summaryrefslogtreecommitdiffstats
path: root/Objects/codeobject.c
blob: 9c3bfee7f99d35d78633b132bb92ad1580b5f9a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#include "Python.h"
#include "code.h"
#include "structmember.h"

#define NAME_CHARS \
    "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz"

/* all_name_chars(s): true iff all chars in s are valid NAME_CHARS */

static int
all_name_chars(unsigned char *s)
{
    static char ok_name_char[256];
    static unsigned char *name_chars = (unsigned char *)NAME_CHARS;

    if (ok_name_char[*name_chars] == 0) {
        unsigned char *p;
        for (p = name_chars; *p; p++)
            ok_name_char[*p] = 1;
    }
    while (*s) {
        if (ok_name_char[*s++] == 0)
            return 0;
    }
    return 1;
}

static void
intern_strings(PyObject *tuple)
{
    Py_ssize_t i;

    for (i = PyTuple_GET_SIZE(tuple); --i >= 0; ) {
        PyObject *v = PyTuple_GET_ITEM(tuple, i);
        if (v == NULL || !PyString_CheckExact(v)) {
            Py_FatalError("non-string found in code slot");
        }
        PyString_InternInPlace(&PyTuple_GET_ITEM(tuple, i));
    }
}


PyCodeObject *
PyCode_New(int argcount, int nlocals, int stacksize, int flags,
           PyObject *code, PyObject *consts, PyObject *names,
           PyObject *varnames, PyObject *freevars, PyObject *cellvars,
           PyObject *filename, PyObject *name, int firstlineno,
           PyObject *lnotab)
{
    PyCodeObject *co;
    Py_ssize_t i;
    /* Check argument types */
    if (argcount < 0 || nlocals < 0 ||
        code == NULL ||
        consts == NULL || !PyTuple_Check(consts) ||
        names == NULL || !PyTuple_Check(names) ||
        varnames == NULL || !PyTuple_Check(varnames) ||
        freevars == NULL || !PyTuple_Check(freevars) ||
        cellvars == NULL || !PyTuple_Check(cellvars) ||
        name == NULL || !PyString_Check(name) ||
        filename == NULL || !PyString_Check(filename) ||
        lnotab == NULL || !PyString_Check(lnotab) ||
        !PyObject_CheckReadBuffer(code)) {
        PyErr_BadInternalCall();
        return NULL;
    }
    intern_strings(names);
    intern_strings(varnames);
    intern_strings(freevars);
    intern_strings(cellvars);
    /* Intern selected string constants */
    for (i = PyTuple_Size(consts); --i >= 0; ) {
        PyObject *v = PyTuple_GetItem(consts, i);
        if (!PyString_Check(v))
            continue;
        if (!all_name_chars((unsigned char *)PyString_AS_STRING(v)))
            continue;
        PyString_InternInPlace(&PyTuple_GET_ITEM(consts, i));
    }
    co = PyObject_NEW(PyCodeObject, &PyCode_Type);
    if (co != NULL) {
        co->co_argcount = argcount;
        co->co_nlocals = nlocals;
        co->co_stacksize = stacksize;
        co->co_flags = flags;
        Py_INCREF(code);
        co->co_code = code;
        Py_INCREF(consts);
        co->co_consts = consts;
        Py_INCREF(names);
        co->co_names = names;
        Py_INCREF(varnames);
        co->co_varnames = varnames;
        Py_INCREF(freevars);
        co->co_freevars = freevars;
        Py_INCREF(cellvars);
        co->co_cellvars = cellvars;
        Py_INCREF(filename);
        co->co_filename = filename;
        Py_INCREF(name);
        co->co_name = name;
        co->co_firstlineno = firstlineno;
        Py_INCREF(lnotab);
        co->co_lnotab = lnotab;
        co->co_zombieframe = NULL;
    }
    return co;
}


#define OFF(x) offsetof(PyCodeObject, x)

static PyMemberDef code_memberlist[] = {
    {"co_argcount",     T_INT,          OFF(co_argcount),       READONLY},
    {"co_nlocals",      T_INT,          OFF(co_nlocals),        READONLY},
    {"co_stacksize",T_INT,              OFF(co_stacksize),      READONLY},
    {"co_flags",        T_INT,          OFF(co_flags),          READONLY},
    {"co_code",         T_OBJECT,       OFF(co_code),           READONLY},
    {"co_consts",       T_OBJECT,       OFF(co_consts),         READONLY},
    {"co_names",        T_OBJECT,       OFF(co_names),          READONLY},
    {"co_varnames",     T_OBJECT,       OFF(co_varnames),       READONLY},
    {"co_freevars",     T_OBJECT,       OFF(co_freevars),       READONLY},
    {"co_cellvars",     T_OBJECT,       OFF(co_cellvars),       READONLY},
    {"co_filename",     T_OBJECT,       OFF(co_filename),       READONLY},
    {"co_name",         T_OBJECT,       OFF(co_name),           READONLY},
    {"co_firstlineno", T_INT,           OFF(co_firstlineno),    READONLY},
    {"co_lnotab",       T_OBJECT,       OFF(co_lnotab),         READONLY},
    {NULL}      /* Sentinel */
};

