summaryrefslogtreecommitdiffstats
path: root/Modules/gcmodule.c
blob: 38494ead3fd53847834da4f7ae895babe5be2104 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
/*

  Reference Cycle Garbage Collection
  ==================================

  Neil Schemenauer <nas@arctrix.com>

  Based on a post on the python-dev list.  Ideas from Guido van Rossum,
  Eric Tiedemann, and various others.

  http://www.arctrix.com/nas/python/gc/
  http://www.python.org/pipermail/python-dev/2000-March/003869.html
  http://www.python.org/pipermail/python-dev/2000-March/004010.html
  http://www.python.org/pipermail/python-dev/2000-March/004022.html

  For a highlevel view of the collection process, read the collect
  function.

*/

#include "Python.h"

/* Get an object's GC head */
#define AS_GC(o) ((PyGC_Head *)(o)-1)

/* Get the object given the GC head */
#define FROM_GC(g) ((PyObject *)(((PyGC_Head *)g)+1))

/*** Global GC state ***/

struct gc_generation {
	PyGC_Head head;
	int threshold; /* collection threshold */
	int count; /* count of allocations or collections of younger
		      generations */
};

#define NUM_GENERATIONS 3
#define GEN_HEAD(n) (&generations[n].head)

/* linked lists of container objects */
static struct gc_generation generations[NUM_GENERATIONS] = {
	/* PyGC_Head,				threshold,	count */
	{{{GEN_HEAD(0), GEN_HEAD(0), 0}},	700,		0},
	{{{GEN_HEAD(1), GEN_HEAD(1), 0}},	10,		0},
	{{{GEN_HEAD(2), GEN_HEAD(2), 0}},	10,		0},
};

PyGC_Head *_PyGC_generation0 = GEN_HEAD(0);

static int enabled = 1; /* automatic collection enabled? */

/* true if we are currently running the collector */
static int collecting = 0;

/* list of uncollectable objects */
static PyObject *garbage = NULL;

/* Python string to use if unhandled exception occurs */
static PyObject *gc_str = NULL;

/* Python string used to look for __del__ attribute. */
static PyObject *delstr = NULL;

/* set for debugging information */
#define DEBUG_STATS		(1<<0) /* print collection statistics */
#define DEBUG_COLLECTABLE	(1<<1) /* print collectable objects */
#define DEBUG_UNCOLLECTABLE	(1<<2) /* print uncollectable objects */
#define DEBUG_INSTANCES		(1<<3) /* print instances */
#define DEBUG_OBJECTS		(1<<4) /* print other objects */
#define DEBUG_SAVEALL		(1<<5) /* save all garbage in gc.garbage */
#define DEBUG_LEAK		DEBUG_COLLECTABLE | \
				DEBUG_UNCOLLECTABLE | \
				DEBUG_INSTANCES | \
				DEBUG_OBJECTS | \
				DEBUG_SAVEALL
static int debug;

/*--------------------------------------------------------------------------
gc_refs values.

Between collections, every gc'ed object has one of two gc_refs values:

GC_UNTRACKED
    The initial state; objects returned by PyObject_GC_Malloc are in this
    state.  The object doesn't live in any generation list, and its
    tp_traverse slot must not be called.

GC_REACHABLE
    The object lives in some generation list, and its tp_traverse is safe to
    call.  An object transitions to GC_REACHABLE when PyObject_GC_Track
    is called.

During a collection, gc_refs can temporarily take on other states:

>= 0
    At the start of a collection, update_refs() copies the true refcount
    to gc_refs, for each object in the generation being collected.
    subtract_refs() then adjusts gc_refs so that it equals the number of
    times an object is referenced directly from outside the generation
    being collected.
    gc_refs remains >= 0 throughout these steps.

GC_TENTATIVELY_UNREACHABLE
    move_unreachable() then moves objects not reachable (whether directly or
    indirectly) from outside the generation into an "unreachable" set.
    Objects that are found to be reachable have gc_refs set to GC_REACHABLE
    again.  Objects that are found to be unreachable have gc_refs set to
    GC_TENTATIVELY_UNREACHABLE.  It's "tentatively" because the pass doing
    this can't be sure until it ends, and GC_TENTATIVELY_UNREACHABLE may
    transition back to GC_REACHABLE.

    Only objects with GC_TENTATIVELY_UNREACHABLE still set are candidates
    for collection.  If it's decided not to collect such an object (e.g.,
    it has a __del__ method), its gc_refs is restored to GC_REACHABLE again.
----------------------------------------------------------------------------
*/
#define GC_UNTRACKED			_PyGC_REFS_UNTRACKED
#define GC_REACHABLE			_PyGC_REFS_REACHABLE
#define GC_TENTATIVELY_UNREACHABLE	_PyGC_REFS_TENTATIVELY_UNREACHABLE

#define IS_TRACKED(o) ((AS_GC(o))->gc.gc_refs != GC_UNTRACKED)
#define IS_REACHABLE(o) ((AS_GC(o))->gc.gc_refs == GC_REACHABLE)
#define IS_TENTATIVELY_UNREACHABLE(o) ( \
	(AS_GC(o))->gc.gc_refs == GC_TENTATIVELY_UNREACHABLE)

/*** list functions ***/

static void
gc_list_init(PyGC_Head *list)
{
	list->gc.gc_prev = list;
	list->gc.gc_next = list;
}

static int
gc_list_is_empty(PyGC_Head *list)
{
	return (list->gc.gc_next == list);
}

