summaryrefslogtreecommitdiffstats
path: root/Objects/listobject.c
blob: a05ddeabeb2e245b3ebc991a79019f977d2880f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
/* List object implementation */

#include "Python.h"
#include "pycore_abstract.h"      // _PyIndex_Check()
#include "pycore_ceval.h"         // _PyEval_GetBuiltin()
#include "pycore_dict.h"          // _PyDictViewObject
#include "pycore_pyatomic_ft_wrappers.h"
#include "pycore_interp.h"        // PyInterpreterState.list
#include "pycore_list.h"          // struct _Py_list_freelist, _PyListIterObject
#include "pycore_long.h"          // _PyLong_DigitCount
#include "pycore_modsupport.h"    // _PyArg_NoKwnames()
#include "pycore_object.h"        // _PyObject_GC_TRACK(), _PyDebugAllocatorStats()
#include "pycore_tuple.h"         // _PyTuple_FromArray()
#include "pycore_setobject.h"     // _PySet_NextEntry()
#include <stddef.h>

/*[clinic input]
class list "PyListObject *" "&PyList_Type"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=f9b222678f9f71e0]*/

#include "clinic/listobject.c.h"

_Py_DECLARE_STR(list_err, "list index out of range");

#ifdef WITH_FREELISTS
static struct _Py_list_freelist *
get_list_freelist(void)
{
    struct _Py_object_freelists *freelists = _Py_object_freelists_GET();
    assert(freelists != NULL);
    return &freelists->lists;
}
#endif

#ifdef Py_GIL_DISABLED
typedef struct {
    Py_ssize_t allocated;
    PyObject *ob_item[];
} _PyListArray;

static _PyListArray *
list_allocate_array(size_t capacity)
{
    if (capacity > PY_SSIZE_T_MAX/sizeof(PyObject*) - 1) {
        return NULL;
    }
    _PyListArray *array = PyMem_Malloc(sizeof(_PyListArray) + capacity * sizeof(PyObject *));
    if (array == NULL) {
        return NULL;
    }
    array->allocated = capacity;
    return array;
}

static Py_ssize_t
list_capacity(PyObject **items)
{
    _PyListArray *array = _Py_CONTAINER_OF(items, _PyListArray, ob_item);
    return array->allocated;
}
#endif

static void
free_list_items(PyObject** items, bool use_qsbr)
{
#ifdef Py_GIL_DISABLED
    _PyListArray *array = _Py_CONTAINER_OF(items, _PyListArray, ob_item);
    if (use_qsbr) {
        _PyMem_FreeDelayed(array);
    }
    else {
        PyMem_Free(array);
    }
#else
    PyMem_Free(items);
#endif
}

/* Ensure ob_item has room for at least newsize elements, and set
 * ob_size to newsize.  If newsize > ob_size on entry, the content
 * of the new slots at exit is undefined heap trash; it's the caller's
 * responsibility to overwrite them with sane values.
 * The number of allocated elements may grow, shrink, or stay the same.
 * Failure is impossible if newsize <= self.allocated on entry, although
 * that partly relies on an assumption that the system realloc() never
 * fails when passed a number of bytes <= the number of bytes last
 * allocated (the C standard doesn't guarantee this, but it's hard to
 * imagine a realloc implementation where it wouldn't be true).
 * Note that self->ob_item may change, and even if newsize is less
 * than ob_size on entry.
 */
static int
list_resize(PyListObject *self, Py_ssize_t newsize)
{
    size_t new_allocated, target_bytes;
    Py_ssize_t allocated = self->allocated;

    /* Bypass realloc() when a previous overallocation is large enough
       to accommodate the newsize.  If the newsize falls lower than half
       the allocated size, then proceed with the realloc() to shrink the list.
    */
    if (allocated >= newsize && newsize >= (allocated >> 1)) {
        assert(self->ob_item != NULL || newsize == 0);
        Py_SET_SIZE(self, newsize);
        return 0;
    }

    /* This over-allocates proportional to the list size, making room
     * for additional growth.  The over-allocation is mild, but is
     * enough to give linear-time amortized behavior over a long
     * sequence of appends() in the presence of a poorly-performing
     * system realloc().
     * Add padding to make the allocated size multiple of 4.
     * The growth pattern is:  0, 4, 8, 16, 24, 32, 40, 52, 64, 76, ...
     * Note: new_allocated won't overflow because the largest possible value
     *       is PY_SSIZE_T_MAX * (9 / 8) + 6 which always fits in a size_t.
     */
    new_allocated = ((size_t)newsize + (newsize >> 3) + 6) & ~(size_t)3;
    /* Do not overallocate if the new size is closer to overallocated size
     * than to the old size.
     */
    if (newsize - Py_SIZE(self) > (Py_ssize_t)(new_allocated - newsize))
        new_allocated = ((size_t)newsize + 3) & ~(size_t)3;

    if (newsize == 0)
        new_allocated = 0;

#ifdef Py_GIL_DISABLED
    _PyListArray *array = list_allocate_array(new_allocated);
    if (array == NULL) {
        PyErr_NoMemory();
        return -1;
    }
    PyObject **old_items = self->ob_item;
    if (self->ob_item) {
        if (new_allocated < (size_t)allocated) {
            target_bytes = new_allocated * sizeof(PyObject*);
        }
        else {
            target_bytes = allocated * sizeof(PyObject*);
        }
        memcpy(array->ob_item, self->ob_item, target_bytes);
    }
    if (new_allocated > (size_t)allocated) {
        memset(array->ob_item + allocated, 0, sizeof(PyObject *) * (new_allocated - allocated));
    }
     _Py_atomic_store_ptr_release(&self->ob_item, &array->ob_item);
    self->allocated = new_allocated;
    Py_SET_SIZE(self, newsize);
    if (old_items != NULL) {
        free_list_items(old_items, _PyObject_GC_IS_SHARED(self));
    }
#else
    PyObject **items;
    if (new_allocated <= (size_t)PY_SSIZE_T_MAX / sizeof(PyObject *)) {
        target_bytes = new_allocated * sizeof(PyObject *);
        items = (PyObject **)PyMem_Realloc(self->ob_item, target_bytes);
    }
    else {
        // integer overflow
        items = NULL;
    }
    if (items == NULL) {
        PyErr_NoMemory();
        return -1;
    }
    self->ob_item = items;
    Py_SET_SIZE(self, newsize);
    self->allocated = new_allocated;
#endif
    return 0;
}

static int
list_preallocate_exact(PyListObject *self, Py_ssize_t size)
{
    PyObject **items;
    assert(self->ob_item == NULL);
    assert(size > 0);

    /* Since the Python memory allocator has granularity of 16 bytes on 64-bit
     * platforms (8 on 32-bit), there is no benefit of allocating space for
     * the odd number of items, and there is no drawback of rounding the
     * allocated size up to the nearest even number.
     */
    size = (size + 1) & ~(size_t)1;
#ifdef Py_GIL_DISABLED
    _PyListArray *array = list_allocate_array(size);
    if (array == NULL) {
        PyErr_NoMemory();
        return -1;
    }
    items = array->ob_item;
    memset(items, 0, size * sizeof(PyObject *));
#else
    items = PyMem_New(PyObject*, size);
    if (items == NULL) {
        PyErr_NoMemory();
        return -1;
    }
#endif
    FT_ATOMIC_STORE_PTR_RELEASE(self->ob_item, items);
    self->allocated = size;
    return 0;
}

void
_PyList_ClearFreeList(struct _Py_object_freelists *freelists, int is_finalization)
{
#ifdef WITH_FREELISTS
    struct _Py_list_freelist *state = &freelists->lists;
    while (state->numfree > 0) {
        PyListObject *op = state->items[--state->numfree];
        assert(PyList_CheckExact(op));
        PyObject_GC_Del(op);
    }
    if (is_finalization) {
        state->numfree = -1;
    }
#endif
}

/* Print summary info about the state of the optimized allocator */
void
_PyList_DebugMallocStats(FILE *out)
{
#ifdef WITH_FREELISTS
    struct _Py_list_freelist *list_freelist = get_list_freelist();
    _PyDebugAllocatorStats(out,
                           "free PyListObject",
                           list_freelist->numfree, sizeof(PyListObject));
#endif
}

PyObject *
PyList_New(Py_ssize_t size)
{
    PyListObject *op;

    if (size < 0) {
        PyErr_BadInternalCall();
        return NULL;
    }

#ifdef WITH_FREELISTS
    struct _Py_list_freelist *list_freelist = get_list_freelist();
    if (PyList_MAXFREELIST && list_freelist->numfree > 0) {
        list_freelist->numfree--;
        op = list_freelist->items[list_freelist->numfree];
        OBJECT_STAT_INC(from_freelist);
        _Py_NewReference((PyObject *)op);
    }
    else
#endif
    {
        op = PyObject_GC_New(PyListObject, &PyList_Type);
        if (op == NULL) {
            return NULL;
        }
    }
    if (size <= 0) {
        op->ob_item = NULL;
    }
    else {
#ifdef Py_GIL_DISABLED
        _PyListArray *array = list_allocate_array(size);
        if (array == NULL) {
            Py_DECREF(op);
            return PyErr_NoMemory();
        }
        memset(&array->ob_item, 0, size * sizeof(PyObject *));
        op->ob_item = array->ob_item;
#else
        op->ob_item = (PyObject **) PyMem_Calloc(size, sizeof(PyObject *));
#endif
        if (op->ob_item == NULL) {
            Py_DECREF(op);
            return PyErr_NoMemory();
        }
    }
    Py_SET_SIZE(op, size);
    op->allocated = size;
    _PyObject_GC_TRACK(op);
    return (PyObject *) op;
}

static PyObject *
list_new_prealloc(Py_ssize_t size)
{
    assert(size > 0);
    PyListObject *op = (PyListObject *) PyList_New(0);
    if (op == NULL) {
        return NULL;
    }
    assert(op->ob_item == NULL);
#ifdef Py_GIL_DISABLED
    _PyListArray *array = list_allocate_array(size);
    if (array == NULL) {
        Py_DECREF(op);
        return PyErr_NoMemory();
    }
    op->ob_item = array->ob_item;
#else
    op->ob_item = PyMem_New(PyObject *, size);
    if (op->ob_item == NULL) {
        Py_DECREF(op);
        return PyErr_NoMemory();
    }
#endif
    op->allocated = size;
    return (PyObject *) op;
}

Py_ssize_t
PyList_Size(PyObject *op)
{
    if (!PyList_Check(op)) {
        PyErr_BadInternalCall();
        return -1;
    }
    else {
        return PyList_GET_SIZE(op);
    }
}

static inline int
valid_index(Py_ssize_t i, Py_ssize_t limit)
{
    /* The cast to size_t lets us use just a single comparison
       to check whether i is in the range: 0 <= i < limit.

       See:  Section 14.2 "Bounds Checking" in the Agner Fog
       optimization manual found at:
       https://www.agner.org/optimize/optimizing_cpp.pdf
    */
    return (size_t) i < (size_t) limit;
}

#ifdef Py_GIL_DISABLED

static PyObject *
list_item_impl(PyListObject *self, Py_ssize_t idx)
{
    PyObject *item = NULL;
    Py_BEGIN_CRITICAL_SECTION(self);
    if (!_PyObject_GC_IS_SHARED(self)) {
        _PyObject_GC_SET_SHARED(self);
    }
    Py_ssize_t size = Py_SIZE(self);
    if (!valid_index(idx, size)) {
        goto exit;
    }
#ifdef Py_GIL_DISABLED
    item = _Py_NewRefWithLock(self->ob_item[idx]);
#else
    item = Py_NewRef(self->ob_item[idx]);
#endif
exit:
    Py_END_CRITICAL_SECTION();
    return item;
}

static inline PyObject*
list_get_item_ref(PyListObject *op, Py_ssize_t i)
{
    if (!_Py_IsOwnedByCurrentThread((PyObject *)op) && !_PyObject_GC_IS_SHARED(op)) {
        return list_item_impl(op, i);
    }
    // Need atomic operation for the getting size.
    Py_ssize_t size = PyList_GET_SIZE(op);
    if (!valid_index(i, size)) {
        return NULL;
    }
    PyObject **ob_item = _Py_atomic_load_ptr(&op->ob_item);
    if (ob_item == NULL) {
        return NULL;
    }
    Py_ssize_t cap = list_capacity(ob_item);
    assert(cap != -1 && cap >= size);
    if (!valid_index(i, cap)) {
        return NULL;
    }
    PyObject *item = _Py_TryXGetRef(&ob_item[i]);
    if (item == NULL) {
        return list_item_impl(op, i);
    }
    return item;
}
#else
static inline PyObject*
list_get_item_ref(PyListObject *op, Py_ssize_t i)
{
    if (!valid_index(i, Py_SIZE(op))) {
        return NULL;
    }
    return Py_NewRef(PyList_GET_ITEM(op, i));
}
#endif

PyObject *
PyList_GetItem(PyObject *op, Py_ssize_t i)
{
    if (!PyList_Check(op)) {
        PyErr_BadInternalCall();
        return NULL;
    }
    if (!valid_index(i, Py_SIZE(op))) {
        _Py_DECLARE_STR(list_err, "list index out of range");
        PyErr_SetObject(PyExc_IndexError, &_Py_STR(list_err));
        return NULL;
    }
    return ((PyListObject *)op) -> ob_item[i];
}

PyObject *
PyList_GetItemRef(PyObject *op, Py_ssize_t i)
{
    if (!PyList_Check(op)) {
        PyErr_SetString(PyExc_TypeError, "expected a list");
        return NULL;
    }
    PyObject *item = list_get_item_ref((PyListObject *)op, i);
    if (item == NULL) {
        _Py_DECLARE_STR(list_err, "list index out of range");
        PyErr_SetObject(PyExc_IndexError, &_Py_STR(list_err));
        return NULL;
    }
    return item;
}

int
PyList_SetItem(PyObject *op, Py_ssize_t i,
               PyObject *newitem)
{
    PyObject **p;
    if (!PyList_Check(op)) {
        Py_XDECREF(newitem);
        PyErr_BadInternalCall();
        return -1;
    }
    int ret;
    PyListObject *self = ((PyListObject *)op);
    Py_BEGIN_CRITICAL_SECTION(self);
    if (!valid_index(i, Py_SIZE(self))) {
        Py_XDECREF(newitem);
        PyErr_SetString(PyExc_IndexError,
                        "list assignment index out of range");
        ret = -1;
        goto end;
    }
    p = self->ob_item + i;
    Py_XSETREF(*p, newitem);
    ret = 0;
end:
    Py_END_CRITICAL_SECTION();
    return ret;
}

static int
ins1(PyListObject *self, Py_ssize_t where, PyObject *v)
{
    Py_ssize_t i, n = Py_SIZE(self);
    PyObject **items;
    if (v == NULL) {
        PyErr_BadInternalCall();
        return -1;
    }

    assert((size_t)n + 1 < PY_SSIZE_T_MAX);
    if (list_resize(self, n+1) < 0)
        return -1;

    if (where < 0) {
        where += n;
        if (where < 0)
            where = 0;
    }
    if (where > n)
        where = n;
    items = self->ob_item;
    for (i = n; --i >= where; )
        items[i+1] = items[i];
    items[where] = Py_NewRef(v);
    return 0;
}

int
PyList_Insert(PyObject *op, Py_ssize_t where, PyObject *newitem)
{
    if (!PyList_Check(op)) {
        PyErr_BadInternalCall();
        return -1;
    }
    PyListObject *self = (PyListObject *)op;
    int err;
    Py_BEGIN_CRITICAL_SECTION(self);
    err = ins1(self, where, newitem);
    Py_END_CRITICAL_SECTION();
    return err;
}

/* internal, used by _PyList_AppendTakeRef */
int
_PyList_AppendTakeRefListResize(PyListObject *self, PyObject *newitem)
{
    Py_ssize_t len = Py_SIZE(self);
    assert(self->allocated == -1 || self->allocated == len);
    if (list_resize(self, len + 1) < 0) {
        Py_DECREF(newitem);
        return -1;
    }
    FT_ATOMIC_STORE_PTR_RELEASE(self->ob_item[len], newitem);
    return 0;
}

int
PyList_Append(PyObject *op, PyObject *newitem)
{
    if (PyList_Check(op) && (newitem != NULL)) {
        int ret;
        Py_BEGIN_CRITICAL_SECTION(op);
        ret = _PyList_AppendTakeRef((PyListObject *)op, Py_NewRef(newitem));
        Py_END_CRITICAL_SECTION();
        return ret;
    }
    PyErr_BadInternalCall();
    return -1;
}

