summaryrefslogtreecommitdiffstats
path: root/Objects/complexobject.c
blob: f08f03fcb49a5a55b4e0d2bc0e61b0d13650dbcb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

/* Complex object implementation */

/* Borrows heavily from floatobject.c */

/* Submitted by Jim Hugunin */

#include "Python.h"
#include "pycore_long.h"          // _PyLong_GetZero()
#include "pycore_object.h"        // _PyObject_Init()
#include "pycore_pymath.h"        // _Py_ADJUST_ERANGE2()
#include "structmember.h"         // PyMemberDef


/*[clinic input]
class complex "PyComplexObject *" "&PyComplex_Type"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=819e057d2d10f5ec]*/

#include "clinic/complexobject.c.h"

/* elementary operations on complex numbers */

static Py_complex c_1 = {1., 0.};

Py_complex
_Py_c_sum(Py_complex a, Py_complex b)
{
    Py_complex r;
    r.real = a.real + b.real;
    r.imag = a.imag + b.imag;
    return r;
}

Py_complex
_Py_c_diff(Py_complex a, Py_complex b)
{
    Py_complex r;
    r.real = a.real - b.real;
    r.imag = a.imag - b.imag;
    return r;
}

Py_complex
_Py_c_neg(Py_complex a)
{
    Py_complex r;
    r.real = -a.real;
    r.imag = -a.imag;
    return r;
}

Py_complex
_Py_c_prod(Py_complex a, Py_complex b)
{
    Py_complex r;
    r.real = a.real*b.real - a.imag*b.imag;
    r.imag = a.real*b.imag + a.imag*b.real;
    return r;
}

/* Avoid bad optimization on Windows ARM64 until the compiler is fixed */
#ifdef _M_ARM64
#pragma optimize("", off)
#endif
Py_complex
_Py_c_quot(Py_complex a, Py_complex b)
{
    /******************************************************************
    This was the original algorithm.  It's grossly prone to spurious
    overflow and underflow errors.  It also merrily divides by 0 despite
    checking for that(!).  The code still serves a doc purpose here, as
    the algorithm following is a simple by-cases transformation of this
    one:

    Py_complex r;
    double d = b.real*b.real + b.imag*b.imag;
    if (d == 0.)
        errno = EDOM;
    r.real = (a.real*b.real + a.imag*b.imag)/d;
    r.imag = (a.imag*b.real - a.real*b.imag)/d;
    return r;
    ******************************************************************/

    /* This algorithm is better, and is pretty obvious:  first divide the
     * numerators and denominator by whichever of {b.real, b.imag} has
     * larger magnitude.  The earliest reference I found was to CACM
     * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
     * University).  As usual, though, we're still ignoring all IEEE
     * endcases.
     */
     Py_complex r;      /* the result */
     const double abs_breal = b.real < 0 ? -b.real : b.real;
     const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;

    if (abs_breal >= abs_bimag) {
        /* divide tops and bottom by b.real */
        if (abs_breal == 0.0) {
            errno = EDOM;
            r.real = r.imag = 0.0;
        }
        else {
            const double ratio = b.imag / b.real;
            const double denom = b.real + b.imag * ratio;
            r.real = (a.real + a.imag * ratio) / denom;
            r.imag = (a.imag - a.real * ratio) / denom;
        }
    }
    else if (abs_bimag >= abs_breal) {
        /* divide tops and bottom by b.imag */
        const double ratio = b.real / b.imag;
        const double denom = b.real * ratio + b.imag;
        assert(b.imag != 0.0);
        r.real = (a.real * ratio + a.imag) / denom;
        r.imag = (a.imag * ratio - a.real) / denom;
    }
    else {
        /* At least one of b.real or b.imag is a NaN */
        r.real = r.imag = Py_NAN;
    }
    return r;
}
#ifdef _M_ARM64
#pragma optimize("", on)
#endif