#if 0
/* This became unused after gc_list_move() was introduced. */
/* Append `node` to `list`. */
static void
gc_list_append(PyGC_Head *node, PyGC_Head *list)
{
	node->gc.gc_next = list;
	node->gc.gc_prev = list->gc.gc_prev;
	node->gc.gc_prev->gc.gc_next = node;
	list->gc.gc_prev = node;
}
#endif

/* Remove `node` from the gc list it's currently in. */
static void
gc_list_remove(PyGC_Head *node)
{
	node->gc.gc_prev->gc.gc_next = node->gc.gc_next;
	node->gc.gc_next->gc.gc_prev = node->gc.gc_prev;
	node->gc.gc_next = NULL; /* object is not currently tracked */
}

/* Move `node` from the gc list it's currently in (which is not explicitly
 * named here) to the end of `list`.  This is semantically the same as
 * gc_list_remove(node) followed by gc_list_append(node, list).
 */
static void
gc_list_move(PyGC_Head *node, PyGC_Head *list)
{
	PyGC_Head *new_prev;
	PyGC_Head *current_prev = node->gc.gc_prev;
	PyGC_Head *current_next = node->gc.gc_next;
	/* Unlink from current list. */
	current_prev->gc.gc_next = current_next;
	current_next->gc.gc_prev = current_prev;
	/* Relink at end of new list. */
	new_prev = node->gc.gc_prev = list->gc.gc_prev;
	new_prev->gc.gc_next = list->gc.gc_prev = node;
	node->gc.gc_next = list;
}

/* append list `from` onto list `to`; `from` becomes an empty list */
static void
gc_list_merge(PyGC_Head *from, PyGC_Head *to)
{
	PyGC_Head *tail;
	assert(from != to);
	if (!gc_list_is_empty(from)) {
		tail = to->gc.gc_prev;
		tail->gc.gc_next = from->gc.gc_next;
		tail->gc.gc_next->gc.gc_prev = tail;
		to->gc.gc_prev = from->gc.gc_prev;
		to->gc.gc_prev->gc.gc_next = to;
	}
	gc_list_init(from);
}

static long
gc_list_size(PyGC_Head *list)
{
	PyGC_Head *gc;
	long n = 0;
	for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
		n++;
	}
	return n;
}

/* Append objects in a GC list to a Python list.
 * Return 0 if all OK, < 0 if error (out of memory for list).
 */
static int
append_objects(PyObject *py_list, PyGC_Head *gc_list)
{
	PyGC_Head *gc;
	for (gc = gc_list->gc.gc_next; gc != gc_list; gc = gc->gc.gc_next) {
		PyObject *op = FROM_GC(gc);
		if (op != py_list) {
			if (PyList_Append(py_list, op)) {
				return -1; /* exception */
			}
		}
	}
	return 0;
}

/*** end of list stuff ***/


/* Set all gc_refs = ob_refcnt.  After this, gc_refs is > 0 for all objects
 * in containers, and is GC_REACHABLE for all tracked gc objects not in
 * containers.
 */
static void
update_refs(PyGC_Head *containers)
{
	PyGC_Head *gc = containers->gc.gc_next;
	for (; gc != containers; gc = gc->gc.gc_next) {
		assert(gc->gc.gc_refs == GC_REACHABLE);
		gc->gc.gc_refs = FROM_GC(gc)->ob_refcnt;
		/* Python's cyclic gc should never see an incoming refcount
		 * of 0:  if something decref'ed to 0, it should have been
		 * deallocated immediately at that time.
		 * Possible cause (if the assert triggers):  a tp_dealloc
		 * routine left a gc-aware object tracked during its teardown
		 * phase, and did something-- or allowed something to happen --
		 * that called back into Python.  gc can trigger then, and may
		 * see the still-tracked dying object.  Before this assert
		 * was added, such mistakes went on to allow gc to try to
		 * delete the object again.  In a debug build, that caused
		 * a mysterious segfault, when _Py_ForgetReference tried
		 * to remove the object from the doubly-linked list of all
		 * objects a second time.  In a release build, an actual
		 * double deallocation occurred, which leads to corruption
		 * of the allocator's internal bookkeeping pointers.  That's
		 * so serious that maybe this should be a release-build
		 * check instead of an assert?
		 */
		assert(gc->gc.gc_refs != 0);
	}
}

/* A traversal callback for subtract_refs. */
static int
visit_decref(PyObject *op, void *data)
{
        assert(op != NULL);
	if (PyObject_IS_GC(op)) {
		PyGC_Head *gc = AS_GC(op);
		/* We're only interested in gc_refs for objects in the
		 * generation being collected, which can be recognized
		 * because only they have positive gc_refs.
		 */
		assert(gc->gc.gc_refs != 0); /* else refcount was too small */
		if (gc->gc.gc_refs > 0)
			gc->gc.gc_refs--;
	}
	return 0;
}

/* Subtract internal references from gc_refs.  After this, gc_refs is >= 0
 * for all objects in containers, and is GC_REACHABLE for all tracked gc
 * objects not in containers.  The ones with gc_refs > 0 are directly
 * reachable from outside containers, and so can't be collected.
 */
static void
subtract_refs(PyGC_Head *containers)
{
	traverseproc traverse;
	PyGC_Head *gc = containers->gc.gc_next;
	for (; gc != containers; gc=gc->gc.gc_next) {
		traverse = FROM_GC(gc)->ob_type->tp_traverse;
		(void) traverse(FROM_GC(gc),
			       (visitproc)visit_decref,
			       NULL);
	}
}

