1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
|
/* Float object implementation */
/* XXX There should be overflow checks here, but it's hard to check
for any kind of float exception without losing portability. */
#include "Python.h"
#include <ctype.h>
#include <float.h>
/* Special free list
free_list is a singly-linked list of available PyFloatObjects, linked
via abuse of their ob_type members.
*/
#ifndef PyFloat_MAXFREELIST
#define PyFloat_MAXFREELIST 100
#endif
static int numfree = 0;
static PyFloatObject *free_list = NULL;
double
PyFloat_GetMax(void)
{
return DBL_MAX;
}
double
PyFloat_GetMin(void)
{
return DBL_MIN;
}
static PyTypeObject FloatInfoType;
PyDoc_STRVAR(floatinfo__doc__,
"sys.float_info\n\
\n\
A structseq holding information about the float type. It contains low level\n\
information about the precision and internal representation. Please study\n\
your system's :file:`float.h` for more information.");
static PyStructSequence_Field floatinfo_fields[] = {
{"max", "DBL_MAX -- maximum representable finite float"},
{"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
"is representable"},
{"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e "
"is representable"},
{"min", "DBL_MIN -- Minimum positive normalizer float"},
{"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
"is a normalized float"},
{"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
"a normalized"},
{"dig", "DBL_DIG -- digits"},
{"mant_dig", "DBL_MANT_DIG -- mantissa digits"},
{"epsilon", "DBL_EPSILON -- Difference between 1 and the next "
"representable float"},
{"radix", "FLT_RADIX -- radix of exponent"},
{"rounds", "FLT_ROUNDS -- addition rounds"},
{0}
};
static PyStructSequence_Desc floatinfo_desc = {
"sys.float_info", /* name */
floatinfo__doc__, /* doc */
floatinfo_fields, /* fields */
11
};
PyObject *
PyFloat_GetInfo(void)
{
PyObject* floatinfo;
int pos = 0;
floatinfo = PyStructSequence_New(&FloatInfoType);
if (floatinfo == NULL) {
return NULL;
}
#define SetIntFlag(flag) \
PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))
#define SetDblFlag(flag) \
PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
SetDblFlag(DBL_MAX);
SetIntFlag(DBL_MAX_EXP);
SetIntFlag(DBL_MAX_10_EXP);
SetDblFlag(DBL_MIN);
SetIntFlag(DBL_MIN_EXP);
SetIntFlag(DBL_MIN_10_EXP);
SetIntFlag(DBL_DIG);
SetIntFlag(DBL_MANT_DIG);
SetDblFlag(DBL_EPSILON);
SetIntFlag(FLT_RADIX);
SetIntFlag(FLT_ROUNDS);
#undef SetIntFlag
#undef SetDblFlag
if (PyErr_Occurred()) {
Py_CLEAR(floatinfo);
return NULL;
}
return floatinfo;
}
PyObject *
PyFloat_FromDouble(double fval)
{
PyFloatObject *op = free_list;
if (op != NULL) {
free_list = (PyFloatObject *) Py_TYPE(op);
numfree--;
} else {
op = (PyFloatObject*) PyObject_MALLOC(sizeof(PyFloatObject));
if (!op)
return PyErr_NoMemory();
}
/* Inline PyObject_New */
(void)PyObject_INIT(op, &PyFloat_Type);
op->ob_fval = fval;
return (PyObject *) op;
}
PyObject *
PyFloat_FromString(PyObject *v)
{
const char *s, *last, *end;
double x;
PyObject *s_buffer = NULL;
Py_ssize_t len;
PyObject *result = NULL;
if (PyUnicode_Check(v)) {
s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
if (s_buffer == NULL)
return NULL;
s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
if (s == NULL) {
Py_DECREF(s_buffer);
return NULL;
}
}
else if (PyObject_AsCharBuffer(v, &s, &len)) {
PyErr_Format(PyExc_TypeError,
"float() argument must be a string or a number, not '%.200s'",
Py_TYPE(v)->tp_name);
return NULL;
}
last = s + len;
/* strip space */
while (s < last && Py_ISSPACE(*s))
s++;
while (s < last - 1 && Py_ISSPACE(last[-1]))
last--;
/* We don't care about overflow or underflow. If the platform
* supports them, infinities and signed zeroes (on underflow) are
* fine. */
x = PyOS_string_to_double(s, (char **)&end, NULL);
if (end != last) {
PyErr_Format(PyExc_ValueError,
"could not convert string to float: "
"%R", v);
result = NULL;
}
else if (x == -1.0 && PyErr_Occurred())
result = NULL;
else
result = PyFloat_FromDouble(x);
Py_XDECREF(s_buffer);
return result;
}
static void
float_dealloc(PyFloatObject *op)
{
if (PyFloat_CheckExact(op)) {
if (numfree >= PyFloat_MAXFREELIST) {
PyObject_FREE(op);
return;
}
numfree++;
Py_TYPE(op) = (struct _typeobject *)free_list;
free_list = op;
}
else
Py_TYPE(op)->tp_free((PyObject *)op);
}
double
PyFloat_AsDouble(PyObject *op)
{
PyNumberMethods *nb;
PyFloatObject *fo;
double val;
if (op && PyFloat_Check(op))
return PyFloat_AS_DOUBLE((PyFloatObject*) op);
if (op == NULL) {
PyErr_BadArgument();
return -1;
}
if ((nb = Py_TYPE(op)->tp_as_number) == NULL || nb->nb_float == NULL) {
PyErr_SetString(PyExc_TypeError, "a float is required");
return -1;
}
fo = (PyFloatObject*) (*nb->nb_float) (op);
if (fo == NULL)
return -1;
if (!PyFloat_Check(fo)) {
PyErr_SetString(PyExc_TypeError,
"nb_float should return float object");
return -1;
}
val = PyFloat_AS_DOUBLE(fo);
Py_DECREF(fo);
return val;
}
/* Macro and helper that convert PyObject obj to a C double and store
the value in dbl. If conversion to double raises an exception, obj is
set to NULL, and the function invoking this macro returns NULL. If
obj is not of float or int type, Py_NotImplemented is incref'ed,
stored in obj, and returned from the function invoking this macro.
*/
#define CONVERT_TO_DOUBLE(obj, dbl) \
if (PyFloat_Check(obj)) \
dbl = PyFloat_AS_DOUBLE(obj); \
else if (convert_to_double(&(obj), &(dbl)) < 0) \
return obj;
/* Methods */
static int
convert_to_double(PyObject **v, double *dbl)
{
PyObject *obj = *v;
if (PyLong_Check(obj)) {
*dbl = PyLong_AsDouble(obj);
if (*dbl == -1.0 && PyErr_Occurred()) {
*v = NULL;
return -1;
}
}
else {
Py_INCREF(Py_NotImplemented);
*v = Py_NotImplemented;
return -1;
}
return 0;
}
static PyObject *
float_repr(PyFloatObject *v)
{
PyObject *result;
char *buf;
buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
'r', 0,
Py_DTSF_ADD_DOT_0,
NULL);
if (!buf)
return PyErr_NoMemory();
result = _PyUnicode_FromASCII(buf, strlen(buf));
PyMem_Free(buf);
return result;
}
/* Comparison is pretty much a nightmare. When comparing float to float,
* we do it as straightforwardly (and long-windedly) as conceivable, so
* that, e.g., Python x == y delivers the same result as the platform
* C x == y when x and/or y is a NaN.