/* Methods */

static void
list_dealloc(PyObject *self)
{
    PyListObject *op = (PyListObject *)self;
    Py_ssize_t i;
    PyObject_GC_UnTrack(op);
    Py_TRASHCAN_BEGIN(op, list_dealloc)
    if (op->ob_item != NULL) {
        /* Do it backwards, for Christian Tismer.
           There's a simple test case where somehow this reduces
           thrashing when a *very* large list is created and
           immediately deleted. */
        i = Py_SIZE(op);
        while (--i >= 0) {
            Py_XDECREF(op->ob_item[i]);
        }
        free_list_items(op->ob_item, false);
    }
#ifdef WITH_FREELISTS
    struct _Py_list_freelist *list_freelist = get_list_freelist();
    if (list_freelist->numfree < PyList_MAXFREELIST && list_freelist->numfree >= 0 && PyList_CheckExact(op)) {
        list_freelist->items[list_freelist->numfree++] = op;
        OBJECT_STAT_INC(to_freelist);
    }
    else
#endif
    {
        Py_TYPE(op)->tp_free((PyObject *)op);
    }
    Py_TRASHCAN_END
}

static PyObject *
list_repr_impl(PyListObject *v)
{
    PyObject *s;
    _PyUnicodeWriter writer;
    Py_ssize_t i = Py_ReprEnter((PyObject*)v);
    if (i != 0) {
        return i > 0 ? PyUnicode_FromString("[...]") : NULL;
    }

    _PyUnicodeWriter_Init(&writer);
    writer.overallocate = 1;
    /* "[" + "1" + ", 2" * (len - 1) + "]" */
    writer.min_length = 1 + 1 + (2 + 1) * (Py_SIZE(v) - 1) + 1;

    if (_PyUnicodeWriter_WriteChar(&writer, '[') < 0)
        goto error;

    /* Do repr() on each element.  Note that this may mutate the list,
       so must refetch the list size on each iteration. */
    for (i = 0; i < Py_SIZE(v); ++i) {
        if (i > 0) {
            if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0)
                goto error;
        }

        s = PyObject_Repr(v->ob_item[i]);
        if (s == NULL)
            goto error;

        if (_PyUnicodeWriter_WriteStr(&writer, s) < 0) {
            Py_DECREF(s);
            goto error;
        }
        Py_DECREF(s);
    }

    writer.overallocate = 0;
    if (_PyUnicodeWriter_WriteChar(&writer, ']') < 0)
        goto error;

    Py_ReprLeave((PyObject *)v);
    return _PyUnicodeWriter_Finish(&writer);

error:
    _PyUnicodeWriter_Dealloc(&writer);
    Py_ReprLeave((PyObject *)v);
    return NULL;
}

static PyObject *
list_repr(PyObject *self)
{
    if (PyList_GET_SIZE(self) == 0) {
        return PyUnicode_FromString("[]");
    }
    PyListObject *v = (PyListObject *)self;
    PyObject *ret = NULL;
    Py_BEGIN_CRITICAL_SECTION(v);
    ret = list_repr_impl(v);
    Py_END_CRITICAL_SECTION();
    return ret;
}

static Py_ssize_t
list_length(PyObject *a)
{
    return PyList_GET_SIZE(a);
}

static int
list_contains(PyObject *aa, PyObject *el)
{

    for (Py_ssize_t i = 0; ; i++) {
        PyObject *item = list_get_item_ref((PyListObject *)aa, i);
        if (item == NULL) {
            // out-of-bounds
            return 0;
        }
        int cmp = PyObject_RichCompareBool(item, el, Py_EQ);
        Py_DECREF(item);
        if (cmp != 0) {
            return cmp;
        }
    }
    return 0;
}

static PyObject *
list_item(PyObject *aa, Py_ssize_t i)
{
    PyListObject *a = (PyListObject *)aa;
    if (!valid_index(i, PyList_GET_SIZE(a))) {
        PyErr_SetObject(PyExc_IndexError, &_Py_STR(list_err));
        return NULL;
    }
    PyObject *item;
#ifdef Py_GIL_DISABLED
    item = list_get_item_ref(a, i);
    if (item == NULL) {
        PyErr_SetObject(PyExc_IndexError, &_Py_STR(list_err));
        return NULL;
    }
#else
    item = Py_NewRef(a->ob_item[i]);
#endif
    return item;
}

static PyObject *
list_slice_lock_held(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
{
    PyListObject *np;
    PyObject **src, **dest;
    Py_ssize_t i, len;
    len = ihigh - ilow;
    if (len <= 0) {
        return PyList_New(0);
    }
    np = (PyListObject *) list_new_prealloc(len);
    if (np == NULL)
        return NULL;

    src = a->ob_item + ilow;
    dest = np->ob_item;
    for (i = 0; i < len; i++) {
        PyObject *v = src[i];
        dest[i] = Py_NewRef(v);
    }
    Py_SET_SIZE(np, len);
    return (PyObject *)np;
}

PyObject *
PyList_GetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
{
    if (!PyList_Check(a)) {
        PyErr_BadInternalCall();
        return NULL;
    }
    PyObject *ret;
    Py_BEGIN_CRITICAL_SECTION(a);
    if (ilow < 0) {
        ilow = 0;
    }
    else if (ilow > Py_SIZE(a)) {
        ilow = Py_SIZE(a);
    }
    if (ihigh < ilow) {
        ihigh = ilow;
    }
    else if (ihigh > Py_SIZE(a)) {
        ihigh = Py_SIZE(a);
    }
    ret = list_slice_lock_held((PyListObject *)a, ilow, ihigh);
    Py_END_CRITICAL_SECTION();
    return ret;
}

static PyObject *
list_concat_lock_held(PyListObject *a, PyListObject *b)
{
    Py_ssize_t size;
    Py_ssize_t i;
    PyObject **src, **dest;
    PyListObject *np;
    assert((size_t)Py_SIZE(a) + (size_t)Py_SIZE(b) < PY_SSIZE_T_MAX);
    size = Py_SIZE(a) + Py_SIZE(b);
    if (size == 0) {
        return PyList_New(0);
    }
    np = (PyListObject *) list_new_prealloc(size);
    if (np == NULL) {
        return NULL;
    }
    src = a->ob_item;
    dest = np->ob_item;
    for (i = 0; i < Py_SIZE(a); i++) {
        PyObject *v = src[i];
        dest[i] = Py_NewRef(v);
    }
    src = b->ob_item;
    dest = np->ob_item + Py_SIZE(a);
    for (i = 0; i < Py_SIZE(b); i++) {
        PyObject *v = src[i];
        dest[i] = Py_NewRef(v);
    }
    Py_SET_SIZE(np, size);
    return (PyObject *)np;
}

static PyObject *
list_concat(PyObject *aa, PyObject *bb)
{
    if (!PyList_Check(bb)) {
        PyErr_Format(PyExc_TypeError,
                  "can only concatenate list (not \"%.200s\") to list",
                  Py_TYPE(bb)->tp_name);
        return NULL;
    }
    PyListObject *a = (PyListObject *)aa;
    PyListObject *b = (PyListObject *)bb;
    PyObject *ret;
    Py_BEGIN_CRITICAL_SECTION2(a, b);
    ret = list_concat_lock_held(a, b);
    Py_END_CRITICAL_SECTION2();
    return ret;
}

static PyObject *
list_repeat_lock_held(PyListObject *a, Py_ssize_t n)
{
    const Py_ssize_t input_size = Py_SIZE(a);
    if (input_size == 0 || n <= 0)
        return PyList_New(0);
    assert(n > 0);

    if (input_size > PY_SSIZE_T_MAX / n)
        return PyErr_NoMemory();
    Py_ssize_t output_size = input_size * n;

    PyListObject *np = (PyListObject *) list_new_prealloc(output_size);
    if (np == NULL)
        return NULL;

    PyObject **dest = np->ob_item;
    if (input_size == 1) {
        PyObject *elem = a->ob_item[0];
        _Py_RefcntAdd(elem, n);
        PyObject **dest_end = dest + output_size;
        while (dest < dest_end) {
            *dest++ = elem;
        }
    }
    else {
        PyObject **src = a->ob_item;
        PyObject **src_end = src + input_size;
        while (src < src_end) {
            _Py_RefcntAdd(*src, n);
            *dest++ = *src++;
        }

        _Py_memory_repeat((char *)np->ob_item, sizeof(PyObject *)*output_size,
                                        sizeof(PyObject *)*input_size);
    }

    Py_SET_SIZE(np, output_size);
    return (PyObject *) np;
}

static PyObject *
list_repeat(PyObject *aa, Py_ssize_t n)
{
    PyObject *ret;
    PyListObject *a = (PyListObject *)aa;
    Py_BEGIN_CRITICAL_SECTION(a);
    ret = list_repeat_lock_held(a, n);
    Py_END_CRITICAL_SECTION();
    return ret;
}

static void
list_clear_impl(PyListObject *a, bool is_resize)
{
    PyObject **items = a->ob_item;
    if (items == NULL) {
        return;
    }

    /* Because XDECREF can recursively invoke operations on
       this list, we make it empty first. */
    Py_ssize_t i = Py_SIZE(a);
    Py_SET_SIZE(a, 0);
    FT_ATOMIC_STORE_PTR_RELEASE(a->ob_item, NULL);
    a->allocated = 0;
    while (--i >= 0) {
        Py_XDECREF(items[i]);
    }
#ifdef Py_GIL_DISABLED
    bool use_qsbr = is_resize && _PyObject_GC_IS_SHARED(a);
#else
    bool use_qsbr = false;
#endif
    free_list_items(items, use_qsbr);
    // Note that there is no guarantee that the list is actually empty
    // at this point, because XDECREF may have populated it indirectly again!
}

static void
list_clear(PyListObject *a)
{
    list_clear_impl(a, true);
}

static int
list_clear_slot(PyObject *self)
{
    list_clear_impl((PyListObject *)self, false);
    return 0;
}

/* a[ilow:ihigh] = v if v != NULL.
 * del a[ilow:ihigh] if v == NULL.
 *
 * Special speed gimmick:  when v is NULL and ihigh - ilow <= 8, it's
 * guaranteed the call cannot fail.
 */
static int
list_ass_slice_lock_held(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
{
    /* Because [X]DECREF can recursively invoke list operations on
       this list, we must postpone all [X]DECREF activity until
       after the list is back in its canonical shape.  Therefore
       we must allocate an additional array, 'recycle', into which
       we temporarily copy the items that are deleted from the
       list. :-( */
    PyObject *recycle_on_stack[8];
    PyObject **recycle = recycle_on_stack; /* will allocate more if needed */
    PyObject **item;
    PyObject **vitem = NULL;
    PyObject *v_as_SF = NULL; /* PySequence_Fast(v) */
    Py_ssize_t n; /* # of elements in replacement list */
    Py_ssize_t norig; /* # of elements in list getting replaced */
    Py_ssize_t d; /* Change in size */
    Py_ssize_t k;
    size_t s;
    int result = -1;            /* guilty until proved innocent */
#define b ((PyListObject *)v)
    if (v == NULL)
        n = 0;
    else {
        v_as_SF = PySequence_Fast(v, "can only assign an iterable");
        if(v_as_SF == NULL)
            goto Error;
        n = PySequence_Fast_GET_SIZE(v_as_SF);
        vitem = PySequence_Fast_ITEMS(v_as_SF);
    }
    if (ilow < 0)
        ilow = 0;
    else if (ilow > Py_SIZE(a))
        ilow = Py_SIZE(a);

    if (ihigh < ilow)
        ihigh = ilow;
    else if (ihigh > Py_SIZE(a))
        ihigh = Py_SIZE(a);

    norig = ihigh - ilow;
    assert(norig >= 0);
    d = n - norig;
    if (Py_SIZE(a) + d == 0) {
        Py_XDECREF(v_as_SF);
        list_clear(a);
        return 0;
    }
    item = a->ob_item;
    /* recycle the items that we are about to remove */
    s = norig * sizeof(PyObject *);
    /* If norig == 0, item might be NULL, in which case we may not memcpy from it. */
    if (s) {
        if (s > sizeof(recycle_on_stack)) {
            recycle = (PyObject **)PyMem_Malloc(s);
            if (recycle == NULL) {
                PyErr_NoMemory();
                goto Error;
            }
        }
        memcpy(recycle, &item[ilow], s);
    }

    if (d < 0) { /* Delete -d items */
        Py_ssize_t tail;
        tail = (Py_SIZE(a) - ihigh) * sizeof(PyObject *);
        memmove(&item[ihigh+d], &item[ihigh], tail);
        if (list_resize(a, Py_SIZE(a) + d) < 0) {
            memmove(&item[ihigh], &item[ihigh+d], tail);
            memcpy(&item[ilow], recycle, s);
            goto Error;
        }
        item = a->ob_item;
    }
    else if (d > 0) { /* Insert d items */
        k = Py_SIZE(a);
        if (list_resize(a, k+d) < 0)
            goto Error;
        item = a->ob_item;
        memmove(&item[ihigh+d], &item[ihigh],
            (k - ihigh)*sizeof(PyObject *));
    }
    for (k = 0; k < n; k++, ilow++) {
        PyObject *w = vitem[k];
        item[ilow] = Py_XNewRef(w);
    }
    for (k = norig - 1; k >= 0; --k)
        Py_XDECREF(recycle[k]);
    result = 0;
 Error:
    if (recycle != recycle_on_stack)
        PyMem_Free(recycle);
    Py_XDECREF(v_as_SF);
    return result;
#undef b
}

static int
list_ass_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
{
    int ret;
    if (a == (PyListObject *)v) {
        Py_BEGIN_CRITICAL_SECTION(a);
        Py_ssize_t n = PyList_GET_SIZE(a);
        PyObject *copy = list_slice_lock_held(a, 0, n);
        if (copy == NULL) {
            return -1;
        }
        ret = list_ass_slice_lock_held(a, ilow, ihigh, copy);
        Py_DECREF(copy);
        Py_END_CRITICAL_SECTION();
    }
    else if (v != NULL && PyList_CheckExact(v)) {
        Py_BEGIN_CRITICAL_SECTION2(a, v);
        ret = list_ass_slice_lock_held(a, ilow, ihigh, v);
        Py_END_CRITICAL_SECTION2();
    }
    else {
        Py_BEGIN_CRITICAL_SECTION(a);
        ret = list_ass_slice_lock_held(a, ilow, ihigh, v);
        Py_END_CRITICAL_SECTION();
    }
    return ret;
}

int
PyList_SetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
{
    if (!PyList_Check(a)) {
        PyErr_BadInternalCall();
        return -1;
    }
    return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
}

static int
list_inplace_repeat_lock_held(PyListObject *self, Py_ssize_t n)
{
    Py_ssize_t input_size = PyList_GET_SIZE(self);
    if (input_size == 0 || n == 1) {
        return 0;
    }

    if (n < 1) {
        list_clear(self);
        return 0;
    }

    if (input_size > PY_SSIZE_T_MAX / n) {
        PyErr_NoMemory();
        return -1;
    }
    Py_ssize_t output_size = input_size * n;

    if (list_resize(self, output_size) < 0) {
        return -1;
    }

    PyObject **items = self->ob_item;
    for (Py_ssize_t j = 0; j < input_size; j++) {
        _Py_RefcntAdd(items[j], n-1);
    }
    _Py_memory_repeat((char *)items, sizeof(PyObject *)*output_size,
                      sizeof(PyObject *)*input_size);
    return 0;
}

static PyObject *
list_inplace_repeat(PyObject *_self, Py_ssize_t n)
{
    PyObject *ret;
    PyListObject *self = (PyListObject *) _self;
    Py_BEGIN_CRITICAL_SECTION(self);
    if (list_inplace_repeat_lock_held(self, n) < 0) {
        ret = NULL;
    }
    else {
        ret = Py_NewRef(self);
    }
    Py_END_CRITICAL_SECTION();
    return ret;
}

static int
list_ass_item_lock_held(PyListObject *a, Py_ssize_t i, PyObject *v)
{
    if (!valid_index(i, Py_SIZE(a))) {
        PyErr_SetString(PyExc_IndexError,
                        "list assignment index out of range");
        return -1;
    }
    PyObject *tmp = a->ob_item[i];
    if (v == NULL) {
        Py_ssize_t size = Py_SIZE(a);
        for (Py_ssize_t idx = i; idx < size - 1; idx++) {
            FT_ATOMIC_STORE_PTR_RELAXED(a->ob_item[idx], a->ob_item[idx + 1]);
        }
        Py_SET_SIZE(a, size - 1);
    }
    else {
        FT_ATOMIC_STORE_PTR_RELEASE(a->ob_item[i], Py_NewRef(v));
    }
    Py_DECREF(tmp);
    return 0;
}

static int
list_ass_item(PyObject *aa, Py_ssize_t i, PyObject *v)
{
    int ret;
    PyListObject *a = (PyListObject *)aa;
    Py_BEGIN_CRITICAL_SECTION(a);
    ret = list_ass_item_lock_held(a, i, v);
    Py_END_CRITICAL_SECTION();
    return ret;
}