/* A traversal callback for move_unreachable. */
static int
visit_reachable(PyObject *op, PyGC_Head *reachable)
{
	if (PyObject_IS_GC(op)) {
		PyGC_Head *gc = AS_GC(op);
		const int gc_refs = gc->gc.gc_refs;

		if (gc_refs == 0) {
			/* This is in move_unreachable's 'young' list, but
			 * the traversal hasn't yet gotten to it.  All
			 * we need to do is tell move_unreachable that it's
			 * reachable.
			 */
			gc->gc.gc_refs = 1;
		}
		else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) {
			/* This had gc_refs = 0 when move_unreachable got
			 * to it, but turns out it's reachable after all.
			 * Move it back to move_unreachable's 'young' list,
			 * and move_unreachable will eventually get to it
			 * again.
			 */
			gc_list_move(gc, reachable);
			gc->gc.gc_refs = 1;
		}
		/* Else there's nothing to do.
		 * If gc_refs > 0, it must be in move_unreachable's 'young'
		 * list, and move_unreachable will eventually get to it.
		 * If gc_refs == GC_REACHABLE, it's either in some other
		 * generation so we don't care about it, or move_unreachable
		 * already dealt with it.
		 * If gc_refs == GC_UNTRACKED, it must be ignored.
		 */
		 else {
		 	assert(gc_refs > 0
		 	       || gc_refs == GC_REACHABLE
		 	       || gc_refs == GC_UNTRACKED);
		 }
	}
	return 0;
}

/* Move the unreachable objects from young to unreachable.  After this,
 * all objects in young have gc_refs = GC_REACHABLE, and all objects in
 * unreachable have gc_refs = GC_TENTATIVELY_UNREACHABLE.  All tracked
 * gc objects not in young or unreachable still have gc_refs = GC_REACHABLE.
 * All objects in young after this are directly or indirectly reachable
 * from outside the original young; and all objects in unreachable are
 * not.
 */
static void
move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
{
	PyGC_Head *gc = young->gc.gc_next;

	/* Invariants:  all objects "to the left" of us in young have gc_refs
	 * = GC_REACHABLE, and are indeed reachable (directly or indirectly)
	 * from outside the young list as it was at entry.  All other objects
	 * from the original young "to the left" of us are in unreachable now,
	 * and have gc_refs = GC_TENTATIVELY_UNREACHABLE.  All objects to the
	 * left of us in 'young' now have been scanned, and no objects here
	 * or to the right have been scanned yet.
	 */

	while (gc != young) {
		PyGC_Head *next;

		if (gc->gc.gc_refs) {
                        /* gc is definitely reachable from outside the
                         * original 'young'.  Mark it as such, and traverse
                         * its pointers to find any other objects that may
                         * be directly reachable from it.  Note that the
                         * call to tp_traverse may append objects to young,
                         * so we have to wait until it returns to determine
                         * the next object to visit.
                         */
                        PyObject *op = FROM_GC(gc);
                        traverseproc traverse = op->ob_type->tp_traverse;
                        assert(gc->gc.gc_refs > 0);
                        gc->gc.gc_refs = GC_REACHABLE;
                        (void) traverse(op,
                                        (visitproc)visit_reachable,
                                        (void *)young);
                        next = gc->gc.gc_next;
		}
		else {
			/* This *may* be unreachable.  To make progress,
			 * assume it is.  gc isn't directly reachable from
			 * any object we've already traversed, but may be
			 * reachable from an object we haven't gotten to yet.
			 * visit_reachable will eventually move gc back into
			 * young if that's so, and we'll see it again.
			 */
			next = gc->gc.gc_next;
			gc_list_move(gc, unreachable);
			gc->gc.gc_refs = GC_TENTATIVELY_UNREACHABLE;
		}
		gc = next;
	}
}

/* Return true if object has a finalization method.
 * CAUTION:  An instance of an old-style class has to be checked for a
 *__del__ method, and earlier versions of this used to call PyObject_HasAttr,
 * which in turn could call the class's __getattr__ hook (if any).  That
 * could invoke arbitrary Python code, mutating the object graph in arbitrary
 * ways, and that was the source of some excruciatingly subtle bugs.
 */
static int
has_finalizer(PyObject *op)
{
	if (PyInstance_Check(op)) {
		assert(delstr != NULL);
		return _PyInstance_Lookup(op, delstr) != NULL;
	}
	else if (PyType_HasFeature(op->ob_type, Py_TPFLAGS_HEAPTYPE))
		return op->ob_type->tp_del != NULL;
	else
		return 0;
}

/* Move the objects in unreachable with __del__ methods into `finalizers`.
 * Objects moved into `finalizers` have gc_refs set to GC_REACHABLE; the
 * objects remaining in unreachable are left at GC_TENTATIVELY_UNREACHABLE.
 */
static void
move_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
{
	PyGC_Head *gc;
	PyGC_Head *next;

	/* March over unreachable.  Move objects with finalizers into
	 * `finalizers`.
	 */
	for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
		PyObject *op = FROM_GC(gc);

		assert(IS_TENTATIVELY_UNREACHABLE(op));
		next = gc->gc.gc_next;

		if (has_finalizer(op)) {
			gc_list_move(gc, finalizers);
			gc->gc.gc_refs = GC_REACHABLE;
		}
	}
}

/* A traversal callback for move_finalizer_reachable. */
static int
visit_move(PyObject *op, PyGC_Head *tolist)
{
	if (PyObject_IS_GC(op)) {
		if (IS_TENTATIVELY_UNREACHABLE(op)) {
			PyGC_Head *gc = AS_GC(op);
			gc_list_move(gc, tolist);
			gc->gc.gc_refs = GC_REACHABLE;
		}
	}
	return 0;
}

