summaryrefslogtreecommitdiffstats
path: root/Objects/intobject.c
blob: e09758be586c49074577a0e3c375af001a5e1947 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/***********************************************************
Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam,
The Netherlands.

                        All Rights Reserved

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the names of Stichting Mathematisch
Centrum or CWI or Corporation for National Research Initiatives or
CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

While CWI is the initial source for this software, a modified version
is made available by the Corporation for National Research Initiatives
(CNRI) at the Internet address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH
CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

******************************************************************/

/* Integer object implementation */

#include "Python.h"

#ifdef HAVE_LIMITS_H
#include <limits.h>
#endif

#ifndef LONG_MAX
#define LONG_MAX 0X7FFFFFFFL
#endif

#ifndef LONG_MIN
#define LONG_MIN (-LONG_MAX-1)
#endif

#ifndef CHAR_BIT
#define CHAR_BIT 8
#endif

#ifndef LONG_BIT
#define LONG_BIT (CHAR_BIT * sizeof(long))
#endif

long
PyInt_GetMax()
{
	return LONG_MAX;	/* To initialize sys.maxint */
}

/* Standard Booleans */

PyIntObject _Py_ZeroStruct = {
	PyObject_HEAD_INIT(&PyInt_Type)
	0
};

PyIntObject _Py_TrueStruct = {
	PyObject_HEAD_INIT(&PyInt_Type)
	1
};

static PyObject *
err_ovf(msg)
	char *msg;
{
	PyErr_SetString(PyExc_OverflowError, msg);
	return NULL;
}

/* Integers are quite normal objects, to make object handling uniform.
   (Using odd pointers to represent integers would save much space
   but require extra checks for this special case throughout the code.)
   Since, a typical Python program spends much of its time allocating
   and deallocating integers, these operations should be very fast.
   Therefore we use a dedicated allocation scheme with a much lower
   overhead (in space and time) than straight malloc(): a simple
   dedicated free list, filled when necessary with memory from malloc().
*/

#define BLOCK_SIZE	1000	/* 1K less typical malloc overhead */
#define N_INTOBJECTS	(BLOCK_SIZE / sizeof(PyIntObject))

static PyIntObject *
fill_free_list()
{
	PyIntObject *p, *q;
	p = PyMem_NEW(PyIntObject, N_INTOBJECTS);
	if (p == NULL)
		return (PyIntObject *)PyErr_NoMemory();
	q = p + N_INTOBJECTS;
	while (--q > p)
		*(PyIntObject **)q = q-1;
	*(PyIntObject **)q = NULL;
	return p + N_INTOBJECTS - 1;
}

static PyIntObject *free_list = NULL;
#ifndef NSMALLPOSINTS
#define NSMALLPOSINTS		100
#endif
#ifndef NSMALLNEGINTS
#define NSMALLNEGINTS		1
#endif
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
/* References to small integers are saved in this array so that they
   can be shared.
   The integers that are saved are those in the range
   -NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive).
*/
static PyIntObject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
#endif
#ifdef COUNT_ALLOCS
int quick_int_allocs, quick_neg_int_allocs;
#endif

PyObject *
PyInt_FromLong(ival)
	long ival;
{
	register PyIntObject *v;
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
	if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS &&
	    (v = small_ints[ival + NSMALLNEGINTS]) != NULL) {
		Py_INCREF(v);
#ifdef COUNT_ALLOCS
		if (ival >= 0)
			quick_int_allocs++;
		else
			quick_neg_int_allocs++;
#endif
		return (PyObject *) v;
	}
#endif
	if (free_list == NULL) {
		if ((free_list = fill_free_list()) == NULL)
			return NULL;
	}
	v = free_list;
	free_list = *(PyIntObject **)free_list;
	v->ob_type = &PyInt_Type;
	v->ob_ival = ival;
	_Py_NewReference(v);
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
	if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
		/* save this one for a following allocation */
		Py_INCREF(v);
		small_ints[ival + NSMALLNEGINTS] = v;
	}
#endif
	return (PyObject *) v;
}

static void
int_dealloc(v)
	PyIntObject *v;
{
	*(PyIntObject **)v = free_list;
	free_list = v;
}

