1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
|
/* Math module -- standard C math library functions, pi and e */
/* Here are some comments from Tim Peters, extracted from the
discussion attached to http://bugs.python.org/issue1640. They
describe the general aims of the math module with respect to
special values, IEEE-754 floating-point exceptions, and Python
exceptions.
These are the "spirit of 754" rules:
1. If the mathematical result is a real number, but of magnitude too
large to approximate by a machine float, overflow is signaled and the
result is an infinity (with the appropriate sign).
2. If the mathematical result is a real number, but of magnitude too
small to approximate by a machine float, underflow is signaled and the
result is a zero (with the appropriate sign).
3. At a singularity (a value x such that the limit of f(y) as y
approaches x exists and is an infinity), "divide by zero" is signaled
and the result is an infinity (with the appropriate sign). This is
complicated a little by that the left-side and right-side limits may
not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
from the positive or negative directions. In that specific case, the
sign of the zero determines the result of 1/0.
4. At a point where a function has no defined result in the extended
reals (i.e., the reals plus an infinity or two), invalid operation is
signaled and a NaN is returned.
And these are what Python has historically /tried/ to do (but not
always successfully, as platform libm behavior varies a lot):
For #1, raise OverflowError.
For #2, return a zero (with the appropriate sign if that happens by
accident ;-)).
For #3 and #4, raise ValueError. It may have made sense to raise
Python's ZeroDivisionError in #3, but historically that's only been
raised for division by zero and mod by zero.
*/
/*
In general, on an IEEE-754 platform the aim is to follow the C99
standard, including Annex 'F', whenever possible. Where the
standard recommends raising the 'divide-by-zero' or 'invalid'
floating-point exceptions, Python should raise a ValueError. Where
the standard recommends raising 'overflow', Python should raise an
OverflowError. In all other circumstances a value should be
returned.
*/
#include "Python.h"
#include "_math.h"
#include "clinic/mathmodule.c.h"
/*[clinic input]
module math
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/
/*
sin(pi*x), giving accurate results for all finite x (especially x
integral or close to an integer). This is here for use in the
reflection formula for the gamma function. It conforms to IEEE
754-2008 for finite arguments, but not for infinities or nans.
*/
static const double pi = 3.141592653589793238462643383279502884197;
static const double logpi = 1.144729885849400174143427351353058711647;
#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
static const double sqrtpi = 1.772453850905516027298167483341145182798;
#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
/* Version of PyFloat_AsDouble() with in-line fast paths
for exact floats and integers. Gives a substantial
speed improvement for extracting float arguments.
*/
#define ASSIGN_DOUBLE(target_var, obj, error_label) \
if (PyFloat_CheckExact(obj)) { \
target_var = PyFloat_AS_DOUBLE(obj); \
} \
else if (PyLong_CheckExact(obj)) { \
target_var = PyLong_AsDouble(obj); \
if (target_var == -1.0 && PyErr_Occurred()) { \
goto error_label; \
} \
} \
else { \
target_var = PyFloat_AsDouble(obj); \
if (target_var == -1.0 && PyErr_Occurred()) { \
goto error_label; \
} \
}
static double
m_sinpi(double x)
{
double y, r;
int n;
/* this function should only ever be called for finite arguments */
assert(Py_IS_FINITE(x));
y = fmod(fabs(x), 2.0);
n = (int)round(2.0*y);
assert(0 <= n && n <= 4);
switch (n) {
case 0:
r = sin(pi*y);
break;
case 1:
r = cos(pi*(y-0.5));
break;
case 2:
/* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
-0.0 instead of 0.0 when y == 1.0. */
r = sin(pi*(1.0-y));
break;
case 3:
r = -cos(pi*(y-1.5));
break;
case 4:
r = sin(pi*(y-2.0));
break;
default:
Py_UNREACHABLE();
}
return copysign(1.0, x)*r;
}
/* Implementation of the real gamma function. In extensive but non-exhaustive
random tests, this function proved accurate to within <= 10 ulps across the
entire float domain. Note that accuracy may depend on the quality of the
system math functions, the pow function in particular. Special cases
follow C99 annex F. The parameters and method are tailored to platforms
whose double format is the IEEE 754 binary64 format.
Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
and g=6.024680040776729583740234375; these parameters are amongst those
used by the Boost library. Following Boost (again), we re-express the
Lanczos sum as a rational function, and compute it that way. The
coefficients below were computed independently using MPFR, and have been
double-checked against the coefficients in the Boost source code.
For x < 0.0 we use the reflection formula.
There's one minor tweak that deserves explanation: Lanczos' formula for
Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
values, x+g-0.5 can be represented exactly. However, in cases where it
can't be represented exactly the small error in x+g-0.5 can be magnified
significantly by the pow and exp calls, especially for large x. A cheap
correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
involved in the computation of x+g-0.5 (that is, e = computed value of
x+g-0.5 - exact value of x+g-0.5). Here's the proof:
Correction factor
-----------------
Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
double, and e is tiny. Then:
pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
= pow(y, x-0.5)/exp(y) * C,
where the correction_factor C is given by
C = pow(1-e/y, x-0.5) * exp(e)
Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
Note that for accuracy, when computing r*C it's better to do
r + e*g/y*r;
than
r * (1 + e*g/y);
since the addition in the latter throws away most of the bits of
information in e*g/y.
*/
#define LANCZOS_N 13
static const double lanczos_g = 6.024680040776729583740234375;
static const double lanczos_g_minus_half = 5.524680040776729583740234375;
static const double lanczos_num_coeffs[LANCZOS_N] = {
23531376880.410759688572007674451636754734846804940,
42919803642.649098768957899047001988850926355848959,
35711959237.355668049440185451547166705960488635843,
17921034426.037209699919755754458931112671403265390,
6039542586.3520280050642916443072979210699388420708,
1439720407.3117216736632230727949123939715485786772,
248874557.86205415651146038641322942321632125127801,
31426415.585400194380614231628318205362874684987640,
2876370.6289353724412254090516208496135991145378768,
186056.26539522349504029498971604569928220784236328,
8071.6720023658162106380029022722506138218516325024,
210.82427775157934587250973392071336271166969580291,
2.5066282746310002701649081771338373386264310793408
};
/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
static const double lanczos_den_coeffs[LANCZOS_N] = {
0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
#define NGAMMA_INTEGRAL 23
static const double gamma_integral[NGAMMA_INTEGRAL] = {
1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
1307674368000.0, 20922789888000.0, 355687428096000.0,
6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
51090942171709440000.0, 1124000727777607680000.0,
};
/* Lanczos' sum L_g(x), for positive x */
static double
lanczos_sum(double x)
{
double num = 0.0, den = 0.0;
int i;
assert(x > 0.0);
/* evaluate the rational function lanczos_sum(x). For large
x, the obvious algorithm risks overflow, so we instead
rescale the denominator and numerator of the rational
function by x**(1-LANCZOS_N) and treat this as a
rational function in 1/x. This also reduces the error for
larger x values. The choice of cutoff point (5.0 below) is
somewhat arbitrary; in tests, smaller cutoff values than
this resulted in lower accuracy. */
if (x < 5.0) {
for (i = LANCZOS_N; --i >= 0; ) {
num = num * x + lanczos_num_coeffs[i];
den = den * x + lanczos_den_coeffs[i];
}
}
else {
for (i = 0; i < LANCZOS_N; i++) {
num = num / x + lanczos_num_coeffs[i];
den = den / x + lanczos_den_coeffs[i];
}
}
return num/den;
}
/* Constant for +infinity, generated in the same way as float('inf'). */
static double
m_inf(void)
{
#ifndef PY_NO_SHORT_FLOAT_REPR
return _Py_dg_infinity(0);
#else
return Py_HUGE_VAL;
#endif
}
/* Constant nan value, generated in the same way as float('nan'). */
/* We don't currently assume that Py_NAN is defined everywhere. */
#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
static double
m_nan(void)
{
#ifndef PY_NO_SHORT_FLOAT_REPR
return _Py_dg_stdnan(0);
#else
return Py_NAN;
#endif
}
#endif
static double
m_tgamma(double x)
{
double absx, r, y, z, sqrtpow;
/* special cases */
if (!Py_IS_FINITE(x)) {
if (Py_IS_NAN(x) || x > 0.0)
return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
else {
errno = EDOM;
return Py_NAN; /* tgamma(-inf) = nan, invalid */
}
}
if (x == 0.0) {
errno = EDOM;
/* tgamma(+-0.0) = +-inf, divide-by-zero */
return copysign(Py_HUGE_VAL, x);
}
/* integer arguments */
if (x == floor(x)) {
if (x < 0.0) {
errno = EDOM; /* tgamma(n) = nan, invalid for */
return Py_NAN; /* negative integers n */
}
if (x <= NGAMMA_INTEGRAL)
return gamma_integral[(int)x - 1];
}
absx = fabs(x);
/* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
if (absx < 1e-20) {
r = 1.0/x;
if (Py_IS_INFINITY(r))
errno = ERANGE;
return r;
}
/* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
x > 200, and underflows to +-0.0 for x < -200, not a negative
integer. */
if (absx > 200.0) {
if (x < 0.0) {
return 0.0/m_sinpi(x);
}
else {
errno = ERANGE;
return Py_HUGE_VAL;
}
}
y = absx + lanczos_g_minus_half;
/* compute error in sum */
if (absx > lanczos_g_minus_half) {
/* note: the correction can be foiled by an optimizing
compiler that (incorrectly) thinks that an expression like
a + b - a - b can be optimized to 0.0. This shouldn't
happen in a standards-conforming compiler. */
double q = y - absx;
z = q - lanczos_g_minus_half;
}
else {
double q = y - lanczos_g_minus_half;
z = q - absx;
}
z = z * lanczos_g / y;
if (x < 0.0) {
r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
r -= z * r;
if (absx < 140.0) {
r /= pow(y, absx - 0.5);
}
else {
sqrtpow = pow(y, absx / 2.0 - 0.25);
r /= sqrtpow;
r /= sqrtpow;
}
}
else {
r = lanczos_sum(absx) / exp(y);
r += z * r;
if (absx < 140.0) {
r *= pow(y, absx - 0.5);
}
else {
sqrtpow = pow(y, absx / 2.0 - 0.25);
r *= sqrtpow;
r *= sqrtpow;
}
}
if (Py_IS_INFINITY(r))
errno = ERANGE;
return r;
}
/*
lgamma: natural log of the absolute value of the Gamma function.
For large arguments, Lanczos' formula works extremely well here.
