1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
|
/* Return the initial module search path. */
#include "Python.h"
#include "osdefs.h"
#include <sys/types.h>
#include <string.h>
#ifdef __APPLE__
#include <mach-o/dyld.h>
#endif
/* Search in some common locations for the associated Python libraries.
*
* Two directories must be found, the platform independent directory
* (prefix), containing the common .py and .pyc files, and the platform
* dependent directory (exec_prefix), containing the shared library
* modules. Note that prefix and exec_prefix can be the same directory,
* but for some installations, they are different.
*
* Py_GetPath() carries out separate searches for prefix and exec_prefix.
* Each search tries a number of different locations until a ``landmark''
* file or directory is found. If no prefix or exec_prefix is found, a
* warning message is issued and the preprocessor defined PREFIX and
* EXEC_PREFIX are used (even though they will not work); python carries on
* as best as is possible, but most imports will fail.
*
* Before any searches are done, the location of the executable is
* determined. If argv[0] has one or more slashs in it, it is used
* unchanged. Otherwise, it must have been invoked from the shell's path,
* so we search $PATH for the named executable and use that. If the
* executable was not found on $PATH (or there was no $PATH environment
* variable), the original argv[0] string is used.
*
* Next, the executable location is examined to see if it is a symbolic
* link. If so, the link is chased (correctly interpreting a relative
* pathname if one is found) and the directory of the link target is used.
*
* Finally, argv0_path is set to the directory containing the executable
* (i.e. the last component is stripped).
*
* With argv0_path in hand, we perform a number of steps. The same steps
* are performed for prefix and for exec_prefix, but with a different
* landmark.
*
* Step 1. Are we running python out of the build directory? This is
* checked by looking for a different kind of landmark relative to
* argv0_path. For prefix, the landmark's path is derived from the VPATH
* preprocessor variable (taking into account that its value is almost, but
* not quite, what we need). For exec_prefix, the landmark is
* Modules/Setup. If the landmark is found, we're done.
*
* For the remaining steps, the prefix landmark will always be
* lib/python$VERSION/os.py and the exec_prefix will always be
* lib/python$VERSION/lib-dynload, where $VERSION is Python's version
* number as supplied by the Makefile. Note that this means that no more
* build directory checking is performed; if the first step did not find
* the landmarks, the assumption is that python is running from an
* installed setup.
*
* Step 2. See if the $PYTHONHOME environment variable points to the
* installed location of the Python libraries. If $PYTHONHOME is set, then
* it points to prefix and exec_prefix. $PYTHONHOME can be a single
* directory, which is used for both, or the prefix and exec_prefix
* directories separated by a colon.
*
* Step 3. Try to find prefix and exec_prefix relative to argv0_path,
* backtracking up the path until it is exhausted. This is the most common
* step to succeed. Note that if prefix and exec_prefix are different,
* exec_prefix is more likely to be found; however if exec_prefix is a
* subdirectory of prefix, both will be found.
*
* Step 4. Search the directories pointed to by the preprocessor variables
* PREFIX and EXEC_PREFIX. These are supplied by the Makefile but can be
* passed in as options to the configure script.
*
* That's it!
*
* Well, almost. Once we have determined prefix and exec_prefix, the
* preprocessor variable PYTHONPATH is used to construct a path. Each
* relative path on PYTHONPATH is prefixed with prefix. Then the directory
* containing the shared library modules is appended. The environment
* variable $PYTHONPATH is inserted in front of it all. Finally, the
* prefix and exec_prefix globals are tweaked so they reflect the values
* expected by other code, by stripping the "lib/python$VERSION/..." stuff
* off. If either points to the build directory, the globals are reset to
* the corresponding preprocessor variables (so sys.prefix will reflect the
* installation location, even though sys.path points into the build
* directory). This seems to make more sense given that currently the only
* known use of sys.prefix and sys.exec_prefix is for the ILU installation
* process to find the installed Python tree.
*/
#ifndef VERSION
#if defined(__VMS)
#define VERSION "2_1"
#else
#define VERSION "2.1"
#endif
#endif
#ifndef VPATH
#define VPATH "."
