1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
|
/* Long (arbitrary precision) integer object implementation */
/* XXX The functional organization of this file is terrible */
#include "Python.h"
#include "longintrepr.h"
#include "structseq.h"
#include <float.h>
#include <ctype.h>
#include <stddef.h>
#ifndef NSMALLPOSINTS
#define NSMALLPOSINTS 257
#endif
#ifndef NSMALLNEGINTS
#define NSMALLNEGINTS 5
#endif
/* convert a PyLong of size 1, 0 or -1 to an sdigit */
#define MEDIUM_VALUE(x) (Py_SIZE(x) < 0 ? -(sdigit)(x)->ob_digit[0] : \
(Py_SIZE(x) == 0 ? (sdigit)0 : \
(sdigit)(x)->ob_digit[0]))
#define ABS(x) ((x) < 0 ? -(x) : (x))
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
/* Small integers are preallocated in this array so that they
can be shared.
The integers that are preallocated are those in the range
-NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive).
*/
static PyLongObject small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
#ifdef COUNT_ALLOCS
int quick_int_allocs, quick_neg_int_allocs;
#endif
static PyObject *
get_small_int(sdigit ival)
{
PyObject *v = (PyObject*)(small_ints + ival + NSMALLNEGINTS);
Py_INCREF(v);
#ifdef COUNT_ALLOCS
if (ival >= 0)
quick_int_allocs++;
else
quick_neg_int_allocs++;
#endif
return v;
}
#define CHECK_SMALL_INT(ival) \
do if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { \
return get_small_int((sdigit)ival); \
} while(0)
static PyLongObject *
maybe_small_long(PyLongObject *v)
{
if (v && ABS(Py_SIZE(v)) <= 1) {
sdigit ival = MEDIUM_VALUE(v);
if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
Py_DECREF(v);
return (PyLongObject *)get_small_int(ival);
}
}
return v;
}
#else
#define CHECK_SMALL_INT(ival)
#define maybe_small_long(val) (val)
#endif
/* If a freshly-allocated long is already shared, it must
be a small integer, so negating it must go to PyLong_FromLong */
#define NEGATE(x) \
do if (Py_REFCNT(x) == 1) Py_SIZE(x) = -Py_SIZE(x); \
else { PyObject* tmp=PyLong_FromLong(-MEDIUM_VALUE(x)); \
Py_DECREF(x); (x) = (PyLongObject*)tmp; } \
while(0)
/* For long multiplication, use the O(N**2) school algorithm unless
* both operands contain more than KARATSUBA_CUTOFF digits (this
* being an internal Python long digit, in base BASE).
*/
#define KARATSUBA_CUTOFF 70
#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
/* For exponentiation, use the binary left-to-right algorithm
* unless the exponent contains more than FIVEARY_CUTOFF digits.
* In that case, do 5 bits at a time. The potential drawback is that
* a table of 2**5 intermediate results is computed.
*/
#define FIVEARY_CUTOFF 8
#undef MIN
#undef MAX
#define MAX(x, y) ((x) < (y) ? (y) : (x))
#define MIN(x, y) ((x) > (y) ? (y) : (x))
#define SIGCHECK(PyTryBlock) \
if (PyErr_CheckSignals()) PyTryBlock \
/* Normalize (remove leading zeros from) a long int object.
Doesn't attempt to free the storage--in most cases, due to the nature
of the algorithms used, this could save at most be one word anyway. */
static PyLongObject *
long_normalize(register PyLongObject *v)
{
Py_ssize_t j = ABS(Py_SIZE(v));
Py_ssize_t i = j;
while (i > 0 && v->ob_digit[i-1] == 0)
--i;
if (i != j)
Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i;
return v;
}
/* Allocate a new long int object with size digits.
Return NULL and set exception if we run out of memory. */
#define MAX_LONG_DIGITS \
((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit))
PyLongObject *
_PyLong_New(Py_ssize_t size)
{
PyLongObject *result;
/* Number of bytes needed is: offsetof(PyLongObject, ob_digit) +
sizeof(digit)*size. Previous incarnations of this code used
sizeof(PyVarObject) instead of the offsetof, but this risks being
incorrect in the presence of padding between the PyVarObject header
and the digits. */
if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
PyErr_SetString(PyExc_OverflowError,
"too many digits in integer");
return NULL;
}
result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) +
size*sizeof(digit));
if (!result) {
PyErr_NoMemory();
return NULL;
}
return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size);
}
PyObject *
_PyLong_Copy(PyLongObject *src)
{
PyLongObject *result;
Py_ssize_t i;
assert(src != NULL);
i = Py_SIZE(src);
if (i < 0)
i = -(i);
if (i < 2) {
sdigit ival = src->ob_digit[0];
if (Py_SIZE(src) < 0)
ival = -ival;
CHECK_SMALL_INT(ival);
}
result = _PyLong_New(i);
if (result != NULL) {
Py_SIZE(result) = Py_SIZE(src);
while (--i >= 0)
result->ob_digit[i] = src->ob_digit[i];
}
return (PyObject *)result;
}
/* Create a new long int object from a C long int */
PyObject *
PyLong_FromLong(long ival)
{
PyLongObject *v;
unsigned long abs_ival;
unsigned long t; /* unsigned so >> doesn't propagate sign bit */
int ndigits = 0;
int sign = 1;
CHECK_SMALL_INT(ival);
if (ival < 0) {
/* negate: can't write this as abs_ival = -ival since that
invokes undefined behaviour when ival is LONG_MIN */
abs_ival = 0U-(unsigned long)ival;
sign = -1;
}
else {
abs_ival = (unsigned long)ival;
}
/* Fast path for single-digit ints */
if (!(abs_ival >> PyLong_SHIFT)) {
v = _PyLong_New(1);
if (v) {
Py_SIZE(v) = sign;
v->ob_digit[0] = Py_SAFE_DOWNCAST(
abs_ival, unsigned long, digit);
}
return (PyObject*)v;
}
#if PyLong_SHIFT==15
/* 2 digits */
if (!(abs_ival >> 2*PyLong_SHIFT)) {
v = _PyLong_New(2);
if (v) {
Py_SIZE(v) = 2*sign;
v->ob_digit[0] = Py_SAFE_DOWNCAST(
abs_ival & PyLong_MASK, unsigned long, digit);
v->ob_digit[1] = Py_SAFE_DOWNCAST(
abs_ival >> PyLong_SHIFT, unsigned long, digit);
}
return (PyObject*)v;
}
#endif
/* Larger numbers: loop to determine number of digits */
t = abs_ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = ndigits*sign;
t = abs_ival;
while (t) {
*p++ = Py_SAFE_DOWNCAST(
t & PyLong_MASK, unsigned long, digit);
t >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Create a new long int object from a C unsigned long int */
PyObject *
PyLong_FromUnsignedLong(unsigned long ival)
{
PyLongObject *v;
unsigned long t;
int ndigits = 0;
if (ival < PyLong_BASE)
return PyLong_FromLong(ival);
/* Count the number of Python digits. */
t = (unsigned long)ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = ndigits;
while (ival) {
*p++ = (digit)(ival & PyLong_MASK);
ival >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Create a new long int object from a C double */
PyObject *
PyLong_FromDouble(double dval)
{
PyLongObject *v;
double frac;
int i, ndig, expo, neg;
neg = 0;
if (Py_IS_INFINITY(dval)) {
PyErr_SetString(PyExc_OverflowError,
"cannot convert float infinity to integer");
return NULL;
}
if (Py_IS_NAN(dval)) {
PyErr_SetString(PyExc_ValueError,
"cannot convert float NaN to integer");
return NULL;
}
if (dval < 0.0) {
neg = 1;
dval = -dval;
}
frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
if (expo <= 0)
return PyLong_FromLong(0L);
ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
v = _PyLong_New(ndig);
if (v == NULL)
return NULL;
frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
for (i = ndig; --i >= 0; ) {
digit bits = (digit)frac;
v->ob_digit[i] = bits;
frac = frac - (double)bits;
frac = ldexp(frac, PyLong_SHIFT);
}
if (neg)
Py_SIZE(v) = -(Py_SIZE(v));
return (PyObject *)v;
}
/* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
* anything about what happens when a signed integer operation overflows,
* and some compilers think they're doing you a favor by being "clever"
* then. The bit pattern for the largest postive signed long is
* (unsigned long)LONG_MAX, and for the smallest negative signed long
* it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
* However, some other compilers warn about applying unary minus to an
* unsigned operand. Hence the weird "0-".
*/
#define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN)
#define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN)
/* Get a C long int from a long int object.
Returns -1 and sets an error condition if overflow occurs. */
long
PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
{
/* This version by Tim Peters */
register PyLongObject *v;
unsigned long x, prev;
long res;
Py_ssize_t i;
int sign;
int do_decref = 0; /* if nb_int was called */
*overflow = 0;
if (vv == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (!PyLong_Check(vv)) {
PyNumberMethods *nb;
nb = vv->ob_type->tp_as_number;
if (nb == NULL || nb->nb_int == NULL) {
PyErr_SetString(PyExc_TypeError,
"an integer is required");
return -1;
}
vv = (*nb->nb_int) (vv);
if (vv == NULL)
return -1;
do_decref = 1;
if (!PyLong_Check(vv)) {
Py_DECREF(vv);
PyErr_SetString(PyExc_TypeError,
"nb_int should return int object");
return -1;
}
}
res = -1;
v = (PyLongObject *)vv;
i = Py_SIZE(v);
switch (i) {
case -1:
res = -(sdigit)v->ob_digit[0];
break;
case 0:
res = 0;
break;
case 1:
res = v->ob_digit[0];
break;
default:
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -(i);
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
*overflow = sign;
goto exit;
}
}
/* Haven't lost any bits, but casting to long requires extra
* care (see comment above).
*/
if (x <= (unsigned long)LONG_MAX) {
res = (long)x * sign;
}
else if (sign < 0 && x == PY_ABS_LONG_MIN) {
res = LONG_MIN;
}
else {
*overflow = sign;
/* res is already set to -1 */
}
}
exit:
if (do_decref) {
Py_DECREF(vv);
}
return res;
}
long
PyLong_AsLong(PyObject *obj)
{
int overflow;
long result = PyLong_AsLongAndOverflow(obj, &overflow);
if (overflow) {
/* XXX: could be cute and give a different
message for overflow == -1 */
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C long");
}
return result;
}
/* Get a Py_ssize_t from a long int object.
Returns -1 and sets an error condition if overflow occurs. */
Py_ssize_t
PyLong_AsSsize_t(PyObject *vv) {
register PyLongObject *v;
size_t x, prev;
Py_ssize_t i;
int sign;
if (vv == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (!PyLong_Check(vv)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return -1;
}
v = (PyLongObject *)vv;
i = Py_SIZE(v);
switch (i) {
case -1: return -(sdigit)v->ob_digit[0];
case 0: return 0;
case 1: return v->ob_digit[0];
}
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -(i);
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev)
goto overflow;
}
/* Haven't lost any bits, but casting to a signed type requires
* extra care (see comment above).
*/
if (x <= (size_t)PY_SSIZE_T_MAX) {
return (Py_ssize_t)x * sign;
}
else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
return PY_SSIZE_T_MIN;
}
/* else overflow */
overflow:
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C ssize_t");
return -1;
}
/* Get a C unsigned long int from a long int object.
Returns -1 and sets an error condition if overflow occurs. */
unsigned long
PyLong_AsUnsignedLong(PyObject *vv)
{
register PyLongObject *v;
unsigned long x, prev;
Py_ssize_t i;
if (vv == NULL) {
PyErr_BadInternalCall();
return (unsigned long)-1;
}
if (!PyLong_Check(vv)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return (unsigned long)-1;
}
v = (PyLongObject *)vv;
i = Py_SIZE(v);
x = 0;
if (i < 0) {
PyErr_SetString(PyExc_OverflowError,
"can't convert negative value to unsigned int");
return (unsigned long) -1;
}
switch (i) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
PyErr_SetString(PyExc_OverflowError,
"python int too large to convert to C unsigned long");
return (unsigned long) -1;
}
}
return x;
}
/* Get a C unsigned long int from a long int object.