*/
static double
m_lgamma(double x)
{
double r;
double absx;
/* special cases */
if (!Py_IS_FINITE(x)) {
if (Py_IS_NAN(x))
return x; /* lgamma(nan) = nan */
else
return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
}
/* integer arguments */
if (x == floor(x) && x <= 2.0) {
if (x <= 0.0) {
errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
return Py_HUGE_VAL; /* integers n <= 0 */
}
else {
return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
}
}
absx = fabs(x);
/* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
if (absx < 1e-20)
return -log(absx);
/* Lanczos' formula. We could save a fraction of a ulp in accuracy by
having a second set of numerator coefficients for lanczos_sum that
absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
subtraction below; it's probably not worth it. */
r = log(lanczos_sum(absx)) - lanczos_g;
r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
if (x < 0.0)
/* Use reflection formula to get value for negative x. */
r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r;
if (Py_IS_INFINITY(r))
errno = ERANGE;
return r;
}
#if !defined(HAVE_ERF) || !defined(HAVE_ERFC)
/*
Implementations of the error function erf(x) and the complementary error
function erfc(x).
Method: we use a series approximation for erf for small x, and a continued
fraction approximation for erfc(x) for larger x;
combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
this gives us erf(x) and erfc(x) for all x.
The series expansion used is:
erf(x) = x*exp(-x*x)/sqrt(pi) * [
2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
This series converges well for smallish x, but slowly for larger x.
The continued fraction expansion used is:
erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
after the first term, the general term has the form:
k*(k-0.5)/(2*k+0.5 + x**2 - ...).
This expansion converges fast for larger x, but convergence becomes
infinitely slow as x approaches 0.0. The (somewhat naive) continued
fraction evaluation algorithm used below also risks overflow for large x;
but for large x, erfc(x) == 0.0 to within machine precision. (For
example, erfc(30.0) is approximately 2.56e-393).
Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
numbers of terms to use for the relevant expansions. */
#define ERF_SERIES_CUTOFF 1.5
#define ERF_SERIES_TERMS 25
#define ERFC_CONTFRAC_CUTOFF 30.0
#define ERFC_CONTFRAC_TERMS 50
/*
Error function, via power series.
Given a finite float x, return an approximation to erf(x).
Converges reasonably fast for small x.
*/
static double
m_erf_series(double x)
{
double x2, acc, fk, result;
int i, saved_errno;
x2 = x * x;
acc = 0.0;
fk = (double)ERF_SERIES_TERMS + 0.5;
for (i = 0; i < ERF_SERIES_TERMS; i++) {
acc = 2.0 + x2 * acc / fk;
fk -= 1.0;
}
/* Make sure the exp call doesn't affect errno;
see m_erfc_contfrac for more. */
saved_errno = errno;
result = acc * x * exp(-x2) / sqrtpi;
errno = saved_errno;
return result;
}
/*
Complementary error function, via continued fraction expansion.
Given a positive float x, return an approximation to erfc(x). Converges
reasonably fast for x large (say, x > 2.0), and should be safe from
overflow if x and nterms are not too large. On an IEEE 754 machine, with x
<= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
than the smallest representable nonzero float. */
static double
m_erfc_contfrac(double x)
{
double x2, a, da, p, p_last, q, q_last, b, result;
int i, saved_errno;
if (x >= ERFC_CONTFRAC_CUTOFF)
return 0.0;
x2 = x*x;
a = 0.0;
da = 0.5;
p = 1.0; p_last = 0.0;
q = da + x2; q_last = 1.0;
for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
double temp;
a += da;
da += 2.0;
b = da + x2;
temp = p; p = b*p - a*p_last; p_last = temp;
temp = q; q = b*q - a*q_last; q_last = temp;
}
/* Issue #8986: On some platforms, exp sets errno on underflow to zero;
save the current errno value so that we can restore it later. */
saved_errno = errno;
result = p / q * x * exp(-x2) / sqrtpi;
errno = saved_errno;
return result;
}
#endif /* !defined(HAVE_ERF) || !defined(HAVE_ERFC) */
/* Error function erf(x), for general x */
static double
m_erf(double x)
{
#ifdef HAVE_ERF
return erf(x);
#else
double absx, cf;
if (Py_IS_NAN(x))
return x;
absx = fabs(x);
if (absx < ERF_SERIES_CUTOFF)
return m_erf_series(x);
else {
cf = m_erfc_contfrac(absx);
return x > 0.0 ? 1.0 - cf : cf - 1.0;
}
#endif
}
/* Complementary error function erfc(x), for general x. */
static double
m_erfc(double x)
{
#ifdef HAVE_ERFC
return erfc(x);
#else
double absx, cf;
if (Py_IS_NAN(x))
return x;
absx = fabs(x);
if (absx < ERF_SERIES_CUTOFF)
return 1.0 - m_erf_series(x);
else {
cf = m_erfc_contfrac(absx);
return x > 0.0 ? cf : 2.0 - cf;
}
#endif
}
/*
wrapper for atan2 that deals directly with special cases before
delegating to the platform libm for the remaining cases. This
is necessary to get consistent behaviour across platforms.
Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
always follow C99.
*/
static double
m_atan2(double y, double x)
{
if (Py_IS_NAN(x) || Py_IS_NAN(y))
return Py_NAN;
if (Py_IS_INFINITY(y)) {
if (Py_IS_INFINITY(x)) {
if (copysign(1., x) == 1.)
/* atan2(+-inf, +inf) == +-pi/4 */
return copysign(0.25*Py_MATH_PI, y);
else
/* atan2(+-inf, -inf) == +-pi*3/4 */
return copysign(0.75*Py_MATH_PI, y);
}
/* atan2(+-inf, x) == +-pi/2 for finite x */
return copysign(0.5*Py_MATH_PI, y);
}
if (Py_IS_INFINITY(x) || y == 0.) {
if (copysign(1., x) == 1.)
/* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
return copysign(0., y);
else
/* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
return copysign(Py_MATH_PI, y);
}
return atan2(y, x);
}
/* IEEE 754-style remainder operation: x - n*y where n*y is the nearest
multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754
binary floating-point format, the result is always exact. */
static double
m_remainder(double x, double y)
{
/* Deal with most common case first. */
if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) {
double absx, absy, c, m, r;
if (y == 0.0) {
return Py_NAN;
}
absx = fabs(x);
absy = fabs(y);
m = fmod(absx, absy);
/*
Warning: some subtlety here. What we *want* to know at this point is
whether the remainder m is less than, equal to, or greater than half
of absy. However, we can't do that comparison directly because we
can't be sure that 0.5*absy is representable (the mutiplication
might incur precision loss due to underflow). So instead we compare
m with the complement c = absy - m: m < 0.5*absy if and only if m <
c, and so on. The catch is that absy - m might also not be
representable, but it turns out that it doesn't matter:
- if m > 0.5*absy then absy - m is exactly representable, by
Sterbenz's lemma, so m > c
- if m == 0.5*absy then again absy - m is exactly representable
and m == c
- if m < 0.5*absy then either (i) 0.5*absy is exactly representable,
in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m <
c, or (ii) absy is tiny, either subnormal or in the lowest normal
binade. Then absy - m is exactly representable and again m < c.
*/
c = absy - m;
if (m < c) {
r = m;
}
else if (m > c) {
r = -c;
}
else {
/*
Here absx is exactly halfway between two multiples of absy,
and we need to choose the even multiple. x now has the form
absx = n * absy + m
for some integer n (recalling that m = 0.5*absy at this point).
If n is even we want to return m; if n is odd, we need to
return -m.
So
0.5 * (absx - m) = (n/2) * absy
and now reducing modulo absy gives us:
| m, if n is odd
fmod(0.5 * (absx - m), absy) = |
| 0, if n is even
Now m - 2.0 * fmod(...) gives the desired result: m
if n is even, -m if m is odd.
Note that all steps in fmod(0.5 * (absx - m), absy)
will be computed exactly, with no rounding error
introduced.
*/
assert(m == c);
r = m - 2.0 * fmod(0.5 * (absx - m), absy);
}
return copysign(1.0, x) * r;
}
/* Special values. */
if (Py_IS_NAN(x)) {
return x;
}
if (Py_IS_NAN(y)) {
return y;
}
if (Py_IS_INFINITY(x)) {
return Py_NAN;
}
assert(Py_IS_INFINITY(y));
return x;
}
/*
Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
special values directly, passing positive non-special values through to
the system log/log10.
*/
static double
m_log(double x)
{
if (Py_IS_FINITE(x)) {
if (x > 0.0)
return log(x);
errno = EDOM;
if (x == 0.0)
return -Py_HUGE_VAL; /* log(0) = -inf */
else
return Py_NAN; /* log(-ve) = nan */
}
else if (Py_IS_NAN(x))
return x; /* log(nan) = nan */
else if (x > 0.0)
return x; /* log(inf) = inf */
else {
errno = EDOM;
return Py_NAN; /* log(-inf) = nan */
}
}
/*
log2: log to base 2.
Uses an algorithm that should:
(a) produce exact results for powers of 2, and
(b) give a monotonic log2 (for positive finite floats),
assuming that the system log is monotonic.
*/
static double
m_log2(double x)
{
if (!Py_IS_FINITE(x)) {
if (Py_IS_NAN(x))
return x; /* log2(nan) = nan */
else if (x > 0.0)
return x; /* log2(+inf) = +inf */
else {
errno = EDOM;
return Py_NAN; /* log2(-inf) = nan, invalid-operation */
}
}
if (x > 0.0) {
#ifdef HAVE_LOG2
return log2(x);
#else
double m;
int e;
m = frexp(x, &e);
/* We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when
* x is just greater than 1.0: in that case e is 1, log(m) is negative,
* and we get significant cancellation error from the addition of
* log(m) / log(2) to e. The slight rewrite of the expression below
* avoids this problem.
*/
if (x >= 1.0) {
return log(2.0 * m) / log(2.0) + (e - 1);
}
else {
return log(m) / log(2.0) + e;
}
#endif
}
else if (x == 0.0) {
errno = EDOM;
return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
}
else {
errno = EDOM;
return Py_NAN; /* log2(-inf) = nan, invalid-operation */
}
}
static double
m_log10(double x)
{
if (Py_IS_FINITE(x)) {
if (x > 0.0)
return log10(x);
errno = EDOM;
if (x == 0.0)
return -Py_HUGE_VAL; /* log10(0) = -inf */
else
return Py_NAN; /* log10(-ve) = nan */
}
else if (Py_IS_NAN(x))
return x; /* log10(nan) = nan */
else if (x > 0.0)
return x; /* log10(inf) = inf */
else {
errno = EDOM;
return Py_NAN; /* log10(-inf) = nan */
}
}
/*[clinic input]
math.gcd
x as a: object
y as b: object
/
greatest common divisor of x and y
[clinic start generated code]*/
static PyObject *
math_gcd_impl(PyObject *module, PyObject *a, PyObject *b)
/*[clinic end generated code: output=7b2e0c151bd7a5d8 input=c2691e57fb2a98fa]*/
{
PyObject *g;
a = PyNumber_Index(a);
if (a == NULL)
return NULL;
b = PyNumber_Index(b);
if (b == NULL) {
Py_DECREF(a);
return NULL;
}
g = _PyLong_GCD(a, b);
Py_DECREF(a);
Py_DECREF(b);
return g;
}
/* Call is_error when errno != 0, and where x is the result libm
* returned. is_error will usually set up an exception and return
* true (1), but may return false (0) without setting up an exception.