long
PyInt_AsLong(op)
	register PyObject *op;
{
	PyNumberMethods *nb;
	PyIntObject *io;
	long val;
	
	if (op && PyInt_Check(op))
		return PyInt_AS_LONG((PyIntObject*) op);
	
	if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
	    nb->nb_int == NULL) {
		PyErr_BadArgument();
		return -1;
	}
	
	io = (PyIntObject*) (*nb->nb_int) (op);
	if (io == NULL)
		return -1;
	if (!PyInt_Check(io)) {
		PyErr_SetString(PyExc_TypeError,
				"nb_int should return int object");
		return -1;
	}
	
	val = PyInt_AS_LONG(io);
	Py_DECREF(io);
	
	return val;
}

/* Methods */

/* ARGSUSED */
static int
int_print(v, fp, flags)
	PyIntObject *v;
	FILE *fp;
	int flags; /* Not used but required by interface */
{
	fprintf(fp, "%ld", v->ob_ival);
	return 0;
}

static PyObject *
int_repr(v)
	PyIntObject *v;
{
	char buf[20];
	sprintf(buf, "%ld", v->ob_ival);
	return PyString_FromString(buf);
}

static int
int_compare(v, w)
	PyIntObject *v, *w;
{
	register long i = v->ob_ival;
	register long j = w->ob_ival;
	return (i < j) ? -1 : (i > j) ? 1 : 0;
}

static long
int_hash(v)
	PyIntObject *v;
{
	/* XXX If this is changed, you also need to change the way
	   Python's long, float and complex types are hashed. */
	long x = v -> ob_ival;
	if (x == -1)
		x = -2;
	return x;
}

static PyObject *
int_add(v, w)
	PyIntObject *v;
	PyIntObject *w;
{
	register long a, b, x;
	a = v->ob_ival;
	b = w->ob_ival;
	x = a + b;
	if ((x^a) < 0 && (x^b) < 0)
		return err_ovf("integer addition");
	return PyInt_FromLong(x);
}

static PyObject *
int_sub(v, w)
	PyIntObject *v;
	PyIntObject *w;
{
	register long a, b, x;
	a = v->ob_ival;
	b = w->ob_ival;
	x = a - b;
	if ((x^a) < 0 && (x^~b) < 0)
		return err_ovf("integer subtraction");
	return PyInt_FromLong(x);
}

/*
Integer overflow checking used to be done using a double, but on 64
bit machines (where both long and double are 64 bit) this fails
because the double doesn't have enouvg precision.  John Tromp suggests
the following algorithm:

Suppose again we normalize a and b to be nonnegative.
Let ah and al (bh and bl) be the high and low 32 bits of a (b, resp.).
Now we test ah and bh against zero and get essentially 3 possible outcomes.

1) both ah and bh > 0 : then report overflow

2) both ah and bh = 0 : then compute a*b and report overflow if it comes out
                        negative

3) ah > 0 and bh = 0  : compute ah*bl and report overflow if it's >= 2^31
                        compute al*bl and report overflow if it's negative
                        add (ah*bl)<<32 to al*bl and report overflow if
                        it's negative

In case of no overflow the result is then negated if necessary.

The majority of cases will be 2), in which case this method is the same as
what I suggested before. If multiplication is expensive enough, then the
other method is faster on case 3), but also more work to program, so I
guess the above is the preferred solution.

*/

static PyObject *
int_mul(v, w)
	PyIntObject *v;
	PyIntObject *w;
{
	long a, b, ah, bh, x, y;
	int s = 1;

	a = v->ob_ival;
	b = w->ob_ival;
	ah = a >> (LONG_BIT/2);
	bh = b >> (LONG_BIT/2);

	/* Quick test for common case: two small positive ints */

	if (ah == 0 && bh == 0) {
		x = a*b;
		if (x < 0)
			goto bad;
		return PyInt_FromLong(x);
	}

