set, from PyModule_GetState */
} else if (quad_pos == 1) {
/*
** There is exactly one extra valid, non-padding, base64 character.
** This is an invalid length, as there is no possible input that
** could encoded into such a base64 string.
*/
PyErr_Format(state->Error,
"Invalid base64-encoded string: "
"number of data characters (%zd) cannot be 1 more "
"than a multiple of 4",
(bin_data - bin_data_start) / 3 * 4 + 1);
} else {
PyErr_SetString(state->Error, "Incorrect padding");
}
_PyBytesWriter_Dealloc(&writer);
return NULL;
}
done:
return _PyBytesWriter_Finish(&writer, bin_data);
}
/*[clinic input]
binascii.b2a_base64
data: Py_buffer
/
*
newline: bool(accept={int}) = True
Base64-code line of data.
[clinic start generated code]*/
static PyObject *
binascii_b2a_base64_impl(PyObject *module, Py_buffer *data, int newline)
/*[clinic end generated code: output=4ad62c8e8485d3b3 input=6083dac5777fa45d]*/
{
unsigned char *ascii_data;
const unsigned char *bin_data;
int leftbits = 0;
unsigned char this_ch;
unsigned int leftchar = 0;
Py_ssize_t bin_len, out_len;
_PyBytesWriter writer;
binascii_state *state;
bin_data = data->buf;
bin_len = data->len;
_PyBytesWriter_Init(&writer);
assert(bin_len >= 0);
if ( bin_len > BASE64_MAXBIN ) {
state = PyModule_GetState(module);
if (state == NULL) {
return NULL;
}
PyErr_SetString(state->Error, "Too much data for base64 line");
return NULL;
}
/* We're lazy and allocate too much (fixed up later).
"+2" leaves room for up to two pad characters.
Note that 'b' gets encoded as 'Yg==\n' (1 in, 5 out). */
out_len = bin_len*2 + 2;
if (newline)
out_len++;
ascii_data = _PyBytesWriter_Alloc(&writer, out_len);
if (ascii_data == NULL)
return NULL;
for( ; bin_len > 0 ; bin_len--, bin_data++ ) {
/* Shift the data into our buffer */
leftchar = (leftchar << 8) | *bin_data;
leftbits += 8;
/* See if there are 6-bit groups ready */
while ( leftbits >= 6 ) {
this_ch = (leftchar >> (leftbits-6)) & 0x3f;
leftbits -= 6;
*ascii_data++ = table_b2a_base64[this_ch];
}
}
if ( leftbits == 2 ) {
*ascii_data++ = table_b2a_base64[(leftchar&3) << 4];
*ascii_data++ = BASE64_PAD;
*ascii_data++ = BASE64_PAD;
} else if ( leftbits == 4 ) {
*ascii_data++ = table_b2a_base64[(leftchar&0xf) << 2];
*ascii_data++ = BASE64_PAD;
}
if (newline)
*ascii_data++ = '\n'; /* Append a courtesy newline */
return _PyBytesWriter_Finish(&writer, ascii_data);
}
/*[clinic input]
binascii.a2b_hqx
data: ascii_buffer
/
Decode .hqx coding.
[clinic start generated code]*/
static PyObject *
binascii_a2b_hqx_impl(PyObject *module, Py_buffer *data)
/*[clinic end generated code: output=4d6d8c54d54ea1c1 input=0d914c680e0eed55]*/
{
if (PyErr_WarnEx(PyExc_DeprecationWarning,
"binascii.a2b_hqx() is deprecated", 1) < 0) {
return NULL;
}
const unsigned char *ascii_data;
unsigned char *bin_data;
int leftbits = 0;
unsigned char this_ch;
unsigned int leftchar = 0;
PyObject *res;
Py_ssize_t len;
int done = 0;
_PyBytesWriter writer;
binascii_state *state;
ascii_data = data->buf;
len = data->len;
_PyBytesWriter_Init(&writer);
assert(len >= 0);
if (len > PY_SSIZE_T_MAX - 2)
return PyErr_NoMemory();
/* Allocate a string that is too big (fixed later)
Add two to the initial length to prevent interning which
would preclude subsequent resizing. */
bin_data = _PyBytesWriter_Alloc(&writer, len + 2);
if (bin_data == NULL)
return NULL;
for( ; len > 0 ; len--, ascii_data++ ) {
/* Get the byte and look it up */
this_ch = table_a2b_hqx[*ascii_data];
if ( this_ch == SKIP )
continue;
if ( this_ch == FAIL ) {
state = PyModule_GetState(module);
if (state == NULL) {
return NULL;
}
PyErr_SetString(state->Error, "Illegal char");
_PyBytesWriter_Dealloc(&writer);
return NULL;
}
if ( this_ch == DONE ) {
/* The terminating colon */
done = 1;
break;
}
/* Shift it into the buffer and see if any bytes are ready */
leftchar = (leftchar << 6) | (this_ch);
leftbits += 6;
if ( leftbits >= 8 ) {
leftbits -= 8;
*bin_data++ = (leftchar >> leftbits) & 0xff;
leftchar &= ((1 << leftbits) - 1);
}
}
if ( leftbits && !done ) {
state = PyModule_GetState(module);
if (state == NULL) {
return NULL;
}
PyErr_SetString(state->Incomplete,
"String has incomplete number of bytes");
_PyBytesWriter_Dealloc(&writer);
return NULL;
}
res = _PyBytesWriter_Finish(&writer, bin_data);
if (res == NULL)
return NULL;
return Py_BuildValue("Ni", res, done);
}
/*[clinic input]
binascii.rlecode_hqx
data: Py_buffer
/
Binhex RLE-code binary data.