* When mixing float with an integer type, there's no good *uniform* approach.
* Converting the double to an integer obviously doesn't work, since we
* may lose info from fractional bits. Converting the integer to a double
* also has two failure modes: (1) an int may trigger overflow (too
* large to fit in the dynamic range of a C double); (2) even a C long may have
* more bits than fit in a C double (e.g., on a 64-bit box long may have
* 63 bits of precision, but a C double probably has only 53), and then
* we can falsely claim equality when low-order integer bits are lost by
* coercion to double. So this part is painful too.
*/
static PyObject*
float_richcompare(PyObject *v, PyObject *w, int op)
{
double i, j;
int r = 0;
assert(PyFloat_Check(v));
i = PyFloat_AS_DOUBLE(v);
/* Switch on the type of w. Set i and j to doubles to be compared,
* and op to the richcomp to use.
*/
if (PyFloat_Check(w))
j = PyFloat_AS_DOUBLE(w);
else if (!Py_IS_FINITE(i)) {
if (PyLong_Check(w))
/* If i is an infinity, its magnitude exceeds any
* finite integer, so it doesn't matter which int we
* compare i with. If i is a NaN, similarly.
*/
j = 0.0;
else
goto Unimplemented;
}
else if (PyLong_Check(w)) {
int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
int wsign = _PyLong_Sign(w);
size_t nbits;
int exponent;
if (vsign != wsign) {
/* Magnitudes are irrelevant -- the signs alone
* determine the outcome.
*/
i = (double)vsign;
j = (double)wsign;
goto Compare;
}
/* The signs are the same. */
/* Convert w to a double if it fits. In particular, 0 fits. */
nbits = _PyLong_NumBits(w);
if (nbits == (size_t)-1 && PyErr_Occurred()) {
/* This long is so large that size_t isn't big enough
* to hold the # of bits. Replace with little doubles
* that give the same outcome -- w is so large that
* its magnitude must exceed the magnitude of any
* finite float.
*/
PyErr_Clear();
i = (double)vsign;
assert(wsign != 0);
j = wsign * 2.0;
goto Compare;
}
if (nbits <= 48) {
j = PyLong_AsDouble(w);
/* It's impossible that <= 48 bits overflowed. */
assert(j != -1.0 || ! PyErr_Occurred());
goto Compare;
}
assert(wsign != 0); /* else nbits was 0 */
assert(vsign != 0); /* if vsign were 0, then since wsign is
* not 0, we would have taken the
* vsign != wsign branch at the start */
/* We want to work with non-negative numbers. */
if (vsign < 0) {
/* "Multiply both sides" by -1; this also swaps the
* comparator.
*/
i = -i;
op = _Py_SwappedOp[op];
}
assert(i > 0.0);
(void) frexp(i, &exponent);
/* exponent is the # of bits in v before the radix point;
* we know that nbits (the # of bits in w) > 48 at this point
*/
if (exponent < 0 || (size_t)exponent < nbits) {
i = 1.0;
j = 2.0;
goto Compare;
}
if ((size_t)exponent > nbits) {
i = 2.0;
j = 1.0;
goto Compare;
}
/* v and w have the same number of bits before the radix
* point. Construct two ints that have the same comparison
* outcome.
*/
{
double fracpart;
double intpart;
PyObject *result = NULL;
PyObject *one = NULL;
PyObject *vv = NULL;
PyObject *ww = w;
if (wsign < 0) {
ww = PyNumber_Negative(w);
if (ww == NULL)
goto Error;
}
else
Py_INCREF(ww);
fracpart = modf(i, &intpart);
vv = PyLong_FromDouble(intpart);
if (vv == NULL)
goto Error;
if (fracpart != 0.0) {
/* Shift left, and or a 1 bit into vv
* to represent the lost fraction.
*/
PyObject *temp;
one = PyLong_FromLong(1);
if (one == NULL)
goto Error;
temp = PyNumber_Lshift(ww, one);
if (temp == NULL)
goto Error;
Py_DECREF(ww);
ww = temp;
temp = PyNumber_Lshift(vv, one);
if (temp == NULL)
goto Error;
Py_DECREF(vv);
vv = temp;
temp = PyNumber_Or(vv, one);
if (temp == NULL)
goto Error;
Py_DECREF(vv);
vv = temp;
}
r = PyObject_RichCompareBool(vv, ww, op);
if (r < 0)
goto Error;
result = PyBool_FromLong(r);
Error:
Py_XDECREF(vv);
Py_XDECREF(ww);
Py_XDECREF(one);
return result;
}
} /* else if (PyLong_Check(w)) */
else /* w isn't float or int */
goto Unimplemented;
Compare:
PyFPE_START_PROTECT("richcompare", return NULL)
switch (op) {
case Py_EQ:
r = i == j;
break;
case Py_NE:
r = i != j;
break;
case Py_LE:
r = i <= j;
break;
case Py_GE:
r = i >= j;
break;
case Py_LT:
r = i < j;
break;
case Py_GT:
r = i > j;
break;
}
PyFPE_END_PROTECT(r)
return PyBool_FromLong(r);
Unimplemented:
Py_RETURN_NOTIMPLEMENTED;
}
static Py_hash_t
float_hash(PyFloatObject *v)
{
return _Py_HashDouble(v->ob_fval);
}
static PyObject *
float_add(PyObject *v, PyObject *w)
{
double a,b;
CONVERT_TO_DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
PyFPE_START_PROTECT("add", return 0)
a = a + b;
PyFPE_END_PROTECT(a)
return PyFloat_FromDouble(a);
}
static PyObject *
float_sub(PyObject *v, PyObject *w)
{
double a,b;
CONVERT_TO_DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
PyFPE_START_PROTECT("subtract", return 0)
a = a - b;
PyFPE_END_PROTECT(a)
return PyFloat_FromDouble(a);
}
static PyObject *
float_mul(PyObject *v, PyObject *w)
{
double a,b;
CONVERT_TO_DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
PyFPE_START_PROTECT("multiply", return 0)
a = a * b;
PyFPE_END_PROTECT(a)
return PyFloat_FromDouble(a);
}
static PyObject *
float_div(PyObject *v, PyObject *w)
{
double a,b;
CONVERT_TO_DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
if (b == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"float division by zero");
return NULL;
}
PyFPE_START_PROTECT("divide", return 0)
a = a / b;
PyFPE_END_PROTECT(a)
return PyFloat_FromDouble(a);
}
static PyObject *
float_rem(PyObject *v, PyObject *w)
{
double vx, wx;
double mod;
CONVERT_TO_DOUBLE(v, vx);
CONVERT_TO_DOUBLE(w, wx);
if (wx == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"float modulo");
return NULL;
}
PyFPE_START_PROTECT("modulo", return 0)
mod = fmod(vx, wx);
if (mod) {
/* ensure the remainder has the same sign as the denominator */
if ((wx < 0) != (mod < 0)) {
mod += wx;
}
}
else {
/* the remainder is zero, and in the presence of signed zeroes
fmod returns different results across platforms; ensure
it has the same sign as the denominator. */
mod = copysign(0.0, wx);
}
PyFPE_END_PROTECT(mod)
return PyFloat_FromDouble(mod);
}
static PyObject *
float_divmod(PyObject *v, PyObject *w)
{
double vx, wx;
double div, mod, floordiv;
CONVERT_TO_DOUBLE(v, vx);
CONVERT_TO_DOUBLE(w, wx);
if (wx == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
return NULL;
}
PyFPE_START_PROTECT("divmod", return 0)
mod = fmod(vx, wx);
/* fmod is typically exact, so vx-mod is *mathematically* an
exact multiple of wx. But this is fp arithmetic, and fp
vx - mod is an approximation; the result is that div may
not be an exact integral value after the division, although
it will always be very close to one.