Py_complex
_Py_c_pow(Py_complex a, Py_complex b)
{
    Py_complex r;
    double vabs,len,at,phase;
    if (b.real == 0. && b.imag == 0.) {
        r.real = 1.;
        r.imag = 0.;
    }
    else if (a.real == 0. && a.imag == 0.) {
        if (b.imag != 0. || b.real < 0.)
            errno = EDOM;
        r.real = 0.;
        r.imag = 0.;
    }
    else {
        vabs = hypot(a.real,a.imag);
        len = pow(vabs,b.real);
        at = atan2(a.imag, a.real);
        phase = at*b.real;
        if (b.imag != 0.0) {
            len /= exp(at*b.imag);
            phase += b.imag*log(vabs);
        }
        r.real = len*cos(phase);
        r.imag = len*sin(phase);
    }
    return r;
}

static Py_complex
c_powu(Py_complex x, long n)
{
    Py_complex r, p;
    long mask = 1;
    r = c_1;
    p = x;
    while (mask > 0 && n >= mask) {
        if (n & mask)
            r = _Py_c_prod(r,p);
        mask <<= 1;
        p = _Py_c_prod(p,p);
    }
    return r;
}

static Py_complex
c_powi(Py_complex x, long n)
{
    if (n > 0)
        return c_powu(x,n);
    else
        return _Py_c_quot(c_1, c_powu(x,-n));

}

double
_Py_c_abs(Py_complex z)
{
    /* sets errno = ERANGE on overflow;  otherwise errno = 0 */
    double result;

    if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
        /* C99 rules: if either the real or the imaginary part is an
           infinity, return infinity, even if the other part is a
           NaN. */
        if (Py_IS_INFINITY(z.real)) {
            result = fabs(z.real);
            errno = 0;
            return result;
        }
        if (Py_IS_INFINITY(z.imag)) {
            result = fabs(z.imag);
            errno = 0;
            return result;
        }
        /* either the real or imaginary part is a NaN,
           and neither is infinite. Result should be NaN. */
        return Py_NAN;
    }
    result = hypot(z.real, z.imag);
    if (!Py_IS_FINITE(result))
        errno = ERANGE;
    else
        errno = 0;
    return result;
}

static PyObject *
complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
{
    PyObject *op;

    op = type->tp_alloc(type, 0);
    if (op != NULL)
        ((PyComplexObject *)op)->cval = cval;
    return op;
}

PyObject *
PyComplex_FromCComplex(Py_complex cval)
{
    /* Inline PyObject_New */
    PyComplexObject *op = PyObject_Malloc(sizeof(PyComplexObject));
    if (op == NULL) {
        return PyErr_NoMemory();
    }
    _PyObject_Init((PyObject*)op, &PyComplex_Type);
    op->cval = cval;
    return (PyObject *) op;
}

static PyObject *
complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
{
    Py_complex c;
    c.real = real;
    c.imag = imag;
    return complex_subtype_from_c_complex(type, c);
}

PyObject *
PyComplex_FromDoubles(double real, double imag)
{
    Py_complex c;
    c.real = real;
    c.imag = imag;
    return PyComplex_FromCComplex(c);
}

double
PyComplex_RealAsDouble(PyObject *op)
{
    if (PyComplex_Check(op)) {
        return ((PyComplexObject *)op)->cval.real;
    }
    else {
        return PyFloat_AsDouble(op);
    }
}

double
PyComplex_ImagAsDouble(PyObject *op)
{
    if (PyComplex_Check(op)) {
        return ((PyComplexObject *)op)->cval.imag;
    }
    else {
        return 0.0;
    }
}

static PyObject *
try_complex_special_method(PyObject *op)
{
    PyObject *f;
    _Py_IDENTIFIER(__complex__);

    f = _PyObject_LookupSpecial(op, &PyId___complex__);
    if (f) {
        PyObject *res = _PyObject_CallNoArg(f);
        Py_DECREF(f);
        if (!res || PyComplex_CheckExact(res)) {
            return res;
        }
        if (!PyComplex_Check(res)) {
            PyErr_Format(PyExc_TypeError,
                "__complex__ returned non-complex (type %.200s)",
                Py_TYPE(res)->tp_name);
            Py_DECREF(res);
            return NULL;
        }
        /* Issue #29894: warn if 'res' not of exact type complex. */
        if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
                "__complex__ returned non-complex (type %.200s).  "
                "The ability to return an instance of a strict subclass of complex "
                "is deprecated, and may be removed in a future version of Python.",
                Py_TYPE(res)->tp_name)) {
            Py_DECREF(res);
            return NULL;
        }
        return res;
    }
    return NULL;
}