#endif
#ifndef PREFIX
#define PREFIX "/usr/local"
#endif
#ifndef EXEC_PREFIX
#define EXEC_PREFIX PREFIX
#endif
#ifndef PYTHONPATH
#define PYTHONPATH PREFIX "/lib/python" VERSION ":" \
EXEC_PREFIX "/lib/python" VERSION "/lib-dynload"
#endif
#ifndef LANDMARK
#define LANDMARK "os.py"
#endif
static char prefix[MAXPATHLEN+1];
static char exec_prefix[MAXPATHLEN+1];
static char progpath[MAXPATHLEN+1];
static char *module_search_path = NULL;
static char lib_python[] = "lib/python" VERSION;
static void
reduce(char *dir)
{
size_t i = strlen(dir);
while (i > 0 && dir[i] != SEP)
--i;
dir[i] = '\0';
}
static int
isfile(char *filename) /* Is file, not directory */
{
struct stat buf;
if (stat(filename, &buf) != 0)
return 0;
if (!S_ISREG(buf.st_mode))
return 0;
return 1;
}
static int
ismodule(char *filename) /* Is module -- check for .pyc/.pyo too */
{
if (isfile(filename))
return 1;
/* Check for the compiled version of prefix. */
if (strlen(filename) < MAXPATHLEN) {
strcat(filename, Py_OptimizeFlag ? "o" : "c");
if (isfile(filename))
return 1;
}
return 0;
}
static int
isxfile(char *filename) /* Is executable file */
{
struct stat buf;
if (stat(filename, &buf) != 0)
return 0;
if (!S_ISREG(buf.st_mode))
return 0;
if ((buf.st_mode & 0111) == 0)
return 0;
return 1;
}
static int
isdir(char *filename) /* Is directory */
{
struct stat buf;
if (stat(filename, &buf) != 0)
return 0;
if (!S_ISDIR(buf.st_mode))
return 0;
return 1;
}
/* Add a path component, by appending stuff to buffer.
buffer must have at least MAXPATHLEN + 1 bytes allocated, and contain a
NUL-terminated string with no more than MAXPATHLEN characters (not counting
the trailing NUL). It's a fatal error if it contains a string longer than
that (callers must be careful!). If these requirements are met, it's
guaranteed that buffer will still be a NUL-terminated string with no more
than MAXPATHLEN characters at exit. If stuff is too long, only as much of
stuff as fits will be appended.
*/
static void
joinpath(char *buffer, char *stuff)
{
size_t n, k;
if (stuff[0] == SEP)
n = 0;
else {
n = strlen(buffer);
if (n > 0 && buffer[n-1] != SEP && n < MAXPATHLEN)
buffer[n++] = SEP;
}
if (n > MAXPATHLEN)
Py_FatalError("buffer overflow in getpath.c's joinpath()");
k = strlen(stuff);
if (n + k > MAXPATHLEN)
k = MAXPATHLEN - n;
strncpy(buffer+n, stuff, k);
buffer[n+k] = '\0';
}
/* copy_absolute requires that path be allocated at least
MAXPATHLEN + 1 bytes and that p be no more than MAXPATHLEN bytes. */
static void
copy_absolute(char *path, char *p)
{
if (p[0] == SEP)
strcpy(path, p);
else {
getcwd(path, MAXPATHLEN);
if (p[0] == '.' && p[1] == SEP)
p += 2;
joinpath(path, p);
}
}
/* absolutize() requires that path be allocated at least MAXPATHLEN+1 bytes. */
static void
absolutize(char *path)
{
char buffer[MAXPATHLEN + 1];
if (path[0] == SEP)
return;
copy_absolute(buffer, path);
strcpy(path, buffer);
}
/* search_for_prefix requires that argv0_path be no more than MAXPATHLEN
bytes long.