/*[clinic input]
@critical_section
list.insert

    index: Py_ssize_t
    object: object
    /

Insert object before index.
[clinic start generated code]*/

static PyObject *
list_insert_impl(PyListObject *self, Py_ssize_t index, PyObject *object)
/*[clinic end generated code: output=7f35e32f60c8cb78 input=b1987ca998a4ae2d]*/
{
    if (ins1(self, index, object) == 0) {
        Py_RETURN_NONE;
    }
    return NULL;
}

/*[clinic input]
@critical_section
list.clear as py_list_clear

Remove all items from list.
[clinic start generated code]*/

static PyObject *
py_list_clear_impl(PyListObject *self)
/*[clinic end generated code: output=83726743807e3518 input=e285b7f09051a9ba]*/
{
    list_clear(self);
    Py_RETURN_NONE;
}

/*[clinic input]
@critical_section
list.copy

Return a shallow copy of the list.
[clinic start generated code]*/

static PyObject *
list_copy_impl(PyListObject *self)
/*[clinic end generated code: output=ec6b72d6209d418e input=81c54b0c7bb4f73d]*/
{
    return list_slice_lock_held(self, 0, Py_SIZE(self));
}

/*[clinic input]
@critical_section
list.append

     object: object
     /

Append object to the end of the list.
[clinic start generated code]*/

static PyObject *
list_append_impl(PyListObject *self, PyObject *object)
/*[clinic end generated code: output=78423561d92ed405 input=122b0853de54004f]*/
{
    if (_PyList_AppendTakeRef(self, Py_NewRef(object)) < 0) {
        return NULL;
    }
    Py_RETURN_NONE;
}

static int
list_extend_fast(PyListObject *self, PyObject *iterable)
{
    Py_ssize_t n = PySequence_Fast_GET_SIZE(iterable);
    if (n == 0) {
        /* short circuit when iterable is empty */
        return 0;
    }

    Py_ssize_t m = Py_SIZE(self);
    // It should not be possible to allocate a list large enough to cause
    // an overflow on any relevant platform.
    assert(m < PY_SSIZE_T_MAX - n);
    if (self->ob_item == NULL) {
        if (list_preallocate_exact(self, n) < 0) {
            return -1;
        }
        Py_SET_SIZE(self, n);
    }
    else if (list_resize(self, m + n) < 0) {
        return -1;
    }

    // note that we may still have self == iterable here for the
    // situation a.extend(a), but the following code works
    // in that case too.  Just make sure to resize self
    // before calling PySequence_Fast_ITEMS.
    //
    // populate the end of self with iterable's items.
    PyObject **src = PySequence_Fast_ITEMS(iterable);
    PyObject **dest = self->ob_item + m;
    for (Py_ssize_t i = 0; i < n; i++) {
        PyObject *o = src[i];
        FT_ATOMIC_STORE_PTR_RELEASE(dest[i], Py_NewRef(o));
    }
    return 0;
}

static int
list_extend_iter_lock_held(PyListObject *self, PyObject *iterable)
{
    PyObject *it = PyObject_GetIter(iterable);
    if (it == NULL) {
        return -1;
    }
    PyObject *(*iternext)(PyObject *) = *Py_TYPE(it)->tp_iternext;

    /* Guess a result list size. */
    Py_ssize_t n = PyObject_LengthHint(iterable, 8);
    if (n < 0) {
        Py_DECREF(it);
        return -1;
    }

    Py_ssize_t m = Py_SIZE(self);
    if (m > PY_SSIZE_T_MAX - n) {
        /* m + n overflowed; on the chance that n lied, and there really
         * is enough room, ignore it.  If n was telling the truth, we'll
         * eventually run out of memory during the loop.
         */
    }
    else if (self->ob_item == NULL) {
        if (n && list_preallocate_exact(self, n) < 0)
            goto error;
    }
    else {
        /* Make room. */
        if (list_resize(self, m + n) < 0) {
            goto error;
        }

        /* Make the list sane again. */
        Py_SET_SIZE(self, m);
    }

    /* Run iterator to exhaustion. */
    for (;;) {
        PyObject *item = iternext(it);
        if (item == NULL) {
            if (PyErr_Occurred()) {
                if (PyErr_ExceptionMatches(PyExc_StopIteration))
                    PyErr_Clear();
                else
                    goto error;
            }
            break;
        }

        if (Py_SIZE(self) < self->allocated) {
            Py_ssize_t len = Py_SIZE(self);
            FT_ATOMIC_STORE_PTR_RELEASE(self->ob_item[len], item);  // steals item ref
            Py_SET_SIZE(self, len + 1);
        }
        else {
            if (_PyList_AppendTakeRef(self, item) < 0)
                goto error;
        }
    }

    /* Cut back result list if initial guess was too large. */
    if (Py_SIZE(self) < self->allocated) {
        if (list_resize(self, Py_SIZE(self)) < 0)
            goto error;
    }

    Py_DECREF(it);
    return 0;

  error:
    Py_DECREF(it);
    return -1;
}

static int
list_extend_lock_held(PyListObject *self, PyObject *iterable)
{
    PyObject *seq = PySequence_Fast(iterable, "argument must be iterable");
    if (!seq) {
        return -1;
    }

    int res = list_extend_fast(self, seq);
    Py_DECREF(seq);
    return res;
}

static int
list_extend_set(PyListObject *self, PySetObject *other)
{
    Py_ssize_t m = Py_SIZE(self);
    Py_ssize_t n = PySet_GET_SIZE(other);
    if (list_resize(self, m + n) < 0) {
        return -1;
    }
    /* populate the end of self with iterable's items */
    Py_ssize_t setpos = 0;
    Py_hash_t hash;
    PyObject *key;
    PyObject **dest = self->ob_item + m;
    while (_PySet_NextEntryRef((PyObject *)other, &setpos, &key, &hash)) {
        FT_ATOMIC_STORE_PTR_RELEASE(*dest, key);
        dest++;
    }
    Py_SET_SIZE(self, m + n);
    return 0;
}

static int
list_extend_dict(PyListObject *self, PyDictObject *dict, int which_item)
{
    // which_item: 0 for keys and 1 for values
    Py_ssize_t m = Py_SIZE(self);
    Py_ssize_t n = PyDict_GET_SIZE(dict);
    if (list_resize(self, m + n) < 0) {
        return -1;
    }

    PyObject **dest = self->ob_item + m;
    Py_ssize_t pos = 0;
    PyObject *keyvalue[2];
    while (_PyDict_Next((PyObject *)dict, &pos, &keyvalue[0], &keyvalue[1], NULL)) {
        PyObject *obj = keyvalue[which_item];
        Py_INCREF(obj);
        FT_ATOMIC_STORE_PTR_RELEASE(*dest, obj);
        dest++;
    }

    Py_SET_SIZE(self, m + n);
    return 0;
}

static int
list_extend_dictitems(PyListObject *self, PyDictObject *dict)
{
    Py_ssize_t m = Py_SIZE(self);
    Py_ssize_t n = PyDict_GET_SIZE(dict);
    if (list_resize(self, m + n) < 0) {
        return -1;
    }

    PyObject **dest = self->ob_item + m;
    Py_ssize_t pos = 0;
    Py_ssize_t i = 0;
    PyObject *key, *value;
    while (_PyDict_Next((PyObject *)dict, &pos, &key, &value, NULL)) {
        PyObject *item = PyTuple_Pack(2, key, value);
        if (item == NULL) {
            Py_SET_SIZE(self, m + i);
            return -1;
        }
        FT_ATOMIC_STORE_PTR_RELEASE(*dest, item);
        dest++;
        i++;
    }

    Py_SET_SIZE(self, m + n);
    return 0;
}

static int
_list_extend(PyListObject *self, PyObject *iterable)
{
    // Special case:
    // lists and tuples which can use PySequence_Fast ops
    int res = -1;
    if ((PyObject *)self == iterable) {
        Py_BEGIN_CRITICAL_SECTION(self);
        res = list_inplace_repeat_lock_held(self, 2);
        Py_END_CRITICAL_SECTION();
    }
    else if (PyList_CheckExact(iterable)) {
        Py_BEGIN_CRITICAL_SECTION2(self, iterable);
        res = list_extend_lock_held(self, iterable);
        Py_END_CRITICAL_SECTION2();
    }
    else if (PyTuple_CheckExact(iterable)) {
        Py_BEGIN_CRITICAL_SECTION(self);
        res = list_extend_lock_held(self, iterable);
        Py_END_CRITICAL_SECTION();
    }
    else if (PyAnySet_CheckExact(iterable)) {
        Py_BEGIN_CRITICAL_SECTION2(self, iterable);
        res = list_extend_set(self, (PySetObject *)iterable);
        Py_END_CRITICAL_SECTION2();
    }
    else if (PyDict_CheckExact(iterable)) {
        Py_BEGIN_CRITICAL_SECTION2(self, iterable);
        res = list_extend_dict(self, (PyDictObject *)iterable, 0 /*keys*/);
        Py_END_CRITICAL_SECTION2();
    }
    else if (Py_IS_TYPE(iterable, &PyDictKeys_Type)) {
        PyDictObject *dict = ((_PyDictViewObject *)iterable)->dv_dict;
        Py_BEGIN_CRITICAL_SECTION2(self, dict);
        res = list_extend_dict(self, dict, 0 /*keys*/);
        Py_END_CRITICAL_SECTION2();
    }
    else if (Py_IS_TYPE(iterable, &PyDictValues_Type)) {
        PyDictObject *dict = ((_PyDictViewObject *)iterable)->dv_dict;
        Py_BEGIN_CRITICAL_SECTION2(self, dict);
        res = list_extend_dict(self, dict, 1 /*values*/);
        Py_END_CRITICAL_SECTION2();
    }
    else if (Py_IS_TYPE(iterable, &PyDictItems_Type)) {
        PyDictObject *dict = ((_PyDictViewObject *)iterable)->dv_dict;
        Py_BEGIN_CRITICAL_SECTION2(self, dict);
        res = list_extend_dictitems(self, dict);
        Py_END_CRITICAL_SECTION2();
    }
    else {
        Py_BEGIN_CRITICAL_SECTION(self);
        res = list_extend_iter_lock_held(self, iterable);
        Py_END_CRITICAL_SECTION();
    }
    return res;
}

/*[clinic input]
list.extend as list_extend

     iterable: object
     /

Extend list by appending elements from the iterable.
[clinic start generated code]*/

static PyObject *
list_extend(PyListObject *self, PyObject *iterable)
/*[clinic end generated code: output=630fb3bca0c8e789 input=979da7597a515791]*/
{
    if (_list_extend(self, iterable) < 0) {
        return NULL;
    }
    Py_RETURN_NONE;
}

PyObject *
_PyList_Extend(PyListObject *self, PyObject *iterable)
{
    return list_extend(self, iterable);
}

int
PyList_Extend(PyObject *self, PyObject *iterable)
{
    if (!PyList_Check(self)) {
        PyErr_BadInternalCall();
        return -1;
    }
    return _list_extend((PyListObject*)self, iterable);
}


int
PyList_Clear(PyObject *self)
{
    if (!PyList_Check(self)) {
        PyErr_BadInternalCall();
        return -1;
    }
    list_clear((PyListObject*)self);
    return 0;
}


static PyObject *
list_inplace_concat(PyObject *_self, PyObject *other)
{
    PyListObject *self = (PyListObject *)_self;
    if (_list_extend(self, other) < 0) {
        return NULL;
    }
    return Py_NewRef(self);
}

/*[clinic input]
@critical_section
list.pop

    index: Py_ssize_t = -1
    /

Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.
[clinic start generated code]*/

static PyObject *
list_pop_impl(PyListObject *self, Py_ssize_t index)
/*[clinic end generated code: output=6bd69dcb3f17eca8 input=c269141068ae4b8f]*/
{
    PyObject *v;
    int status;

    if (Py_SIZE(self) == 0) {
        /* Special-case most common failure cause */
        PyErr_SetString(PyExc_IndexError, "pop from empty list");
        return NULL;
    }
    if (index < 0)
        index += Py_SIZE(self);
    if (!valid_index(index, Py_SIZE(self))) {
        PyErr_SetString(PyExc_IndexError, "pop index out of range");
        return NULL;
    }

    PyObject **items = self->ob_item;
    v = items[index];
    const Py_ssize_t size_after_pop = Py_SIZE(self) - 1;
    if (size_after_pop == 0) {
        Py_INCREF(v);
        list_clear(self);
        status = 0;
    }
    else {
        if ((size_after_pop - index) > 0) {
            memmove(&items[index], &items[index+1], (size_after_pop - index) * sizeof(PyObject *));
        }
        status = list_resize(self, size_after_pop);
    }
    if (status >= 0) {
        return v; // and v now owns the reference the list had
    }
    else {
        // list resize failed, need to restore
        memmove(&items[index+1], &items[index], (size_after_pop - index)* sizeof(PyObject *));
        items[index] = v;
        return NULL;
    }
}

/* Reverse a slice of a list in place, from lo up to (exclusive) hi. */
static void
reverse_slice(PyObject **lo, PyObject **hi)
{
    assert(lo && hi);

    --hi;
    while (lo < hi) {
        PyObject *t = *lo;
        *lo = *hi;
        *hi = t;
        ++lo;
        --hi;
    }
}

/* Lots of code for an adaptive, stable, natural mergesort.  There are many
 * pieces to this algorithm; read listsort.txt for overviews and details.
 */

/* A sortslice contains a pointer to an array of keys and a pointer to
 * an array of corresponding values.  In other words, keys[i]
 * corresponds with values[i].  If values == NULL, then the keys are
 * also the values.
 *
 * Several convenience routines are provided here, so that keys and
 * values are always moved in sync.
 */

typedef struct {
    PyObject **keys;
    PyObject **values;
} sortslice;

Py_LOCAL_INLINE(void)
sortslice_copy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j)
{
    s1->keys[i] = s2->keys[j];
    if (s1->values != NULL)
        s1->values[i] = s2->values[j];
}

Py_LOCAL_INLINE(void)
sortslice_copy_incr(sortslice *dst, sortslice *src)
{
    *dst->keys++ = *src->keys++;
    if (dst->values != NULL)
        *dst->values++ = *src->values++;
}

Py_LOCAL_INLINE(void)
sortslice_copy_decr(sortslice *dst, sortslice *src)
{
    *dst->keys-- = *src->keys--;
    if (dst->values != NULL)
        *dst->values-- = *src->values--;
}


Py_LOCAL_INLINE(void)
sortslice_memcpy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j,
                 Py_ssize_t n)
{
    memcpy(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n);
    if (s1->values != NULL)
        memcpy(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n);
}

Py_LOCAL_INLINE(void)
sortslice_memmove(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j,
                  Py_ssize_t n)
{
    memmove(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n);
    if (s1->values != NULL)
        memmove(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n);
}

Py_LOCAL_INLINE(void)
sortslice_advance(sortslice *slice, Py_ssize_t n)
{
    slice->keys += n;
    if (slice->values != NULL)
        slice->values += n;
}

/* Comparison function: ms->key_compare, which is set at run-time in
 * listsort_impl to optimize for various special cases.
 * Returns -1 on error, 1 if x < y, 0 if x >= y.
 */

#define ISLT(X, Y) (*(ms->key_compare))(X, Y, ms)