Py_complex
PyComplex_AsCComplex(PyObject *op)
{
    Py_complex cv;
    PyObject *newop = NULL;

    assert(op);
    /* If op is already of type PyComplex_Type, return its value */
    if (PyComplex_Check(op)) {
        return ((PyComplexObject *)op)->cval;
    }
    /* If not, use op's __complex__  method, if it exists */

    /* return -1 on failure */
    cv.real = -1.;
    cv.imag = 0.;

    newop = try_complex_special_method(op);

    if (newop) {
        cv = ((PyComplexObject *)newop)->cval;
        Py_DECREF(newop);
        return cv;
    }
    else if (PyErr_Occurred()) {
        return cv;
    }
    /* If neither of the above works, interpret op as a float giving the
       real part of the result, and fill in the imaginary part as 0. */
    else {
        /* PyFloat_AsDouble will return -1 on failure */
        cv.real = PyFloat_AsDouble(op);
        return cv;
    }
}

static PyObject *
complex_repr(PyComplexObject *v)
{
    int precision = 0;
    char format_code = 'r';
    PyObject *result = NULL;

    /* If these are non-NULL, they'll need to be freed. */
    char *pre = NULL;
    char *im = NULL;

    /* These do not need to be freed. re is either an alias
       for pre or a pointer to a constant.  lead and tail
       are pointers to constants. */
    const char *re = NULL;
    const char *lead = "";
    const char *tail = "";

    if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
        /* Real part is +0: just output the imaginary part and do not
           include parens. */
        re = "";
        im = PyOS_double_to_string(v->cval.imag, format_code,
                                   precision, 0, NULL);
        if (!im) {
            PyErr_NoMemory();
            goto done;
        }
    } else {
        /* Format imaginary part with sign, real part without. Include
           parens in the result. */
        pre = PyOS_double_to_string(v->cval.real, format_code,
                                    precision, 0, NULL);
        if (!pre) {
            PyErr_NoMemory();
            goto done;
        }
        re = pre;

        im = PyOS_double_to_string(v->cval.imag, format_code,
                                   precision, Py_DTSF_SIGN, NULL);
        if (!im) {
            PyErr_NoMemory();
            goto done;
        }
        lead = "(";
        tail = ")";
    }
    result = PyUnicode_FromFormat("%s%s%sj%s", lead, re, im, tail);
  done:
    PyMem_Free(im);
    PyMem_Free(pre);

    return result;
}

static Py_hash_t
complex_hash(PyComplexObject *v)
{
    Py_uhash_t hashreal, hashimag, combined;
    hashreal = (Py_uhash_t)_Py_HashDouble((PyObject *) v, v->cval.real);
    if (hashreal == (Py_uhash_t)-1)
        return -1;
    hashimag = (Py_uhash_t)_Py_HashDouble((PyObject *)v, v->cval.imag);
    if (hashimag == (Py_uhash_t)-1)
        return -1;
    /* Note:  if the imaginary part is 0, hashimag is 0 now,
     * so the following returns hashreal unchanged.  This is
     * important because numbers of different types that
     * compare equal must have the same hash value, so that
     * hash(x + 0*j) must equal hash(x).
     */
    combined = hashreal + _PyHASH_IMAG * hashimag;
    if (combined == (Py_uhash_t)-1)
        combined = (Py_uhash_t)-2;
    return (Py_hash_t)combined;
}