*/
static int
is_error(double x)
{
int result = 1; /* presumption of guilt */
assert(errno); /* non-zero errno is a precondition for calling */
if (errno == EDOM)
PyErr_SetString(PyExc_ValueError, "math domain error");
else if (errno == ERANGE) {
/* ANSI C generally requires libm functions to set ERANGE
* on overflow, but also generally *allows* them to set
* ERANGE on underflow too. There's no consistency about
* the latter across platforms.
* Alas, C99 never requires that errno be set.
* Here we suppress the underflow errors (libm functions
* should return a zero on underflow, and +- HUGE_VAL on
* overflow, so testing the result for zero suffices to
* distinguish the cases).
*
* On some platforms (Ubuntu/ia64) it seems that errno can be
* set to ERANGE for subnormal results that do *not* underflow
* to zero. So to be safe, we'll ignore ERANGE whenever the
* function result is less than one in absolute value.
*/
if (fabs(x) < 1.0)
result = 0;
else
PyErr_SetString(PyExc_OverflowError,
"math range error");
}
else
/* Unexpected math error */
PyErr_SetFromErrno(PyExc_ValueError);
return result;
}
/*
math_1 is used to wrap a libm function f that takes a double
argument and returns a double.
The error reporting follows these rules, which are designed to do
the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
platforms.
- a NaN result from non-NaN inputs causes ValueError to be raised
- an infinite result from finite inputs causes OverflowError to be
raised if can_overflow is 1, or raises ValueError if can_overflow
is 0.
- if the result is finite and errno == EDOM then ValueError is
raised
- if the result is finite and nonzero and errno == ERANGE then
OverflowError is raised
The last rule is used to catch overflow on platforms which follow
C89 but for which HUGE_VAL is not an infinity.
For the majority of one-argument functions these rules are enough
to ensure that Python's functions behave as specified in 'Annex F'
of the C99 standard, with the 'invalid' and 'divide-by-zero'
floating-point exceptions mapping to Python's ValueError and the
'overflow' floating-point exception mapping to OverflowError.
math_1 only works for functions that don't have singularities *and*
the possibility of overflow; fortunately, that covers everything we
care about right now.
*/
static PyObject *
math_1_to_whatever(PyObject *arg, double (*func) (double),
PyObject *(*from_double_func) (double),
int can_overflow)
{
double x, r;
x = PyFloat_AsDouble(arg);
if (x == -1.0 && PyErr_Occurred())
return NULL;
errno = 0;
PyFPE_START_PROTECT("in math_1", return 0);
r = (*func)(x);
PyFPE_END_PROTECT(r);
if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
PyErr_SetString(PyExc_ValueError,
"math domain error"); /* invalid arg */
return NULL;
}
if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
if (can_overflow)
PyErr_SetString(PyExc_OverflowError,
"math range error"); /* overflow */
else
PyErr_SetString(PyExc_ValueError,
"math domain error"); /* singularity */
return NULL;
}
if (Py_IS_FINITE(r) && errno && is_error(r))
/* this branch unnecessary on most platforms */
return NULL;
return (*from_double_func)(r);
}
/* variant of math_1, to be used when the function being wrapped is known to
set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
errno = ERANGE for overflow). */
static PyObject *
math_1a(PyObject *arg, double (*func) (double))
{
double x, r;
x = PyFloat_AsDouble(arg);
if (x == -1.0 && PyErr_Occurred())
return NULL;
errno = 0;
PyFPE_START_PROTECT("in math_1a", return 0);
r = (*func)(x);
PyFPE_END_PROTECT(r);
if (errno && is_error(r))
return NULL;
return PyFloat_FromDouble(r);
}
/*
math_2 is used to wrap a libm function f that takes two double
arguments and returns a double.
The error reporting follows these rules, which are designed to do
the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
platforms.
- a NaN result from non-NaN inputs causes ValueError to be raised
- an infinite result from finite inputs causes OverflowError to be
raised.
- if the result is finite and errno == EDOM then ValueError is
raised
- if the result is finite and nonzero and errno == ERANGE then
OverflowError is raised
The last rule is used to catch overflow on platforms which follow
C89 but for which HUGE_VAL is not an infinity.
For most two-argument functions (copysign, fmod, hypot, atan2)
these rules are enough to ensure that Python's functions behave as
specified in 'Annex F' of the C99 standard, with the 'invalid' and
'divide-by-zero' floating-point exceptions mapping to Python's
ValueError and the 'overflow' floating-point exception mapping to
OverflowError.
*/
static PyObject *
math_1(PyObject *arg, double (*func) (double), int can_overflow)
{
return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
}
static PyObject *
math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
{
return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
}
static PyObject *
math_2(PyObject *const *args, Py_ssize_t nargs,
double (*func) (double, double), const char *funcname)
{
double x, y, r;
if (!_PyArg_CheckPositional(funcname, nargs, 2, 2))
return NULL;
x = PyFloat_AsDouble(args[0]);
y = PyFloat_AsDouble(args[1]);
if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
return NULL;
errno = 0;
PyFPE_START_PROTECT("in math_2", return 0);
r = (*func)(x, y);
PyFPE_END_PROTECT(r);
if (Py_IS_NAN(r)) {
if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
errno = EDOM;
else
errno = 0;
}
else if (Py_IS_INFINITY(r)) {
if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
errno = ERANGE;
else
errno = 0;
}
if (errno && is_error(r))
return NULL;
else
return PyFloat_FromDouble(r);
}
#define FUNC1(funcname, func, can_overflow, docstring) \
static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
return math_1(args, func, can_overflow); \
}\
PyDoc_STRVAR(math_##funcname##_doc, docstring);
#define FUNC1A(funcname, func, docstring) \
static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
return math_1a(args, func); \
}\
PyDoc_STRVAR(math_##funcname##_doc, docstring);
#define FUNC2(funcname, func, docstring) \
static PyObject * math_##funcname(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { \
return math_2(args, nargs, func, #funcname); \
}\
PyDoc_STRVAR(math_##funcname##_doc, docstring);
FUNC1(acos, acos, 0,
"acos($module, x, /)\n--\n\n"
"Return the arc cosine (measured in radians) of x.")
FUNC1(acosh, m_acosh, 0,
"acosh($module, x, /)\n--\n\n"
"Return the inverse hyperbolic cosine of x.")
FUNC1(asin, asin, 0,
"asin($module, x, /)\n--\n\n"
"Return the arc sine (measured in radians) of x.")
FUNC1(asinh, m_asinh, 0,
"asinh($module, x, /)\n--\n\n"
"Return the inverse hyperbolic sine of x.")
FUNC1(atan, atan, 0,
"atan($module, x, /)\n--\n\n"
"Return the arc tangent (measured in radians) of x.")
FUNC2(atan2, m_atan2,
"atan2($module, y, x, /)\n--\n\n"
"Return the arc tangent (measured in radians) of y/x.\n\n"
"Unlike atan(y/x), the signs of both x and y are considered.")
FUNC1(atanh, m_atanh, 0,
"atanh($module, x, /)\n--\n\n"
"Return the inverse hyperbolic tangent of x.")
/*[clinic input]
math.ceil
x as number: object
/
Return the ceiling of x as an Integral.
This is the smallest integer >= x.
[clinic start generated code]*/
static PyObject *
math_ceil(PyObject *module, PyObject *number)
/*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/
{
_Py_IDENTIFIER(__ceil__);
PyObject *method, *result;
method = _PyObject_LookupSpecial(number, &PyId___ceil__);
if (method == NULL) {
if (PyErr_Occurred())
return NULL;
return math_1_to_int(number, ceil, 0);
}
result = _PyObject_CallNoArg(method);
Py_DECREF(method);
return result;
}
FUNC2(copysign, copysign,
"copysign($module, x, y, /)\n--\n\n"
"Return a float with the magnitude (absolute value) of x but the sign of y.\n\n"
"On platforms that support signed zeros, copysign(1.0, -0.0)\n"
"returns -1.0.\n")
FUNC1(cos, cos, 0,
"cos($module, x, /)\n--\n\n"
"Return the cosine of x (measured in radians).")
FUNC1(cosh, cosh, 1,
"cosh($module, x, /)\n--\n\n"
"Return the hyperbolic cosine of x.")
FUNC1A(erf, m_erf,
"erf($module, x, /)\n--\n\n"
"Error function at x.")
FUNC1A(erfc, m_erfc,
"erfc($module, x, /)\n--\n\n"
"Complementary error function at x.")
FUNC1(exp, exp, 1,
"exp($module, x, /)\n--\n\n"
"Return e raised to the power of x.")
FUNC1(expm1, m_expm1, 1,
"expm1($module, x, /)\n--\n\n"
"Return exp(x)-1.\n\n"
"This function avoids the loss of precision involved in the direct "
"evaluation of exp(x)-1 for small x.")
FUNC1(fabs, fabs, 0,
"fabs($module, x, /)\n--\n\n"
"Return the absolute value of the float x.")
/*[clinic input]
math.floor
x as number: object
/
Return the floor of x as an Integral.
This is the largest integer <= x.
[clinic start generated code]*/
static PyObject *
math_floor(PyObject *module, PyObject *number)
/*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/
{
_Py_IDENTIFIER(__floor__);
PyObject *method, *result;
method = _PyObject_LookupSpecial(number, &PyId___floor__);
if (method == NULL) {
if (PyErr_Occurred())
return NULL;
return math_1_to_int(number, floor, 0);
}
result = _PyObject_CallNoArg(method);
Py_DECREF(method);
return result;
}
FUNC1A(gamma, m_tgamma,
"gamma($module, x, /)\n--\n\n"
"Gamma function at x.")
FUNC1A(lgamma, m_lgamma,
"lgamma($module, x, /)\n--\n\n"
"Natural logarithm of absolute value of Gamma function at x.")
FUNC1(log1p, m_log1p, 0,
"log1p($module, x, /)\n--\n\n"
"Return the natural logarithm of 1+x (base e).\n\n"
"The result is computed in a way which is accurate for x near zero.")