/* Compare X to Y via "<".  Goto "fail" if the comparison raises an
   error.  Else "k" is set to true iff X<Y, and an "if (k)" block is
   started.  It makes more sense in context <wink>.  X and Y are PyObject*s.
*/
#define IFLT(X, Y) if ((k = ISLT(X, Y)) < 0) goto fail;  \
           if (k)

/* The maximum number of entries in a MergeState's pending-runs stack.
 * For a list with n elements, this needs at most floor(log2(n)) + 1 entries
 * even if we didn't force runs to a minimal length.  So the number of bits
 * in a Py_ssize_t is plenty large enough for all cases.
 */
#define MAX_MERGE_PENDING (SIZEOF_SIZE_T * 8)

/* When we get into galloping mode, we stay there until both runs win less
 * often than MIN_GALLOP consecutive times.  See listsort.txt for more info.
 */
#define MIN_GALLOP 7

/* Avoid malloc for small temp arrays. */
#define MERGESTATE_TEMP_SIZE 256

/* The largest value of minrun. This must be a power of 2, and >= 1, so that
 * the compute_minrun() algorithm guarantees to return a result no larger than
 * this,
 */
#define MAX_MINRUN 64
#if ((MAX_MINRUN) < 1) || ((MAX_MINRUN) & ((MAX_MINRUN) - 1))
#error "MAX_MINRUN must be a power of 2, and >= 1"
#endif

/* One MergeState exists on the stack per invocation of mergesort.  It's just
 * a convenient way to pass state around among the helper functions.
 */
struct s_slice {
    sortslice base;
    Py_ssize_t len;   /* length of run */
    int power; /* node "level" for powersort merge strategy */
};

typedef struct s_MergeState MergeState;
struct s_MergeState {
    /* This controls when we get *into* galloping mode.  It's initialized
     * to MIN_GALLOP.  merge_lo and merge_hi tend to nudge it higher for
     * random data, and lower for highly structured data.
     */
    Py_ssize_t min_gallop;

    Py_ssize_t listlen;     /* len(input_list) - read only */
    PyObject **basekeys;    /* base address of keys array - read only */

    /* 'a' is temp storage to help with merges.  It contains room for
     * alloced entries.
     */
    sortslice a;        /* may point to temparray below */
    Py_ssize_t alloced;

    /* A stack of n pending runs yet to be merged.  Run #i starts at
     * address base[i] and extends for len[i] elements.  It's always
     * true (so long as the indices are in bounds) that
     *
     *     pending[i].base + pending[i].len == pending[i+1].base
     *
     * so we could cut the storage for this, but it's a minor amount,
     * and keeping all the info explicit simplifies the code.
     */
    int n;
    struct s_slice pending[MAX_MERGE_PENDING];

    /* 'a' points to this when possible, rather than muck with malloc. */
    PyObject *temparray[MERGESTATE_TEMP_SIZE];

    /* This is the function we will use to compare two keys,
     * even when none of our special cases apply and we have to use
     * safe_object_compare. */
    int (*key_compare)(PyObject *, PyObject *, MergeState *);

    /* This function is used by unsafe_object_compare to optimize comparisons
     * when we know our list is type-homogeneous but we can't assume anything else.
     * In the pre-sort check it is set equal to Py_TYPE(key)->tp_richcompare */
    PyObject *(*key_richcompare)(PyObject *, PyObject *, int);

    /* This function is used by unsafe_tuple_compare to compare the first elements
     * of tuples. It may be set to safe_object_compare, but the idea is that hopefully
     * we can assume more, and use one of the special-case compares. */
    int (*tuple_elem_compare)(PyObject *, PyObject *, MergeState *);
};

/* binarysort is the best method for sorting small arrays: it does few
   compares, but can do data movement quadratic in the number of elements.
   ss->keys is viewed as an array of n kays, a[:n]. a[:ok] is already sorted.
   Pass ok = 0 (or 1) if you don't know.
   It's sorted in-place, by a stable binary insertion sort. If ss->values
   isn't NULL, it's permuted in lockstap with ss->keys.
   On entry, must have n >= 1, and 0 <= ok <= n <= MAX_MINRUN.
   Return -1 if comparison raises an exception, else 0.
   Even in case of error, the output slice will be some permutation of
   the input (nothing is lost or duplicated).
*/
static int
binarysort(MergeState *ms, const sortslice *ss, Py_ssize_t n, Py_ssize_t ok)
{
    Py_ssize_t k; /* for IFLT macro expansion */
    PyObject ** const a = ss->keys;
    PyObject ** const v = ss->values;
    const bool has_values = v != NULL;
    PyObject *pivot;
    Py_ssize_t M;

    assert(0 <= ok && ok <= n && 1 <= n && n <= MAX_MINRUN);
    /* assert a[:ok] is sorted */
    if (! ok)
        ++ok;
    /* Regular insertion sort has average- and worst-case O(n**2) cost
       for both # of comparisons and number of bytes moved. But its branches
       are highly predictable, and it loves sorted input (n-1 compares and no
       data movement). This is significant in cases like sortperf.py's %sort,
       where an out-of-order element near the start of a run is moved into
       place slowly but then the remaining elements up to length minrun are
       generally at worst one slot away from their correct position (so only
       need 1 or 2 commpares to resolve). If comparisons are very fast (such
       as for a list of Python floats), the simple inner loop leaves it
       very competitive with binary insertion, despite that it does
       significantly more compares overall on random data.

       Binary insertion sort has worst, average, and best case O(n log n)
       cost for # of comparisons, but worst and average case O(n**2) cost
       for data movement. The more expensive comparisons, the more important
       the comparison advantage. But its branches are less predictable the
       more "randomish" the data, and that's so significant its worst case
       in real life is random input rather than reverse-ordered (which does
       about twice the data movement than random input does).

       Note that the number of bytes moved doesn't seem to matter. MAX_MINRUN
       of 64 is so small that the key and value pointers all fit in a corner
       of L1 cache, and moving things around in that is very fast. */
#if 0 // ordinary insertion sort.
    PyObject * vpivot = NULL;
    for (; ok < n; ++ok) {
        pivot = a[ok];
        if (has_values)
            vpivot = v[ok];
        for (M = ok - 1; M >= 0; --M) {
            k = ISLT(pivot, a[M]);
            if (k < 0) {
                a[M + 1] = pivot;
                if (has_values)
                    v[M + 1] = vpivot;
                goto fail;
            }
            else if (k) {
                a[M + 1] = a[M];
                if (has_values)
                    v[M + 1] = v[M];
            }
            else
                break;
        }
        a[M + 1] = pivot;
        if (has_values)
            v[M + 1] = vpivot;
    }
#else // binary insertion sort
    Py_ssize_t L, R;
    for (; ok < n; ++ok) {
        /* set L to where a[ok] belongs */
        L = 0;
        R = ok;
        pivot = a[ok];
        /* Slice invariants. vacuously true at the start:
         * all a[0:L]  <= pivot
         * all a[L:R]     unknown
         * all a[R:ok]  > pivot
         */
        assert(L < R);
        do {
            /* don't do silly ;-) things to prevent overflow when finding
               the midpoint; L and R are very far from filling a Py_ssize_t */
            M = (L + R) >> 1;
#if 1 // straightforward, but highly unpredictable branch on random data
            IFLT(pivot, a[M])
                R = M;
            else
                L = M + 1;
#else
            /* Try to get compiler to generate conditional move instructions
               instead. Works fine, but leaving it disabled for now because
               it's not yielding consistently faster sorts. Needs more
               investigation. More computation in the inner loop adds its own
               costs, which can be significant when compares are fast. */
            k = ISLT(pivot, a[M]);
            if (k < 0)
                goto fail;
            Py_ssize_t Mp1 = M + 1;
            R = k ? M : R;
            L = k ? L : Mp1;
#endif
        } while (L < R);
        assert(L == R);
        /* a[:L] holds all elements from a[:ok] <= pivot now, so pivot belongs
           at index L. Slide a[L:ok] to the right a slot to make room for it.
           Caution: using memmove is much slower under MSVC 5; we're not
           usually moving many slots. Years later: under Visual Studio 2022,
           memmove seems just slightly slower than doing it "by hand". */
        for (M = ok; M > L; --M)
            a[M] = a[M - 1];
        a[L] = pivot;
        if (has_values) {
            pivot = v[ok];
            for (M = ok; M > L; --M)
                v[M] = v[M - 1];
            v[L] = pivot;
        }
    }
#endif // pick binary or regular insertion sort
    return 0;

 fail:
    return -1;
}

static void
sortslice_reverse(sortslice *s, Py_ssize_t n)
{
    reverse_slice(s->keys, &s->keys[n]);
    if (s->values != NULL)
        reverse_slice(s->values, &s->values[n]);
}

/*
Return the length of the run beginning at slo->keys, spanning no more than
nremaining elements. The run beginning there may be ascending or descending,
but the function permutes it in place, if needed, so that it's always ascending
upon return.

Returns -1 in case of error.
*/
static Py_ssize_t
count_run(MergeState *ms, sortslice *slo, Py_ssize_t nremaining)
{
    Py_ssize_t k; /* used by IFLT macro expansion */
    Py_ssize_t n;
    PyObject ** const lo = slo->keys;

    /* In general, as things go on we've established that the slice starts
       with a monotone run of n elements, starting at lo. */

    /* We're n elements into the slice, and the most recent neq+1 elments are
     * all equal. This reverses them in-place, and resets neq for reuse.
     */
#define REVERSE_LAST_NEQ                        \
    if (neq) {                                  \
        sortslice slice = *slo;                 \
        ++neq;                                  \
        sortslice_advance(&slice, n - neq);     \
        sortslice_reverse(&slice, neq);         \
        neq = 0;                                \
    }

    /* Sticking to only __lt__ compares is confusing and error-prone. But in
     * this routine, almost all uses of IFLT can be captured by tiny macros
     * giving mnemonic names to the intent. Note that inline functions don't
     * work for this (IFLT expands to code including `goto fail`).
     */
#define IF_NEXT_LARGER  IFLT(lo[n-1], lo[n])
#define IF_NEXT_SMALLER IFLT(lo[n], lo[n-1])

    assert(nremaining);
    /* try ascending run first */
    for (n = 1; n < nremaining; ++n) {
        IF_NEXT_SMALLER
            break;
    }
    if (n == nremaining)
        return n;
    /* lo[n] is strictly less */
    /* If n is 1 now, then the first compare established it's a descending
     * run, so fall through to the descending case. But if n > 1, there are
     * n elements in an ascending run terminated by the strictly less lo[n].
     * If the first key < lo[n-1], *somewhere* along the way the sequence
     * increased, so we're done (there is no descending run).
     * Else first key >= lo[n-1], which implies that the entire ascending run
     * consists of equal elements. In that case, this is a descending run,
     * and we reverse the all-equal prefix in-place.
     */
    if (n > 1) {
        IFLT(lo[0], lo[n-1])
            return n;
        sortslice_reverse(slo, n);
    }
    ++n; /* in all cases it's been established that lo[n] has been resolved */

    /* Finish descending run. All-squal subruns are reversed in-place on the
     * fly. Their original order will be restored at the end by the whole-slice
     * reversal.
     */
    Py_ssize_t neq = 0;
    for ( ; n < nremaining; ++n) {
        IF_NEXT_SMALLER {
            /* This ends the most recent run of equal elments, but still in
             * the "descending" direction.
             */
            REVERSE_LAST_NEQ
        }
        else {
            IF_NEXT_LARGER /* descending run is over */
                break;
            else /* not x < y and not y < x implies x == y */
                ++neq;
        }
    }
    REVERSE_LAST_NEQ
    sortslice_reverse(slo, n); /* transform to ascending run */

    /* And after reversing, it's possible this can be extended by a
     * naturally increasing suffix; e.g., [3, 2, 3, 4, 1] makes an
     * ascending run from the first 4 elements.
     */
    for ( ; n < nremaining; ++n) {
        IF_NEXT_SMALLER
            break;
    }

    return n;
fail:
    return -1;

#undef REVERSE_LAST_NEQ
#undef IF_NEXT_SMALLER
#undef IF_NEXT_LARGER
}

/*
Locate the proper position of key in a sorted vector; if the vector contains
an element equal to key, return the position immediately to the left of
the leftmost equal element.  [gallop_right() does the same except returns
the position to the right of the rightmost equal element (if any).]

"a" is a sorted vector with n elements, starting at a[0].  n must be > 0.

"hint" is an index at which to begin the search, 0 <= hint < n.  The closer
hint is to the final result, the faster this runs.

The return value is the int k in 0..n such that

    a[k-1] < key <= a[k]

pretending that *(a-1) is minus infinity and a[n] is plus infinity.  IOW,
key belongs at index k; or, IOW, the first k elements of a should precede
key, and the last n-k should follow key.

Returns -1 on error.  See listsort.txt for info on the method.
*/
static Py_ssize_t
gallop_left(MergeState *ms, PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
{
    Py_ssize_t ofs;
    Py_ssize_t lastofs;
    Py_ssize_t k;

    assert(key && a && n > 0 && hint >= 0 && hint < n);

    a += hint;
    lastofs = 0;
    ofs = 1;
    IFLT(*a, key) {
        /* a[hint] < key -- gallop right, until
         * a[hint + lastofs] < key <= a[hint + ofs]
         */
        const Py_ssize_t maxofs = n - hint;             /* &a[n-1] is highest */
        while (ofs < maxofs) {
            IFLT(a[ofs], key) {
                lastofs = ofs;
                assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2);
                ofs = (ofs << 1) + 1;
            }
            else                /* key <= a[hint + ofs] */
                break;
        }
        if (ofs > maxofs)
            ofs = maxofs;
        /* Translate back to offsets relative to &a[0]. */
        lastofs += hint;
        ofs += hint;
    }
    else {
        /* key <= a[hint] -- gallop left, until
         * a[hint - ofs] < key <= a[hint - lastofs]
         */
        const Py_ssize_t maxofs = hint + 1;             /* &a[0] is lowest */
        while (ofs < maxofs) {
            IFLT(*(a-ofs), key)
                break;
            /* key <= a[hint - ofs] */
            lastofs = ofs;
            assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2);
            ofs = (ofs << 1) + 1;
        }
        if (ofs > maxofs)
            ofs = maxofs;
        /* Translate back to positive offsets relative to &a[0]. */
        k = lastofs;
        lastofs = hint - ofs;
        ofs = hint - k;
    }
    a -= hint;

    assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
    /* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
     * right of lastofs but no farther right than ofs.  Do a binary
     * search, with invariant a[lastofs-1] < key <= a[ofs].
     */
    ++lastofs;
    while (lastofs < ofs) {
        Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);

        IFLT(a[m], key)
            lastofs = m+1;              /* a[m] < key */
        else
            ofs = m;                    /* key <= a[m] */
    }
    assert(lastofs == ofs);             /* so a[ofs-1] < key <= a[ofs] */
    return ofs;

fail:
    return -1;
}

/*
Exactly like gallop_left(), except that if key already exists in a[0:n],
finds the position immediately to the right of the rightmost equal value.

The return value is the int k in 0..n such that

    a[k-1] <= key < a[k]

or -1 if error.