/* This macro may return! */
#define TO_COMPLEX(obj, c) \
    if (PyComplex_Check(obj)) \
        c = ((PyComplexObject *)(obj))->cval; \
    else if (to_complex(&(obj), &(c)) < 0) \
        return (obj)

static int
to_complex(PyObject **pobj, Py_complex *pc)
{
    PyObject *obj = *pobj;

    pc->real = pc->imag = 0.0;
    if (PyLong_Check(obj)) {
        pc->real = PyLong_AsDouble(obj);
        if (pc->real == -1.0 && PyErr_Occurred()) {
            *pobj = NULL;
            return -1;
        }
        return 0;
    }
    if (PyFloat_Check(obj)) {
        pc->real = PyFloat_AsDouble(obj);
        return 0;
    }
    Py_INCREF(Py_NotImplemented);
    *pobj = Py_NotImplemented;
    return -1;
}


static PyObject *
complex_add(PyObject *v, PyObject *w)
{
    Py_complex result;
    Py_complex a, b;
    TO_COMPLEX(v, a);
    TO_COMPLEX(w, b);
    result = _Py_c_sum(a, b);
    return PyComplex_FromCComplex(result);
}

static PyObject *
complex_sub(PyObject *v, PyObject *w)
{
    Py_complex result;
    Py_complex a, b;
    TO_COMPLEX(v, a);
    TO_COMPLEX(w, b);
    result = _Py_c_diff(a, b);
    return PyComplex_FromCComplex(result);
}

static PyObject *
complex_mul(PyObject *v, PyObject *w)
{
    Py_complex result;
    Py_complex a, b;
    TO_COMPLEX(v, a);
    TO_COMPLEX(w, b);
    result = _Py_c_prod(a, b);
    return PyComplex_FromCComplex(result);
}

static PyObject *
complex_div(PyObject *v, PyObject *w)
{
    Py_complex quot;
    Py_complex a, b;
    TO_COMPLEX(v, a);
    TO_COMPLEX(w, b);
    errno = 0;
    quot = _Py_c_quot(a, b);
    if (errno == EDOM) {
        PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
        return NULL;
    }
    return PyComplex_FromCComplex(quot);
}

static PyObject *
complex_pow(PyObject *v, PyObject *w, PyObject *z)
{
    Py_complex p;
    Py_complex a, b;
    TO_COMPLEX(v, a);
    TO_COMPLEX(w, b);

    if (z != Py_None) {
        PyErr_SetString(PyExc_ValueError, "complex modulo");
        return NULL;
    }
    errno = 0;
    // Check whether the exponent has a small integer value, and if so use
    // a faster and more accurate algorithm.
    if (b.imag == 0.0 && b.real == floor(b.real) && fabs(b.real) <= 100.0) {
        p = c_powi(a, (long)b.real);
    }
    else {
        p = _Py_c_pow(a, b);
    }

    _Py_ADJUST_ERANGE2(p.real, p.imag);
    if (errno == EDOM) {
        PyErr_SetString(PyExc_ZeroDivisionError,
                        "0.0 to a negative or complex power");
        return NULL;
    }
    else if (errno == ERANGE) {
        PyErr_SetString(PyExc_OverflowError,
                        "complex exponentiation");
        return NULL;
    }
    return PyComplex_FromCComplex(p);
}

static PyObject *
complex_neg(PyComplexObject *v)
{
    Py_complex neg;
    neg.real = -v->cval.real;
    neg.imag = -v->cval.imag;
    return PyComplex_FromCComplex(neg);
}

static PyObject *
complex_pos(PyComplexObject *v)
{
    if (PyComplex_CheckExact(v)) {
        Py_INCREF(v);
        return (PyObject *)v;
    }
    else
        return PyComplex_FromCComplex(v->cval);
}

static PyObject *
complex_abs(PyComplexObject *v)
{
    double result;

    result = _Py_c_abs(v->cval);

    if (errno == ERANGE) {
        PyErr_SetString(PyExc_OverflowError,
                        "absolute value too large");
        return NULL;
    }
    return PyFloat_FromDouble(result);
}

static int
complex_bool(PyComplexObject *v)
{
    return v->cval.real != 0.0 || v->cval.imag != 0.0;
}