Returns -1 and sets an error condition if overflow occurs. */
size_t
PyLong_AsSize_t(PyObject *vv)
{
register PyLongObject *v;
size_t x, prev;
Py_ssize_t i;
if (vv == NULL) {
PyErr_BadInternalCall();
return (size_t) -1;
}
if (!PyLong_Check(vv)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return (size_t)-1;
}
v = (PyLongObject *)vv;
i = Py_SIZE(v);
x = 0;
if (i < 0) {
PyErr_SetString(PyExc_OverflowError,
"can't convert negative value to size_t");
return (size_t) -1;
}
switch (i) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C size_t");
return (unsigned long) -1;
}
}
return x;
}
/* Get a C unsigned long int from a long int object, ignoring the high bits.
Returns -1 and sets an error condition if an error occurs. */
static unsigned long
_PyLong_AsUnsignedLongMask(PyObject *vv)
{
register PyLongObject *v;
unsigned long x;
Py_ssize_t i;
int sign;
if (vv == NULL || !PyLong_Check(vv)) {
PyErr_BadInternalCall();
return (unsigned long) -1;
}
v = (PyLongObject *)vv;
i = Py_SIZE(v);
switch (i) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -i;
}
while (--i >= 0) {
x = (x << PyLong_SHIFT) | v->ob_digit[i];
}
return x * sign;
}
unsigned long
PyLong_AsUnsignedLongMask(register PyObject *op)
{
PyNumberMethods *nb;
PyLongObject *lo;
unsigned long val;
if (op && PyLong_Check(op))
return _PyLong_AsUnsignedLongMask(op);
if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
nb->nb_int == NULL) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return (unsigned long)-1;
}
lo = (PyLongObject*) (*nb->nb_int) (op);
if (lo == NULL)
return (unsigned long)-1;
if (PyLong_Check(lo)) {
val = _PyLong_AsUnsignedLongMask((PyObject *)lo);
Py_DECREF(lo);
if (PyErr_Occurred())
return (unsigned long)-1;
return val;
}
else
{
Py_DECREF(lo);
PyErr_SetString(PyExc_TypeError,
"nb_int should return int object");
return (unsigned long)-1;
}
}
int
_PyLong_Sign(PyObject *vv)
{
PyLongObject *v = (PyLongObject *)vv;
assert(v != NULL);
assert(PyLong_Check(v));
return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
}
size_t
_PyLong_NumBits(PyObject *vv)
{
PyLongObject *v = (PyLongObject *)vv;
size_t result = 0;
Py_ssize_t ndigits;
assert(v != NULL);
assert(PyLong_Check(v));
ndigits = ABS(Py_SIZE(v));
assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
if (ndigits > 0) {
digit msd = v->ob_digit[ndigits - 1];
result = (ndigits - 1) * PyLong_SHIFT;
if (result / PyLong_SHIFT != (size_t)(ndigits - 1))
goto Overflow;
do {
++result;
if (result == 0)
goto Overflow;
msd >>= 1;
} while (msd);
}
return result;
Overflow:
PyErr_SetString(PyExc_OverflowError, "int has too many bits "
"to express in a platform size_t");
return (size_t)-1;
}
PyObject *
_PyLong_FromByteArray(const unsigned char* bytes, size_t n,
int little_endian, int is_signed)
{
const unsigned char* pstartbyte;/* LSB of bytes */
int incr; /* direction to move pstartbyte */
const unsigned char* pendbyte; /* MSB of bytes */
size_t numsignificantbytes; /* number of bytes that matter */
Py_ssize_t ndigits; /* number of Python long digits */
PyLongObject* v; /* result */
Py_ssize_t idigit = 0; /* next free index in v->ob_digit */
if (n == 0)
return PyLong_FromLong(0L);
if (little_endian) {
pstartbyte = bytes;
pendbyte = bytes + n - 1;
incr = 1;
}
else {
pstartbyte = bytes + n - 1;
pendbyte = bytes;
incr = -1;
}
if (is_signed)
is_signed = *pendbyte >= 0x80;
/* Compute numsignificantbytes. This consists of finding the most
significant byte. Leading 0 bytes are insignficant if the number
is positive, and leading 0xff bytes if negative. */
{
size_t i;
const unsigned char* p = pendbyte;
const int pincr = -incr; /* search MSB to LSB */
const unsigned char insignficant = is_signed ? 0xff : 0x00;
for (i = 0; i < n; ++i, p += pincr) {
if (*p != insignficant)
break;
}
numsignificantbytes = n - i;
/* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
actually has 2 significant bytes. OTOH, 0xff0001 ==
-0x00ffff, so we wouldn't *need* to bump it there; but we
do for 0xffff = -0x0001. To be safe without bothering to
check every case, bump it regardless. */
if (is_signed && numsignificantbytes < n)
++numsignificantbytes;
}
/* How many Python long digits do we need? We have
8*numsignificantbytes bits, and each Python long digit has
PyLong_SHIFT bits, so it's the ceiling of the quotient. */
/* catch overflow before it happens */
if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
PyErr_SetString(PyExc_OverflowError,
"byte array too long to convert to int");
return NULL;
}
ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
v = _PyLong_New(ndigits);
if (v == NULL)
return NULL;
/* Copy the bits over. The tricky parts are computing 2's-comp on
the fly for signed numbers, and dealing with the mismatch between
8-bit bytes and (probably) 15-bit Python digits.*/
{
size_t i;
twodigits carry = 1; /* for 2's-comp calculation */
twodigits accum = 0; /* sliding register */
unsigned int accumbits = 0; /* number of bits in accum */
const unsigned char* p = pstartbyte;
for (i = 0; i < numsignificantbytes; ++i, p += incr) {
twodigits thisbyte = *p;
/* Compute correction for 2's comp, if needed. */
if (is_signed) {
thisbyte = (0xff ^ thisbyte) + carry;
carry = thisbyte >> 8;
thisbyte &= 0xff;
}
/* Because we're going LSB to MSB, thisbyte is
more significant than what's already in accum,
so needs to be prepended to accum. */
accum |= (twodigits)thisbyte << accumbits;
accumbits += 8;
if (accumbits >= PyLong_SHIFT) {
/* There's enough to fill a Python digit. */
assert(idigit < ndigits);
v->ob_digit[idigit] = (digit)(accum &
PyLong_MASK);
++idigit;
accum >>= PyLong_SHIFT;
accumbits -= PyLong_SHIFT;
assert(accumbits < PyLong_SHIFT);
}
}
assert(accumbits < PyLong_SHIFT);
if (accumbits) {
assert(idigit < ndigits);
v->ob_digit[idigit] = (digit)accum;
++idigit;
}
}
Py_SIZE(v) = is_signed ? -idigit : idigit;
return (PyObject *)long_normalize(v);
}
int
_PyLong_AsByteArray(PyLongObject* v,
unsigned char* bytes, size_t n,
int little_endian, int is_signed)
{
Py_ssize_t i; /* index into v->ob_digit */
Py_ssize_t ndigits; /* |v->ob_size| */
twodigits accum; /* sliding register */
unsigned int accumbits; /* # bits in accum */
int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */
digit carry; /* for computing 2's-comp */
size_t j; /* # bytes filled */
unsigned char* p; /* pointer to next byte in bytes */
int pincr; /* direction to move p */
assert(v != NULL && PyLong_Check(v));
if (Py_SIZE(v) < 0) {
ndigits = -(Py_SIZE(v));
if (!is_signed) {
PyErr_SetString(PyExc_OverflowError,
"can't convert negative int to unsigned");
return -1;
}
do_twos_comp = 1;
}
else {
ndigits = Py_SIZE(v);
do_twos_comp = 0;
}
if (little_endian) {
p = bytes;
pincr = 1;
}
else {
p = bytes + n - 1;
pincr = -1;
}
/* Copy over all the Python digits.
It's crucial that every Python digit except for the MSD contribute
exactly PyLong_SHIFT bits to the total, so first assert that the long is
normalized. */
assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
j = 0;
accum = 0;
accumbits = 0;
carry = do_twos_comp ? 1 : 0;
for (i = 0; i < ndigits; ++i) {
digit thisdigit = v->ob_digit[i];
if (do_twos_comp) {
thisdigit = (thisdigit ^ PyLong_MASK) + carry;
carry = thisdigit >> PyLong_SHIFT;
thisdigit &= PyLong_MASK;
}
/* Because we're going LSB to MSB, thisdigit is more
significant than what's already in accum, so needs to be
prepended to accum. */
accum |= (twodigits)thisdigit << accumbits;
/* The most-significant digit may be (probably is) at least
partly empty. */
if (i == ndigits - 1) {
/* Count # of sign bits -- they needn't be stored,
* although for signed conversion we need later to
* make sure at least one sign bit gets stored. */
digit s = do_twos_comp ? thisdigit ^ PyLong_MASK :
thisdigit;
while (s != 0) {
s >>= 1;
accumbits++;
}
}
else
accumbits += PyLong_SHIFT;
/* Store as many bytes as possible. */
while (accumbits >= 8) {
if (j >= n)
goto Overflow;
++j;
*p = (unsigned char)(accum & 0xff);
p += pincr;
accumbits -= 8;
accum >>= 8;
}
}
/* Store the straggler (if any). */
assert(accumbits < 8);
assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */
if (accumbits > 0) {
if (j >= n)
goto Overflow;
++j;
if (do_twos_comp) {
/* Fill leading bits of the byte with sign bits
(appropriately pretending that the long had an
infinite supply of sign bits). */
accum |= (~(twodigits)0) << accumbits;
}
*p = (unsigned char)(accum & 0xff);
p += pincr;
}
else if (j == n && n > 0 && is_signed) {
/* The main loop filled the byte array exactly, so the code
just above didn't get to ensure there's a sign bit, and the
loop below wouldn't add one either. Make sure a sign bit
exists. */
unsigned char msb = *(p - pincr);
int sign_bit_set = msb >= 0x80;
assert(accumbits == 0);
if (sign_bit_set == do_twos_comp)
return 0;
else
goto Overflow;
}
/* Fill remaining bytes with copies of the sign bit. */
{
unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
for ( ; j < n; ++j, p += pincr)
*p = signbyte;
}
return 0;
Overflow:
PyErr_SetString(PyExc_OverflowError, "int too big to convert");
return -1;
}
/* Create a new long (or int) object from a C pointer */
PyObject *
PyLong_FromVoidPtr(void *p)
{
#ifndef HAVE_LONG_LONG
# error "PyLong_FromVoidPtr: sizeof(void*) > sizeof(long), but no long long"
#endif
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
# error "PyLong_FromVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
#endif
/* special-case null pointer */
if (!p)
return PyLong_FromLong(0);
return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)(Py_uintptr_t)p);
}
/* Get a C pointer from a long object (or an int object in some cases) */
void *
PyLong_AsVoidPtr(PyObject *vv)
{
/* This function will allow int or long objects. If vv is neither,
then the PyLong_AsLong*() functions will raise the exception:
PyExc_SystemError, "bad argument to internal function"
*/
#if SIZEOF_VOID_P <= SIZEOF_LONG
long x;
if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
x = PyLong_AsLong(vv);
else
x = PyLong_AsUnsignedLong(vv);
#else
#ifndef HAVE_LONG_LONG
# error "PyLong_AsVoidPtr: sizeof(void*) > sizeof(long), but no long long"
#endif
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
# error "PyLong_AsVoidPtr: sizeof(PY_LONG_LONG) < sizeof(void*)"
#endif
PY_LONG_LONG x;
if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
x = PyLong_AsLongLong(vv);
else
x = PyLong_AsUnsignedLongLong(vv);
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
if (x == -1 && PyErr_Occurred())
return NULL;
return (void *)x;
}
#ifdef HAVE_LONG_LONG
/* Initial PY_LONG_LONG support by Chris Herborth (chrish@qnx.com), later
* rewritten to use the newer PyLong_{As,From}ByteArray API.