	/* Arrange that a >= b >= 0 */

	if (a < 0) {
		a = -a;
		if (a < 0) {
			/* Largest negative */
			if (b == 0 || b == 1) {
				x = a*b;
				goto ok;
			}
			else
				goto bad;
		}
		s = -s;
		ah = a >> (LONG_BIT/2);
	}
	if (b < 0) {
		b = -b;
		if (b < 0) {
			/* Largest negative */
			if (a == 0 || (a == 1 && s == 1)) {
				x = a*b;
				goto ok;
			}
			else
				goto bad;
		}
		s = -s;
		bh = b >> (LONG_BIT/2);
	}

	/* 1) both ah and bh > 0 : then report overflow */

	if (ah != 0 && bh != 0)
		goto bad;

	/* 2) both ah and bh = 0 : then compute a*b and report
				   overflow if it comes out negative */

	if (ah == 0 && bh == 0) {
		x = a*b;
		if (x < 0)
			goto bad;
		return PyInt_FromLong(x*s);
	}

	if (a < b) {
		/* Swap */
		x = a;
		a = b;
		b = x;
		ah = bh;
		/* bh not used beyond this point */
	}

	/* 3) ah > 0 and bh = 0  : compute ah*bl and report overflow if
				   it's >= 2^31
                        compute al*bl and report overflow if it's negative
                        add (ah*bl)<<32 to al*bl and report overflow if
                        it's negative
			(NB b == bl in this case, and we make a = al) */

	y = ah*b;
	if (y >= (1L << (LONG_BIT/2 - 1)))
		goto bad;
	a &= (1L << (LONG_BIT/2)) - 1;
	x = a*b;
	if (x < 0)
		goto bad;
	x += y << (LONG_BIT/2);
	if (x < 0)
		goto bad;
 ok:
	return PyInt_FromLong(x * s);

 bad:
	return err_ovf("integer multiplication");
}

static int
i_divmod(x, y, p_xdivy, p_xmody)
	register PyIntObject *x, *y;
	long *p_xdivy, *p_xmody;
{
	long xi = x->ob_ival;
	long yi = y->ob_ival;
	long xdivy, xmody;
	
	if (yi == 0) {
		PyErr_SetString(PyExc_ZeroDivisionError,
				"integer division or modulo");
		return -1;
	}
	if (yi < 0) {
		if (xi < 0)
			xdivy = -xi / -yi;
		else
			xdivy = - (xi / -yi);
	}
	else {
		if (xi < 0)
			xdivy = - (-xi / yi);
		else
			xdivy = xi / yi;
	}
	xmody = xi - xdivy*yi;
	if ((xmody < 0 && yi > 0) || (xmody > 0 && yi < 0)) {
		xmody += yi;
		xdivy -= 1;
	}
	*p_xdivy = xdivy;
	*p_xmody = xmody;
	return 0;
}

static PyObject *
int_div(x, y)
	PyIntObject *x;
	PyIntObject *y;
{
	long d, m;
	if (i_divmod(x, y, &d, &m) < 0)
		return NULL;
	return PyInt_FromLong(d);
}

static PyObject *
int_mod(x, y)
	PyIntObject *x;
	PyIntObject *y;
{
	long d, m;
	if (i_divmod(x, y, &d, &m) < 0)
		return NULL;
	return PyInt_FromLong(m);
}

static PyObject *
int_divmod(x, y)
	PyIntObject *x;
	PyIntObject *y;
{
	long d, m;
	if (i_divmod(x, y, &d, &m) < 0)
		return NULL;
	return Py_BuildValue("(ll)", d, m);
}