static PyObject *
complex_richcompare(PyObject *v, PyObject *w, int op)
{
    PyObject *res;
    Py_complex i;
    int equal;

    if (op != Py_EQ && op != Py_NE) {
        goto Unimplemented;
    }

    assert(PyComplex_Check(v));
    TO_COMPLEX(v, i);

    if (PyLong_Check(w)) {
        /* Check for 0.0 imaginary part first to avoid the rich
         * comparison when possible.
         */
        if (i.imag == 0.0) {
            PyObject *j, *sub_res;
            j = PyFloat_FromDouble(i.real);
            if (j == NULL)
                return NULL;

            sub_res = PyObject_RichCompare(j, w, op);
            Py_DECREF(j);
            return sub_res;
        }
        else {
            equal = 0;
        }
    }
    else if (PyFloat_Check(w)) {
        equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0);
    }
    else if (PyComplex_Check(w)) {
        Py_complex j;

        TO_COMPLEX(w, j);
        equal = (i.real == j.real && i.imag == j.imag);
    }
    else {
        goto Unimplemented;
    }

    if (equal == (op == Py_EQ))
         res = Py_True;
    else
         res = Py_False;

    Py_INCREF(res);
    return res;

Unimplemented:
    Py_RETURN_NOTIMPLEMENTED;
}

/*[clinic input]
complex.conjugate

Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.
[clinic start generated code]*/

static PyObject *
complex_conjugate_impl(PyComplexObject *self)
/*[clinic end generated code: output=5059ef162edfc68e input=5fea33e9747ec2c4]*/
{
    Py_complex c = self->cval;
    c.imag = -c.imag;
    return PyComplex_FromCComplex(c);
}

/*[clinic input]
complex.__getnewargs__

[clinic start generated code]*/

static PyObject *
complex___getnewargs___impl(PyComplexObject *self)
/*[clinic end generated code: output=689b8206e8728934 input=539543e0a50533d7]*/
{
    Py_complex c = self->cval;
    return Py_BuildValue("(dd)", c.real, c.imag);
}


/*[clinic input]
complex.__format__

    format_spec: unicode
    /

Convert to a string according to format_spec.
[clinic start generated code]*/

static PyObject *
complex___format___impl(PyComplexObject *self, PyObject *format_spec)
/*[clinic end generated code: output=bfcb60df24cafea0 input=014ef5488acbe1d5]*/
{
    _PyUnicodeWriter writer;
    int ret;
    _PyUnicodeWriter_Init(&writer);
    ret = _PyComplex_FormatAdvancedWriter(
        &writer,
        (PyObject *)self,
        format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
    if (ret == -1) {
        _PyUnicodeWriter_Dealloc(&writer);
        return NULL;
    }
    return _PyUnicodeWriter_Finish(&writer);
}

/*[clinic input]
complex.__complex__

Convert this value to exact type complex.
[clinic start generated code]*/

static PyObject *
complex___complex___impl(PyComplexObject *self)
/*[clinic end generated code: output=e6b35ba3d275dc9c input=3589ada9d27db854]*/
{
    if (PyComplex_CheckExact(self)) {
        Py_INCREF(self);
        return (PyObject *)self;
    }
    else {
        return PyComplex_FromCComplex(self->cval);
    }
}


static PyMethodDef complex_methods[] = {
    COMPLEX_CONJUGATE_METHODDEF
    COMPLEX___COMPLEX___METHODDEF
    COMPLEX___GETNEWARGS___METHODDEF
    COMPLEX___FORMAT___METHODDEF
    {NULL,              NULL}           /* sentinel */
};

static PyMemberDef complex_members[] = {
    {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
     "the real part of a complex number"},
    {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
     "the imaginary part of a complex number"},
    {0},
};

static PyObject *
complex_from_string_inner(const char *s, Py_ssize_t len, void *type)
{
    double x=0.0, y=0.0, z;
    int got_bracket=0;
    const char *start;
    char *end;

    /* position on first nonblank */
    start = s;
    while (Py_ISSPACE(*s))
        s++;
    if (*s == '(') {
        /* Skip over possible bracket from repr(). */
        got_bracket = 1;
        s++;
        while (Py_ISSPACE(*s))
            s++;
    }

    /* a valid complex string usually takes one of the three forms:

         <float>                  - real part only
         <float>j                 - imaginary part only
         <float><signed-float>j   - real and imaginary parts

       where <float> represents any numeric string that's accepted by the
       float constructor (including 'nan', 'inf', 'infinity', etc.), and
       <signed-float> is any string of the form <float> whose first
       character is '+' or '-'.

