summaryrefslogtreecommitdiffstats
path: root/Objects/dictobject.c
blob: 0797e4b4c44626eaf1314876fe09ec0e6a722a21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809

/* Dictionary object implementation using a hash table */

#include "Python.h"

/* MINSIZE is the minimum size of a dictionary.  This many slots are
 * allocated directly in the dict object (in the ma_smalltable member).
 * It must be a power of 2, and at least 4.  8 allows dicts with no more than
 * 5 active entries to live in ma_smalltable (and so avoid an additional
 * malloc); instrumentation suggested this suffices for the majority of
 * dicts (consisting mostly of usually-small instance dicts and usually-small
 * dicts created to pass keyword arguments).
 */
#define MINSIZE 8

/* Define this out if you don't want conversion statistics on exit. */
#undef SHOW_CONVERSION_COUNTS

/* See large comment block below.  This must be >= 1. */
#define PERTURB_SHIFT 5

/*
Major subtleties ahead:  Most hash schemes depend on having a "good" hash
function, in the sense of simulating randomness.  Python doesn't:  its most
important hash functions (for strings and ints) are very regular in common
cases:

>>> map(hash, (0, 1, 2, 3))
[0, 1, 2, 3]
>>> map(hash, ("namea", "nameb", "namec", "named"))
[-1658398457, -1658398460, -1658398459, -1658398462]
>>>

This isn't necessarily bad!  To the contrary, in a table of size 2**i, taking
the low-order i bits as the initial table index is extremely fast, and there
are no collisions at all for dicts indexed by a contiguous range of ints.
The same is approximately true when keys are "consecutive" strings.  So this
gives better-than-random behavior in common cases, and that's very desirable.

OTOH, when collisions occur, the tendency to fill contiguous slices of the
hash table makes a good collision resolution strategy crucial.  Taking only
the last i bits of the hash code is also vulnerable:  for example, consider
[i << 16 for i in range(20000)] as a set of keys.  Since ints are their own
hash codes, and this fits in a dict of size 2**15, the last 15 bits of every
hash code are all 0:  they *all* map to the same table index.

But catering to unusual cases should not slow the usual ones, so we just take
the last i bits anyway.  It's up to collision resolution to do the rest.  If
we *usually* find the key we're looking for on the first try (and, it turns
out, we usually do -- the table load factor is kept under 2/3, so the odds
are solidly in our favor), then it makes best sense to keep the initial index
computation dirt cheap.

The first half of collision resolution is to visit table indices via this
recurrence:

    j = ((5*j) + 1) mod 2**i

For any initial j in range(2**i), repeating that 2**i times generates each
int in range(2**i) exactly once (see any text on random-number generation for
proof).  By itself, this doesn't help much:  like linear probing (setting
j += 1, or j -= 1, on each loop trip), it scans the table entries in a fixed
order.  This would be bad, except that's not the only thing we do, and it's
actually *good* in the common cases where hash keys are consecutive.  In an
example that's really too small to make this entirely clear, for a table of
size 2**3 the order of indices is:

    0 -> 1 -> 6 -> 7 -> 4 -> 5 -> 2 -> 3 -> 0 [and here it's repeating]

If two things come in at index 5, the first place we look after is index 2,
not 6, so if another comes in at index 6 the collision at 5 didn't hurt it.
Linear probing is deadly in this case because there the fixed probe order
is the *same* as the order consecutive keys are likely to arrive.  But it's
extremely unlikely hash codes will follow a 5*j+1 recurrence by accident,
and certain that consecutive hash codes do not.

The other half of the strategy is to get the other bits of the hash code
into play.  This is done by initializing a (unsigned) vrbl "perturb" to the
full hash code, and changing the recurrence to:

    j = (5*j) + 1 + perturb;
    perturb >>= PERTURB_SHIFT;
    use j % 2**i as the next table index;

Now the probe sequence depends (eventually) on every bit in the hash code,
and the pseudo-scrambling property of recurring on 5*j+1 is more valuable,
because it quickly magnifies small differences in the bits that didn't affect
the initial index.  Note that because perturb is unsigned, if the recurrence
is executed often enough perturb eventually becomes and remains 0.  At that
point (very rarely reached) the recurrence is on (just) 5*j+1 again, and
that's certain to find an empty slot eventually (since it generates every int
in range(2**i), and we make sure there's always at least one empty slot).

Selecting a good value for PERTURB_SHIFT is a balancing act.  You want it
small so that the high bits of the hash code continue to affect the probe
sequence across iterations; but you want it large so that in really bad cases
the high-order hash bits have an effect on early iterations.  5 was "the
best" in minimizing total collisions across experiments Tim Peters ran (on
both normal and pathological cases), but 4 and 6 weren't significantly worse.

Historical:  Reimer Behrends contributed the idea of using a polynomial-based
approach, using repeated multiplication by x in GF(2**n) where an irreducible
polynomial for each table size was chosen such that x was a primitive root.
Christian Tismer later extended that to use division by x instead, as an
efficient way to get the high bits of the hash code into play.  This scheme
also gave excellent collision statistics, but was more expensive:  two
if-tests were required inside the loop; computing "the next" index took about
the same number of operations but without as much potential parallelism
(e.g., computing 5*j can go on at the same time as computing 1+perturb in the
above, and then shifting perturb can be done while the table index is being
masked); and the dictobject struct required a member to hold the table's
polynomial.  In Tim's experiments the current scheme ran faster, produced
equally good collision statistics, needed less code & used less memory.
*/

/* Object used as dummy key to fill deleted entries */
static PyObject *dummy; /* Initialized by first call to newdictobject() */

/*
There are three kinds of slots in the table:

1. Unused.  me_key == me_value == NULL
   Does not hold an active (key, value) pair now and never did.  Unused can
   transition to Active upon key insertion.  This is the only case in which
   me_key is NULL, and is each slot's initial state.

2. Active.  me_key != NULL and me_key != dummy and me_value != NULL
   Holds an active (key, value) pair.  Active can transition to Dummy upon
   key deletion.  This is the only case in which me_value != NULL.

3. Dummy.  me_key == dummy and me_value == NULL
   Previously held an active (key, value) pair, but that was deleted and an
   active pair has not yet overwritten the slot.  Dummy can transition to
   Active upon key insertion.  Dummy slots cannot be made Unused again
   (cannot have me_key set to NULL), else the probe sequence in case of
   collision would have no way to know they were once active.

