summaryrefslogtreecommitdiffstats
path: root/Objects/listobject.c
blob: 163ba2a8194c48c59f981af00540468c89af5beb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
/***********************************************************
Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam,
The Netherlands.

                        All Rights Reserved

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the names of Stichting Mathematisch
Centrum or CWI or Corporation for National Research Initiatives or
CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

While CWI is the initial source for this software, a modified version
is made available by the Corporation for National Research Initiatives
(CNRI) at the Internet address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH
CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

******************************************************************/

/* List object implementation */

#include "Python.h"

#ifdef STDC_HEADERS
#include <stddef.h>
#else
#include <sys/types.h>		/* For size_t */
#endif

#define ROUNDUP(n, PyTryBlock) \
	((((n)+(PyTryBlock)-1)/(PyTryBlock))*(PyTryBlock))

static int
roundupsize(n)
	int n;
{
	if (n < 500)
		return ROUNDUP(n, 10);
	else
		return ROUNDUP(n, 100);
}

#define NRESIZE(var, type, nitems) PyMem_RESIZE(var, type, roundupsize(nitems))

PyObject *
PyList_New(size)
	int size;
{
	int i;
	PyListObject *op;
	size_t nbytes;
	if (size < 0) {
		PyErr_BadInternalCall();
		return NULL;
	}
	nbytes = size * sizeof(PyObject *);
	/* Check for overflow */
	if (nbytes / sizeof(PyObject *) != (size_t)size) {
		return PyErr_NoMemory();
	}
	/* PyObject_NewVar is inlined */
	op = (PyListObject *) PyObject_MALLOC(sizeof(PyListObject));
	if (op == NULL) {
		return PyErr_NoMemory();
	}
	if (size <= 0) {
		op->ob_item = NULL;
	}
	else {
		op->ob_item = (PyObject **) PyMem_MALLOC(nbytes);
		if (op->ob_item == NULL) {
			PyObject_FREE(op);
			return PyErr_NoMemory();
		}
	}
	PyObject_INIT_VAR(op, &PyList_Type, size);
	for (i = 0; i < size; i++)
		op->ob_item[i] = NULL;
	return (PyObject *) op;
}

int
PyList_Size(op)
	PyObject *op;
{
	if (!PyList_Check(op)) {
		PyErr_BadInternalCall();
		return -1;
	}
	else
		return ((PyListObject *)op) -> ob_size;
}

static PyObject *indexerr;

PyObject *
PyList_GetItem(op, i)
	PyObject *op;
	int i;
{
	if (!PyList_Check(op)) {
		PyErr_BadInternalCall();
		return NULL;
	}
	if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
		if (indexerr == NULL)
			indexerr = PyString_FromString(
				"list index out of range");
		PyErr_SetObject(PyExc_IndexError, indexerr);
		return NULL;
	}
	return ((PyListObject *)op) -> ob_item[i];
}

int
PyList_SetItem(op, i, newitem)
	register PyObject *op;
	register int i;
	register PyObject *newitem;
{
	register PyObject *olditem;
	register PyObject **p;
	if (!PyList_Check(op)) {
		Py_XDECREF(newitem);
		PyErr_BadInternalCall();
		return -1;
	}
	if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
		Py_XDECREF(newitem);
		PyErr_SetString(PyExc_IndexError,
				"list assignment index out of range");
		return -1;
	}
	p = ((PyListObject *)op) -> ob_item + i;
	olditem = *p;
	*p = newitem;
	Py_XDECREF(olditem);
	return 0;
}

static int
ins1(self, where, v)
	PyListObject *self;
	int where;
	PyObject *v;
{
	int i;
	PyObject **items;
	if (v == NULL) {
		PyErr_BadInternalCall();
		return -1;
	}
	items = self->ob_item;
	NRESIZE(items, PyObject *, self->ob_size+1);
	if (items == NULL) {
		PyErr_NoMemory();
		return -1;
	}
	if (where < 0)
		where = 0;
	if (where > self->ob_size)
		where = self->ob_size;
	for (i = self->ob_size; --i >= where; )
		items[i+1] = items[i];
	Py_INCREF(v);
	items[where] = v;
	self->ob_item = items;
	self->ob_size++;
	return 0;
}

int
PyList_Insert(op, where, newitem)
	PyObject *op;
	int where;
	PyObject *newitem;
{
	if (!PyList_Check(op)) {
		PyErr_BadInternalCall();
		return -1;
	}
	return ins1((PyListObject *)op, where, newitem);
}

int
PyList_Append(op, newitem)
	PyObject *op;
	PyObject *newitem;
{
	if (!PyList_Check(op)) {
		PyErr_BadInternalCall();
		return -1;
	}
	return ins1((PyListObject *)op,
		(int) ((PyListObject *)op)->ob_size, newitem);
}

/* Methods */

static void
list_dealloc(op)
	PyListObject *op;
{
	int i;
	Py_TRASHCAN_SAFE_BEGIN(op)
	if (op->ob_item != NULL) {
		/* Do it backwards, for Christian Tismer.
		   There's a simple test case where somehow this reduces
		   thrashing when a *very* large list is created and
		   immediately deleted. */
		i = op->ob_size;
		while (--i >= 0) {
			Py_XDECREF(op->ob_item[i]);
		}
		PyMem_FREE(op->ob_item);
	}
	PyObject_DEL(op);
	Py_TRASHCAN_SAFE_END(op)
}

static int
list_print(op, fp, flags)
	PyListObject *op;
	FILE *fp;
	int flags;
{
	int i;

	i = Py_ReprEnter((PyObject*)op);
	if (i != 0) {
		if (i < 0)
			return i;
		fprintf(fp, "[...]");
		return 0;
	}
	fprintf(fp, "[");
	for (i = 0; i < op->ob_size; i++) {
		if (i > 0)
			fprintf(fp, ", ");
		if (PyObject_Print(op->ob_item[i], fp, 0) != 0) {
			Py_ReprLeave((PyObject *)op);
			return -1;
		}
	}
	fprintf(fp, "]");
	Py_ReprLeave((PyObject *)op);
	return 0;
}

