1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
|
/* Complex object implementation */
/* Borrows heavily from floatobject.c */
#ifndef WITHOUT_COMPLEX
#include "allobjects.h"
#include "modsupport.h"
#include <errno.h>
#include "mymath.h"
#ifdef i860
/* Cray APP has bogus definition of HUGE_VAL in <math.h> */
#undef HUGE_VAL
#endif
#ifdef HUGE_VAL
#define CHECK(x) if (errno != 0) ; \
else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \
else errno = ERANGE
#else
#define CHECK(x) /* Don't know how to check */
#endif
#ifdef HAVE_LIMITS_H
#include <limits.h>
#endif
#ifndef LONG_MAX
#define LONG_MAX 0X7FFFFFFFL
#endif
#ifndef LONG_MIN
#define LONG_MIN (-LONG_MAX-1)
#endif
#ifdef __NeXT__
#ifdef __sparc__
/*
* This works around a bug in the NS/Sparc 3.3 pre-release
* limits.h header file.
* 10-Feb-1995 bwarsaw@cnri.reston.va.us
*/
#undef LONG_MIN
#define LONG_MIN (-LONG_MAX-1)
#endif
#endif
#if !defined(__STDC__) && !defined(macintosh)
extern double fmod PROTO((double, double));
extern double pow PROTO((double, double));
#endif
/* elementary operations on complex numbers */
int c_error;
static complex c_1 = {1., 0.};
complex c_sum(a,b)
complex a,b;
{
complex r;
r.real = a.real + b.real;
r.imag = a.imag + b.imag;
return r;
}
complex c_diff(a,b)
complex a,b;
{
complex r;
r.real = a.real - b.real;
r.imag = a.imag - b.imag;
return r;
}
complex c_neg(a)
complex a;
{
complex r;
r.real = -a.real;
r.imag = -a.imag;
return r;
}
complex c_prod(a,b)
complex a,b;
{
complex r;
r.real = a.real*b.real - a.imag*b.imag;
r.imag = a.real*b.imag + a.imag*b.real;
return r;
}
complex c_quot(a,b)
complex a,b;
{
complex r;
double d = b.real*b.real + b.imag*b.imag;
if (d == 0.)
c_error = 1;
r.real = (a.real*b.real + a.imag*b.imag)/d;
r.imag = (a.imag*b.real - a.real*b.imag)/d;
return r;
}
complex c_pow(a,b)
complex a,b;
{
complex r;
double vabs,len,at,phase;
if (b.real == 0. && b.imag == 0.) {
r.real = 1.;
r.imag = 0.;
}
else if (a.real == 0. && a.imag == 0.) {
if (b.imag != 0. || b.real < 0.)
c_error = 2;
r.real = 0.;
r.imag = 0.;
}
else {
vabs = hypot(a.real,a.imag);
len = pow(vabs,b.real);
at = atan2(a.imag, a.real);
phase = at*b.real;
if (b.imag != 0.0) {
len /= exp(at*b.imag);
phase += b.imag*log(vabs);
}
r.real = len*cos(phase);
r.imag = len*sin(phase);
}
return r;
}
complex c_powu(x, n)
complex x;
long n;
{
complex r = c_1;
complex p = x;
long mask = 1;
while (mask > 0 && n >= mask) {
if (n & mask)
r = c_prod(r,p);
mask <<= 1;
p = c_prod(p,p);
}
return r;
}
complex c_powi(x, n)
complex x;
long n;
{
complex cn;
if (n > 100 || n < -100) {
cn.real = (double) n;
cn.imag = 0.;
return c_pow(x,cn);
}
else if (n > 0)
return c_powu(x,n);
else
return c_quot(c_1,c_powu(x,-n));
}
PyObject *
PyComplex_FromCComplex(complex cval)
{
register complexobject *op = (complexobject *) malloc(sizeof(complexobject));
if (op == NULL)
return err_nomem();
op->ob_type = &Complextype;
op->cval = cval;
NEWREF(op);
return (object *) op;
}
PyObject *
PyComplex_FromDoubles(double real, double imag) {
complex c;
c.real = real;
c.imag = imag;
return PyComplex_FromCComplex(c);
}
double
PyComplex_RealAsDouble(PyObject *op) {
if (PyComplex_Check(op)) {
return ((PyComplexObject *)op)->cval.real;
} else {
return PyFloat_AsDouble(op);
}
}
double
PyComplex_ImagAsDouble(PyObject *op) {
if (PyComplex_Check(op)) {
return ((PyComplexObject *)op)->cval.imag;
} else {
return 0.0;
}
}
static void
complex_dealloc(op)
object *op;
{
DEL(op);
}
void
complex_buf_repr(buf, v)
char *buf;
complexobject *v;
{
if (v->cval.real == 0.)