[clinic start generated code]*/
static PyObject *
binascii_rlecode_hqx_impl(PyObject *module, Py_buffer *data)
/*[clinic end generated code: output=393d79338f5f5629 input=e1f1712447a82b09]*/
{
if (PyErr_WarnEx(PyExc_DeprecationWarning,
"binascii.rlecode_hqx() is deprecated", 1) < 0) {
return NULL;
}
const unsigned char *in_data;
unsigned char *out_data;
unsigned char ch;
Py_ssize_t in, inend, len;
_PyBytesWriter writer;
_PyBytesWriter_Init(&writer);
in_data = data->buf;
len = data->len;
assert(len >= 0);
if (len > PY_SSIZE_T_MAX / 2 - 2)
return PyErr_NoMemory();
/* Worst case: output is twice as big as input (fixed later) */
out_data = _PyBytesWriter_Alloc(&writer, len * 2 + 2);
if (out_data == NULL)
return NULL;
for( in=0; in<len; in++) {
ch = in_data[in];
if ( ch == RUNCHAR ) {
/* RUNCHAR. Escape it. */
*out_data++ = RUNCHAR;
*out_data++ = 0;
} else {
/* Check how many following are the same */
for(inend=in+1;
inend<len && in_data[inend] == ch &&
inend < in+255;
inend++) ;
if ( inend - in > 3 ) {
/* More than 3 in a row. Output RLE. */
*out_data++ = ch;
*out_data++ = RUNCHAR;
*out_data++ = (unsigned char) (inend-in);
in = inend-1;
} else {
/* Less than 3. Output the byte itself */
*out_data++ = ch;
}
}
}
return _PyBytesWriter_Finish(&writer, out_data);
}
/*[clinic input]
binascii.b2a_hqx
data: Py_buffer
/
Encode .hqx data.
[clinic start generated code]*/
static PyObject *
binascii_b2a_hqx_impl(PyObject *module, Py_buffer *data)
/*[clinic end generated code: output=d0aa5a704bc9f7de input=9596ebe019fe12ba]*/
{
if (PyErr_WarnEx(PyExc_DeprecationWarning,
"binascii.b2a_hqx() is deprecated", 1) < 0) {
return NULL;
}
unsigned char *ascii_data;
const unsigned char *bin_data;
int leftbits = 0;
unsigned char this_ch;
unsigned int leftchar = 0;
Py_ssize_t len;
_PyBytesWriter writer;
bin_data = data->buf;
len = data->len;
_PyBytesWriter_Init(&writer);
assert(len >= 0);
if (len > PY_SSIZE_T_MAX / 2 - 2)
return PyErr_NoMemory();
/* Allocate a buffer that is at least large enough */
ascii_data = _PyBytesWriter_Alloc(&writer, len * 2 + 2);
if (ascii_data == NULL)
return NULL;
for( ; len > 0 ; len--, bin_data++ ) {
/* Shift into our buffer, and output any 6bits ready */
leftchar = (leftchar << 8) | *bin_data;
leftbits += 8;
while ( leftbits >= 6 ) {
this_ch = (leftchar >> (leftbits-6)) & 0x3f;
leftbits -= 6;
*ascii_data++ = table_b2a_hqx[this_ch];
}
}
/* Output a possible runt byte */
if ( leftbits ) {
leftchar <<= (6-leftbits);
*ascii_data++ = table_b2a_hqx[leftchar & 0x3f];
}
return _PyBytesWriter_Finish(&writer, ascii_data);
}
/*[clinic input]
binascii.rledecode_hqx
data: Py_buffer
/
Decode hexbin RLE-coded string.