FUNC2(remainder, m_remainder,
"remainder($module, x, y, /)\n--\n\n"
"Difference between x and the closest integer multiple of y.\n\n"
"Return x - n*y where n*y is the closest integer multiple of y.\n"
"In the case where x is exactly halfway between two multiples of\n"
"y, the nearest even value of n is used. The result is always exact.")
FUNC1(sin, sin, 0,
"sin($module, x, /)\n--\n\n"
"Return the sine of x (measured in radians).")
FUNC1(sinh, sinh, 1,
"sinh($module, x, /)\n--\n\n"
"Return the hyperbolic sine of x.")
FUNC1(sqrt, sqrt, 0,
"sqrt($module, x, /)\n--\n\n"
"Return the square root of x.")
FUNC1(tan, tan, 0,
"tan($module, x, /)\n--\n\n"
"Return the tangent of x (measured in radians).")
FUNC1(tanh, tanh, 0,
"tanh($module, x, /)\n--\n\n"
"Return the hyperbolic tangent of x.")
/* Precision summation function as msum() by Raymond Hettinger in
<http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
enhanced with the exact partials sum and roundoff from Mark
Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
See those links for more details, proofs and other references.
Note 1: IEEE 754R floating point semantics are assumed,
but the current implementation does not re-establish special
value semantics across iterations (i.e. handling -Inf + Inf).
Note 2: No provision is made for intermediate overflow handling;
therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
overflow of the first partial sum.
Note 3: The intermediate values lo, yr, and hi are declared volatile so
aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
Also, the volatile declaration forces the values to be stored in memory as
regular doubles instead of extended long precision (80-bit) values. This
prevents double rounding because any addition or subtraction of two doubles
can be resolved exactly into double-sized hi and lo values. As long as the
hi value gets forced into a double before yr and lo are computed, the extra
bits in downstream extended precision operations (x87 for example) will be
exactly zero and therefore can be losslessly stored back into a double,
thereby preventing double rounding.
Note 4: A similar implementation is in Modules/cmathmodule.c.
Be sure to update both when making changes.
Note 5: The signature of math.fsum() differs from builtins.sum()
because the start argument doesn't make sense in the context of
accurate summation. Since the partials table is collapsed before
returning a result, sum(seq2, start=sum(seq1)) may not equal the
accurate result returned by sum(itertools.chain(seq1, seq2)).
*/
#define NUM_PARTIALS 32 /* initial partials array size, on stack */
/* Extend the partials array p[] by doubling its size. */
static int /* non-zero on error */
_fsum_realloc(double **p_ptr, Py_ssize_t n,
double *ps, Py_ssize_t *m_ptr)
{
void *v = NULL;
Py_ssize_t m = *m_ptr;
m += m; /* double */
if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) {
double *p = *p_ptr;
if (p == ps) {
v = PyMem_Malloc(sizeof(double) * m);
if (v != NULL)
memcpy(v, ps, sizeof(double) * n);
}
else
v = PyMem_Realloc(p, sizeof(double) * m);
}
if (v == NULL) { /* size overflow or no memory */
PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
return 1;
}
*p_ptr = (double*) v;
*m_ptr = m;
return 0;
}
/* Full precision summation of a sequence of floats.
def msum(iterable):
partials = [] # sorted, non-overlapping partial sums
for x in iterable:
i = 0
for y in partials:
if abs(x) < abs(y):
x, y = y, x
hi = x + y
lo = y - (hi - x)
if lo:
partials[i] = lo
i += 1
x = hi
partials[i:] = [x]
return sum_exact(partials)
Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
are exactly equal to x+y. The inner loop applies hi/lo summation to each
partial so that the list of partial sums remains exact.
Sum_exact() adds the partial sums exactly and correctly rounds the final
result (using the round-half-to-even rule). The items in partials remain
non-zero, non-special, non-overlapping and strictly increasing in
magnitude, but possibly not all having the same sign.
Depends on IEEE 754 arithmetic guarantees and half-even rounding.
*/
/*[clinic input]
math.fsum
seq: object
/
Return an accurate floating point sum of values in the iterable seq.
Assumes IEEE-754 floating point arithmetic.
[clinic start generated code]*/
static PyObject *
math_fsum(PyObject *module, PyObject *seq)
/*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/
{
PyObject *item, *iter, *sum = NULL;
Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
double x, y, t, ps[NUM_PARTIALS], *p = ps;
double xsave, special_sum = 0.0, inf_sum = 0.0;
volatile double hi, yr, lo;
iter = PyObject_GetIter(seq);
if (iter == NULL)
return NULL;
PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
for(;;) { /* for x in iterable */
assert(0 <= n && n <= m);
assert((m == NUM_PARTIALS && p == ps) ||
(m > NUM_PARTIALS && p != NULL));
item = PyIter_Next(iter);
if (item == NULL) {
if (PyErr_Occurred())
goto _fsum_error;
break;
}
ASSIGN_DOUBLE(x, item, error_with_item);
Py_DECREF(item);
xsave = x;
for (i = j = 0; j < n; j++) { /* for y in partials */
y = p[j];
if (fabs(x) < fabs(y)) {
t = x; x = y; y = t;
}
hi = x + y;
yr = hi - x;
lo = y - yr;
if (lo != 0.0)
p[i++] = lo;
x = hi;
}
n = i; /* ps[i:] = [x] */
if (x != 0.0) {
if (! Py_IS_FINITE(x)) {
/* a nonfinite x could arise either as
a result of intermediate overflow, or
as a result of a nan or inf in the
summands */
if (Py_IS_FINITE(xsave)) {
PyErr_SetString(PyExc_OverflowError,
"intermediate overflow in fsum");
goto _fsum_error;
}
if (Py_IS_INFINITY(xsave))
inf_sum += xsave;
special_sum += xsave;
/* reset partials */
n = 0;
}
else if (n >= m && _fsum_realloc(&p, n, ps, &m))
goto _fsum_error;
else
p[n++] = x;
}
}
if (special_sum != 0.0) {
if (Py_IS_NAN(inf_sum))
PyErr_SetString(PyExc_ValueError,
"-inf + inf in fsum");
else
sum = PyFloat_FromDouble(special_sum);
goto _fsum_error;
}
hi = 0.0;
if (n > 0) {
hi = p[--n];
/* sum_exact(ps, hi) from the top, stop when the sum becomes
inexact. */
while (n > 0) {
x = hi;
y = p[--n];
assert(fabs(y) < fabs(x));
hi = x + y;
yr = hi - x;
lo = y - yr;
if (lo != 0.0)
break;
}
/* Make half-even rounding work across multiple partials.
Needed so that sum([1e-16, 1, 1e16]) will round-up the last
digit to two instead of down to zero (the 1e-16 makes the 1
slightly closer to two). With a potential 1 ULP rounding
error fixed-up, math.fsum() can guarantee commutativity. */
if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
(lo > 0.0 && p[n-1] > 0.0))) {
y = lo * 2.0;
x = hi + y;
yr = x - hi;
if (y == yr)
hi = x;
}
}
sum = PyFloat_FromDouble(hi);
_fsum_error:
PyFPE_END_PROTECT(hi)
Py_DECREF(iter);
if (p != ps)
PyMem_Free(p);
return sum;
error_with_item:
Py_DECREF(item);
goto _fsum_error;
}
#undef NUM_PARTIALS
/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
* Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type -
* count_leading_zero_bits(x)
*/
/* XXX: This routine does more or less the same thing as
* bits_in_digit() in Objects/longobject.c. Someday it would be nice to
* consolidate them. On BSD, there's a library function called fls()
* that we could use, and GCC provides __builtin_clz().
*/
static unsigned long
bit_length(unsigned long n)
{
unsigned long len = 0;
while (n != 0) {
++len;
n >>= 1;
}
return len;
}
static unsigned long
count_set_bits(unsigned long n)
{
unsigned long count = 0;
while (n != 0) {
++count;
n &= n - 1; /* clear least significant bit */
}
return count;
}
/* Integer square root
Given a nonnegative integer `n`, we want to compute the largest integer
`a` for which `a * a <= n`, or equivalently the integer part of the exact
square root of `n`.
We use an adaptive-precision pure-integer version of Newton's iteration. Given
a positive integer `n`, the algorithm produces at each iteration an integer
approximation `a` to the square root of `n >> s` for some even integer `s`,
with `s` decreasing as the iterations progress. On the final iteration, `s` is
zero and we have an approximation to the square root of `n` itself.
At every step, the approximation `a` is strictly within 1.0 of the true square
root, so we have
(a - 1)**2 < (n >> s) < (a + 1)**2
After the final iteration, a check-and-correct step is needed to determine
whether `a` or `a - 1` gives the desired integer square root of `n`.
The algorithm is remarkable in its simplicity. There's no need for a
per-iteration check-and-correct step, and termination is straightforward: the
number of iterations is known in advance (it's exactly `floor(log2(log2(n)))`
for `n > 1`). The only tricky part of the correctness proof is in establishing
that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one
iteration to the next. A sketch of the proof of this is given below.
In addition to the proof sketch, a formal, computer-verified proof
of correctness (using Lean) of an equivalent recursive algorithm can be found
here:
https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean
Here's Python code equivalent to the C implementation below:
def isqrt(n):
"""
Return the integer part of the square root of the input.
"""
n = operator.index(n)
if n < 0:
raise ValueError("isqrt() argument must be nonnegative")
if n == 0:
return 0
c = (n.bit_length() - 1) // 2
a = 1
d = 0
for s in reversed(range(c.bit_length())):
e = d
d = c >> s
a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
assert (a-1)**2 < n >> 2*(c - d) < (a+1)**2
return a - (a*a > n)
Sketch of proof of correctness
------------------------------
The delicate part of the correctness proof is showing that the loop invariant
is preserved from one iteration to the next. That is, just before the line
a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
is executed in the above code, we know that
(1) (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2.
(since `e` is always the value of `d` from the previous iteration). We must
prove that after that line is executed, we have
(a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2
To faciliate the proof, we make some changes of notation. Write `m` for
`n >> 2*(c-d)`, and write `b` for the new value of `a`, so
b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
or equivalently:
(2) b = (a << d - e - 1) + (m >> d - e + 1) // a
Then we can rewrite (1) as:
(3) (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2
and we must show that (b - 1)**2 < m < (b + 1)**2.
