summaryrefslogtreecommitdiffstats
path: root/Modules/shamodule.c
blob: e82de042c3b345e2accaea2596ad6d6ac144701c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
/***********************************************************
Copyright 1999 by Stichting Mathematisch Centrum, Amsterdam,
The Netherlands.

                        All Rights Reserved

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the names of Stichting Mathematisch
Centrum or CWI or Corporation for National Research Initiatives or
CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

While CWI is the initial source for this software, a modified version
is made available by the Corporation for National Research Initiatives
(CNRI) at the Internet address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH
CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

******************************************************************/

/* SHA module */

/* This module provides an interface to NIST's Secure Hash Algorithm */

/* See below for information about the original code this module was
   based upon. Additional work performed by:

   Andrew Kuchling (amk1@erols.com)
   Greg Stein (gstein@lyra.org)
*/

/* SHA objects */

#include "Python.h"


/* Endianness testing and definitions */
#define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\
	if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;}

#define PCT_LITTLE_ENDIAN 1
#define PCT_BIG_ENDIAN 0

/* Some useful types */

typedef unsigned char SHA_BYTE;

#if SIZEOF_INT == 4
typedef unsigned int SHA_INT32;	/* 32-bit integer */
#else
/* not defined. compilation will die. */
#endif

/* The SHA block size and message digest sizes, in bytes */

#define SHA_BLOCKSIZE    64
#define SHA_DIGESTSIZE  20

/* The structure for storing SHS info */

typedef struct {
	PyObject_HEAD
	SHA_INT32 digest[5];		/* Message digest */
	SHA_INT32 count_lo, count_hi;	/* 64-bit bit count */
	SHA_BYTE data[SHA_BLOCKSIZE];	/* SHA data buffer */
	int Endianness;
	int local;			/* unprocessed amount in data */
} SHAobject;

/* When run on a little-endian CPU we need to perform byte reversal on an
   array of longwords. */

static void longReverse(buffer, byteCount, Endianness)
    SHA_INT32 *buffer; 
    int byteCount, Endianness;
{
    SHA_INT32 value;

    if ( Endianness == PCT_BIG_ENDIAN )
	return;

    byteCount /= sizeof(*buffer);
    while( byteCount-- )
    {
        value = *buffer;
        value = ( ( value & 0xFF00FF00L ) >> 8  ) | \
                ( ( value & 0x00FF00FFL ) << 8 );
        *buffer++ = ( value << 16 ) | ( value >> 16 );
    }
}

static void SHAcopy(src, dest)
     SHAobject *src, *dest;
{
	dest->Endianness = src->Endianness;
	dest->local = src->local;
	dest->count_lo = src->count_lo;
	dest->count_hi = src->count_hi;
	memcpy(dest->digest, src->digest, sizeof(src->digest));
	memcpy(dest->data, src->data, sizeof(src->data));
}


/* ------------------------------------------------------------------------
 *
 * This code for the SHA algorithm was noted as public domain. The original
 * headers are pasted below.
 *
 * Several changes have been made to make it more compatible with the
 * Python environment and desired interface.
 *
 */

/* NIST Secure Hash Algorithm */
/* heavily modified by Uwe Hollerbach <uh@alumni.caltech edu> */
/* from Peter C. Gutmann's implementation as found in */
/* Applied Cryptography by Bruce Schneier */
/* Further modifications to include the "UNRAVEL" stuff, below */

/* This code is in the public domain */

/* UNRAVEL should be fastest & biggest */
/* UNROLL_LOOPS should be just as big, but slightly slower */
/* both undefined should be smallest and slowest */

#define UNRAVEL
/* #define UNROLL_LOOPS */

/* The SHA f()-functions.  The f1 and f3 functions can be optimized to
   save one boolean operation each - thanks to Rich Schroeppel,
   rcs@cs.arizona.edu for discovering this */

/*#define f1(x,y,z)	((x & y) | (~x & z))		// Rounds  0-19 */
#define f1(x,y,z)	(z ^ (x & (y ^ z)))		/* Rounds  0-19 */
#define f2(x,y,z)	(x ^ y ^ z)			/* Rounds 20-39 */
/*#define f3(x,y,z)	((x & y) | (x & z) | (y & z))	// Rounds 40-59 */
#define f3(x,y,z)	((x & y) | (z & (x | y)))	/* Rounds 40-59 */
#define f4(x,y,z)	(x ^ y ^ z)			/* Rounds 60-79 */