*/
div = (vx - mod) / wx;
if (mod) {
/* ensure the remainder has the same sign as the denominator */
if ((wx < 0) != (mod < 0)) {
mod += wx;
div -= 1.0;
}
}
else {
/* the remainder is zero, and in the presence of signed zeroes
fmod returns different results across platforms; ensure
it has the same sign as the denominator. */
mod = copysign(0.0, wx);
}
/* snap quotient to nearest integral value */
if (div) {
floordiv = floor(div);
if (div - floordiv > 0.5)
floordiv += 1.0;
}
else {
/* div is zero - get the same sign as the true quotient */
floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */
}
PyFPE_END_PROTECT(floordiv)
return Py_BuildValue("(dd)", floordiv, mod);
}
static PyObject *
float_floor_div(PyObject *v, PyObject *w)
{
PyObject *t, *r;
t = float_divmod(v, w);
if (t == NULL || t == Py_NotImplemented)
return t;
assert(PyTuple_CheckExact(t));
r = PyTuple_GET_ITEM(t, 0);
Py_INCREF(r);
Py_DECREF(t);
return r;
}
/* determine whether x is an odd integer or not; assumes that
x is not an infinity or nan. */
#define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
static PyObject *
float_pow(PyObject *v, PyObject *w, PyObject *z)
{
double iv, iw, ix;
int negate_result = 0;
if ((PyObject *)z != Py_None) {
PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
"allowed unless all arguments are integers");
return NULL;
}
CONVERT_TO_DOUBLE(v, iv);
CONVERT_TO_DOUBLE(w, iw);
/* Sort out special cases here instead of relying on pow() */
if (iw == 0) { /* v**0 is 1, even 0**0 */
return PyFloat_FromDouble(1.0);
}
if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
return PyFloat_FromDouble(iv);
}
if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
}
if (Py_IS_INFINITY(iw)) {
/* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
* abs(v) > 1 (including case where v infinite)
*
* v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
* abs(v) > 1 (including case where v infinite)
*/
iv = fabs(iv);
if (iv == 1.0)
return PyFloat_FromDouble(1.0);
else if ((iw > 0.0) == (iv > 1.0))
return PyFloat_FromDouble(fabs(iw)); /* return inf */
else
return PyFloat_FromDouble(0.0);
}
if (Py_IS_INFINITY(iv)) {
/* (+-inf)**w is: inf for w positive, 0 for w negative; in
* both cases, we need to add the appropriate sign if w is
* an odd integer.
*/
int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
if (iw > 0.0)
return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
else
return PyFloat_FromDouble(iw_is_odd ?
copysign(0.0, iv) : 0.0);
}
if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero
(already dealt with above), and an error
if w is negative. */
int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
if (iw < 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"0.0 cannot be raised to a "
"negative power");
return NULL;
}
/* use correct sign if iw is odd */
return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
}
if (iv < 0.0) {
/* Whether this is an error is a mess, and bumps into libm
* bugs so we have to figure it out ourselves.
*/
if (iw != floor(iw)) {
/* Negative numbers raised to fractional powers
* become complex.
*/
return PyComplex_Type.tp_as_number->nb_power(v, w, z);
}
/* iw is an exact integer, albeit perhaps a very large
* one. Replace iv by its absolute value and remember
* to negate the pow result if iw is odd.
*/
iv = -iv;
negate_result = DOUBLE_IS_ODD_INTEGER(iw);
}
if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
/* (-1) ** large_integer also ends up here. Here's an
* extract from the comments for the previous
* implementation explaining why this special case is
* necessary:
*
* -1 raised to an exact integer should never be exceptional.
* Alas, some libms (chiefly glibc as of early 2003) return
* NaN and set EDOM on pow(-1, large_int) if the int doesn't
* happen to be representable in a *C* integer. That's a
* bug.
*/
return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
}
/* Now iv and iw are finite, iw is nonzero, and iv is
* positive and not equal to 1.0. We finally allow
* the platform pow to step in and do the rest.
*/
errno = 0;
PyFPE_START_PROTECT("pow", return NULL)
ix = pow(iv, iw);
PyFPE_END_PROTECT(ix)
Py_ADJUST_ERANGE1(ix);
if (negate_result)
ix = -ix;
if (errno != 0) {
/* We don't expect any errno value other than ERANGE, but
* the range of libm bugs appears unbounded.
*/
PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
PyExc_ValueError);
return NULL;
}
return PyFloat_FromDouble(ix);
}
#undef DOUBLE_IS_ODD_INTEGER
static PyObject *
float_neg(PyFloatObject *v)
{
return PyFloat_FromDouble(-v->ob_fval);
}
static PyObject *
float_abs(PyFloatObject *v)
{
return PyFloat_FromDouble(fabs(v->ob_fval));
}
static int
float_bool(PyFloatObject *v)
{
return v->ob_fval != 0.0;
}
static PyObject *
float_is_integer(PyObject *v)
{
double x = PyFloat_AsDouble(v);
PyObject *o;
if (x == -1.0 && PyErr_Occurred())
return NULL;
if (!Py_IS_FINITE(x))
Py_RETURN_FALSE;
errno = 0;
PyFPE_START_PROTECT("is_integer", return NULL)
o = (floor(x) == x) ? Py_True : Py_False;
PyFPE_END_PROTECT(x)
if (errno != 0) {
PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
PyExc_ValueError);
return NULL;
}
Py_INCREF(o);
return o;
}
#if 0
static PyObject *
float_is_inf(PyObject *v)
{
double x = PyFloat_AsDouble(v);
if (x == -1.0 && PyErr_Occurred())
return NULL;
return PyBool_FromLong((long)Py_IS_INFINITY(x));
}
static PyObject *
float_is_nan(PyObject *v)
{
double x = PyFloat_AsDouble(v);
if (x == -1.0 && PyErr_Occurred())
return NULL;
return PyBool_FromLong((long)Py_IS_NAN(x));
}
static PyObject *
float_is_finite(PyObject *v)
{
double x = PyFloat_AsDouble(v);
if (x == -1.0 && PyErr_Occurred())
return NULL;
return PyBool_FromLong((long)Py_IS_FINITE(x));
}
#endif
static PyObject *
float_trunc(PyObject *v)
{
double x = PyFloat_AsDouble(v);
double wholepart; /* integral portion of x, rounded toward 0 */
(void)modf(x, &wholepart);
/* Try to get out cheap if this fits in a Python int. The attempt
* to cast to long must be protected, as C doesn't define what
* happens if the double is too big to fit in a long. Some rare
* systems raise an exception then (RISCOS was mentioned as one,
* and someone using a non-default option on Sun also bumped into
* that). Note that checking for >= and <= LONG_{MIN,MAX} would
* still be vulnerable: if a long has more bits of precision than
* a double, casting MIN/MAX to double may yield an approximation,
* and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
* yield true from the C expression wholepart<=LONG_MAX, despite
* that wholepart is actually greater than LONG_MAX.