[clinic start generated code]*/
static PyObject *
binascii_rledecode_hqx_impl(PyObject *module, Py_buffer *data)
/*[clinic end generated code: output=9826619565de1c6c input=54cdd49fc014402c]*/
{
if (PyErr_WarnEx(PyExc_DeprecationWarning,
"binascii.rledecode_hqx() is deprecated", 1) < 0) {
return NULL;
}
const unsigned char *in_data;
unsigned char *out_data;
unsigned char in_byte, in_repeat;
Py_ssize_t in_len;
_PyBytesWriter writer;
in_data = data->buf;
in_len = data->len;
_PyBytesWriter_Init(&writer);
binascii_state *state;
assert(in_len >= 0);
/* Empty string is a special case */
if ( in_len == 0 )
return PyBytes_FromStringAndSize("", 0);
else if (in_len > PY_SSIZE_T_MAX / 2)
return PyErr_NoMemory();
/* Allocate a buffer of reasonable size. Resized when needed */
out_data = _PyBytesWriter_Alloc(&writer, in_len);
if (out_data == NULL)
return NULL;
/* Use overallocation */
writer.overallocate = 1;
/*
** We need two macros here to get/put bytes and handle
** end-of-buffer for input and output strings.
*/
#define INBYTE(b) \
do { \
if ( --in_len < 0 ) { \
state = PyModule_GetState(module); \
if (state == NULL) { \
return NULL; \
} \
PyErr_SetString(state->Incomplete, ""); \
goto error; \
} \
b = *in_data++; \
} while(0)
/*
** Handle first byte separately (since we have to get angry
** in case of an orphaned RLE code).
*/
INBYTE(in_byte);
if (in_byte == RUNCHAR) {
INBYTE(in_repeat);
/* only 1 byte will be written, but 2 bytes were preallocated:
subtract 1 byte to prevent overallocation */
writer.min_size--;
if (in_repeat != 0) {
/* Note Error, not Incomplete (which is at the end
** of the string only). This is a programmer error.
*/
state = PyModule_GetState(module);
if (state == NULL) {
return NULL;
}
PyErr_SetString(state->Error, "Orphaned RLE code at start");
goto error;
}
*out_data++ = RUNCHAR;
} else {
*out_data++ = in_byte;
}
while( in_len > 0 ) {
INBYTE(in_byte);
if (in_byte == RUNCHAR) {
INBYTE(in_repeat);
/* only 1 byte will be written, but 2 bytes were preallocated:
subtract 1 byte to prevent overallocation */
writer.min_size--;
if ( in_repeat == 0 ) {
/* Just an escaped RUNCHAR value */
*out_data++ = RUNCHAR;
} else {
/* Pick up value and output a sequence of it */
in_byte = out_data[-1];
/* enlarge the buffer if needed */
if (in_repeat > 1) {
/* -1 because we already preallocated 1 byte */
out_data = _PyBytesWriter_Prepare(&writer, out_data,
in_repeat - 1);
if (out_data == NULL)
goto error;
}
while ( --in_repeat > 0 )
*out_data++ = in_byte;
}
} else {
/* Normal byte */
*out_data++ = in_byte;
}
}
return _PyBytesWriter_Finish(&writer, out_data);
error:
_PyBytesWriter_Dealloc(&writer);
return NULL;
}
/*[clinic input]
binascii.crc_hqx
data: Py_buffer
crc: unsigned_int(bitwise=True)
/
Compute CRC-CCITT incrementally.
[clinic start generated code]*/
static PyObject *
binascii_crc_hqx_impl(PyObject *module, Py_buffer *data, unsigned int crc)
/*[clinic end generated code: output=2fde213d0f547a98 input=56237755370a951c]*/
{
const unsigned char *bin_data;
Py_ssize_t len;
crc &= 0xffff;
bin_data = data->buf;
len = data->len;
while(len-- > 0) {
crc = ((crc<<8)&0xff00) ^ crctab_hqx[(crc>>8)^*bin_data++];
}
return PyLong_FromUnsignedLong(crc);
}
#ifndef USE_ZLIB_CRC32
/* Crc - 32 BIT ANSI X3.66 CRC checksum files
Also known as: ISO 3307
**********************************************************************|
* *|
* Demonstration program to compute the 32-bit CRC used as the frame *|
* check sequence in ADCCP (ANSI X3.66, also known as FIPS PUB 71 *|
* and FED-STD-1003, the U.S. versions of CCITT's X.25 link-level *|
* protocol). The 32-bit FCS was added via the Federal Register, *|
* 1 June 1982, p.23798. I presume but don't know for certain that *|
* this polynomial is or will be included in CCITT V.41, which *|
* defines the 16-bit CRC (often called CRC-CCITT) polynomial. FIPS *|
* PUB 78 says that the 32-bit FCS reduces otherwise undetected *|
* errors by a factor of 10^-5 over 16-bit FCS. *|
* *|
**********************************************************************|
Copyright (C) 1986 Gary S. Brown. You may use this program, or
code or tables extracted from it, as desired without restriction.
First, the polynomial itself and its table of feedback terms. The
polynomial is
X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0
Note that we take it "backwards" and put the highest-order term in
the lowest-order bit. The X^32 term is "implied"; the LSB is the
X^31 term, etc. The X^0 term (usually shown as "+1") results in
the MSB being 1.
Note that the usual hardware shift register implementation, which
is what we're using (we're merely optimizing it by doing eight-bit
chunks at a time) shifts bits into the lowest-order term. In our
implementation, that means shifting towards the right. Why do we
do it this way? Because the calculated CRC must be transmitted in
order from highest-order term to lowest-order term. UARTs transmit
characters in order from LSB to MSB. By storing the CRC this way,
we hand it to the UART in the order low-byte to high-byte; the UART
sends each low-bit to hight-bit; and the result is transmission bit
by bit from highest- to lowest-order term without requiring any bit
shuffling on our part. Reception works similarly.