*/
static int
search_for_prefix(char *argv0_path, char *home)
{
size_t n;
char *vpath;
/* If PYTHONHOME is set, we believe it unconditionally */
if (home) {
char *delim;
strncpy(prefix, home, MAXPATHLEN);
delim = strchr(prefix, DELIM);
if (delim)
*delim = '\0';
joinpath(prefix, lib_python);
joinpath(prefix, LANDMARK);
return 1;
}
/* Check to see if argv[0] is in the build directory */
strcpy(prefix, argv0_path);
joinpath(prefix, "Modules/Setup");
if (isfile(prefix)) {
/* Check VPATH to see if argv0_path is in the build directory. */
vpath = VPATH;
strcpy(prefix, argv0_path);
joinpath(prefix, vpath);
joinpath(prefix, "Lib");
joinpath(prefix, LANDMARK);
if (ismodule(prefix))
return -1;
}
/* Search from argv0_path, until root is found */
copy_absolute(prefix, argv0_path);
do {
n = strlen(prefix);
joinpath(prefix, lib_python);
joinpath(prefix, LANDMARK);
if (ismodule(prefix))
return 1;
prefix[n] = '\0';
reduce(prefix);
} while (prefix[0]);
/* Look at configure's PREFIX */
strncpy(prefix, PREFIX, MAXPATHLEN);
joinpath(prefix, lib_python);
joinpath(prefix, LANDMARK);
if (ismodule(prefix))
return 1;
/* Fail */
return 0;
}
/* search_for_exec_prefix requires that argv0_path be no more than
MAXPATHLEN bytes long.
*/
static int
search_for_exec_prefix(char *argv0_path, char *home)
{
size_t n;
/* If PYTHONHOME is set, we believe it unconditionally */
if (home) {
char *delim;
delim = strchr(home, DELIM);
if (delim)
strncpy(exec_prefix, delim+1, MAXPATHLEN);
else
strncpy(exec_prefix, home, MAXPATHLEN);
joinpath(exec_prefix, lib_python);
joinpath(exec_prefix, "lib-dynload");
return 1;
}
/* Check to see if argv[0] is in the build directory */
strcpy(exec_prefix, argv0_path);
joinpath(exec_prefix, "Modules/Setup");
if (isfile(exec_prefix)) {
reduce(exec_prefix);
return -1;
}
/* Search from argv0_path, until root is found */
copy_absolute(exec_prefix, argv0_path);
do {
n = strlen(exec_prefix);
joinpath(exec_prefix, lib_python);
joinpath(exec_prefix, "lib-dynload");
if (isdir(exec_prefix))
return 1;
exec_prefix[n] = '\0';
reduce(exec_prefix);
} while (exec_prefix[0]);
/* Look at configure's EXEC_PREFIX */
strncpy(exec_prefix, EXEC_PREFIX, MAXPATHLEN);
joinpath(exec_prefix, lib_python);
joinpath(exec_prefix, "lib-dynload");
if (isdir(exec_prefix))
return 1;
/* Fail */
return 0;
}
static void
calculate_path(void)
{
extern char *Py_GetProgramName(void);
static char delimiter[2] = {DELIM, '\0'};
static char separator[2] = {SEP, '\0'};
char *pythonpath = PYTHONPATH;
char *rtpypath = Py_GETENV("PYTHONPATH");
char *home = Py_GetPythonHome();
char *path = getenv("PATH");
char *prog = Py_GetProgramName();
char argv0_path[MAXPATHLEN+1];
char zip_path[MAXPATHLEN+1];
int pfound, efound; /* 1 if found; -1 if found build directory */
char *buf;
size_t bufsz;
size_t prefixsz;
char *defpath = pythonpath;
#ifdef WITH_NEXT_FRAMEWORK
NSModule pythonModule;
#endif
#ifdef __APPLE__
uint32_t nsexeclength = MAXPATHLEN;
#endif
/* If there is no slash in the argv0 path, then we have to
* assume python is on the user's $PATH, since there's no
* other way to find a directory to start the search from. If
* $PATH isn't exported, you lose.
*/
if (strchr(prog, SEP))
strncpy(progpath, prog, MAXPATHLEN);
#ifdef __APPLE__
/* On Mac OS X, if a script uses an interpreter of the form
* "#!/opt/python2.3/bin/python", the kernel only passes "python"
* as argv[0], which falls through to the $PATH search below.