Note: .popitem() abuses the me_hash field of an Unused or Dummy slot to
hold a search finger.  The me_hash field of Unused or Dummy slots has no
meaning otherwise.
*/
typedef struct {
	long me_hash;      /* cached hash code of me_key */
	PyObject *me_key;
	PyObject *me_value;
#ifdef USE_CACHE_ALIGNED
	long	aligner;
#endif
} dictentry;

/*
To ensure the lookup algorithm terminates, there must be at least one Unused
slot (NULL key) in the table.
The value ma_fill is the number of non-NULL keys (sum of Active and Dummy);
ma_used is the number of non-NULL, non-dummy keys (== the number of non-NULL
values == the number of Active items).
To avoid slowing down lookups on a near-full table, we resize the table when
it's two-thirds full.
*/
typedef struct dictobject dictobject;
struct dictobject {
	PyObject_HEAD
	int ma_fill;  /* # Active + # Dummy */
	int ma_used;  /* # Active */
	int ma_size;  /* total # slots in ma_table */
	/* ma_table points to ma_smalltable for small tables, else to
	 * additional malloc'ed memory.  ma_table is never NULL!  This rule
	 * saves repeated runtime null-tests in the workhorse getitem and
	 * setitem calls.
	 */
	dictentry *ma_table;
	dictentry *(*ma_lookup)(dictobject *mp, PyObject *key, long hash);
	dictentry ma_smalltable[MINSIZE];
};

/* forward declarations */
static dictentry *
lookdict_string(dictobject *mp, PyObject *key, long hash);

#ifdef SHOW_CONVERSION_COUNTS
static long created = 0L;
static long converted = 0L;

static void
show_counts(void)
{
	fprintf(stderr, "created %ld string dicts\n", created);
	fprintf(stderr, "converted %ld to normal dicts\n", converted);
	fprintf(stderr, "%.2f%% conversion rate\n", (100.0*converted)/created);
}
#endif

/* Set dictobject* mp to empty but w/ MINSIZE slots, using ma_smalltable. */
#define empty_to_minsize(mp) do { 					\
	memset((mp)->ma_smalltable, 0, sizeof((mp)->ma_smalltable));	\
	(mp)->ma_table = (mp)->ma_smalltable;				\
	(mp)->ma_size = MINSIZE;					\
	(mp)->ma_used = (mp)->ma_fill = 0;				\
    } while(0)

PyObject *
PyDict_New(void)
{
	register dictobject *mp;
	if (dummy == NULL) { /* Auto-initialize dummy */
		dummy = PyString_FromString("<dummy key>");
		if (dummy == NULL)
			return NULL;
#ifdef SHOW_CONVERSION_COUNTS
		Py_AtExit(show_counts);
#endif
	}
	mp = PyObject_NEW(dictobject, &PyDict_Type);
	if (mp == NULL)
		return NULL;
	empty_to_minsize(mp);
	mp->ma_lookup = lookdict_string;
#ifdef SHOW_CONVERSION_COUNTS
	++created;
#endif
	PyObject_GC_Init(mp);
	return (PyObject *)mp;
}

/*
The basic lookup function used by all operations.
This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4.
Open addressing is preferred over chaining since the link overhead for
chaining would be substantial (100% with typical malloc overhead).

The initial probe index is computed as hash mod the table size. Subsequent
probe indices are computed as explained earlier.

All arithmetic on hash should ignore overflow.

(The details in this version are due to Tim Peters, building on many past
contributions by Reimer Behrends, Jyrki Alakuijala, Vladimir Marangozov and
Christian Tismer).

This function must never return NULL; failures are indicated by returning
a dictentry* for which the me_value field is NULL.  Exceptions are never
reported by this function, and outstanding exceptions are maintained.
*/

static dictentry *
lookdict(dictobject *mp, PyObject *key, register long hash)
{
	register int i;
	register unsigned int perturb;
	register dictentry *freeslot;
	register unsigned int mask = mp->ma_size-1;
	dictentry *ep0 = mp->ma_table;
	register dictentry *ep;
	register int restore_error = 0;
	register int checked_error = 0;
	register int cmp;
	PyObject *err_type, *err_value, *err_tb;

	i = hash & mask;
	ep = &ep0[i];
	if (ep->me_key == NULL || ep->me_key == key)
		return ep;
	if (ep->me_key == dummy)
		freeslot = ep;
	else {
		if (ep->me_hash == hash) {
			/* error can't have been checked yet */
			checked_error = 1;
			if (PyErr_Occurred()) {
				restore_error = 1;
				PyErr_Fetch(&err_type, &err_value, &err_tb);
			}
			cmp = PyObject_RichCompareBool(ep->me_key, key, Py_EQ);
			if (cmp > 0) {
				if (restore_error)
					PyErr_Restore(err_type, err_value,
						      err_tb);
				return ep;
			}
			else if (cmp < 0)
				PyErr_Clear();
		}
		freeslot = NULL;
	}

	/* In the loop, me_key == dummy is by far (factor of 100s) the
	   least likely outcome, so test for that last. */
	for (perturb = hash; ; perturb >>= PERTURB_SHIFT) {
		i = (i << 2) + i + perturb + 1;
		ep = &ep0[i & mask];
		if (ep->me_key == NULL) {
			if (restore_error)
				PyErr_Restore(err_type, err_value, err_tb);
			return freeslot == NULL ? ep : freeslot;
		}
		if (ep->me_key == key) {
			if (restore_error)
				PyErr_Restore(err_type, err_value, err_tb);
			return ep;
		}
		else if (ep->me_hash == hash && ep->me_key != dummy) {
			if (!checked_error) {
				checked_error = 1;
				if (PyErr_Occurred()) {
					restore_error = 1;
					PyErr_Fetch(&err_type, &err_value,
						    &err_tb);
				}
			}
			cmp = PyObject_RichCompareBool(ep->me_key, key, Py_EQ);
			if (cmp > 0) {
				if (restore_error)
					PyErr_Restore(err_type, err_value,
						      err_tb);
				return ep;
			}
			else if (cmp < 0)
				PyErr_Clear();
		}
		else if (ep->me_key == dummy && freeslot == NULL)
			freeslot = ep;
	}
}

/*
 * Hacked up version of lookdict which can assume keys are always strings;
 * this assumption allows testing for errors during PyObject_Compare() to
 * be dropped; string-string comparisons never raise exceptions.  This also
 * means we don't need to go through PyObject_Compare(); we can always use
 * _PyString_Eq directly.
 *
 * This really only becomes meaningful if proper error handling in lookdict()
 * is too expensive.
 */
static dictentry *
lookdict_string(dictobject *mp, PyObject *key, register long hash)
{
	register int i;
	register unsigned int perturb;
	register dictentry *freeslot;
	register unsigned int mask = mp->ma_size-1;
	dictentry *ep0 = mp->ma_table;
	register dictentry *ep;

	/* make sure this function doesn't have to handle non-string keys */
	if (!PyString_Check(key)) {
#ifdef SHOW_CONVERSION_COUNTS
		++converted;
#endif
		mp->ma_lookup = lookdict;
		return lookdict(mp, key, hash);
	}
	i = hash & mask;
	ep = &ep0[i];
	if (ep->me_key == NULL || ep->me_key == key)
		return ep;
	if (ep->me_key == dummy)
		freeslot = ep;
	else {
		if (ep->me_hash == hash
		    && _PyString_Eq(ep->me_key, key)) {
			return ep;
		}
		freeslot = NULL;
	}

	/* In the loop, me_key == dummy is by far (factor of 100s) the
	   least likely outcome, so test for that last. */
	for (perturb = hash; ; perturb >>= PERTURB_SHIFT) {
		i = (i << 2) + i + perturb + 1;
		ep = &ep0[i & mask];
		if (ep->me_key == NULL)
			return freeslot == NULL ? ep : freeslot;
		if (ep->me_key == key
		    || (ep->me_hash == hash
		        && ep->me_key != dummy
			&& _PyString_Eq(ep->me_key, key)))
			return ep;
		if (ep->me_key == dummy && freeslot == NULL)
			freeslot = ep;
	}
}