*/
#define IS_LITTLE_ENDIAN (int)*(unsigned char*)&one
#define PY_ABS_LLONG_MIN (0-(unsigned PY_LONG_LONG)PY_LLONG_MIN)
/* Create a new long int object from a C PY_LONG_LONG int. */
PyObject *
PyLong_FromLongLong(PY_LONG_LONG ival)
{
PyLongObject *v;
unsigned PY_LONG_LONG abs_ival;
unsigned PY_LONG_LONG t; /* unsigned so >> doesn't propagate sign bit */
int ndigits = 0;
int negative = 0;
CHECK_SMALL_INT(ival);
if (ival < 0) {
/* avoid signed overflow on negation; see comments
in PyLong_FromLong above. */
abs_ival = (unsigned PY_LONG_LONG)(-1-ival) + 1;
negative = 1;
}
else {
abs_ival = (unsigned PY_LONG_LONG)ival;
}
/* Count the number of Python digits.
We used to pick 5 ("big enough for anything"), but that's a
waste of time and space given that 5*15 = 75 bits are rarely
needed. */
t = abs_ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = negative ? -ndigits : ndigits;
t = abs_ival;
while (t) {
*p++ = (digit)(t & PyLong_MASK);
t >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Create a new long int object from a C unsigned PY_LONG_LONG int. */
PyObject *
PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG ival)
{
PyLongObject *v;
unsigned PY_LONG_LONG t;
int ndigits = 0;
if (ival < PyLong_BASE)
return PyLong_FromLong((long)ival);
/* Count the number of Python digits. */
t = (unsigned PY_LONG_LONG)ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = ndigits;
while (ival) {
*p++ = (digit)(ival & PyLong_MASK);
ival >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Create a new long int object from a C Py_ssize_t. */
PyObject *
PyLong_FromSsize_t(Py_ssize_t ival)
{
PyLongObject *v;
size_t abs_ival;
size_t t; /* unsigned so >> doesn't propagate sign bit */
int ndigits = 0;
int negative = 0;
CHECK_SMALL_INT(ival);
if (ival < 0) {
/* avoid signed overflow when ival = SIZE_T_MIN */
abs_ival = (size_t)(-1-ival)+1;
negative = 1;
}
else {
abs_ival = (size_t)ival;
}
/* Count the number of Python digits. */
t = abs_ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = negative ? -ndigits : ndigits;
t = abs_ival;
while (t) {
*p++ = (digit)(t & PyLong_MASK);
t >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Create a new long int object from a C size_t. */
PyObject *
PyLong_FromSize_t(size_t ival)
{
PyLongObject *v;
size_t t;
int ndigits = 0;
if (ival < PyLong_BASE)
return PyLong_FromLong(ival);
/* Count the number of Python digits. */
t = ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = ndigits;
while (ival) {
*p++ = (digit)(ival & PyLong_MASK);
ival >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Get a C PY_LONG_LONG int from a long int object.
Return -1 and set an error if overflow occurs. */
PY_LONG_LONG
PyLong_AsLongLong(PyObject *vv)
{
PyLongObject *v;
PY_LONG_LONG bytes;
int one = 1;
int res;
if (vv == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (!PyLong_Check(vv)) {
PyNumberMethods *nb;
PyObject *io;
if ((nb = vv->ob_type->tp_as_number) == NULL ||
nb->nb_int == NULL) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return -1;
}
io = (*nb->nb_int) (vv);
if (io == NULL)
return -1;
if (PyLong_Check(io)) {
bytes = PyLong_AsLongLong(io);
Py_DECREF(io);
return bytes;
}
Py_DECREF(io);
PyErr_SetString(PyExc_TypeError, "integer conversion failed");
return -1;
}
v = (PyLongObject*)vv;
switch(Py_SIZE(v)) {
case -1: return -(sdigit)v->ob_digit[0];
case 0: return 0;
case 1: return v->ob_digit[0];
}
res = _PyLong_AsByteArray(
(PyLongObject *)vv, (unsigned char *)&bytes,
SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 1);
/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
if (res < 0)
return (PY_LONG_LONG)-1;
else
return bytes;
}
/* Get a C unsigned PY_LONG_LONG int from a long int object.
Return -1 and set an error if overflow occurs. */
unsigned PY_LONG_LONG
PyLong_AsUnsignedLongLong(PyObject *vv)
{
PyLongObject *v;
unsigned PY_LONG_LONG bytes;
int one = 1;
int res;
if (vv == NULL || !PyLong_Check(vv)) {
PyErr_BadInternalCall();
return (unsigned PY_LONG_LONG)-1;
}
v = (PyLongObject*)vv;
switch(Py_SIZE(v)) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
res = _PyLong_AsByteArray(
(PyLongObject *)vv, (unsigned char *)&bytes,
SIZEOF_LONG_LONG, IS_LITTLE_ENDIAN, 0);
/* Plan 9 can't handle PY_LONG_LONG in ? : expressions */
if (res < 0)
return (unsigned PY_LONG_LONG)res;
else
return bytes;
}
/* Get a C unsigned long int from a long int object, ignoring the high bits.
Returns -1 and sets an error condition if an error occurs. */
static unsigned PY_LONG_LONG
_PyLong_AsUnsignedLongLongMask(PyObject *vv)
{
register PyLongObject *v;
unsigned PY_LONG_LONG x;
Py_ssize_t i;
int sign;
if (vv == NULL || !PyLong_Check(vv)) {
PyErr_BadInternalCall();
return (unsigned long) -1;
}
v = (PyLongObject *)vv;
switch(Py_SIZE(v)) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
i = Py_SIZE(v);
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -i;
}
while (--i >= 0) {
x = (x << PyLong_SHIFT) | v->ob_digit[i];
}
return x * sign;
}
unsigned PY_LONG_LONG
PyLong_AsUnsignedLongLongMask(register PyObject *op)
{
PyNumberMethods *nb;
PyLongObject *lo;
unsigned PY_LONG_LONG val;
if (op && PyLong_Check(op))
return _PyLong_AsUnsignedLongLongMask(op);
if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
nb->nb_int == NULL) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return (unsigned PY_LONG_LONG)-1;
}
lo = (PyLongObject*) (*nb->nb_int) (op);
if (lo == NULL)
return (unsigned PY_LONG_LONG)-1;
if (PyLong_Check(lo)) {
val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo);
Py_DECREF(lo);
if (PyErr_Occurred())
return (unsigned PY_LONG_LONG)-1;
return val;
}
else
{
Py_DECREF(lo);
PyErr_SetString(PyExc_TypeError,
"nb_int should return int object");
return (unsigned PY_LONG_LONG)-1;
}
}
#undef IS_LITTLE_ENDIAN
/* Get a C long long int from a Python long or Python int object.
On overflow, returns -1 and sets *overflow to 1 or -1 depending
on the sign of the result. Otherwise *overflow is 0.
For other errors (e.g., type error), returns -1 and sets an error
condition.
*/
PY_LONG_LONG
PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
{
/* This version by Tim Peters */
register PyLongObject *v;
unsigned PY_LONG_LONG x, prev;
PY_LONG_LONG res;
Py_ssize_t i;
int sign;
int do_decref = 0; /* if nb_int was called */
*overflow = 0;
if (vv == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (!PyLong_Check(vv)) {
PyNumberMethods *nb;
nb = vv->ob_type->tp_as_number;
if (nb == NULL || nb->nb_int == NULL) {
PyErr_SetString(PyExc_TypeError,
"an integer is required");
return -1;
}
vv = (*nb->nb_int) (vv);
if (vv == NULL)
return -1;
do_decref = 1;
if (!PyLong_Check(vv)) {
Py_DECREF(vv);
PyErr_SetString(PyExc_TypeError,
"nb_int should return int object");
return -1;
}
}
res = -1;
v = (PyLongObject *)vv;
i = Py_SIZE(v);
switch (i) {
case -1:
res = -(sdigit)v->ob_digit[0];
break;
case 0:
res = 0;
break;
case 1:
res = v->ob_digit[0];
break;
default:
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -(i);
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) + v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
*overflow = sign;
goto exit;
}
}
/* Haven't lost any bits, but casting to long requires extra
* care (see comment above).
*/
if (x <= (unsigned PY_LONG_LONG)PY_LLONG_MAX) {
res = (PY_LONG_LONG)x * sign;
}
else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
res = PY_LLONG_MIN;
}
else {
*overflow = sign;
/* res is already set to -1 */
}
}
exit:
if (do_decref) {
Py_DECREF(vv);
}
return res;
}
#endif /* HAVE_LONG_LONG */
#define CHECK_BINOP(v,w) \
if (!PyLong_Check(v) || !PyLong_Check(w)) { \
Py_INCREF(Py_NotImplemented); \
return Py_NotImplemented; \
}
/* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d <
2**k if d is nonzero, else 0. */
static const unsigned char BitLengthTable[32] = {
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
};
static int
bits_in_digit(digit d)
{
int d_bits = 0;
while (d >= 32) {
d_bits += 6;
d >>= 6;
}
d_bits += (int)BitLengthTable[d];
return d_bits;
}
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
* is modified in place, by adding y to it. Carries are propagated as far as
* x[m-1], and the remaining carry (0 or 1) is returned.
*/
static digit
v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
{
Py_ssize_t i;
digit carry = 0;
assert(m >= n);
for (i = 0; i < n; ++i) {
carry += x[i] + y[i];
x[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
assert((carry & 1) == carry);
}
for (; carry && i < m; ++i) {
carry += x[i];
x[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
assert((carry & 1) == carry);
}
return carry;
}
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
* is modified in place, by subtracting y from it. Borrows are propagated as
* far as x[m-1], and the remaining borrow (0 or 1) is returned.
*/
static digit
v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
{
Py_ssize_t i;
digit borrow = 0;
assert(m >= n);
for (i = 0; i < n; ++i) {
borrow = x[i] - y[i] - borrow;
x[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1; /* keep only 1 sign bit */
}
for (; borrow && i < m; ++i) {
borrow = x[i] - borrow;
x[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1;
}
return borrow;
}
/* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put
* result in z[0:m], and return the d bits shifted out of the top.
*/
static digit
v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
{
Py_ssize_t i;
digit carry = 0;
assert(0 <= d && d < PyLong_SHIFT);
for (i=0; i < m; i++) {
twodigits acc = (twodigits)a[i] << d | carry;
z[i] = (digit)acc & PyLong_MASK;
carry = (digit)(acc >> PyLong_SHIFT);
}
return carry;
}
/* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put
* result in z[0:m], and return the d bits shifted out of the bottom.
*/
static digit
v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
{
Py_ssize_t i;
digit carry = 0;
digit mask = ((digit)1 << d) - 1U;
assert(0 <= d && d < PyLong_SHIFT);
for (i=m; i-- > 0;) {
twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
carry = (digit)acc & mask;
z[i] = (digit)(acc >> d);
}
return carry;
}
/* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
in pout, and returning the remainder. pin and pout point at the LSD.
It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
_PyLong_Format, but that should be done with great care since longs are
immutable. */
static digit
inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
{
twodigits rem = 0;
assert(n > 0 && n <= PyLong_MASK);
pin += size;
pout += size;
while (--size >= 0) {
digit hi;
rem = (rem << PyLong_SHIFT) | *--pin;
*--pout = hi = (digit)(rem / n);
rem -= (twodigits)hi * n;
}
return (digit)rem;
}
/* Divide a long integer by a digit, returning both the quotient
(as function result) and the remainder (through *prem).
