1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
|
/* Integer object implementation */
#include "Python.h"
#include <ctype.h>
long
PyInt_GetMax(void)
{
return LONG_MAX; /* To initialize sys.maxint */
}
/* Standard Booleans */
PyIntObject _Py_ZeroStruct = {
PyObject_HEAD_INIT(&PyInt_Type)
0
};
PyIntObject _Py_TrueStruct = {
PyObject_HEAD_INIT(&PyInt_Type)
1
};
static PyObject *
err_ovf(char *msg)
{
PyErr_SetString(PyExc_OverflowError, msg);
return NULL;
}
/* Integers are quite normal objects, to make object handling uniform.
(Using odd pointers to represent integers would save much space
but require extra checks for this special case throughout the code.)
Since, a typical Python program spends much of its time allocating
and deallocating integers, these operations should be very fast.
Therefore we use a dedicated allocation scheme with a much lower
overhead (in space and time) than straight malloc(): a simple
dedicated free list, filled when necessary with memory from malloc().
*/
#define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
#define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
#define N_INTOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyIntObject))
struct _intblock {
struct _intblock *next;
PyIntObject objects[N_INTOBJECTS];
};
typedef struct _intblock PyIntBlock;
static PyIntBlock *block_list = NULL;
static PyIntObject *free_list = NULL;
static PyIntObject *
fill_free_list(void)
{
PyIntObject *p, *q;
/* XXX Int blocks escape the object heap. Use PyObject_MALLOC ??? */
p = (PyIntObject *) PyMem_MALLOC(sizeof(PyIntBlock));
if (p == NULL)
return (PyIntObject *) PyErr_NoMemory();
((PyIntBlock *)p)->next = block_list;
block_list = (PyIntBlock *)p;
p = &((PyIntBlock *)p)->objects[0];
q = p + N_INTOBJECTS;
while (--q > p)
q->ob_type = (struct _typeobject *)(q-1);
q->ob_type = NULL;
return p + N_INTOBJECTS - 1;
}
#ifndef NSMALLPOSINTS
#define NSMALLPOSINTS 100
#endif
#ifndef NSMALLNEGINTS
#define NSMALLNEGINTS 1
#endif
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
/* References to small integers are saved in this array so that they
can be shared.
The integers that are saved are those in the range
-NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive).
*/
static PyIntObject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
#endif
#ifdef COUNT_ALLOCS
int quick_int_allocs, quick_neg_int_allocs;
#endif
PyObject *
PyInt_FromLong(long ival)
{
register PyIntObject *v;
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS &&
(v = small_ints[ival + NSMALLNEGINTS]) != NULL) {
Py_INCREF(v);
#ifdef COUNT_ALLOCS
if (ival >= 0)
quick_int_allocs++;
else
quick_neg_int_allocs++;
#endif
return (PyObject *) v;
}
#endif
if (free_list == NULL) {
if ((free_list = fill_free_list()) == NULL)
return NULL;
}
/* PyObject_New is inlined */
v = free_list;
free_list = (PyIntObject *)v->ob_type;
PyObject_INIT(v, &PyInt_Type);
v->ob_ival = ival;
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
/* save this one for a following allocation */
Py_INCREF(v);
small_ints[ival + NSMALLNEGINTS] = v;
}
#endif
return (PyObject *) v;
}
static void
int_dealloc(PyIntObject *v)
{
v->ob_type = (struct _typeobject *)free_list;
free_list = v;
}
long
PyInt_AsLong(register PyObject *op)
{
PyNumberMethods *nb;
PyIntObject *io;
long val;
if (op && PyInt_Check(op))
return PyInt_AS_LONG((PyIntObject*) op);
if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
nb->nb_int == NULL) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return -1;
}
io = (PyIntObject*) (*nb->nb_int) (op);
if (io == NULL)
return -1;
if (!PyInt_Check(io)) {
PyErr_SetString(PyExc_TypeError,
"nb_int should return int object");
return -1;
}
val = PyInt_AS_LONG(io);
Py_DECREF(io);