The feedback terms table consists of 256, 32-bit entries. Notes:
1. The table can be generated at runtime if desired; code to do so
is shown later. It might not be obvious, but the feedback
terms simply represent the results of eight shift/xor opera-
tions for all combinations of data and CRC register values.
2. The CRC accumulation logic is the same for all CRC polynomials,
be they sixteen or thirty-two bits wide. You simply choose the
appropriate table. Alternatively, because the table can be
generated at runtime, you can start by generating the table for
the polynomial in question and use exactly the same "updcrc",
if your application needn't simultaneously handle two CRC
polynomials. (Note, however, that XMODEM is strange.)
3. For 16-bit CRCs, the table entries need be only 16 bits wide;
of course, 32-bit entries work OK if the high 16 bits are zero.
4. The values must be right-shifted by eight bits by the "updcrc"
logic; the shift must be unsigned (bring in zeroes). On some
hardware you could probably optimize the shift in assembler by
using byte-swap instructions.
********************************************************************/
static const unsigned int crc_32_tab[256] = {
0x00000000U, 0x77073096U, 0xee0e612cU, 0x990951baU, 0x076dc419U,
0x706af48fU, 0xe963a535U, 0x9e6495a3U, 0x0edb8832U, 0x79dcb8a4U,
0xe0d5e91eU, 0x97d2d988U, 0x09b64c2bU, 0x7eb17cbdU, 0xe7b82d07U,
0x90bf1d91U, 0x1db71064U, 0x6ab020f2U, 0xf3b97148U, 0x84be41deU,
0x1adad47dU, 0x6ddde4ebU, 0xf4d4b551U, 0x83d385c7U, 0x136c9856U,
0x646ba8c0U, 0xfd62f97aU, 0x8a65c9ecU, 0x14015c4fU, 0x63066cd9U,
0xfa0f3d63U, 0x8d080df5U, 0x3b6e20c8U, 0x4c69105eU, 0xd56041e4U,
0xa2677172U, 0x3c03e4d1U, 0x4b04d447U, 0xd20d85fdU, 0xa50ab56bU,
0x35b5a8faU, 0x42b2986cU, 0xdbbbc9d6U, 0xacbcf940U, 0x32d86ce3U,
0x45df5c75U, 0xdcd60dcfU, 0xabd13d59U, 0x26d930acU, 0x51de003aU,
0xc8d75180U, 0xbfd06116U, 0x21b4f4b5U, 0x56b3c423U, 0xcfba9599U,
0xb8bda50fU, 0x2802b89eU, 0x5f058808U, 0xc60cd9b2U, 0xb10be924U,
0x2f6f7c87U, 0x58684c11U, 0xc1611dabU, 0xb6662d3dU, 0x76dc4190U,
0x01db7106U, 0x98d220bcU, 0xefd5102aU, 0x71b18589U, 0x06b6b51fU,
0x9fbfe4a5U, 0xe8b8d433U, 0x7807c9a2U, 0x0f00f934U, 0x9609a88eU,
0xe10e9818U, 0x7f6a0dbbU, 0x086d3d2dU, 0x91646c97U, 0xe6635c01U,
0x6b6b51f4U, 0x1c6c6162U, 0x856530d8U, 0xf262004eU, 0x6c0695edU,
0x1b01a57bU, 0x8208f4c1U, 0xf50fc457U, 0x65b0d9c6U, 0x12b7e950U,
0x8bbeb8eaU, 0xfcb9887cU, 0x62dd1ddfU, 0x15da2d49U, 0x8cd37cf3U,
0xfbd44c65U, 0x4db26158U, 0x3ab551ceU, 0xa3bc0074U, 0xd4bb30e2U,
0x4adfa541U, 0x3dd895d7U, 0xa4d1c46dU, 0xd3d6f4fbU, 0x4369e96aU,
0x346ed9fcU, 0xad678846U, 0xda60b8d0U, 0x44042d73U, 0x33031de5U,
0xaa0a4c5fU, 0xdd0d7cc9U, 0x5005713cU, 0x270241aaU, 0xbe0b1010U,
0xc90c2086U, 0x5768b525U, 0x206f85b3U, 0xb966d409U, 0xce61e49fU,
0x5edef90eU, 0x29d9c998U, 0xb0d09822U, 0xc7d7a8b4U, 0x59b33d17U,
0x2eb40d81U, 0xb7bd5c3bU, 0xc0ba6cadU, 0xedb88320U, 0x9abfb3b6U,
0x03b6e20cU, 0x74b1d29aU, 0xead54739U, 0x9dd277afU, 0x04db2615U,