/*
Internal routine to insert a new item into the table.
Used both by the internal resize routine and by the public insert routine.
Eats a reference to key and one to value.
*/
static void
insertdict(register dictobject *mp, PyObject *key, long hash, PyObject *value)
{
	PyObject *old_value;
	register dictentry *ep;
	ep = (mp->ma_lookup)(mp, key, hash);
	if (ep->me_value != NULL) {
		old_value = ep->me_value;
		ep->me_value = value;
		Py_DECREF(old_value); /* which **CAN** re-enter */
		Py_DECREF(key);
	}
	else {
		if (ep->me_key == NULL)
			mp->ma_fill++;
		else
			Py_DECREF(ep->me_key);
		ep->me_key = key;
		ep->me_hash = hash;
		ep->me_value = value;
		mp->ma_used++;
	}
}

/*
Restructure the table by allocating a new table and reinserting all
items again.  When entries have been deleted, the new table may
actually be smaller than the old one.
*/
static int
dictresize(dictobject *mp, int minused)
{
	int newsize;
	dictentry *oldtable, *newtable, *ep;
	int i;
	int is_oldtable_malloced;
	dictentry small_copy[MINSIZE];

	assert(minused >= 0);

	/* Find the smallest table size > minused. */
	for (newsize = MINSIZE;
	     newsize <= minused && newsize > 0;
	     newsize <<= 1)
		;
	if (newsize <= 0) {
		PyErr_NoMemory();
		return -1;
	}

	/* Get space for a new table. */
	oldtable = mp->ma_table;
	assert(oldtable != NULL);
	is_oldtable_malloced = oldtable != mp->ma_smalltable;

	if (newsize == MINSIZE) {
		/* A large table is shrinking, or we can't get any smaller. */
		newtable = mp->ma_smalltable;
		if (newtable == oldtable) {
			if (mp->ma_fill == mp->ma_used) {
				/* No dummies, so no point doing anything. */
				return 0;
			}
			/* We're not going to resize it, but rebuild the
			   table anyway to purge old dummy entries.
			   Subtle:  This is *necessary* if fill==size,
			   as lookdict needs at least one virgin slot to
			   terminate failing searches.  If fill < size, it's
			   merely desirable, as dummies slow searches. */
			assert(mp->ma_fill > mp->ma_used);
			memcpy(small_copy, oldtable, sizeof(small_copy));
			oldtable = small_copy;
		}
	}
	else {
		newtable = PyMem_NEW(dictentry, newsize);
		if (newtable == NULL) {
			PyErr_NoMemory();
			return -1;
		}
	}

	/* Make the dict empty, using the new table. */
	assert(newtable != oldtable);
	mp->ma_table = newtable;
	mp->ma_size = newsize;
	memset(newtable, 0, sizeof(dictentry) * newsize);
	mp->ma_used = 0;
	i = mp->ma_fill;
	mp->ma_fill = 0;

	/* Copy the data over; this is refcount-neutral for active entries;
	   dummy entries aren't copied over, of course */
	for (ep = oldtable; i > 0; ep++) {
		if (ep->me_value != NULL) {	/* active entry */
			--i;
			insertdict(mp, ep->me_key, ep->me_hash, ep->me_value);
		}
		else if (ep->me_key != NULL) {	/* dummy entry */
			--i;
			assert(ep->me_key == dummy);
			Py_DECREF(ep->me_key);
		}
		/* else key == value == NULL:  nothing to do */
	}

	if (is_oldtable_malloced)
		PyMem_DEL(oldtable);
	return 0;
}

PyObject *
PyDict_GetItem(PyObject *op, PyObject *key)
{
	long hash;
	dictobject *mp = (dictobject *)op;
	if (!PyDict_Check(op)) {
		return NULL;
	}
#ifdef CACHE_HASH
	if (!PyString_Check(key) ||
	    (hash = ((PyStringObject *) key)->ob_shash) == -1)
#endif
	{
		hash = PyObject_Hash(key);
		if (hash == -1) {
			PyErr_Clear();
			return NULL;
		}
	}
	return (mp->ma_lookup)(mp, key, hash)->me_value;
}

/* CAUTION: PyDict_SetItem() must guarantee that it won't resize the
 * dictionary if it is merely replacing the value for an existing key.
 * This is means that it's safe to loop over a dictionary with
 * PyDict_Next() and occasionally replace a value -- but you can't
 * insert new keys or remove them.
 */
int
PyDict_SetItem(register PyObject *op, PyObject *key, PyObject *value)
{
	register dictobject *mp;
	register long hash;
	register int n_used;

	if (!PyDict_Check(op)) {
		PyErr_BadInternalCall();
		return -1;
	}
	mp = (dictobject *)op;
#ifdef CACHE_HASH
	if (PyString_Check(key)) {
#ifdef INTERN_STRINGS
		if (((PyStringObject *)key)->ob_sinterned != NULL) {
			key = ((PyStringObject *)key)->ob_sinterned;
			hash = ((PyStringObject *)key)->ob_shash;
		}
		else
#endif
		{
			hash = ((PyStringObject *)key)->ob_shash;
			if (hash == -1)
				hash = PyObject_Hash(key);
		}
	}
	else
#endif
	{
		hash = PyObject_Hash(key);
		if (hash == -1)
			return -1;
	}
	assert(mp->ma_fill < mp->ma_size);
	n_used = mp->ma_used;
	Py_INCREF(value);
	Py_INCREF(key);
	insertdict(mp, key, hash, value);
	/* If we added a key, we can safely resize.  Otherwise skip this!
	 * If fill >= 2/3 size, adjust size.  Normally, this doubles the
	 * size, but it's also possible for the dict to shrink (if ma_fill is
	 * much larger than ma_used, meaning a lot of dict keys have been
	 * deleted).
	 */
	if (mp->ma_used > n_used && mp->ma_fill*3 >= mp->ma_size*2) {
		if (dictresize(mp, mp->ma_used*2) != 0)
			return -1;
	}
	return 0;
}

int
PyDict_DelItem(PyObject *op, PyObject *key)
{
	register dictobject *mp;
	register long hash;
	register dictentry *ep;
	PyObject *old_value, *old_key;

	if (!PyDict_Check(op)) {
		PyErr_BadInternalCall();
		return -1;
	}
#ifdef CACHE_HASH
	if (!PyString_Check(key) ||
	    (hash = ((PyStringObject *) key)->ob_shash) == -1)
#endif
	{
		hash = PyObject_Hash(key);
		if (hash == -1)
			return -1;
	}
	mp = (dictobject *)op;
	ep = (mp->ma_lookup)(mp, key, hash);
	if (ep->me_value == NULL) {
		PyErr_SetObject(PyExc_KeyError, key);
		return -1;
	}
	old_key = ep->me_key;
	Py_INCREF(dummy);
	ep->me_key = dummy;
	old_value = ep->me_value;
	ep->me_value = NULL;
	mp->ma_used--;
	Py_DECREF(old_value);
	Py_DECREF(old_key);
	return 0;
}

void
PyDict_Clear(PyObject *op)
{
	dictobject *mp;
	dictentry *ep, *table;
	int table_is_malloced;
	int fill;
	dictentry small_copy[MINSIZE];
#ifdef Py_DEBUG
	int i, n;
#endif

	if (!PyDict_Check(op))
		return;
	mp = (dictobject *)op;
#ifdef Py_DEBUG
	n = mp->ma_size;
	i = 0;
#endif

	table = mp->ma_table;
	assert(table != NULL);
	table_is_malloced = table != mp->ma_smalltable;