The sign of a is ignored; n should not be zero. */
static PyLongObject *
divrem1(PyLongObject *a, digit n, digit *prem)
{
const Py_ssize_t size = ABS(Py_SIZE(a));
PyLongObject *z;
assert(n > 0 && n <= PyLong_MASK);
z = _PyLong_New(size);
if (z == NULL)
return NULL;
*prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
return long_normalize(z);
}
/* Convert a long integer to a base 10 string. Returns a new non-shared
string. (Return value is non-shared so that callers can modify the
returned value if necessary.) */
static PyObject *
long_to_decimal_string(PyObject *aa)
{
PyLongObject *scratch, *a;
PyObject *str;
Py_ssize_t size, strlen, size_a, i, j;
digit *pout, *pin, rem, tenpow;
Py_UNICODE *p;
int negative;
a = (PyLongObject *)aa;
if (a == NULL || !PyLong_Check(a)) {
PyErr_BadInternalCall();
return NULL;
}
size_a = ABS(Py_SIZE(a));
negative = Py_SIZE(a) < 0;
/* quick and dirty upper bound for the number of digits
required to express a in base _PyLong_DECIMAL_BASE:
#digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
But log2(a) < size_a * PyLong_SHIFT, and
log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
> 3 * _PyLong_DECIMAL_SHIFT
*/
if (size_a > PY_SSIZE_T_MAX / PyLong_SHIFT) {
PyErr_SetString(PyExc_OverflowError,
"long is too large to format");
return NULL;
}
/* the expression size_a * PyLong_SHIFT is now safe from overflow */
size = 1 + size_a * PyLong_SHIFT / (3 * _PyLong_DECIMAL_SHIFT);
scratch = _PyLong_New(size);
if (scratch == NULL)
return NULL;
/* convert array of base _PyLong_BASE digits in pin to an array of
base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
Volume 2 (3rd edn), section 4.4, Method 1b). */
pin = a->ob_digit;
pout = scratch->ob_digit;
size = 0;
for (i = size_a; --i >= 0; ) {
digit hi = pin[i];
for (j = 0; j < size; j++) {
twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
hi = (digit)(z / _PyLong_DECIMAL_BASE);
pout[j] = (digit)(z - (twodigits)hi *
_PyLong_DECIMAL_BASE);
}
while (hi) {
pout[size++] = hi % _PyLong_DECIMAL_BASE;
hi /= _PyLong_DECIMAL_BASE;
}
/* check for keyboard interrupt */
SIGCHECK({
Py_DECREF(scratch);
return NULL;
})
}
/* pout should have at least one digit, so that the case when a = 0
works correctly */
if (size == 0)
pout[size++] = 0;
/* calculate exact length of output string, and allocate */
strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
tenpow = 10;
rem = pout[size-1];
while (rem >= tenpow) {
tenpow *= 10;
strlen++;
}
str = PyUnicode_FromUnicode(NULL, strlen);
if (str == NULL) {
Py_DECREF(scratch);
return NULL;
}
/* fill the string right-to-left */
p = PyUnicode_AS_UNICODE(str) + strlen;
*p = '\0';
/* pout[0] through pout[size-2] contribute exactly
_PyLong_DECIMAL_SHIFT digits each */
for (i=0; i < size - 1; i++) {
rem = pout[i];
for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {
*--p = '0' + rem % 10;
rem /= 10;
}
}
/* pout[size-1]: always produce at least one decimal digit */
rem = pout[i];
do {
*--p = '0' + rem % 10;
rem /= 10;
} while (rem != 0);
/* and sign */
if (negative)
*--p = '-';
/* check we've counted correctly */
assert(p == PyUnicode_AS_UNICODE(str));
Py_DECREF(scratch);
return (PyObject *)str;
}
/* Convert a long int object to a string, using a given conversion base,
which should be one of 2, 8, 10 or 16. Return a string object.
If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'. */
PyObject *
_PyLong_Format(PyObject *aa, int base)
{
register PyLongObject *a = (PyLongObject *)aa;
PyObject *str;
Py_ssize_t i, sz;
Py_ssize_t size_a;
Py_UNICODE *p, sign = '\0';
int bits;
assert(base == 2 || base == 8 || base == 10 || base == 16);
if (base == 10)
return long_to_decimal_string((PyObject *)a);
if (a == NULL || !PyLong_Check(a)) {
PyErr_BadInternalCall();
return NULL;
}
size_a = ABS(Py_SIZE(a));
/* Compute a rough upper bound for the length of the string */
switch (base) {
case 16:
bits = 4;
break;
case 8:
bits = 3;
break;
case 2:
bits = 1;
break;
default:
assert(0); /* shouldn't ever get here */
bits = 0; /* to silence gcc warning */
}
/* compute length of output string: allow 2 characters for prefix and
1 for possible '-' sign. */
if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
PyErr_SetString(PyExc_OverflowError,
"int is too large to format");
return NULL;
}
/* now size_a * PyLong_SHIFT + 3 <= PY_SSIZE_T_MAX, so the RHS below
is safe from overflow */
sz = 3 + (size_a * PyLong_SHIFT + (bits - 1)) / bits;
assert(sz >= 0);
str = PyUnicode_FromUnicode(NULL, sz);
if (str == NULL)
return NULL;
p = PyUnicode_AS_UNICODE(str) + sz;
*p = '\0';
if (Py_SIZE(a) < 0)
sign = '-';
if (Py_SIZE(a) == 0) {
*--p = '0';
}
else {
/* JRH: special case for power-of-2 bases */
twodigits accum = 0;
int accumbits = 0; /* # of bits in accum */
for (i = 0; i < size_a; ++i) {
accum |= (twodigits)a->ob_digit[i] << accumbits;
accumbits += PyLong_SHIFT;
assert(accumbits >= bits);
do {
Py_UNICODE cdigit;
cdigit = (Py_UNICODE)(accum & (base - 1));
cdigit += (cdigit < 10) ? '0' : 'a'-10;
assert(p > PyUnicode_AS_UNICODE(str));
*--p = cdigit;
accumbits -= bits;
accum >>= bits;
} while (i < size_a-1 ? accumbits >= bits : accum > 0);
}
}
if (base == 16)
*--p = 'x';
else if (base == 8)
*--p = 'o';
else /* (base == 2) */
*--p = 'b';
*--p = '0';
if (sign)
*--p = sign;
if (p != PyUnicode_AS_UNICODE(str)) {
Py_UNICODE *q = PyUnicode_AS_UNICODE(str);
assert(p > q);
do {
} while ((*q++ = *p++) != '\0');
q--;
if (PyUnicode_Resize(&str,(Py_ssize_t) (q -
PyUnicode_AS_UNICODE(str)))) {
Py_DECREF(str);
return NULL;
}
}
return (PyObject *)str;
}
/* Table of digit values for 8-bit string -> integer conversion.
* '0' maps to 0, ..., '9' maps to 9.
* 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
* All other indices map to 37.
* Note that when converting a base B string, a char c is a legitimate
* base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B.
*/
unsigned char _PyLong_DigitValue[256] = {
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37,
37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
};
/* *str points to the first digit in a string of base `base` digits. base
* is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first
* non-digit (which may be *str!). A normalized long is returned.
* The point to this routine is that it takes time linear in the number of
* string characters.
*/
static PyLongObject *
long_from_binary_base(char **str, int base)
{
char *p = *str;
char *start = p;
int bits_per_char;
Py_ssize_t n;
PyLongObject *z;
twodigits accum;
int bits_in_accum;
digit *pdigit;
assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
n = base;
for (bits_per_char = -1; n; ++bits_per_char)
n >>= 1;
/* n <- total # of bits needed, while setting p to end-of-string */
while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base)
++p;
*str = p;
/* n <- # of Python digits needed, = ceiling(n/PyLong_SHIFT). */
n = (p - start) * bits_per_char + PyLong_SHIFT - 1;
if (n / bits_per_char < p - start) {
PyErr_SetString(PyExc_ValueError,
"int string too large to convert");
return NULL;
}
n = n / PyLong_SHIFT;
z = _PyLong_New(n);
if (z == NULL)
return NULL;
/* Read string from right, and fill in long from left; i.e.,
* from least to most significant in both.
*/
accum = 0;
bits_in_accum = 0;
pdigit = z->ob_digit;
while (--p >= start) {
int k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)];
assert(k >= 0 && k < base);
accum |= (twodigits)k << bits_in_accum;
bits_in_accum += bits_per_char;
if (bits_in_accum >= PyLong_SHIFT) {
*pdigit++ = (digit)(accum & PyLong_MASK);
assert(pdigit - z->ob_digit <= n);
accum >>= PyLong_SHIFT;
bits_in_accum -= PyLong_SHIFT;
assert(bits_in_accum < PyLong_SHIFT);
}
}
if (bits_in_accum) {
assert(bits_in_accum <= PyLong_SHIFT);
*pdigit++ = (digit)accum;
assert(pdigit - z->ob_digit <= n);
}
while (pdigit - z->ob_digit < n)
*pdigit++ = 0;
return long_normalize(z);
}
PyObject *
PyLong_FromString(char *str, char **pend, int base)
{
int sign = 1, error_if_nonzero = 0;
char *start, *orig_str = str;
PyLongObject *z = NULL;
PyObject *strobj;
Py_ssize_t slen;
if ((base != 0 && base < 2) || base > 36) {
PyErr_SetString(PyExc_ValueError,
"int() arg 2 must be >= 2 and <= 36");
return NULL;
}
while (*str != '\0' && isspace(Py_CHARMASK(*str)))
str++;
if (*str == '+')
++str;
else if (*str == '-') {
++str;
sign = -1;
}
if (base == 0) {
if (str[0] != '0')
base = 10;
else if (str[1] == 'x' || str[1] == 'X')
base = 16;
else if (str[1] == 'o' || str[1] == 'O')
base = 8;
else if (str[1] == 'b' || str[1] == 'B')
base = 2;
else {
/* "old" (C-style) octal literal, now invalid.
it might still be zero though */
error_if_nonzero = 1;
base = 10;
}
}
if (str[0] == '0' &&
((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
(base == 8 && (str[1] == 'o' || str[1] == 'O')) ||
(base == 2 && (str[1] == 'b' || str[1] == 'B'))))
str += 2;
start = str;
if ((base & (base - 1)) == 0)
z = long_from_binary_base(&str, base);
else {
/***
Binary bases can be converted in time linear in the number of digits, because
Python's representation base is binary. Other bases (including decimal!) use
the simple quadratic-time algorithm below, complicated by some speed tricks.
First some math: the largest integer that can be expressed in N base-B digits
is B**N-1. Consequently, if we have an N-digit input in base B, the worst-
case number of Python digits needed to hold it is the smallest integer n s.t.
BASE**n-1 >= B**N-1 [or, adding 1 to both sides]
BASE**n >= B**N [taking logs to base BASE]
n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
this quickly. A Python long with that much space is reserved near the start,
and the result is computed into it.
The input string is actually treated as being in base base**i (i.e., i digits
are processed at a time), where two more static arrays hold:
convwidth_base[base] = the largest integer i such that base**i <= BASE
convmultmax_base[base] = base ** convwidth_base[base]
The first of these is the largest i such that i consecutive input digits
must fit in a single Python digit. The second is effectively the input
base we're really using.
Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
convmultmax_base[base], the result is "simply"
(((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
where B = convmultmax_base[base].
Error analysis: as above, the number of Python digits `n` needed is worst-
case
n >= N * log(B)/log(BASE)
where `N` is the number of input digits in base `B`. This is computed via
size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
below. Two numeric concerns are how much space this can waste, and whether
the computed result can be too small. To be concrete, assume BASE = 2**15,
which is the default (and it's unlikely anyone changes that).