static PyObject *
list_repr(v)
	PyListObject *v;
{
	PyObject *s, *comma;
	int i;

	i = Py_ReprEnter((PyObject*)v);
	if (i != 0) {
		if (i > 0)
			return PyString_FromString("[...]");
		return NULL;
	}
	s = PyString_FromString("[");
	comma = PyString_FromString(", ");
	for (i = 0; i < v->ob_size && s != NULL; i++) {
		if (i > 0)
			PyString_Concat(&s, comma);
		PyString_ConcatAndDel(&s, PyObject_Repr(v->ob_item[i]));
	}
	Py_XDECREF(comma);
	PyString_ConcatAndDel(&s, PyString_FromString("]"));
	Py_ReprLeave((PyObject *)v);
	return s;
}

static int
list_compare(v, w)
	PyListObject *v, *w;
{
	int i;
	for (i = 0; i < v->ob_size && i < w->ob_size; i++) {
		int cmp = PyObject_Compare(v->ob_item[i], w->ob_item[i]);
		if (cmp != 0)
			return cmp;
	}
	return v->ob_size - w->ob_size;
}

static int
list_length(a)
	PyListObject *a;
{
	return a->ob_size;
}



static int
list_contains(a, el)
	PyListObject *a;
	PyObject *el;
{
	int i, cmp;

	for (i = 0; i < a->ob_size; ++i) {
		cmp = PyObject_Compare(el, PyList_GET_ITEM(a, i));
		if (cmp == 0)
			return 1;
		if (PyErr_Occurred())
			return -1;
	}
	return 0;
}


static PyObject *
list_item(a, i)
	PyListObject *a;
	int i;
{
	if (i < 0 || i >= a->ob_size) {
		if (indexerr == NULL)
			indexerr = PyString_FromString(
				"list index out of range");
		PyErr_SetObject(PyExc_IndexError, indexerr);
		return NULL;
	}
	Py_INCREF(a->ob_item[i]);
	return a->ob_item[i];
}

static PyObject *
list_slice(a, ilow, ihigh)
	PyListObject *a;
	int ilow, ihigh;
{
	PyListObject *np;
	int i;
	if (ilow < 0)
		ilow = 0;
	else if (ilow > a->ob_size)
		ilow = a->ob_size;
	if (ihigh < ilow)
		ihigh = ilow;
	else if (ihigh > a->ob_size)
		ihigh = a->ob_size;
	np = (PyListObject *) PyList_New(ihigh - ilow);
	if (np == NULL)
		return NULL;
	for (i = ilow; i < ihigh; i++) {
		PyObject *v = a->ob_item[i];
		Py_INCREF(v);
		np->ob_item[i - ilow] = v;
	}
	return (PyObject *)np;
}

PyObject *
PyList_GetSlice(a, ilow, ihigh)
	PyObject *a;
	int ilow, ihigh;
{
	if (!PyList_Check(a)) {
		PyErr_BadInternalCall();
		return NULL;
	}
	return list_slice((PyListObject *)a, ilow, ihigh);
}

static PyObject *
list_concat(a, bb)
	PyListObject *a;
	PyObject *bb;
{
	int size;
	int i;
	PyListObject *np;
	if (!PyList_Check(bb)) {
		PyErr_Format(PyExc_TypeError,
			  "can only concatenate list (not \"%.200s\") to list",
			  bb->ob_type->tp_name);
		return NULL;
	}
#define b ((PyListObject *)bb)
	size = a->ob_size + b->ob_size;
	np = (PyListObject *) PyList_New(size);
	if (np == NULL) {
		return NULL;
	}
	for (i = 0; i < a->ob_size; i++) {
		PyObject *v = a->ob_item[i];
		Py_INCREF(v);
		np->ob_item[i] = v;
	}
	for (i = 0; i < b->ob_size; i++) {
		PyObject *v = b->ob_item[i];
		Py_INCREF(v);
		np->ob_item[i + a->ob_size] = v;
	}
	return (PyObject *)np;
#undef b
}

static PyObject *
list_repeat(a, n)
	PyListObject *a;
	int n;
{
	int i, j;
	int size;
	PyListObject *np;
	PyObject **p;
	if (n < 0)
		n = 0;
	size = a->ob_size * n;
	np = (PyListObject *) PyList_New(size);
	if (np == NULL)
		return NULL;
	p = np->ob_item;
	for (i = 0; i < n; i++) {
		for (j = 0; j < a->ob_size; j++) {
			*p = a->ob_item[j];
			Py_INCREF(*p);
			p++;
		}
	}
	return (PyObject *) np;
}