	/* This is delicate.  During the process of clearing the dict,
	 * decrefs can cause the dict to mutate.  To avoid fatal confusion
	 * (voice of experience), we have to make the dict empty before
	 * clearing the slots, and never refer to anything via mp->xxx while
	 * clearing.
	 */
	fill = mp->ma_fill;
	if (table_is_malloced)
		empty_to_minsize(mp);

	else if (fill > 0) {
		/* It's a small table with something that needs to be cleared.
		 * Afraid the only safe way is to copy the dict entries into
		 * another small table first.
		 */
		memcpy(small_copy, table, sizeof(small_copy));
		table = small_copy;
		empty_to_minsize(mp);
	}
	/* else it's a small table that's already empty */

	/* Now we can finally clear things.  If C had refcounts, we could
	 * assert that the refcount on table is 1 now, i.e. that this function
	 * has unique access to it, so decref side-effects can't alter it.
	 */
	for (ep = table; fill > 0; ++ep) {
#ifdef Py_DEBUG
		assert(i < n);
		++i;
#endif
		if (ep->me_key) {
			--fill;
			Py_DECREF(ep->me_key);
			Py_XDECREF(ep->me_value);
		}
#ifdef Py_DEBUG
		else
			assert(ep->me_value == NULL);
#endif
	}

	if (table_is_malloced)
		PyMem_DEL(table);
}

/* CAUTION:  In general, it isn't safe to use PyDict_Next in a loop that
 * mutates the dict.  One exception:  it is safe if the loop merely changes
 * the values associated with the keys (but doesn't insert new keys or
 * delete keys), via PyDict_SetItem().
 */
int
PyDict_Next(PyObject *op, int *ppos, PyObject **pkey, PyObject **pvalue)
{
	int i;
	register dictobject *mp;
	if (!PyDict_Check(op))
		return 0;
	mp = (dictobject *)op;
	i = *ppos;
	if (i < 0)
		return 0;
	while (i < mp->ma_size && mp->ma_table[i].me_value == NULL)
		i++;
	*ppos = i+1;
	if (i >= mp->ma_size)
		return 0;
	if (pkey)
		*pkey = mp->ma_table[i].me_key;
	if (pvalue)
		*pvalue = mp->ma_table[i].me_value;
	return 1;
}

/* Methods */

static void
dict_dealloc(register dictobject *mp)
{
	register dictentry *ep;
	int fill = mp->ma_fill;
	Py_TRASHCAN_SAFE_BEGIN(mp)
	PyObject_GC_Fini(mp);
	for (ep = mp->ma_table; fill > 0; ep++) {
		if (ep->me_key) {
			--fill;
			Py_DECREF(ep->me_key);
			Py_XDECREF(ep->me_value);
		}
	}
	if (mp->ma_table != mp->ma_smalltable)
		PyMem_DEL(mp->ma_table);
	mp = (dictobject *) PyObject_AS_GC(mp);
	PyObject_DEL(mp);
	Py_TRASHCAN_SAFE_END(mp)
}

static int
dict_print(register dictobject *mp, register FILE *fp, register int flags)
{
	register int i;
	register int any;

	i = Py_ReprEnter((PyObject*)mp);
	if (i != 0) {
		if (i < 0)
			return i;
		fprintf(fp, "{...}");
		return 0;
	}

	fprintf(fp, "{");
	any = 0;
	for (i = 0; i < mp->ma_size; i++) {
		dictentry *ep = mp->ma_table + i;
		PyObject *pvalue = ep->me_value;
		if (pvalue != NULL) {
			/* Prevent PyObject_Repr from deleting value during
			   key format */
			Py_INCREF(pvalue);
			if (any++ > 0)
				fprintf(fp, ", ");
			if (PyObject_Print((PyObject *)ep->me_key, fp, 0)!=0) {
				Py_DECREF(pvalue);
				Py_ReprLeave((PyObject*)mp);
				return -1;
			}
			fprintf(fp, ": ");
			if (PyObject_Print(pvalue, fp, 0) != 0) {
				Py_DECREF(pvalue);
				Py_ReprLeave((PyObject*)mp);
				return -1;
			}
			Py_DECREF(pvalue);
		}
	}
	fprintf(fp, "}");
	Py_ReprLeave((PyObject*)mp);
	return 0;
}

static PyObject *
dict_repr(dictobject *mp)
{
	auto PyObject *v;
	PyObject *sepa, *colon;
	register int i;
	register int any;

	i = Py_ReprEnter((PyObject*)mp);
	if (i != 0) {
		if (i > 0)
			return PyString_FromString("{...}");
		return NULL;
	}

	v = PyString_FromString("{");
	sepa = PyString_FromString(", ");
	colon = PyString_FromString(": ");
	any = 0;
	for (i = 0; i < mp->ma_size && v; i++) {
		dictentry *ep = mp->ma_table + i;
		PyObject *pvalue = ep->me_value;
		if (pvalue != NULL) {
			/* Prevent PyObject_Repr from deleting value during
			   key format */
			Py_INCREF(pvalue);
			if (any++)
				PyString_Concat(&v, sepa);
			PyString_ConcatAndDel(&v, PyObject_Repr(ep->me_key));
			PyString_Concat(&v, colon);
			PyString_ConcatAndDel(&v, PyObject_Repr(pvalue));
			Py_DECREF(pvalue);
		}
	}
	PyString_ConcatAndDel(&v, PyString_FromString("}"));
	Py_ReprLeave((PyObject*)mp);
	Py_XDECREF(sepa);
	Py_XDECREF(colon);
	return v;
}

static int
dict_length(dictobject *mp)
{
	return mp->ma_used;
}

static PyObject *
dict_subscript(dictobject *mp, register PyObject *key)
{
	PyObject *v;
	long hash;
	assert(mp->ma_table != NULL);
#ifdef CACHE_HASH
	if (!PyString_Check(key) ||
	    (hash = ((PyStringObject *) key)->ob_shash) == -1)
#endif
	{
		hash = PyObject_Hash(key);
		if (hash == -1)
			return NULL;
	}
	v = (mp->ma_lookup)(mp, key, hash) -> me_value;
	if (v == NULL)
		PyErr_SetObject(PyExc_KeyError, key);
	else
		Py_INCREF(v);
	return v;
}

static int
dict_ass_sub(dictobject *mp, PyObject *v, PyObject *w)
{
	if (w == NULL)
		return PyDict_DelItem((PyObject *)mp, v);
	else
		return PyDict_SetItem((PyObject *)mp, v, w);
}