/* Move objects that are reachable from finalizers, from the unreachable set
 * into finalizers set.
 */
static void
move_finalizer_reachable(PyGC_Head *finalizers)
{
	traverseproc traverse;
	PyGC_Head *gc = finalizers->gc.gc_next;
	for (; gc != finalizers; gc = gc->gc.gc_next) {
		/* Note that the finalizers list may grow during this. */
		traverse = FROM_GC(gc)->ob_type->tp_traverse;
		(void) traverse(FROM_GC(gc),
				(visitproc)visit_move,
				(void *)finalizers);
	}
}

/* Clear all weakrefs to unreachable objects, and if such a weakref has a
 * callback, invoke it if necessary.  Note that it's possible for such
 * weakrefs to be outside the unreachable set -- indeed, those are precisely
 * the weakrefs whose callbacks must be invoked.  See gc_weakref.txt for
 * overview & some details.  Some weakrefs with callbacks may be reclaimed
 * directly by this routine; the number reclaimed is the return value.  Other
 * weakrefs with callbacks may be moved into the `old` generation.  Objects
 * moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in
 * unreachable are left at GC_TENTATIVELY_UNREACHABLE.  When this returns,
 * no object in `unreachable` is weakly referenced anymore.
 */
static int
handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
{
	PyGC_Head *gc;
	PyObject *op;		/* generally FROM_GC(gc) */
	PyWeakReference *wr;	/* generally a cast of op */
	PyGC_Head wrcb_to_call;	/* weakrefs with callbacks to call */
	PyGC_Head *next;
	int num_freed = 0;

	gc_list_init(&wrcb_to_call);

	/* Clear all weakrefs to the objects in unreachable.  If such a weakref
	 * also has a callback, move it into `wrcb_to_call` if the callback
	 * needs to be invoked.  Note that we cannot invoke any callbacks until
	 * all weakrefs to unreachable objects are cleared, lest the callback
	 * resurrect an unreachable object via a still-active weakref.  We
	 * make another pass over wrcb_to_call, invoking callbacks, after this
	 * pass completes.
	 */
	for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
		PyWeakReference **wrlist;

		op = FROM_GC(gc);
		assert(IS_TENTATIVELY_UNREACHABLE(op));
		next = gc->gc.gc_next;

		if (! PyType_SUPPORTS_WEAKREFS(op->ob_type))
			continue;

		/* It supports weakrefs.  Does it have any? */
		wrlist = (PyWeakReference **)
			     		PyObject_GET_WEAKREFS_LISTPTR(op);

		/* `op` may have some weakrefs.  March over the list, clear
		 * all the weakrefs, and move the weakrefs with callbacks
		 * that must be called into wrcb_to_call.
		 */
		for (wr = *wrlist; wr != NULL; wr = *wrlist) {
			PyGC_Head *wrasgc;	/* AS_GC(wr) */

			/* _PyWeakref_ClearRef clears the weakref but leaves
			 * the callback pointer intact.  Obscure:  it also
			 * changes *wrlist.
			 */
			assert(wr->wr_object == op);
			_PyWeakref_ClearRef(wr);
			assert(wr->wr_object == Py_None);
			if (wr->wr_callback == NULL)
				continue;	/* no callback */

	/* Headache time.  `op` is going away, and is weakly referenced by
	 * `wr`, which has a callback.  Should the callback be invoked?  If wr
	 * is also trash, no:
	 *
	 * 1. There's no need to call it.  The object and the weakref are
	 *    both going away, so it's legitimate to pretend the weakref is
	 *    going away first.  The user has to ensure a weakref outlives its
	 *    referent if they want a guarantee that the wr callback will get
	 *    invoked.
	 *
	 * 2. It may be catastrophic to call it.  If the callback is also in
	 *    cyclic trash (CT), then although the CT is unreachable from
	 *    outside the current generation, CT may be reachable from the
	 *    callback.  Then the callback could resurrect insane objects.
	 *
	 * Since the callback is never needed and may be unsafe in this case,
	 * wr is simply left in the unreachable set.  Note that because we
	 * already called _PyWeakref_ClearRef(wr), its callback will never
	 * trigger.
	 *
	 * OTOH, if wr isn't part of CT, we should invoke the callback:  the
	 * weakref outlived the trash.  Note that since wr isn't CT in this
	 * case, its callback can't be CT either -- wr acted as an external
	 * root to this generation, and therefore its callback did too.  So
	 * nothing in CT is reachable from the callback either, so it's hard
	 * to imagine how calling it later could create a problem for us.  wr
	 * is moved to wrcb_to_call in this case.
	 */
	 		if (IS_TENTATIVELY_UNREACHABLE(wr))
	 			continue;
			assert(IS_REACHABLE(wr));

			/* Create a new reference so that wr can't go away
			 * before we can process it again.
			 */
			Py_INCREF(wr);

			/* Move wr to wrcb_to_call, for the next pass. */
			wrasgc = AS_GC(wr);
			assert(wrasgc != next); /* wrasgc is reachable, but
			                           next isn't, so they can't
			                           be the same */
			gc_list_move(wrasgc, &wrcb_to_call);
		}
	}

	/* Invoke the callbacks we decided to honor.  It's safe to invoke them
	 * because they can't reference unreachable objects.
	 */
	while (! gc_list_is_empty(&wrcb_to_call)) {
		PyObject *temp;
		PyObject *callback;

		gc = wrcb_to_call.gc.gc_next;
		op = FROM_GC(gc);
		assert(IS_REACHABLE(op));
		assert(PyWeakref_Check(op));
		wr = (PyWeakReference *)op;
		callback = wr->wr_callback;
		assert(callback != NULL);