0x73dc1683U, 0xe3630b12U, 0x94643b84U, 0x0d6d6a3eU, 0x7a6a5aa8U,
0xe40ecf0bU, 0x9309ff9dU, 0x0a00ae27U, 0x7d079eb1U, 0xf00f9344U,
0x8708a3d2U, 0x1e01f268U, 0x6906c2feU, 0xf762575dU, 0x806567cbU,
0x196c3671U, 0x6e6b06e7U, 0xfed41b76U, 0x89d32be0U, 0x10da7a5aU,
0x67dd4accU, 0xf9b9df6fU, 0x8ebeeff9U, 0x17b7be43U, 0x60b08ed5U,
0xd6d6a3e8U, 0xa1d1937eU, 0x38d8c2c4U, 0x4fdff252U, 0xd1bb67f1U,
0xa6bc5767U, 0x3fb506ddU, 0x48b2364bU, 0xd80d2bdaU, 0xaf0a1b4cU,
0x36034af6U, 0x41047a60U, 0xdf60efc3U, 0xa867df55U, 0x316e8eefU,
0x4669be79U, 0xcb61b38cU, 0xbc66831aU, 0x256fd2a0U, 0x5268e236U,
0xcc0c7795U, 0xbb0b4703U, 0x220216b9U, 0x5505262fU, 0xc5ba3bbeU,
0xb2bd0b28U, 0x2bb45a92U, 0x5cb36a04U, 0xc2d7ffa7U, 0xb5d0cf31U,
0x2cd99e8bU, 0x5bdeae1dU, 0x9b64c2b0U, 0xec63f226U, 0x756aa39cU,
0x026d930aU, 0x9c0906a9U, 0xeb0e363fU, 0x72076785U, 0x05005713U,
0x95bf4a82U, 0xe2b87a14U, 0x7bb12baeU, 0x0cb61b38U, 0x92d28e9bU,
0xe5d5be0dU, 0x7cdcefb7U, 0x0bdbdf21U, 0x86d3d2d4U, 0xf1d4e242U,
0x68ddb3f8U, 0x1fda836eU, 0x81be16cdU, 0xf6b9265bU, 0x6fb077e1U,
0x18b74777U, 0x88085ae6U, 0xff0f6a70U, 0x66063bcaU, 0x11010b5cU,
0x8f659effU, 0xf862ae69U, 0x616bffd3U, 0x166ccf45U, 0xa00ae278U,
0xd70dd2eeU, 0x4e048354U, 0x3903b3c2U, 0xa7672661U, 0xd06016f7U,
0x4969474dU, 0x3e6e77dbU, 0xaed16a4aU, 0xd9d65adcU, 0x40df0b66U,
0x37d83bf0U, 0xa9bcae53U, 0xdebb9ec5U, 0x47b2cf7fU, 0x30b5ffe9U,
0xbdbdf21cU, 0xcabac28aU, 0x53b39330U, 0x24b4a3a6U, 0xbad03605U,
0xcdd70693U, 0x54de5729U, 0x23d967bfU, 0xb3667a2eU, 0xc4614ab8U,
0x5d681b02U, 0x2a6f2b94U, 0xb40bbe37U, 0xc30c8ea1U, 0x5a05df1bU,
0x2d02ef8dU
};
#endif /* USE_ZLIB_CRC32 */
/*[clinic input]
binascii.crc32 -> unsigned_int
data: Py_buffer
crc: unsigned_int(bitwise=True) = 0
/
Compute CRC-32 incrementally.
[clinic start generated code]*/
static unsigned int
binascii_crc32_impl(PyObject *module, Py_buffer *data, unsigned int crc)
/*[clinic end generated code: output=52cf59056a78593b input=bbe340bc99d25aa8]*/
#ifdef USE_ZLIB_CRC32
/* This was taken from zlibmodule.c PyZlib_crc32 (but is PY_SSIZE_T_CLEAN) */
{
const Byte *buf;
Py_ssize_t len;
int signed_val;
buf = (Byte*)data->buf;
len = data->len;
signed_val = crc32(crc, buf, len);
return (unsigned int)signed_val & 0xffffffffU;
}
#else /* USE_ZLIB_CRC32 */
{ /* By Jim Ahlstrom; All rights transferred to CNRI */
const unsigned char *bin_data;
Py_ssize_t len;
unsigned int result;
bin_data = data->buf;
len = data->len;
crc = ~ crc;
while (len-- > 0) {
crc = crc_32_tab[(crc ^ *bin_data++) & 0xff] ^ (crc >> 8);
/* Note: (crc >> 8) MUST zero fill on left */
}
result = (crc ^ 0xFFFFFFFF);
return result & 0xffffffff;
}
#endif /* USE_ZLIB_CRC32 */
/*[clinic input]
binascii.b2a_hex
data: Py_buffer
sep: object = NULL
An optional single character or byte to separate hex bytes.
bytes_per_sep: int = 1
How many bytes between separators. Positive values count from the
right, negative values count from the left.
Hexadecimal representation of binary data.
The return value is a bytes object. This function is also
available as "hexlify()".