static int
list_ass_slice(a, ilow, ihigh, v)
	PyListObject *a;
	int ilow, ihigh;
	PyObject *v;
{
	/* Because [X]DECREF can recursively invoke list operations on
	   this list, we must postpone all [X]DECREF activity until
	   after the list is back in its canonical shape.  Therefore
	   we must allocate an additional array, 'recycle', into which
	   we temporarily copy the items that are deleted from the
	   list. :-( */
	PyObject **recycle, **p;
	PyObject **item;
	int n; /* Size of replacement list */
	int d; /* Change in size */
	int k; /* Loop index */
#define b ((PyListObject *)v)
	if (v == NULL)
		n = 0;
	else if (PyList_Check(v)) {
		n = b->ob_size;
		if (a == b) {
			/* Special case "a[i:j] = a" -- copy b first */
			int ret;
			v = list_slice(b, 0, n);
			ret = list_ass_slice(a, ilow, ihigh, v);
			Py_DECREF(v);
			return ret;
		}
	}
	else {
		PyErr_Format(PyExc_TypeError,
			     "must assign list (not \"%.200s\") to slice",
			     v->ob_type->tp_name);
		return -1;
	}
	if (ilow < 0)
		ilow = 0;
	else if (ilow > a->ob_size)
		ilow = a->ob_size;
	if (ihigh < ilow)
		ihigh = ilow;
	else if (ihigh > a->ob_size)
		ihigh = a->ob_size;
	item = a->ob_item;
	d = n - (ihigh-ilow);
	if (ihigh > ilow)
		p = recycle = PyMem_NEW(PyObject *, (ihigh-ilow));
	else
		p = recycle = NULL;
	if (d <= 0) { /* Delete -d items; recycle ihigh-ilow items */
		for (k = ilow; k < ihigh; k++)
			*p++ = item[k];
		if (d < 0) {
			for (/*k = ihigh*/; k < a->ob_size; k++)
				item[k+d] = item[k];
			a->ob_size += d;
			NRESIZE(item, PyObject *, a->ob_size); /* Can't fail */
			a->ob_item = item;
		}
	}
	else { /* Insert d items; recycle ihigh-ilow items */
		NRESIZE(item, PyObject *, a->ob_size + d);
		if (item == NULL) {
			if (recycle != NULL)
				PyMem_DEL(recycle);
			PyErr_NoMemory();
			return -1;
		}
		for (k = a->ob_size; --k >= ihigh; )
			item[k+d] = item[k];
		for (/*k = ihigh-1*/; k >= ilow; --k)
			*p++ = item[k];
		a->ob_item = item;
		a->ob_size += d;
	}
	for (k = 0; k < n; k++, ilow++) {
		PyObject *w = b->ob_item[k];
		Py_XINCREF(w);
		item[ilow] = w;
	}
	if (recycle) {
		while (--p >= recycle)
			Py_XDECREF(*p);
		PyMem_DEL(recycle);
	}
	return 0;
#undef b
}

int
PyList_SetSlice(a, ilow, ihigh, v)
	PyObject *a;
	int ilow, ihigh;
	PyObject *v;
{
	if (!PyList_Check(a)) {
		PyErr_BadInternalCall();
		return -1;
	}
	return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
}

static int
list_ass_item(a, i, v)
	PyListObject *a;
	int i;
	PyObject *v;
{
	PyObject *old_value;
	if (i < 0 || i >= a->ob_size) {
		PyErr_SetString(PyExc_IndexError,
				"list assignment index out of range");
		return -1;
	}
	if (v == NULL)
		return list_ass_slice(a, i, i+1, v);
	Py_INCREF(v);
	old_value = a->ob_item[i];
	a->ob_item[i] = v;
	Py_DECREF(old_value); 
	return 0;
}

static PyObject *
ins(self, where, v)
	PyListObject *self;
	int where;
	PyObject *v;
{
	if (ins1(self, where, v) != 0)
		return NULL;
	Py_INCREF(Py_None);
	return Py_None;
}

static PyObject *
listinsert(self, args)
	PyListObject *self;
	PyObject *args;
{
	int i;
	PyObject *v;
	if (!PyArg_ParseTuple(args, "iO:insert", &i, &v))
		return NULL;
	return ins(self, i, v);
}

/* Define NO_STRICT_LIST_APPEND to enable multi-argument append() */

#ifndef NO_STRICT_LIST_APPEND
#define PyArg_ParseTuple_Compat1 PyArg_ParseTuple
#else
#define PyArg_ParseTuple_Compat1(args, format, ret) \
( \
	PyTuple_GET_SIZE(args) > 1 ? (*ret = args, 1) : \
	PyTuple_GET_SIZE(args) == 1 ? (*ret = PyTuple_GET_ITEM(args, 0), 1) : \
	PyArg_ParseTuple(args, format, ret) \
)
#endif


static PyObject *
listappend(self, args)
	PyListObject *self;
	PyObject *args;
{
	PyObject *v;
	if (!PyArg_ParseTuple_Compat1(args, "O:append", &v))
		return NULL;
	return ins(self, (int) self->ob_size, v);
}

static PyObject *
listextend(self, args)
	PyListObject *self;
	PyObject *args;
{
	PyObject *b = NULL, *res = NULL;
	PyObject **items;
	int selflen = PyList_GET_SIZE(self);
	int blen;
	register int i;

	if (!PyArg_ParseTuple(args, "O:extend", &b))
		return NULL;

	b = PySequence_Fast(b, "list.extend() argument must be a sequence");
	if (!b)
		return NULL;

	if (PyObject_Length(b) == 0)
		/* short circuit when b is empty */
		goto ok;

	if (self == (PyListObject*)b) {
		/* as in list_ass_slice() we must special case the
		 * situation: a.extend(a)
		 *
		 * XXX: I think this way ought to be faster than using
		 * list_slice() the way list_ass_slice() does.
		 */
		Py_DECREF(b);
		b = PyList_New(selflen);
		if (!b)
			return NULL;
		for (i = 0; i < selflen; i++) {
			PyObject *o = PyList_GET_ITEM(self, i);
			Py_INCREF(o);
			PyList_SET_ITEM(b, i, o);
		}
	}

	blen = PyObject_Length(b);

	/* resize a using idiom */
	items = self->ob_item;
	NRESIZE(items, PyObject*, selflen + blen);
	if (items == NULL) {
		PyErr_NoMemory();
		goto failed;
	}
	self->ob_item = items;