/* Helper for code_new: return a shallow copy of a tuple that is
   guaranteed to contain exact strings, by converting string subclasses
   to exact strings and complaining if a non-string is found. */
static PyObject*
validate_and_copy_tuple(PyObject *tup)
{
    PyObject *newtuple;
    PyObject *item;
    Py_ssize_t i, len;

    len = PyTuple_GET_SIZE(tup);
    newtuple = PyTuple_New(len);
    if (newtuple == NULL)
        return NULL;

    for (i = 0; i < len; i++) {
        item = PyTuple_GET_ITEM(tup, i);
        if (PyString_CheckExact(item)) {
            Py_INCREF(item);
        }
        else if (!PyString_Check(item)) {
            PyErr_Format(
                PyExc_TypeError,
                "name tuples must contain only "
                "strings, not '%.500s'",
                item->ob_type->tp_name);
            Py_DECREF(newtuple);
            return NULL;
        }
        else {
            item = PyString_FromStringAndSize(
                PyString_AS_STRING(item),
                PyString_GET_SIZE(item));
            if (item == NULL) {
                Py_DECREF(newtuple);
                return NULL;
            }
        }
        PyTuple_SET_ITEM(newtuple, i, item);
    }

    return newtuple;
}

PyDoc_STRVAR(code_doc,
"code(argcount, nlocals, stacksize, flags, codestring, constants, names,\n\
      varnames, filename, name, firstlineno, lnotab[, freevars[, cellvars]])\n\
\n\
Create a code object.  Not for the faint of heart.");

static PyObject *
code_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
    int argcount;
    int nlocals;
    int stacksize;
    int flags;
    PyObject *co = NULL;
    PyObject *code;
    PyObject *consts;
    PyObject *names, *ournames = NULL;
    PyObject *varnames, *ourvarnames = NULL;
    PyObject *freevars = NULL, *ourfreevars = NULL;
    PyObject *cellvars = NULL, *ourcellvars = NULL;
    PyObject *filename;
    PyObject *name;
    int firstlineno;
    PyObject *lnotab;

    if (!PyArg_ParseTuple(args, "iiiiSO!O!O!SSiS|O!O!:code",
                          &argcount, &nlocals, &stacksize, &flags,
                          &code,
                          &PyTuple_Type, &consts,
                          &PyTuple_Type, &names,
                          &PyTuple_Type, &varnames,
                          &filename, &name,
                          &firstlineno, &lnotab,
                          &PyTuple_Type, &freevars,
                          &PyTuple_Type, &cellvars))
        return NULL;

    if (argcount < 0) {
        PyErr_SetString(
            PyExc_ValueError,
            "code: argcount must not be negative");
        goto cleanup;
    }

    if (nlocals < 0) {
        PyErr_SetString(
            PyExc_ValueError,
            "code: nlocals must not be negative");
        goto cleanup;
    }

    ournames = validate_and_copy_tuple(names);
    if (ournames == NULL)
        goto cleanup;
    ourvarnames = validate_and_copy_tuple(varnames);
    if (ourvarnames == NULL)
        goto cleanup;
    if (freevars)
        ourfreevars = validate_and_copy_tuple(freevars);
    else
        ourfreevars = PyTuple_New(0);
    if (ourfreevars == NULL)
        goto cleanup;
    if (cellvars)
        ourcellvars = validate_and_copy_tuple(cellvars);
    else
        ourcellvars = PyTuple_New(0);
    if (ourcellvars == NULL)
        goto cleanup;

    co = (PyObject *)PyCode_New(argcount, nlocals, stacksize, flags,
                                code, consts, ournames, ourvarnames,
                                ourfreevars, ourcellvars, filename,
                                name, firstlineno, lnotab);
  cleanup:
    Py_XDECREF(ournames);
    Py_XDECREF(ourvarnames);
    Py_XDECREF(ourfreevars);
    Py_XDECREF(ourcellvars);
    return co;
}