static PyMappingMethods dict_as_mapping = {
	(inquiry)dict_length, /*mp_length*/
	(binaryfunc)dict_subscript, /*mp_subscript*/
	(objobjargproc)dict_ass_sub, /*mp_ass_subscript*/
};

static PyObject *
dict_keys(register dictobject *mp, PyObject *args)
{
	register PyObject *v;
	register int i, j, n;

	if (!PyArg_NoArgs(args))
		return NULL;
  again:
	n = mp->ma_used;
	v = PyList_New(n);
	if (v == NULL)
		return NULL;
	if (n != mp->ma_used) {
		/* Durnit.  The allocations caused the dict to resize.
		 * Just start over, this shouldn't normally happen.
		 */
		Py_DECREF(v);
		goto again;
	}
	for (i = 0, j = 0; i < mp->ma_size; i++) {
		if (mp->ma_table[i].me_value != NULL) {
			PyObject *key = mp->ma_table[i].me_key;
			Py_INCREF(key);
			PyList_SET_ITEM(v, j, key);
			j++;
		}
	}
	return v;
}

static PyObject *
dict_values(register dictobject *mp, PyObject *args)
{
	register PyObject *v;
	register int i, j, n;

	if (!PyArg_NoArgs(args))
		return NULL;
  again:
	n = mp->ma_used;
	v = PyList_New(n);
	if (v == NULL)
		return NULL;
	if (n != mp->ma_used) {
		/* Durnit.  The allocations caused the dict to resize.
		 * Just start over, this shouldn't normally happen.
		 */
		Py_DECREF(v);
		goto again;
	}
	for (i = 0, j = 0; i < mp->ma_size; i++) {
		if (mp->ma_table[i].me_value != NULL) {
			PyObject *value = mp->ma_table[i].me_value;
			Py_INCREF(value);
			PyList_SET_ITEM(v, j, value);
			j++;
		}
	}
	return v;
}

static PyObject *
dict_items(register dictobject *mp, PyObject *args)
{
	register PyObject *v;
	register int i, j, n;
	PyObject *item, *key, *value;

	if (!PyArg_NoArgs(args))
		return NULL;
	/* Preallocate the list of tuples, to avoid allocations during
	 * the loop over the items, which could trigger GC, which
	 * could resize the dict. :-(
	 */
  again:
	n = mp->ma_used;
	v = PyList_New(n);
	if (v == NULL)
		return NULL;
	for (i = 0; i < n; i++) {
		item = PyTuple_New(2);
		if (item == NULL) {
			Py_DECREF(v);
			return NULL;
		}
		PyList_SET_ITEM(v, i, item);
	}
	if (n != mp->ma_used) {
		/* Durnit.  The allocations caused the dict to resize.
		 * Just start over, this shouldn't normally happen.
		 */
		Py_DECREF(v);
		goto again;
	}
	/* Nothing we do below makes any function calls. */
	for (i = 0, j = 0; i < mp->ma_size; i++) {
		if (mp->ma_table[i].me_value != NULL) {
			key = mp->ma_table[i].me_key;
			value = mp->ma_table[i].me_value;
			item = PyList_GET_ITEM(v, j);
			Py_INCREF(key);
			PyTuple_SET_ITEM(item, 0, key);
			Py_INCREF(value);
			PyTuple_SET_ITEM(item, 1, value);
			j++;
		}
	}
	assert(j == n);
	return v;
}

static PyObject *
dict_update(register dictobject *mp, PyObject *args)
{
	register int i;
	dictobject *other;
	dictentry *entry;
	if (!PyArg_Parse(args, "O!", &PyDict_Type, &other))
		return NULL;
	if (other == mp || other->ma_used == 0)
		goto done; /* a.update(a) or a.update({}); nothing to do */
	/* Do one big resize at the start, rather than incrementally
	   resizing as we insert new items.  Expect that there will be
	   no (or few) overlapping keys. */
	if ((mp->ma_fill + other->ma_used)*3 >= mp->ma_size*2) {
		if (dictresize(mp, (mp->ma_used + other->ma_used)*3/2) != 0)
			return NULL;
	}
	for (i = 0; i < other->ma_size; i++) {
		entry = &other->ma_table[i];
		if (entry->me_value != NULL) {
			Py_INCREF(entry->me_key);
			Py_INCREF(entry->me_value);
			insertdict(mp, entry->me_key, entry->me_hash,
				   entry->me_value);
		}
	}
  done:
	Py_INCREF(Py_None);
	return Py_None;
}

static PyObject *
dict_copy(register dictobject *mp, PyObject *args)
{
	if (!PyArg_Parse(args, ""))
		return NULL;
	return PyDict_Copy((PyObject*)mp);
}

PyObject *
PyDict_Copy(PyObject *o)
{
	register dictobject *mp;
	register int i;
	dictobject *copy;
	dictentry *entry;

	if (o == NULL || !PyDict_Check(o)) {
		PyErr_BadInternalCall();
		return NULL;
	}
	mp = (dictobject *)o;
	copy = (dictobject *)PyDict_New();
	if (copy == NULL)
		return NULL;
	if (mp->ma_used > 0) {
		if (dictresize(copy, mp->ma_used*3/2) != 0)
			return NULL;
		for (i = 0; i < mp->ma_size; i++) {
			entry = &mp->ma_table[i];
			if (entry->me_value != NULL) {
				Py_INCREF(entry->me_key);
				Py_INCREF(entry->me_value);
				insertdict(copy, entry->me_key, entry->me_hash,
					   entry->me_value);
			}
		}
	}
	return (PyObject *)copy;
}

int
PyDict_Size(PyObject *mp)
{
	if (mp == NULL || !PyDict_Check(mp)) {
		PyErr_BadInternalCall();
		return 0;
	}
	return ((dictobject *)mp)->ma_used;
}

PyObject *
PyDict_Keys(PyObject *mp)
{
	if (mp == NULL || !PyDict_Check(mp)) {
		PyErr_BadInternalCall();
		return NULL;
	}
	return dict_keys((dictobject *)mp, (PyObject *)NULL);
}

PyObject *
PyDict_Values(PyObject *mp)
{
	if (mp == NULL || !PyDict_Check(mp)) {
		PyErr_BadInternalCall();
		return NULL;
	}
	return dict_values((dictobject *)mp, (PyObject *)NULL);
}

PyObject *
PyDict_Items(PyObject *mp)
{
	if (mp == NULL || !PyDict_Check(mp)) {
		PyErr_BadInternalCall();
		return NULL;
	}
	return dict_items((dictobject *)mp, (PyObject *)NULL);
}

