summaryrefslogtreecommitdiffstats
path: root/Modules/cmathmodule.c
blob: 78b9dd5f8fad55ec2122e3239bd56fdbcd3547f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/* Complex math module */

/* much code borrowed from mathmodule.c */

#include "Python.h"

#ifndef M_PI
#define M_PI (3.141592653589793239)
#endif

/* First, the C functions that do the real work */

/* constants */
static Py_complex c_one = {1., 0.};
static Py_complex c_half = {0.5, 0.};
static Py_complex c_i = {0., 1.};
static Py_complex c_halfi = {0., 0.5};

/* forward declarations */
static Py_complex c_log(Py_complex);
static Py_complex c_prodi(Py_complex);
static Py_complex c_sqrt(Py_complex);
static PyObject * math_error(void);


static Py_complex
c_acos(Py_complex x)
{
	return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i,
		    c_sqrt(c_diff(c_one,c_prod(x,x))))))));
}

PyDoc_STRVAR(c_acos_doc,
"acos(x)\n"
"\n"
"Return the arc cosine of x.");


static Py_complex
c_acosh(Py_complex x)
{
	Py_complex z;
	z = c_sqrt(c_half);
	z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_one)),
				  c_sqrt(c_diff(x,c_one)))));
	return c_sum(z, z);
}

PyDoc_STRVAR(c_acosh_doc,
"acosh(x)\n"
"\n"
"Return the hyperbolic arccosine of x.");


static Py_complex
c_asin(Py_complex x)
{
	/* -i * log[(sqrt(1-x**2) + i*x] */
	const Py_complex squared = c_prod(x, x);
	const Py_complex sqrt_1_minus_x_sq = c_sqrt(c_diff(c_one, squared));
        return c_neg(c_prodi(c_log(
        		c_sum(sqrt_1_minus_x_sq, c_prodi(x))
		    )       )     );
}

PyDoc_STRVAR(c_asin_doc,
"asin(x)\n"
"\n"
"Return the arc sine of x.");


static Py_complex
c_asinh(Py_complex x)
{
	Py_complex z;
	z = c_sqrt(c_half);
	z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x, c_i)),
				  c_sqrt(c_diff(x, c_i)))));
	return c_sum(z, z);
}

PyDoc_STRVAR(c_asinh_doc,
"asinh(x)\n"
"\n"
"Return the hyperbolic arc sine of x.");


static Py_complex
c_atan(Py_complex x)
{
	return c_prod(c_halfi,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x))));
}

PyDoc_STRVAR(c_atan_doc,
"atan(x)\n"
"\n"
"Return the arc tangent of x.");


static Py_complex
c_atanh(Py_complex x)
{
	return c_prod(c_half,c_log(c_quot(c_sum(c_one,x),c_diff(c_one,x))));
}

PyDoc_STRVAR(c_atanh_doc,
"atanh(x)\n"
"\n"
"Return the hyperbolic arc tangent of x.");


static Py_complex
c_cos(Py_complex x)
{
	Py_complex r;
	r.real = cos(x.real)*cosh(x.imag);
	r.imag = -sin(x.real)*sinh(x.imag);
	return r;
}

PyDoc_STRVAR(c_cos_doc,
"cos(x)\n"
"n"
"Return the cosine of x.");


static Py_complex
c_cosh(Py_complex x)
{
	Py_complex r;
	r.real = cos(x.imag)*cosh(x.real);
	r.imag = sin(x.imag)*sinh(x.real);
	return r;
}

PyDoc_STRVAR(c_cosh_doc,
"cosh(x)\n"
"n"
"Return the hyperbolic cosine of x.");


static Py_complex
c_exp(Py_complex x)
{
	Py_complex r;
	double l = exp(x.real);
	r.real = l*cos(x.imag);
	r.imag = l*sin(x.imag);
	return r;
}