static PyObject *
int_pow(v, w, z)
	PyIntObject *v;
	PyIntObject *w;
	PyIntObject *z;
{
#if 1
	register long iv, iw, iz=0, ix, temp, prev;
	iv = v->ob_ival;
	iw = w->ob_ival;
	if (iw < 0) {
		PyErr_SetString(PyExc_ValueError,
				"integer to the negative power");
		return NULL;
	}
 	if ((PyObject *)z != Py_None) {
		iz = z->ob_ival;
		if (iz == 0) {
			PyErr_SetString(PyExc_ValueError,
					"pow(x, y, z) with z==0");
			return NULL;
		}
	}
	/*
	 * XXX: The original exponentiation code stopped looping
	 * when temp hit zero; this code will continue onwards
	 * unnecessarily, but at least it won't cause any errors.
	 * Hopefully the speed improvement from the fast exponentiation
	 * will compensate for the slight inefficiency.
	 * XXX: Better handling of overflows is desperately needed.
	 */
 	temp = iv;
	ix = 1;
	while (iw > 0) {
	 	prev = ix;	/* Save value for overflow check */
	 	if (iw & 1) {	
		 	ix = ix*temp;
			if (temp == 0)
				break; /* Avoid ix / 0 */
			if (ix / temp != prev)
				return err_ovf("integer pow()");
		}
	 	iw >>= 1;	/* Shift exponent down by 1 bit */
	        if (iw==0) break;
	 	prev = temp;
	 	temp *= temp;	/* Square the value of temp */
	 	if (prev!=0 && temp/prev!=prev)
			return err_ovf("integer pow()");
	 	if (iz) {
			/* If we did a multiplication, perform a modulo */
		 	ix = ix % iz;
		 	temp = temp % iz;
		}
	}
	if (iz) {
	 	PyObject *t1, *t2;
	 	long int div, mod;
	 	t1=PyInt_FromLong(ix); 
		t2=PyInt_FromLong(iz);
	 	if (t1==NULL || t2==NULL ||
	 		i_divmod((PyIntObject *)t1,
				 (PyIntObject *)t2, &div, &mod)<0)
		{
		 	Py_XDECREF(t1);
		 	Py_XDECREF(t2);
			return(NULL);
		}
		Py_DECREF(t1);
		Py_DECREF(t2);
	 	ix=mod;
	}
	return PyInt_FromLong(ix);
#else
	register long iv, iw, ix;
	iv = v->ob_ival;
	iw = w->ob_ival;
	if (iw < 0) {
		PyErr_SetString(PyExc_ValueError,
				"integer to the negative power");
		return NULL;
	}
	if ((PyObject *)z != Py_None) {
		PyErr_SetString(PyExc_TypeError,
				"pow(int, int, int) not yet supported");
		return NULL;
	}
	ix = 1;
	while (--iw >= 0) {
		long prev = ix;
		ix = ix * iv;
		if (iv == 0)
			break; /* 0 to some power -- avoid ix / 0 */
		if (ix / iv != prev)
			return err_ovf("integer pow()");
	}
	return PyInt_FromLong(ix);
#endif
}				

static PyObject *
int_neg(v)
	PyIntObject *v;
{
	register long a, x;
	a = v->ob_ival;
	x = -a;
	if (a < 0 && x < 0)
		return err_ovf("integer negation");
	return PyInt_FromLong(x);
}

static PyObject *
int_pos(v)
	PyIntObject *v;
{
	Py_INCREF(v);
	return (PyObject *)v;
}

static PyObject *
int_abs(v)
	PyIntObject *v;
{
	if (v->ob_ival >= 0)
		return int_pos(v);
	else
		return int_neg(v);
}

static int
int_nonzero(v)
	PyIntObject *v;
{
	return v->ob_ival != 0;
}

static PyObject *
int_invert(v)
	PyIntObject *v;
{
	return PyInt_FromLong(~v->ob_ival);
}

static PyObject *
int_lshift(v, w)
	PyIntObject *v;
	PyIntObject *w;
{
	register long a, b;
	a = v->ob_ival;
	b = w->ob_ival;
	if (b < 0) {
		PyErr_SetString(PyExc_ValueError, "negative shift count");
		return NULL;
	}
	if (a == 0 || b == 0) {
		Py_INCREF(v);
		return (PyObject *) v;
	}
	if (b >= LONG_BIT) {
		return PyInt_FromLong(0L);
	}
	a = (unsigned long)a << b;
	return PyInt_FromLong(a);
}

static PyObject *
int_rshift(v, w)
	PyIntObject *v;
	PyIntObject *w;
{
	register long a, b;
	a = v->ob_ival;
	b = w->ob_ival;
	if (b < 0) {
		PyErr_SetString(PyExc_ValueError, "negative shift count");
		return NULL;
	}
	if (a == 0 || b == 0) {
		Py_INCREF(v);
		return (PyObject *) v;
	}
	if (b >= LONG_BIT) {
		if (a < 0)
			a = -1;
		else
			a = 0;
	}
	else {
		if (a < 0)
			a = ~( ~(unsigned long)a >> b );
		else
			a = (unsigned long)a >> b;
	}
	return PyInt_FromLong(a);
}

