1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
|
/***********************************************************
Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam,
The Netherlands.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the names of Stichting Mathematisch
Centrum or CWI or Corporation for National Research Initiatives or
CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.
While CWI is the initial source for this software, a modified version
is made available by the Corporation for National Research Initiatives
(CNRI) at the Internet address ftp://ftp.python.org.
STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH
CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
******************************************************************/
/* Float object implementation */
/* XXX There should be overflow checks here, but it's hard to check
for any kind of float exception without losing portability. */
#include "Python.h"
#include <ctype.h>
#include "mymath.h"
#ifdef i860
/* Cray APP has bogus definition of HUGE_VAL in <math.h> */
#undef HUGE_VAL
#endif
#if defined(HUGE_VAL) && !defined(CHECK)
#define CHECK(x) if (errno != 0) ; \
else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \
else errno = ERANGE
#endif
#ifndef CHECK
#define CHECK(x) /* Don't know how to check */
#endif
#ifdef HAVE_LIMITS_H
#include <limits.h>
#endif
#ifndef LONG_MAX
#define LONG_MAX 0X7FFFFFFFL
#endif
#ifndef LONG_MIN
#define LONG_MIN (-LONG_MAX-1)
#endif
#ifdef __NeXT__
#ifdef __sparc__
/*
* This works around a bug in the NS/Sparc 3.3 pre-release
* limits.h header file.
* 10-Feb-1995 bwarsaw@cnri.reston.va.us
*/
#undef LONG_MIN
#define LONG_MIN (-LONG_MAX-1)
#endif
#endif
#if !defined(__STDC__) && !defined(macintosh)
extern double fmod Py_PROTO((double, double));
extern double pow Py_PROTO((double, double));
#endif
#ifdef sun
/* On SunOS4.1 only libm.a exists. Make sure that references to all
needed math functions exist in the executable, so that dynamic
loading of mathmodule does not fail. */
double (*_Py_math_funcs_hack[])() = {
acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor,
fmod, log, log10, pow, sin, sinh, sqrt, tan, tanh
};
#endif
/* Special free list -- see comments for same code in intobject.c. */
#define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
#define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
#define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
#define PyMem_MALLOC malloc
#define PyMem_FREE free
struct _floatblock {
struct _floatblock *next;
PyFloatObject objects[N_FLOATOBJECTS];
};
typedef struct _floatblock PyFloatBlock;
static PyFloatBlock *block_list = NULL;
static PyFloatObject *free_list = NULL;
static PyFloatObject *
fill_free_list()
{
PyFloatObject *p, *q;
p = (PyFloatObject *)PyMem_MALLOC(sizeof(PyFloatBlock));
if (p == NULL)
return (PyFloatObject *)PyErr_NoMemory();
((PyFloatBlock *)p)->next = block_list;
block_list = (PyFloatBlock *)p;
p = &((PyFloatBlock *)p)->objects[0];
q = p + N_FLOATOBJECTS;
while (--q > p)
q->ob_type = (struct _typeobject *)(q-1);
q->ob_type = NULL;
return p + N_FLOATOBJECTS - 1;
}
PyObject *
#ifdef __SC__
PyFloat_FromDouble(double fval)
#else
PyFloat_FromDouble(fval)
double fval;
#endif
{
register PyFloatObject *op;
if (free_list == NULL) {
if ((free_list = fill_free_list()) == NULL)
return NULL;
}