From this point on, we switch to mathematical notation, so `/` means exact
division rather than integer division and `^` is used for exponentiation. We
use the `√` symbol for the exact square root. In (3), we can remove the
implicit floor operation to give:
(4) (a - 1)^2 < m / 4^(d - e) < (a + 1)^2
Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives
(5) 0 <= | 2^(d-e)a - √m | < 2^(d-e)
Squaring and dividing through by `2^(d-e+1) a` gives
(6) 0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a
We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the
right-hand side of (6) with `1`, and now replacing the central
term `m / (2^(d-e+1) a)` with its floor in (6) gives
(7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1
Or equivalently, from (2):
(7) -1 < b - √m < 1
and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed
to prove.
We're not quite done: we still have to prove the inequality `2^(d - e - 1) <=
a` that was used to get line (7) above. From the definition of `c`, we have
`4^c <= n`, which implies
(8) 4^d <= m
also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows
that `2d - 2e - 1 <= d` and hence that
(9) 4^(2d - 2e - 1) <= m
Dividing both sides by `4^(d - e)` gives
(10) 4^(d - e - 1) <= m / 4^(d - e)
But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence
(11) 4^(d - e - 1) < (a + 1)^2
Now taking square roots of both sides and observing that both `2^(d-e-1)` and
`a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This
completes the proof sketch.
*/
/* Approximate square root of a large 64-bit integer.
Given `n` satisfying `2**62 <= n < 2**64`, return `a`
satisfying `(a - 1)**2 < n < (a + 1)**2`. */
static uint64_t
_approximate_isqrt(uint64_t n)
{
uint32_t u = 1U + (n >> 62);
u = (u << 1) + (n >> 59) / u;
u = (u << 3) + (n >> 53) / u;
u = (u << 7) + (n >> 41) / u;
return (u << 15) + (n >> 17) / u;
}
/*[clinic input]
math.isqrt
n: object
/
Return the integer part of the square root of the input.
[clinic start generated code]*/
static PyObject *
math_isqrt(PyObject *module, PyObject *n)
/*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/
{
int a_too_large, c_bit_length;
size_t c, d;
uint64_t m, u;
PyObject *a = NULL, *b;
n = PyNumber_Index(n);
if (n == NULL) {
return NULL;
}
if (_PyLong_Sign(n) < 0) {
PyErr_SetString(
PyExc_ValueError,
"isqrt() argument must be nonnegative");
goto error;
}
if (_PyLong_Sign(n) == 0) {
Py_DECREF(n);
return PyLong_FromLong(0);
}
/* c = (n.bit_length() - 1) // 2 */
c = _PyLong_NumBits(n);
if (c == (size_t)(-1)) {
goto error;
}
c = (c - 1U) / 2U;
/* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a
fast, almost branch-free algorithm. In the final correction, we use `u*u
- 1 >= m` instead of the simpler `u*u > m` in order to get the correct
result in the corner case where `u=2**32`. */
if (c <= 31U) {
m = (uint64_t)PyLong_AsUnsignedLongLong(n);
Py_DECREF(n);
if (m == (uint64_t)(-1) && PyErr_Occurred()) {
return NULL;
}
u = _approximate_isqrt(m << (62U - 2U*c)) >> (31U - c);
u -= u * u - 1U >= m;
return PyLong_FromUnsignedLongLong((unsigned long long)u);
}
/* Slow path: n >= 2**64. We perform the first five iterations in C integer
arithmetic, then switch to using Python long integers. */
/* From n >= 2**64 it follows that c.bit_length() >= 6. */
c_bit_length = 6;
while ((c >> c_bit_length) > 0U) {
++c_bit_length;
}
/* Initialise d and a. */
d = c >> (c_bit_length - 5);
b = _PyLong_Rshift(n, 2U*c - 62U);
if (b == NULL) {
goto error;
}
m = (uint64_t)PyLong_AsUnsignedLongLong(b);
Py_DECREF(b);
if (m == (uint64_t)(-1) && PyErr_Occurred()) {
goto error;
}
u = _approximate_isqrt(m) >> (31U - d);
a = PyLong_FromUnsignedLongLong((unsigned long long)u);
if (a == NULL) {
goto error;
}
for (int s = c_bit_length - 6; s >= 0; --s) {
PyObject *q;
size_t e = d;
d = c >> s;
/* q = (n >> 2*c - e - d + 1) // a */
q = _PyLong_Rshift(n, 2U*c - d - e + 1U);
if (q == NULL) {
goto error;
}
Py_SETREF(q, PyNumber_FloorDivide(q, a));
if (q == NULL) {
goto error;
}
/* a = (a << d - 1 - e) + q */
Py_SETREF(a, _PyLong_Lshift(a, d - 1U - e));
if (a == NULL) {
Py_DECREF(q);
goto error;
}
Py_SETREF(a, PyNumber_Add(a, q));
Py_DECREF(q);
if (a == NULL) {
goto error;
}
}
/* The correct result is either a or a - 1. Figure out which, and
decrement a if necessary. */
/* a_too_large = n < a * a */
b = PyNumber_Multiply(a, a);
if (b == NULL) {
goto error;
}
a_too_large = PyObject_RichCompareBool(n, b, Py_LT);
Py_DECREF(b);
if (a_too_large == -1) {
goto error;
}
if (a_too_large) {
Py_SETREF(a, PyNumber_Subtract(a, _PyLong_One));
}
Py_DECREF(n);
return a;
error:
Py_XDECREF(a);
Py_DECREF(n);
return NULL;
}
/* Divide-and-conquer factorial algorithm
*
* Based on the formula and pseudo-code provided at:
* http://www.luschny.de/math/factorial/binarysplitfact.html
*
* Faster algorithms exist, but they're more complicated and depend on
* a fast prime factorization algorithm.
*
* Notes on the algorithm
* ----------------------
*
* factorial(n) is written in the form 2**k * m, with m odd. k and m are
* computed separately, and then combined using a left shift.
*
* The function factorial_odd_part computes the odd part m (i.e., the greatest
* odd divisor) of factorial(n), using the formula:
*
* factorial_odd_part(n) =
*
* product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
*
* Example: factorial_odd_part(20) =
*
* (1) *
* (1) *
* (1 * 3 * 5) *
* (1 * 3 * 5 * 7 * 9)
* (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
*
* Here i goes from large to small: the first term corresponds to i=4 (any
* larger i gives an empty product), and the last term corresponds to i=0.
* Each term can be computed from the last by multiplying by the extra odd
* numbers required: e.g., to get from the penultimate term to the last one,
* we multiply by (11 * 13 * 15 * 17 * 19).
*
* To see a hint of why this formula works, here are the same numbers as above
* but with the even parts (i.e., the appropriate powers of 2) included. For
* each subterm in the product for i, we multiply that subterm by 2**i:
*
* factorial(20) =
*
* (16) *
* (8) *
* (4 * 12 * 20) *
* (2 * 6 * 10 * 14 * 18) *
* (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
*
* The factorial_partial_product function computes the product of all odd j in
* range(start, stop) for given start and stop. It's used to compute the
* partial products like (11 * 13 * 15 * 17 * 19) in the example above. It
* operates recursively, repeatedly splitting the range into two roughly equal
* pieces until the subranges are small enough to be computed using only C
* integer arithmetic.
*
* The two-valuation k (i.e., the exponent of the largest power of 2 dividing
* the factorial) is computed independently in the main math_factorial
* function. By standard results, its value is:
*
* two_valuation = n//2 + n//4 + n//8 + ....
*
* It can be shown (e.g., by complete induction on n) that two_valuation is
* equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
* '1'-bits in the binary expansion of n.
*/
/* factorial_partial_product: Compute product(range(start, stop, 2)) using
* divide and conquer. Assumes start and stop are odd and stop > start.
* max_bits must be >= bit_length(stop - 2). */
static PyObject *
factorial_partial_product(unsigned long start, unsigned long stop,
unsigned long max_bits)
{
unsigned long midpoint, num_operands;
PyObject *left = NULL, *right = NULL, *result = NULL;
/* If the return value will fit an unsigned long, then we can
* multiply in a tight, fast loop where each multiply is O(1).
* Compute an upper bound on the number of bits required to store
* the answer.
*
* Storing some integer z requires floor(lg(z))+1 bits, which is
* conveniently the value returned by bit_length(z). The
* product x*y will require at most
* bit_length(x) + bit_length(y) bits to store, based
* on the idea that lg product = lg x + lg y.
*
* We know that stop - 2 is the largest number to be multiplied. From
* there, we have: bit_length(answer) <= num_operands *
* bit_length(stop - 2)
*/
num_operands = (stop - start) / 2;
/* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
* unlikely case of an overflow in num_operands * max_bits. */
if (num_operands <= 8 * SIZEOF_LONG &&
num_operands * max_bits <= 8 * SIZEOF_LONG) {
unsigned long j, total;
for (total = start, j = start + 2; j < stop; j += 2)
total *= j;
return PyLong_FromUnsignedLong(total);
}
/* find midpoint of range(start, stop), rounded up to next odd number. */
midpoint = (start + num_operands) | 1;
left = factorial_partial_product(start, midpoint,
bit_length(midpoint - 2));
if (left == NULL)
goto error;
right = factorial_partial_product(midpoint, stop, max_bits);
if (right == NULL)
goto error;
result = PyNumber_Multiply(left, right);
error:
Py_XDECREF(left);
Py_XDECREF(right);
return result;
}
/* factorial_odd_part: compute the odd part of factorial(n). */
static PyObject *
factorial_odd_part(unsigned long n)
{
long i;
unsigned long v, lower, upper;
PyObject *partial, *tmp, *inner, *outer;
inner = PyLong_FromLong(1);
if (inner == NULL)
return NULL;
outer = inner;
Py_INCREF(outer);
upper = 3;
for (i = bit_length(n) - 2; i >= 0; i--) {
v = n >> i;
if (v <= 2)
continue;
lower = upper;
/* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
upper = (v + 1) | 1;
/* Here inner is the product of all odd integers j in the range (0,
n/2**(i+1)]. The factorial_partial_product call below gives the
product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
partial = factorial_partial_product(lower, upper, bit_length(upper-2));
/* inner *= partial */
if (partial == NULL)
goto error;
tmp = PyNumber_Multiply(inner, partial);
Py_DECREF(partial);
if (tmp == NULL)
goto error;
Py_DECREF(inner);
inner = tmp;
/* Now inner is the product of all odd integers j in the range (0,
n/2**i], giving the inner product in the formula above. */
/* outer *= inner; */
tmp = PyNumber_Multiply(outer, inner);
if (tmp == NULL)
goto error;
Py_DECREF(outer);
outer = tmp;
}
Py_DECREF(inner);
return outer;
error:
Py_DECREF(outer);
Py_DECREF(inner);
return NULL;
}
/* Lookup table for small factorial values */
static const unsigned long SmallFactorials[] = {
1, 1, 2, 6, 24, 120, 720, 5040, 40320,
362880, 3628800, 39916800, 479001600,
#if SIZEOF_LONG >= 8
6227020800, 87178291200, 1307674368000,
20922789888000, 355687428096000, 6402373705728000,
121645100408832000, 2432902008176640000
#endif
};
/*[clinic input]
math.factorial
x as arg: object
/
Find x!.