* If /opt/python2.3/bin isn't in your path, or is near the end,
* this algorithm may incorrectly find /usr/bin/python. To work
* around this, we can use _NSGetExecutablePath to get a better
* hint of what the intended interpreter was, although this
* will fail if a relative path was used. but in that case,
* absolutize() should help us out below
*/
else if(0 == _NSGetExecutablePath(progpath, &nsexeclength) && progpath[0] == SEP)
;
#endif /* __APPLE__ */
else if (path) {
while (1) {
char *delim = strchr(path, DELIM);
if (delim) {
size_t len = delim - path;
if (len > MAXPATHLEN)
len = MAXPATHLEN;
strncpy(progpath, path, len);
*(progpath + len) = '\0';
}
else
strncpy(progpath, path, MAXPATHLEN);
joinpath(progpath, prog);
if (isxfile(progpath))
break;
if (!delim) {
progpath[0] = '\0';
break;
}
path = delim + 1;
}
}
else
progpath[0] = '\0';
if (progpath[0] != SEP)
absolutize(progpath);
strncpy(argv0_path, progpath, MAXPATHLEN);
argv0_path[MAXPATHLEN] = '\0';
#ifdef WITH_NEXT_FRAMEWORK
/* On Mac OS X we have a special case if we're running from a framework.
** This is because the python home should be set relative to the library,
** which is in the framework, not relative to the executable, which may
** be outside of the framework. Except when we're in the build directory...
*/
pythonModule = NSModuleForSymbol(NSLookupAndBindSymbol("_Py_Initialize"));
/* Use dylib functions to find out where the framework was loaded from */
buf = (char *)NSLibraryNameForModule(pythonModule);
if (buf != NULL) {
/* We're in a framework. */
/* See if we might be in the build directory. The framework in the
** build directory is incomplete, it only has the .dylib and a few
** needed symlinks, it doesn't have the Lib directories and such.
** If we're running with the framework from the build directory we must
** be running the interpreter in the build directory, so we use the
** build-directory-specific logic to find Lib and such.
*/
strncpy(argv0_path, buf, MAXPATHLEN);
reduce(argv0_path);
joinpath(argv0_path, lib_python);
joinpath(argv0_path, LANDMARK);
if (!ismodule(argv0_path)) {
/* We are in the build directory so use the name of the
executable - we know that the absolute path is passed */
strncpy(argv0_path, prog, MAXPATHLEN);
}
else {
/* Use the location of the library as the progpath */
strncpy(argv0_path, buf, MAXPATHLEN);
}
}
#endif
#if HAVE_READLINK
{
char tmpbuffer[MAXPATHLEN+1];
int linklen = readlink(progpath, tmpbuffer, MAXPATHLEN);
while (linklen != -1) {
/* It's not null terminated! */
tmpbuffer[linklen] = '\0';
if (tmpbuffer[0] == SEP)
/* tmpbuffer should never be longer than MAXPATHLEN,
but extra check does not hurt */
strncpy(argv0_path, tmpbuffer, MAXPATHLEN);
else {
/* Interpret relative to progpath */
reduce(argv0_path);
joinpath(argv0_path, tmpbuffer);
}
linklen = readlink(argv0_path, tmpbuffer, MAXPATHLEN);
}
}
#endif /* HAVE_READLINK */
reduce(argv0_path);
/* At this point, argv0_path is guaranteed to be less than
MAXPATHLEN bytes long.
