summaryrefslogtreecommitdiffstats
path: root/Modules/cmathmodule.c
blob: d1105213094dd1c5d48334eb2a588c653a3e9109 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/* Complex math module */

/* much code borrowed from mathmodule.c */

#include "Python.h"

#include "mymath.h"

#ifdef i860
/* Cray APP has bogus definition of HUGE_VAL in <math.h> */
#undef HUGE_VAL
#endif

#ifdef HUGE_VAL
#define CHECK(x) if (errno != 0) ; \
	else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \
	else errno = ERANGE
#else
#define CHECK(x) /* Don't know how to check */
#endif

#ifndef M_PI
#define M_PI (3.141592653589793239)
#endif

/* First, the C functions that do the real work */

/* constants */
static Py_complex c_1 = {1., 0.};
static Py_complex c_half = {0.5, 0.};
static Py_complex c_i = {0., 1.};
static Py_complex c_i2 = {0., 0.5};
#if 0
static Py_complex c_mi = {0., -1.};
static Py_complex c_pi2 = {M_PI/2., 0.};
#endif

/* forward declarations */
staticforward Py_complex c_log();
staticforward Py_complex c_prodi();
staticforward Py_complex c_sqrt();


static Py_complex c_acos(Py_complex x)
{
	return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i,
		    c_sqrt(c_diff(c_1,c_prod(x,x))))))));
}

static char c_acos_doc [] =
"acos(x)\n\
\n\
Return the arc cosine of x.";


static Py_complex c_acosh(Py_complex x)
{
	Py_complex z;
	z = c_sqrt(c_half);
	z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_1)),
				  c_sqrt(c_diff(x,c_1)))));
	return c_sum(z, z);
}

static char c_acosh_doc [] =
"acosh(x)\n\
\n\
Return the hyperbolic arccosine of x.";


static Py_complex c_asin(Py_complex x)
{
	Py_complex z;
	z = c_sqrt(c_half);
	z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_i)),
				  c_sqrt(c_diff(x,c_i)))));
	return c_sum(z, z);
}

static char c_asin_doc [] =
"asin(x)\n\
\n\
Return the arc sine of x.";


static Py_complex c_asinh(Py_complex x)
{
	/* Break up long expression for WATCOM */
	Py_complex z;
	z = c_sum(c_1,c_prod(x, x));
	return c_log(c_sum(c_sqrt(z), x));
}

static char c_asinh_doc [] =
"asinh(x)\n\
\n\
Return the hyperbolic arc sine of x.";


static Py_complex c_atan(Py_complex x)
{
	return c_prod(c_i2,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x))));
}

static char c_atan_doc [] =
"atan(x)\n\
\n\
Return the arc tangent of x.";


static Py_complex c_atanh(Py_complex x)
{
	return c_prod(c_half,c_log(c_quot(c_sum(c_1,x),c_diff(c_1,x))));
}

static char c_atanh_doc [] =
"atanh(x)\n\
\n\
Return the hyperbolic arc tangent of x.";


static Py_complex c_cos(Py_complex x)
{
	Py_complex r;
	r.real = cos(x.real)*cosh(x.imag);
	r.imag = -sin(x.real)*sinh(x.imag);
	return r;
}

static char c_cos_doc [] =
"cos(x)\n\
\n\
Return the cosine of x.";


static Py_complex c_cosh(Py_complex x)
{
	Py_complex r;
	r.real = cos(x.imag)*cosh(x.real);
	r.imag = sin(x.imag)*sinh(x.real);
	return r;
}

static char c_cosh_doc [] =
"cosh(x)\n\
\n\
Return the hyperbolic cosine of x.";


static Py_complex c_exp(Py_complex x)
{
	Py_complex r;
	double l = exp(x.real);
	r.real = l*cos(x.imag);
	r.imag = l*sin(x.imag);
	return r;
}

static char c_exp_doc [] =
"exp(x)\n\
\n\
Return the exponential value e**x.";


static Py_complex c_log(Py_complex x)
{
	Py_complex r;
	double l = hypot(x.real,x.imag);
	r.imag = atan2(x.imag, x.real);
	r.real = log(l);
	return r;
}

static char c_log_doc [] =
"log(x)\n\
\n\
Return the natural logarithm of x.";


static Py_complex c_log10(Py_complex x)
{
	Py_complex r;
	double l = hypot(x.real,x.imag);
	r.imag = atan2(x.imag, x.real)/log(10.);
	r.real = log10(l);
	return r;
}

static char c_log10_doc [] =
"log10(x)\n\
\n\
Return the base-10 logarithm of x.";


/* internal function not available from Python */
static Py_complex c_prodi(Py_complex x)
{
	Py_complex r;
	r.real = -x.imag;
	r.imag = x.real;
	return r;
}


static Py_complex c_sin(Py_complex x)
{
	Py_complex r;
	r.real = sin(x.real)*cosh(x.imag);
	r.imag = cos(x.real)*sinh(x.imag);
	return r;
}

static char c_sin_doc [] =
"sin(x)\n\
\n\
Return the sine of x.";


static Py_complex c_sinh(Py_complex x)
{
	Py_complex r;
	r.real = cos(x.imag)*sinh(x.real);
	r.imag = sin(x.imag)*cosh(x.real);
	return r;
}

static char c_sinh_doc [] =
"sinh(x)\n\
\n\
Return the hyperbolic sine of x.";