	/* populate the end of self with b's items */
	for (i = 0; i < blen; i++) {
		PyObject *o = PySequence_Fast_GET_ITEM(b, i);
		Py_INCREF(o);
		PyList_SET_ITEM(self, self->ob_size++, o);
	}
  ok:
	res = Py_None;
	Py_INCREF(res);
  failed:
	Py_DECREF(b);
	return res;
}


static PyObject *
listpop(self, args)
	PyListObject *self;
	PyObject *args;
{
	int i = -1;
	PyObject *v;
	if (!PyArg_ParseTuple(args, "|i:pop", &i))
		return NULL;
	if (self->ob_size == 0) {
		/* Special-case most common failure cause */
		PyErr_SetString(PyExc_IndexError, "pop from empty list");
		return NULL;
	}
	if (i < 0)
		i += self->ob_size;
	if (i < 0 || i >= self->ob_size) {
		PyErr_SetString(PyExc_IndexError, "pop index out of range");
		return NULL;
	}
	v = self->ob_item[i];
	Py_INCREF(v);
	if (list_ass_slice(self, i, i+1, (PyObject *)NULL) != 0) {
		Py_DECREF(v);
		return NULL;
	}
	return v;
}

/* New quicksort implementation for arrays of object pointers.
   Thanks to discussions with Tim Peters. */

/* CMPERROR is returned by our comparison function when an error
   occurred.  This is the largest negative integer (0x80000000 on a
   32-bit system). */
#define CMPERROR ( (int) ((unsigned int)1 << (8*sizeof(int) - 1)) )

/* Comparison function.  Takes care of calling a user-supplied
   comparison function (any callable Python object).  Calls the
   standard comparison function, PyObject_Compare(), if the user-
   supplied function is NULL. */

static int
docompare(x, y, compare)
	PyObject *x;
	PyObject *y;
	PyObject *compare;
{
	PyObject *args, *res;
	int i;

	if (compare == NULL) {
		i = PyObject_Compare(x, y);
		if (i && PyErr_Occurred())
			i = CMPERROR;
		return i;
	}

	args = Py_BuildValue("(OO)", x, y);
	if (args == NULL)
		return CMPERROR;
	res = PyEval_CallObject(compare, args);
	Py_DECREF(args);
	if (res == NULL)
		return CMPERROR;
	if (!PyInt_Check(res)) {
		Py_DECREF(res);
		PyErr_SetString(PyExc_TypeError,
				"comparison function must return int");
		return CMPERROR;
	}
	i = PyInt_AsLong(res);
	Py_DECREF(res);
	if (i < 0)
		return -1;
	if (i > 0)
		return 1;
	return 0;
}

/* MINSIZE is the smallest array that will get a full-blown samplesort
   treatment; smaller arrays are sorted using binary insertion.  It must
   be at least 7 for the samplesort implementation to work.  Binary
   insertion does fewer compares, but can suffer O(N**2) data movement.
   The more expensive compares, the larger MINSIZE should be. */
#define MINSIZE 100

/* MINPARTITIONSIZE is the smallest array slice samplesort will bother to
   partition; smaller slices are passed to binarysort.  It must be at
   least 2, and no larger than MINSIZE.  Setting it higher reduces the #
   of compares slowly, but increases the amount of data movement quickly.
   The value here was chosen assuming a compare costs ~25x more than
   swapping a pair of memory-resident pointers -- but under that assumption,
   changing the value by a few dozen more or less has aggregate effect
   under 1%.  So the value is crucial, but not touchy <wink>. */
#define MINPARTITIONSIZE 40

/* MAXMERGE is the largest number of elements we'll always merge into
   a known-to-be sorted chunk via binary insertion, regardless of the
   size of that chunk.  Given a chunk of N sorted elements, and a group
   of K unknowns, the largest K for which it's better to do insertion
   (than a full-blown sort) is a complicated function of N and K mostly
   involving the expected number of compares and data moves under each
   approach, and the relative cost of those operations on a specific
   architecure.  The fixed value here is conservative, and should be a
   clear win regardless of architecture or N. */
#define MAXMERGE 15

/* STACKSIZE is the size of our work stack.  A rough estimate is that
   this allows us to sort arrays of size N where
   N / ln(N) = MINPARTITIONSIZE * 2**STACKSIZE, so 60 is more than enough
   for arrays of size 2**64.  Because we push the biggest partition
   first, the worst case occurs when all subarrays are always partitioned
   exactly in two. */
#define STACKSIZE 60


#define SETK(X,Y) if ((k = docompare(X,Y,compare))==CMPERROR) goto fail

/* binarysort is the best method for sorting small arrays: it does
   few compares, but can do data movement quadratic in the number of
   elements.
   [lo, hi) is a contiguous slice of a list, and is sorted via
   binary insertion.
   On entry, must have lo <= start <= hi, and that [lo, start) is already
   sorted (pass start == lo if you don't know!).
   If docompare complains (returns CMPERROR) return -1, else 0.
   Even in case of error, the output slice will be some permutation of
   the input (nothing is lost or duplicated).
*/

static int
binarysort(lo, hi, start, compare)
	PyObject **lo;
	PyObject **hi;
	PyObject **start;
	PyObject *compare;/* Comparison function object, or NULL for default */
{
	/* assert lo <= start <= hi
	   assert [lo, start) is sorted */
	register int k;
	register PyObject **l, **p, **r;
	register PyObject *pivot;

	if (lo == start)
		++start;
	for (; start < hi; ++start) {
		/* set l to where *start belongs */
		l = lo;
		r = start;
		pivot = *r;
		do {
			p = l + ((r - l) >> 1);
			SETK(pivot, *p);
			if (k < 0)
				r = p;
			else
				l = p + 1;
		} while (l < r);
		/* Pivot should go at l -- slide over to make room.
		   Caution: using memmove is much slower under MSVC 5;
		   we're not usually moving many slots. */
		for (p = start; p > l; --p)
			*p = *(p-1);
		*l = pivot;
	}
	return 0;

 fail:
	return -1;
}

/* samplesortslice is the sorting workhorse.
   [lo, hi) is a contiguous slice of a list, to be sorted in place.
   On entry, must have lo <= hi,
   If docompare complains (returns CMPERROR) return -1, else 0.
   Even in case of error, the output slice will be some permutation of
   the input (nothing is lost or duplicated).