Waste isn't a problem: provided the first input digit isn't 0, the difference
between the worst-case input with N digits and the smallest input with N
digits is about a factor of B, but B is small compared to BASE so at most
one allocated Python digit can remain unused on that count. If
N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
and adding 1 returns a result 1 larger than necessary. However, that can't
happen: whenever B is a power of 2, long_from_binary_base() is called
instead, and it's impossible for B**i to be an integer power of 2**15 when
B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
an exact integer when B is not a power of 2, since B**i has a prime factor
other than 2 in that case, but (2**15)**j's only prime factor is 2).
The computed result can be too small if the true value of N*log(B)/log(BASE)
is a little bit larger than an exact integer, but due to roundoff errors (in
computing log(B), log(BASE), their quotient, and/or multiplying that by N)
yields a numeric result a little less than that integer. Unfortunately, "how
close can a transcendental function get to an integer over some range?"
questions are generally theoretically intractable. Computer analysis via
continued fractions is practical: expand log(B)/log(BASE) via continued
fractions, giving a sequence i/j of "the best" rational approximations. Then
j*log(B)/log(BASE) is approximately equal to (the integer) i. This shows that
we can get very close to being in trouble, but very rarely. For example,
76573 is a denominator in one of the continued-fraction approximations to
log(10)/log(2**15), and indeed:
>>> log(10)/log(2**15)*76573
16958.000000654003
is very close to an integer. If we were working with IEEE single-precision,
rounding errors could kill us. Finding worst cases in IEEE double-precision
requires better-than-double-precision log() functions, and Tim didn't bother.
Instead the code checks to see whether the allocated space is enough as each
new Python digit is added, and copies the whole thing to a larger long if not.
This should happen extremely rarely, and in fact I don't have a test case
that triggers it(!). Instead the code was tested by artificially allocating
just 1 digit at the start, so that the copying code was exercised for every
digit beyond the first.
***/
register twodigits c; /* current input character */
Py_ssize_t size_z;
int i;
int convwidth;
twodigits convmultmax, convmult;
digit *pz, *pzstop;
char* scan;
static double log_base_BASE[37] = {0.0e0,};
static int convwidth_base[37] = {0,};
static twodigits convmultmax_base[37] = {0,};
if (log_base_BASE[base] == 0.0) {
twodigits convmax = base;
int i = 1;
log_base_BASE[base] = log((double)base) /
log((double)PyLong_BASE);
for (;;) {
twodigits next = convmax * base;
if (next > PyLong_BASE)
break;
convmax = next;
++i;
}
convmultmax_base[base] = convmax;
assert(i > 0);
convwidth_base[base] = i;
}
/* Find length of the string of numeric characters. */
scan = str;
while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base)
++scan;
/* Create a long object that can contain the largest possible
* integer with this base and length. Note that there's no
* need to initialize z->ob_digit -- no slot is read up before
* being stored into.
*/
size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
/* Uncomment next line to test exceedingly rare copy code */
/* size_z = 1; */
assert(size_z > 0);
z = _PyLong_New(size_z);
if (z == NULL)
return NULL;
Py_SIZE(z) = 0;
/* `convwidth` consecutive input digits are treated as a single
* digit in base `convmultmax`.
*/
convwidth = convwidth_base[base];
convmultmax = convmultmax_base[base];
/* Work ;-) */
while (str < scan) {
/* grab up to convwidth digits from the input string */
c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
for (i = 1; i < convwidth && str != scan; ++i, ++str) {
c = (twodigits)(c * base +
(int)_PyLong_DigitValue[Py_CHARMASK(*str)]);
assert(c < PyLong_BASE);
}
convmult = convmultmax;
/* Calculate the shift only if we couldn't get
* convwidth digits.
*/
if (i != convwidth) {
convmult = base;
for ( ; i > 1; --i)
convmult *= base;
}
/* Multiply z by convmult, and add c. */
pz = z->ob_digit;
pzstop = pz + Py_SIZE(z);
for (; pz < pzstop; ++pz) {
c += (twodigits)*pz * convmult;
*pz = (digit)(c & PyLong_MASK);
c >>= PyLong_SHIFT;
}
/* carry off the current end? */
if (c) {
assert(c < PyLong_BASE);
if (Py_SIZE(z) < size_z) {
*pz = (digit)c;
++Py_SIZE(z);
}
else {
PyLongObject *tmp;
/* Extremely rare. Get more space. */
assert(Py_SIZE(z) == size_z);
tmp = _PyLong_New(size_z + 1);
if (tmp == NULL) {
Py_DECREF(z);
return NULL;
}
memcpy(tmp->ob_digit,
z->ob_digit,
sizeof(digit) * size_z);
Py_DECREF(z);
z = tmp;
z->ob_digit[size_z] = (digit)c;
++size_z;
}
}
}
}
if (z == NULL)
return NULL;
if (error_if_nonzero) {
/* reset the base to 0, else the exception message
doesn't make too much sense */
base = 0;
if (Py_SIZE(z) != 0)
goto onError;
/* there might still be other problems, therefore base
remains zero here for the same reason */
}
if (str == start)
goto onError;
if (sign < 0)
Py_SIZE(z) = -(Py_SIZE(z));
while (*str && isspace(Py_CHARMASK(*str)))
str++;
if (*str != '\0')
goto onError;
if (pend)
*pend = str;
long_normalize(z);
return (PyObject *) maybe_small_long(z);
onError:
Py_XDECREF(z);
slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
strobj = PyUnicode_FromStringAndSize(orig_str, slen);
if (strobj == NULL)
return NULL;
PyErr_Format(PyExc_ValueError,
"invalid literal for int() with base %d: %R",
base, strobj);
Py_DECREF(strobj);
return NULL;
}
PyObject *
PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
{
PyObject *result;
char *buffer = (char *)PyMem_MALLOC(length+1);
if (buffer == NULL)
return NULL;
if (PyUnicode_EncodeDecimal(u, length, buffer, NULL)) {
PyMem_FREE(buffer);
return NULL;
}
result = PyLong_FromString(buffer, NULL, base);
PyMem_FREE(buffer);
return result;
}
/* forward */
static PyLongObject *x_divrem
(PyLongObject *, PyLongObject *, PyLongObject **);
static PyObject *long_long(PyObject *v);
/* Long division with remainder, top-level routine */
static int
long_divrem(PyLongObject *a, PyLongObject *b,
PyLongObject **pdiv, PyLongObject **prem)
{
Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
PyLongObject *z;
if (size_b == 0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"integer division or modulo by zero");
return -1;
}
if (size_a < size_b ||
(size_a == size_b &&
a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
/* |a| < |b|. */
*pdiv = (PyLongObject*)PyLong_FromLong(0);
if (*pdiv == NULL)
return -1;
Py_INCREF(a);
*prem = (PyLongObject *) a;
return 0;
}
if (size_b == 1) {
digit rem = 0;
z = divrem1(a, b->ob_digit[0], &rem);
if (z == NULL)
return -1;
*prem = (PyLongObject *) PyLong_FromLong((long)rem);
if (*prem == NULL) {
Py_DECREF(z);
return -1;
}
}
else {
z = x_divrem(a, b, prem);
if (z == NULL)
return -1;
}
/* Set the signs.
The quotient z has the sign of a*b;
the remainder r has the sign of a,
so a = b*z + r. */
if ((Py_SIZE(a) < 0) != (Py_SIZE(b) < 0))
NEGATE(z);
if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0)
NEGATE(*prem);
*pdiv = maybe_small_long(z);
return 0;
}
/* Unsigned long division with remainder -- the algorithm. The arguments v1
and w1 should satisfy 2 <= ABS(Py_SIZE(w1)) <= ABS(Py_SIZE(v1)). */
static PyLongObject *
x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
{
PyLongObject *v, *w, *a;
Py_ssize_t i, k, size_v, size_w;
int d;
digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
twodigits vv;
sdigit zhi;
stwodigits z;
/* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
edn.), section 4.3.1, Algorithm D], except that we don't explicitly
handle the special case when the initial estimate q for a quotient
digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
that won't overflow a digit. */
/* allocate space; w will also be used to hold the final remainder */
size_v = ABS(Py_SIZE(v1));
size_w = ABS(Py_SIZE(w1));
assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
v = _PyLong_New(size_v+1);
if (v == NULL) {
*prem = NULL;
return NULL;
}
w = _PyLong_New(size_w);
if (w == NULL) {
Py_DECREF(v);
*prem = NULL;
return NULL;
}
/* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
shift v1 left by the same amount. Results go into w and v. */
d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]);
carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d);
assert(carry == 0);
carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d);
if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) {
v->ob_digit[size_v] = carry;
size_v++;
}
/* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
at most (and usually exactly) k = size_v - size_w digits. */
k = size_v - size_w;
assert(k >= 0);
a = _PyLong_New(k);
if (a == NULL) {
Py_DECREF(w);
Py_DECREF(v);
*prem = NULL;
return NULL;
}
v0 = v->ob_digit;
w0 = w->ob_digit;
wm1 = w0[size_w-1];
wm2 = w0[size_w-2];
for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) {
/* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
single-digit quotient q, remainder in vk[0:size_w]. */
SIGCHECK({
Py_DECREF(a);
Py_DECREF(w);
Py_DECREF(v);
*prem = NULL;
return NULL;
})
/* estimate quotient digit q; may overestimate by 1 (rare) */
vtop = vk[size_w];
assert(vtop <= wm1);
vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
q = (digit)(vv / wm1);
r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */
while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
| vk[size_w-2])) {
--q;
r += wm1;
if (r >= PyLong_BASE)
break;
}
assert(q <= PyLong_BASE);
/* subtract q*w0[0:size_w] from vk[0:size_w+1] */
zhi = 0;
for (i = 0; i < size_w; ++i) {
/* invariants: -PyLong_BASE <= -q <= zhi <= 0;
-PyLong_BASE * q <= z < PyLong_BASE */
z = (sdigit)vk[i] + zhi -
(stwodigits)q * (stwodigits)w0[i];
vk[i] = (digit)z & PyLong_MASK;
zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
z, PyLong_SHIFT);
}
/* add w back if q was too large (this branch taken rarely) */
assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
if ((sdigit)vtop + zhi < 0) {
carry = 0;
for (i = 0; i < size_w; ++i) {
carry += vk[i] + w0[i];
vk[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
--q;
}
/* store quotient digit */
assert(q < PyLong_BASE);
*--ak = q;
}
/* unshift remainder; we reuse w to store the result */
carry = v_rshift(w0, v0, size_w, d);
assert(carry==0);
Py_DECREF(v);
*prem = long_normalize(w);
return long_normalize(a);
}
/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is
rounded to DBL_MANT_DIG significant bits using round-half-to-even.
If a == 0, return 0.0 and set *e = 0. If the resulting exponent
e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
-1.0. */
/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
#if DBL_MANT_DIG == 53
#define EXP2_DBL_MANT_DIG 9007199254740992.0
#else
#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
#endif
double
_PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
{
Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
/* See below for why x_digits is always large enough. */
digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT];
double dx;
/* Correction term for round-half-to-even rounding. For a digit x,
"x + half_even_correction[x & 7]" gives x rounded to the nearest
multiple of 4, rounding ties to a multiple of 8. */
static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
a_size = ABS(Py_SIZE(a));
if (a_size == 0) {
/* Special case for 0: significand 0.0, exponent 0. */
*e = 0;
return 0.0;
}
a_bits = bits_in_digit(a->ob_digit[a_size-1]);
/* The following is an overflow-free version of the check
"if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
(a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
goto overflow;
a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
/* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
(shifting left if a_bits <= DBL_MANT_DIG + 2).
Number of digits needed for result: write // for floor division.
Then if shifting left, we end up using
1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
digits. If shifting right, we use
a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
the inequalities
m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
m // PyLong_SHIFT - n // PyLong_SHIFT <=
1 + (m - n - 1) // PyLong_SHIFT,
valid for any integers m and n, we find that x_size satisfies
x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
in both cases.