*/
if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
const long aslong = (long)wholepart;
return PyLong_FromLong(aslong);
}
return PyLong_FromDouble(wholepart);
}
/* double_round: rounds a finite double to the closest multiple of
10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
ndigits <= 323). Returns a Python float, or sets a Python error and
returns NULL on failure (OverflowError and memory errors are possible). */
#ifndef PY_NO_SHORT_FLOAT_REPR
/* version of double_round that uses the correctly-rounded string<->double
conversions from Python/dtoa.c */
static PyObject *
double_round(double x, int ndigits) {
double rounded;
Py_ssize_t buflen, mybuflen=100;
char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
int decpt, sign;
PyObject *result = NULL;
_Py_SET_53BIT_PRECISION_HEADER;
/* round to a decimal string */
_Py_SET_53BIT_PRECISION_START;
buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
_Py_SET_53BIT_PRECISION_END;
if (buf == NULL) {
PyErr_NoMemory();
return NULL;
}
/* Get new buffer if shortbuf is too small. Space needed <= buf_end -
buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
buflen = buf_end - buf;
if (buflen + 8 > mybuflen) {
mybuflen = buflen+8;
mybuf = (char *)PyMem_Malloc(mybuflen);
if (mybuf == NULL) {
PyErr_NoMemory();
goto exit;
}
}
/* copy buf to mybuf, adding exponent, sign and leading 0 */
PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
buf, decpt - (int)buflen);
/* and convert the resulting string back to a double */
errno = 0;
_Py_SET_53BIT_PRECISION_START;
rounded = _Py_dg_strtod(mybuf, NULL);
_Py_SET_53BIT_PRECISION_END;
if (errno == ERANGE && fabs(rounded) >= 1.)
PyErr_SetString(PyExc_OverflowError,
"rounded value too large to represent");
else
result = PyFloat_FromDouble(rounded);
/* done computing value; now clean up */
if (mybuf != shortbuf)
PyMem_Free(mybuf);
exit:
_Py_dg_freedtoa(buf);
return result;
}
#else /* PY_NO_SHORT_FLOAT_REPR */
/* fallback version, to be used when correctly rounded binary<->decimal
conversions aren't available */
static PyObject *
double_round(double x, int ndigits) {
double pow1, pow2, y, z;
if (ndigits >= 0) {
if (ndigits > 22) {
/* pow1 and pow2 are each safe from overflow, but
pow1*pow2 ~= pow(10.0, ndigits) might overflow */
pow1 = pow(10.0, (double)(ndigits-22));
pow2 = 1e22;
}
else {
pow1 = pow(10.0, (double)ndigits);
pow2 = 1.0;
}
y = (x*pow1)*pow2;
/* if y overflows, then rounded value is exactly x */
if (!Py_IS_FINITE(y))
return PyFloat_FromDouble(x);
}
else {
pow1 = pow(10.0, (double)-ndigits);
pow2 = 1.0; /* unused; silences a gcc compiler warning */
y = x / pow1;
}
z = round(y);
if (fabs(y-z) == 0.5)
/* halfway between two integers; use round-half-even */
z = 2.0*round(y/2.0);
if (ndigits >= 0)
z = (z / pow2) / pow1;
else
z *= pow1;
/* if computation resulted in overflow, raise OverflowError */
if (!Py_IS_FINITE(z)) {
PyErr_SetString(PyExc_OverflowError,
"overflow occurred during round");
return NULL;
}
return PyFloat_FromDouble(z);
}
#endif /* PY_NO_SHORT_FLOAT_REPR */
/* round a Python float v to the closest multiple of 10**-ndigits */
static PyObject *
float_round(PyObject *v, PyObject *args)
{
double x, rounded;
PyObject *o_ndigits = NULL;
Py_ssize_t ndigits;
x = PyFloat_AsDouble(v);
if (!PyArg_ParseTuple(args, "|O", &o_ndigits))
return NULL;
if (o_ndigits == NULL) {
/* single-argument round: round to nearest integer */
rounded = round(x);
if (fabs(x-rounded) == 0.5)
/* halfway case: round to even */
rounded = 2.0*round(x/2.0);
return PyLong_FromDouble(rounded);
}
/* interpret second argument as a Py_ssize_t; clips on overflow */
ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
if (ndigits == -1 && PyErr_Occurred())
return NULL;
/* nans and infinities round to themselves */
if (!Py_IS_FINITE(x))
return PyFloat_FromDouble(x);
/* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
always rounds to itself. For ndigits < NDIGITS_MIN, x always
rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */
#define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
#define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
if (ndigits > NDIGITS_MAX)
/* return x */
return PyFloat_FromDouble(x);
else if (ndigits < NDIGITS_MIN)
/* return 0.0, but with sign of x */
return PyFloat_FromDouble(0.0*x);
else
/* finite x, and ndigits is not unreasonably large */
return double_round(x, (int)ndigits);
#undef NDIGITS_MAX
#undef NDIGITS_MIN
}
static PyObject *
float_float(PyObject *v)
{
if (PyFloat_CheckExact(v))
Py_INCREF(v);
else
v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
return v;
}
/* turn ASCII hex characters into integer values and vice versa */
static char
char_from_hex(int x)
{
assert(0 <= x && x < 16);
return Py_hexdigits[x];
}
static int
hex_from_char(char c) {
int x;
switch(c) {
case '0':
x = 0;
break;
case '1':
x = 1;
break;
case '2':
x = 2;
break;
case '3':
x = 3;
break;
case '4':
x = 4;
break;
case '5':
x = 5;
break;
case '6':
x = 6;
break;
case '7':
x = 7;
break;
case '8':
x = 8;
break;
case '9':
x = 9;
break;
case 'a':
case 'A':
x = 10;
break;
case 'b':
case 'B':
x = 11;
break;
case 'c':
case 'C':
x = 12;
break;
case 'd':
case 'D':
x = 13;
break;
case 'e':
case 'E':
x = 14;
break;
case 'f':
case 'F':
x = 15;
break;
default:
x = -1;
break;
}
return x;
}
/* convert a float to a hexadecimal string */
/* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
of the form 4k+1. */
#define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
static PyObject *
float_hex(PyObject *v)
{
double x, m;
int e, shift, i, si, esign;
/* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
trailing NUL byte. */
char s[(TOHEX_NBITS-1)/4+3];
CONVERT_TO_DOUBLE(v, x);
if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
return float_repr((PyFloatObject *)v);
if (x == 0.0) {
if (copysign(1.0, x) == -1.0)
return PyUnicode_FromString("-0x0.0p+0");
else
return PyUnicode_FromString("0x0.0p+0");
}
m = frexp(fabs(x), &e);
shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0);
m = ldexp(m, shift);
e -= shift;
si = 0;
s[si] = char_from_hex((int)m);
si++;
m -= (int)m;
s[si] = '.';
si++;
for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
m *= 16.0;
s[si] = char_from_hex((int)m);
si++;
m -= (int)m;
}
s[si] = '\0';
if (e < 0) {
esign = (int)'-';
e = -e;
}
else
esign = (int)'+';
if (x < 0.0)
return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e);
else
return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e);
}
PyDoc_STRVAR(float_hex_doc,
"float.hex() -> string\n\
\n\
Return a hexadecimal representation of a floating-point number.\n\
>>> (-0.1).hex()\n\
'-0x1.999999999999ap-4'\n\
>>> 3.14159.hex()\n\
'0x1.921f9f01b866ep+1'");
/* Convert a hexadecimal string to a float. */
static PyObject *
float_fromhex(PyObject *cls, PyObject *arg)
{
PyObject *result_as_float, *result;
double x;
long exp, top_exp, lsb, key_digit;
char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
int half_eps, digit, round_up, negate=0;
Py_ssize_t length, ndigits, fdigits, i;
/*
* For the sake of simplicity and correctness, we impose an artificial
* limit on ndigits, the total number of hex digits in the coefficient
* The limit is chosen to ensure that, writing exp for the exponent,
*
* (1) if exp > LONG_MAX/2 then the value of the hex string is
* guaranteed to overflow (provided it's nonzero)
*
* (2) if exp < LONG_MIN/2 then the value of the hex string is
* guaranteed to underflow to 0.