   samplesort is basically quicksort on steroids:  a power of 2 close
   to n/ln(n) is computed, and that many elements (less 1) are picked at
   random from the array and sorted.  These 2**k - 1 elements are then
   used as preselected pivots for an equal number of quicksort
   partitioning steps, partitioning the slice into 2**k chunks each of
   size about ln(n).  These small final chunks are then usually handled
   by binarysort.  Note that when k=1, this is roughly the same as an
   ordinary quicksort using a random pivot, and when k=2 this is roughly
   a median-of-3 quicksort.  From that view, using k ~= lg(n/ln(n)) makes
   this a "median of n/ln(n)" quicksort.  You can also view it as a kind
   of bucket sort, where 2**k-1 bucket boundaries are picked dynamically.

   The large number of samples makes a quadratic-time case almost
   impossible, and asymptotically drives the average-case number of
   compares from quicksort's 2 N ln N (or 12/7 N ln N for the median-of-
   3 variant) down to N lg N.

   We also play lots of low-level tricks to cut the number of compares.
   
   Very obscure:  To avoid using extra memory, the PPs are stored in the
   array and shuffled around as partitioning proceeds.  At the start of a
   partitioning step, we'll have 2**m-1 (for some m) PPs in sorted order,
   adjacent (either on the left or the right!) to a chunk of X elements
   that are to be partitioned: P X or X P.  In either case we need to
   shuffle things *in place* so that the 2**(m-1) smaller PPs are on the
   left, followed by the PP to be used for this step (that's the middle
   of the PPs), followed by X, followed by the 2**(m-1) larger PPs:
       P X or X P -> Psmall pivot X Plarge
   and the order of the PPs must not be altered.  It can take a while
   to realize this isn't trivial!  It can take even longer <wink> to
   understand why the simple code below works, using only 2**(m-1) swaps.
   The key is that the order of the X elements isn't necessarily
   preserved:  X can end up as some cyclic permutation of its original
   order.  That's OK, because X is unsorted anyway.  If the order of X
   had to be preserved too, the simplest method I know of using O(1)
   scratch storage requires len(X) + 2**(m-1) swaps, spread over 2 passes.
   Since len(X) is typically several times larger than 2**(m-1), that
   would slow things down.
*/

struct SamplesortStackNode {
	/* Represents a slice of the array, from (& including) lo up
	   to (but excluding) hi.  "extra" additional & adjacent elements
	   are pre-selected pivots (PPs), spanning [lo-extra, lo) if
	   extra > 0, or [hi, hi-extra) if extra < 0.  The PPs are
	   already sorted, but nothing is known about the other elements
	   in [lo, hi). |extra| is always one less than a power of 2.
	   When extra is 0, we're out of PPs, and the slice must be
	   sorted by some other means. */
	PyObject **lo;
	PyObject **hi;
	int extra;
};

/* The number of PPs we want is 2**k - 1, where 2**k is as close to
   N / ln(N) as possible.  So k ~= lg(N / ln(N)).  Calling libm routines
   is undesirable, so cutoff values are canned in the "cutoff" table
   below:  cutoff[i] is the smallest N such that k == CUTOFFBASE + i. */
#define CUTOFFBASE 4
static long cutoff[] = {
	43,        /* smallest N such that k == 4 */
	106,       /* etc */
	250,
	576,
	1298,
	2885,
	6339,
	13805,
	29843,
	64116,
	137030,
	291554,
	617916,
	1305130,
	2748295,
	5771662,
	12091672,
	25276798,
	52734615,
	109820537,
	228324027,
	473977813,
	982548444,   /* smallest N such that k == 26 */
	2034159050   /* largest N that fits in signed 32-bit; k == 27 */
};

static int
samplesortslice(lo, hi, compare)
	PyObject **lo;
	PyObject **hi;
	PyObject *compare;/* Comparison function object, or NULL for default */
{
	register PyObject **l, **r;
	register PyObject *tmp, *pivot;
	register int k;
	int n, extra, top, extraOnRight;
	struct SamplesortStackNode stack[STACKSIZE];

	/* assert lo <= hi */
	n = hi - lo;

	/* ----------------------------------------------------------
	 * Special cases
	 * --------------------------------------------------------*/
	if (n < 2)
		return 0;

	/* Set r to the largest value such that [lo,r) is sorted.
	   This catches the already-sorted case, the all-the-same
	   case, and the appended-a-few-elements-to-a-sorted-list case.
	   If the array is unsorted, we're very likely to get out of
	   the loop fast, so the test is cheap if it doesn't pay off.
	*/
	/* assert lo < hi */
	for (r = lo+1; r < hi; ++r) {
		SETK(*r, *(r-1));
		if (k < 0)
			break;
	}
	/* [lo,r) is sorted, [r,hi) unknown.  Get out cheap if there are
	   few unknowns, or few elements in total. */
	if (hi - r <= MAXMERGE || n < MINSIZE)
		return binarysort(lo, hi, r, compare);

	/* Check for the array already being reverse-sorted.  Typical
	   benchmark-driven silliness <wink>. */
	/* assert lo < hi */
	for (r = lo+1; r < hi; ++r) {
		SETK(*(r-1), *r);
		if (k < 0)
			break;
	}
	if (hi - r <= MAXMERGE) {
		/* Reverse the reversed prefix, then insert the tail */
		PyObject **originalr = r;
		l = lo;
		do {
			--r;
			tmp = *l; *l = *r; *r = tmp;
			++l;
		} while (l < r);
		return binarysort(lo, hi, originalr, compare);
	}

	/* ----------------------------------------------------------
	 * Normal case setup: a large array without obvious pattern.
	 * --------------------------------------------------------*/