static void
code_dealloc(PyCodeObject *co)
{
    Py_XDECREF(co->co_code);
    Py_XDECREF(co->co_consts);
    Py_XDECREF(co->co_names);
    Py_XDECREF(co->co_varnames);
    Py_XDECREF(co->co_freevars);
    Py_XDECREF(co->co_cellvars);
    Py_XDECREF(co->co_filename);
    Py_XDECREF(co->co_name);
    Py_XDECREF(co->co_lnotab);
    if (co->co_zombieframe != NULL)
        PyObject_GC_Del(co->co_zombieframe);
    PyObject_DEL(co);
}

static PyObject *
code_repr(PyCodeObject *co)
{
    char buf[500];
    int lineno = -1;
    char *filename = "???";
    char *name = "???";

    if (co->co_firstlineno != 0)
        lineno = co->co_firstlineno;
    if (co->co_filename && PyString_Check(co->co_filename))
        filename = PyString_AS_STRING(co->co_filename);
    if (co->co_name && PyString_Check(co->co_name))
        name = PyString_AS_STRING(co->co_name);
    PyOS_snprintf(buf, sizeof(buf),
                  "<code object %.100s at %p, file \"%.300s\", line %d>",
                  name, co, filename, lineno);
    return PyString_FromString(buf);
}

static int
code_compare(PyCodeObject *co, PyCodeObject *cp)
{
    int cmp;
    cmp = PyObject_Compare(co->co_name, cp->co_name);
    if (cmp) return cmp;
    cmp = co->co_argcount - cp->co_argcount;
    if (cmp) goto normalize;
    cmp = co->co_nlocals - cp->co_nlocals;
    if (cmp) goto normalize;
    cmp = co->co_flags - cp->co_flags;
    if (cmp) goto normalize;
    cmp = co->co_firstlineno - cp->co_firstlineno;
    if (cmp) goto normalize;
    cmp = PyObject_Compare(co->co_code, cp->co_code);
    if (cmp) return cmp;
    cmp = PyObject_Compare(co->co_consts, cp->co_consts);
    if (cmp) return cmp;
    cmp = PyObject_Compare(co->co_names, cp->co_names);
    if (cmp) return cmp;
    cmp = PyObject_Compare(co->co_varnames, cp->co_varnames);
    if (cmp) return cmp;
    cmp = PyObject_Compare(co->co_freevars, cp->co_freevars);
    if (cmp) return cmp;
    cmp = PyObject_Compare(co->co_cellvars, cp->co_cellvars);
    return cmp;

 normalize:
    if (cmp > 0)
        return 1;
    else if (cmp < 0)
        return -1;
    else
        return 0;
}

static PyObject *
code_richcompare(PyObject *self, PyObject *other, int op)
{
    PyCodeObject *co, *cp;
    int eq;
    PyObject *res;

    if ((op != Py_EQ && op != Py_NE) ||
        !PyCode_Check(self) ||
        !PyCode_Check(other)) {

        /* Py3K warning if types are not equal and comparison
        isn't == or !=  */
        if (PyErr_WarnPy3k("code inequality comparisons not supported "
                           "in 3.x", 1) < 0) {
            return NULL;
        }

        Py_INCREF(Py_NotImplemented);
        return Py_NotImplemented;
    }

    co = (PyCodeObject *)self;
    cp = (PyCodeObject *)other;

    eq = PyObject_RichCompareBool(co->co_name, cp->co_name, Py_EQ);
    if (eq <= 0) goto unequal;
    eq = co->co_argcount == cp->co_argcount;
    if (!eq) goto unequal;
    eq = co->co_nlocals == cp->co_nlocals;
    if (!eq) goto unequal;
    eq = co->co_flags == cp->co_flags;
    if (!eq) goto unequal;
    eq = co->co_firstlineno == cp->co_firstlineno;
    if (!eq) goto unequal;
    eq = PyObject_RichCompareBool(co->co_code, cp->co_code, Py_EQ);
    if (eq <= 0) goto unequal;
    eq = PyObject_RichCompareBool(co->co_consts, cp->co_consts, Py_EQ);
    if (eq <= 0) goto unequal;
    eq = PyObject_RichCompareBool(co->co_names, cp->co_names, Py_EQ);
    if (eq <= 0) goto unequal;
    eq = PyObject_RichCompareBool(co->co_varnames, cp->co_varnames, Py_EQ);
    if (eq <= 0) goto unequal;
    eq = PyObject_RichCompareBool(co->co_freevars, cp->co_freevars, Py_EQ);
    if (eq <= 0) goto unequal;
    eq = PyObject_RichCompareBool(co->co_cellvars, cp->co_cellvars, Py_EQ);
    if (eq <= 0) goto unequal;