*
* (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
* overflow in the calculation of exp and top_exp below.
*
* More specifically, ndigits is assumed to satisfy the following
* inequalities:
*
* 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
* 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
*
* If either of these inequalities is not satisfied, a ValueError is
* raised. Otherwise, write x for the value of the hex string, and
* assume x is nonzero. Then
*
* 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
*
* Now if exp > LONG_MAX/2 then:
*
* exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
* = DBL_MAX_EXP
*
* so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
* double, so overflows. If exp < LONG_MIN/2, then
*
* exp + 4*ndigits <= LONG_MIN/2 - 1 + (
* DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
* = DBL_MIN_EXP - DBL_MANT_DIG - 1
*
* and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
* when converted to a C double.
*
* It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
* exp+4*ndigits and exp-4*ndigits are within the range of a long.
*/
s = _PyUnicode_AsStringAndSize(arg, &length);
if (s == NULL)
return NULL;
s_end = s + length;
/********************
* Parse the string *
********************/
/* leading whitespace */
while (Py_ISSPACE(*s))
s++;
/* infinities and nans */
x = _Py_parse_inf_or_nan(s, &coeff_end);
if (coeff_end != s) {
s = coeff_end;
goto finished;
}
/* optional sign */
if (*s == '-') {
s++;
negate = 1;
}
else if (*s == '+')
s++;
/* [0x] */
s_store = s;
if (*s == '0') {
s++;
if (*s == 'x' || *s == 'X')
s++;
else
s = s_store;
}
/* coefficient: <integer> [. <fraction>] */
coeff_start = s;
while (hex_from_char(*s) >= 0)
s++;
s_store = s;
if (*s == '.') {
s++;
while (hex_from_char(*s) >= 0)
s++;
coeff_end = s-1;
}
else
coeff_end = s;
/* ndigits = total # of hex digits; fdigits = # after point */
ndigits = coeff_end - coeff_start;
fdigits = coeff_end - s_store;
if (ndigits == 0)
goto parse_error;
if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
goto insane_length_error;
/* [p <exponent>] */
if (*s == 'p' || *s == 'P') {
s++;
exp_start = s;
if (*s == '-' || *s == '+')
s++;
if (!('0' <= *s && *s <= '9'))
goto parse_error;
s++;
while ('0' <= *s && *s <= '9')
s++;
exp = strtol(exp_start, NULL, 10);
}
else
exp = 0;
/* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
#define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
coeff_end-(j) : \
coeff_end-1-(j)))
/*******************************************
* Compute rounded value of the hex string *
*******************************************/
/* Discard leading zeros, and catch extreme overflow and underflow */
while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
ndigits--;
if (ndigits == 0 || exp < LONG_MIN/2) {
x = 0.0;
goto finished;
}
if (exp > LONG_MAX/2)
goto overflow_error;
/* Adjust exponent for fractional part. */
exp = exp - 4*((long)fdigits);
/* top_exp = 1 more than exponent of most sig. bit of coefficient */
top_exp = exp + 4*((long)ndigits - 1);
for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
top_exp++;
/* catch almost all nonextreme cases of overflow and underflow here */
if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
x = 0.0;
goto finished;
}
if (top_exp > DBL_MAX_EXP)
goto overflow_error;
/* lsb = exponent of least significant bit of the *rounded* value.
This is top_exp - DBL_MANT_DIG unless result is subnormal. */
lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
x = 0.0;
if (exp >= lsb) {
/* no rounding required */
for (i = ndigits-1; i >= 0; i--)
x = 16.0*x + HEX_DIGIT(i);
x = ldexp(x, (int)(exp));
goto finished;
}
/* rounding required. key_digit is the index of the hex digit
containing the first bit to be rounded away. */
half_eps = 1 << (int)((lsb - exp - 1) % 4);
key_digit = (lsb - exp - 1) / 4;
for (i = ndigits-1; i > key_digit; i--)
x = 16.0*x + HEX_DIGIT(i);
digit = HEX_DIGIT(key_digit);
x = 16.0*x + (double)(digit & (16-2*half_eps));
/* round-half-even: round up if bit lsb-1 is 1 and at least one of
bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
if ((digit & half_eps) != 0) {
round_up = 0;
if ((digit & (3*half_eps-1)) != 0 ||
(half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0))
round_up = 1;
else
for (i = key_digit-1; i >= 0; i--)
if (HEX_DIGIT(i) != 0) {
round_up = 1;
break;
}
if (round_up) {
x += 2*half_eps;
if (top_exp == DBL_MAX_EXP &&
x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
/* overflow corner case: pre-rounded value <
2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
goto overflow_error;
}
}
x = ldexp(x, (int)(exp+4*key_digit));
finished:
/* optional trailing whitespace leading to the end of the string */
while (Py_ISSPACE(*s))
s++;
if (s != s_end)
goto parse_error;
result_as_float = Py_BuildValue("(d)", negate ? -x : x);
if (result_as_float == NULL)
return NULL;
result = PyObject_CallObject(cls, result_as_float);
Py_DECREF(result_as_float);
return result;
overflow_error:
PyErr_SetString(PyExc_OverflowError,
"hexadecimal value too large to represent as a float");
return NULL;
parse_error:
PyErr_SetString(PyExc_ValueError,
"invalid hexadecimal floating-point string");
return NULL;
insane_length_error:
PyErr_SetString(PyExc_ValueError,
"hexadecimal string too long to convert");
return NULL;
}
PyDoc_STRVAR(float_fromhex_doc,
"float.fromhex(string) -> float\n\
\n\
Create a floating-point number from a hexadecimal string.\n\
>>> float.fromhex('0x1.ffffp10')\n\
2047.984375\n\
>>> float.fromhex('-0x1p-1074')\n\
-5e-324");
static PyObject *
float_as_integer_ratio(PyObject *v, PyObject *unused)
{
double self;
double float_part;
int exponent;
int i;
PyObject *prev;
PyObject *py_exponent = NULL;
PyObject *numerator = NULL;
PyObject *denominator = NULL;
PyObject *result_pair = NULL;
PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
#define INPLACE_UPDATE(obj, call) \
prev = obj; \
obj = call; \
Py_DECREF(prev); \
CONVERT_TO_DOUBLE(v, self);
if (Py_IS_INFINITY(self)) {
PyErr_SetString(PyExc_OverflowError,
"Cannot pass infinity to float.as_integer_ratio.");
return NULL;
}
if (Py_IS_NAN(self)) {
PyErr_SetString(PyExc_ValueError,
"Cannot pass NaN to float.as_integer_ratio.");
return NULL;
}
PyFPE_START_PROTECT("as_integer_ratio", goto error);
float_part = frexp(self, &exponent); /* self == float_part * 2**exponent exactly */
PyFPE_END_PROTECT(float_part);
for (i=0; i<300 && float_part != floor(float_part) ; i++) {
float_part *= 2.0;
exponent--;
}
/* self == float_part * 2**exponent exactly and float_part is integral.