	/* extra := a power of 2 ~= n/ln(n), less 1.
	   First find the smallest extra s.t. n < cutoff[extra] */
	for (extra = 0;
	     extra < sizeof(cutoff) / sizeof(cutoff[0]);
	     ++extra) {
		if (n < cutoff[extra])
			break;
		/* note that if we fall out of the loop, the value of
		   extra still makes *sense*, but may be smaller than
		   we would like (but the array has more than ~= 2**31
		   elements in this case!) */ 
	}
	/* Now k == extra - 1 + CUTOFFBASE.  The smallest value k can
	   have is CUTOFFBASE-1, so
	   assert MINSIZE >= 2**(CUTOFFBASE-1) - 1 */
	extra = (1 << (extra - 1 + CUTOFFBASE)) - 1;
	/* assert extra > 0 and n >= extra */

	/* Swap that many values to the start of the array.  The
	   selection of elements is pseudo-random, but the same on
	   every run (this is intentional! timing algorithm changes is
	   a pain if timing varies across runs).  */
	{
		unsigned int seed = n / extra;  /* arbitrary */
		unsigned int i;
		for (i = 0; i < (unsigned)extra; ++i) {
			/* j := random int in [i, n) */
			unsigned int j;
			seed = seed * 69069 + 7;
			j = i + seed % (n - i);
			tmp = lo[i]; lo[i] = lo[j]; lo[j] = tmp;
		}
	}

	/* Recursively sort the preselected pivots. */
	if (samplesortslice(lo, lo + extra, compare) < 0)
		goto fail;

	top = 0;          /* index of available stack slot */
	lo += extra;      /* point to first unknown */
	extraOnRight = 0; /* the PPs are at the left end */

	/* ----------------------------------------------------------
	 * Partition [lo, hi), and repeat until out of work.
	 * --------------------------------------------------------*/
	for (;;) {
		/* assert lo <= hi, so n >= 0 */
		n = hi - lo;

		/* We may not want, or may not be able, to partition:
		   If n is small, it's quicker to insert.
		   If extra is 0, we're out of pivots, and *must* use
		   another method.
		*/
		if (n < MINPARTITIONSIZE || extra == 0) {
			if (n >= MINSIZE) {
				/* assert extra == 0
				   This is rare, since the average size
				   of a final block is only about
				   ln(original n). */
				if (samplesortslice(lo, hi, compare) < 0)
					goto fail;
			}
			else {
				/* Binary insertion should be quicker,
				   and we can take advantage of the PPs
				   already being sorted. */
				if (extraOnRight && extra) {
					/* swap the PPs to the left end */
					k = extra;
					do {
						tmp = *lo;
						*lo = *hi;
						*hi = tmp;
						++lo; ++hi;
					} while (--k);
				}
				if (binarysort(lo - extra, hi, lo,
					       compare) < 0)
					goto fail;
			}

			/* Find another slice to work on. */
			if (--top < 0)
				break;   /* no more -- done! */
			lo = stack[top].lo;
			hi = stack[top].hi;
			extra = stack[top].extra;
			extraOnRight = 0;
			if (extra < 0) {
				extraOnRight = 1;
				extra = -extra;
			}
			continue;
		}

		/* Pretend the PPs are indexed 0, 1, ..., extra-1.
		   Then our preselected pivot is at (extra-1)/2, and we
		   want to move the PPs before that to the left end of
		   the slice, and the PPs after that to the right end.
		   The following section changes extra, lo, hi, and the
		   slice such that:
		   [lo-extra, lo) contains the smaller PPs.
		   *lo == our PP.
		   (lo, hi) contains the unknown elements.
		   [hi, hi+extra) contains the larger PPs.
		*/
		k = extra >>= 1;  /* num PPs to move */ 
		if (extraOnRight) {
			/* Swap the smaller PPs to the left end.
			   Note that this loop actually moves k+1 items:
			   the last is our PP */
			do {
				tmp = *lo; *lo = *hi; *hi = tmp;
				++lo; ++hi;
			} while (k--);
		}
		else {
			/* Swap the larger PPs to the right end. */
			while (k--) {
				--lo; --hi;
				tmp = *lo; *lo = *hi; *hi = tmp;
			}
		}
		--lo;   /* *lo is now our PP */
		pivot = *lo;

		/* Now an almost-ordinary quicksort partition step.
		   Note that most of the time is spent here!
		   Only odd thing is that we partition into < and >=,
		   instead of the usual <= and >=.  This helps when
		   there are lots of duplicates of different values,
		   because it eventually tends to make subfiles
		   "pure" (all duplicates), and we special-case for
		   duplicates later. */
		l = lo + 1;
		r = hi - 1;
		/* assert lo < l < r < hi (small n weeded out above) */

		do {
			/* slide l right, looking for key >= pivot */
			do {
				SETK(*l, pivot);
				if (k < 0)
					++l;
				else
					break;
			} while (l < r);

			/* slide r left, looking for key < pivot */
			while (l < r) {
				register PyObject *rval = *r--;
				SETK(rval, pivot);
				if (k < 0) {
					/* swap and advance */
					r[1] = *l;
					*l++ = rval;
					break;
				}
			}

		} while (l < r);

		/* assert lo < r <= l < hi
		   assert r == l or r+1 == l
		   everything to the left of l is < pivot, and
		   everything to the right of r is >= pivot */

		if (l == r) {
			SETK(*r, pivot);
			if (k < 0)
				++l;
			else
				--r;
		}
		/* assert lo <= r and r+1 == l and l <= hi
		   assert r == lo or a[r] < pivot
		   assert a[lo] is pivot
		   assert l == hi or a[l] >= pivot
		   Swap the pivot into "the middle", so we can henceforth
		   ignore it.
		*/
		*lo = *r;
		*r = pivot;