PyDoc_STRVAR(c_exp_doc,
"exp(x)\n"
"\n"
"Return the exponential value e**x.");


static Py_complex
c_log(Py_complex x)
{
	Py_complex r;
	double l = hypot(x.real,x.imag);
	r.imag = atan2(x.imag, x.real);
	r.real = log(l);
	return r;
}


static Py_complex
c_log10(Py_complex x)
{
	Py_complex r;
	double l = hypot(x.real,x.imag);
	r.imag = atan2(x.imag, x.real)/log(10.);
	r.real = log10(l);
	return r;
}

PyDoc_STRVAR(c_log10_doc,
"log10(x)\n"
"\n"
"Return the base-10 logarithm of x.");


/* internal function not available from Python */
static Py_complex
c_prodi(Py_complex x)
{
	Py_complex r;
	r.real = -x.imag;
	r.imag = x.real;
	return r;
}


static Py_complex
c_sin(Py_complex x)
{
	Py_complex r;
	r.real = sin(x.real) * cosh(x.imag);
	r.imag = cos(x.real) * sinh(x.imag);
	return r;
}

PyDoc_STRVAR(c_sin_doc,
"sin(x)\n"
"\n"
"Return the sine of x.");


static Py_complex
c_sinh(Py_complex x)
{
	Py_complex r;
	r.real = cos(x.imag) * sinh(x.real);
	r.imag = sin(x.imag) * cosh(x.real);
	return r;
}

PyDoc_STRVAR(c_sinh_doc,
"sinh(x)\n"
"\n"
"Return the hyperbolic sine of x.");


static Py_complex
c_sqrt(Py_complex x)
{
	Py_complex r;
	double s,d;
	if (x.real == 0. && x.imag == 0.)
		r = x;
	else {
		s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag)));
		d = 0.5*x.imag/s;
		if (x.real > 0.) {
			r.real = s;
			r.imag = d;
		}
		else if (x.imag >= 0.) {
			r.real = d;
			r.imag = s;
		}
		else {
			r.real = -d;
			r.imag = -s;
		}
	}
	return r;
}

PyDoc_STRVAR(c_sqrt_doc,
"sqrt(x)\n"
"\n"
"Return the square root of x.");


static Py_complex
c_tan(Py_complex x)
{
	Py_complex r;
	double sr,cr,shi,chi;
	double rs,is,rc,ic;
	double d;
	sr = sin(x.real);
	cr = cos(x.real);
	shi = sinh(x.imag);
	chi = cosh(x.imag);
	rs = sr * chi;
	is = cr * shi;
	rc = cr * chi;
	ic = -sr * shi;
	d = rc*rc + ic * ic;
	r.real = (rs*rc + is*ic) / d;
	r.imag = (is*rc - rs*ic) / d;
	return r;
}

PyDoc_STRVAR(c_tan_doc,
"tan(x)\n"
"\n"
"Return the tangent of x.");


static Py_complex
c_tanh(Py_complex x)
{
	Py_complex r;
	double si,ci,shr,chr;
	double rs,is,rc,ic;
	double d;
	si = sin(x.imag);
	ci = cos(x.imag);
	shr = sinh(x.real);
	chr = cosh(x.real);
	rs = ci * shr;
	is = si * chr;
	rc = ci * chr;
	ic = si * shr;
	d = rc*rc + ic*ic;
	r.real = (rs*rc + is*ic) / d;
	r.imag = (is*rc - rs*ic) / d;
	return r;
}

PyDoc_STRVAR(c_tanh_doc,
"tanh(x)\n"
"\n"
"Return the hyperbolic tangent of x.");

static PyObject *
cmath_log(PyObject *self, PyObject *args)
{
	Py_complex x;
	Py_complex y;

	if (!PyArg_ParseTuple(args, "D|D", &x, &y))
		return NULL;

	errno = 0;
	PyFPE_START_PROTECT("complex function", return 0)
	x = c_log(x);
	if (PyTuple_GET_SIZE(args) == 2)
		x = c_quot(x, c_log(y));
	PyFPE_END_PROTECT(x)
	if (errno != 0)
		return math_error();
	Py_ADJUST_ERANGE2(x.real, x.imag);
	return PyComplex_FromCComplex(x);
}