return val;
}
PyObject *
PyInt_FromString(char *s, char **pend, int base)
{
char *end;
long x;
char buffer[256]; /* For errors */
if ((base != 0 && base < 2) || base > 36) {
PyErr_SetString(PyExc_ValueError, "int() base must be >= 2 and <= 36");
return NULL;
}
while (*s && isspace(Py_CHARMASK(*s)))
s++;
errno = 0;
if (base == 0 && s[0] == '0')
x = (long) PyOS_strtoul(s, &end, base);
else
x = PyOS_strtol(s, &end, base);
if (end == s || !isalnum(Py_CHARMASK(end[-1])))
goto bad;
while (*end && isspace(Py_CHARMASK(*end)))
end++;
if (*end != '\0') {
bad:
sprintf(buffer, "invalid literal for int(): %.200s", s);
PyErr_SetString(PyExc_ValueError, buffer);
return NULL;
}
else if (errno != 0) {
sprintf(buffer, "int() literal too large: %.200s", s);
PyErr_SetString(PyExc_ValueError, buffer);
return NULL;
}
if (pend)
*pend = end;
return PyInt_FromLong(x);
}
PyObject *
PyInt_FromUnicode(Py_UNICODE *s, int length, int base)
{
char buffer[256];
if (length >= sizeof(buffer)) {
PyErr_SetString(PyExc_ValueError,
"int() literal too large to convert");
return NULL;
}
if (PyUnicode_EncodeDecimal(s, length, buffer, NULL))
return NULL;
return PyInt_FromString(buffer, NULL, base);
}
/* Methods */
/* Integers are seen as the "smallest" of all numeric types and thus
don't have any knowledge about conversion of other types to
integers. */
#define CONVERT_TO_LONG(obj, lng) \
if (PyInt_Check(obj)) { \
lng = PyInt_AS_LONG(obj); \
} \
else { \
Py_INCREF(Py_NotImplemented); \
return Py_NotImplemented; \
}
/* ARGSUSED */
static int
int_print(PyIntObject *v, FILE *fp, int flags)
/* flags -- not used but required by interface */
{
fprintf(fp, "%ld", v->ob_ival);
return 0;
}
static PyObject *
int_repr(PyIntObject *v)
{
char buf[20];
sprintf(buf, "%ld", v->ob_ival);
return PyString_FromString(buf);
}
static int
int_compare(PyIntObject *v, PyIntObject *w)
{
register long i = v->ob_ival;
register long j = w->ob_ival;
return (i < j) ? -1 : (i > j) ? 1 : 0;
}
static long
int_hash(PyIntObject *v)
{
/* XXX If this is changed, you also need to change the way
Python's long, float and complex types are hashed. */
long x = v -> ob_ival;
if (x == -1)
x = -2;
return x;
}
static PyObject *
int_add(PyIntObject *v, PyIntObject *w)
{
register long a, b, x;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
x = a + b;
if ((x^a) < 0 && (x^b) < 0)
return err_ovf("integer addition");
return PyInt_FromLong(x);
}
static PyObject *
int_sub(PyIntObject *v, PyIntObject *w)
{
register long a, b, x;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
x = a - b;
if ((x^a) < 0 && (x^~b) < 0)
return err_ovf("integer subtraction");
return PyInt_FromLong(x);
}
/*
Integer overflow checking used to be done using a double, but on 64
bit machines (where both long and double are 64 bit) this fails
because the double doesn't have enough precision. John Tromp suggests
the following algorithm:
Suppose again we normalize a and b to be nonnegative.
Let ah and al (bh and bl) be the high and low 32 bits of a (b, resp.).
Now we test ah and bh against zero and get essentially 3 possible outcomes.
1) both ah and bh > 0 : then report overflow
2) both ah and bh = 0 : then compute a*b and report overflow if it comes out
negative
3) ah > 0 and bh = 0 : compute ah*bl and report overflow if it's >= 2^31
compute al*bl and report overflow if it's negative
add (ah*bl)<<32 to al*bl and report overflow if
it's negative
In case of no overflow the result is then negated if necessary.
The majority of cases will be 2), in which case this method is the same as
what I suggested before. If multiplication is expensive enough, then the
other method is faster on case 3), but also more work to program, so I
guess the above is the preferred solution.