Example:
>>> binascii.b2a_hex(b'\xb9\x01\xef')
b'b901ef'
>>> binascii.hexlify(b'\xb9\x01\xef', ':')
b'b9:01:ef'
>>> binascii.b2a_hex(b'\xb9\x01\xef', b'_', 2)
b'b9_01ef'
[clinic start generated code]*/
static PyObject *
binascii_b2a_hex_impl(PyObject *module, Py_buffer *data, PyObject *sep,
int bytes_per_sep)
/*[clinic end generated code: output=a26937946a81d2c7 input=ec0ade6ba2e43543]*/
{
return _Py_strhex_bytes_with_sep((const char *)data->buf, data->len,
sep, bytes_per_sep);
}
/*[clinic input]
binascii.hexlify = binascii.b2a_hex
Hexadecimal representation of binary data.
The return value is a bytes object. This function is also
available as "b2a_hex()".
[clinic start generated code]*/
static PyObject *
binascii_hexlify_impl(PyObject *module, Py_buffer *data, PyObject *sep,
int bytes_per_sep)
/*[clinic end generated code: output=d12aa1b001b15199 input=bc317bd4e241f76b]*/
{
return _Py_strhex_bytes_with_sep((const char *)data->buf, data->len,
sep, bytes_per_sep);
}
/*[clinic input]
binascii.a2b_hex
hexstr: ascii_buffer
/
Binary data of hexadecimal representation.
hexstr must contain an even number of hex digits (upper or lower case).
This function is also available as "unhexlify()".
[clinic start generated code]*/
static PyObject *
binascii_a2b_hex_impl(PyObject *module, Py_buffer *hexstr)
/*[clinic end generated code: output=0cc1a139af0eeecb input=9e1e7f2f94db24fd]*/
{
const char* argbuf;
Py_ssize_t arglen;
PyObject *retval;
char* retbuf;
Py_ssize_t i, j;
binascii_state *state;
argbuf = hexstr->buf;
arglen = hexstr->len;
assert(arglen >= 0);
/* XXX What should we do about strings with an odd length? Should
* we add an implicit leading zero, or a trailing zero? For now,
* raise an exception.
*/
if (arglen % 2) {
state = PyModule_GetState(module);
if (state == NULL) {
return NULL;
}
PyErr_SetString(state->Error, "Odd-length string");
return NULL;
}
retval = PyBytes_FromStringAndSize(NULL, (arglen/2));
if (!retval)
return NULL;
retbuf = PyBytes_AS_STRING(retval);
for (i=j=0; i < arglen; i += 2) {
unsigned int top = _PyLong_DigitValue[Py_CHARMASK(argbuf[i])];
unsigned int bot = _PyLong_DigitValue[Py_CHARMASK(argbuf[i+1])];
if (top >= 16 || bot >= 16) {
state = PyModule_GetState(module);
if (state == NULL) {
return NULL;
}
PyErr_SetString(state->Error,
"Non-hexadecimal digit found");
goto finally;
}
retbuf[j++] = (top << 4) + bot;
}
return retval;
finally:
Py_DECREF(retval);
return NULL;
}
/*[clinic input]
binascii.unhexlify = binascii.a2b_hex
Binary data of hexadecimal representation.
hexstr must contain an even number of hex digits (upper or lower case).
[clinic start generated code]*/
static PyObject *
binascii_unhexlify_impl(PyObject *module, Py_buffer *hexstr)
/*[clinic end generated code: output=51a64c06c79629e3 input=dd8c012725f462da]*/
{
return binascii_a2b_hex_impl(module, hexstr);
}
#define MAXLINESIZE 76
/*[clinic input]
binascii.a2b_qp
data: ascii_buffer
header: bool(accept={int}) = False
Decode a string of qp-encoded data.
[clinic start generated code]*/
static PyObject *
binascii_a2b_qp_impl(PyObject *module, Py_buffer *data, int header)
/*[clinic end generated code: output=e99f7846cfb9bc53 input=bf6766fea76cce8f]*/
{
Py_ssize_t in, out;
char ch;
const unsigned char *ascii_data;
unsigned char *odata;
Py_ssize_t datalen = 0;
PyObject *rv;
ascii_data = data->buf;
datalen = data->len;
/* We allocate the output same size as input, this is overkill.
* The previous implementation used calloc() so we'll zero out the
* memory here too, since PyMem_Malloc() does not guarantee that.