PyDoc_STRVAR(cmath_log_doc,
"log(x[, base]) -> the logarithm of x to the given base.\n\
If the base not specified, returns the natural logarithm (base e) of x.");


/* And now the glue to make them available from Python: */

static PyObject *
math_error(void)
{
	if (errno == EDOM)
		PyErr_SetString(PyExc_ValueError, "math domain error");
	else if (errno == ERANGE)
		PyErr_SetString(PyExc_OverflowError, "math range error");
	else    /* Unexpected math error */
		PyErr_SetFromErrno(PyExc_ValueError);
	return NULL;
}

static PyObject *
math_1(PyObject *args, Py_complex (*func)(Py_complex))
{
	Py_complex x;
	if (!PyArg_ParseTuple(args, "D", &x))
		return NULL;
	errno = 0;
	PyFPE_START_PROTECT("complex function", return 0)
	x = (*func)(x);
	PyFPE_END_PROTECT(x)
	Py_ADJUST_ERANGE2(x.real, x.imag);
	if (errno != 0)
		return math_error();
	else
		return PyComplex_FromCComplex(x);
}

#define FUNC1(stubname, func) \
	static PyObject * stubname(PyObject *self, PyObject *args) { \
		return math_1(args, func); \
	}

FUNC1(cmath_acos, c_acos)
FUNC1(cmath_acosh, c_acosh)
FUNC1(cmath_asin, c_asin)
FUNC1(cmath_asinh, c_asinh)
FUNC1(cmath_atan, c_atan)
FUNC1(cmath_atanh, c_atanh)
FUNC1(cmath_cos, c_cos)
FUNC1(cmath_cosh, c_cosh)
FUNC1(cmath_exp, c_exp)
FUNC1(cmath_log10, c_log10)
FUNC1(cmath_sin, c_sin)
FUNC1(cmath_sinh, c_sinh)
FUNC1(cmath_sqrt, c_sqrt)
FUNC1(cmath_tan, c_tan)
FUNC1(cmath_tanh, c_tanh)


PyDoc_STRVAR(module_doc,
"This module is always available. It provides access to mathematical\n"
"functions for complex numbers.");

static PyMethodDef cmath_methods[] = {
	{"acos",   cmath_acos,  METH_VARARGS, c_acos_doc},
	{"acosh",  cmath_acosh, METH_VARARGS, c_acosh_doc},
	{"asin",   cmath_asin,  METH_VARARGS, c_asin_doc},
	{"asinh",  cmath_asinh, METH_VARARGS, c_asinh_doc},
	{"atan",   cmath_atan,  METH_VARARGS, c_atan_doc},
	{"atanh",  cmath_atanh, METH_VARARGS, c_atanh_doc},
	{"cos",    cmath_cos,   METH_VARARGS, c_cos_doc},
	{"cosh",   cmath_cosh,  METH_VARARGS, c_cosh_doc},
	{"exp",    cmath_exp,   METH_VARARGS, c_exp_doc},
	{"log",    cmath_log,   METH_VARARGS, cmath_log_doc},
	{"log10",  cmath_log10, METH_VARARGS, c_log10_doc},
	{"sin",    cmath_sin,   METH_VARARGS, c_sin_doc},
	{"sinh",   cmath_sinh,  METH_VARARGS, c_sinh_doc},
	{"sqrt",   cmath_sqrt,  METH_VARARGS, c_sqrt_doc},
	{"tan",    cmath_tan,   METH_VARARGS, c_tan_doc},
	{"tanh",   cmath_tanh,  METH_VARARGS, c_tanh_doc},
	{NULL,		NULL}		/* sentinel */
};

PyMODINIT_FUNC
initcmath(void)
{
	PyObject *m;

	m = Py_InitModule3("cmath", cmath_methods, module_doc);

	PyModule_AddObject(m, "pi",
                           PyFloat_FromDouble(atan(1.0) * 4.0));
	PyModule_AddObject(m, "e", PyFloat_FromDouble(exp(1.0)));
}