op = free_list;
free_list = (PyFloatObject *)op->ob_type;
op->ob_type = &PyFloat_Type;
op->ob_fval = fval;
_Py_NewReference((PyObject *)op);
return (PyObject *) op;
}
PyObject *
PyFloat_FromString(v, pend)
PyObject *v;
char **pend;
{
extern double strtod Py_PROTO((const char *, char **));
const char *s, *last, *end;
double x;
char buffer[256]; /* For errors */
int len;
if (PyString_Check(v)) {
s = PyString_AS_STRING(v);
len = PyString_GET_SIZE(v);
}
else if (PyObject_AsCharBuffer(v, &s, &len)) {
PyErr_SetString(PyExc_TypeError,
"float() needs a string argument");
return NULL;
}
last = s + len;
while (*s && isspace(Py_CHARMASK(*s)))
s++;
if (s[0] == '\0') {
PyErr_SetString(PyExc_ValueError, "empty string for float()");
return NULL;
}
errno = 0;
PyFPE_START_PROTECT("PyFloat_FromString", return 0)
x = strtod((char *)s, (char **)&end);
PyFPE_END_PROTECT(x)
/* Believe it or not, Solaris 2.6 can move end *beyond* the null
byte at the end of the string, when the input is inf(inity) */
if (end > last)
end = last;
while (*end && isspace(Py_CHARMASK(*end)))
end++;
if (*end != '\0') {
sprintf(buffer, "invalid literal for float(): %.200s", s);
PyErr_SetString(PyExc_ValueError, buffer);
return NULL;
}
else if (end != last) {
PyErr_SetString(PyExc_ValueError,
"null byte in argument for float()");
return NULL;
}
else if (errno != 0) {
sprintf(buffer, "float() literal too large: %.200s", s);
PyErr_SetString(PyExc_ValueError, buffer);
return NULL;
}
if (pend)
*pend = (char *)end;
return PyFloat_FromDouble(x);
}
static void
float_dealloc(op)
PyFloatObject *op;
{
op->ob_type = (struct _typeobject *)free_list;
free_list = op;
}
double
PyFloat_AsDouble(op)
PyObject *op;
{
PyNumberMethods *nb;
PyFloatObject *fo;
double val;
if (op && PyFloat_Check(op))
return PyFloat_AS_DOUBLE((PyFloatObject*) op);
if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
nb->nb_float == NULL) {
PyErr_BadArgument();
return -1;
}
fo = (PyFloatObject*) (*nb->nb_float) (op);
if (fo == NULL)
return -1;
if (!PyFloat_Check(fo)) {
PyErr_SetString(PyExc_TypeError,
"nb_float should return float object");
return -1;
}
val = PyFloat_AS_DOUBLE(fo);
Py_DECREF(fo);
return val;
}
/* Methods */
void
PyFloat_AsStringEx(buf, v, precision)
char *buf;
PyFloatObject *v;
int precision;
{
register char *cp;
/* Subroutine for float_repr and float_print.
We want float numbers to be recognizable as such,
i.e., they should contain a decimal point or an exponent.
However, %g may print the number as an integer;
in such cases, we append ".0" to the string. */
sprintf(buf, "%.*g", precision, v->ob_fval);
cp = buf;
if (*cp == '-')
cp++;
for (; *cp != '\0'; cp++) {
/* Any non-digit means it's not an integer;
this takes care of NAN and INF as well. */
if (!isdigit(Py_CHARMASK(*cp)))
break;
}
if (*cp == '\0') {
*cp++ = '.';
*cp++ = '0';
*cp++ = '\0';
}
}
/* Precisions used by repr() and str(), respectively.
The repr() precision (17 significant decimal digits) is the minimal number
that is guaranteed to have enough precision so that if the number is read
back in the exact same binary value is recreated. This is true for IEEE
floating point by design, and also happens to work for all other modern
hardware.
The str() precision is chosen so that in most cases, the rounding noise
created by various operations is suppressed, while giving plenty of
precision for practical use.