The code duplication is massive, but this is enough different given that
we're sticking to "<" comparisons that it's much harder to follow if
written as one routine with yet another "left or right?" flag.
*/
static Py_ssize_t
gallop_right(MergeState *ms, PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
{
    Py_ssize_t ofs;
    Py_ssize_t lastofs;
    Py_ssize_t k;

    assert(key && a && n > 0 && hint >= 0 && hint < n);

    a += hint;
    lastofs = 0;
    ofs = 1;
    IFLT(key, *a) {
        /* key < a[hint] -- gallop left, until
         * a[hint - ofs] <= key < a[hint - lastofs]
         */
        const Py_ssize_t maxofs = hint + 1;             /* &a[0] is lowest */
        while (ofs < maxofs) {
            IFLT(key, *(a-ofs)) {
                lastofs = ofs;
                assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2);
                ofs = (ofs << 1) + 1;
            }
            else                /* a[hint - ofs] <= key */
                break;
        }
        if (ofs > maxofs)
            ofs = maxofs;
        /* Translate back to positive offsets relative to &a[0]. */
        k = lastofs;
        lastofs = hint - ofs;
        ofs = hint - k;
    }
    else {
        /* a[hint] <= key -- gallop right, until
         * a[hint + lastofs] <= key < a[hint + ofs]
        */
        const Py_ssize_t maxofs = n - hint;             /* &a[n-1] is highest */
        while (ofs < maxofs) {
            IFLT(key, a[ofs])
                break;
            /* a[hint + ofs] <= key */
            lastofs = ofs;
            assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2);
            ofs = (ofs << 1) + 1;
        }
        if (ofs > maxofs)
            ofs = maxofs;
        /* Translate back to offsets relative to &a[0]. */
        lastofs += hint;
        ofs += hint;
    }
    a -= hint;

    assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
    /* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
     * right of lastofs but no farther right than ofs.  Do a binary
     * search, with invariant a[lastofs-1] <= key < a[ofs].
     */
    ++lastofs;
    while (lastofs < ofs) {
        Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);

        IFLT(key, a[m])
            ofs = m;                    /* key < a[m] */
        else
            lastofs = m+1;              /* a[m] <= key */
    }
    assert(lastofs == ofs);             /* so a[ofs-1] <= key < a[ofs] */
    return ofs;

fail:
    return -1;
}

/* Conceptually a MergeState's constructor. */
static void
merge_init(MergeState *ms, Py_ssize_t list_size, int has_keyfunc,
           sortslice *lo)
{
    assert(ms != NULL);
    if (has_keyfunc) {
        /* The temporary space for merging will need at most half the list
         * size rounded up.  Use the minimum possible space so we can use the
         * rest of temparray for other things.  In particular, if there is
         * enough extra space, listsort() will use it to store the keys.
         */
        ms->alloced = (list_size + 1) / 2;

        /* ms->alloced describes how many keys will be stored at
           ms->temparray, but we also need to store the values.  Hence,
           ms->alloced is capped at half of MERGESTATE_TEMP_SIZE. */
        if (MERGESTATE_TEMP_SIZE / 2 < ms->alloced)
            ms->alloced = MERGESTATE_TEMP_SIZE / 2;
        ms->a.values = &ms->temparray[ms->alloced];
    }
    else {
        ms->alloced = MERGESTATE_TEMP_SIZE;
        ms->a.values = NULL;
    }
    ms->a.keys = ms->temparray;
    ms->n = 0;
    ms->min_gallop = MIN_GALLOP;
    ms->listlen = list_size;
    ms->basekeys = lo->keys;
}

/* Free all the temp memory owned by the MergeState.  This must be called
 * when you're done with a MergeState, and may be called before then if
 * you want to free the temp memory early.
 */
static void
merge_freemem(MergeState *ms)
{
    assert(ms != NULL);
    if (ms->a.keys != ms->temparray) {
        PyMem_Free(ms->a.keys);
        ms->a.keys = NULL;
    }
}

/* Ensure enough temp memory for 'need' array slots is available.
 * Returns 0 on success and -1 if the memory can't be gotten.
 */
static int
merge_getmem(MergeState *ms, Py_ssize_t need)
{
    int multiplier;

    assert(ms != NULL);
    if (need <= ms->alloced)
        return 0;

    multiplier = ms->a.values != NULL ? 2 : 1;

    /* Don't realloc!  That can cost cycles to copy the old data, but
     * we don't care what's in the block.
     */
    merge_freemem(ms);
    if ((size_t)need > PY_SSIZE_T_MAX / sizeof(PyObject *) / multiplier) {
        PyErr_NoMemory();
        return -1;
    }
    ms->a.keys = (PyObject **)PyMem_Malloc(multiplier * need
                                          * sizeof(PyObject *));
    if (ms->a.keys != NULL) {
        ms->alloced = need;
        if (ms->a.values != NULL)
            ms->a.values = &ms->a.keys[need];
        return 0;
    }
    PyErr_NoMemory();
    return -1;
}
#define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 :   \
                                merge_getmem(MS, NEED))

/* Merge the na elements starting at ssa with the nb elements starting at
 * ssb.keys = ssa.keys + na in a stable way, in-place.  na and nb must be > 0.
 * Must also have that ssa.keys[na-1] belongs at the end of the merge, and
 * should have na <= nb.  See listsort.txt for more info.  Return 0 if
 * successful, -1 if error.
 */
static Py_ssize_t
merge_lo(MergeState *ms, sortslice ssa, Py_ssize_t na,
         sortslice ssb, Py_ssize_t nb)
{
    Py_ssize_t k;
    sortslice dest;
    int result = -1;            /* guilty until proved innocent */
    Py_ssize_t min_gallop;

    assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0);
    assert(ssa.keys + na == ssb.keys);
    if (MERGE_GETMEM(ms, na) < 0)
        return -1;
    sortslice_memcpy(&ms->a, 0, &ssa, 0, na);
    dest = ssa;
    ssa = ms->a;

    sortslice_copy_incr(&dest, &ssb);
    --nb;
    if (nb == 0)
        goto Succeed;
    if (na == 1)
        goto CopyB;

    min_gallop = ms->min_gallop;
    for (;;) {
        Py_ssize_t acount = 0;          /* # of times A won in a row */
        Py_ssize_t bcount = 0;          /* # of times B won in a row */

        /* Do the straightforward thing until (if ever) one run
         * appears to win consistently.
         */
        for (;;) {
            assert(na > 1 && nb > 0);
            k = ISLT(ssb.keys[0], ssa.keys[0]);
            if (k) {
                if (k < 0)
                    goto Fail;
                sortslice_copy_incr(&dest, &ssb);
                ++bcount;
                acount = 0;
                --nb;
                if (nb == 0)
                    goto Succeed;
                if (bcount >= min_gallop)
                    break;
            }
            else {
                sortslice_copy_incr(&dest, &ssa);
                ++acount;
                bcount = 0;
                --na;
                if (na == 1)
                    goto CopyB;
                if (acount >= min_gallop)
                    break;
            }
        }

        /* One run is winning so consistently that galloping may
         * be a huge win.  So try that, and continue galloping until
         * (if ever) neither run appears to be winning consistently
         * anymore.
         */
        ++min_gallop;
        do {
            assert(na > 1 && nb > 0);
            min_gallop -= min_gallop > 1;
            ms->min_gallop = min_gallop;
            k = gallop_right(ms, ssb.keys[0], ssa.keys, na, 0);
            acount = k;
            if (k) {
                if (k < 0)
                    goto Fail;
                sortslice_memcpy(&dest, 0, &ssa, 0, k);
                sortslice_advance(&dest, k);
                sortslice_advance(&ssa, k);
                na -= k;
                if (na == 1)
                    goto CopyB;
                /* na==0 is impossible now if the comparison
                 * function is consistent, but we can't assume
                 * that it is.
                 */
                if (na == 0)
                    goto Succeed;
            }
            sortslice_copy_incr(&dest, &ssb);
            --nb;
            if (nb == 0)
                goto Succeed;

            k = gallop_left(ms, ssa.keys[0], ssb.keys, nb, 0);
            bcount = k;
            if (k) {
                if (k < 0)
                    goto Fail;
                sortslice_memmove(&dest, 0, &ssb, 0, k);
                sortslice_advance(&dest, k);
                sortslice_advance(&ssb, k);
                nb -= k;
                if (nb == 0)
                    goto Succeed;
            }
            sortslice_copy_incr(&dest, &ssa);
            --na;
            if (na == 1)
                goto CopyB;
        } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
        ++min_gallop;           /* penalize it for leaving galloping mode */
        ms->min_gallop = min_gallop;
    }
Succeed:
    result = 0;
Fail:
    if (na)
        sortslice_memcpy(&dest, 0, &ssa, 0, na);
    return result;
CopyB:
    assert(na == 1 && nb > 0);
    /* The last element of ssa belongs at the end of the merge. */
    sortslice_memmove(&dest, 0, &ssb, 0, nb);
    sortslice_copy(&dest, nb, &ssa, 0);
    return 0;
}

/* Merge the na elements starting at pa with the nb elements starting at
 * ssb.keys = ssa.keys + na in a stable way, in-place.  na and nb must be > 0.
 * Must also have that ssa.keys[na-1] belongs at the end of the merge, and
 * should have na >= nb.  See listsort.txt for more info.  Return 0 if
 * successful, -1 if error.
 */
static Py_ssize_t
merge_hi(MergeState *ms, sortslice ssa, Py_ssize_t na,
         sortslice ssb, Py_ssize_t nb)
{
    Py_ssize_t k;
    sortslice dest, basea, baseb;
    int result = -1;            /* guilty until proved innocent */
    Py_ssize_t min_gallop;

    assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0);
    assert(ssa.keys + na == ssb.keys);
    if (MERGE_GETMEM(ms, nb) < 0)
        return -1;
    dest = ssb;
    sortslice_advance(&dest, nb-1);
    sortslice_memcpy(&ms->a, 0, &ssb, 0, nb);
    basea = ssa;
    baseb = ms->a;
    ssb.keys = ms->a.keys + nb - 1;
    if (ssb.values != NULL)
        ssb.values = ms->a.values + nb - 1;
    sortslice_advance(&ssa, na - 1);

    sortslice_copy_decr(&dest, &ssa);
    --na;
    if (na == 0)
        goto Succeed;
    if (nb == 1)
        goto CopyA;

    min_gallop = ms->min_gallop;
    for (;;) {
        Py_ssize_t acount = 0;          /* # of times A won in a row */
        Py_ssize_t bcount = 0;          /* # of times B won in a row */

        /* Do the straightforward thing until (if ever) one run
         * appears to win consistently.
         */
        for (;;) {
            assert(na > 0 && nb > 1);
            k = ISLT(ssb.keys[0], ssa.keys[0]);
            if (k) {
                if (k < 0)
                    goto Fail;
                sortslice_copy_decr(&dest, &ssa);
                ++acount;
                bcount = 0;
                --na;
                if (na == 0)
                    goto Succeed;
                if (acount >= min_gallop)
                    break;
            }
            else {
                sortslice_copy_decr(&dest, &ssb);
                ++bcount;
                acount = 0;
                --nb;
                if (nb == 1)
                    goto CopyA;
                if (bcount >= min_gallop)
                    break;
            }
        }

        /* One run is winning so consistently that galloping may
         * be a huge win.  So try that, and continue galloping until
         * (if ever) neither run appears to be winning consistently
         * anymore.
         */
        ++min_gallop;
        do {
            assert(na > 0 && nb > 1);
            min_gallop -= min_gallop > 1;
            ms->min_gallop = min_gallop;
            k = gallop_right(ms, ssb.keys[0], basea.keys, na, na-1);
            if (k < 0)
                goto Fail;
            k = na - k;
            acount = k;
            if (k) {
                sortslice_advance(&dest, -k);
                sortslice_advance(&ssa, -k);
                sortslice_memmove(&dest, 1, &ssa, 1, k);
                na -= k;
                if (na == 0)
                    goto Succeed;
            }
            sortslice_copy_decr(&dest, &ssb);
            --nb;
            if (nb == 1)
                goto CopyA;

            k = gallop_left(ms, ssa.keys[0], baseb.keys, nb, nb-1);
            if (k < 0)
                goto Fail;
            k = nb - k;
            bcount = k;
            if (k) {
                sortslice_advance(&dest, -k);
                sortslice_advance(&ssb, -k);
                sortslice_memcpy(&dest, 1, &ssb, 1, k);
                nb -= k;
                if (nb == 1)
                    goto CopyA;
                /* nb==0 is impossible now if the comparison
                 * function is consistent, but we can't assume
                 * that it is.
                 */
                if (nb == 0)
                    goto Succeed;
            }
            sortslice_copy_decr(&dest, &ssa);
            --na;
            if (na == 0)
                goto Succeed;
        } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
        ++min_gallop;           /* penalize it for leaving galloping mode */
        ms->min_gallop = min_gallop;
    }
Succeed:
    result = 0;
Fail:
    if (nb)
        sortslice_memcpy(&dest, -(nb-1), &baseb, 0, nb);
    return result;
CopyA:
    assert(nb == 1 && na > 0);
    /* The first element of ssb belongs at the front of the merge. */
    sortslice_memmove(&dest, 1-na, &ssa, 1-na, na);
    sortslice_advance(&dest, -na);
    sortslice_advance(&ssa, -na);
    sortslice_copy(&dest, 0, &ssb, 0);
    return 0;
}

/* Merge the two runs at stack indices i and i+1.
 * Returns 0 on success, -1 on error.
 */
static Py_ssize_t
merge_at(MergeState *ms, Py_ssize_t i)
{
    sortslice ssa, ssb;
    Py_ssize_t na, nb;
    Py_ssize_t k;

    assert(ms != NULL);
    assert(ms->n >= 2);
    assert(i >= 0);
    assert(i == ms->n - 2 || i == ms->n - 3);

    ssa = ms->pending[i].base;
    na = ms->pending[i].len;
    ssb = ms->pending[i+1].base;
    nb = ms->pending[i+1].len;
    assert(na > 0 && nb > 0);
    assert(ssa.keys + na == ssb.keys);

    /* Record the length of the combined runs; if i is the 3rd-last
     * run now, also slide over the last run (which isn't involved
     * in this merge).  The current run i+1 goes away in any case.
     */
    ms->pending[i].len = na + nb;
    if (i == ms->n - 3)
        ms->pending[i+1] = ms->pending[i+2];
    --ms->n;

    /* Where does b start in a?  Elements in a before that can be
     * ignored (already in place).
     */
    k = gallop_right(ms, *ssb.keys, ssa.keys, na, 0);
    if (k < 0)
        return -1;
    sortslice_advance(&ssa, k);
    na -= k;
    if (na == 0)
        return 0;

    /* Where does a end in b?  Elements in b after that can be
     * ignored (already in place).
     */
    nb = gallop_left(ms, ssa.keys[na-1], ssb.keys, nb, nb-1);
    if (nb <= 0)
        return nb;

    /* Merge what remains of the runs, using a temp array with
     * min(na, nb) elements.
     */
    if (na <= nb)
        return merge_lo(ms, ssa, na, ssb, nb);
    else
        return merge_hi(ms, ssa, na, ssb, nb);
}

/* Two adjacent runs begin at index s1. The first run has length n1, and
 * the second run (starting at index s1+n1) has length n2. The list has total
 * length n.
 * Compute the "power" of the first run. See listsort.txt for details.
 */
static int
powerloop(Py_ssize_t s1, Py_ssize_t n1, Py_ssize_t n2, Py_ssize_t n)
{
    int result = 0;
    assert(s1 >= 0);
    assert(n1 > 0 && n2 > 0);
    assert(s1 + n1 + n2 <= n);
    /* midpoints a and b:
     * a = s1 + n1/2
     * b = s1 + n1 + n2/2 = a + (n1 + n2)/2
     *
     * Those may not be integers, though, because of the "/2". So we work with
     * 2*a and 2*b instead, which are necessarily integers. It makes no
     * difference to the outcome, since the bits in the expansion of (2*i)/n
     * are merely shifted one position from those of i/n.
     */
    Py_ssize_t a = 2 * s1 + n1;  /* 2*a */
    Py_ssize_t b = a + n1 + n2;  /* 2*b */
    /* Emulate a/n and b/n one bit a time, until bits differ. */
    for (;;) {
        ++result;
        if (a >= n) {  /* both quotient bits are 1 */
            assert(b >= a);
            a -= n;
            b -= n;
        }
        else if (b >= n) {  /* a/n bit is 0, b/n bit is 1 */
            break;
        } /* else both quotient bits are 0 */
        assert(a < b && b < n);
        a <<= 1;
        b <<= 1;
    }
    return result;
}

/* The next run has been identified, of length n2.
 * If there's already a run on the stack, apply the "powersort" merge strategy:
 * compute the topmost run's "power" (depth in a conceptual binary merge tree)
 * and merge adjacent runs on the stack with greater power. See listsort.txt
 * for more info.
 *
 * It's the caller's responsibility to push the new run on the stack when this
 * returns.
 *
 * Returns 0 on success, -1 on error.
 */
static int
found_new_run(MergeState *ms, Py_ssize_t n2)
{
    assert(ms);
    if (ms->n) {
        assert(ms->n > 0);
        struct s_slice *p = ms->pending;
        Py_ssize_t s1 = p[ms->n - 1].base.keys - ms->basekeys; /* start index */
        Py_ssize_t n1 = p[ms->n - 1].len;
        int power = powerloop(s1, n1, n2, ms->listlen);
        while (ms->n > 1 && p[ms->n - 2].power > power) {
            if (merge_at(ms, ms->n - 2) < 0)
                return -1;
        }
        assert(ms->n < 2 || p[ms->n - 2].power < power);
        p[ms->n - 1].power = power;
    }
    return 0;
}