*/
static PyObject *
int_mul(PyObject *v, PyObject *w)
{
long a, b, ah, bh, x, y;
int s = 1;
if (v->ob_type->tp_as_sequence &&
v->ob_type->tp_as_sequence->sq_repeat) {
/* sequence * int */
a = PyInt_AsLong(w);
return (*v->ob_type->tp_as_sequence->sq_repeat)(v, a);
}
else if (w->ob_type->tp_as_sequence &&
w->ob_type->tp_as_sequence->sq_repeat) {
/* int * sequence */
a = PyInt_AsLong(v);
return (*w->ob_type->tp_as_sequence->sq_repeat)(w, a);
}
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
ah = a >> (LONG_BIT/2);
bh = b >> (LONG_BIT/2);
/* Quick test for common case: two small positive ints */
if (ah == 0 && bh == 0) {
x = a*b;
if (x < 0)
goto bad;
return PyInt_FromLong(x);
}
/* Arrange that a >= b >= 0 */
if (a < 0) {
a = -a;
if (a < 0) {
/* Largest negative */
if (b == 0 || b == 1) {
x = a*b;
goto ok;
}
else
goto bad;
}
s = -s;
ah = a >> (LONG_BIT/2);
}
if (b < 0) {
b = -b;
if (b < 0) {
/* Largest negative */
if (a == 0 || (a == 1 && s == 1)) {
x = a*b;
goto ok;
}
else
goto bad;
}
s = -s;
bh = b >> (LONG_BIT/2);
}
/* 1) both ah and bh > 0 : then report overflow */
if (ah != 0 && bh != 0)
goto bad;
/* 2) both ah and bh = 0 : then compute a*b and report
overflow if it comes out negative */
if (ah == 0 && bh == 0) {
x = a*b;
if (x < 0)
goto bad;
return PyInt_FromLong(x*s);
}
if (a < b) {
/* Swap */
x = a;
a = b;
b = x;
ah = bh;
/* bh not used beyond this point */
}
/* 3) ah > 0 and bh = 0 : compute ah*bl and report overflow if
it's >= 2^31
compute al*bl and report overflow if it's negative
add (ah*bl)<<32 to al*bl and report overflow if
it's negative
(NB b == bl in this case, and we make a = al) */
y = ah*b;
if (y >= (1L << (LONG_BIT/2 - 1)))
goto bad;
a &= (1L << (LONG_BIT/2)) - 1;
x = a*b;
if (x < 0)
goto bad;
x += y << (LONG_BIT/2);
if (x < 0)
goto bad;
ok:
return PyInt_FromLong(x * s);
bad:
return err_ovf("integer multiplication");
}
static int
i_divmod(register long x, register long y,
long *p_xdivy, long *p_xmody)
{
long xdivy, xmody;
if (y == 0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"integer division or modulo by zero");
return -1;
}
/* (-sys.maxint-1)/-1 is the only overflow case. */
if (y == -1 && x < 0 && x == -x) {
err_ovf("integer division");
return -1;
}
xdivy = x / y;
xmody = x - xdivy * y;
/* If the signs of x and y differ, and the remainder is non-0,
* C89 doesn't define whether xdivy is now the floor or the
* ceiling of the infinitely precise quotient. We want the floor,
* and we have it iff the remainder's sign matches y's.
*/
if (xmody && ((y ^ xmody) < 0) /* i.e. and signs differ */) {
xmody += y;
--xdivy;
assert(xmody && ((y ^ xmody) >= 0));
}
*p_xdivy = xdivy;
*p_xmody = xmody;
return 0;
}
static PyObject *
int_div(PyIntObject *x, PyIntObject *y)
{
long xi, yi;
long d, m;
CONVERT_TO_LONG(x, xi);
CONVERT_TO_LONG(y, yi);
if (i_divmod(xi, yi, &d, &m) < 0)
return NULL;
return PyInt_FromLong(d);
}
static PyObject *
int_mod(PyIntObject *x, PyIntObject *y)
{
long xi, yi;
long d, m;
CONVERT_TO_LONG(x, xi);
CONVERT_TO_LONG(y, yi);
if (i_divmod(xi, yi, &d, &m) < 0)
return NULL;
return PyInt_FromLong(m);
}
static PyObject *
int_divmod(PyIntObject *x, PyIntObject *y)
{
long xi, yi;
long d, m;
CONVERT_TO_LONG(x, xi);
CONVERT_TO_LONG(y, yi);
if (i_divmod(xi, yi, &d, &m) < 0)
return NULL;
return Py_BuildValue("(ll)", d, m);
}
static PyObject *
int_pow(PyIntObject *v, PyIntObject *w, PyIntObject *z)
{
#if 1
register long iv, iw, iz=0, ix, temp, prev;
CONVERT_TO_LONG(v, iv);
CONVERT_TO_LONG(w, iw);
if (iw < 0) {
/* Return a float. This works because we know that
this calls float_pow() which converts its
arguments to double. */
return PyFloat_Type.tp_as_number->nb_power(
(PyObject *)v, (PyObject *)w, (PyObject *)z);
}
if ((PyObject *)z != Py_None) {
CONVERT_TO_LONG(z, iz);
if (iz == 0) {
PyErr_SetString(PyExc_ValueError,
"pow() arg 3 cannot be 0");
return NULL;
}
}
/*
* XXX: The original exponentiation code stopped looping
* when temp hit zero; this code will continue onwards
* unnecessarily, but at least it won't cause any errors.
* Hopefully the speed improvement from the fast exponentiation
* will compensate for the slight inefficiency.