If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
to be truncated by PyLong_FromDouble(). */
numerator = PyLong_FromDouble(float_part);
if (numerator == NULL) goto error;
/* fold in 2**exponent */
denominator = PyLong_FromLong(1);
py_exponent = PyLong_FromLong(labs((long)exponent));
if (py_exponent == NULL) goto error;
INPLACE_UPDATE(py_exponent,
long_methods->nb_lshift(denominator, py_exponent));
if (py_exponent == NULL) goto error;
if (exponent > 0) {
INPLACE_UPDATE(numerator,
long_methods->nb_multiply(numerator, py_exponent));
if (numerator == NULL) goto error;
}
else {
Py_DECREF(denominator);
denominator = py_exponent;
py_exponent = NULL;
}
result_pair = PyTuple_Pack(2, numerator, denominator);
#undef INPLACE_UPDATE
error:
Py_XDECREF(py_exponent);
Py_XDECREF(denominator);
Py_XDECREF(numerator);
return result_pair;
}
PyDoc_STRVAR(float_as_integer_ratio_doc,
"float.as_integer_ratio() -> (int, int)\n"
"\n"
"Return a pair of integers, whose ratio is exactly equal to the original\n"
"float and with a positive denominator.\n"
"Raise OverflowError on infinities and a ValueError on NaNs.\n"
"\n"
">>> (10.0).as_integer_ratio()\n"
"(10, 1)\n"
">>> (0.0).as_integer_ratio()\n"
"(0, 1)\n"
">>> (-.25).as_integer_ratio()\n"
"(-1, 4)");
static PyObject *
float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static PyObject *
float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *x = Py_False; /* Integer zero */
static char *kwlist[] = {"x", 0};
if (type != &PyFloat_Type)
return float_subtype_new(type, args, kwds); /* Wimp out */
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
return NULL;
/* If it's a string, but not a string subclass, use
PyFloat_FromString. */
if (PyUnicode_CheckExact(x))
return PyFloat_FromString(x);
return PyNumber_Float(x);
}
/* Wimpy, slow approach to tp_new calls for subtypes of float:
first create a regular float from whatever arguments we got,
then allocate a subtype instance and initialize its ob_fval
from the regular float. The regular float is then thrown away.
*/
static PyObject *
float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *tmp, *newobj;
assert(PyType_IsSubtype(type, &PyFloat_Type));
tmp = float_new(&PyFloat_Type, args, kwds);
if (tmp == NULL)
return NULL;
assert(PyFloat_CheckExact(tmp));
newobj = type->tp_alloc(type, 0);
if (newobj == NULL) {
Py_DECREF(tmp);
return NULL;
}
((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
Py_DECREF(tmp);
return newobj;
}
static PyObject *
float_getnewargs(PyFloatObject *v)
{
return Py_BuildValue("(d)", v->ob_fval);
}
/* this is for the benefit of the pack/unpack routines below */
typedef enum {
unknown_format, ieee_big_endian_format, ieee_little_endian_format
} float_format_type;
static float_format_type double_format, float_format;
static float_format_type detected_double_format, detected_float_format;
static PyObject *
float_getformat(PyTypeObject *v, PyObject* arg)
{
char* s;
float_format_type r;
if (!PyUnicode_Check(arg)) {
PyErr_Format(PyExc_TypeError,
"__getformat__() argument must be string, not %.500s",
Py_TYPE(arg)->tp_name);
return NULL;
}
s = _PyUnicode_AsString(arg);
if (s == NULL)
return NULL;
if (strcmp(s, "double") == 0) {
r = double_format;
}
else if (strcmp(s, "float") == 0) {
r = float_format;
}
else {
PyErr_SetString(PyExc_ValueError,
"__getformat__() argument 1 must be "
"'double' or 'float'");
return NULL;
}
switch (r) {
case unknown_format:
return PyUnicode_FromString("unknown");
case ieee_little_endian_format:
return PyUnicode_FromString("IEEE, little-endian");
case ieee_big_endian_format:
return PyUnicode_FromString("IEEE, big-endian");
default:
Py_FatalError("insane float_format or double_format");
return NULL;
}
}
PyDoc_STRVAR(float_getformat_doc,
"float.__getformat__(typestr) -> string\n"
"\n"
"You probably don't want to use this function. It exists mainly to be\n"
"used in Python's test suite.\n"
"\n"
"typestr must be 'double' or 'float'. This function returns whichever of\n"
"'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n"
"format of floating point numbers used by the C type named by typestr.");
static PyObject *
float_setformat(PyTypeObject *v, PyObject* args)
{
char* typestr;
char* format;
float_format_type f;
float_format_type detected;
float_format_type *p;
if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format))
return NULL;
if (strcmp(typestr, "double") == 0) {
p = &double_format;
detected = detected_double_format;
}
else if (strcmp(typestr, "float") == 0) {
p = &float_format;
detected = detected_float_format;
}
else {
PyErr_SetString(PyExc_ValueError,
"__setformat__() argument 1 must "
"be 'double' or 'float'");
return NULL;
}
if (strcmp(format, "unknown") == 0) {
f = unknown_format;
}
else if (strcmp(format, "IEEE, little-endian") == 0) {
f = ieee_little_endian_format;
}
else if (strcmp(format, "IEEE, big-endian") == 0) {
f = ieee_big_endian_format;
}
else {
PyErr_SetString(PyExc_ValueError,
"__setformat__() argument 2 must be "
"'unknown', 'IEEE, little-endian' or "
"'IEEE, big-endian'");
return NULL;
}
if (f != unknown_format && f != detected) {
PyErr_Format(PyExc_ValueError,
"can only set %s format to 'unknown' or the "
"detected platform value", typestr);
return NULL;
}
*p = f;
Py_RETURN_NONE;
}
PyDoc_STRVAR(float_setformat_doc,
"float.__setformat__(typestr, fmt) -> None\n"
"\n"
"You probably don't want to use this function. It exists mainly to be\n"
"used in Python's test suite.\n"
"\n"
"typestr must be 'double' or 'float'. fmt must be one of 'unknown',\n"
"'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n"
"one of the latter two if it appears to match the underlying C reality.\n"
"\n"
"Override the automatic determination of C-level floating point type.\n"
"This affects how floats are converted to and from binary strings.");
static PyObject *
float_getzero(PyObject *v, void *closure)
{
return PyFloat_FromDouble(0.0);
}
static PyObject *
float__format__(PyObject *self, PyObject *args)
{