*/
#define PREC_REPR 17
#define PREC_STR 12
void
PyFloat_AsString(buf, v)
char *buf;
PyFloatObject *v;
{
PyFloat_AsStringEx(buf, v, PREC_STR);
}
/* ARGSUSED */
static int
float_print(v, fp, flags)
PyFloatObject *v;
FILE *fp;
int flags; /* Not used but required by interface */
{
char buf[100];
PyFloat_AsStringEx(buf, v, flags&Py_PRINT_RAW ? PREC_STR : PREC_REPR);
fputs(buf, fp);
return 0;
}
static PyObject *
float_repr(v)
PyFloatObject *v;
{
char buf[100];
PyFloat_AsStringEx(buf, v, PREC_REPR);
return PyString_FromString(buf);
}
static PyObject *
float_str(v)
PyFloatObject *v;
{
char buf[100];
PyFloat_AsStringEx(buf, v, PREC_STR);
return PyString_FromString(buf);
}
static int
float_compare(v, w)
PyFloatObject *v, *w;
{
double i = v->ob_fval;
double j = w->ob_fval;
return (i < j) ? -1 : (i > j) ? 1 : 0;
}
static long
float_hash(v)
PyFloatObject *v;
{
double intpart, fractpart;
int expo;
long x;
/* This is designed so that Python numbers with the same
value hash to the same value, otherwise comparisons
of mapping keys will turn out weird */
#ifdef MPW /* MPW C modf expects pointer to extended as second argument */
{
extended e;
fractpart = modf(v->ob_fval, &e);
intpart = e;
}
#else
fractpart = modf(v->ob_fval, &intpart);
#endif
if (fractpart == 0.0) {
if (intpart > 0x7fffffffL || -intpart > 0x7fffffffL) {
/* Convert to long int and use its hash... */
PyObject *w = PyLong_FromDouble(v->ob_fval);
if (w == NULL)
return -1;
x = PyObject_Hash(w);
Py_DECREF(w);
return x;
}
x = (long)intpart;
}
else {
/* Note -- if you change this code, also change the copy
in complexobject.c */
long hipart;
fractpart = frexp(fractpart, &expo);
fractpart = fractpart * 2147483648.0; /* 2**31 */
hipart = (long)fractpart; /* Take the top 32 bits */
fractpart = (fractpart - (double)hipart) * 2147483648.0;
/* Get the next 32 bits */
x = hipart + (long)fractpart + (long)intpart + (expo << 15);
/* Combine everything */
}
if (x == -1)
x = -2;
return x;
}
static PyObject *
float_add(v, w)
PyFloatObject *v;
PyFloatObject *w;
{
double result;
PyFPE_START_PROTECT("add", return 0)
result = v->ob_fval + w->ob_fval;
PyFPE_END_PROTECT(result)
return PyFloat_FromDouble(result);
}
static PyObject *
float_sub(v, w)
PyFloatObject *v;
PyFloatObject *w;
{
double result;
PyFPE_START_PROTECT("subtract", return 0)
result = v->ob_fval - w->ob_fval;
PyFPE_END_PROTECT(result)
return PyFloat_FromDouble(result);
}
static PyObject *
float_mul(v, w)
PyFloatObject *v;
PyFloatObject *w;
{
double result;
PyFPE_START_PROTECT("multiply", return 0)
result = v->ob_fval * w->ob_fval;
PyFPE_END_PROTECT(result)
return PyFloat_FromDouble(result);
}
static PyObject *
float_div(v, w)
PyFloatObject *v;
PyFloatObject *w;
{
double result;
if (w->ob_fval == 0) {
PyErr_SetString(PyExc_ZeroDivisionError, "float division");
return NULL;
}
PyFPE_START_PROTECT("divide", return 0)
result = v->ob_fval / w->ob_fval;
PyFPE_END_PROTECT(result)
return PyFloat_FromDouble(result);
}
static PyObject *
float_rem(v, w)
PyFloatObject *v;
PyFloatObject *w;
{
double vx, wx;
double mod;
wx = w->ob_fval;
if (wx == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError, "float modulo");
return NULL;
}
PyFPE_START_PROTECT("modulo", return 0)
vx = v->ob_fval;
mod = fmod(vx, wx);
/* note: checking mod*wx < 0 is incorrect -- underflows to
0 if wx < sqrt(smallest nonzero double) */
if (mod && ((wx < 0) != (mod < 0))) {
mod += wx;
}
PyFPE_END_PROTECT(mod)
return PyFloat_FromDouble(mod);
}
static PyObject *
float_divmod(v, w)
PyFloatObject *v;
PyFloatObject *w;
{
double vx, wx;
double div, mod, floordiv;
wx = w->ob_fval;
if (wx == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
return NULL;
}
PyFPE_START_PROTECT("divmod", return 0)
vx = v->ob_fval;
mod = fmod(vx, wx);
/* fmod is typically exact, so vx-mod is *mathemtically* an
exact multiple of wx. But this is fp arithmetic, and fp
vx - mod is an approximation; the result is that div may
not be an exact integral value after the division, although
it will always be very close to one.