* XXX: Better handling of overflows is desperately needed.
*/
temp = iv;
ix = 1;
while (iw > 0) {
prev = ix; /* Save value for overflow check */
if (iw & 1) {
ix = ix*temp;
if (temp == 0)
break; /* Avoid ix / 0 */
if (ix / temp != prev)
return err_ovf("integer exponentiation");
}
iw >>= 1; /* Shift exponent down by 1 bit */
if (iw==0) break;
prev = temp;
temp *= temp; /* Square the value of temp */
if (prev!=0 && temp/prev!=prev)
return err_ovf("integer exponentiation");
if (iz) {
/* If we did a multiplication, perform a modulo */
ix = ix % iz;
temp = temp % iz;
}
}
if (iz) {
long div, mod;
if (i_divmod(ix, iz, &div, &mod) < 0)
return(NULL);
ix=mod;
}
return PyInt_FromLong(ix);
#else
register long iv, iw, ix;
CONVERT_TO_LONG(v, iv);
CONVERT_TO_LONG(w, iw);
if (iw < 0) {
PyErr_SetString(PyExc_ValueError,
"integer to the negative power");
return NULL;
}
if ((PyObject *)z != Py_None) {
PyErr_SetString(PyExc_TypeError,
"pow(int, int, int) not yet supported");
return NULL;
}
ix = 1;
while (--iw >= 0) {
long prev = ix;
ix = ix * iv;
if (iv == 0)
break; /* 0 to some power -- avoid ix / 0 */
if (ix / iv != prev)
return err_ovf("integer exponentiation");
}
return PyInt_FromLong(ix);
#endif
}
static PyObject *
int_neg(PyIntObject *v)
{
register long a, x;
a = v->ob_ival;
x = -a;
if (a < 0 && x < 0)
return err_ovf("integer negation");
return PyInt_FromLong(x);
}
static PyObject *
int_pos(PyIntObject *v)
{
Py_INCREF(v);
return (PyObject *)v;
}
static PyObject *
int_abs(PyIntObject *v)
{
if (v->ob_ival >= 0)
return int_pos(v);
else
return int_neg(v);
}
static int
int_nonzero(PyIntObject *v)
{
return v->ob_ival != 0;
}
static PyObject *
int_invert(PyIntObject *v)
{
return PyInt_FromLong(~v->ob_ival);
}
static PyObject *
int_lshift(PyIntObject *v, PyIntObject *w)
{
register long a, b;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
if (b < 0) {
PyErr_SetString(PyExc_ValueError, "negative shift count");
return NULL;
}
if (a == 0 || b == 0) {
Py_INCREF(v);
return (PyObject *) v;
}
if (b >= LONG_BIT) {
return PyInt_FromLong(0L);
}
a = (unsigned long)a << b;
return PyInt_FromLong(a);
}
static PyObject *
int_rshift(PyIntObject *v, PyIntObject *w)
{
register long a, b;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
if (b < 0) {
PyErr_SetString(PyExc_ValueError, "negative shift count");
return NULL;
}
if (a == 0 || b == 0) {
Py_INCREF(v);
return (PyObject *) v;
}
if (b >= LONG_BIT) {
if (a < 0)
a = -1;
else
a = 0;
}
else {
a = Py_ARITHMETIC_RIGHT_SHIFT(long, a, b);
}
return PyInt_FromLong(a);
}
static PyObject *
int_and(PyIntObject *v, PyIntObject *w)
{
register long a, b;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
return PyInt_FromLong(a & b);
}
static PyObject *
int_xor(PyIntObject *v, PyIntObject *w)
{
register long a, b;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
return PyInt_FromLong(a ^ b);
}
static PyObject *
int_or(PyIntObject *v, PyIntObject *w)
{
register long a, b;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
return PyInt_FromLong(a | b);
}
static PyObject *
int_int(PyIntObject *v)
{
Py_INCREF(v);
return (PyObject *)v;
}
static PyObject *
int_long(PyIntObject *v)
{
return PyLong_FromLong((v -> ob_ival));
}
static PyObject *
int_float(PyIntObject *v)
{
return PyFloat_FromDouble((double)(v -> ob_ival));
}
static PyObject *
int_oct(PyIntObject *v)
{
char buf[100];
long x = v -> ob_ival;
if (x == 0)
strcpy(buf, "0");
else
sprintf(buf, "0%lo", x);