/* SHA constants */

#define CONST1		0x5a827999L			/* Rounds  0-19 */
#define CONST2		0x6ed9eba1L			/* Rounds 20-39 */
#define CONST3		0x8f1bbcdcL			/* Rounds 40-59 */
#define CONST4		0xca62c1d6L			/* Rounds 60-79 */

/* 32-bit rotate */

#define R32(x,n)	((x << n) | (x >> (32 - n)))

/* the generic case, for when the overall rotation is not unraveled */

#define FG(n)	\
    T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n;	\
    E = D; D = C; C = R32(B,30); B = A; A = T

/* specific cases, for when the overall rotation is unraveled */

#define FA(n)	\
    T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; B = R32(B,30)

#define FB(n)	\
    E = R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n; A = R32(A,30)

#define FC(n)	\
    D = R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n; T = R32(T,30)

#define FD(n)	\
    C = R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n; E = R32(E,30)

#define FE(n)	\
    B = R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n; D = R32(D,30)

#define FT(n)	\
    A = R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n; C = R32(C,30)

/* do SHA transformation */

static void
sha_transform(sha_info)
	SHAobject *sha_info;
{
    int i;
    SHA_INT32 T, A, B, C, D, E, W[80], *WP;

    memcpy(W, sha_info->data, sizeof(sha_info->data));
    longReverse(W, sizeof(sha_info->data), sha_info->Endianness);

    for (i = 16; i < 80; ++i) {
	W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];

	/* extra rotation fix */
	W[i] = R32(W[i], 1);
    }
    A = sha_info->digest[0];
    B = sha_info->digest[1];
    C = sha_info->digest[2];
    D = sha_info->digest[3];
    E = sha_info->digest[4];
    WP = W;
#ifdef UNRAVEL
    FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1);
    FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1);
    FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2);
    FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2);
    FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3);
    FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3);
    FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4);
    FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4);
    sha_info->digest[0] += E;
    sha_info->digest[1] += T;
    sha_info->digest[2] += A;
    sha_info->digest[3] += B;
    sha_info->digest[4] += C;
#else /* !UNRAVEL */
#ifdef UNROLL_LOOPS
    FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
    FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
    FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
    FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
    FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
    FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
    FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
    FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
#else /* !UNROLL_LOOPS */
    for (i =  0; i < 20; ++i) { FG(1); }
    for (i = 20; i < 40; ++i) { FG(2); }
    for (i = 40; i < 60; ++i) { FG(3); }
    for (i = 60; i < 80; ++i) { FG(4); }
#endif /* !UNROLL_LOOPS */
    sha_info->digest[0] += A;
    sha_info->digest[1] += B;
    sha_info->digest[2] += C;
    sha_info->digest[3] += D;
    sha_info->digest[4] += E;
#endif /* !UNRAVEL */
}

/* initialize the SHA digest */

static void
sha_init(sha_info)
    SHAobject *sha_info;
{
    TestEndianness(sha_info->Endianness)

    sha_info->digest[0] = 0x67452301L;
    sha_info->digest[1] = 0xefcdab89L;
    sha_info->digest[2] = 0x98badcfeL;
    sha_info->digest[3] = 0x10325476L;
    sha_info->digest[4] = 0xc3d2e1f0L;
    sha_info->count_lo = 0L;
    sha_info->count_hi = 0L;
    sha_info->local = 0;
}

/* update the SHA digest */

static void
sha_update(sha_info, buffer, count)
    SHAobject *sha_info;
    SHA_BYTE *buffer;
    int count;
{
    int i;
    SHA_INT32 clo;

    clo = sha_info->count_lo + ((SHA_INT32) count << 3);
    if (clo < sha_info->count_lo) {
		++sha_info->count_hi;
    }
    sha_info->count_lo = clo;
    sha_info->count_hi += (SHA_INT32) count >> 29;
    if (sha_info->local) {
		i = SHA_BLOCKSIZE - sha_info->local;
		if (i > count) {
			i = count;
		}
		memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local,
		       buffer, i);
		count -= i;
		buffer += i;
		sha_info->local += i;
		if (sha_info->local == SHA_BLOCKSIZE) {
			sha_transform(sha_info);
		} else {
			return;
		}
    }
    while (count >= SHA_BLOCKSIZE) {
		memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
		buffer += SHA_BLOCKSIZE;
		count -= SHA_BLOCKSIZE;
		sha_transform(sha_info);
    }
    memcpy(sha_info->data, buffer, count);
    sha_info->local = count;
}