       For backwards compatibility, the extra forms

         <float><sign>j
         <sign>j
         j

       are also accepted, though support for these forms may be removed from
       a future version of Python.
    */

    /* first look for forms starting with <float> */
    z = PyOS_string_to_double(s, &end, NULL);
    if (z == -1.0 && PyErr_Occurred()) {
        if (PyErr_ExceptionMatches(PyExc_ValueError))
            PyErr_Clear();
        else
            return NULL;
    }
    if (end != s) {
        /* all 4 forms starting with <float> land here */
        s = end;
        if (*s == '+' || *s == '-') {
            /* <float><signed-float>j | <float><sign>j */
            x = z;
            y = PyOS_string_to_double(s, &end, NULL);
            if (y == -1.0 && PyErr_Occurred()) {
                if (PyErr_ExceptionMatches(PyExc_ValueError))
                    PyErr_Clear();
                else
                    return NULL;
            }
            if (end != s)
                /* <float><signed-float>j */
                s = end;
            else {
                /* <float><sign>j */
                y = *s == '+' ? 1.0 : -1.0;
                s++;
            }
            if (!(*s == 'j' || *s == 'J'))
                goto parse_error;
            s++;
        }
        else if (*s == 'j' || *s == 'J') {
            /* <float>j */
            s++;
            y = z;
        }
        else
            /* <float> */
            x = z;
    }
    else {
        /* not starting with <float>; must be <sign>j or j */
        if (*s == '+' || *s == '-') {
            /* <sign>j */
            y = *s == '+' ? 1.0 : -1.0;
            s++;
        }
        else
            /* j */
            y = 1.0;
        if (!(*s == 'j' || *s == 'J'))
            goto parse_error;
        s++;
    }

    /* trailing whitespace and closing bracket */
    while (Py_ISSPACE(*s))
        s++;
    if (got_bracket) {
        /* if there was an opening parenthesis, then the corresponding
           closing parenthesis should be right here */
        if (*s != ')')
            goto parse_error;
        s++;
        while (Py_ISSPACE(*s))
            s++;
    }

    /* we should now be at the end of the string */
    if (s-start != len)
        goto parse_error;

    return complex_subtype_from_doubles((PyTypeObject *)type, x, y);

  parse_error:
    PyErr_SetString(PyExc_ValueError,
                    "complex() arg is a malformed string");
    return NULL;
}

static PyObject *
complex_subtype_from_string(PyTypeObject *type, PyObject *v)
{
    const char *s;
    PyObject *s_buffer = NULL, *result = NULL;
    Py_ssize_t len;

    if (PyUnicode_Check(v)) {
        s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
        if (s_buffer == NULL) {
            return NULL;
        }
        assert(PyUnicode_IS_ASCII(s_buffer));
        /* Simply get a pointer to existing ASCII characters. */
        s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
        assert(s != NULL);
    }
    else {
        PyErr_Format(PyExc_TypeError,
            "complex() argument must be a string or a number, not '%.200s'",
            Py_TYPE(v)->tp_name);
        return NULL;
    }

    result = _Py_string_to_number_with_underscores(s, len, "complex", v, type,
                                                   complex_from_string_inner);
    Py_DECREF(s_buffer);
    return result;
}

/*[clinic input]
@classmethod
complex.__new__ as complex_new
    real as r: object(c_default="NULL") = 0
    imag as i: object(c_default="NULL") = 0

Create a complex number from a real part and an optional imaginary part.