/* Subroutine which returns the smallest key in a for which b's value
   is different or absent.  The value is returned too, through the
   pval argument.  Both are NULL if no key in a is found for which b's status
   differs.  The refcounts on (and only on) non-NULL *pval and function return
   values must be decremented by the caller (characterize() increments them
   to ensure that mutating comparison and PyDict_GetItem calls can't delete
   them before the caller is done looking at them). */

static PyObject *
characterize(dictobject *a, dictobject *b, PyObject **pval)
{
	PyObject *akey = NULL; /* smallest key in a s.t. a[akey] != b[akey] */
	PyObject *aval = NULL; /* a[akey] */
	int i, cmp;

	for (i = 0; i < a->ma_size; i++) {
		PyObject *thiskey, *thisaval, *thisbval;
		if (a->ma_table[i].me_value == NULL)
			continue;
		thiskey = a->ma_table[i].me_key;
		Py_INCREF(thiskey);  /* keep alive across compares */
		if (akey != NULL) {
			cmp = PyObject_RichCompareBool(akey, thiskey, Py_LT);
			if (cmp < 0) {
				Py_DECREF(thiskey);
				goto Fail;
			}
			if (cmp > 0 ||
			    i >= a->ma_size ||
			    a->ma_table[i].me_value == NULL)
			{
				/* Not the *smallest* a key; or maybe it is
				 * but the compare shrunk the dict so we can't
				 * find its associated value anymore; or
				 * maybe it is but the compare deleted the
				 * a[thiskey] entry.
				 */
				Py_DECREF(thiskey);
				continue;
			}
		}

		/* Compare a[thiskey] to b[thiskey]; cmp <- true iff equal. */
		thisaval = a->ma_table[i].me_value;
		assert(thisaval);
		Py_INCREF(thisaval);   /* keep alive */
		thisbval = PyDict_GetItem((PyObject *)b, thiskey);
		if (thisbval == NULL)
			cmp = 0;
		else {
			/* both dicts have thiskey:  same values? */
			cmp = PyObject_RichCompareBool(
						thisaval, thisbval, Py_EQ);
			if (cmp < 0) {
		    		Py_DECREF(thiskey);
		    		Py_DECREF(thisaval);
		    		goto Fail;
			}
		}
		if (cmp == 0) {
			/* New winner. */
			Py_XDECREF(akey);
			Py_XDECREF(aval);
			akey = thiskey;
			aval = thisaval;
		}
		else {
			Py_DECREF(thiskey);
			Py_DECREF(thisaval);
		}
	}
	*pval = aval;
	return akey;

Fail:
	Py_XDECREF(akey);
	Py_XDECREF(aval);
	*pval = NULL;
	return NULL;
}

static int
dict_compare(dictobject *a, dictobject *b)
{
	PyObject *adiff, *bdiff, *aval, *bval;
	int res;

	/* Compare lengths first */
	if (a->ma_used < b->ma_used)
		return -1;	/* a is shorter */
	else if (a->ma_used > b->ma_used)
		return 1;	/* b is shorter */

	/* Same length -- check all keys */
	bdiff = bval = NULL;
	adiff = characterize(a, b, &aval);
	if (adiff == NULL) {
		assert(!aval);
		/* Either an error, or a is a subset with the same length so
		 * must be equal.
		 */
		res = PyErr_Occurred() ? -1 : 0;
		goto Finished;
	}
	bdiff = characterize(b, a, &bval);
	if (bdiff == NULL && PyErr_Occurred()) {
		assert(!bval);
		res = -1;
		goto Finished;
	}
	res = 0;
	if (bdiff) {
		/* bdiff == NULL "should be" impossible now, but perhaps
		 * the last comparison done by the characterize() on a had
		 * the side effect of making the dicts equal!
		 */
		res = PyObject_Compare(adiff, bdiff);
	}
	if (res == 0 && bval != NULL)
		res = PyObject_Compare(aval, bval);

Finished:
	Py_XDECREF(adiff);
	Py_XDECREF(bdiff);
	Py_XDECREF(aval);
	Py_XDECREF(bval);
	return res;
}

/* Return 1 if dicts equal, 0 if not, -1 if error.
 * Gets out as soon as any difference is detected.
 * Uses only Py_EQ comparison.
 */
static int
dict_equal(dictobject *a, dictobject *b)
{
	int i;

	if (a->ma_used != b->ma_used)
		/* can't be equal if # of entries differ */
		return 0;

	/* Same # of entries -- check all of 'em.  Exit early on any diff. */
	for (i = 0; i < a->ma_size; i++) {
		PyObject *aval = a->ma_table[i].me_value;
		if (aval != NULL) {
			int cmp;
			PyObject *bval;
			PyObject *key = a->ma_table[i].me_key;
			/* temporarily bump aval's refcount to ensure it stays
			   alive until we're done with it */
			Py_INCREF(aval);
			bval = PyDict_GetItem((PyObject *)b, key);
			if (bval == NULL) {
				Py_DECREF(aval);
				return 0;
			}
			cmp = PyObject_RichCompareBool(aval, bval, Py_EQ);
			Py_DECREF(aval);
			if (cmp <= 0)  /* error or not equal */
				return cmp;
 		}
	}
	return 1;
 }

static PyObject *
dict_richcompare(PyObject *v, PyObject *w, int op)
{
	int cmp;
	PyObject *res;

	if (!PyDict_Check(v) || !PyDict_Check(w)) {
		res = Py_NotImplemented;
	}
	else if (op == Py_EQ || op == Py_NE) {
		cmp = dict_equal((dictobject *)v, (dictobject *)w);
		if (cmp < 0)
			return NULL;
		res = (cmp == (op == Py_EQ)) ? Py_True : Py_False;
	}
	else
		res = Py_NotImplemented;
	Py_INCREF(res);
	return res;
 }

static PyObject *
dict_has_key(register dictobject *mp, PyObject *args)
{
	PyObject *key;
	long hash;
	register long ok;
	if (!PyArg_ParseTuple(args, "O:has_key", &key))
		return NULL;
#ifdef CACHE_HASH
	if (!PyString_Check(key) ||
	    (hash = ((PyStringObject *) key)->ob_shash) == -1)
#endif
	{
		hash = PyObject_Hash(key);
		if (hash == -1)
			return NULL;
	}
	ok = (mp->ma_lookup)(mp, key, hash)->me_value != NULL;
	return PyInt_FromLong(ok);
}

static PyObject *
dict_get(register dictobject *mp, PyObject *args)
{
	PyObject *key;
	PyObject *failobj = Py_None;
	PyObject *val = NULL;
	long hash;

	if (!PyArg_ParseTuple(args, "O|O:get", &key, &failobj))
		return NULL;

#ifdef CACHE_HASH
	if (!PyString_Check(key) ||
	    (hash = ((PyStringObject *) key)->ob_shash) == -1)
#endif
	{
		hash = PyObject_Hash(key);
		if (hash == -1)
			return NULL;
	}
	val = (mp->ma_lookup)(mp, key, hash)->me_value;

	if (val == NULL)
		val = failobj;
	Py_INCREF(val);
	return val;
}


static PyObject *
dict_setdefault(register dictobject *mp, PyObject *args)
{
	PyObject *key;
	PyObject *failobj = Py_None;
	PyObject *val = NULL;
	long hash;

	if (!PyArg_ParseTuple(args, "O|O:setdefault", &key, &failobj))
		return NULL;