/* finish computing the SHA digest */

static void
sha_final(digest, sha_info)
    unsigned char digest[20];
    SHAobject *sha_info;
{
    int count;
    SHA_INT32 lo_bit_count, hi_bit_count;

    lo_bit_count = sha_info->count_lo;
    hi_bit_count = sha_info->count_hi;
    count = (int) ((lo_bit_count >> 3) & 0x3f);
    ((SHA_BYTE *) sha_info->data)[count++] = 0x80;
    if (count > SHA_BLOCKSIZE - 8)
    {
	memset(((SHA_BYTE *) sha_info->data) + count, 0,
	       SHA_BLOCKSIZE - count);
	sha_transform(sha_info);
	memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
    }
    else
    {
	memset(((SHA_BYTE *) sha_info->data) + count, 0,
	       SHA_BLOCKSIZE - 8 - count);
    }

    /* GJS: note that we add the hi/lo in big-endian. sha_transform will
       swap these values into host-order. */
    sha_info->data[56] = (hi_bit_count >> 24) & 0xff;
    sha_info->data[57] = (hi_bit_count >> 16) & 0xff;
    sha_info->data[58] = (hi_bit_count >>  8) & 0xff;
    sha_info->data[59] = (hi_bit_count >>  0) & 0xff;
    sha_info->data[60] = (lo_bit_count >> 24) & 0xff;
    sha_info->data[61] = (lo_bit_count >> 16) & 0xff;
    sha_info->data[62] = (lo_bit_count >>  8) & 0xff;
    sha_info->data[63] = (lo_bit_count >>  0) & 0xff;
    sha_transform(sha_info);
    digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
    digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
    digest[ 2] = (unsigned char) ((sha_info->digest[0] >>  8) & 0xff);
    digest[ 3] = (unsigned char) ((sha_info->digest[0]      ) & 0xff);
    digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
    digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
    digest[ 6] = (unsigned char) ((sha_info->digest[1] >>  8) & 0xff);
    digest[ 7] = (unsigned char) ((sha_info->digest[1]      ) & 0xff);
    digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
    digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
    digest[10] = (unsigned char) ((sha_info->digest[2] >>  8) & 0xff);
    digest[11] = (unsigned char) ((sha_info->digest[2]      ) & 0xff);
    digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
    digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
    digest[14] = (unsigned char) ((sha_info->digest[3] >>  8) & 0xff);
    digest[15] = (unsigned char) ((sha_info->digest[3]      ) & 0xff);
    digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
    digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
    digest[18] = (unsigned char) ((sha_info->digest[4] >>  8) & 0xff);
    digest[19] = (unsigned char) ((sha_info->digest[4]      ) & 0xff);
}

/*
 * End of copied SHA code.
 *
 * ------------------------------------------------------------------------
 */

staticforward PyTypeObject SHAtype;


static SHAobject *
newSHAobject()
{
	return (SHAobject *)PyObject_NEW(SHAobject, &SHAtype);
}

/* Internal methods for a hashing object */

static void
SHA_dealloc(ptr)
	PyObject *ptr;
{
	PyMem_DEL(ptr);
}


/* External methods for a hashing object */

static char SHA_copy__doc__[] = 
"Return a copy of the hashing object.";

static PyObject *
SHA_copy(self, args)
	SHAobject *self;
	PyObject *args;
{
	SHAobject *newobj;

	if (!PyArg_NoArgs(args)) {
		return NULL;
	}

	if ( (newobj = newSHAobject())==NULL)
		return NULL;
	
	SHAcopy(self, newobj);
	return (PyObject *)newobj;
}

static char SHA_digest__doc__[] = 
"Return the digest value as a string of binary data.";

static PyObject *
SHA_digest(self, args)
	SHAobject *self;
	PyObject *args;
{
	unsigned char digest[SHA_DIGESTSIZE];
	SHAobject temp;

	if (!PyArg_NoArgs(args))
		return NULL;

	SHAcopy(self, &temp);
	sha_final(digest, &temp);
	return PyString_FromStringAndSize((const char *)digest, sizeof(digest));
}

static char SHA_hexdigest__doc__[] = 
"Return the digest value as a string of hexadecimal digits.";

static PyObject *
SHA_hexdigest(self, args)
	SHAobject *self;
	PyObject *args;
{
	unsigned char digest[SHA_DIGESTSIZE];
	SHAobject temp;
	PyObject *retval;
	char *hex_digest;
	int i, j;

	if (!PyArg_NoArgs(args))
		return NULL;