sprintf(buf, "%.12gi", v->cval.imag);
else
sprintf(buf, "(%.12g%+.12gi)", v->cval.real, v->cval.imag);
}
static int
complex_print(v, fp, flags)
complexobject *v;
FILE *fp;
int flags; /* Not used but required by interface */
{
char buf[100];
complex_buf_repr(buf, v);
fputs(buf, fp);
return 0;
}
static object *
complex_repr(v)
complexobject *v;
{
char buf[100];
complex_buf_repr(buf, v);
return newstringobject(buf);
}
static int
complex_compare(v, w)
complexobject *v, *w;
{
/* Note: "greater" and "smaller" have no meaning for complex numbers,
but Python requires that they be defined nevertheless. */
complex i = v->cval;
complex j = w->cval;
if (i.real == j.real && i.imag == j.imag)
return 0;
else if (i.real != j.real)
return (i.real < j.real) ? -1 : 1;
else
return (i.imag < j.imag) ? -1 : 1;
}
static long
complex_hash(v)
complexobject *v;
{
double intpart, fractpart;
int expo;
long x;
/* This is designed so that Python numbers with the same
value hash to the same value, otherwise comparisons
of mapping keys will turn out weird */
#ifdef MPW /* MPW C modf expects pointer to extended as second argument */
{
extended e;
fractpart = modf(v->cval.real, &e);
intpart = e;
}
#else
fractpart = modf(v->cval.real, &intpart);
#endif
if (fractpart == 0.0) {
if (intpart > 0x7fffffffL || -intpart > 0x7fffffffL) {
/* Convert to long int and use its hash... */
object *w = dnewlongobject(v->cval.real);
if (w == NULL)
return -1;
x = hashobject(w);
DECREF(w);
return x;
}
x = (long)intpart;
}
else {
fractpart = frexp(fractpart, &expo);
fractpart = fractpart*2147483648.0; /* 2**31 */
x = (long) (intpart + fractpart) ^ expo; /* Rather arbitrary */
}
if (x == -1)
x = -2;
return x;
}
static object *
complex_add(v, w)
complexobject *v;
complexobject *w;
{
return newcomplexobject(c_sum(v->cval,w->cval));
}
static object *
complex_sub(v, w)
complexobject *v;
complexobject *w;
{
return newcomplexobject(c_diff(v->cval,w->cval));
}
static object *
complex_mul(v, w)
complexobject *v;
complexobject *w;
{
return newcomplexobject(c_prod(v->cval,w->cval));
}
static object *
complex_div(v, w)
complexobject *v;
complexobject *w;
{
complex quot;
c_error = 0;
quot = c_quot(v->cval,w->cval);
if (c_error == 1) {
err_setstr(ZeroDivisionError, "float division");
return NULL;
}
return newcomplexobject(quot);
}
static object *
complex_pow(v, w, z)
complexobject *v;
object *w;
complexobject *z;
{
complex p;
complex exponent;
long int_exponent;
if ((object *)z!=None) {
err_setstr(ValueError, "complex modulo");
return NULL;
}
c_error = 0;
exponent = ((complexobject*)w)->cval;
int_exponent = (long)exponent.real;
if (exponent.imag == 0. && exponent.real == int_exponent)
p = c_powi(v->cval,int_exponent);
else
p = c_pow(v->cval,exponent);
if (c_error == 2) {
err_setstr(ValueError, "0.0 to a negative or complex power");
return NULL;
}
return newcomplexobject(p);
}
static object *
complex_neg(v)
complexobject *v;
{
complex neg;
neg.real = -v->cval.real;
neg.imag = -v->cval.imag;
return newcomplexobject(neg);
}
static object *
complex_pos(v)
complexobject *v;
{
INCREF(v);
return (object *)v;
}
static object *
complex_abs(v)
complexobject *v;
{
return newfloatobject(hypot(v->cval.real,v->cval.imag));