This is equivalent to (real + imag*1j) where imag defaults to 0.
[clinic start generated code]*/

static PyObject *
complex_new_impl(PyTypeObject *type, PyObject *r, PyObject *i)
/*[clinic end generated code: output=b6c7dd577b537dc1 input=f4c667f2596d4fd1]*/
{
    PyObject *tmp;
    PyNumberMethods *nbr, *nbi = NULL;
    Py_complex cr, ci;
    int own_r = 0;
    int cr_is_complex = 0;
    int ci_is_complex = 0;

    if (r == NULL) {
        r = _PyLong_GetZero();
    }

    /* Special-case for a single argument when type(arg) is complex. */
    if (PyComplex_CheckExact(r) && i == NULL &&
        type == &PyComplex_Type) {
        /* Note that we can't know whether it's safe to return
           a complex *subclass* instance as-is, hence the restriction
           to exact complexes here.  If either the input or the
           output is a complex subclass, it will be handled below
           as a non-orthogonal vector.  */
        Py_INCREF(r);
        return r;
    }
    if (PyUnicode_Check(r)) {
        if (i != NULL) {
            PyErr_SetString(PyExc_TypeError,
                            "complex() can't take second arg"
                            " if first is a string");
            return NULL;
        }
        return complex_subtype_from_string(type, r);
    }
    if (i != NULL && PyUnicode_Check(i)) {
        PyErr_SetString(PyExc_TypeError,
                        "complex() second arg can't be a string");
        return NULL;
    }

    tmp = try_complex_special_method(r);
    if (tmp) {
        r = tmp;
        own_r = 1;
    }
    else if (PyErr_Occurred()) {
        return NULL;
    }

    nbr = Py_TYPE(r)->tp_as_number;
    if (nbr == NULL ||
        (nbr->nb_float == NULL && nbr->nb_index == NULL && !PyComplex_Check(r)))
    {
        PyErr_Format(PyExc_TypeError,
                     "complex() first argument must be a string or a number, "
                     "not '%.200s'",
                     Py_TYPE(r)->tp_name);
        if (own_r) {
            Py_DECREF(r);
        }
        return NULL;
    }
    if (i != NULL) {
        nbi = Py_TYPE(i)->tp_as_number;
        if (nbi == NULL ||
            (nbi->nb_float == NULL && nbi->nb_index == NULL && !PyComplex_Check(i)))
        {
            PyErr_Format(PyExc_TypeError,
                         "complex() second argument must be a number, "
                         "not '%.200s'",
                         Py_TYPE(i)->tp_name);
            if (own_r) {
                Py_DECREF(r);
            }
            return NULL;
        }
    }

    /* If we get this far, then the "real" and "imag" parts should
       both be treated as numbers, and the constructor should return a
       complex number equal to (real + imag*1j).

       Note that we do NOT assume the input to already be in canonical
       form; the "real" and "imag" parts might themselves be complex
       numbers, which slightly complicates the code below. */
    if (PyComplex_Check(r)) {
        /* Note that if r is of a complex subtype, we're only
           retaining its real & imag parts here, and the return
           value is (properly) of the builtin complex type. */
        cr = ((PyComplexObject*)r)->cval;
        cr_is_complex = 1;
        if (own_r) {
            Py_DECREF(r);
        }
    }
    else {
        /* The "real" part really is entirely real, and contributes
           nothing in the imaginary direction.
           Just treat it as a double. */
        tmp = PyNumber_Float(r);
        if (own_r) {
            /* r was a newly created complex number, rather
               than the original "real" argument. */
            Py_DECREF(r);
        }
        if (tmp == NULL)
            return NULL;
        assert(PyFloat_Check(tmp));
        cr.real = PyFloat_AsDouble(tmp);
        cr.imag = 0.0;
        Py_DECREF(tmp);
    }
    if (i == NULL) {
        ci.real = cr.imag;
    }
    else if (PyComplex_Check(i)) {
        ci = ((PyComplexObject*)i)->cval;
        ci_is_complex = 1;
    } else {
        /* The "imag" part really is entirely imaginary, and
           contributes nothing in the real direction.
           Just treat it as a double. */
        tmp = PyNumber_Float(i);
        if (tmp == NULL)
            return NULL;
        ci.real = PyFloat_AsDouble(tmp);
        Py_DECREF(tmp);
    }
    /*  If the input was in canonical form, then the "real" and "imag"
        parts are real numbers, so that ci.imag and cr.imag are zero.
        We need this correction in case they were not real numbers. */