		/* The following is true now, & will be preserved:
		   All in [lo,r) are < pivot
		   All in [r,l) == pivot (& so can be ignored)
		   All in [l,hi) are >= pivot */

		/* Check for duplicates of the pivot.  One compare is
		   wasted if there are no duplicates, but can win big
		   when there are.
		   Tricky: we're sticking to "<" compares, so deduce
		   equality indirectly.  We know pivot <= *l, so they're
		   equal iff not pivot < *l.
		*/
		while (l < hi) {
			/* pivot <= *l known */
			SETK(pivot, *l);
			if (k < 0)
				break;
			else
				/* <= and not < implies == */
				++l;
		}

		/* assert lo <= r < l <= hi
		   Partitions are [lo, r) and [l, hi) */

		/* push fattest first; remember we still have extra PPs
		   to the left of the left chunk and to the right of
		   the right chunk! */
		/* assert top < STACKSIZE */
		if (r - lo <= hi - l) {
			/* second is bigger */
			stack[top].lo = l;
			stack[top].hi = hi;
			stack[top].extra = -extra;
			hi = r;
			extraOnRight = 0;
		}
		else {
			/* first is bigger */
			stack[top].lo = lo;
			stack[top].hi = r;
			stack[top].extra = extra;
			lo = l;
			extraOnRight = 1;
		}
		++top;

	}   /* end of partitioning loop */

	return 0;

 fail:
	return -1;
}

#undef SETK

staticforward PyTypeObject immutable_list_type;

static PyObject *
listsort(self, args)
	PyListObject *self;
	PyObject *args;
{
	int err;
	PyObject *compare = NULL;

	if (args != NULL) {
		if (!PyArg_ParseTuple(args, "|O:sort", &compare))
			return NULL;
	}
	self->ob_type = &immutable_list_type;
	err = samplesortslice(self->ob_item,
			      self->ob_item + self->ob_size,
			      compare);
	self->ob_type = &PyList_Type;
	if (err < 0)
		return NULL;
	Py_INCREF(Py_None);
	return Py_None;
}

int
PyList_Sort(v)
	PyObject *v;
{
	if (v == NULL || !PyList_Check(v)) {
		PyErr_BadInternalCall();
		return -1;
	}
	v = listsort((PyListObject *)v, (PyObject *)NULL);
	if (v == NULL)
		return -1;
	Py_DECREF(v);
	return 0;
}

static PyObject *
listreverse(self, args)
	PyListObject *self;
	PyObject *args;
{
	register PyObject **p, **q;
	register PyObject *tmp;
	
	if (!PyArg_ParseTuple(args, ":reverse"))
		return NULL;

	if (self->ob_size > 1) {
		for (p = self->ob_item, q = self->ob_item + self->ob_size - 1;
						p < q; p++, q--) {
			tmp = *p;
			*p = *q;
			*q = tmp;
		}
	}
	
	Py_INCREF(Py_None);
	return Py_None;
}

int
PyList_Reverse(v)
	PyObject *v;
{
	if (v == NULL || !PyList_Check(v)) {
		PyErr_BadInternalCall();
		return -1;
	}
	v = listreverse((PyListObject *)v, (PyObject *)NULL);
	if (v == NULL)
		return -1;
	Py_DECREF(v);
	return 0;
}

PyObject *
PyList_AsTuple(v)
	PyObject *v;
{
	PyObject *w;
	PyObject **p;
	int n;
	if (v == NULL || !PyList_Check(v)) {
		PyErr_BadInternalCall();
		return NULL;
	}
	n = ((PyListObject *)v)->ob_size;
	w = PyTuple_New(n);
	if (w == NULL)
		return NULL;
	p = ((PyTupleObject *)w)->ob_item;
	memcpy((ANY *)p,
	       (ANY *)((PyListObject *)v)->ob_item,
	       n*sizeof(PyObject *));
	while (--n >= 0) {
		Py_INCREF(*p);
		p++;
	}
	return w;
}

static PyObject *
listindex(self, args)
	PyListObject *self;
	PyObject *args;
{
	int i;
	PyObject *v;

	if (!PyArg_ParseTuple_Compat1(args, "O:index", &v))
		return NULL;
	for (i = 0; i < self->ob_size; i++) {
		if (PyObject_Compare(self->ob_item[i], v) == 0)
			return PyInt_FromLong((long)i);
		if (PyErr_Occurred())
			return NULL;
	}
	PyErr_SetString(PyExc_ValueError, "list.index(x): x not in list");
	return NULL;
}

static PyObject *
listcount(self, args)
	PyListObject *self;
	PyObject *args;
{
	int count = 0;
	int i;
	PyObject *v;

	if (!PyArg_ParseTuple_Compat1(args, "O:count", &v))
		return NULL;
	for (i = 0; i < self->ob_size; i++) {
		if (PyObject_Compare(self->ob_item[i], v) == 0)
			count++;
		if (PyErr_Occurred())
			return NULL;
	}
	return PyInt_FromLong((long)count);
}

static PyObject *
listremove(self, args)
	PyListObject *self;
	PyObject *args;
{
	int i;
	PyObject *v;

	if (!PyArg_ParseTuple_Compat1(args, "O:remove", &v))
		return NULL;
	for (i = 0; i < self->ob_size; i++) {
		if (PyObject_Compare(self->ob_item[i], v) == 0) {
			if (list_ass_slice(self, i, i+1,
					   (PyObject *)NULL) != 0)
				return NULL;
			Py_INCREF(Py_None);
			return Py_None;
		}
		if (PyErr_Occurred())
			return NULL;
	}
	PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
	return NULL;
}