return PyString_FromString(buf);
}
static PyObject *
int_hex(PyIntObject *v)
{
char buf[100];
long x = v -> ob_ival;
sprintf(buf, "0x%lx", x);
return PyString_FromString(buf);
}
static PyNumberMethods int_as_number = {
(binaryfunc)int_add, /*nb_add*/
(binaryfunc)int_sub, /*nb_subtract*/
(binaryfunc)int_mul, /*nb_multiply*/
(binaryfunc)int_div, /*nb_divide*/
(binaryfunc)int_mod, /*nb_remainder*/
(binaryfunc)int_divmod, /*nb_divmod*/
(ternaryfunc)int_pow, /*nb_power*/
(unaryfunc)int_neg, /*nb_negative*/
(unaryfunc)int_pos, /*nb_positive*/
(unaryfunc)int_abs, /*nb_absolute*/
(inquiry)int_nonzero, /*nb_nonzero*/
(unaryfunc)int_invert, /*nb_invert*/
(binaryfunc)int_lshift, /*nb_lshift*/
(binaryfunc)int_rshift, /*nb_rshift*/
(binaryfunc)int_and, /*nb_and*/
(binaryfunc)int_xor, /*nb_xor*/
(binaryfunc)int_or, /*nb_or*/
0, /*nb_coerce*/
(unaryfunc)int_int, /*nb_int*/
(unaryfunc)int_long, /*nb_long*/
(unaryfunc)int_float, /*nb_float*/
(unaryfunc)int_oct, /*nb_oct*/
(unaryfunc)int_hex, /*nb_hex*/
0, /*nb_inplace_add*/
0, /*nb_inplace_subtract*/
0, /*nb_inplace_multiply*/
0, /*nb_inplace_divide*/
0, /*nb_inplace_remainder*/
0, /*nb_inplace_power*/
0, /*nb_inplace_lshift*/
0, /*nb_inplace_rshift*/
0, /*nb_inplace_and*/
0, /*nb_inplace_xor*/
0, /*nb_inplace_or*/
};
PyTypeObject PyInt_Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"int",
sizeof(PyIntObject),
0,
(destructor)int_dealloc, /*tp_dealloc*/
(printfunc)int_print, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
(cmpfunc)int_compare, /*tp_compare*/
(reprfunc)int_repr, /*tp_repr*/
&int_as_number, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
(hashfunc)int_hash, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_CHECKTYPES /*tp_flags*/
};
void
PyInt_Fini(void)
{
PyIntObject *p;
PyIntBlock *list, *next;
int i;
int bc, bf; /* block count, number of freed blocks */
int irem, isum; /* remaining unfreed ints per block, total */
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
PyIntObject **q;
i = NSMALLNEGINTS + NSMALLPOSINTS;
q = small_ints;
while (--i >= 0) {
Py_XDECREF(*q);
*q++ = NULL;
}
#endif
bc = 0;
bf = 0;
isum = 0;
list = block_list;
block_list = NULL;
free_list = NULL;
while (list != NULL) {
bc++;
irem = 0;
for (i = 0, p = &list->objects[0];
i < N_INTOBJECTS;
i++, p++) {
if (PyInt_Check(p) && p->ob_refcnt != 0)
irem++;
}
next = list->next;
if (irem) {
list->next = block_list;
block_list = list;
for (i = 0, p = &list->objects[0];
i < N_INTOBJECTS;
i++, p++) {
if (!PyInt_Check(p) || p->ob_refcnt == 0) {
p->ob_type = (struct _typeobject *)
free_list;
free_list = p;
}
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
else if (-NSMALLNEGINTS <= p->ob_ival &&
p->ob_ival < NSMALLPOSINTS &&
small_ints[p->ob_ival +
NSMALLNEGINTS] == NULL) {
Py_INCREF(p);
small_ints[p->ob_ival +
NSMALLNEGINTS] = p;
}
#endif
}
}
else {
PyMem_FREE(list); /* XXX PyObject_FREE ??? */
bf++;
}
isum += irem;
list = next;
}
if (!Py_VerboseFlag)
return;
fprintf(stderr, "# cleanup ints");
if (!isum) {
fprintf(stderr, "\n");
}
else {
fprintf(stderr,
": %d unfreed int%s in %d out of %d block%s\n",
isum, isum == 1 ? "" : "s",
bc - bf, bc, bc == 1 ? "" : "s");
}
if (Py_VerboseFlag > 1) {
list = block_list;
while (list != NULL) {
for (i = 0, p = &list->objects[0];
i < N_INTOBJECTS;
i++, p++) {
if (PyInt_Check(p) && p->ob_refcnt != 0)
fprintf(stderr,
"# <int at %p, refcnt=%d, val=%ld>\n",
p, p->ob_refcnt, p->ob_ival);
}
list = list->next;
}
}
}
|