Raise a ValueError if x is negative or non-integral.
[clinic start generated code]*/
static PyObject *
math_factorial(PyObject *module, PyObject *arg)
/*[clinic end generated code: output=6686f26fae00e9ca input=6d1c8105c0d91fb4]*/
{
long x, two_valuation;
int overflow;
PyObject *result, *odd_part, *pyint_form;
if (PyFloat_Check(arg)) {
PyObject *lx;
double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
PyErr_SetString(PyExc_ValueError,
"factorial() only accepts integral values");
return NULL;
}
lx = PyLong_FromDouble(dx);
if (lx == NULL)
return NULL;
x = PyLong_AsLongAndOverflow(lx, &overflow);
Py_DECREF(lx);
}
else {
pyint_form = PyNumber_Index(arg);
if (pyint_form == NULL) {
return NULL;
}
x = PyLong_AsLongAndOverflow(pyint_form, &overflow);
Py_DECREF(pyint_form);
}
if (x == -1 && PyErr_Occurred()) {
return NULL;
}
else if (overflow == 1) {
PyErr_Format(PyExc_OverflowError,
"factorial() argument should not exceed %ld",
LONG_MAX);
return NULL;
}
else if (overflow == -1 || x < 0) {
PyErr_SetString(PyExc_ValueError,
"factorial() not defined for negative values");
return NULL;
}
/* use lookup table if x is small */
if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
return PyLong_FromUnsignedLong(SmallFactorials[x]);
/* else express in the form odd_part * 2**two_valuation, and compute as
odd_part << two_valuation. */
odd_part = factorial_odd_part(x);
if (odd_part == NULL)
return NULL;
two_valuation = x - count_set_bits(x);
result = _PyLong_Lshift(odd_part, two_valuation);
Py_DECREF(odd_part);
return result;
}
/*[clinic input]
math.trunc
x: object
/
Truncates the Real x to the nearest Integral toward 0.
Uses the __trunc__ magic method.
[clinic start generated code]*/
static PyObject *
math_trunc(PyObject *module, PyObject *x)
/*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/
{
_Py_IDENTIFIER(__trunc__);
PyObject *trunc, *result;
if (Py_TYPE(x)->tp_dict == NULL) {
if (PyType_Ready(Py_TYPE(x)) < 0)
return NULL;
}
trunc = _PyObject_LookupSpecial(x, &PyId___trunc__);
if (trunc == NULL) {
if (!PyErr_Occurred())
PyErr_Format(PyExc_TypeError,
"type %.100s doesn't define __trunc__ method",
Py_TYPE(x)->tp_name);
return NULL;
}
result = _PyObject_CallNoArg(trunc);
Py_DECREF(trunc);
return result;
}
/*[clinic input]
math.frexp
x: double
/
Return the mantissa and exponent of x, as pair (m, e).
m is a float and e is an int, such that x = m * 2.**e.
If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.
[clinic start generated code]*/
static PyObject *
math_frexp_impl(PyObject *module, double x)
/*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/
{
int i;
/* deal with special cases directly, to sidestep platform
differences */
if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
i = 0;
}
else {
PyFPE_START_PROTECT("in math_frexp", return 0);
x = frexp(x, &i);
PyFPE_END_PROTECT(x);
}
return Py_BuildValue("(di)", x, i);
}
/*[clinic input]
math.ldexp
x: double
i: object
/
Return x * (2**i).
This is essentially the inverse of frexp().
[clinic start generated code]*/
static PyObject *
math_ldexp_impl(PyObject *module, double x, PyObject *i)
/*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/
{
double r;
long exp;
int overflow;
if (PyLong_Check(i)) {
/* on overflow, replace exponent with either LONG_MAX
or LONG_MIN, depending on the sign. */
exp = PyLong_AsLongAndOverflow(i, &overflow);
if (exp == -1 && PyErr_Occurred())
return NULL;
if (overflow)
exp = overflow < 0 ? LONG_MIN : LONG_MAX;
}
else {
PyErr_SetString(PyExc_TypeError,
"Expected an int as second argument to ldexp.");
return NULL;
}
if (x == 0. || !Py_IS_FINITE(x)) {
/* NaNs, zeros and infinities are returned unchanged */
r = x;
errno = 0;
} else if (exp > INT_MAX) {
/* overflow */
r = copysign(Py_HUGE_VAL, x);
errno = ERANGE;
} else if (exp < INT_MIN) {
/* underflow to +-0 */
r = copysign(0., x);
errno = 0;
} else {
errno = 0;
PyFPE_START_PROTECT("in math_ldexp", return 0);
r = ldexp(x, (int)exp);
PyFPE_END_PROTECT(r);
if (Py_IS_INFINITY(r))
errno = ERANGE;
}
if (errno && is_error(r))
return NULL;
return PyFloat_FromDouble(r);
}
/*[clinic input]
math.modf
x: double
/
Return the fractional and integer parts of x.
Both results carry the sign of x and are floats.
[clinic start generated code]*/
static PyObject *
math_modf_impl(PyObject *module, double x)
/*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/
{
double y;
/* some platforms don't do the right thing for NaNs and
infinities, so we take care of special cases directly. */
if (!Py_IS_FINITE(x)) {
if (Py_IS_INFINITY(x))
return Py_BuildValue("(dd)", copysign(0., x), x);
else if (Py_IS_NAN(x))
return Py_BuildValue("(dd)", x, x);
}
errno = 0;
PyFPE_START_PROTECT("in math_modf", return 0);
x = modf(x, &y);
PyFPE_END_PROTECT(x);
return Py_BuildValue("(dd)", x, y);
}
/* A decent logarithm is easy to compute even for huge ints, but libm can't
do that by itself -- loghelper can. func is log or log10, and name is
"log" or "log10". Note that overflow of the result isn't possible: an int
can contain no more than INT_MAX * SHIFT bits, so has value certainly less
than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
small enough to fit in an IEEE single. log and log10 are even smaller.
However, intermediate overflow is possible for an int if the number of bits
in that int is larger than PY_SSIZE_T_MAX. */
static PyObject*
loghelper(PyObject* arg, double (*func)(double), const char *funcname)
{
/* If it is int, do it ourselves. */
if (PyLong_Check(arg)) {
double x, result;
Py_ssize_t e;
/* Negative or zero inputs give a ValueError. */
if (Py_SIZE(arg) <= 0) {
PyErr_SetString(PyExc_ValueError,
"math domain error");
return NULL;
}
x = PyLong_AsDouble(arg);
if (x == -1.0 && PyErr_Occurred()) {
if (!PyErr_ExceptionMatches(PyExc_OverflowError))
return NULL;
/* Here the conversion to double overflowed, but it's possible
to compute the log anyway. Clear the exception and continue. */
PyErr_Clear();
x = _PyLong_Frexp((PyLongObject *)arg, &e);
if (x == -1.0 && PyErr_Occurred())
return NULL;
/* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
result = func(x) + func(2.0) * e;
}
else
/* Successfully converted x to a double. */
result = func(x);
return PyFloat_FromDouble(result);
}
/* Else let libm handle it by itself. */
return math_1(arg, func, 0);
}
/*[clinic input]
math.log
x: object
[
base: object(c_default="NULL") = math.e
]
/
Return the logarithm of x to the given base.
If the base not specified, returns the natural logarithm (base e) of x.
[clinic start generated code]*/
static PyObject *
math_log_impl(PyObject *module, PyObject *x, int group_right_1,
PyObject *base)
/*[clinic end generated code: output=7b5a39e526b73fc9 input=0f62d5726cbfebbd]*/
{
PyObject *num, *den;
PyObject *ans;
num = loghelper(x, m_log, "log");
if (num == NULL || base == NULL)
return num;
den = loghelper(base, m_log, "log");
if (den == NULL) {
Py_DECREF(num);
return NULL;
}
ans = PyNumber_TrueDivide(num, den);
Py_DECREF(num);
Py_DECREF(den);
return ans;
}
/*[clinic input]
math.log2
x: object
/
Return the base 2 logarithm of x.
[clinic start generated code]*/
static PyObject *
math_log2(PyObject *module, PyObject *x)
/*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/
{
return loghelper(x, m_log2, "log2");
}
/*[clinic input]
math.log10
x: object
/
Return the base 10 logarithm of x.
[clinic start generated code]*/
static PyObject *
math_log10(PyObject *module, PyObject *x)
/*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/
{
return loghelper(x, m_log10, "log10");
}
/*[clinic input]
math.fmod
x: double
y: double
/
Return fmod(x, y), according to platform C.
x % y may differ.
[clinic start generated code]*/
static PyObject *
math_fmod_impl(PyObject *module, double x, double y)
/*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/
{
double r;
/* fmod(x, +/-Inf) returns x for finite x. */
if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
return PyFloat_FromDouble(x);
errno = 0;
PyFPE_START_PROTECT("in math_fmod", return 0);
r = fmod(x, y);
PyFPE_END_PROTECT(r);
if (Py_IS_NAN(r)) {
if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
errno = EDOM;
else
errno = 0;
}
if (errno && is_error(r))
return NULL;
else
return PyFloat_FromDouble(r);
}
/*
Given an *n* length *vec* of values and a value *max*, compute:
max * sqrt(sum((x / max) ** 2 for x in vec))
The value of the *max* variable must be non-negative and
equal to the absolute value of the largest magnitude
entry in the vector. If n==0, then *max* should be 0.0.
If an infinity is present in the vec, *max* should be INF.
The *found_nan* variable indicates whether some member of
the *vec* is a NaN.
To improve accuracy and to increase the number of cases where
vector_norm() is commutative, we use a variant of Neumaier
summation specialized to exploit that we always know that
|csum| >= |x|.
The *csum* variable tracks the cumulative sum and *frac* tracks
the cumulative fractional errors at each step. Since this
variant assumes that |csum| >= |x| at each step, we establish
the precondition by starting the accumulation from 1.0 which
represents the largest possible value of (x/max)**2.
After the loop is finished, the initial 1.0 is subtracted out
for a net zero effect on the final sum. Since *csum* will be
greater than 1.0, the subtraction of 1.0 will not cause
fractional digits to be dropped from *csum*.