/* Regardless of invariants, merge all runs on the stack until only one
 * remains.  This is used at the end of the mergesort.
 *
 * Returns 0 on success, -1 on error.
 */
static int
merge_force_collapse(MergeState *ms)
{
    struct s_slice *p = ms->pending;

    assert(ms);
    while (ms->n > 1) {
        Py_ssize_t n = ms->n - 2;
        if (n > 0 && p[n-1].len < p[n+1].len)
            --n;
        if (merge_at(ms, n) < 0)
            return -1;
    }
    return 0;
}

/* Compute a good value for the minimum run length; natural runs shorter
 * than this are boosted artificially via binary insertion.
 *
 * If n < MAX_MINRUN return n (it's too small to bother with fancy stuff).
 * Else if n is an exact power of 2, return MAX_MINRUN / 2.
 * Else return an int k, MAX_MINRUN / 2 <= k <= MAX_MINRUN, such that n/k is
 * close to, but strictly less than, an exact power of 2.
 *
 * See listsort.txt for more info.
 */
static Py_ssize_t
merge_compute_minrun(Py_ssize_t n)
{
    Py_ssize_t r = 0;           /* becomes 1 if any 1 bits are shifted off */

    assert(n >= 0);
    while (n >= MAX_MINRUN) {
        r |= n & 1;
        n >>= 1;
    }
    return n + r;
}

/* Here we define custom comparison functions to optimize for the cases one commonly
 * encounters in practice: homogeneous lists, often of one of the basic types. */

/* This struct holds the comparison function and helper functions
 * selected in the pre-sort check. */

/* These are the special case compare functions.
 * ms->key_compare will always point to one of these: */

/* Heterogeneous compare: default, always safe to fall back on. */
static int
safe_object_compare(PyObject *v, PyObject *w, MergeState *ms)
{
    /* No assumptions necessary! */
    return PyObject_RichCompareBool(v, w, Py_LT);
}

/* Homogeneous compare: safe for any two comparable objects of the same type.
 * (ms->key_richcompare is set to ob_type->tp_richcompare in the
 *  pre-sort check.)
 */
static int
unsafe_object_compare(PyObject *v, PyObject *w, MergeState *ms)
{
    PyObject *res_obj; int res;

    /* No assumptions, because we check first: */
    if (Py_TYPE(v)->tp_richcompare != ms->key_richcompare)
        return PyObject_RichCompareBool(v, w, Py_LT);

    assert(ms->key_richcompare != NULL);
    res_obj = (*(ms->key_richcompare))(v, w, Py_LT);

    if (res_obj == Py_NotImplemented) {
        Py_DECREF(res_obj);
        return PyObject_RichCompareBool(v, w, Py_LT);
    }
    if (res_obj == NULL)
        return -1;

    if (PyBool_Check(res_obj)) {
        res = (res_obj == Py_True);
    }
    else {
        res = PyObject_IsTrue(res_obj);
    }
    Py_DECREF(res_obj);

    /* Note that we can't assert
     *     res == PyObject_RichCompareBool(v, w, Py_LT);
     * because of evil compare functions like this:
     *     lambda a, b:  int(random.random() * 3) - 1)
     * (which is actually in test_sort.py) */
    return res;
}

/* Latin string compare: safe for any two latin (one byte per char) strings. */
static int
unsafe_latin_compare(PyObject *v, PyObject *w, MergeState *ms)
{
    Py_ssize_t len;
    int res;

    /* Modified from Objects/unicodeobject.c:unicode_compare, assuming: */
    assert(Py_IS_TYPE(v, &PyUnicode_Type));
    assert(Py_IS_TYPE(w, &PyUnicode_Type));
    assert(PyUnicode_KIND(v) == PyUnicode_KIND(w));
    assert(PyUnicode_KIND(v) == PyUnicode_1BYTE_KIND);

    len = Py_MIN(PyUnicode_GET_LENGTH(v), PyUnicode_GET_LENGTH(w));
    res = memcmp(PyUnicode_DATA(v), PyUnicode_DATA(w), len);

    res = (res != 0 ?
           res < 0 :
           PyUnicode_GET_LENGTH(v) < PyUnicode_GET_LENGTH(w));

    assert(res == PyObject_RichCompareBool(v, w, Py_LT));;
    return res;
}

/* Bounded int compare: compare any two longs that fit in a single machine word. */
static int
unsafe_long_compare(PyObject *v, PyObject *w, MergeState *ms)
{
    PyLongObject *vl, *wl;
    intptr_t v0, w0;
    int res;

    /* Modified from Objects/longobject.c:long_compare, assuming: */
    assert(Py_IS_TYPE(v, &PyLong_Type));
    assert(Py_IS_TYPE(w, &PyLong_Type));
    assert(_PyLong_IsCompact((PyLongObject *)v));
    assert(_PyLong_IsCompact((PyLongObject *)w));

    vl = (PyLongObject*)v;
    wl = (PyLongObject*)w;

    v0 = _PyLong_CompactValue(vl);
    w0 = _PyLong_CompactValue(wl);

    res = v0 < w0;
    assert(res == PyObject_RichCompareBool(v, w, Py_LT));
    return res;
}

/* Float compare: compare any two floats. */
static int
unsafe_float_compare(PyObject *v, PyObject *w, MergeState *ms)
{
    int res;

    /* Modified from Objects/floatobject.c:float_richcompare, assuming: */
    assert(Py_IS_TYPE(v, &PyFloat_Type));
    assert(Py_IS_TYPE(w, &PyFloat_Type));

    res = PyFloat_AS_DOUBLE(v) < PyFloat_AS_DOUBLE(w);
    assert(res == PyObject_RichCompareBool(v, w, Py_LT));
    return res;
}

/* Tuple compare: compare *any* two tuples, using
 * ms->tuple_elem_compare to compare the first elements, which is set
 * using the same pre-sort check as we use for ms->key_compare,
 * but run on the list [x[0] for x in L]. This allows us to optimize compares
 * on two levels (as long as [x[0] for x in L] is type-homogeneous.) The idea is
 * that most tuple compares don't involve x[1:]. */
static int
unsafe_tuple_compare(PyObject *v, PyObject *w, MergeState *ms)
{
    PyTupleObject *vt, *wt;
    Py_ssize_t i, vlen, wlen;
    int k;

    /* Modified from Objects/tupleobject.c:tuplerichcompare, assuming: */
    assert(Py_IS_TYPE(v, &PyTuple_Type));
    assert(Py_IS_TYPE(w, &PyTuple_Type));
    assert(Py_SIZE(v) > 0);
    assert(Py_SIZE(w) > 0);

    vt = (PyTupleObject *)v;
    wt = (PyTupleObject *)w;

    vlen = Py_SIZE(vt);
    wlen = Py_SIZE(wt);

    for (i = 0; i < vlen && i < wlen; i++) {
        k = PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_EQ);
        if (k < 0)
            return -1;
        if (!k)
            break;
    }

    if (i >= vlen || i >= wlen)
        return vlen < wlen;

    if (i == 0)
        return ms->tuple_elem_compare(vt->ob_item[i], wt->ob_item[i], ms);
    else
        return PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_LT);
}

/* An adaptive, stable, natural mergesort.  See listsort.txt.
 * Returns Py_None on success, NULL on error.  Even in case of error, the
 * list will be some permutation of its input state (nothing is lost or
 * duplicated).
 */
/*[clinic input]
@critical_section
list.sort

    *
    key as keyfunc: object = None
    reverse: bool = False

Sort the list in ascending order and return None.

The sort is in-place (i.e. the list itself is modified) and stable (i.e. the
order of two equal elements is maintained).

If a key function is given, apply it once to each list item and sort them,
ascending or descending, according to their function values.

The reverse flag can be set to sort in descending order.
[clinic start generated code]*/

static PyObject *
list_sort_impl(PyListObject *self, PyObject *keyfunc, int reverse)
/*[clinic end generated code: output=57b9f9c5e23fbe42 input=667bf25d0e3a3676]*/
{
    MergeState ms;
    Py_ssize_t nremaining;
    Py_ssize_t minrun;
    sortslice lo;
    Py_ssize_t saved_ob_size, saved_allocated;
    PyObject **saved_ob_item;
    PyObject **final_ob_item;
    PyObject *result = NULL;            /* guilty until proved innocent */
    Py_ssize_t i;
    PyObject **keys;

    assert(self != NULL);
    assert(PyList_Check(self));
    if (keyfunc == Py_None)
        keyfunc = NULL;

    /* The list is temporarily made empty, so that mutations performed
     * by comparison functions can't affect the slice of memory we're
     * sorting (allowing mutations during sorting is a core-dump
     * factory, since ob_item may change).
     */
    saved_ob_size = Py_SIZE(self);
    saved_ob_item = self->ob_item;
    saved_allocated = self->allocated;
    Py_SET_SIZE(self, 0);
    FT_ATOMIC_STORE_PTR_RELEASE(self->ob_item, NULL);
    self->allocated = -1; /* any operation will reset it to >= 0 */

    if (keyfunc == NULL) {
        keys = NULL;
        lo.keys = saved_ob_item;
        lo.values = NULL;
    }
    else {
        if (saved_ob_size < MERGESTATE_TEMP_SIZE/2)
            /* Leverage stack space we allocated but won't otherwise use */
            keys = &ms.temparray[saved_ob_size+1];
        else {
            keys = PyMem_Malloc(sizeof(PyObject *) * saved_ob_size);
            if (keys == NULL) {
                PyErr_NoMemory();
                goto keyfunc_fail;
            }
        }

        for (i = 0; i < saved_ob_size ; i++) {
            keys[i] = PyObject_CallOneArg(keyfunc, saved_ob_item[i]);
            if (keys[i] == NULL) {
                for (i=i-1 ; i>=0 ; i--)
                    Py_DECREF(keys[i]);
                if (saved_ob_size >= MERGESTATE_TEMP_SIZE/2)
                    PyMem_Free(keys);
                goto keyfunc_fail;
            }
        }

        lo.keys = keys;
        lo.values = saved_ob_item;
    }


    /* The pre-sort check: here's where we decide which compare function to use.
     * How much optimization is safe? We test for homogeneity with respect to
     * several properties that are expensive to check at compare-time, and
     * set ms appropriately. */
    if (saved_ob_size > 1) {
        /* Assume the first element is representative of the whole list. */
        int keys_are_in_tuples = (Py_IS_TYPE(lo.keys[0], &PyTuple_Type) &&
                                  Py_SIZE(lo.keys[0]) > 0);

        PyTypeObject* key_type = (keys_are_in_tuples ?
                                  Py_TYPE(PyTuple_GET_ITEM(lo.keys[0], 0)) :
                                  Py_TYPE(lo.keys[0]));

        int keys_are_all_same_type = 1;
        int strings_are_latin = 1;
        int ints_are_bounded = 1;

        /* Prove that assumption by checking every key. */
        for (i=0; i < saved_ob_size; i++) {

            if (keys_are_in_tuples &&
                !(Py_IS_TYPE(lo.keys[i], &PyTuple_Type) && Py_SIZE(lo.keys[i]) != 0)) {
                keys_are_in_tuples = 0;
                keys_are_all_same_type = 0;
                break;
            }

            /* Note: for lists of tuples, key is the first element of the tuple
             * lo.keys[i], not lo.keys[i] itself! We verify type-homogeneity
             * for lists of tuples in the if-statement directly above. */
            PyObject *key = (keys_are_in_tuples ?
                             PyTuple_GET_ITEM(lo.keys[i], 0) :
                             lo.keys[i]);

            if (!Py_IS_TYPE(key, key_type)) {
                keys_are_all_same_type = 0;
                /* If keys are in tuple we must loop over the whole list to make
                   sure all items are tuples */
                if (!keys_are_in_tuples) {
                    break;
                }
            }

            if (keys_are_all_same_type) {
                if (key_type == &PyLong_Type &&
                    ints_are_bounded &&
                    !_PyLong_IsCompact((PyLongObject *)key)) {

                    ints_are_bounded = 0;
                }
                else if (key_type == &PyUnicode_Type &&
                         strings_are_latin &&
                         PyUnicode_KIND(key) != PyUnicode_1BYTE_KIND) {

                        strings_are_latin = 0;
                    }
                }
            }

        /* Choose the best compare, given what we now know about the keys. */
        if (keys_are_all_same_type) {

            if (key_type == &PyUnicode_Type && strings_are_latin) {
                ms.key_compare = unsafe_latin_compare;
            }
            else if (key_type == &PyLong_Type && ints_are_bounded) {
                ms.key_compare = unsafe_long_compare;
            }
            else if (key_type == &PyFloat_Type) {
                ms.key_compare = unsafe_float_compare;
            }
            else if ((ms.key_richcompare = key_type->tp_richcompare) != NULL) {
                ms.key_compare = unsafe_object_compare;
            }
            else {
                ms.key_compare = safe_object_compare;
            }
        }
        else {
            ms.key_compare = safe_object_compare;
        }

        if (keys_are_in_tuples) {
            /* Make sure we're not dealing with tuples of tuples
             * (remember: here, key_type refers list [key[0] for key in keys]) */
            if (key_type == &PyTuple_Type) {
                ms.tuple_elem_compare = safe_object_compare;
            }
            else {
                ms.tuple_elem_compare = ms.key_compare;
            }

            ms.key_compare = unsafe_tuple_compare;
        }
    }
    /* End of pre-sort check: ms is now set properly! */

    merge_init(&ms, saved_ob_size, keys != NULL, &lo);

    nremaining = saved_ob_size;
    if (nremaining < 2)
        goto succeed;

    /* Reverse sort stability achieved by initially reversing the list,
    applying a stable forward sort, then reversing the final result. */
    if (reverse) {
        if (keys != NULL)
            reverse_slice(&keys[0], &keys[saved_ob_size]);
        reverse_slice(&saved_ob_item[0], &saved_ob_item[saved_ob_size]);
    }

    /* March over the array once, left to right, finding natural runs,
     * and extending short natural runs to minrun elements.
     */
    minrun = merge_compute_minrun(nremaining);
    do {
        Py_ssize_t n;

        /* Identify next run. */
        n = count_run(&ms, &lo, nremaining);
        if (n < 0)
            goto fail;
        /* If short, extend to min(minrun, nremaining). */
        if (n < minrun) {
            const Py_ssize_t force = nremaining <= minrun ?
                              nremaining : minrun;
            if (binarysort(&ms, &lo, force, n) < 0)
                goto fail;
            n = force;
        }
        /* Maybe merge pending runs. */
        assert(ms.n == 0 || ms.pending[ms.n -1].base.keys +
                            ms.pending[ms.n-1].len == lo.keys);
        if (found_new_run(&ms, n) < 0)
            goto fail;
        /* Push new run on stack. */
        assert(ms.n < MAX_MERGE_PENDING);
        ms.pending[ms.n].base = lo;
        ms.pending[ms.n].len = n;
        ++ms.n;
        /* Advance to find next run. */
        sortslice_advance(&lo, n);
        nremaining -= n;
    } while (nremaining);

    if (merge_force_collapse(&ms) < 0)
        goto fail;
    assert(ms.n == 1);
    assert(keys == NULL
           ? ms.pending[0].base.keys == saved_ob_item
           : ms.pending[0].base.keys == &keys[0]);
    assert(ms.pending[0].len == saved_ob_size);
    lo = ms.pending[0].base;

succeed:
    result = Py_None;
fail:
    if (keys != NULL) {
        for (i = 0; i < saved_ob_size; i++)
            Py_DECREF(keys[i]);
        if (saved_ob_size >= MERGESTATE_TEMP_SIZE/2)
            PyMem_Free(keys);
    }

    if (self->allocated != -1 && result != NULL) {
        /* The user mucked with the list during the sort,
         * and we don't already have another error to report.
         */
        PyErr_SetString(PyExc_ValueError, "list modified during sort");
        result = NULL;
    }

    if (reverse && saved_ob_size > 1)
        reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size);

    merge_freemem(&ms);

keyfunc_fail:
    final_ob_item = self->ob_item;
    i = Py_SIZE(self);
    Py_SET_SIZE(self, saved_ob_size);
    FT_ATOMIC_STORE_PTR_RELEASE(self->ob_item, saved_ob_item);
    FT_ATOMIC_STORE_SSIZE_RELAXED(self->allocated, saved_allocated);
    if (final_ob_item != NULL) {
        /* we cannot use list_clear() for this because it does not
           guarantee that the list is really empty when it returns */
        while (--i >= 0) {
            Py_XDECREF(final_ob_item[i]);
        }
#ifdef Py_GIL_DISABLED
        bool use_qsbr = _PyObject_GC_IS_SHARED(self);
#else
        bool use_qsbr = false;
#endif
        free_list_items(final_ob_item, use_qsbr);
    }
    return Py_XNewRef(result);
}
#undef IFLT
#undef ISLT

int
PyList_Sort(PyObject *v)
{
    if (v == NULL || !PyList_Check(v)) {
        PyErr_BadInternalCall();
        return -1;
    }
    Py_BEGIN_CRITICAL_SECTION(v);
    v = list_sort_impl((PyListObject *)v, NULL, 0);
    Py_END_CRITICAL_SECTION();
    if (v == NULL)
        return -1;
    Py_DECREF(v);
    return 0;
}