*/
if (a_bits <= DBL_MANT_DIG + 2) {
shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
x_size = 0;
while (x_size < shift_digits)
x_digits[x_size++] = 0;
rem = v_lshift(x_digits + x_size, a->ob_digit, a_size,
shift_bits);
x_size += a_size;
x_digits[x_size++] = rem;
}
else {
shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
rem = v_rshift(x_digits, a->ob_digit + shift_digits,
a_size - shift_digits, shift_bits);
x_size = a_size - shift_digits;
/* For correct rounding below, we need the least significant
bit of x to be 'sticky' for this shift: if any of the bits
shifted out was nonzero, we set the least significant bit
of x. */
if (rem)
x_digits[0] |= 1;
else
while (shift_digits > 0)
if (a->ob_digit[--shift_digits]) {
x_digits[0] |= 1;
break;
}
}
assert(1 <= x_size && x_size <= sizeof(x_digits)/sizeof(digit));
/* Round, and convert to double. */
x_digits[0] += half_even_correction[x_digits[0] & 7];
dx = x_digits[--x_size];
while (x_size > 0)
dx = dx * PyLong_BASE + x_digits[--x_size];
/* Rescale; make correction if result is 1.0. */
dx /= 4.0 * EXP2_DBL_MANT_DIG;
if (dx == 1.0) {
if (a_bits == PY_SSIZE_T_MAX)
goto overflow;
dx = 0.5;
a_bits += 1;
}
*e = a_bits;
return Py_SIZE(a) < 0 ? -dx : dx;
overflow:
/* exponent > PY_SSIZE_T_MAX */
PyErr_SetString(PyExc_OverflowError,
"huge integer: number of bits overflows a Py_ssize_t");
*e = 0;
return -1.0;
}
/* Get a C double from a long int object. Rounds to the nearest double,
using the round-half-to-even rule in the case of a tie. */
double
PyLong_AsDouble(PyObject *v)
{
Py_ssize_t exponent;
double x;
if (v == NULL || !PyLong_Check(v)) {
PyErr_BadInternalCall();
return -1.0;
}
x = _PyLong_Frexp((PyLongObject *)v, &exponent);
if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
PyErr_SetString(PyExc_OverflowError,
"long int too large to convert to float");
return -1.0;
}
return ldexp(x, exponent);
}
/* Methods */
static void
long_dealloc(PyObject *v)
{
Py_TYPE(v)->tp_free(v);
}
static int
long_compare(PyLongObject *a, PyLongObject *b)
{
Py_ssize_t sign;
if (Py_SIZE(a) != Py_SIZE(b)) {
if (ABS(Py_SIZE(a)) == 0 && ABS(Py_SIZE(b)) == 0)
sign = 0;
else
sign = Py_SIZE(a) - Py_SIZE(b);
}
else {
Py_ssize_t i = ABS(Py_SIZE(a));
while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
;
if (i < 0)
sign = 0;
else {
sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i];
if (Py_SIZE(a) < 0)
sign = -sign;
}
}
return sign < 0 ? -1 : sign > 0 ? 1 : 0;
}
#define TEST_COND(cond) \
((cond) ? Py_True : Py_False)
static PyObject *
long_richcompare(PyObject *self, PyObject *other, int op)
{
int result;
PyObject *v;
CHECK_BINOP(self, other);
if (self == other)
result = 0;
else
result = long_compare((PyLongObject*)self, (PyLongObject*)other);
/* Convert the return value to a Boolean */
switch (op) {
case Py_EQ:
v = TEST_COND(result == 0);
break;
case Py_NE:
v = TEST_COND(result != 0);
break;
case Py_LE:
v = TEST_COND(result <= 0);
break;
case Py_GE:
v = TEST_COND(result >= 0);
break;
case Py_LT:
v = TEST_COND(result == -1);
break;
case Py_GT:
v = TEST_COND(result == 1);
break;
default:
PyErr_BadArgument();
return NULL;
}
Py_INCREF(v);
return v;
}
static long
long_hash(PyLongObject *v)
{
unsigned long x;
Py_ssize_t i;
int sign;
/* This is designed so that Python ints and longs with the
same value hash to the same value, otherwise comparisons
of mapping keys will turn out weird */
i = Py_SIZE(v);
switch(i) {
case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0];
case 0: return 0;
case 1: return v->ob_digit[0];
}
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -(i);
}
/* The following loop produces a C unsigned long x such that x is
congruent to the absolute value of v modulo ULONG_MAX. The
resulting x is nonzero if and only if v is. */
while (--i >= 0) {
/* Force a native long #-bits (32 or 64) circular shift */
x = (x >> (8*SIZEOF_LONG-PyLong_SHIFT)) | (x << PyLong_SHIFT);
x += v->ob_digit[i];
/* If the addition above overflowed we compensate by
incrementing. This preserves the value modulo
ULONG_MAX. */
if (x < v->ob_digit[i])
x++;
}
x = x * sign;
if (x == (unsigned long)-1)
x = (unsigned long)-2;
return (long)x;
}
/* Add the absolute values of two long integers. */
static PyLongObject *
x_add(PyLongObject *a, PyLongObject *b)
{
Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
PyLongObject *z;
Py_ssize_t i;
digit carry = 0;
/* Ensure a is the larger of the two: */
if (size_a < size_b) {
{ PyLongObject *temp = a; a = b; b = temp; }
{ Py_ssize_t size_temp = size_a;
size_a = size_b;
size_b = size_temp; }
}
z = _PyLong_New(size_a+1);
if (z == NULL)
return NULL;
for (i = 0; i < size_b; ++i) {
carry += a->ob_digit[i] + b->ob_digit[i];
z->ob_digit[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
for (; i < size_a; ++i) {
carry += a->ob_digit[i];
z->ob_digit[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
z->ob_digit[i] = carry;
return long_normalize(z);
}
/* Subtract the absolute values of two integers. */
static PyLongObject *
x_sub(PyLongObject *a, PyLongObject *b)
{
Py_ssize_t size_a = ABS(Py_SIZE(a)), size_b = ABS(Py_SIZE(b));
PyLongObject *z;
Py_ssize_t i;
int sign = 1;
digit borrow = 0;
/* Ensure a is the larger of the two: */
if (size_a < size_b) {
sign = -1;
{ PyLongObject *temp = a; a = b; b = temp; }
{ Py_ssize_t size_temp = size_a;
size_a = size_b;
size_b = size_temp; }
}
else if (size_a == size_b) {
/* Find highest digit where a and b differ: */
i = size_a;
while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
;
if (i < 0)
return (PyLongObject *)PyLong_FromLong(0);
if (a->ob_digit[i] < b->ob_digit[i]) {
sign = -1;
{ PyLongObject *temp = a; a = b; b = temp; }
}
size_a = size_b = i+1;
}
z = _PyLong_New(size_a);
if (z == NULL)
return NULL;
for (i = 0; i < size_b; ++i) {
/* The following assumes unsigned arithmetic
works module 2**N for some N>PyLong_SHIFT. */
borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
z->ob_digit[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1; /* Keep only one sign bit */
}
for (; i < size_a; ++i) {
borrow = a->ob_digit[i] - borrow;
z->ob_digit[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1; /* Keep only one sign bit */
}
assert(borrow == 0);
if (sign < 0)
NEGATE(z);
return long_normalize(z);
}
static PyObject *
long_add(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
CHECK_BINOP(a, b);
if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) {
PyObject *result = PyLong_FromLong(MEDIUM_VALUE(a) +
MEDIUM_VALUE(b));
return result;
}
if (Py_SIZE(a) < 0) {
if (Py_SIZE(b) < 0) {
z = x_add(a, b);
if (z != NULL && Py_SIZE(z) != 0)
Py_SIZE(z) = -(Py_SIZE(z));
}
else
z = x_sub(b, a);
}
else {
if (Py_SIZE(b) < 0)
z = x_sub(a, b);
else
z = x_add(a, b);
}
return (PyObject *)z;
}
static PyObject *
long_sub(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
CHECK_BINOP(a, b);
if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) {
PyObject* r;
r = PyLong_FromLong(MEDIUM_VALUE(a)-MEDIUM_VALUE(b));
return r;
}
if (Py_SIZE(a) < 0) {
if (Py_SIZE(b) < 0)
z = x_sub(a, b);
else
z = x_add(a, b);
if (z != NULL && Py_SIZE(z) != 0)
Py_SIZE(z) = -(Py_SIZE(z));
}
else {
if (Py_SIZE(b) < 0)
z = x_add(a, b);
else
z = x_sub(a, b);
}
return (PyObject *)z;
}
/* Grade school multiplication, ignoring the signs.
* Returns the absolute value of the product, or NULL if error.
*/
static PyLongObject *
x_mul(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
Py_ssize_t size_a = ABS(Py_SIZE(a));
Py_ssize_t size_b = ABS(Py_SIZE(b));
Py_ssize_t i;
z = _PyLong_New(size_a + size_b);
if (z == NULL)
return NULL;
memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit));
if (a == b) {
/* Efficient squaring per HAC, Algorithm 14.16:
* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
* Gives slightly less than a 2x speedup when a == b,
* via exploiting that each entry in the multiplication
* pyramid appears twice (except for the size_a squares).
*/
for (i = 0; i < size_a; ++i) {
twodigits carry;
twodigits f = a->ob_digit[i];
digit *pz = z->ob_digit + (i << 1);
digit *pa = a->ob_digit + i + 1;
digit *paend = a->ob_digit + size_a;
SIGCHECK({
Py_DECREF(z);
return NULL;
})
carry = *pz + f * f;
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
assert(carry <= PyLong_MASK);
/* Now f is added in twice in each column of the
* pyramid it appears. Same as adding f<<1 once.
*/
f <<= 1;
while (pa < paend) {
carry += *pz + *pa++ * f;
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
assert(carry <= (PyLong_MASK << 1));
}
if (carry) {
carry += *pz;
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
}
if (carry)
*pz += (digit)(carry & PyLong_MASK);
assert((carry >> PyLong_SHIFT) == 0);
}
}
else { /* a is not the same as b -- gradeschool long mult */
for (i = 0; i < size_a; ++i) {
twodigits carry = 0;
twodigits f = a->ob_digit[i];
digit *pz = z->ob_digit + i;
digit *pb = b->ob_digit;
digit *pbend = b->ob_digit + size_b;
SIGCHECK({
Py_DECREF(z);
return NULL;
})
while (pb < pbend) {
carry += *pz + *pb++ * f;
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
assert(carry <= PyLong_MASK);
}
if (carry)
*pz += (digit)(carry & PyLong_MASK);
assert((carry >> PyLong_SHIFT) == 0);
}
}
return long_normalize(z);
}
/* A helper for Karatsuba multiplication (k_mul).
Takes a long "n" and an integer "size" representing the place to
split, and sets low and high such that abs(n) == (high << size) + low,
viewing the shift as being by digits. The sign bit is ignored, and
the return values are >= 0.
Returns 0 on success, -1 on failure.
*/
static int
kmul_split(PyLongObject *n, Py_ssize_t size, PyLongObject **high, PyLongObject **low)
{
PyLongObject *hi, *lo;
Py_ssize_t size_lo, size_hi;
const Py_ssize_t size_n = ABS(Py_SIZE(n));
size_lo = MIN(size_n, size);
size_hi = size_n - size_lo;
if ((hi = _PyLong_New(size_hi)) == NULL)
return -1;
if ((lo = _PyLong_New(size_lo)) == NULL) {
Py_DECREF(hi);
return -1;
}
memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
*high = long_normalize(hi);
*low = long_normalize(lo);
return 0;
}
static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
/* Karatsuba multiplication. Ignores the input signs, and returns the
* absolute value of the product (or NULL if error).