*/
div = (vx - mod) / wx;
/* note: checking mod*wx < 0 is incorrect -- underflows to
0 if wx < sqrt(smallest nonzero double) */
if (mod && ((wx < 0) != (mod < 0))) {
mod += wx;
div -= 1.0;
}
/* snap quotient to nearest integral value */
floordiv = floor(div);
if (div - floordiv > 0.5)
floordiv += 1.0;
PyFPE_END_PROTECT(div)
return Py_BuildValue("(dd)", floordiv, mod);
}
static double powu(x, n)
double x;
long n;
{
double r = 1.;
double p = x;
long mask = 1;
while (mask > 0 && n >= mask) {
if (n & mask)
r *= p;
mask <<= 1;
p *= p;
}
return r;
}
static PyObject *
float_pow(v, w, z)
PyFloatObject *v;
PyObject *w;
PyFloatObject *z;
{
double iv, iw, ix;
long intw;
/* XXX Doesn't handle overflows if z!=None yet; it may never do so :(
* The z parameter is really only going to be useful for integers and
* long integers. Maybe something clever with logarithms could be done.
* [AMK]
*/
iv = v->ob_fval;
iw = ((PyFloatObject *)w)->ob_fval;
intw = (long)iw;
if (iw == intw && -10000 < intw && intw < 10000) {
/* Sort out special cases here instead of relying on pow() */
if (intw == 0) { /* x**0 is 1, even 0**0 */
PyFPE_START_PROTECT("pow", return 0)
if ((PyObject *)z!=Py_None) {
ix=fmod(1.0, z->ob_fval);
if (ix!=0 && z->ob_fval<0) ix+=z->ob_fval;
}
else ix=1.0;
PyFPE_END_PROTECT(ix)
return PyFloat_FromDouble(ix);
}
errno = 0;
PyFPE_START_PROTECT("pow", return 0)
if (intw > 0)
ix = powu(iv, intw);
else
ix = 1./powu(iv, -intw);
PyFPE_END_PROTECT(ix)
}
else {
/* Sort out special cases here instead of relying on pow() */
if (iv == 0.0) {
if (iw < 0.0) {
PyErr_SetString(PyExc_ValueError,
"0.0 to a negative power");
return NULL;
}
return PyFloat_FromDouble(0.0);
}
if (iv < 0.0) {
PyErr_SetString(PyExc_ValueError,
"negative number to a float power");
return NULL;
}
errno = 0;
PyFPE_START_PROTECT("pow", return 0)
ix = pow(iv, iw);
PyFPE_END_PROTECT(ix)
}
CHECK(ix);
if (errno != 0) {
/* XXX could it be another type of error? */
PyErr_SetFromErrno(PyExc_OverflowError);
return NULL;
}
if ((PyObject *)z!=Py_None) {
PyFPE_START_PROTECT("pow", return 0)
ix=fmod(ix, z->ob_fval); /* XXX To Be Rewritten */
if ( ix!=0 &&
((iv<0 && z->ob_fval>0) || (iv>0 && z->ob_fval<0) )) {
ix+=z->ob_fval;
}
PyFPE_END_PROTECT(ix)
}
return PyFloat_FromDouble(ix);
}
static PyObject *
float_neg(v)
PyFloatObject *v;
{
return PyFloat_FromDouble(-v->ob_fval);
}
static PyObject *
float_pos(v)
PyFloatObject *v;
{
Py_INCREF(v);
return (PyObject *)v;
}
static PyObject *
float_abs(v)
PyFloatObject *v;
{
if (v->ob_fval < 0)
return float_neg(v);
else
return float_pos(v);
}
static int
float_nonzero(v)
PyFloatObject *v;
{
return v->ob_fval != 0.0;
}
static int
float_coerce(pv, pw)
PyObject **pv;
PyObject **pw;
{
if (PyInt_Check(*pw)) {
long x = PyInt_AsLong(*pw);
*pw = PyFloat_FromDouble((double)x);
Py_INCREF(*pv);
return 0;
}
else if (PyLong_Check(*pw)) {
*pw = PyFloat_FromDouble(PyLong_AsDouble(*pw));
Py_INCREF(*pv);
return 0;
}
return 1; /* Can't do it */
}
static PyObject *