/*[clinic input]
@critical_section
list.reverse

Reverse *IN PLACE*.
[clinic start generated code]*/

static PyObject *
list_reverse_impl(PyListObject *self)
/*[clinic end generated code: output=482544fc451abea9 input=04ac8e0c6a66e4d9]*/
{
    if (Py_SIZE(self) > 1)
        reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self));
    Py_RETURN_NONE;
}

int
PyList_Reverse(PyObject *v)
{
    PyListObject *self = (PyListObject *)v;

    if (v == NULL || !PyList_Check(v)) {
        PyErr_BadInternalCall();
        return -1;
    }
    Py_BEGIN_CRITICAL_SECTION(self);
    if (Py_SIZE(self) > 1) {
        reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self));
    }
    Py_END_CRITICAL_SECTION()
    return 0;
}

PyObject *
PyList_AsTuple(PyObject *v)
{
    if (v == NULL || !PyList_Check(v)) {
        PyErr_BadInternalCall();
        return NULL;
    }
    PyObject *ret;
    PyListObject *self = (PyListObject *)v;
    Py_BEGIN_CRITICAL_SECTION(self);
    ret = _PyTuple_FromArray(self->ob_item, Py_SIZE(v));
    Py_END_CRITICAL_SECTION();
    return ret;
}

PyObject *
_PyList_FromArraySteal(PyObject *const *src, Py_ssize_t n)
{
    if (n == 0) {
        return PyList_New(0);
    }

    PyListObject *list = (PyListObject *)PyList_New(n);
    if (list == NULL) {
        for (Py_ssize_t i = 0; i < n; i++) {
            Py_DECREF(src[i]);
        }
        return NULL;
    }

    PyObject **dst = list->ob_item;
    memcpy(dst, src, n * sizeof(PyObject *));

    return (PyObject *)list;
}

/*[clinic input]
list.index

    value: object
    start: slice_index(accept={int}) = 0
    stop: slice_index(accept={int}, c_default="PY_SSIZE_T_MAX") = sys.maxsize
    /

Return first index of value.

Raises ValueError if the value is not present.
[clinic start generated code]*/

static PyObject *
list_index_impl(PyListObject *self, PyObject *value, Py_ssize_t start,
                Py_ssize_t stop)
/*[clinic end generated code: output=ec51b88787e4e481 input=40ec5826303a0eb1]*/
{
    if (start < 0) {
        start += Py_SIZE(self);
        if (start < 0)
            start = 0;
    }
    if (stop < 0) {
        stop += Py_SIZE(self);
        if (stop < 0)
            stop = 0;
    }
    for (Py_ssize_t i = start; i < stop; i++) {
        PyObject *obj = list_get_item_ref(self, i);
        if (obj == NULL) {
            // out-of-bounds
            break;
        }
        int cmp = PyObject_RichCompareBool(obj, value, Py_EQ);
        Py_DECREF(obj);
        if (cmp > 0)
            return PyLong_FromSsize_t(i);
        else if (cmp < 0)
            return NULL;
    }
    PyErr_Format(PyExc_ValueError, "%R is not in list", value);
    return NULL;
}

/*[clinic input]
list.count

     value: object
     /

Return number of occurrences of value.
[clinic start generated code]*/

static PyObject *
list_count(PyListObject *self, PyObject *value)
/*[clinic end generated code: output=b1f5d284205ae714 input=3bdc3a5e6f749565]*/
{
    Py_ssize_t count = 0;
    for (Py_ssize_t i = 0; ; i++) {
        PyObject *obj = list_get_item_ref(self, i);
        if (obj == NULL) {
            // out-of-bounds
            break;
        }
        if (obj == value) {
           count++;
           Py_DECREF(obj);
           continue;
        }
        int cmp = PyObject_RichCompareBool(obj, value, Py_EQ);
        Py_DECREF(obj);
        if (cmp > 0)
            count++;
        else if (cmp < 0)
            return NULL;
    }
    return PyLong_FromSsize_t(count);
}

/*[clinic input]
@critical_section
list.remove

     value: object
     /

Remove first occurrence of value.

Raises ValueError if the value is not present.
[clinic start generated code]*/

static PyObject *
list_remove_impl(PyListObject *self, PyObject *value)
/*[clinic end generated code: output=b9b76a6633b18778 input=26c813dbb95aa93b]*/
{
    Py_ssize_t i;

    for (i = 0; i < Py_SIZE(self); i++) {
        PyObject *obj = self->ob_item[i];
        Py_INCREF(obj);
        int cmp = PyObject_RichCompareBool(obj, value, Py_EQ);
        Py_DECREF(obj);
        if (cmp > 0) {
            if (list_ass_slice_lock_held(self, i, i+1, NULL) == 0)
                Py_RETURN_NONE;
            return NULL;
        }
        else if (cmp < 0)
            return NULL;
    }
    PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
    return NULL;
}

static int
list_traverse(PyObject *self, visitproc visit, void *arg)
{
    PyListObject *o = (PyListObject *)self;
    Py_ssize_t i;

    for (i = Py_SIZE(o); --i >= 0; )
        Py_VISIT(o->ob_item[i]);
    return 0;
}

static PyObject *
list_richcompare_impl(PyObject *v, PyObject *w, int op)
{
    PyListObject *vl, *wl;
    Py_ssize_t i;

    if (!PyList_Check(v) || !PyList_Check(w))
        Py_RETURN_NOTIMPLEMENTED;

    vl = (PyListObject *)v;
    wl = (PyListObject *)w;

    if (Py_SIZE(vl) != Py_SIZE(wl) && (op == Py_EQ || op == Py_NE)) {
        /* Shortcut: if the lengths differ, the lists differ */
        if (op == Py_EQ)
            Py_RETURN_FALSE;
        else
            Py_RETURN_TRUE;
    }

    /* Search for the first index where items are different */
    for (i = 0; i < Py_SIZE(vl) && i < Py_SIZE(wl); i++) {
        PyObject *vitem = vl->ob_item[i];
        PyObject *witem = wl->ob_item[i];
        if (vitem == witem) {
            continue;
        }

        Py_INCREF(vitem);
        Py_INCREF(witem);
        int k = PyObject_RichCompareBool(vitem, witem, Py_EQ);
        Py_DECREF(vitem);
        Py_DECREF(witem);
        if (k < 0)
            return NULL;
        if (!k)
            break;
    }

    if (i >= Py_SIZE(vl) || i >= Py_SIZE(wl)) {
        /* No more items to compare -- compare sizes */
        Py_RETURN_RICHCOMPARE(Py_SIZE(vl), Py_SIZE(wl), op);
    }

    /* We have an item that differs -- shortcuts for EQ/NE */
    if (op == Py_EQ) {
        Py_RETURN_FALSE;
    }
    if (op == Py_NE) {
        Py_RETURN_TRUE;
    }

    /* Compare the final item again using the proper operator */
    PyObject *vitem = vl->ob_item[i];
    PyObject *witem = wl->ob_item[i];
    Py_INCREF(vitem);
    Py_INCREF(witem);
    PyObject *result = PyObject_RichCompare(vl->ob_item[i], wl->ob_item[i], op);
    Py_DECREF(vitem);
    Py_DECREF(witem);
    return result;
}

static PyObject *
list_richcompare(PyObject *v, PyObject *w, int op)
{
    PyObject *ret;
    Py_BEGIN_CRITICAL_SECTION2(v, w);
    ret = list_richcompare_impl(v, w, op);
    Py_END_CRITICAL_SECTION2()
    return ret;
}

/*[clinic input]
list.__init__

    iterable: object(c_default="NULL") = ()
    /

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.
[clinic start generated code]*/

static int
list___init___impl(PyListObject *self, PyObject *iterable)
/*[clinic end generated code: output=0f3c21379d01de48 input=b3f3fe7206af8f6b]*/
{
    /* Verify list invariants established by PyType_GenericAlloc() */
    assert(0 <= Py_SIZE(self));
    assert(Py_SIZE(self) <= self->allocated || self->allocated == -1);
    assert(self->ob_item != NULL ||
           self->allocated == 0 || self->allocated == -1);

    /* Empty previous contents */
    if (self->ob_item != NULL) {
        list_clear(self);
    }
    if (iterable != NULL) {
        if (_list_extend(self, iterable) < 0) {
            return -1;
        }
    }
    return 0;
}

static PyObject *
list_vectorcall(PyObject *type, PyObject * const*args,
                size_t nargsf, PyObject *kwnames)
{
    if (!_PyArg_NoKwnames("list", kwnames)) {
        return NULL;
    }
    Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
    if (!_PyArg_CheckPositional("list", nargs, 0, 1)) {
        return NULL;
    }

    PyObject *list = PyType_GenericAlloc(_PyType_CAST(type), 0);
    if (list == NULL) {
        return NULL;
    }
    if (nargs) {
        if (list___init___impl((PyListObject *)list, args[0])) {
            Py_DECREF(list);
            return NULL;
        }
    }
    return list;
}


/*[clinic input]
list.__sizeof__

Return the size of the list in memory, in bytes.
[clinic start generated code]*/

static PyObject *
list___sizeof___impl(PyListObject *self)
/*[clinic end generated code: output=3417541f95f9a53e input=b8030a5d5ce8a187]*/
{
    size_t res = _PyObject_SIZE(Py_TYPE(self));
    Py_ssize_t allocated = FT_ATOMIC_LOAD_SSIZE_RELAXED(self->allocated);
    res += (size_t)allocated * sizeof(void*);
    return PyLong_FromSize_t(res);
}

static PyObject *list_iter(PyObject *seq);
static PyObject *list_subscript(PyObject*, PyObject*);

static PyMethodDef list_methods[] = {
    {"__getitem__", list_subscript, METH_O|METH_COEXIST,
     PyDoc_STR("__getitem__($self, index, /)\n--\n\nReturn self[index].")},
    LIST___REVERSED___METHODDEF
    LIST___SIZEOF___METHODDEF
    PY_LIST_CLEAR_METHODDEF
    LIST_COPY_METHODDEF
    LIST_APPEND_METHODDEF
    LIST_INSERT_METHODDEF
    LIST_EXTEND_METHODDEF
    LIST_POP_METHODDEF
    LIST_REMOVE_METHODDEF
    LIST_INDEX_METHODDEF
    LIST_COUNT_METHODDEF
    LIST_REVERSE_METHODDEF
    LIST_SORT_METHODDEF
    {"__class_getitem__", Py_GenericAlias, METH_O|METH_CLASS, PyDoc_STR("See PEP 585")},
    {NULL,              NULL}           /* sentinel */
};

static PySequenceMethods list_as_sequence = {
    list_length,                                /* sq_length */
    list_concat,                                /* sq_concat */
    list_repeat,                                /* sq_repeat */
    list_item,                                  /* sq_item */
    0,                                          /* sq_slice */
    list_ass_item,                              /* sq_ass_item */
    0,                                          /* sq_ass_slice */
    list_contains,                              /* sq_contains */
    list_inplace_concat,                        /* sq_inplace_concat */
    list_inplace_repeat,                        /* sq_inplace_repeat */
};

static inline PyObject *
list_slice_step_lock_held(PyListObject *a, Py_ssize_t start, Py_ssize_t step, Py_ssize_t len)
{
    PyListObject *np = (PyListObject *)list_new_prealloc(len);
    if (np == NULL) {
        return NULL;
    }
    size_t cur;
    Py_ssize_t i;
    PyObject **src = a->ob_item;
    PyObject **dest = np->ob_item;
    for (cur = start, i = 0; i < len;
            cur += (size_t)step, i++) {
        PyObject *v = src[cur];
        dest[i] = Py_NewRef(v);
    }
    Py_SET_SIZE(np, len);
    return (PyObject *)np;
}

static PyObject *
list_slice_wrap(PyListObject *aa, Py_ssize_t start, Py_ssize_t stop, Py_ssize_t step)
{
    PyObject *res = NULL;
    Py_BEGIN_CRITICAL_SECTION(aa);
    Py_ssize_t len = PySlice_AdjustIndices(Py_SIZE(aa), &start, &stop, step);
    if (len <= 0) {
        res = PyList_New(0);
    }
    else if (step == 1) {
        res = list_slice_lock_held(aa, start, stop);
    }
    else {
        res = list_slice_step_lock_held(aa, start, step, len);
    }
    Py_END_CRITICAL_SECTION();
    return res;
}

static PyObject *
list_subscript(PyObject* _self, PyObject* item)
{
    PyListObject* self = (PyListObject*)_self;
    if (_PyIndex_Check(item)) {
        Py_ssize_t i;
        i = PyNumber_AsSsize_t(item, PyExc_IndexError);
        if (i == -1 && PyErr_Occurred())
            return NULL;
        if (i < 0)
            i += PyList_GET_SIZE(self);
        return list_item((PyObject *)self, i);
    }
    else if (PySlice_Check(item)) {
        Py_ssize_t start, stop, step;
        if (PySlice_Unpack(item, &start, &stop, &step) < 0) {
            return NULL;
        }
        return list_slice_wrap(self, start, stop, step);
    }
    else {
        PyErr_Format(PyExc_TypeError,
                     "list indices must be integers or slices, not %.200s",
                     Py_TYPE(item)->tp_name);
        return NULL;
    }
}

static Py_ssize_t
adjust_slice_indexes(PyListObject *lst,
                     Py_ssize_t *start, Py_ssize_t *stop,
                     Py_ssize_t step)
{
    Py_ssize_t slicelength = PySlice_AdjustIndices(Py_SIZE(lst), start, stop,
                                                   step);

    /* Make sure s[5:2] = [..] inserts at the right place:
        before 5, not before 2. */
    if ((step < 0 && *start < *stop) ||
        (step > 0 && *start > *stop))
        *stop = *start;

    return slicelength;
}

static int
list_ass_subscript(PyObject* _self, PyObject* item, PyObject* value)
{
    PyListObject *self = (PyListObject *)_self;
    if (_PyIndex_Check(item)) {
        Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
        if (i == -1 && PyErr_Occurred())
            return -1;
        if (i < 0)
            i += PyList_GET_SIZE(self);
        return list_ass_item((PyObject *)self, i, value);
    }
    else if (PySlice_Check(item)) {
        Py_ssize_t start, stop, step;

        if (PySlice_Unpack(item, &start, &stop, &step) < 0) {
            return -1;
        }

        if (value == NULL) {
            /* delete slice */
            PyObject **garbage;
            size_t cur;
            Py_ssize_t i;
            int res;

            Py_ssize_t slicelength = adjust_slice_indexes(self, &start, &stop,
                                                          step);

            if (step == 1)
                return list_ass_slice(self, start, stop, value);

            if (slicelength <= 0)
                return 0;

            if (step < 0) {
                stop = start + 1;
                start = stop + step*(slicelength - 1) - 1;
                step = -step;
            }

            garbage = (PyObject**)
                PyMem_Malloc(slicelength*sizeof(PyObject*));
            if (!garbage) {
                PyErr_NoMemory();
                return -1;
            }