* See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
*/
static PyLongObject *
k_mul(PyLongObject *a, PyLongObject *b)
{
Py_ssize_t asize = ABS(Py_SIZE(a));
Py_ssize_t bsize = ABS(Py_SIZE(b));
PyLongObject *ah = NULL;
PyLongObject *al = NULL;
PyLongObject *bh = NULL;
PyLongObject *bl = NULL;
PyLongObject *ret = NULL;
PyLongObject *t1, *t2, *t3;
Py_ssize_t shift; /* the number of digits we split off */
Py_ssize_t i;
/* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
* Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl
* Then the original product is
* ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
* By picking X to be a power of 2, "*X" is just shifting, and it's
* been reduced to 3 multiplies on numbers half the size.
*/
/* We want to split based on the larger number; fiddle so that b
* is largest.
*/
if (asize > bsize) {
t1 = a;
a = b;
b = t1;
i = asize;
asize = bsize;
bsize = i;
}
/* Use gradeschool math when either number is too small. */
i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
if (asize <= i) {
if (asize == 0)
return (PyLongObject *)PyLong_FromLong(0);
else
return x_mul(a, b);
}
/* If a is small compared to b, splitting on b gives a degenerate
* case with ah==0, and Karatsuba may be (even much) less efficient
* than "grade school" then. However, we can still win, by viewing
* b as a string of "big digits", each of width a->ob_size. That
* leads to a sequence of balanced calls to k_mul.
*/
if (2 * asize <= bsize)
return k_lopsided_mul(a, b);
/* Split a & b into hi & lo pieces. */
shift = bsize >> 1;
if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */
if (a == b) {
bh = ah;
bl = al;
Py_INCREF(bh);
Py_INCREF(bl);
}
else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
/* The plan:
* 1. Allocate result space (asize + bsize digits: that's always
* enough).
* 2. Compute ah*bh, and copy into result at 2*shift.
* 3. Compute al*bl, and copy into result at 0. Note that this
* can't overlap with #2.
* 4. Subtract al*bl from the result, starting at shift. This may
* underflow (borrow out of the high digit), but we don't care:
* we're effectively doing unsigned arithmetic mod
* BASE**(sizea + sizeb), and so long as the *final* result fits,
* borrows and carries out of the high digit can be ignored.
* 5. Subtract ah*bh from the result, starting at shift.
* 6. Compute (ah+al)*(bh+bl), and add it into the result starting
* at shift.
*/
/* 1. Allocate result space. */
ret = _PyLong_New(asize + bsize);
if (ret == NULL) goto fail;
#ifdef Py_DEBUG
/* Fill with trash, to catch reference to uninitialized digits. */
memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit));
#endif
/* 2. t1 <- ah*bh, and copy into high digits of result. */
if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
assert(Py_SIZE(t1) >= 0);
assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret));
memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
Py_SIZE(t1) * sizeof(digit));
/* Zero-out the digits higher than the ah*bh copy. */
i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1);
if (i)
memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0,
i * sizeof(digit));
/* 3. t2 <- al*bl, and copy into the low digits. */
if ((t2 = k_mul(al, bl)) == NULL) {
Py_DECREF(t1);
goto fail;
}
assert(Py_SIZE(t2) >= 0);
assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */
memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit));
/* Zero out remaining digits. */
i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */
if (i)
memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit));
/* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first
* because it's fresher in cache.
*/
i = Py_SIZE(ret) - shift; /* # digits after shift */
(void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2));
Py_DECREF(t2);
(void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1));
Py_DECREF(t1);
/* 6. t3 <- (ah+al)(bh+bl), and add into result. */
if ((t1 = x_add(ah, al)) == NULL) goto fail;
Py_DECREF(ah);
Py_DECREF(al);
ah = al = NULL;
if (a == b) {
t2 = t1;
Py_INCREF(t2);
}
else if ((t2 = x_add(bh, bl)) == NULL) {
Py_DECREF(t1);
goto fail;
}
Py_DECREF(bh);
Py_DECREF(bl);
bh = bl = NULL;
t3 = k_mul(t1, t2);
Py_DECREF(t1);
Py_DECREF(t2);
if (t3 == NULL) goto fail;
assert(Py_SIZE(t3) >= 0);
/* Add t3. It's not obvious why we can't run out of room here.
* See the (*) comment after this function.
*/
(void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3));
Py_DECREF(t3);
return long_normalize(ret);
fail:
Py_XDECREF(ret);
Py_XDECREF(ah);
Py_XDECREF(al);
Py_XDECREF(bh);
Py_XDECREF(bl);
return NULL;
}
/* (*) Why adding t3 can't "run out of room" above.
Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts
to start with:
1. For any integer i, i = c(i/2) + f(i/2). In particular,
bsize = c(bsize/2) + f(bsize/2).
2. shift = f(bsize/2)
3. asize <= bsize
4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
routine, so asize > bsize/2 >= f(bsize/2) in this routine.
We allocated asize + bsize result digits, and add t3 into them at an offset
of shift. This leaves asize+bsize-shift allocated digit positions for t3
to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
asize + c(bsize/2) available digit positions.
bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has
at most c(bsize/2) digits + 1 bit.
If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
digits, and al has at most f(bsize/2) digits in any case. So ah+al has at
most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
The product (ah+al)*(bh+bl) therefore has at most
c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
and we have asize + c(bsize/2) available digit positions. We need to show
this is always enough. An instance of c(bsize/2) cancels out in both, so
the question reduces to whether asize digits is enough to hold
(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize,
then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4,
asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If
asize == bsize, then we're asking whether bsize digits is enough to hold
c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
is enough to hold 2 bits. This is so if bsize >= 2, which holds because
bsize >= KARATSUBA_CUTOFF >= 2.
Note that since there's always enough room for (ah+al)*(bh+bl), and that's
clearly >= each of ah*bh and al*bl, there's always enough room to subtract
ah*bh and al*bl too.
*/
/* b has at least twice the digits of a, and a is big enough that Karatsuba
* would pay off *if* the inputs had balanced sizes. View b as a sequence
* of slices, each with a->ob_size digits, and multiply the slices by a,
* one at a time. This gives k_mul balanced inputs to work with, and is
* also cache-friendly (we compute one double-width slice of the result
* at a time, then move on, never bactracking except for the helpful
* single-width slice overlap between successive partial sums).
*/
static PyLongObject *
k_lopsided_mul(PyLongObject *a, PyLongObject *b)
{
const Py_ssize_t asize = ABS(Py_SIZE(a));
Py_ssize_t bsize = ABS(Py_SIZE(b));
Py_ssize_t nbdone; /* # of b digits already multiplied */
PyLongObject *ret;
PyLongObject *bslice = NULL;
assert(asize > KARATSUBA_CUTOFF);
assert(2 * asize <= bsize);
/* Allocate result space, and zero it out. */
ret = _PyLong_New(asize + bsize);
if (ret == NULL)
return NULL;
memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit));
/* Successive slices of b are copied into bslice. */
bslice = _PyLong_New(asize);
if (bslice == NULL)
goto fail;
nbdone = 0;
while (bsize > 0) {
PyLongObject *product;
const Py_ssize_t nbtouse = MIN(bsize, asize);
/* Multiply the next slice of b by a. */
memcpy(bslice->ob_digit, b->ob_digit + nbdone,
nbtouse * sizeof(digit));
Py_SIZE(bslice) = nbtouse;
product = k_mul(a, bslice);
if (product == NULL)
goto fail;
/* Add into result. */
(void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone,
product->ob_digit, Py_SIZE(product));
Py_DECREF(product);
bsize -= nbtouse;
nbdone += nbtouse;
}
Py_DECREF(bslice);
return long_normalize(ret);
fail:
Py_DECREF(ret);
Py_XDECREF(bslice);
return NULL;
}
static PyObject *
long_mul(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
CHECK_BINOP(a, b);
/* fast path for single-digit multiplication */
if (ABS(Py_SIZE(a)) <= 1 && ABS(Py_SIZE(b)) <= 1) {
stwodigits v = (stwodigits)(MEDIUM_VALUE(a)) * MEDIUM_VALUE(b);
#ifdef HAVE_LONG_LONG
return PyLong_FromLongLong((PY_LONG_LONG)v);
#else
/* if we don't have long long then we're almost certainly
using 15-bit digits, so v will fit in a long. In the
unlikely event that we're using 30-bit digits on a platform
without long long, a large v will just cause us to fall
through to the general multiplication code below. */
if (v >= LONG_MIN && v <= LONG_MAX)
return PyLong_FromLong((long)v);
#endif
}
z = k_mul(a, b);
/* Negate if exactly one of the inputs is negative. */
if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z)
NEGATE(z);
return (PyObject *)z;
}
/* The / and % operators are now defined in terms of divmod().
The expression a mod b has the value a - b*floor(a/b).
The long_divrem function gives the remainder after division of
|a| by |b|, with the sign of a. This is also expressed
as a - b*trunc(a/b), if trunc truncates towards zero.
Some examples:
a b a rem b a mod b
13 10 3 3
-13 10 -3 7
13 -10 3 -7
-13 -10 -3 -3
So, to get from rem to mod, we have to add b if a and b
have different signs. We then subtract one from the 'div'
part of the outcome to keep the invariant intact. */
/* Compute
* *pdiv, *pmod = divmod(v, w)
* NULL can be passed for pdiv or pmod, in which case that part of
* the result is simply thrown away. The caller owns a reference to
* each of these it requests (does not pass NULL for).
*/
static int
l_divmod(PyLongObject *v, PyLongObject *w,
PyLongObject **pdiv, PyLongObject **pmod)
{
PyLongObject *div, *mod;
if (long_divrem(v, w, &div, &mod) < 0)
return -1;
if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
(Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
PyLongObject *temp;
PyLongObject *one;
temp = (PyLongObject *) long_add(mod, w);
Py_DECREF(mod);
mod = temp;
if (mod == NULL) {
Py_DECREF(div);
return -1;
}
one = (PyLongObject *) PyLong_FromLong(1L);
if (one == NULL ||
(temp = (PyLongObject *) long_sub(div, one)) == NULL) {
Py_DECREF(mod);
Py_DECREF(div);
Py_XDECREF(one);
return -1;
}
Py_DECREF(one);
Py_DECREF(div);
div = temp;
}
if (pdiv != NULL)
*pdiv = div;
else
Py_DECREF(div);
if (pmod != NULL)
*pmod = mod;
else
Py_DECREF(mod);
return 0;
}
static PyObject *
long_div(PyObject *a, PyObject *b)
{
PyLongObject *div;
CHECK_BINOP(a, b);
if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0)
div = NULL;
return (PyObject *)div;
}
/* PyLong/PyLong -> float, with correctly rounded result. */
#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
static PyObject *
long_true_divide(PyObject *v, PyObject *w)
{
PyLongObject *a, *b, *x;
Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
digit mask, low;
int inexact, negate, a_is_small, b_is_small;
double dx, result;
CHECK_BINOP(v, w);
a = (PyLongObject *)v;
b = (PyLongObject *)w;
/*
Method in a nutshell:
0. reduce to case a, b > 0; filter out obvious underflow/overflow
1. choose a suitable integer 'shift'
2. use integer arithmetic to compute x = floor(2**-shift*a/b)
3. adjust x for correct rounding
4. convert x to a double dx with the same value
5. return ldexp(dx, shift).