	/* Get the raw (binary) digest value */
	SHAcopy(self, &temp);
	sha_final(digest, &temp);

	/* Create a new string */
	retval = PyString_FromStringAndSize(NULL, sizeof(digest) * 2);
	hex_digest = PyString_AsString(retval);

	/* Make hex version of the digest */
	for(i=j=0; i<sizeof(digest); i++)	
	{
		char c;
		c = digest[i] / 16; c = (c>9) ? c+'a'-10 : c + '0';
		hex_digest[j++] = c;
		c = digest[i] % 16; c = (c>9) ? c+'a'-10 : c + '0';
		hex_digest[j++] = c;
	}

	return retval;
}

static char SHA_update__doc__[] = 
"Update this hashing object's state with the provided string.";

static PyObject *
SHA_update(self, args)
	SHAobject *self;
	PyObject *args;
{
	unsigned char *cp;
	int len;

	if (!PyArg_Parse(args, "s#", &cp, &len))
		return NULL;

	sha_update(self, cp, len);

	Py_INCREF(Py_None);
	return Py_None;
}

static PyMethodDef SHA_methods[] = {
	{"copy",	(PyCFunction)SHA_copy, 0, SHA_copy__doc__},
	{"digest",	(PyCFunction)SHA_digest, 0, SHA_digest__doc__},
	{"hexdigest",	(PyCFunction)SHA_hexdigest, 0, SHA_hexdigest__doc__},
	{"update",	(PyCFunction)SHA_update, 0, SHA_update__doc__},
	{NULL,		NULL}		/* sentinel */
};

static PyObject *
SHA_getattr(self, name)
	PyObject *self;
	char *name;
{
	if (strcmp(name, "blocksize")==0)
		return PyInt_FromLong(1);
	if (strcmp(name, "digestsize")==0)
		return PyInt_FromLong(20);
	
	return Py_FindMethod(SHA_methods, self, name);
}

static PyTypeObject SHAtype = {
	PyObject_HEAD_INIT(NULL)
	0,			/*ob_size*/
	"SHA",			/*tp_name*/
	sizeof(SHAobject),	/*tp_size*/
	0,			/*tp_itemsize*/
	/* methods */
	SHA_dealloc,		/*tp_dealloc*/
	0,			/*tp_print*/
	SHA_getattr,		/*tp_getattr*/
};


/* The single module-level function: new() */

static char SHA_new__doc__[] =
 "Return a new SHA hashing object.  An optional string "
 "argument may be provided; if present, this string will be "
 " automatically hashed."; 

static PyObject *
SHA_new(self, args, kwdict)
	PyObject *self;
	PyObject *args;
	PyObject *kwdict;
{
	static char *kwlist[] = {"string", NULL};
	SHAobject *new;
	unsigned char *cp = NULL;
	int len;
	
	if ((new = newSHAobject()) == NULL)
		return NULL;

	if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#", kwlist,
					 &cp, &len)) {
	        Py_DECREF(new);
		return NULL;
	}

        sha_init(new);

	if (PyErr_Occurred()) {
		Py_DECREF(new);
		return NULL;
	}
	if (cp)
		sha_update(new, cp, len);

	return (PyObject *)new;
}


/* List of functions exported by this module */

static struct PyMethodDef SHA_functions[] = {
	{"new", (PyCFunction)SHA_new, METH_VARARGS|METH_KEYWORDS, SHA_new__doc__},
	{"sha",	(PyCFunction)SHA_new, METH_VARARGS|METH_KEYWORDS, SHA_new__doc__},
	{NULL,	NULL}		 /* Sentinel */
};


/* Initialize this module. */

#define insint(n,v) { PyObject *o=PyInt_FromLong(v); \
	if (o!=NULL) PyDict_SetItemString(d,n,o); \
	Py_XDECREF(o); }

void
initsha()
{
	PyObject *d, *m;

	SHAtype.ob_type = &PyType_Type;
	m = Py_InitModule("sha", SHA_functions);

	/* Add some symbolic constants to the module */
	d = PyModule_GetDict(m);
	insint("blocksize", 1);  /* For future use, in case some hash
				    functions require an integral number of
				    blocks */ 
	insint("digestsize", 20);

	/* Check for errors */
	if (PyErr_Occurred())
		Py_FatalError("can't initialize module SHA");
}