static PyObject *
int_and(v, w)
	PyIntObject *v;
	PyIntObject *w;
{
	register long a, b;
	a = v->ob_ival;
	b = w->ob_ival;
	return PyInt_FromLong(a & b);
}

static PyObject *
int_xor(v, w)
	PyIntObject *v;
	PyIntObject *w;
{
	register long a, b;
	a = v->ob_ival;
	b = w->ob_ival;
	return PyInt_FromLong(a ^ b);
}

static PyObject *
int_or(v, w)
	PyIntObject *v;
	PyIntObject *w;
{
	register long a, b;
	a = v->ob_ival;
	b = w->ob_ival;
	return PyInt_FromLong(a | b);
}

static PyObject *
int_int(v)
	PyIntObject *v;
{
	Py_INCREF(v);
	return (PyObject *)v;
}

static PyObject *
int_long(v)
	PyIntObject *v;
{
	return PyLong_FromLong((v -> ob_ival));
}

static PyObject *
int_float(v)
	PyIntObject *v;
{
	return PyFloat_FromDouble((double)(v -> ob_ival));
}

static PyObject *
int_oct(v)
	PyIntObject *v;
{
	char buf[100];
	long x = v -> ob_ival;
	if (x == 0)
		strcpy(buf, "0");
	else
		sprintf(buf, "0%lo", x);
	return PyString_FromString(buf);
}

static PyObject *
int_hex(v)
	PyIntObject *v;
{
	char buf[100];
	long x = v -> ob_ival;
	sprintf(buf, "0x%lx", x);
	return PyString_FromString(buf);
}

static PyNumberMethods int_as_number = {
	(binaryfunc)int_add, /*nb_add*/
	(binaryfunc)int_sub, /*nb_subtract*/
	(binaryfunc)int_mul, /*nb_multiply*/
	(binaryfunc)int_div, /*nb_divide*/
	(binaryfunc)int_mod, /*nb_remainder*/
	(binaryfunc)int_divmod, /*nb_divmod*/
	(ternaryfunc)int_pow, /*nb_power*/
	(unaryfunc)int_neg, /*nb_negative*/
	(unaryfunc)int_pos, /*nb_positive*/
	(unaryfunc)int_abs, /*nb_absolute*/
	(inquiry)int_nonzero, /*nb_nonzero*/
	(unaryfunc)int_invert, /*nb_invert*/
	(binaryfunc)int_lshift, /*nb_lshift*/
	(binaryfunc)int_rshift, /*nb_rshift*/
	(binaryfunc)int_and, /*nb_and*/
	(binaryfunc)int_xor, /*nb_xor*/
	(binaryfunc)int_or, /*nb_or*/
	0,		/*nb_coerce*/
	(unaryfunc)int_int, /*nb_int*/
	(unaryfunc)int_long, /*nb_long*/
	(unaryfunc)int_float, /*nb_float*/
	(unaryfunc)int_oct, /*nb_oct*/
	(unaryfunc)int_hex, /*nb_hex*/
};

PyTypeObject PyInt_Type = {
	PyObject_HEAD_INIT(&PyType_Type)
	0,
	"int",
	sizeof(PyIntObject),
	0,
	(destructor)int_dealloc, /*tp_dealloc*/
	(printfunc)int_print, /*tp_print*/
	0,		/*tp_getattr*/
	0,		/*tp_setattr*/
	(cmpfunc)int_compare, /*tp_compare*/
	(reprfunc)int_repr, /*tp_repr*/
	&int_as_number,	/*tp_as_number*/
	0,		/*tp_as_sequence*/
	0,		/*tp_as_mapping*/
	(hashfunc)int_hash, /*tp_hash*/
};

void
PyInt_Fini()
{
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
	int i;
	PyIntObject **p;

	i = NSMALLNEGINTS + NSMALLPOSINTS;
	p = small_ints;
	while (--i >= 0) {
		Py_XDECREF(*p);
		*p++ = NULL;
	}
#endif
	/* XXX Alas, the free list is not easily and safely freeable */
}