#ifdef CACHE_HASH
	if (!PyString_Check(key) ||
	    (hash = ((PyStringObject *) key)->ob_shash) == -1)
#endif
	{
		hash = PyObject_Hash(key);
		if (hash == -1)
			return NULL;
	}
	val = (mp->ma_lookup)(mp, key, hash)->me_value;
	if (val == NULL) {
		val = failobj;
		if (PyDict_SetItem((PyObject*)mp, key, failobj))
			val = NULL;
	}
	Py_XINCREF(val);
	return val;
}


static PyObject *
dict_clear(register dictobject *mp, PyObject *args)
{
	if (!PyArg_NoArgs(args))
		return NULL;
	PyDict_Clear((PyObject *)mp);
	Py_INCREF(Py_None);
	return Py_None;
}

static PyObject *
dict_popitem(dictobject *mp, PyObject *args)
{
	int i = 0;
	dictentry *ep;
	PyObject *res;

	if (!PyArg_NoArgs(args))
		return NULL;
	/* Allocate the result tuple before checking the size.  Believe it
	 * or not, this allocation could trigger a garbage collection which
	 * could empty the dict, so if we checked the size first and that
	 * happened, the result would be an infinite loop (searching for an
	 * entry that no longer exists).  Note that the usual popitem()
	 * idiom is "while d: k, v = d.popitem()". so needing to throw the
	 * tuple away  if the dict *is* empty isn't a significant
	 * inefficiency -- possible, but unlikely in practice.
	 */
	res = PyTuple_New(2);
	if (res == NULL)
		return NULL;
	if (mp->ma_used == 0) {
		Py_DECREF(res);
		PyErr_SetString(PyExc_KeyError,
				"popitem(): dictionary is empty");
		return NULL;
	}
	/* Set ep to "the first" dict entry with a value.  We abuse the hash
	 * field of slot 0 to hold a search finger:
	 * If slot 0 has a value, use slot 0.
	 * Else slot 0 is being used to hold a search finger,
	 * and we use its hash value as the first index to look.
	 */
	ep = &mp->ma_table[0];
	if (ep->me_value == NULL) {
		i = (int)ep->me_hash;
		/* The hash field may be a real hash value, or it may be a
		 * legit search finger, or it may be a once-legit search
		 * finger that's out of bounds now because it wrapped around
		 * or the table shrunk -- simply make sure it's in bounds now.
		 */
		if (i >= mp->ma_size || i < 1)
			i = 1;	/* skip slot 0 */
		while ((ep = &mp->ma_table[i])->me_value == NULL) {
			i++;
			if (i >= mp->ma_size)
				i = 1;
		}
	}
	PyTuple_SET_ITEM(res, 0, ep->me_key);
	PyTuple_SET_ITEM(res, 1, ep->me_value);
	Py_INCREF(dummy);
	ep->me_key = dummy;
	ep->me_value = NULL;
	mp->ma_used--;
	assert(mp->ma_table[0].me_value == NULL);
	mp->ma_table[0].me_hash = i + 1;  /* next place to start */
	return res;
}

static int
dict_traverse(PyObject *op, visitproc visit, void *arg)
{
	int i = 0, err;
	PyObject *pk;
	PyObject *pv;

	while (PyDict_Next(op, &i, &pk, &pv)) {
		err = visit(pk, arg);
		if (err)
			return err;
		err = visit(pv, arg);
		if (err)
			return err;
	}
	return 0;
}

static int
dict_tp_clear(PyObject *op)
{
	PyDict_Clear(op);
	return 0;
}


staticforward PyObject *dictiter_new(dictobject *, binaryfunc);

static PyObject *
select_key(PyObject *key, PyObject *value)
{
	Py_INCREF(key);
	return key;
}

static PyObject *
select_value(PyObject *key, PyObject *value)
{
	Py_INCREF(value);
	return value;
}

static PyObject *
select_item(PyObject *key, PyObject *value)
{
	PyObject *res = PyTuple_New(2);

	if (res != NULL) {
		Py_INCREF(key);
		Py_INCREF(value);
		PyTuple_SET_ITEM(res, 0, key);
		PyTuple_SET_ITEM(res, 1, value);
	}
	return res;
}

static PyObject *
dict_iterkeys(dictobject *dict, PyObject *args)
{
	if (!PyArg_ParseTuple(args, ""))
		return NULL;
	return dictiter_new(dict, select_key);
}

static PyObject *
dict_itervalues(dictobject *dict, PyObject *args)
{
	if (!PyArg_ParseTuple(args, ""))
		return NULL;
	return dictiter_new(dict, select_value);
}

static PyObject *
dict_iteritems(dictobject *dict, PyObject *args)
{
	if (!PyArg_ParseTuple(args, ""))
		return NULL;
	return dictiter_new(dict, select_item);
}


static char has_key__doc__[] =
"D.has_key(k) -> 1 if D has a key k, else 0";

static char get__doc__[] =
"D.get(k[,d]) -> D[k] if D.has_key(k), else d.  d defaults to None.";

static char setdefault_doc__[] =
"D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if not D.has_key(k)";

static char popitem__doc__[] =
"D.popitem() -> (k, v), remove and return some (key, value) pair as a\n\
2-tuple; but raise KeyError if D is empty";

static char keys__doc__[] =
"D.keys() -> list of D's keys";

static char items__doc__[] =
"D.items() -> list of D's (key, value) pairs, as 2-tuples";

static char values__doc__[] =
"D.values() -> list of D's values";

static char update__doc__[] =
"D.update(E) -> None.  Update D from E: for k in E.keys(): D[k] = E[k]";

static char clear__doc__[] =
"D.clear() -> None.  Remove all items from D.";

static char copy__doc__[] =
"D.copy() -> a shallow copy of D";

static char iterkeys__doc__[] =
"D.iterkeys() -> an iterator over the keys of D";

static char itervalues__doc__[] =
"D.itervalues() -> an iterator over the values of D";

static char iteritems__doc__[] =
"D.iteritems() -> an iterator over the (key, value) items of D";

static PyMethodDef mapp_methods[] = {
	{"has_key",	(PyCFunction)dict_has_key,      METH_VARARGS,
	 has_key__doc__},
	{"get",         (PyCFunction)dict_get,          METH_VARARGS,
	 get__doc__},
	{"setdefault",  (PyCFunction)dict_setdefault,   METH_VARARGS,
	 setdefault_doc__},
	{"popitem",	(PyCFunction)dict_popitem,	METH_OLDARGS,
	 popitem__doc__},
	{"keys",	(PyCFunction)dict_keys,		METH_OLDARGS,
	keys__doc__},
	{"items",	(PyCFunction)dict_items,	METH_OLDARGS,
	 items__doc__},
	{"values",	(PyCFunction)dict_values,	METH_OLDARGS,
	 values__doc__},
	{"update",	(PyCFunction)dict_update,	METH_OLDARGS,
	 update__doc__},
	{"clear",	(PyCFunction)dict_clear,	METH_OLDARGS,
	 clear__doc__},
	{"copy",	(PyCFunction)dict_copy,		METH_OLDARGS,
	 copy__doc__},
	{"iterkeys",	(PyCFunction)dict_iterkeys,	METH_VARARGS,
	 iterkeys__doc__},
	{"itervalues",	(PyCFunction)dict_itervalues,	METH_VARARGS,
	 itervalues__doc__},
	{"iteritems",	(PyCFunction)dict_iteritems,	METH_VARARGS,
	 iteritems__doc__},
	{NULL,		NULL}	/* sentinel */
};

static PyObject *
dict_getattr(dictobject *mp, char *name)
{
	return Py_FindMethod(mapp_methods, (PyObject *)mp, name);
}

static int
dict_contains(dictobject *mp, PyObject *key)
{
	long hash;