    if (op == Py_EQ)
        res = Py_True;
    else
        res = Py_False;
    goto done;

  unequal:
    if (eq < 0)
        return NULL;
    if (op == Py_NE)
        res = Py_True;
    else
        res = Py_False;

  done:
    Py_INCREF(res);
    return res;
}

static long
code_hash(PyCodeObject *co)
{
    long h, h0, h1, h2, h3, h4, h5, h6;
    h0 = PyObject_Hash(co->co_name);
    if (h0 == -1) return -1;
    h1 = PyObject_Hash(co->co_code);
    if (h1 == -1) return -1;
    h2 = PyObject_Hash(co->co_consts);
    if (h2 == -1) return -1;
    h3 = PyObject_Hash(co->co_names);
    if (h3 == -1) return -1;
    h4 = PyObject_Hash(co->co_varnames);
    if (h4 == -1) return -1;
    h5 = PyObject_Hash(co->co_freevars);
    if (h5 == -1) return -1;
    h6 = PyObject_Hash(co->co_cellvars);
    if (h6 == -1) return -1;
    h = h0 ^ h1 ^ h2 ^ h3 ^ h4 ^ h5 ^ h6 ^
        co->co_argcount ^ co->co_nlocals ^ co->co_flags;
    if (h == -1) h = -2;
    return h;
}

/* XXX code objects need to participate in GC? */

PyTypeObject PyCode_Type = {
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
    "code",
    sizeof(PyCodeObject),
    0,
    (destructor)code_dealloc,           /* tp_dealloc */
    0,                                  /* tp_print */
    0,                                  /* tp_getattr */
    0,                                  /* tp_setattr */
    (cmpfunc)code_compare,              /* tp_compare */
    (reprfunc)code_repr,                /* tp_repr */
    0,                                  /* tp_as_number */
    0,                                  /* tp_as_sequence */
    0,                                  /* tp_as_mapping */
    (hashfunc)code_hash,                /* tp_hash */
    0,                                  /* tp_call */
    0,                                  /* tp_str */
    PyObject_GenericGetAttr,            /* tp_getattro */
    0,                                  /* tp_setattro */
    0,                                  /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT,                 /* tp_flags */
    code_doc,                           /* tp_doc */
    0,                                  /* tp_traverse */
    0,                                  /* tp_clear */
    code_richcompare,                                   /* tp_richcompare */
    0,                                  /* tp_weaklistoffset */
    0,                                  /* tp_iter */
    0,                                  /* tp_iternext */
    0,                                  /* tp_methods */
    code_memberlist,                    /* tp_members */
    0,                                  /* tp_getset */
    0,                                  /* tp_base */
    0,                                  /* tp_dict */
    0,                                  /* tp_descr_get */
    0,                                  /* tp_descr_set */
    0,                                  /* tp_dictoffset */
    0,                                  /* tp_init */
    0,                                  /* tp_alloc */
    code_new,                           /* tp_new */
};

/* All about c_lnotab.

c_lnotab is an array of unsigned bytes disguised as a Python string.  In -O
mode, SET_LINENO opcodes aren't generated, and bytecode offsets are mapped
to source code line #s (when needed for tracebacks) via c_lnotab instead.
The array is conceptually a list of
    (bytecode offset increment, line number increment)
pairs.  The details are important and delicate, best illustrated by example:

    byte code offset    source code line number
    0                       1
    6                       2
       50                   7
      350                 307
      361                 308

The first trick is that these numbers aren't stored, only the increments
from one row to the next (this doesn't really work, but it's a start):

    0, 1,  6, 1,  44, 5,  300, 300,  11, 1

The second trick is that an unsigned byte can't hold negative values, or
values larger than 255, so (a) there's a deep assumption that byte code
offsets and their corresponding line #s both increase monotonically, and (b)
if at least one column jumps by more than 255 from one row to the next, more
than one pair is written to the table. In case #b, there's no way to know
from looking at the table later how many were written.  That's the delicate
part.  A user of c_lnotab desiring to find the source line number
corresponding to a bytecode address A should do something like this

    lineno = addr = 0
    for addr_incr, line_incr in c_lnotab:
    addr += addr_incr
    if addr > A:
        return lineno
    lineno += line_incr