		/* copy-paste of weakrefobject.c's handle_callback() */
		temp = PyObject_CallFunction(callback, "O", wr);
		if (temp == NULL)
			PyErr_WriteUnraisable(callback);
		else
			Py_DECREF(temp);

		/* Give up the reference we created in the first pass.  When
		 * op's refcount hits 0 (which it may or may not do right now),
		 * op's tp_dealloc will decref op->wr_callback too.  Note
		 * that the refcount probably will hit 0 now, and because this
		 * weakref was reachable to begin with, gc didn't already
		 * add it to its count of freed objects.  Example:  a reachable
		 * weak value dict maps some key to this reachable weakref.
		 * The callback removes this key->weakref mapping from the
		 * dict, leaving no other references to the weakref (excepting
		 * ours).
		 */
		Py_DECREF(op);
		if (wrcb_to_call.gc.gc_next == gc) {
			/* object is still alive -- move it */
			gc_list_move(gc, old);
		}
		else
			++num_freed;
	}

	return num_freed;
}

static void
debug_instance(char *msg, PyInstanceObject *inst)
{
	char *cname;
	/* simple version of instance_repr */
	PyObject *classname = inst->in_class->cl_name;
	if (classname != NULL && PyString_Check(classname))
		cname = PyString_AsString(classname);
	else
		cname = "?";
	PySys_WriteStderr("gc: %.100s <%.100s instance at %p>\n",
			  msg, cname, inst);
}

static void
debug_cycle(char *msg, PyObject *op)
{
	if ((debug & DEBUG_INSTANCES) && PyInstance_Check(op)) {
		debug_instance(msg, (PyInstanceObject *)op);
	}
	else if (debug & DEBUG_OBJECTS) {
		PySys_WriteStderr("gc: %.100s <%.100s %p>\n",
				  msg, op->ob_type->tp_name, op);
	}
}

/* Handle uncollectable garbage (cycles with finalizers, and stuff reachable
 * only from such cycles).
 * If DEBUG_SAVEALL, all objects in finalizers are appended to the module
 * garbage list (a Python list), else only the objects in finalizers with
 * __del__ methods are appended to garbage.  All objects in finalizers are
 * merged into the old list regardless.
 * Returns 0 if all OK, <0 on error (out of memory to grow the garbage list).
 * The finalizers list is made empty on a successful return.
 */
static int
handle_finalizers(PyGC_Head *finalizers, PyGC_Head *old)
{
	PyGC_Head *gc = finalizers->gc.gc_next;

	if (garbage == NULL) {
		garbage = PyList_New(0);
		if (garbage == NULL)
			Py_FatalError("gc couldn't create gc.garbage list");
	}
	for (; gc != finalizers; gc = gc->gc.gc_next) {
		PyObject *op = FROM_GC(gc);

		if ((debug & DEBUG_SAVEALL) || has_finalizer(op)) {
			if (PyList_Append(garbage, op) < 0)
				return -1;
		}
	}

	gc_list_merge(finalizers, old);
	return 0;
}

/* Break reference cycles by clearing the containers involved.	This is
 * tricky business as the lists can be changing and we don't know which
 * objects may be freed.  It is possible I screwed something up here.
 */
static void
delete_garbage(PyGC_Head *collectable, PyGC_Head *old)
{
	inquiry clear;

	while (!gc_list_is_empty(collectable)) {
		PyGC_Head *gc = collectable->gc.gc_next;
		PyObject *op = FROM_GC(gc);

		assert(IS_TENTATIVELY_UNREACHABLE(op));
		if (debug & DEBUG_SAVEALL) {
			PyList_Append(garbage, op);
		}
		else {
			if ((clear = op->ob_type->tp_clear) != NULL) {
				Py_INCREF(op);
				clear(op);
				Py_DECREF(op);
			}
		}
		if (collectable->gc.gc_next == gc) {
			/* object is still alive, move it, it may die later */
			gc_list_move(gc, old);
			gc->gc.gc_refs = GC_REACHABLE;
		}
	}
}

/* This is the main function.  Read this to understand how the
 * collection process works. */
static long
collect(int generation)
{
	int i;
	long m = 0;	/* # objects collected */
	long n = 0;	/* # unreachable objects that couldn't be collected */
	PyGC_Head *young; /* the generation we are examining */
	PyGC_Head *old; /* next older generation */
	PyGC_Head unreachable; /* non-problematic unreachable trash */
	PyGC_Head finalizers;  /* objects with, & reachable from, __del__ */
	PyGC_Head *gc;

	if (delstr == NULL) {
		delstr = PyString_InternFromString("__del__");
		if (delstr == NULL)
			Py_FatalError("gc couldn't allocate \"__del__\"");
	}

	if (debug & DEBUG_STATS) {
		PySys_WriteStderr("gc: collecting generation %d...\n",
				  generation);
		PySys_WriteStderr("gc: objects in each generation:");
		for (i = 0; i < NUM_GENERATIONS; i++) {
			PySys_WriteStderr(" %ld", gc_list_size(GEN_HEAD(i)));
		}
		PySys_WriteStderr("\n");
	}

	/* update collection and allocation counters */
	if (generation+1 < NUM_GENERATIONS)
		generations[generation+1].count += 1;
	for (i = 0; i <= generation; i++)
		generations[i].count = 0;

	/* merge younger generations with one we are currently collecting */
	for (i = 0; i < generation; i++) {
		gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation));
	}

	/* handy references */
	young = GEN_HEAD(generation);
	if (generation < NUM_GENERATIONS-1)
		old = GEN_HEAD(generation+1);
	else
		old = young;