*/
static inline double
vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
{
double x, csum = 1.0, oldcsum, frac = 0.0;
Py_ssize_t i;
if (Py_IS_INFINITY(max)) {
return max;
}
if (found_nan) {
return Py_NAN;
}
if (max == 0.0 || n <= 1) {
return max;
}
for (i=0 ; i < n ; i++) {
x = vec[i];
assert(Py_IS_FINITE(x) && fabs(x) <= max);
x /= max;
x = x*x;
oldcsum = csum;
csum += x;
assert(csum >= x);
frac += (oldcsum - csum) + x;
}
return max * sqrt(csum - 1.0 + frac);
}
#define NUM_STACK_ELEMS 16
/*[clinic input]
math.dist
p: object(subclass_of='&PyTuple_Type')
q: object(subclass_of='&PyTuple_Type')
/
Return the Euclidean distance between two points p and q.
The points should be specified as tuples of coordinates.
Both tuples must be the same size.
Roughly equivalent to:
sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
[clinic start generated code]*/
static PyObject *
math_dist_impl(PyObject *module, PyObject *p, PyObject *q)
/*[clinic end generated code: output=56bd9538d06bbcfe input=937122eaa5f19272]*/
{
PyObject *item;
double max = 0.0;
double x, px, qx, result;
Py_ssize_t i, m, n;
int found_nan = 0;
double diffs_on_stack[NUM_STACK_ELEMS];
double *diffs = diffs_on_stack;
m = PyTuple_GET_SIZE(p);
n = PyTuple_GET_SIZE(q);
if (m != n) {
PyErr_SetString(PyExc_ValueError,
"both points must have the same number of dimensions");
return NULL;
}
if (n > NUM_STACK_ELEMS) {
diffs = (double *) PyObject_Malloc(n * sizeof(double));
if (diffs == NULL) {
return PyErr_NoMemory();
}
}
for (i=0 ; i<n ; i++) {
item = PyTuple_GET_ITEM(p, i);
ASSIGN_DOUBLE(px, item, error_exit);
item = PyTuple_GET_ITEM(q, i);
ASSIGN_DOUBLE(qx, item, error_exit);
x = fabs(px - qx);
diffs[i] = x;
found_nan |= Py_IS_NAN(x);
if (x > max) {
max = x;
}
}
result = vector_norm(n, diffs, max, found_nan);
if (diffs != diffs_on_stack) {
PyObject_Free(diffs);
}
return PyFloat_FromDouble(result);
error_exit:
if (diffs != diffs_on_stack) {
PyObject_Free(diffs);
}
return NULL;
}
/* AC: cannot convert yet, waiting for *args support */
static PyObject *
math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs)
{
Py_ssize_t i;
PyObject *item;
double max = 0.0;
double x, result;
int found_nan = 0;
double coord_on_stack[NUM_STACK_ELEMS];
double *coordinates = coord_on_stack;
if (nargs > NUM_STACK_ELEMS) {
coordinates = (double *) PyObject_Malloc(nargs * sizeof(double));
if (coordinates == NULL) {
return PyErr_NoMemory();
}
}
for (i = 0; i < nargs; i++) {
item = args[i];
ASSIGN_DOUBLE(x, item, error_exit);
x = fabs(x);
coordinates[i] = x;
found_nan |= Py_IS_NAN(x);
if (x > max) {
max = x;
}
}
result = vector_norm(nargs, coordinates, max, found_nan);
if (coordinates != coord_on_stack) {
PyObject_Free(coordinates);
}
return PyFloat_FromDouble(result);
error_exit:
if (coordinates != coord_on_stack) {
PyObject_Free(coordinates);
}
return NULL;
}
#undef NUM_STACK_ELEMS
PyDoc_STRVAR(math_hypot_doc,
"hypot(*coordinates) -> value\n\n\
Multidimensional Euclidean distance from the origin to a point.\n\
\n\
Roughly equivalent to:\n\
sqrt(sum(x**2 for x in coordinates))\n\
\n\
For a two dimensional point (x, y), gives the hypotenuse\n\
using the Pythagorean theorem: sqrt(x*x + y*y).\n\
\n\
For example, the hypotenuse of a 3/4/5 right triangle is:\n\
\n\
>>> hypot(3.0, 4.0)\n\
5.0\n\
");
/* pow can't use math_2, but needs its own wrapper: the problem is
that an infinite result can arise either as a result of overflow
(in which case OverflowError should be raised) or as a result of
e.g. 0.**-5. (for which ValueError needs to be raised.)
*/
/*[clinic input]
math.pow
x: double
y: double
/
Return x**y (x to the power of y).
[clinic start generated code]*/
static PyObject *
math_pow_impl(PyObject *module, double x, double y)
/*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/
{
double r;
int odd_y;
/* deal directly with IEEE specials, to cope with problems on various
platforms whose semantics don't exactly match C99 */
r = 0.; /* silence compiler warning */
if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
errno = 0;
if (Py_IS_NAN(x))
r = y == 0. ? 1. : x; /* NaN**0 = 1 */
else if (Py_IS_NAN(y))
r = x == 1. ? 1. : y; /* 1**NaN = 1 */
else if (Py_IS_INFINITY(x)) {
odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
if (y > 0.)
r = odd_y ? x : fabs(x);
else if (y == 0.)
r = 1.;
else /* y < 0. */
r = odd_y ? copysign(0., x) : 0.;
}
else if (Py_IS_INFINITY(y)) {
if (fabs(x) == 1.0)
r = 1.;
else if (y > 0. && fabs(x) > 1.0)
r = y;
else if (y < 0. && fabs(x) < 1.0) {
r = -y; /* result is +inf */
if (x == 0.) /* 0**-inf: divide-by-zero */
errno = EDOM;
}
else
r = 0.;
}
}
else {
/* let libm handle finite**finite */
errno = 0;
PyFPE_START_PROTECT("in math_pow", return 0);
r = pow(x, y);
PyFPE_END_PROTECT(r);
/* a NaN result should arise only from (-ve)**(finite
non-integer); in this case we want to raise ValueError. */
if (!Py_IS_FINITE(r)) {
if (Py_IS_NAN(r)) {
errno = EDOM;
}
/*
an infinite result here arises either from:
(A) (+/-0.)**negative (-> divide-by-zero)
(B) overflow of x**y with x and y finite
*/
else if (Py_IS_INFINITY(r)) {
if (x == 0.)
errno = EDOM;
else
errno = ERANGE;
}
}
}
if (errno && is_error(r))
return NULL;
else
return PyFloat_FromDouble(r);
}
static const double degToRad = Py_MATH_PI / 180.0;
static const double radToDeg = 180.0 / Py_MATH_PI;
/*[clinic input]
math.degrees
x: double
/
Convert angle x from radians to degrees.
[clinic start generated code]*/
static PyObject *
math_degrees_impl(PyObject *module, double x)
/*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/
{
return PyFloat_FromDouble(x * radToDeg);
}
/*[clinic input]
math.radians
x: double
/
Convert angle x from degrees to radians.
[clinic start generated code]*/
static PyObject *
math_radians_impl(PyObject *module, double x)
/*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/
{
return PyFloat_FromDouble(x * degToRad);
}
/*[clinic input]
math.isfinite
x: double
/
Return True if x is neither an infinity nor a NaN, and False otherwise.
[clinic start generated code]*/
static PyObject *
math_isfinite_impl(PyObject *module, double x)
/*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/
{
return PyBool_FromLong((long)Py_IS_FINITE(x));
}
/*[clinic input]
math.isnan
x: double
/
Return True if x is a NaN (not a number), and False otherwise.
[clinic start generated code]*/
static PyObject *
math_isnan_impl(PyObject *module, double x)
/*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/
{
return PyBool_FromLong((long)Py_IS_NAN(x));
}
/*[clinic input]
math.isinf
x: double
/
Return True if x is a positive or negative infinity, and False otherwise.
[clinic start generated code]*/
static PyObject *
math_isinf_impl(PyObject *module, double x)
/*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/
{
return PyBool_FromLong((long)Py_IS_INFINITY(x));
}
/*[clinic input]
math.isclose -> bool
a: double
b: double
*
rel_tol: double = 1e-09
maximum difference for being considered "close", relative to the
magnitude of the input values
abs_tol: double = 0.0
maximum difference for being considered "close", regardless of the
magnitude of the input values
Determine whether two floating point numbers are close in value.
Return True if a is close in value to b, and False otherwise.
For the values to be considered close, the difference between them
must be smaller than at least one of the tolerances.
-inf, inf and NaN behave similarly to the IEEE 754 Standard. That
is, NaN is not close to anything, even itself. inf and -inf are
only close to themselves.
[clinic start generated code]*/
static int
math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
double abs_tol)
/*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/
{
double diff = 0.0;
/* sanity check on the inputs */
if (rel_tol < 0.0 || abs_tol < 0.0 ) {
PyErr_SetString(PyExc_ValueError,
"tolerances must be non-negative");
return -1;
}
if ( a == b ) {
/* short circuit exact equality -- needed to catch two infinities of
the same sign. And perhaps speeds things up a bit sometimes.
*/
return 1;
}
/* This catches the case of two infinities of opposite sign, or
one infinity and one finite number. Two infinities of opposite
sign would otherwise have an infinite relative tolerance.
Two infinities of the same sign are caught by the equality check
above.
*/
if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
return 0;
}
/* now do the regular computation
this is essentially the "weak" test from the Boost library
*/
diff = fabs(b - a);
return (((diff <= fabs(rel_tol * b)) ||
(diff <= fabs(rel_tol * a))) ||
(diff <= abs_tol));
}
static inline int
_check_long_mult_overflow(long a, long b) {
/* From Python2's int_mul code:
Integer overflow checking for * is painful: Python tried a couple ways, but
they didn't work on all platforms, or failed in endcases (a product of
-sys.maxint-1 has been a particular pain).
Here's another way:
The native long product x*y is either exactly right or *way* off, being
just the last n bits of the true product, where n is the number of bits
in a long (the delivered product is the true product plus i*2**n for
some integer i).
The native double product (double)x * (double)y is subject to three
rounding errors: on a sizeof(long)==8 box, each cast to double can lose
info, and even on a sizeof(long)==4 box, the multiplication can lose info.
But, unlike the native long product, it's not in *range* trouble: even
if sizeof(long)==32 (256-bit longs), the product easily fits in the
dynamic range of a double. So the leading 50 (or so) bits of the double
product are correct.
We check these two ways against each other, and declare victory if they're
approximately the same. Else, because the native long product is the only
one that can lose catastrophic amounts of information, it's the native long
product that must have overflowed.