In order for this to work, when the addr field increments by more than 255,
the line # increment in each pair generated must be 0 until the remaining addr
increment is < 256.  So, in the example above, com_set_lineno should not (as
was actually done until 2.2) expand 300, 300 to 255, 255,  45, 45, but to
255, 0,  45, 255,  0, 45.
*/

int
PyCode_Addr2Line(PyCodeObject *co, int addrq)
{
    int size = PyString_Size(co->co_lnotab) / 2;
    unsigned char *p = (unsigned char*)PyString_AsString(co->co_lnotab);
    int line = co->co_firstlineno;
    int addr = 0;
    while (--size >= 0) {
        addr += *p++;
        if (addr > addrq)
            break;
        line += *p++;
    }
    return line;
}

/*
   Check whether the current instruction is at the start of a line.

 */

    /* The theory of SET_LINENO-less tracing.

       In a nutshell, we use the co_lnotab field of the code object
       to tell when execution has moved onto a different line.

       As mentioned above, the basic idea is so set things up so
       that

         *instr_lb <= frame->f_lasti < *instr_ub

       is true so long as execution does not change lines.

       This is all fairly simple.  Digging the information out of
       co_lnotab takes some work, but is conceptually clear.

       Somewhat harder to explain is why we don't *always* call the
       line trace function when the above test fails.

       Consider this code:

       1: def f(a):
       2:     if a:
       3:        print 1
       4:     else:
       5:        print 2

       which compiles to this:

       2           0 LOAD_FAST                0 (a)
                   3 JUMP_IF_FALSE            9 (to 15)
                   6 POP_TOP

       3           7 LOAD_CONST               1 (1)
                  10 PRINT_ITEM
                  11 PRINT_NEWLINE
                  12 JUMP_FORWARD             6 (to 21)
         >>   15 POP_TOP

       5          16 LOAD_CONST               2 (2)
                  19 PRINT_ITEM
                  20 PRINT_NEWLINE
         >>   21 LOAD_CONST               0 (None)
              24 RETURN_VALUE

       If 'a' is false, execution will jump to instruction at offset
       15 and the co_lnotab will claim that execution has moved to
       line 3.  This is at best misleading.  In this case we could
       associate the POP_TOP with line 4, but that doesn't make
       sense in all cases (I think).

       What we do is only call the line trace function if the co_lnotab
       indicates we have jumped to the *start* of a line, i.e. if the
       current instruction offset matches the offset given for the
       start of a line by the co_lnotab.

       This also takes care of the situation where 'a' is true.
       Execution will jump from instruction offset 12 to offset 21.
       Then the co_lnotab would imply that execution has moved to line
       5, which is again misleading.

       Why do we set f_lineno when tracing?  Well, consider the code
       above when 'a' is true.  If stepping through this with 'n' in
       pdb, you would stop at line 1 with a "call" type event, then
       line events on lines 2 and 3, then a "return" type event -- but
       you would be shown line 5 during this event.  This is a change
       from the behaviour in 2.2 and before, and I've found it
       confusing in practice.  By setting and using f_lineno when
       tracing, one can report a line number different from that
       suggested by f_lasti on this one occasion where it's desirable.
    */


int
PyCode_CheckLineNumber(PyCodeObject* co, int lasti, PyAddrPair *bounds)
{
    int size, addr, line;
    unsigned char* p;

    p = (unsigned char*)PyString_AS_STRING(co->co_lnotab);
    size = PyString_GET_SIZE(co->co_lnotab) / 2;

    addr = 0;
    line = co->co_firstlineno;
    assert(line > 0);

    /* possible optimization: if f->f_lasti == instr_ub
       (likely to be a common case) then we already know
       instr_lb -- if we stored the matching value of p
       somwhere we could skip the first while loop. */

    /* see comments in compile.c for the description of
       co_lnotab.  A point to remember: increments to p
       should come in pairs -- although we don't care about
       the line increments here, treating them as byte
       increments gets confusing, to say the least. */

    bounds->ap_lower = 0;
    while (size > 0) {
        if (addr + *p > lasti)
            break;
        addr += *p++;
        if (*p)
            bounds->ap_lower = addr;
        line += *p++;
        --size;
    }

    /* If lasti and addr don't match exactly, we don't want to
       change the lineno slot on the frame or execute a trace
       function.  Return -1 instead.
    */
    if (addr != lasti)
        line = -1;

    if (size > 0) {
        while (--size >= 0) {
            addr += *p++;
            if (*p++)
                break;
        }
        bounds->ap_upper = addr;
    }
    else {
        bounds->ap_upper = INT_MAX;
    }

    return line;
}