float_int(v)
PyObject *v;
{
double x = PyFloat_AsDouble(v);
if (x < 0 ? (x = ceil(x)) < (double)LONG_MIN
: (x = floor(x)) > (double)LONG_MAX) {
PyErr_SetString(PyExc_OverflowError,
"float too large to convert");
return NULL;
}
return PyInt_FromLong((long)x);
}
static PyObject *
float_long(v)
PyObject *v;
{
double x = PyFloat_AsDouble(v);
return PyLong_FromDouble(x);
}
static PyObject *
float_float(v)
PyObject *v;
{
Py_INCREF(v);
return v;
}
static PyNumberMethods float_as_number = {
(binaryfunc)float_add, /*nb_add*/
(binaryfunc)float_sub, /*nb_subtract*/
(binaryfunc)float_mul, /*nb_multiply*/
(binaryfunc)float_div, /*nb_divide*/
(binaryfunc)float_rem, /*nb_remainder*/
(binaryfunc)float_divmod, /*nb_divmod*/
(ternaryfunc)float_pow, /*nb_power*/
(unaryfunc)float_neg, /*nb_negative*/
(unaryfunc)float_pos, /*nb_positive*/
(unaryfunc)float_abs, /*nb_absolute*/
(inquiry)float_nonzero, /*nb_nonzero*/
0, /*nb_invert*/
0, /*nb_lshift*/
0, /*nb_rshift*/
0, /*nb_and*/
0, /*nb_xor*/
0, /*nb_or*/
(coercion)float_coerce, /*nb_coerce*/
(unaryfunc)float_int, /*nb_int*/
(unaryfunc)float_long, /*nb_long*/
(unaryfunc)float_float, /*nb_float*/
0, /*nb_oct*/
0, /*nb_hex*/
};
PyTypeObject PyFloat_Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"float",
sizeof(PyFloatObject),
0,
(destructor)float_dealloc, /*tp_dealloc*/
(printfunc)float_print, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
(cmpfunc)float_compare, /*tp_compare*/
(reprfunc)float_repr, /*tp_repr*/
&float_as_number, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
(hashfunc)float_hash, /*tp_hash*/
0, /*tp_call*/
(reprfunc)float_str, /*tp_str*/
};
void
PyFloat_Fini()
{
PyFloatObject *p;
PyFloatBlock *list, *next;
int i;
int bc, bf; /* block count, number of freed blocks */
int frem, fsum; /* remaining unfreed floats per block, total */
bc = 0;
bf = 0;
fsum = 0;
list = block_list;
block_list = NULL;
free_list = NULL;
while (list != NULL) {
bc++;
frem = 0;
for (i = 0, p = &list->objects[0];
i < N_FLOATOBJECTS;
i++, p++) {
if (PyFloat_Check(p) && p->ob_refcnt != 0)
frem++;
}
next = list->next;
if (frem) {
list->next = block_list;
block_list = list;
for (i = 0, p = &list->objects[0];
i < N_FLOATOBJECTS;
i++, p++) {
if (!PyFloat_Check(p) || p->ob_refcnt == 0) {
p->ob_type = (struct _typeobject *)
free_list;
free_list = p;
}
}
}
else {
PyMem_FREE(list);
bf++;
}
fsum += frem;
list = next;
}
if (!Py_VerboseFlag)
return;
fprintf(stderr, "# cleanup floats");
if (!fsum) {
fprintf(stderr, "\n");
}
else {
fprintf(stderr,
": %d unfreed float%s in %d out of %d block%s\n",
fsum, fsum == 1 ? "" : "s",
bc - bf, bc, bc == 1 ? "" : "s");
}
if (Py_VerboseFlag > 1) {
list = block_list;
while (list != NULL) {
for (i = 0, p = &list->objects[0];
i < N_FLOATOBJECTS;
i++, p++) {
if (PyFloat_Check(p) && p->ob_refcnt != 0) {
char buf[100];
PyFloat_AsString(buf, p);
fprintf(stderr,
"# <float at %lx, refcnt=%d, val=%s>\n",
(long)p, p->ob_refcnt, buf);
}
}
list = list->next;
}
}
}
|