	/* Using ob_refcnt and gc_refs, calculate which objects in the
	 * container set are reachable from outside the set (i.e., have a
	 * refcount greater than 0 when all the references within the
	 * set are taken into account).
	 */
	update_refs(young);
	subtract_refs(young);

	/* Leave everything reachable from outside young in young, and move
	 * everything else (in young) to unreachable.
	 * NOTE:  This used to move the reachable objects into a reachable
	 * set instead.  But most things usually turn out to be reachable,
	 * so it's more efficient to move the unreachable things.
	 */
	gc_list_init(&unreachable);
	move_unreachable(young, &unreachable);

	/* Move reachable objects to next generation. */
	if (young != old)
		gc_list_merge(young, old);

	/* All objects in unreachable are trash, but objects reachable from
	 * finalizers can't safely be deleted.  Python programmers should take
	 * care not to create such things.  For Python, finalizers means
	 * instance objects with __del__ methods.  Weakrefs with callbacks
	 * can also call arbitrary Python code but they will be dealt with by
	 * handle_weakrefs().
 	 */
	gc_list_init(&finalizers);
	move_finalizers(&unreachable, &finalizers);
	/* finalizers contains the unreachable objects with a finalizer;
	 * unreachable objects reachable *from* those are also uncollectable,
	 * and we move those into the finalizers list too.
	 */
	move_finalizer_reachable(&finalizers);

	/* Collect statistics on collectable objects found and print
	 * debugging information.
	 */
	for (gc = unreachable.gc.gc_next; gc != &unreachable;
			gc = gc->gc.gc_next) {
		m++;
		if (debug & DEBUG_COLLECTABLE) {
			debug_cycle("collectable", FROM_GC(gc));
		}
	}

	/* Clear weakrefs and invoke callbacks as necessary. */
	m += handle_weakrefs(&unreachable, old);

	/* Call tp_clear on objects in the unreachable set.  This will cause
	 * the reference cycles to be broken.  It may also cause some objects
	 * in finalizers to be freed.
	 */
	delete_garbage(&unreachable, old);

	/* Collect statistics on uncollectable objects found and print
	 * debugging information. */
	for (gc = finalizers.gc.gc_next;
	     gc != &finalizers;
	     gc = gc->gc.gc_next) {
		n++;
		if (debug & DEBUG_UNCOLLECTABLE)
			debug_cycle("uncollectable", FROM_GC(gc));
	}
	if (debug & DEBUG_STATS) {
		if (m == 0 && n == 0) {
			PySys_WriteStderr("gc: done.\n");
		}
		else {
			PySys_WriteStderr(
			    "gc: done, %ld unreachable, %ld uncollectable.\n",
			    n+m, n);
		}
	}

	/* Append instances in the uncollectable set to a Python
	 * reachable list of garbage.  The programmer has to deal with
	 * this if they insist on creating this type of structure.
	 */
	(void)handle_finalizers(&finalizers, old);

	if (PyErr_Occurred()) {
		if (gc_str == NULL)
			gc_str = PyString_FromString("garbage collection");
		PyErr_WriteUnraisable(gc_str);
		Py_FatalError("unexpected exception during garbage collection");
	}
	return n+m;
}

static long
collect_generations(void)
{
	int i;
	long n = 0;

	/* Find the oldest generation (higest numbered) where the count
	 * exceeds the threshold.  Objects in the that generation and
	 * generations younger than it will be collected. */
	for (i = NUM_GENERATIONS-1; i >= 0; i--) {
		if (generations[i].count > generations[i].threshold) {
			n = collect(i);
			break;
		}
	}
	return n;
}

PyDoc_STRVAR(gc_enable__doc__,
"enable() -> None\n"
"\n"
"Enable automatic garbage collection.\n");

static PyObject *
gc_enable(PyObject *self, PyObject *noargs)
{
	enabled = 1;
	Py_INCREF(Py_None);
	return Py_None;
}

PyDoc_STRVAR(gc_disable__doc__,
"disable() -> None\n"
"\n"
"Disable automatic garbage collection.\n");

static PyObject *
gc_disable(PyObject *self, PyObject *noargs)
{
	enabled = 0;
	Py_INCREF(Py_None);
	return Py_None;
}

PyDoc_STRVAR(gc_isenabled__doc__,
"isenabled() -> status\n"
"\n"
"Returns true if automatic garbage collection is enabled.\n");

static PyObject *
gc_isenabled(PyObject *self, PyObject *noargs)
{
	return PyBool_FromLong((long)enabled);
}

PyDoc_STRVAR(gc_collect__doc__,
"collect() -> n\n"
"\n"
"Run a full collection.  The number of unreachable objects is returned.\n");

static PyObject *
gc_collect(PyObject *self, PyObject *noargs)
{
	long n;

	if (collecting)
		n = 0; /* already collecting, don't do anything */
	else {
		collecting = 1;
		n = collect(NUM_GENERATIONS - 1);
		collecting = 0;
	}

	return Py_BuildValue("l", n);
}

PyDoc_STRVAR(gc_set_debug__doc__,
"set_debug(flags) -> None\n"
"\n"
"Set the garbage collection debugging flags. Debugging information is\n"
"written to sys.stderr.\n"
"\n"
"flags is an integer and can have the following bits turned on:\n"
"\n"
"  DEBUG_STATS - Print statistics during collection.\n"
"  DEBUG_COLLECTABLE - Print collectable objects found.\n"
"  DEBUG_UNCOLLECTABLE - Print unreachable but uncollectable objects found.\n"
"  DEBUG_INSTANCES - Print instance objects.\n"
"  DEBUG_OBJECTS - Print objects other than instances.\n"
"  DEBUG_SAVEALL - Save objects to gc.garbage rather than freeing them.\n"
"  DEBUG_LEAK - Debug leaking programs (everything but STATS).\n");

static PyObject *
gc_set_debug(PyObject *self, PyObject *args)
{
	if (!PyArg_ParseTuple(args, "i:set_debug", &debug))
		return NULL;