PyObject *format_spec;
_PyUnicodeWriter writer;
int ret;
if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
return NULL;
_PyUnicodeWriter_Init(&writer);
ret = _PyFloat_FormatAdvancedWriter(
&writer,
self,
format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
if (ret == -1) {
_PyUnicodeWriter_Dealloc(&writer);
return NULL;
}
return _PyUnicodeWriter_Finish(&writer);
}
PyDoc_STRVAR(float__format__doc,
"float.__format__(format_spec) -> string\n"
"\n"
"Formats the float according to format_spec.");
static PyMethodDef float_methods[] = {
{"conjugate", (PyCFunction)float_float, METH_NOARGS,
"Return self, the complex conjugate of any float."},
{"__trunc__", (PyCFunction)float_trunc, METH_NOARGS,
"Return the Integral closest to x between 0 and x."},
{"__round__", (PyCFunction)float_round, METH_VARARGS,
"Return the Integral closest to x, rounding half toward even.\n"
"When an argument is passed, work like built-in round(x, ndigits)."},
{"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS,
float_as_integer_ratio_doc},
{"fromhex", (PyCFunction)float_fromhex,
METH_O|METH_CLASS, float_fromhex_doc},
{"hex", (PyCFunction)float_hex,
METH_NOARGS, float_hex_doc},
{"is_integer", (PyCFunction)float_is_integer, METH_NOARGS,
"Return True if the float is an integer."},
#if 0
{"is_inf", (PyCFunction)float_is_inf, METH_NOARGS,
"Return True if the float is positive or negative infinite."},
{"is_finite", (PyCFunction)float_is_finite, METH_NOARGS,
"Return True if the float is finite, neither infinite nor NaN."},
{"is_nan", (PyCFunction)float_is_nan, METH_NOARGS,
"Return True if the float is not a number (NaN)."},
#endif
{"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS},
{"__getformat__", (PyCFunction)float_getformat,
METH_O|METH_CLASS, float_getformat_doc},
{"__setformat__", (PyCFunction)float_setformat,
METH_VARARGS|METH_CLASS, float_setformat_doc},
{"__format__", (PyCFunction)float__format__,
METH_VARARGS, float__format__doc},
{NULL, NULL} /* sentinel */
};
static PyGetSetDef float_getset[] = {
{"real",
(getter)float_float, (setter)NULL,
"the real part of a complex number",
NULL},
{"imag",
(getter)float_getzero, (setter)NULL,
"the imaginary part of a complex number",
NULL},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(float_doc,
"float(x) -> floating point number\n\
\n\
Convert a string or number to a floating point number, if possible.");
static PyNumberMethods float_as_number = {
float_add, /*nb_add*/
float_sub, /*nb_subtract*/
float_mul, /*nb_multiply*/
float_rem, /*nb_remainder*/
float_divmod, /*nb_divmod*/
float_pow, /*nb_power*/
(unaryfunc)float_neg, /*nb_negative*/
(unaryfunc)float_float, /*nb_positive*/
(unaryfunc)float_abs, /*nb_absolute*/
(inquiry)float_bool, /*nb_bool*/
0, /*nb_invert*/
0, /*nb_lshift*/
0, /*nb_rshift*/
0, /*nb_and*/
0, /*nb_xor*/
0, /*nb_or*/
float_trunc, /*nb_int*/
0, /*nb_reserved*/
float_float, /*nb_float*/
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
float_floor_div, /* nb_floor_divide */
float_div, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
};
PyTypeObject PyFloat_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"float",
sizeof(PyFloatObject),
0,
(destructor)float_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)float_repr, /* tp_repr */
&float_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)float_hash, /* tp_hash */
0, /* tp_call */
(reprfunc)float_repr, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
float_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
float_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
float_methods, /* tp_methods */
0, /* tp_members */
float_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
float_new, /* tp_new */
};
int
_PyFloat_Init(void)
{
/* We attempt to determine if this machine is using IEEE
floating point formats by peering at the bits of some
carefully chosen values. If it looks like we are on an
IEEE platform, the float packing/unpacking routines can
just copy bits, if not they resort to arithmetic & shifts
and masks. The shifts & masks approach works on all finite
values, but what happens to infinities, NaNs and signed
zeroes on packing is an accident, and attempting to unpack
a NaN or an infinity will raise an exception.
Note that if we're on some whacked-out platform which uses
IEEE formats but isn't strictly little-endian or big-
endian, we will fall back to the portable shifts & masks
method. */
#if SIZEOF_DOUBLE == 8
{
double x = 9006104071832581.0;
if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
detected_double_format = ieee_big_endian_format;
else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
detected_double_format = ieee_little_endian_format;
else
detected_double_format = unknown_format;
}
#else
detected_double_format = unknown_format;
#endif
#if SIZEOF_FLOAT == 4
{
float y = 16711938.0;
if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
detected_float_format = ieee_big_endian_format;
else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
detected_float_format = ieee_little_endian_format;
else
detected_float_format = unknown_format;
}
#else
detected_float_format = unknown_format;
#endif
double_format = detected_double_format;
float_format = detected_float_format;
/* Init float info */
if (FloatInfoType.tp_name == NULL) {
if (PyStructSequence_InitType2(&FloatInfoType, &floatinfo_desc) < 0)
return 0;
}
return 1;
}
int
PyFloat_ClearFreeList(void)
{
PyFloatObject *f = free_list, *next;
int i = numfree;
while (f) {
next = (PyFloatObject*) Py_TYPE(f);
PyObject_FREE(f);
f = next;
}
free_list = NULL;
numfree = 0;
return i;
}
void
PyFloat_Fini(void)
{
(void)PyFloat_ClearFreeList();
}
/* Print summary info about the state of the optimized allocator */
void
_PyFloat_DebugMallocStats(FILE *out)
{
_PyDebugAllocatorStats(out,
"free PyFloatObject",
numfree, sizeof(PyFloatObject));
}
/*----------------------------------------------------------------------------
* _PyFloat_{Pack,Unpack}{4,8}. See floatobject.h.