*/
if (!(pfound = search_for_prefix(argv0_path, home))) {
if (!Py_FrozenFlag)
fprintf(stderr,
"Could not find platform independent libraries <prefix>\n");
strncpy(prefix, PREFIX, MAXPATHLEN);
joinpath(prefix, lib_python);
}
else
reduce(prefix);
strncpy(zip_path, prefix, MAXPATHLEN);
zip_path[MAXPATHLEN] = '\0';
if (pfound > 0) { /* Use the reduced prefix returned by Py_GetPrefix() */
reduce(zip_path);
reduce(zip_path);
}
else
strncpy(zip_path, PREFIX, MAXPATHLEN);
joinpath(zip_path, "lib/python00.zip");
bufsz = strlen(zip_path); /* Replace "00" with version */
zip_path[bufsz - 6] = VERSION[0];
zip_path[bufsz - 5] = VERSION[2];
if (!(efound = search_for_exec_prefix(argv0_path, home))) {
if (!Py_FrozenFlag)
fprintf(stderr,
"Could not find platform dependent libraries <exec_prefix>\n");
strncpy(exec_prefix, EXEC_PREFIX, MAXPATHLEN);
joinpath(exec_prefix, "lib/lib-dynload");
}
/* If we found EXEC_PREFIX do *not* reduce it! (Yet.) */
if ((!pfound || !efound) && !Py_FrozenFlag)
fprintf(stderr,
"Consider setting $PYTHONHOME to <prefix>[:<exec_prefix>]\n");
/* Calculate size of return buffer.
*/
bufsz = 0;
if (rtpypath)
bufsz += strlen(rtpypath) + 1;
prefixsz = strlen(prefix) + 1;
while (1) {
char *delim = strchr(defpath, DELIM);
if (defpath[0] != SEP)
/* Paths are relative to prefix */
bufsz += prefixsz;
if (delim)
bufsz += delim - defpath + 1;
else {
bufsz += strlen(defpath) + 1;
break;
}
defpath = delim + 1;
}
bufsz += strlen(zip_path) + 1;
bufsz += strlen(exec_prefix) + 1;
/* This is the only malloc call in this file */
buf = PyMem_Malloc(bufsz);
if (buf == NULL) {
/* We can't exit, so print a warning and limp along */
fprintf(stderr, "Not enough memory for dynamic PYTHONPATH.\n");
fprintf(stderr, "Using default static PYTHONPATH.\n");
module_search_path = PYTHONPATH;
}
else {
/* Run-time value of $PYTHONPATH goes first */
if (rtpypath) {
strcpy(buf, rtpypath);
strcat(buf, delimiter);
}
else
buf[0] = '\0';
/* Next is the default zip path */
strcat(buf, zip_path);
strcat(buf, delimiter);
/* Next goes merge of compile-time $PYTHONPATH with
* dynamically located prefix.
*/
defpath = pythonpath;
while (1) {
char *delim = strchr(defpath, DELIM);
if (defpath[0] != SEP) {
strcat(buf, prefix);
strcat(buf, separator);
}
if (delim) {
size_t len = delim - defpath + 1;
size_t end = strlen(buf) + len;
strncat(buf, defpath, len);
*(buf + end) = '\0';
}
else {
strcat(buf, defpath);
break;
}
defpath = delim + 1;
}
strcat(buf, delimiter);
/* Finally, on goes the directory for dynamic-load modules */
strcat(buf, exec_prefix);
/* And publish the results */
module_search_path = buf;
}
/* Reduce prefix and exec_prefix to their essence,
* e.g. /usr/local/lib/python1.5 is reduced to /usr/local.
* If we're loading relative to the build directory,
* return the compiled-in defaults instead.
*/
if (pfound > 0) {
reduce(prefix);
reduce(prefix);
}
else
strncpy(prefix, PREFIX, MAXPATHLEN);
if (efound > 0) {
reduce(exec_prefix);
reduce(exec_prefix);
reduce(exec_prefix);
}
else
strncpy(exec_prefix, EXEC_PREFIX, MAXPATHLEN);
}
/* External interface */
char *
Py_GetPath(void)
{
if (!module_search_path)
calculate_path();
return module_search_path;
}
char *
Py_GetPrefix(void)
{
if (!module_search_path)
calculate_path();
return prefix;
}
char *
Py_GetExecPrefix(void)
{
if (!module_search_path)
calculate_path();
return exec_prefix;
}
char *
Py_GetProgramFullPath(void)
{
if (!module_search_path)
calculate_path();
return progpath;
}
|