	Py_INCREF(Py_None);
	return Py_None;
}

PyDoc_STRVAR(gc_get_debug__doc__,
"get_debug() -> flags\n"
"\n"
"Get the garbage collection debugging flags.\n");

static PyObject *
gc_get_debug(PyObject *self, PyObject *noargs)
{
	return Py_BuildValue("i", debug);
}

PyDoc_STRVAR(gc_set_thresh__doc__,
"set_threshold(threshold0, [threshold1, threshold2]) -> None\n"
"\n"
"Sets the collection thresholds.  Setting threshold0 to zero disables\n"
"collection.\n");

static PyObject *
gc_set_thresh(PyObject *self, PyObject *args)
{
	int i;
	if (!PyArg_ParseTuple(args, "i|ii:set_threshold",
			      &generations[0].threshold,
			      &generations[1].threshold,
			      &generations[2].threshold))
		return NULL;
	for (i = 2; i < NUM_GENERATIONS; i++) {
 		/* generations higher than 2 get the same threshold */
		generations[i].threshold = generations[2].threshold;
	}

	Py_INCREF(Py_None);
	return Py_None;
}

PyDoc_STRVAR(gc_get_thresh__doc__,
"get_threshold() -> (threshold0, threshold1, threshold2)\n"
"\n"
"Return the current collection thresholds\n");

static PyObject *
gc_get_thresh(PyObject *self, PyObject *noargs)
{
	return Py_BuildValue("(iii)",
			     generations[0].threshold,
			     generations[1].threshold,
			     generations[2].threshold);
}

static int
referrersvisit(PyObject* obj, PyObject *objs)
{
	int i;
	for (i = 0; i < PyTuple_GET_SIZE(objs); i++)
		if (PyTuple_GET_ITEM(objs, i) == obj)
			return 1;
	return 0;
}

static int
gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
{
	PyGC_Head *gc;
	PyObject *obj;
	traverseproc traverse;
	for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
		obj = FROM_GC(gc);
		traverse = obj->ob_type->tp_traverse;
		if (obj == objs || obj == resultlist)
			continue;
		if (traverse(obj, (visitproc)referrersvisit, objs)) {
			if (PyList_Append(resultlist, obj) < 0)
				return 0; /* error */
		}
	}
	return 1; /* no error */
}

PyDoc_STRVAR(gc_get_referrers__doc__,
"get_referrers(*objs) -> list\n\
Return the list of objects that directly refer to any of objs.");

static PyObject *
gc_get_referrers(PyObject *self, PyObject *args)
{
	int i;
	PyObject *result = PyList_New(0);
	for (i = 0; i < NUM_GENERATIONS; i++) {
		if (!(gc_referrers_for(args, GEN_HEAD(i), result))) {
			Py_DECREF(result);
			return NULL;
		}
	}
	return result;
}

/* Append obj to list; return true if error (out of memory), false if OK. */
static int
referentsvisit(PyObject *obj, PyObject *list)
{
	return PyList_Append(list, obj) < 0;
}

PyDoc_STRVAR(gc_get_referents__doc__,
"get_referents(*objs) -> list\n\
Return the list of objects that are directly referred to by objs.");

static PyObject *
gc_get_referents(PyObject *self, PyObject *args)
{
	int i;
	PyObject *result = PyList_New(0);

	if (result == NULL)
		return NULL;

	for (i = 0; i < PyTuple_GET_SIZE(args); i++) {
		traverseproc traverse;
		PyObject *obj = PyTuple_GET_ITEM(args, i);

		if (! PyObject_IS_GC(obj))
			continue;
		traverse = obj->ob_type->tp_traverse;
		if (! traverse)
			continue;
		if (traverse(obj, (visitproc)referentsvisit, result)) {
			Py_DECREF(result);
			return NULL;
		}
	}
	return result;
}

PyDoc_STRVAR(gc_get_objects__doc__,
"get_objects() -> [...]\n"
"\n"
"Return a list of objects tracked by the collector (excluding the list\n"
"returned).\n");

static PyObject *
gc_get_objects(PyObject *self, PyObject *noargs)
{
	int i;
	PyObject* result;

	result = PyList_New(0);
	if (result == NULL)
		return NULL;
	for (i = 0; i < NUM_GENERATIONS; i++) {
		if (append_objects(result, GEN_HEAD(i))) {
			Py_DECREF(result);
			return NULL;
		}
	}
	return result;
}


PyDoc_STRVAR(gc__doc__,
"This module provides access to the garbage collector for reference cycles.\n"
"\n"
"enable() -- Enable automatic garbage collection.\n"
"disable() -- Disable automatic garbage collection.\n"
"isenabled() -- Returns true if automatic collection is enabled.\n"
"collect() -- Do a full collection right now.\n"
"set_debug() -- Set debugging flags.\n"
"get_debug() -- Get debugging flags.\n"
"set_threshold() -- Set the collection thresholds.\n"
"get_threshold() -- Return the current the collection thresholds.\n"
"get_objects() -- Return a list of all objects tracked by the collector.\n"
"get_referrers() -- Return the list of objects that refer to an object.\n"
"get_referents() -- Return the list of objects that an object refers to.\n");