static Py_complex c_sqrt(Py_complex x)
{
	Py_complex r;
	double s,d;
	if (x.real == 0. && x.imag == 0.)
		r = x;
	else {
		s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag)));
		d = 0.5*x.imag/s;
		if (x.real > 0.) {
			r.real = s;
			r.imag = d;
		}
		else if (x.imag >= 0.) {
			r.real = d;
			r.imag = s;
		}
		else {
			r.real = -d;
			r.imag = -s;
		}
	}
	return r;
}

static char c_sqrt_doc [] =
"sqrt(x)\n\
\n\
Return the square root of x.";


static Py_complex c_tan(Py_complex x)
{
	Py_complex r;
	double sr,cr,shi,chi;
	double rs,is,rc,ic;
	double d;
	sr = sin(x.real);
	cr = cos(x.real);
	shi = sinh(x.imag);
	chi = cosh(x.imag);
	rs = sr*chi;
	is = cr*shi;
	rc = cr*chi;
	ic = -sr*shi;
	d = rc*rc + ic*ic;
	r.real = (rs*rc+is*ic)/d;
	r.imag = (is*rc-rs*ic)/d;
	return r;
}

static char c_tan_doc [] =
"tan(x)\n\
\n\
Return the tangent of x.";


static Py_complex c_tanh(Py_complex x)
{
	Py_complex r;
	double si,ci,shr,chr;
	double rs,is,rc,ic;
	double d;
	si = sin(x.imag);
	ci = cos(x.imag);
	shr = sinh(x.real);
	chr = cosh(x.real);
	rs = ci*shr;
	is = si*chr;
	rc = ci*chr;
	ic = si*shr;
	d = rc*rc + ic*ic;
	r.real = (rs*rc+is*ic)/d;
	r.imag = (is*rc-rs*ic)/d;
	return r;
}

static char c_tanh_doc [] =
"tanh(x)\n\
\n\
Return the hyperbolic tangent of x.";


/* And now the glue to make them available from Python: */

static PyObject *
math_error()
{
	if (errno == EDOM)
		PyErr_SetString(PyExc_ValueError, "math domain error");
	else if (errno == ERANGE)
		PyErr_SetString(PyExc_OverflowError, "math range error");
	else    /* Unexpected math error */
		PyErr_SetFromErrno(PyExc_ValueError); 
	return NULL;
}

static PyObject *
math_1(PyObject *args, Py_complex (*func)(Py_complex))
{
	Py_complex x;
	if (!PyArg_ParseTuple(args, "D", &x))
		return NULL;
	errno = 0;
	PyFPE_START_PROTECT("complex function", return 0)
	x = (*func)(x);
	PyFPE_END_PROTECT(x)
	CHECK(x.real);
	CHECK(x.imag);
	if (errno != 0)
		return math_error();
	else
		return PyComplex_FromCComplex(x);
}

#define FUNC1(stubname, func) \
	static PyObject * stubname(PyObject *self, PyObject *args) { \
		return math_1(args, func); \
	}

FUNC1(cmath_acos, c_acos)
FUNC1(cmath_acosh, c_acosh)
FUNC1(cmath_asin, c_asin)
FUNC1(cmath_asinh, c_asinh)
FUNC1(cmath_atan, c_atan)
FUNC1(cmath_atanh, c_atanh)
FUNC1(cmath_cos, c_cos)
FUNC1(cmath_cosh, c_cosh)
FUNC1(cmath_exp, c_exp)
FUNC1(cmath_log, c_log)
FUNC1(cmath_log10, c_log10)
FUNC1(cmath_sin, c_sin)
FUNC1(cmath_sinh, c_sinh)
FUNC1(cmath_sqrt, c_sqrt)
FUNC1(cmath_tan, c_tan)
FUNC1(cmath_tanh, c_tanh)


static char module_doc [] =
"This module is always available. It provides access to mathematical\n\
functions for complex numbers.";


static PyMethodDef cmath_methods[] = {
	{"acos", cmath_acos, 1, c_acos_doc},
	{"acosh", cmath_acosh, 1, c_acosh_doc},
	{"asin", cmath_asin, 1, c_asin_doc},
	{"asinh", cmath_asinh, 1, c_asinh_doc},
	{"atan", cmath_atan, 1, c_atan_doc},
	{"atanh", cmath_atanh, 1, c_atanh_doc},
	{"cos", cmath_cos, 1, c_cos_doc},
	{"cosh", cmath_cosh, 1, c_cosh_doc},
	{"exp", cmath_exp, 1, c_exp_doc},
	{"log", cmath_log, 1, c_log_doc},
	{"log10", cmath_log10, 1, c_log10_doc},
	{"sin", cmath_sin, 1, c_sin_doc},
	{"sinh", cmath_sinh, 1, c_sinh_doc},
	{"sqrt", cmath_sqrt, 1, c_sqrt_doc},
	{"tan", cmath_tan, 1, c_tan_doc},
	{"tanh", cmath_tanh, 1, c_tanh_doc},
	{NULL,		NULL}		/* sentinel */
};

DL_EXPORT(void)
initcmath()
{
	PyObject *m, *d, *v;
	
	m = Py_InitModule3("cmath", cmath_methods, module_doc);
	d = PyModule_GetDict(m);
	PyDict_SetItemString(d, "pi",
			     v = PyFloat_FromDouble(atan(1.0) * 4.0));
	Py_DECREF(v);
	PyDict_SetItemString(d, "e", v = PyFloat_FromDouble(exp(1.0)));
	Py_DECREF(v);
}