            /* drawing pictures might help understand these for
               loops. Basically, we memmove the parts of the
               list that are *not* part of the slice: step-1
               items for each item that is part of the slice,
               and then tail end of the list that was not
               covered by the slice */
            for (cur = start, i = 0;
                 cur < (size_t)stop;
                 cur += step, i++) {
                Py_ssize_t lim = step - 1;

                garbage[i] = PyList_GET_ITEM(self, cur);

                if (cur + step >= (size_t)Py_SIZE(self)) {
                    lim = Py_SIZE(self) - cur - 1;
                }

                memmove(self->ob_item + cur - i,
                    self->ob_item + cur + 1,
                    lim * sizeof(PyObject *));
            }
            cur = start + (size_t)slicelength * step;
            if (cur < (size_t)Py_SIZE(self)) {
                memmove(self->ob_item + cur - slicelength,
                    self->ob_item + cur,
                    (Py_SIZE(self) - cur) *
                     sizeof(PyObject *));
            }

            Py_SET_SIZE(self, Py_SIZE(self) - slicelength);
            res = list_resize(self, Py_SIZE(self));

            for (i = 0; i < slicelength; i++) {
                Py_DECREF(garbage[i]);
            }
            PyMem_Free(garbage);

            return res;
        }
        else {
            /* assign slice */
            PyObject *ins, *seq;
            PyObject **garbage, **seqitems, **selfitems;
            Py_ssize_t i;
            size_t cur;

            /* protect against a[::-1] = a */
            if (self == (PyListObject*)value) {
                Py_BEGIN_CRITICAL_SECTION(value);
                seq = list_slice_lock_held((PyListObject*)value, 0,
                                            Py_SIZE(value));
                Py_END_CRITICAL_SECTION();
            }
            else {
                seq = PySequence_Fast(value,
                                      "must assign iterable "
                                      "to extended slice");
            }
            if (!seq)
                return -1;

            Py_ssize_t slicelength = adjust_slice_indexes(self, &start, &stop,
                                                          step);

            if (step == 1) {
                int res = list_ass_slice(self, start, stop, seq);
                Py_DECREF(seq);
                return res;
            }

            if (PySequence_Fast_GET_SIZE(seq) != slicelength) {
                PyErr_Format(PyExc_ValueError,
                    "attempt to assign sequence of "
                    "size %zd to extended slice of "
                    "size %zd",
                         PySequence_Fast_GET_SIZE(seq),
                         slicelength);
                Py_DECREF(seq);
                return -1;
            }

            if (!slicelength) {
                Py_DECREF(seq);
                return 0;
            }

            garbage = (PyObject**)
                PyMem_Malloc(slicelength*sizeof(PyObject*));
            if (!garbage) {
                Py_DECREF(seq);
                PyErr_NoMemory();
                return -1;
            }

            selfitems = self->ob_item;
            seqitems = PySequence_Fast_ITEMS(seq);
            for (cur = start, i = 0; i < slicelength;
                 cur += (size_t)step, i++) {
                garbage[i] = selfitems[cur];
                ins = Py_NewRef(seqitems[i]);
                selfitems[cur] = ins;
            }

            for (i = 0; i < slicelength; i++) {
                Py_DECREF(garbage[i]);
            }

            PyMem_Free(garbage);
            Py_DECREF(seq);

            return 0;
        }
    }
    else {
        PyErr_Format(PyExc_TypeError,
                     "list indices must be integers or slices, not %.200s",
                     Py_TYPE(item)->tp_name);
        return -1;
    }
}

static PyMappingMethods list_as_mapping = {
    list_length,
    list_subscript,
    list_ass_subscript
};

PyTypeObject PyList_Type = {
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
    "list",
    sizeof(PyListObject),
    0,
    list_dealloc,                               /* tp_dealloc */
    0,                                          /* tp_vectorcall_offset */
    0,                                          /* tp_getattr */
    0,                                          /* tp_setattr */
    0,                                          /* tp_as_async */
    list_repr,                                  /* tp_repr */
    0,                                          /* tp_as_number */
    &list_as_sequence,                          /* tp_as_sequence */
    &list_as_mapping,                           /* tp_as_mapping */
    PyObject_HashNotImplemented,                /* tp_hash */
    0,                                          /* tp_call */
    0,                                          /* tp_str */
    PyObject_GenericGetAttr,                    /* tp_getattro */
    0,                                          /* tp_setattro */
    0,                                          /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
        Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LIST_SUBCLASS |
        _Py_TPFLAGS_MATCH_SELF | Py_TPFLAGS_SEQUENCE,  /* tp_flags */
    list___init____doc__,                       /* tp_doc */
    list_traverse,                              /* tp_traverse */
    list_clear_slot,                            /* tp_clear */
    list_richcompare,                           /* tp_richcompare */
    0,                                          /* tp_weaklistoffset */
    list_iter,                                  /* tp_iter */
    0,                                          /* tp_iternext */
    list_methods,                               /* tp_methods */
    0,                                          /* tp_members */
    0,                                          /* tp_getset */
    0,                                          /* tp_base */
    0,                                          /* tp_dict */
    0,                                          /* tp_descr_get */
    0,                                          /* tp_descr_set */
    0,                                          /* tp_dictoffset */
    (initproc)list___init__,                    /* tp_init */
    PyType_GenericAlloc,                        /* tp_alloc */
    PyType_GenericNew,                          /* tp_new */
    PyObject_GC_Del,                            /* tp_free */
    .tp_vectorcall = list_vectorcall,
};

/*********************** List Iterator **************************/

static void listiter_dealloc(PyObject *);
static int listiter_traverse(PyObject *, visitproc, void *);
static PyObject *listiter_next(PyObject *);
static PyObject *listiter_len(PyObject *, PyObject *);
static PyObject *listiter_reduce_general(void *_it, int forward);
static PyObject *listiter_reduce(PyObject *, PyObject *);
static PyObject *listiter_setstate(PyObject *, PyObject *state);

PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it)).");
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
PyDoc_STRVAR(setstate_doc, "Set state information for unpickling.");

static PyMethodDef listiter_methods[] = {
    {"__length_hint__", listiter_len, METH_NOARGS, length_hint_doc},
    {"__reduce__", listiter_reduce, METH_NOARGS, reduce_doc},
    {"__setstate__", listiter_setstate, METH_O, setstate_doc},
    {NULL,              NULL}           /* sentinel */
};

PyTypeObject PyListIter_Type = {
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
    "list_iterator",                            /* tp_name */
    sizeof(_PyListIterObject),                  /* tp_basicsize */
    0,                                          /* tp_itemsize */
    /* methods */
    listiter_dealloc,               /* tp_dealloc */
    0,                                          /* tp_vectorcall_offset */
    0,                                          /* tp_getattr */
    0,                                          /* tp_setattr */
    0,                                          /* tp_as_async */
    0,                                          /* tp_repr */
    0,                                          /* tp_as_number */
    0,                                          /* tp_as_sequence */
    0,                                          /* tp_as_mapping */
    0,                                          /* tp_hash */
    0,                                          /* tp_call */
    0,                                          /* tp_str */
    PyObject_GenericGetAttr,                    /* tp_getattro */
    0,                                          /* tp_setattro */
    0,                                          /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
    0,                                          /* tp_doc */
    listiter_traverse,                          /* tp_traverse */
    0,                                          /* tp_clear */
    0,                                          /* tp_richcompare */
    0,                                          /* tp_weaklistoffset */
    PyObject_SelfIter,                          /* tp_iter */
    listiter_next,                              /* tp_iternext */
    listiter_methods,                           /* tp_methods */
    0,                                          /* tp_members */
};


static PyObject *
list_iter(PyObject *seq)
{
    _PyListIterObject *it;

    if (!PyList_Check(seq)) {
        PyErr_BadInternalCall();
        return NULL;
    }
    it = PyObject_GC_New(_PyListIterObject, &PyListIter_Type);
    if (it == NULL)
        return NULL;
    it->it_index = 0;
    it->it_seq = (PyListObject *)Py_NewRef(seq);
    _PyObject_GC_TRACK(it);
    return (PyObject *)it;
}

static void
listiter_dealloc(PyObject *self)
{
    _PyListIterObject *it = (_PyListIterObject *)self;
    _PyObject_GC_UNTRACK(it);
    Py_XDECREF(it->it_seq);
    PyObject_GC_Del(it);
}

static int
listiter_traverse(PyObject *it, visitproc visit, void *arg)
{
    Py_VISIT(((_PyListIterObject *)it)->it_seq);
    return 0;
}

static PyObject *
listiter_next(PyObject *self)
{
    _PyListIterObject *it = (_PyListIterObject *)self;
    Py_ssize_t index = FT_ATOMIC_LOAD_SSIZE_RELAXED(it->it_index);
    if (index < 0) {
        return NULL;
    }

    PyObject *item = list_get_item_ref(it->it_seq, index);
    if (item == NULL) {
        // out-of-bounds
        FT_ATOMIC_STORE_SSIZE_RELAXED(it->it_index, -1);
#ifndef Py_GIL_DISABLED
        PyListObject *seq = it->it_seq;
        it->it_seq = NULL;
        Py_DECREF(seq);
#endif
        return NULL;
    }
    FT_ATOMIC_STORE_SSIZE_RELAXED(it->it_index, index + 1);
    return item;
}

static PyObject *
listiter_len(PyObject *self, PyObject *Py_UNUSED(ignored))
{
    assert(self != NULL);
    _PyListIterObject *it = (_PyListIterObject *)self;
    Py_ssize_t index = FT_ATOMIC_LOAD_SSIZE_RELAXED(it->it_index);
    if (index >= 0) {
        Py_ssize_t len = PyList_GET_SIZE(it->it_seq) - index;
        if (len >= 0)
            return PyLong_FromSsize_t(len);
    }
    return PyLong_FromLong(0);
}

static PyObject *
listiter_reduce(PyObject *it, PyObject *Py_UNUSED(ignored))
{
    return listiter_reduce_general(it, 1);
}

static PyObject *
listiter_setstate(PyObject *self, PyObject *state)
{
    _PyListIterObject *it = (_PyListIterObject *)self;
    Py_ssize_t index = PyLong_AsSsize_t(state);
    if (index == -1 && PyErr_Occurred())
        return NULL;
    if (it->it_seq != NULL) {
        if (index < -1)
            index = -1;
        else if (index > PyList_GET_SIZE(it->it_seq))
            index = PyList_GET_SIZE(it->it_seq); /* iterator exhausted */
        it->it_index = index;
    }
    Py_RETURN_NONE;
}

/*********************** List Reverse Iterator **************************/

typedef struct {
    PyObject_HEAD
    Py_ssize_t it_index;
    PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
} listreviterobject;

static void listreviter_dealloc(PyObject *);
static int listreviter_traverse(PyObject *, visitproc, void *);
static PyObject *listreviter_next(PyObject *);
static PyObject *listreviter_len(PyObject *, PyObject *);
static PyObject *listreviter_reduce(PyObject *, PyObject *);
static PyObject *listreviter_setstate(PyObject *, PyObject *);

static PyMethodDef listreviter_methods[] = {
    {"__length_hint__", listreviter_len, METH_NOARGS, length_hint_doc},
    {"__reduce__", listreviter_reduce, METH_NOARGS, reduce_doc},
    {"__setstate__", listreviter_setstate, METH_O, setstate_doc},
    {NULL,              NULL}           /* sentinel */
};

PyTypeObject PyListRevIter_Type = {
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
    "list_reverseiterator",                     /* tp_name */
    sizeof(listreviterobject),                  /* tp_basicsize */
    0,                                          /* tp_itemsize */
    /* methods */
    listreviter_dealloc,                        /* tp_dealloc */
    0,                                          /* tp_vectorcall_offset */
    0,                                          /* tp_getattr */
    0,                                          /* tp_setattr */
    0,                                          /* tp_as_async */
    0,                                          /* tp_repr */
    0,                                          /* tp_as_number */
    0,                                          /* tp_as_sequence */
    0,                                          /* tp_as_mapping */
    0,                                          /* tp_hash */
    0,                                          /* tp_call */
    0,                                          /* tp_str */
    PyObject_GenericGetAttr,                    /* tp_getattro */
    0,                                          /* tp_setattro */
    0,                                          /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
    0,                                          /* tp_doc */
    listreviter_traverse,                       /* tp_traverse */
    0,                                          /* tp_clear */
    0,                                          /* tp_richcompare */
    0,                                          /* tp_weaklistoffset */
    PyObject_SelfIter,                          /* tp_iter */
    listreviter_next,                           /* tp_iternext */
    listreviter_methods,                /* tp_methods */
    0,
};

/*[clinic input]
list.__reversed__

Return a reverse iterator over the list.
[clinic start generated code]*/

static PyObject *
list___reversed___impl(PyListObject *self)
/*[clinic end generated code: output=b166f073208c888c input=eadb6e17f8a6a280]*/
{
    listreviterobject *it;

    it = PyObject_GC_New(listreviterobject, &PyListRevIter_Type);
    if (it == NULL)
        return NULL;
    assert(PyList_Check(self));
    it->it_index = PyList_GET_SIZE(self) - 1;
    it->it_seq = (PyListObject*)Py_NewRef(self);
    PyObject_GC_Track(it);
    return (PyObject *)it;
}

static void
listreviter_dealloc(PyObject *self)
{
    listreviterobject *it = (listreviterobject *)self;
    PyObject_GC_UnTrack(it);
    Py_XDECREF(it->it_seq);
    PyObject_GC_Del(it);
}

static int
listreviter_traverse(PyObject *it, visitproc visit, void *arg)
{
    Py_VISIT(((listreviterobject *)it)->it_seq);
    return 0;
}

static PyObject *
listreviter_next(PyObject *self)
{
    listreviterobject *it = (listreviterobject *)self;
    assert(it != NULL);
    Py_ssize_t index = FT_ATOMIC_LOAD_SSIZE_RELAXED(it->it_index);
    if (index < 0) {
        return NULL;
    }

    PyListObject *seq = it->it_seq;
    assert(PyList_Check(seq));
    PyObject *item = list_get_item_ref(seq, index);
    if (item != NULL) {
        FT_ATOMIC_STORE_SSIZE_RELAXED(it->it_index, index - 1);
        return item;
    }
    FT_ATOMIC_STORE_SSIZE_RELAXED(it->it_index, -1);
#ifndef Py_GIL_DISABLED
    it->it_seq = NULL;
    Py_DECREF(seq);
#endif
    return NULL;
}

static PyObject *
listreviter_len(PyObject *self, PyObject *Py_UNUSED(ignored))
{
    listreviterobject *it = (listreviterobject *)self;
    Py_ssize_t index = FT_ATOMIC_LOAD_SSIZE_RELAXED(it->it_index);
    Py_ssize_t len = index + 1;
    if (it->it_seq == NULL || PyList_GET_SIZE(it->it_seq) < len)
        len = 0;
    return PyLong_FromSsize_t(len);
}

static PyObject *
listreviter_reduce(PyObject *it, PyObject *Py_UNUSED(ignored))
{
    return listiter_reduce_general(it, 0);
}

static PyObject *
listreviter_setstate(PyObject *self, PyObject *state)
{
    listreviterobject *it = (listreviterobject *)self;
    Py_ssize_t index = PyLong_AsSsize_t(state);
    if (index == -1 && PyErr_Occurred())
        return NULL;
    if (it->it_seq != NULL) {
        if (index < -1)
            index = -1;
        else if (index > PyList_GET_SIZE(it->it_seq) - 1)
            index = PyList_GET_SIZE(it->it_seq) - 1;
        it->it_index = index;
    }
    Py_RETURN_NONE;
}

/* common pickling support */

static PyObject *
listiter_reduce_general(void *_it, int forward)
{
    PyObject *list;
    PyObject *iter;

    /* _PyEval_GetBuiltin can invoke arbitrary code,
     * call must be before access of iterator pointers.
     * see issue #101765 */

    /* the objects are not the same, index is of different types! */
    if (forward) {
        iter = _PyEval_GetBuiltin(&_Py_ID(iter));
        _PyListIterObject *it = (_PyListIterObject *)_it;
        if (it->it_index >= 0) {
            return Py_BuildValue("N(O)n", iter, it->it_seq, it->it_index);
        }
    } else {
        iter = _PyEval_GetBuiltin(&_Py_ID(reversed));
        listreviterobject *it = (listreviterobject *)_it;
        if (it->it_index >= 0) {
            return Py_BuildValue("N(O)n", iter, it->it_seq, it->it_index);
        }
    }
    /* empty iterator, create an empty list */
    list = PyList_New(0);
    if (list == NULL)
        return NULL;
    return Py_BuildValue("N(N)", iter, list);
}