static PyMethodDef GcMethods[] = {
	{"enable",	   gc_enable,	  METH_NOARGS,  gc_enable__doc__},
	{"disable",	   gc_disable,	  METH_NOARGS,  gc_disable__doc__},
	{"isenabled",	   gc_isenabled,  METH_NOARGS,  gc_isenabled__doc__},
	{"set_debug",	   gc_set_debug,  METH_VARARGS, gc_set_debug__doc__},
	{"get_debug",	   gc_get_debug,  METH_NOARGS,  gc_get_debug__doc__},
	{"set_threshold",  gc_set_thresh, METH_VARARGS, gc_set_thresh__doc__},
	{"get_threshold",  gc_get_thresh, METH_NOARGS,  gc_get_thresh__doc__},
	{"collect",	   gc_collect,	  METH_NOARGS,  gc_collect__doc__},
	{"get_objects",    gc_get_objects,METH_NOARGS,  gc_get_objects__doc__},
	{"get_referrers",  gc_get_referrers, METH_VARARGS,
		gc_get_referrers__doc__},
	{"get_referents",  gc_get_referents, METH_VARARGS,
		gc_get_referents__doc__},
	{NULL,	NULL}		/* Sentinel */
};

PyMODINIT_FUNC
initgc(void)
{
	PyObject *m;

	m = Py_InitModule4("gc",
			      GcMethods,
			      gc__doc__,
			      NULL,
			      PYTHON_API_VERSION);

	if (garbage == NULL) {
		garbage = PyList_New(0);
		if (garbage == NULL)
			return;
	}
	Py_INCREF(garbage);
	if (PyModule_AddObject(m, "garbage", garbage) < 0)
		return;
#define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) return
	ADD_INT(DEBUG_STATS);
	ADD_INT(DEBUG_COLLECTABLE);
	ADD_INT(DEBUG_UNCOLLECTABLE);
	ADD_INT(DEBUG_INSTANCES);
	ADD_INT(DEBUG_OBJECTS);
	ADD_INT(DEBUG_SAVEALL);
	ADD_INT(DEBUG_LEAK);
#undef ADD_INT
}

/* API to invoke gc.collect() from C */
long
PyGC_Collect(void)
{
	long n;

	if (collecting)
		n = 0; /* already collecting, don't do anything */
	else {
		collecting = 1;
		n = collect(NUM_GENERATIONS - 1);
		collecting = 0;
	}

	return n;
}

/* for debugging */
void
_PyGC_Dump(PyGC_Head *g)
{
	_PyObject_Dump(FROM_GC(g));
}

/* extension modules might be compiled with GC support so these
   functions must always be available */

#undef PyObject_GC_Track
#undef PyObject_GC_UnTrack
#undef PyObject_GC_Del
#undef _PyObject_GC_Malloc

void
PyObject_GC_Track(void *op)
{
	_PyObject_GC_TRACK(op);
}

/* for binary compatibility with 2.2 */
void
_PyObject_GC_Track(PyObject *op)
{
    PyObject_GC_Track(op);
}

void
PyObject_GC_UnTrack(void *op)
{
	/* Obscure:  the Py_TRASHCAN mechanism requires that we be able to
	 * call PyObject_GC_UnTrack twice on an object.
	 */
	if (IS_TRACKED(op))
		_PyObject_GC_UNTRACK(op);
}

/* for binary compatibility with 2.2 */
void
_PyObject_GC_UnTrack(PyObject *op)
{
    PyObject_GC_UnTrack(op);
}

PyObject *
_PyObject_GC_Malloc(size_t basicsize)
{
	PyObject *op;
	PyGC_Head *g = PyObject_MALLOC(sizeof(PyGC_Head) + basicsize);
	if (g == NULL)
		return PyErr_NoMemory();
	g->gc.gc_refs = GC_UNTRACKED;
	generations[0].count++; /* number of allocated GC objects */
 	if (generations[0].count > generations[0].threshold &&
 	    enabled &&
 	    generations[0].threshold &&
 	    !collecting &&
 	    !PyErr_Occurred()) {
		collecting = 1;
		collect_generations();
		collecting = 0;
	}
	op = FROM_GC(g);
	return op;
}

PyObject *
_PyObject_GC_New(PyTypeObject *tp)
{
	PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp));
	if (op != NULL)
		op = PyObject_INIT(op, tp);
	return op;
}

PyVarObject *
_PyObject_GC_NewVar(PyTypeObject *tp, int nitems)
{
	const size_t size = _PyObject_VAR_SIZE(tp, nitems);
	PyVarObject *op = (PyVarObject *) _PyObject_GC_Malloc(size);
	if (op != NULL)
		op = PyObject_INIT_VAR(op, tp, nitems);
	return op;
}

PyVarObject *
_PyObject_GC_Resize(PyVarObject *op, int nitems)
{
	const size_t basicsize = _PyObject_VAR_SIZE(op->ob_type, nitems);
	PyGC_Head *g = AS_GC(op);
	g = PyObject_REALLOC(g,  sizeof(PyGC_Head) + basicsize);
	if (g == NULL)
		return (PyVarObject *)PyErr_NoMemory();
	op = (PyVarObject *) FROM_GC(g);
	op->ob_size = nitems;
	return op;
}

void
PyObject_GC_Del(void *op)
{
	PyGC_Head *g = AS_GC(op);
	if (IS_TRACKED(op))
		gc_list_remove(g);
	if (generations[0].count > 0) {
		generations[0].count--;
	}
	PyObject_FREE(g);
}

/* for binary compatibility with 2.2 */
#undef _PyObject_GC_Del
void
_PyObject_GC_Del(PyObject *op)
{
    PyObject_GC_Del(op);
}