}
static int
complex_nonzero(v)
complexobject *v;
{
return v->cval.real != 0.0 && v->cval.imag != 0.0;
}
static int
complex_coerce(pv, pw)
object **pv;
object **pw;
{
complex cval;
cval.imag = 0.;
if (is_intobject(*pw)) {
cval.real = (double)getintvalue(*pw);
*pw = newcomplexobject(cval);
INCREF(*pv);
return 0;
}
else if (is_longobject(*pw)) {
cval.real = dgetlongvalue(*pw);
*pw = newcomplexobject(cval);
INCREF(*pv);
return 0;
}
else if (is_floatobject(*pw)) {
cval.real = getfloatvalue(*pw);
*pw = newcomplexobject(cval);
INCREF(*pv);
return 0;
}
return 1; /* Can't do it */
}
static object *
complex_int(v)
object *v;
{
double x = ((complexobject *)v)->cval.real;
if (x < 0 ? (x = ceil(x)) < (double)LONG_MIN
: (x = floor(x)) > (double)LONG_MAX) {
err_setstr(OverflowError, "float too large to convert");
return NULL;
}
return newintobject((long)x);
}
static object *
complex_long(v)
object *v;
{
double x = ((complexobject *)v)->cval.real;
return dnewlongobject(x);
}
static object *
complex_float(v)
object *v;
{
double x = ((complexobject *)v)->cval.real;
return newfloatobject(x);
}
static object *
complex_new(self, args)
object *self;
object *args;
{
int n;
complex cval;
cval.imag = 0.;
if (!PyArg_ParseTuple(args, "d|d", &cval.real, &cval.imag))
return NULL;
return newcomplexobject(cval);
}
static object *
complex_conjugate(self)
object *self;
{
complex c = ((complexobject *)self)->cval;
c.imag = -c.imag;
return newcomplexobject(c);
}
static PyMethodDef complex_methods[] = {
{"conjugate", (PyCFunction)complex_conjugate, 1},
{NULL, NULL} /* sentinel */
};
static object *
complex_getattr(self, name)
complexobject *self;
char *name;
{
complex cval;
if (strcmp(name, "real") == 0)
return (object *)newfloatobject(self->cval.real);
else if (strcmp(name, "imag") == 0)
return (object *)newfloatobject(self->cval.imag);
else if (strcmp(name, "conj") == 0) {
cval.real = self->cval.real;
cval.imag = -self->cval.imag;
return (object *)newcomplexobject(cval);
}
return findmethod(complex_methods, (object *)self, name);
}
static number_methods complex_as_number = {
(binaryfunc)complex_add, /*nb_add*/
(binaryfunc)complex_sub, /*nb_subtract*/
(binaryfunc)complex_mul, /*nb_multiply*/
(binaryfunc)complex_div, /*nb_divide*/
0, /*nb_remainder*/
0, /*nb_divmod*/
(ternaryfunc)complex_pow, /*nb_power*/
(unaryfunc)complex_neg, /*nb_negative*/
(unaryfunc)complex_pos, /*nb_positive*/
(unaryfunc)complex_abs, /*nb_absolute*/
(inquiry)complex_nonzero, /*nb_nonzero*/
0, /*nb_invert*/
0, /*nb_lshift*/
0, /*nb_rshift*/
0, /*nb_and*/
0, /*nb_xor*/
0, /*nb_or*/
(coercion)complex_coerce, /*nb_coerce*/
(unaryfunc)complex_int, /*nb_int*/
(unaryfunc)complex_long, /*nb_long*/
(unaryfunc)complex_float, /*nb_float*/
0, /*nb_oct*/
0, /*nb_hex*/
};
typeobject Complextype = {
OB_HEAD_INIT(&Typetype)
0,
"complex",
sizeof(complexobject),
0,
(destructor)complex_dealloc, /*tp_dealloc*/
(printfunc)complex_print, /*tp_print*/
(getattrfunc)complex_getattr, /*tp_getattr*/
0, /*tp_setattr*/
(cmpfunc)complex_compare, /*tp_compare*/
(reprfunc)complex_repr, /*tp_repr*/
&complex_as_number, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
(hashfunc)complex_hash, /*tp_hash*/
};
#endif
|