#ifdef CACHE_HASH
	if (!PyString_Check(key) ||
	    (hash = ((PyStringObject *) key)->ob_shash) == -1)
#endif
	{
		hash = PyObject_Hash(key);
		if (hash == -1)
			return -1;
	}
	return (mp->ma_lookup)(mp, key, hash)->me_value != NULL;
}

/* Hack to implement "key in dict" */
static PySequenceMethods dict_as_sequence = {
	0,					/* sq_length */
	0,					/* sq_concat */
	0,					/* sq_repeat */
	0,					/* sq_item */
	0,					/* sq_slice */
	0,					/* sq_ass_item */
	0,					/* sq_ass_slice */
	(objobjproc)dict_contains,		/* sq_contains */
	0,					/* sq_inplace_concat */
	0,					/* sq_inplace_repeat */
};

static PyObject *
dict_iter(dictobject *dict)
{
	return dictiter_new(dict, select_key);
}

PyTypeObject PyDict_Type = {
	PyObject_HEAD_INIT(&PyType_Type)
	0,
	"dictionary",
	sizeof(dictobject) + PyGC_HEAD_SIZE,
	0,
	(destructor)dict_dealloc,		/* tp_dealloc */
	(printfunc)dict_print,			/* tp_print */
	(getattrfunc)dict_getattr,		/* tp_getattr */
	0,					/* tp_setattr */
	(cmpfunc)dict_compare,			/* tp_compare */
	(reprfunc)dict_repr,			/* tp_repr */
	0,					/* tp_as_number */
	&dict_as_sequence,			/* tp_as_sequence */
	&dict_as_mapping,			/* tp_as_mapping */
	0,					/* tp_hash */
	0,					/* tp_call */
	0,					/* tp_str */
	0,					/* tp_getattro */
	0,					/* tp_setattro */
	0,					/* tp_as_buffer */
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_GC,	/* tp_flags */
	0,					/* tp_doc */
	(traverseproc)dict_traverse,		/* tp_traverse */
	(inquiry)dict_tp_clear,			/* tp_clear */
	dict_richcompare,			/* tp_richcompare */
	0,					/* tp_weaklistoffset */
	(getiterfunc)dict_iter,			/* tp_iter */
	0,					/* tp_iternext */
};

/* For backward compatibility with old dictionary interface */

PyObject *
PyDict_GetItemString(PyObject *v, char *key)
{
	PyObject *kv, *rv;
	kv = PyString_FromString(key);
	if (kv == NULL)
		return NULL;
	rv = PyDict_GetItem(v, kv);
	Py_DECREF(kv);
	return rv;
}

int
PyDict_SetItemString(PyObject *v, char *key, PyObject *item)
{
	PyObject *kv;
	int err;
	kv = PyString_FromString(key);
	if (kv == NULL)
		return -1;
	PyString_InternInPlace(&kv); /* XXX Should we really? */
	err = PyDict_SetItem(v, kv, item);
	Py_DECREF(kv);
	return err;
}

int
PyDict_DelItemString(PyObject *v, char *key)
{
	PyObject *kv;
	int err;
	kv = PyString_FromString(key);
	if (kv == NULL)
		return -1;
	err = PyDict_DelItem(v, kv);
	Py_DECREF(kv);
	return err;
}

/* Dictionary iterator type */

extern PyTypeObject PyDictIter_Type; /* Forward */

typedef struct {
	PyObject_HEAD
	dictobject *di_dict;
	int di_used;
	int di_pos;
	binaryfunc di_select;
} dictiterobject;

static PyObject *
dictiter_new(dictobject *dict, binaryfunc select)
{
	dictiterobject *di;
	di = PyObject_NEW(dictiterobject, &PyDictIter_Type);
	if (di == NULL)
		return NULL;
	Py_INCREF(dict);
	di->di_dict = dict;
	di->di_used = dict->ma_used;
	di->di_pos = 0;
	di->di_select = select;
	return (PyObject *)di;
}

static void
dictiter_dealloc(dictiterobject *di)
{
	Py_DECREF(di->di_dict);
	PyObject_DEL(di);
}

static PyObject *
dictiter_next(dictiterobject *di, PyObject *args)
{
	PyObject *key, *value;

	if (di->di_used != di->di_dict->ma_used) {
		PyErr_SetString(PyExc_RuntimeError,
				"dictionary changed size during iteration");
		return NULL;
	}
	if (PyDict_Next((PyObject *)(di->di_dict), &di->di_pos, &key, &value)) {
		return (*di->di_select)(key, value);
	}
	PyErr_SetObject(PyExc_StopIteration, Py_None);
	return NULL;
}

static PyObject *
dictiter_getiter(PyObject *it)
{
	Py_INCREF(it);
	return it;
}

static PyMethodDef dictiter_methods[] = {
	{"next",	(PyCFunction)dictiter_next,	METH_VARARGS,
	 "it.next() -- get the next value, or raise StopIteration"},
	{NULL,		NULL}		/* sentinel */
};

static PyObject *
dictiter_getattr(dictiterobject *di, char *name)
{
	return Py_FindMethod(dictiter_methods, (PyObject *)di, name);
}

static PyObject *dictiter_iternext(dictiterobject *di)
{
	PyObject *key, *value;

	if (di->di_used != di->di_dict->ma_used) {
		PyErr_SetString(PyExc_RuntimeError,
				"dictionary changed size during iteration");
		return NULL;
	}
	if (PyDict_Next((PyObject *)(di->di_dict), &di->di_pos, &key, &value)) {
		return (*di->di_select)(key, value);
	}
	return NULL;
}

PyTypeObject PyDictIter_Type = {
	PyObject_HEAD_INIT(&PyType_Type)
	0,					/* ob_size */
	"dictionary-iterator",			/* tp_name */
	sizeof(dictiterobject),			/* tp_basicsize */
	0,					/* tp_itemsize */
	/* methods */
	(destructor)dictiter_dealloc, 		/* tp_dealloc */
	0,					/* tp_print */
	(getattrfunc)dictiter_getattr,		/* tp_getattr */
	0,					/* tp_setattr */
	0,					/* tp_compare */
	0,					/* tp_repr */
	0,					/* tp_as_number */
	0,					/* tp_as_sequence */
	0,					/* tp_as_mapping */
	0,					/* tp_hash */
	0,					/* tp_call */
	0,					/* tp_str */
	0,					/* tp_getattro */
	0,					/* tp_setattro */
	0,					/* tp_as_buffer */
	Py_TPFLAGS_DEFAULT,			/* tp_flags */
 	0,					/* tp_doc */
 	0,					/* tp_traverse */
 	0,					/* tp_clear */
	0,					/* tp_richcompare */
	0,					/* tp_weaklistoffset */
	(getiterfunc)dictiter_getiter,		/* tp_iter */
	(iternextfunc)dictiter_iternext,	/* tp_iternext */
};