static char append_doc[] =
"L.append(object) -- append object to end";
static char extend_doc[] =
"L.extend(list) -- extend list by appending list elements";
static char insert_doc[] =
"L.insert(index, object) -- insert object before index";
static char pop_doc[] =
"L.pop([index]) -> item -- remove and return item at index (default last)";
static char remove_doc[] =
"L.remove(value) -- remove first occurrence of value";
static char index_doc[] =
"L.index(value) -> integer -- return index of first occurrence of value";
static char count_doc[] =
"L.count(value) -> integer -- return number of occurrences of value";
static char reverse_doc[] =
"L.reverse() -- reverse *IN PLACE*";
static char sort_doc[] =
"L.sort([cmpfunc]) -- sort *IN PLACE*; if given, cmpfunc(x, y) -> -1, 0, 1";

static PyMethodDef list_methods[] = {
	{"append",	(PyCFunction)listappend, 1, append_doc},
	{"insert",	(PyCFunction)listinsert, 1, insert_doc},
	{"extend",      (PyCFunction)listextend, 1, extend_doc},
	{"pop",		(PyCFunction)listpop, 1, pop_doc},
	{"remove",	(PyCFunction)listremove, 1, remove_doc},
	{"index",	(PyCFunction)listindex, 1, index_doc},
	{"count",	(PyCFunction)listcount, 1, count_doc},
	{"reverse",	(PyCFunction)listreverse, 1, reverse_doc},
	{"sort",	(PyCFunction)listsort, 1, sort_doc},
	{NULL,		NULL}		/* sentinel */
};

static PyObject *
list_getattr(f, name)
	PyListObject *f;
	char *name;
{
	return Py_FindMethod(list_methods, (PyObject *)f, name);
}

static PySequenceMethods list_as_sequence = {
	(inquiry)list_length, /*sq_length*/
	(binaryfunc)list_concat, /*sq_concat*/
	(intargfunc)list_repeat, /*sq_repeat*/
	(intargfunc)list_item, /*sq_item*/
	(intintargfunc)list_slice, /*sq_slice*/
	(intobjargproc)list_ass_item, /*sq_ass_item*/
	(intintobjargproc)list_ass_slice, /*sq_ass_slice*/
	(objobjproc)list_contains, /*sq_contains*/
};

PyTypeObject PyList_Type = {
	PyObject_HEAD_INIT(&PyType_Type)
	0,
	"list",
	sizeof(PyListObject),
	0,
	(destructor)list_dealloc, /*tp_dealloc*/
	(printfunc)list_print, /*tp_print*/
	(getattrfunc)list_getattr, /*tp_getattr*/
	0,		/*tp_setattr*/
	(cmpfunc)list_compare, /*tp_compare*/
	(reprfunc)list_repr, /*tp_repr*/
	0,		/*tp_as_number*/
	&list_as_sequence,	/*tp_as_sequence*/
	0,		/*tp_as_mapping*/
	0,		/*tp_hash*/
	0,		/*tp_call*/
	0,		/*tp_str*/
	0,		/*tp_getattro*/
	0,		/*tp_setattro*/
	0,		/*tp_as_buffer*/
	Py_TPFLAGS_DEFAULT,	/*tp_flags*/
};


/* During a sort, we really can't have anyone modifying the list; it could
   cause core dumps.  Thus, we substitute a dummy type that raises an
   explanatory exception when a modifying operation is used.  Caveat:
   comparisons may behave differently; but I guess it's a bad idea anyway to
   compare a list that's being sorted... */

static PyObject *
immutable_list_op(/*No args!*/)
{
	PyErr_SetString(PyExc_TypeError,
			"a list cannot be modified while it is being sorted");
	return NULL;
}

static PyMethodDef immutable_list_methods[] = {
	{"append",	(PyCFunction)immutable_list_op},
	{"insert",	(PyCFunction)immutable_list_op},
	{"remove",	(PyCFunction)immutable_list_op},
	{"index",	(PyCFunction)listindex},
	{"count",	(PyCFunction)listcount},
	{"reverse",	(PyCFunction)immutable_list_op},
	{"sort",	(PyCFunction)immutable_list_op},
	{NULL,		NULL}		/* sentinel */
};

static PyObject *
immutable_list_getattr(f, name)
	PyListObject *f;
	char *name;
{
	return Py_FindMethod(immutable_list_methods, (PyObject *)f, name);
}

static int
immutable_list_ass(/*No args!*/)
{
	immutable_list_op();
	return -1;
}

static PySequenceMethods immutable_list_as_sequence = {
	(inquiry)list_length, /*sq_length*/
	(binaryfunc)list_concat, /*sq_concat*/
	(intargfunc)list_repeat, /*sq_repeat*/
	(intargfunc)list_item, /*sq_item*/
	(intintargfunc)list_slice, /*sq_slice*/
	(intobjargproc)immutable_list_ass, /*sq_ass_item*/
	(intintobjargproc)immutable_list_ass, /*sq_ass_slice*/
	(objobjproc)list_contains, /*sq_contains*/
};

static PyTypeObject immutable_list_type = {
	PyObject_HEAD_INIT(&PyType_Type)
	0,
	"list (immutable, during sort)",
	sizeof(PyListObject),
	0,
	0,		/*tp_dealloc*/ /* Cannot happen */
	(printfunc)list_print, /*tp_print*/
	(getattrfunc)immutable_list_getattr, /*tp_getattr*/
	0,		/*tp_setattr*/
	0,		/*tp_compare*/ /* Won't be called */
	(reprfunc)list_repr, /*tp_repr*/
	0,		/*tp_as_number*/
	&immutable_list_as_sequence,	/*tp_as_sequence*/
	0,		/*tp_as_mapping*/
	0,		/*tp_hash*/
	0,		/*tp_call*/
	0,		/*tp_str*/
	0,		/*tp_getattro*/
	0,		/*tp_setattro*/
	0,		/*tp_as_buffer*/
	Py_TPFLAGS_DEFAULT,	/*tp_flags*/
};