*/
odata = (unsigned char *) PyMem_Malloc(datalen);
if (odata == NULL) {
PyErr_NoMemory();
return NULL;
}
memset(odata, 0, datalen);
in = out = 0;
while (in < datalen) {
if (ascii_data[in] == '=') {
in++;
if (in >= datalen) break;
/* Soft line breaks */
if ((ascii_data[in] == '\n') || (ascii_data[in] == '\r')) {
if (ascii_data[in] != '\n') {
while (in < datalen && ascii_data[in] != '\n') in++;
}
if (in < datalen) in++;
}
else if (ascii_data[in] == '=') {
/* broken case from broken python qp */
odata[out++] = '=';
in++;
}
else if ((in + 1 < datalen) &&
((ascii_data[in] >= 'A' && ascii_data[in] <= 'F') ||
(ascii_data[in] >= 'a' && ascii_data[in] <= 'f') ||
(ascii_data[in] >= '0' && ascii_data[in] <= '9')) &&
((ascii_data[in+1] >= 'A' && ascii_data[in+1] <= 'F') ||
(ascii_data[in+1] >= 'a' && ascii_data[in+1] <= 'f') ||
(ascii_data[in+1] >= '0' && ascii_data[in+1] <= '9'))) {
/* hexval */
ch = _PyLong_DigitValue[ascii_data[in]] << 4;
in++;
ch |= _PyLong_DigitValue[ascii_data[in]];
in++;
odata[out++] = ch;
}
else {
odata[out++] = '=';
}
}
else if (header && ascii_data[in] == '_') {
odata[out++] = ' ';
in++;
}
else {
odata[out] = ascii_data[in];
in++;
out++;
}
}
if ((rv = PyBytes_FromStringAndSize((char *)odata, out)) == NULL) {
PyMem_Free(odata);
return NULL;
}
PyMem_Free(odata);
return rv;
}
static int
to_hex (unsigned char ch, unsigned char *s)
{
unsigned int uvalue = ch;
s[1] = "0123456789ABCDEF"[uvalue % 16];
uvalue = (uvalue / 16);
s[0] = "0123456789ABCDEF"[uvalue % 16];
return 0;
}
/* XXX: This is ridiculously complicated to be backward compatible
* (mostly) with the quopri module. It doesn't re-create the quopri
* module bug where text ending in CRLF has the CR encoded */
/*[clinic input]
binascii.b2a_qp
data: Py_buffer
quotetabs: bool(accept={int}) = False
istext: bool(accept={int}) = True
header: bool(accept={int}) = False
Encode a string using quoted-printable encoding.
On encoding, when istext is set, newlines are not encoded, and white
space at end of lines is. When istext is not set, \r and \n (CR/LF)
are both encoded. When quotetabs is set, space and tabs are encoded.
[clinic start generated code]*/
static PyObject *
binascii_b2a_qp_impl(PyObject *module, Py_buffer *data, int quotetabs,
int istext, int header)
/*[clinic end generated code: output=e9884472ebb1a94c input=21fb7eea4a184ba6]*/
{
Py_ssize_t in, out;
const unsigned char *databuf;
unsigned char *odata;
Py_ssize_t datalen = 0, odatalen = 0;
PyObject *rv;
unsigned int linelen = 0;
unsigned char ch;
int crlf = 0;
const unsigned char *p;
databuf = data->buf;
datalen = data->len;
/* See if this string is using CRLF line ends */
/* XXX: this function has the side effect of converting all of
* the end of lines to be the same depending on this detection
* here */
p = (const unsigned char *) memchr(databuf, '\n', datalen);
if ((p != NULL) && (p > databuf) && (*(p-1) == '\r'))
crlf = 1;
/* First, scan to see how many characters need to be encoded */
in = 0;
while (in < datalen) {
Py_ssize_t delta = 0;
if ((databuf[in] > 126) ||
(databuf[in] == '=') ||
(header && databuf[in] == '_') ||
((databuf[in] == '.') && (linelen == 0) &&
(in + 1 == datalen || databuf[in+1] == '\n' ||
databuf[in+1] == '\r' || databuf[in+1] == 0)) ||
(!istext && ((databuf[in] == '\r') || (databuf[in] == '\n'))) ||
((databuf[in] == '\t' || databuf[in] == ' ') && (in + 1 == datalen)) ||
((databuf[in] < 33) &&
(databuf[in] != '\r') && (databuf[in] != '\n') &&
(quotetabs || ((databuf[in] != '\t') && (databuf[in] != ' ')))))
{
if ((linelen + 3) >= MAXLINESIZE) {
linelen = 0;
if (crlf)
delta += 3;
else
delta += 2;
}
linelen += 3;
delta += 3;
in++;
}
else {
if (istext &&
((databuf[in] == '\n') ||
((in+1 < datalen) && (databuf[in] == '\r') &&
(databuf[in+1] == '\n'))))
{
linelen = 0;
/* Protect against whitespace on end of line */
if (in && ((databuf[in-1] == ' ') || (databuf[in-1] == '\t')))
delta += 2;
if (crlf)
delta += 2;
else
delta += 1;
if (databuf[in] == '\r')
in += 2;
else
in++;
}
else {
if ((in + 1 != datalen) &&
(databuf[in+1] != '\n') &&
(linelen + 1) >= MAXLINESIZE) {
linelen = 0;
if (crlf)
delta += 3;
else
delta += 2;
}
linelen++;
delta++;
in++;
}
}
if (PY_SSIZE_T_MAX - delta < odatalen) {
PyErr_NoMemory();
return NULL;
}
odatalen += delta;
}
/* We allocate the output same size as input, this is overkill.