*/
long longprod = (long)((unsigned long)a * b);
double doubleprod = (double)a * (double)b;
double doubled_longprod = (double)longprod;
if (doubled_longprod == doubleprod) {
return 0;
}
const double diff = doubled_longprod - doubleprod;
const double absdiff = diff >= 0.0 ? diff : -diff;
const double absprod = doubleprod >= 0.0 ? doubleprod : -doubleprod;
if (32.0 * absdiff <= absprod) {
return 0;
}
return 1;
}
/*[clinic input]
math.prod
iterable: object
/
*
start: object(c_default="NULL") = 1
Calculate the product of all the elements in the input iterable.
The default start value for the product is 1.
When the iterable is empty, return the start value. This function is
intended specifically for use with numeric values and may reject
non-numeric types.
[clinic start generated code]*/
static PyObject *
math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
/*[clinic end generated code: output=36153bedac74a198 input=4c5ab0682782ed54]*/
{
PyObject *result = start;
PyObject *temp, *item, *iter;
iter = PyObject_GetIter(iterable);
if (iter == NULL) {
return NULL;
}
if (result == NULL) {
result = PyLong_FromLong(1);
if (result == NULL) {
Py_DECREF(iter);
return NULL;
}
} else {
Py_INCREF(result);
}
#ifndef SLOW_PROD
/* Fast paths for integers keeping temporary products in C.
* Assumes all inputs are the same type.
* If the assumption fails, default to use PyObjects instead.
*/
if (PyLong_CheckExact(result)) {
int overflow;
long i_result = PyLong_AsLongAndOverflow(result, &overflow);
/* If this already overflowed, don't even enter the loop. */
if (overflow == 0) {
Py_DECREF(result);
result = NULL;
}
/* Loop over all the items in the iterable until we finish, we overflow
* or we found a non integer element */
while(result == NULL) {
item = PyIter_Next(iter);
if (item == NULL) {
Py_DECREF(iter);
if (PyErr_Occurred()) {
return NULL;
}
return PyLong_FromLong(i_result);
}
if (PyLong_CheckExact(item)) {
long b = PyLong_AsLongAndOverflow(item, &overflow);
if (overflow == 0 && !_check_long_mult_overflow(i_result, b)) {
long x = i_result * b;
i_result = x;
Py_DECREF(item);
continue;
}
}
/* Either overflowed or is not an int.
* Restore real objects and process normally */
result = PyLong_FromLong(i_result);
if (result == NULL) {
Py_DECREF(item);
Py_DECREF(iter);
return NULL;
}
temp = PyNumber_Multiply(result, item);
Py_DECREF(result);
Py_DECREF(item);
result = temp;
if (result == NULL) {
Py_DECREF(iter);
return NULL;
}
}
}
/* Fast paths for floats keeping temporary products in C.
* Assumes all inputs are the same type.
* If the assumption fails, default to use PyObjects instead.
*/
if (PyFloat_CheckExact(result)) {
double f_result = PyFloat_AS_DOUBLE(result);
Py_DECREF(result);
result = NULL;
while(result == NULL) {
item = PyIter_Next(iter);
if (item == NULL) {
Py_DECREF(iter);
if (PyErr_Occurred()) {
return NULL;
}
return PyFloat_FromDouble(f_result);
}
if (PyFloat_CheckExact(item)) {
f_result *= PyFloat_AS_DOUBLE(item);
Py_DECREF(item);
continue;
}
if (PyLong_CheckExact(item)) {
long value;
int overflow;
value = PyLong_AsLongAndOverflow(item, &overflow);
if (!overflow) {
f_result *= (double)value;
Py_DECREF(item);
continue;
}
}
result = PyFloat_FromDouble(f_result);
if (result == NULL) {
Py_DECREF(item);
Py_DECREF(iter);
return NULL;
}
temp = PyNumber_Multiply(result, item);
Py_DECREF(result);
Py_DECREF(item);
result = temp;
if (result == NULL) {
Py_DECREF(iter);
return NULL;
}
}
}
#endif
/* Consume rest of the iterable (if any) that could not be handled
* by specialized functions above.*/
for(;;) {
item = PyIter_Next(iter);
if (item == NULL) {
/* error, or end-of-sequence */
if (PyErr_Occurred()) {
Py_DECREF(result);
result = NULL;
}
break;
}
temp = PyNumber_Multiply(result, item);
Py_DECREF(result);
Py_DECREF(item);
result = temp;
if (result == NULL)
break;
}
Py_DECREF(iter);
return result;
}
/*[clinic input]
math.comb
n: object
k: object
/
Number of ways to choose k items from n items without repetition and without order.
Also called the binomial coefficient. It is mathematically equal to the expression
n! / (k! * (n - k)!). It is equivalent to the coefficient of k-th term in
polynomial expansion of the expression (1 + x)**n.
Raises TypeError if the arguments are not integers.
Raises ValueError if the arguments are negative or if k > n.
[clinic start generated code]*/
static PyObject *
math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
/*[clinic end generated code: output=bd2cec8d854f3493 input=2f336ac9ec8242f9]*/
{
PyObject *result = NULL, *factor = NULL, *temp;
int overflow, cmp;
long long i, factors;
n = PyNumber_Index(n);
if (n == NULL) {
return NULL;
}
k = PyNumber_Index(k);
if (k == NULL) {
Py_DECREF(n);
return NULL;
}
if (Py_SIZE(n) < 0) {
PyErr_SetString(PyExc_ValueError,
"n must be a non-negative integer");
goto error;
}
/* k = min(k, n - k) */
temp = PyNumber_Subtract(n, k);
if (temp == NULL) {
goto error;
}
if (Py_SIZE(temp) < 0) {
Py_DECREF(temp);
PyErr_SetString(PyExc_ValueError,
"k must be an integer less than or equal to n");
goto error;
}
cmp = PyObject_RichCompareBool(k, temp, Py_GT);
if (cmp > 0) {
Py_SETREF(k, temp);
}
else {
Py_DECREF(temp);
if (cmp < 0) {
goto error;
}
}
factors = PyLong_AsLongLongAndOverflow(k, &overflow);
if (overflow > 0) {
PyErr_Format(PyExc_OverflowError,
"min(n - k, k) must not exceed %lld",
LLONG_MAX);
goto error;
}
else if (overflow < 0 || factors < 0) {
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_ValueError,
"k must be a non-negative integer");
}
goto error;
}
if (factors == 0) {
result = PyLong_FromLong(1);
goto done;
}
result = n;
Py_INCREF(result);
if (factors == 1) {
goto done;
}
factor = n;
Py_INCREF(factor);
for (i = 1; i < factors; ++i) {
Py_SETREF(factor, PyNumber_Subtract(factor, _PyLong_One));
if (factor == NULL) {
goto error;
}
Py_SETREF(result, PyNumber_Multiply(result, factor));
if (result == NULL) {
goto error;
}
temp = PyLong_FromUnsignedLongLong((unsigned long long)i + 1);
if (temp == NULL) {
goto error;
}
Py_SETREF(result, PyNumber_FloorDivide(result, temp));
Py_DECREF(temp);
if (result == NULL) {
goto error;
}
}
Py_DECREF(factor);
done:
Py_DECREF(n);
Py_DECREF(k);
return result;
error:
Py_XDECREF(factor);
Py_XDECREF(result);
Py_DECREF(n);
Py_DECREF(k);
return NULL;
}
static PyMethodDef math_methods[] = {
{"acos", math_acos, METH_O, math_acos_doc},
{"acosh", math_acosh, METH_O, math_acosh_doc},
{"asin", math_asin, METH_O, math_asin_doc},
{"asinh", math_asinh, METH_O, math_asinh_doc},
{"atan", math_atan, METH_O, math_atan_doc},
{"atan2", (PyCFunction)(void(*)(void))math_atan2, METH_FASTCALL, math_atan2_doc},
{"atanh", math_atanh, METH_O, math_atanh_doc},
MATH_CEIL_METHODDEF
{"copysign", (PyCFunction)(void(*)(void))math_copysign, METH_FASTCALL, math_copysign_doc},
{"cos", math_cos, METH_O, math_cos_doc},
{"cosh", math_cosh, METH_O, math_cosh_doc},
MATH_DEGREES_METHODDEF
MATH_DIST_METHODDEF
{"erf", math_erf, METH_O, math_erf_doc},
{"erfc", math_erfc, METH_O, math_erfc_doc},
{"exp", math_exp, METH_O, math_exp_doc},
{"expm1", math_expm1, METH_O, math_expm1_doc},
{"fabs", math_fabs, METH_O, math_fabs_doc},
MATH_FACTORIAL_METHODDEF
MATH_FLOOR_METHODDEF
MATH_FMOD_METHODDEF
MATH_FREXP_METHODDEF
MATH_FSUM_METHODDEF
{"gamma", math_gamma, METH_O, math_gamma_doc},
MATH_GCD_METHODDEF
{"hypot", (PyCFunction)(void(*)(void))math_hypot, METH_FASTCALL, math_hypot_doc},
MATH_ISCLOSE_METHODDEF
MATH_ISFINITE_METHODDEF
MATH_ISINF_METHODDEF
MATH_ISNAN_METHODDEF
MATH_ISQRT_METHODDEF
MATH_LDEXP_METHODDEF
{"lgamma", math_lgamma, METH_O, math_lgamma_doc},
MATH_LOG_METHODDEF
{"log1p", math_log1p, METH_O, math_log1p_doc},
MATH_LOG10_METHODDEF
MATH_LOG2_METHODDEF
MATH_MODF_METHODDEF
MATH_POW_METHODDEF
MATH_RADIANS_METHODDEF
{"remainder", (PyCFunction)(void(*)(void))math_remainder, METH_FASTCALL, math_remainder_doc},
{"sin", math_sin, METH_O, math_sin_doc},
{"sinh", math_sinh, METH_O, math_sinh_doc},
{"sqrt", math_sqrt, METH_O, math_sqrt_doc},
{"tan", math_tan, METH_O, math_tan_doc},
{"tanh", math_tanh, METH_O, math_tanh_doc},
MATH_TRUNC_METHODDEF
MATH_PROD_METHODDEF
MATH_COMB_METHODDEF
{NULL, NULL} /* sentinel */
};
PyDoc_STRVAR(module_doc,
"This module provides access to the mathematical functions\n"
"defined by the C standard.");
static struct PyModuleDef mathmodule = {
PyModuleDef_HEAD_INIT,
"math",
module_doc,
-1,
math_methods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC
PyInit_math(void)
{
PyObject *m;
m = PyModule_Create(&mathmodule);
if (m == NULL)
goto finally;
PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
PyModule_AddObject(m, "tau", PyFloat_FromDouble(Py_MATH_TAU)); /* 2pi */
PyModule_AddObject(m, "inf", PyFloat_FromDouble(m_inf()));
#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
PyModule_AddObject(m, "nan", PyFloat_FromDouble(m_nan()));
#endif
finally:
return m;
}
|