*/
int
_PyFloat_Pack4(double x, unsigned char *p, int le)
{
if (float_format == unknown_format) {
unsigned char sign;
int e;
double f;
unsigned int fbits;
int incr = 1;
if (le) {
p += 3;
incr = -1;
}
if (x < 0) {
sign = 1;
x = -x;
}
else
sign = 0;
f = frexp(x, &e);
/* Normalize f to be in the range [1.0, 2.0) */
if (0.5 <= f && f < 1.0) {
f *= 2.0;
e--;
}
else if (f == 0.0)
e = 0;
else {
PyErr_SetString(PyExc_SystemError,
"frexp() result out of range");
return -1;
}
if (e >= 128)
goto Overflow;
else if (e < -126) {
/* Gradual underflow */
f = ldexp(f, 126 + e);
e = 0;
}
else if (!(e == 0 && f == 0.0)) {
e += 127;
f -= 1.0; /* Get rid of leading 1 */
}
f *= 8388608.0; /* 2**23 */
fbits = (unsigned int)(f + 0.5); /* Round */
assert(fbits <= 8388608);
if (fbits >> 23) {
/* The carry propagated out of a string of 23 1 bits. */
fbits = 0;
++e;
if (e >= 255)
goto Overflow;
}
/* First byte */
*p = (sign << 7) | (e >> 1);
p += incr;
/* Second byte */
*p = (char) (((e & 1) << 7) | (fbits >> 16));
p += incr;
/* Third byte */
*p = (fbits >> 8) & 0xFF;
p += incr;
/* Fourth byte */
*p = fbits & 0xFF;
/* Done */
return 0;
}
else {
float y = (float)x;
const unsigned char *s = (unsigned char*)&y;
int i, incr = 1;
if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
goto Overflow;
if ((float_format == ieee_little_endian_format && !le)
|| (float_format == ieee_big_endian_format && le)) {
p += 3;
incr = -1;
}
for (i = 0; i < 4; i++) {
*p = *s++;
p += incr;
}
return 0;
}
Overflow:
PyErr_SetString(PyExc_OverflowError,
"float too large to pack with f format");
return -1;
}
int
_PyFloat_Pack8(double x, unsigned char *p, int le)
{
if (double_format == unknown_format) {
unsigned char sign;
int e;
double f;
unsigned int fhi, flo;
int incr = 1;
if (le) {
p += 7;
incr = -1;
}
if (x < 0) {
sign = 1;
x = -x;
}
else
sign = 0;
f = frexp(x, &e);
/* Normalize f to be in the range [1.0, 2.0) */
if (0.5 <= f && f < 1.0) {
f *= 2.0;
e--;
}
else if (f == 0.0)
e = 0;
else {
PyErr_SetString(PyExc_SystemError,
"frexp() result out of range");
return -1;
}
if (e >= 1024)
goto Overflow;
else if (e < -1022) {
/* Gradual underflow */
f = ldexp(f, 1022 + e);
e = 0;
}
else if (!(e == 0 && f == 0.0)) {
e += 1023;
f -= 1.0; /* Get rid of leading 1 */
}
/* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
f *= 268435456.0; /* 2**28 */
fhi = (unsigned int)f; /* Truncate */
assert(fhi < 268435456);
f -= (double)fhi;
f *= 16777216.0; /* 2**24 */
flo = (unsigned int)(f + 0.5); /* Round */
assert(flo <= 16777216);
if (flo >> 24) {
/* The carry propagated out of a string of 24 1 bits. */
flo = 0;
++fhi;
if (fhi >> 28) {
/* And it also progagated out of the next 28 bits. */
fhi = 0;
++e;
if (e >= 2047)
goto Overflow;
}
}
/* First byte */
*p = (sign << 7) | (e >> 4);
p += incr;
/* Second byte */
*p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
p += incr;
/* Third byte */
*p = (fhi >> 16) & 0xFF;
p += incr;
/* Fourth byte */
*p = (fhi >> 8) & 0xFF;
p += incr;
/* Fifth byte */
*p = fhi & 0xFF;
p += incr;
/* Sixth byte */
*p = (flo >> 16) & 0xFF;
p += incr;
/* Seventh byte */
*p = (flo >> 8) & 0xFF;
p += incr;
/* Eighth byte */
*p = flo & 0xFF;
/* p += incr; */
/* Done */
return 0;
Overflow:
PyErr_SetString(PyExc_OverflowError,
"float too large to pack with d format");
return -1;
}
else {
const unsigned char *s = (unsigned char*)&x;
int i, incr = 1;
if ((double_format == ieee_little_endian_format && !le)
|| (double_format == ieee_big_endian_format && le)) {
p += 7;
incr = -1;
}
for (i = 0; i < 8; i++) {
*p = *s++;
p += incr;
}
return 0;
}
}
double
_PyFloat_Unpack4(const unsigned char *p, int le)
{
if (float_format == unknown_format) {
unsigned char sign;
int e;
unsigned int f;
double x;
int incr = 1;
if (le) {
p += 3;
incr = -1;
}
/* First byte */
sign = (*p >> 7) & 1;
e = (*p & 0x7F) << 1;
p += incr;
/* Second byte */
e |= (*p >> 7) & 1;
f = (*p & 0x7F) << 16;
p += incr;
if (e == 255) {
PyErr_SetString(
PyExc_ValueError,
"can't unpack IEEE 754 special value "
"on non-IEEE platform");
return -1;
}
/* Third byte */
f |= *p << 8;
p += incr;
/* Fourth byte */
f |= *p;
x = (double)f / 8388608.0;
/* XXX This sadly ignores Inf/NaN issues */
if (e == 0)
e = -126;
else {
x += 1.0;
e -= 127;
}
x = ldexp(x, e);
if (sign)
x = -x;
return x;
}
else {
float x;
if ((float_format == ieee_little_endian_format && !le)
|| (float_format == ieee_big_endian_format && le)) {
char buf[4];
char *d = &buf[3];
int i;
for (i = 0; i < 4; i++) {
*d-- = *p++;
}
memcpy(&x, buf, 4);
}
else {
memcpy(&x, p, 4);
}
return x;
}
}
double
_PyFloat_Unpack8(const unsigned char *p, int le)
{
if (double_format == unknown_format) {
unsigned char sign;
int e;
unsigned int fhi, flo;
double x;
int incr = 1;
if (le) {
p += 7;
incr = -1;
}
/* First byte */
sign = (*p >> 7) & 1;
e = (*p & 0x7F) << 4;
p += incr;
/* Second byte */
e |= (*p >> 4) & 0xF;
fhi = (*p & 0xF) << 24;
p += incr;
if (e == 2047) {
PyErr_SetString(
PyExc_ValueError,
"can't unpack IEEE 754 special value "
"on non-IEEE platform");
return -1.0;
}
/* Third byte */
fhi |= *p << 16;
p += incr;
/* Fourth byte */
fhi |= *p << 8;
p += incr;
/* Fifth byte */
fhi |= *p;
p += incr;
/* Sixth byte */
flo = *p << 16;
p += incr;
/* Seventh byte */
flo |= *p << 8;
p += incr;
/* Eighth byte */
flo |= *p;
x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
x /= 268435456.0; /* 2**28 */
if (e == 0)
e = -1022;
else {
x += 1.0;
e -= 1023;
}
x = ldexp(x, e);
if (sign)
x = -x;
return x;
}
else {
double x;
if ((double_format == ieee_little_endian_format && !le)
|| (double_format == ieee_big_endian_format && le)) {
char buf[8];
char *d = &buf[7];
int i;
for (i = 0; i < 8; i++) {
*d-- = *p++;
}
memcpy(&x, buf, 8);
}
else {
memcpy(&x, p, 8);
}
return x;
}
}
|