* The previous implementation used calloc() so we'll zero out the
* memory here too, since PyMem_Malloc() does not guarantee that.
*/
odata = (unsigned char *) PyMem_Malloc(odatalen);
if (odata == NULL) {
PyErr_NoMemory();
return NULL;
}
memset(odata, 0, odatalen);
in = out = linelen = 0;
while (in < datalen) {
if ((databuf[in] > 126) ||
(databuf[in] == '=') ||
(header && databuf[in] == '_') ||
((databuf[in] == '.') && (linelen == 0) &&
(in + 1 == datalen || databuf[in+1] == '\n' ||
databuf[in+1] == '\r' || databuf[in+1] == 0)) ||
(!istext && ((databuf[in] == '\r') || (databuf[in] == '\n'))) ||
((databuf[in] == '\t' || databuf[in] == ' ') && (in + 1 == datalen)) ||
((databuf[in] < 33) &&
(databuf[in] != '\r') && (databuf[in] != '\n') &&
(quotetabs || ((databuf[in] != '\t') && (databuf[in] != ' ')))))
{
if ((linelen + 3 )>= MAXLINESIZE) {
odata[out++] = '=';
if (crlf) odata[out++] = '\r';
odata[out++] = '\n';
linelen = 0;
}
odata[out++] = '=';
to_hex(databuf[in], &odata[out]);
out += 2;
in++;
linelen += 3;
}
else {
if (istext &&
((databuf[in] == '\n') ||
((in+1 < datalen) && (databuf[in] == '\r') &&
(databuf[in+1] == '\n'))))
{
linelen = 0;
/* Protect against whitespace on end of line */
if (out && ((odata[out-1] == ' ') || (odata[out-1] == '\t'))) {
ch = odata[out-1];
odata[out-1] = '=';
to_hex(ch, &odata[out]);
out += 2;
}
if (crlf) odata[out++] = '\r';
odata[out++] = '\n';
if (databuf[in] == '\r')
in += 2;
else
in++;
}
else {
if ((in + 1 != datalen) &&
(databuf[in+1] != '\n') &&
(linelen + 1) >= MAXLINESIZE) {
odata[out++] = '=';
if (crlf) odata[out++] = '\r';
odata[out++] = '\n';
linelen = 0;
}
linelen++;
if (header && databuf[in] == ' ') {
odata[out++] = '_';
in++;
}
else {
odata[out++] = databuf[in++];
}
}
}
}
if ((rv = PyBytes_FromStringAndSize((char *)odata, out)) == NULL) {
PyMem_Free(odata);
return NULL;
}
PyMem_Free(odata);
return rv;
}
/* List of functions defined in the module */
static struct PyMethodDef binascii_module_methods[] = {
BINASCII_A2B_UU_METHODDEF
BINASCII_B2A_UU_METHODDEF
BINASCII_A2B_BASE64_METHODDEF
BINASCII_B2A_BASE64_METHODDEF
BINASCII_A2B_HQX_METHODDEF
BINASCII_B2A_HQX_METHODDEF
BINASCII_A2B_HEX_METHODDEF
BINASCII_B2A_HEX_METHODDEF
BINASCII_HEXLIFY_METHODDEF
BINASCII_UNHEXLIFY_METHODDEF
BINASCII_RLECODE_HQX_METHODDEF
BINASCII_RLEDECODE_HQX_METHODDEF
BINASCII_CRC_HQX_METHODDEF
BINASCII_CRC32_METHODDEF
BINASCII_A2B_QP_METHODDEF
BINASCII_B2A_QP_METHODDEF
{NULL, NULL} /* sentinel */
};
/* Initialization function for the module (*must* be called PyInit_binascii) */
PyDoc_STRVAR(doc_binascii, "Conversion between binary data and ASCII");
static int
binascii_exec(PyObject *m) {
int result;
binascii_state *state = PyModule_GetState(m);
if (state == NULL) {
return -1;
}
state->Error = PyErr_NewException("binascii.Error", PyExc_ValueError, NULL);
if (state->Error == NULL) {
return -1;
}
result = PyModule_AddObject(m, "Error", state->Error);
if (result == -1) {
return -1;
}
state->Incomplete = PyErr_NewException("binascii.Incomplete", NULL, NULL);
if (state->Incomplete == NULL) {
return -1;
}
result = PyModule_AddObject(m, "Incomplete", state->Incomplete);
if (result == -1) {
return -1;
}
return 0;
}
static PyModuleDef_Slot binascii_slots[] = {
{Py_mod_exec, binascii_exec},
{0, NULL}
};
static struct PyModuleDef binasciimodule = {
PyModuleDef_HEAD_INIT,
"binascii",
doc_binascii,
sizeof(binascii_state),
binascii_module_methods,
binascii_slots,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC
PyInit_binascii(void)
{
return PyModuleDef_Init(&binasciimodule);
}
|