    if (ci_is_complex) {
        cr.real -= ci.imag;
    }
    if (cr_is_complex && i != NULL) {
        ci.real += cr.imag;
    }
    return complex_subtype_from_doubles(type, cr.real, ci.real);
}

static PyNumberMethods complex_as_number = {
    (binaryfunc)complex_add,                    /* nb_add */
    (binaryfunc)complex_sub,                    /* nb_subtract */
    (binaryfunc)complex_mul,                    /* nb_multiply */
    0,                                          /* nb_remainder */
    0,                                          /* nb_divmod */
    (ternaryfunc)complex_pow,                   /* nb_power */
    (unaryfunc)complex_neg,                     /* nb_negative */
    (unaryfunc)complex_pos,                     /* nb_positive */
    (unaryfunc)complex_abs,                     /* nb_absolute */
    (inquiry)complex_bool,                      /* nb_bool */
    0,                                          /* nb_invert */
    0,                                          /* nb_lshift */
    0,                                          /* nb_rshift */
    0,                                          /* nb_and */
    0,                                          /* nb_xor */
    0,                                          /* nb_or */
    0,                                          /* nb_int */
    0,                                          /* nb_reserved */
    0,                                          /* nb_float */
    0,                                          /* nb_inplace_add */
    0,                                          /* nb_inplace_subtract */
    0,                                          /* nb_inplace_multiply*/
    0,                                          /* nb_inplace_remainder */
    0,                                          /* nb_inplace_power */
    0,                                          /* nb_inplace_lshift */
    0,                                          /* nb_inplace_rshift */
    0,                                          /* nb_inplace_and */
    0,                                          /* nb_inplace_xor */
    0,                                          /* nb_inplace_or */
    0,                                          /* nb_floor_divide */
    (binaryfunc)complex_div,                    /* nb_true_divide */
    0,                                          /* nb_inplace_floor_divide */
    0,                                          /* nb_inplace_true_divide */
};

PyTypeObject PyComplex_Type = {
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
    "complex",
    sizeof(PyComplexObject),
    0,
    0,                                          /* tp_dealloc */
    0,                                          /* tp_vectorcall_offset */
    0,                                          /* tp_getattr */
    0,                                          /* tp_setattr */
    0,                                          /* tp_as_async */
    (reprfunc)complex_repr,                     /* tp_repr */
    &complex_as_number,                         /* tp_as_number */
    0,                                          /* tp_as_sequence */
    0,                                          /* tp_as_mapping */
    (hashfunc)complex_hash,                     /* tp_hash */
    0,                                          /* tp_call */
    0,                                          /* tp_str */
    PyObject_GenericGetAttr,                    /* tp_getattro */
    0,                                          /* tp_setattro */
    0,                                          /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,   /* tp_flags */
    complex_new__doc__,                         /* tp_doc */
    0,                                          /* tp_traverse */
    0,                                          /* tp_clear */
    complex_richcompare,                        /* tp_richcompare */
    0,                                          /* tp_weaklistoffset */
    0,                                          /* tp_iter */
    0,                                          /* tp_iternext */
    complex_methods,                            /* tp_methods */
    complex_members,                            /* tp_members */
    0,                                          /* tp_getset */
    0,                                          /* tp_base */
    0,                                          /* tp_dict */
    0,                                          /* tp_descr_get */
    0,                                          /* tp_descr_set */
    0,                                          /* tp_dictoffset */
    0,                                          /* tp_init */
    PyType_GenericAlloc,                        /* tp_alloc */
    complex_new,                                /* tp_new */
    PyObject_Del,                               /* tp_free */
};