In more detail:
0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
returns either 0.0 or -0.0, depending on the sign of b. For a and
b both nonzero, ignore signs of a and b, and add the sign back in
at the end. Now write a_bits and b_bits for the bit lengths of a
and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
for b). Then
2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP -
DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of
the way, we can assume that
DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
1. The integer 'shift' is chosen so that x has the right number of
bits for a double, plus two or three extra bits that will be used
in the rounding decisions. Writing a_bits and b_bits for the
number of significant bits in a and b respectively, a
straightforward formula for shift is:
shift = a_bits - b_bits - DBL_MANT_DIG - 2
This is fine in the usual case, but if a/b is smaller than the
smallest normal float then it can lead to double rounding on an
IEEE 754 platform, giving incorrectly rounded results. So we
adjust the formula slightly. The actual formula used is:
shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
2. The quantity x is computed by first shifting a (left -shift bits
if shift <= 0, right shift bits if shift > 0) and then dividing by
b. For both the shift and the division, we keep track of whether
the result is inexact, in a flag 'inexact'; this information is
needed at the rounding stage.
With the choice of shift above, together with our assumption that
a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
that x >= 1.
3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace
this with an exactly representable float of the form
round(x/2**extra_bits) * 2**(extra_bits+shift).
For float representability, we need x/2**extra_bits <
2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
DBL_MANT_DIG. This translates to the condition:
extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
To round, we just modify the bottom digit of x in-place; this can
end up giving a digit with value > PyLONG_MASK, but that's not a
problem since digits can hold values up to 2*PyLONG_MASK+1.
With the original choices for shift above, extra_bits will always
be 2 or 3. Then rounding under the round-half-to-even rule, we
round up iff the most significant of the extra bits is 1, and
either: (a) the computation of x in step 2 had an inexact result,
or (b) at least one other of the extra bits is 1, or (c) the least
significant bit of x (above those to be rounded) is 1.
4. Conversion to a double is straightforward; all floating-point
operations involved in the conversion are exact, so there's no
danger of rounding errors.
5. Use ldexp(x, shift) to compute x*2**shift, the final result.
The result will always be exactly representable as a double, except
in the case that it overflows. To avoid dependence on the exact
behaviour of ldexp on overflow, we check for overflow before
applying ldexp. The result of ldexp is adjusted for sign before
returning.
*/
/* Reduce to case where a and b are both positive. */
a_size = ABS(Py_SIZE(a));
b_size = ABS(Py_SIZE(b));
negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0);
if (b_size == 0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"division by zero");
goto error;
}
if (a_size == 0)
goto underflow_or_zero;
/* Fast path for a and b small (exactly representable in a double).
Relies on floating-point division being correctly rounded; results
may be subject to double rounding on x86 machines that operate with
the x87 FPU set to 64-bit precision. */
a_is_small = a_size <= MANT_DIG_DIGITS ||
(a_size == MANT_DIG_DIGITS+1 &&
a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
b_is_small = b_size <= MANT_DIG_DIGITS ||
(b_size == MANT_DIG_DIGITS+1 &&
b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
if (a_is_small && b_is_small) {
double da, db;
da = a->ob_digit[--a_size];
while (a_size > 0)
da = da * PyLong_BASE + a->ob_digit[--a_size];
db = b->ob_digit[--b_size];
while (b_size > 0)
db = db * PyLong_BASE + b->ob_digit[--b_size];
result = da / db;
goto success;
}
/* Catch obvious cases of underflow and overflow */
diff = a_size - b_size;
if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
/* Extreme overflow */
goto overflow;
else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
/* Extreme underflow */
goto underflow_or_zero;
/* Next line is now safe from overflowing a Py_ssize_t */
diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) -
bits_in_digit(b->ob_digit[b_size - 1]);
/* Now diff = a_bits - b_bits. */
if (diff > DBL_MAX_EXP)
goto overflow;
else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
goto underflow_or_zero;
/* Choose value for shift; see comments for step 1 above. */
shift = MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
inexact = 0;
/* x = abs(a * 2**-shift) */
if (shift <= 0) {
Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
digit rem;
/* x = a << -shift */
if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
/* In practice, it's probably impossible to end up
here. Both a and b would have to be enormous,
using close to SIZE_T_MAX bytes of memory each. */
PyErr_SetString(PyExc_OverflowError,
"intermediate overflow during division");
goto error;
}
x = _PyLong_New(a_size + shift_digits + 1);
if (x == NULL)
goto error;
for (i = 0; i < shift_digits; i++)
x->ob_digit[i] = 0;
rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit,
a_size, -shift % PyLong_SHIFT);
x->ob_digit[a_size + shift_digits] = rem;
}
else {
Py_ssize_t shift_digits = shift / PyLong_SHIFT;
digit rem;
/* x = a >> shift */
assert(a_size >= shift_digits);
x = _PyLong_New(a_size - shift_digits);
if (x == NULL)
goto error;
rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits,
a_size - shift_digits, shift % PyLong_SHIFT);
/* set inexact if any of the bits shifted out is nonzero */
if (rem)
inexact = 1;
while (!inexact && shift_digits > 0)
if (a->ob_digit[--shift_digits])
inexact = 1;
}
long_normalize(x);
x_size = Py_SIZE(x);
/* x //= b. If the remainder is nonzero, set inexact. We own the only
reference to x, so it's safe to modify it in-place. */
if (b_size == 1) {
digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size,
b->ob_digit[0]);
long_normalize(x);
if (rem)
inexact = 1;
}
else {
PyLongObject *div, *rem;
div = x_divrem(x, b, &rem);
Py_DECREF(x);
x = div;
if (x == NULL)
goto error;
if (Py_SIZE(rem))
inexact = 1;
Py_DECREF(rem);
}
x_size = ABS(Py_SIZE(x));
assert(x_size > 0); /* result of division is never zero */
x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]);
/* The number of extra bits that have to be rounded away. */
extra_bits = MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
assert(extra_bits == 2 || extra_bits == 3);
/* Round by directly modifying the low digit of x. */
mask = (digit)1 << (extra_bits - 1);
low = x->ob_digit[0] | inexact;
if (low & mask && low & (3*mask-1))
low += mask;
x->ob_digit[0] = low & ~(mask-1U);
/* Convert x to a double dx; the conversion is exact. */
dx = x->ob_digit[--x_size];
while (x_size > 0)
dx = dx * PyLong_BASE + x->ob_digit[--x_size];
Py_DECREF(x);
/* Check whether ldexp result will overflow a double. */
if (shift + x_bits >= DBL_MAX_EXP &&
(shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, x_bits)))
goto overflow;
result = ldexp(dx, shift);
success:
return PyFloat_FromDouble(negate ? -result : result);
underflow_or_zero:
return PyFloat_FromDouble(negate ? -0.0 : 0.0);
overflow:
PyErr_SetString(PyExc_OverflowError,
"integer division result too large for a float");
error:
return NULL;
}
static PyObject *
long_mod(PyObject *a, PyObject *b)
{
PyLongObject *mod;
CHECK_BINOP(a, b);
if (l_divmod((PyLongObject*)a, (PyLongObject*)b, NULL, &mod) < 0)
mod = NULL;
return (PyObject *)mod;
}
static PyObject *
long_divmod(PyObject *a, PyObject *b)
{
PyLongObject *div, *mod;
PyObject *z;
CHECK_BINOP(a, b);
if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) {
return NULL;
}
z = PyTuple_New(2);
if (z != NULL) {
PyTuple_SetItem(z, 0, (PyObject *) div);
PyTuple_SetItem(z, 1, (PyObject *) mod);
}
else {
Py_DECREF(div);
Py_DECREF(mod);
}
return z;
}
/* pow(v, w, x) */
static PyObject *
long_pow(PyObject *v, PyObject *w, PyObject *x)
{
PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
int negativeOutput = 0; /* if x<0 return negative output */
PyLongObject *z = NULL; /* accumulated result */
Py_ssize_t i, j, k; /* counters */
PyLongObject *temp = NULL;
/* 5-ary values. If the exponent is large enough, table is
* precomputed so that table[i] == a**i % c for i in range(32).
*/
PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
/* a, b, c = v, w, x */
CHECK_BINOP(v, w);
a = (PyLongObject*)v; Py_INCREF(a);
b = (PyLongObject*)w; Py_INCREF(b);
if (PyLong_Check(x)) {
c = (PyLongObject *)x;
Py_INCREF(x);
}
else if (x == Py_None)
c = NULL;
else {
Py_DECREF(a);
Py_DECREF(b);
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
if (Py_SIZE(b) < 0) { /* if exponent is negative */
if (c) {
PyErr_SetString(PyExc_TypeError, "pow() 2nd argument "
"cannot be negative when 3rd argument specified");
goto Error;
}
else {
/* else return a float. This works because we know
that this calls float_pow() which converts its
arguments to double. */
Py_DECREF(a);
Py_DECREF(b);
return PyFloat_Type.tp_as_number->nb_power(v, w, x);
}
}
if (c) {
/* if modulus == 0:
raise ValueError() */
if (Py_SIZE(c) == 0) {
PyErr_SetString(PyExc_ValueError,
"pow() 3rd argument cannot be 0");
goto Error;
}
/* if modulus < 0:
negativeOutput = True
modulus = -modulus */
if (Py_SIZE(c) < 0) {
negativeOutput = 1;
temp = (PyLongObject *)_PyLong_Copy(c);
if (temp == NULL)
goto Error;
Py_DECREF(c);
c = temp;
temp = NULL;
NEGATE(c);
}
/* if modulus == 1:
return 0 */
if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) {
z = (PyLongObject *)PyLong_FromLong(0L);
goto Done;
}
/* if base < 0:
base = base % modulus
Having the base positive just makes things easier. */
if (Py_SIZE(a) < 0) {
if (l_divmod(a, c, NULL, &temp) < 0)
goto Error;
Py_DECREF(a);
a = temp;
temp = NULL;
}
}
/* At this point a, b, and c are guaranteed non-negative UNLESS
c is NULL, in which case a may be negative. */
z = (PyLongObject *)PyLong_FromLong(1L);
if (z == NULL)
goto Error;
/* Perform a modular reduction, X = X % c, but leave X alone if c
* is NULL.
*/
#define REDUCE(X) \
if (c != NULL) { \
if (l_divmod(X, c, NULL, &temp) < 0) \
goto Error; \
Py_XDECREF(X); \
X = temp; \
temp = NULL; \
}
/* Multiply two values, then reduce the result:
result = X*Y % c. If c is NULL, skip the mod. */
#define MULT(X, Y, result) \
{ \
temp = (PyLongObject *)long_mul(X, Y); \
if (temp == NULL) \
goto Error; \
Py_XDECREF(result); \
result = temp; \
temp = NULL; \
REDUCE(result) \
}
if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
/* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
/* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */
for (i = Py_SIZE(b) - 1; i >= 0; --i) {
digit bi = b->ob_digit[i];
for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
MULT(z, z, z)
if (bi & j)
MULT(z, a, z)
}
}
}
else {
/* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */
Py_INCREF(z); /* still holds 1L */
table[0] = z;
for (i = 1; i < 32; ++i)
MULT(table[i-1], a, table[i])
for (i = Py_SIZE(b) - 1; i >= 0; --i) {
const digit bi = b->ob_digit[i];
for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) {
const int index = (bi >> j) & 0x1f;
for (k = 0; k < 5; ++k)
MULT(z, z, z)
if (index)
MULT(z, table[index], z)
}
}
}
if (negativeOutput && (Py_SIZE(z) != 0)) {
temp = (PyLongObject *)long_sub(z, c);
if (temp == NULL)
goto Error;
Py_DECREF(z);
z = temp;
temp = NULL;
}
goto Done;
Error:
if (z != NULL) {
Py_DECREF(z);
z = NULL;
}
/* fall through */
Done:
if (Py_SIZE(b) > FIVEARY_CUTOFF) {
for (i = 0; i < 32; ++i)
Py_XDECREF(table[i]);
}
Py_DECREF(a);
Py_DECREF(b);
Py_XDECREF(c);
Py_XDECREF(temp);
return (PyObject *)z;
}
static PyObject *
long_invert(PyLongObject *v)
{
/* Implement ~x as -(x+1) */
PyLongObject *x;
PyLongObject *w;
if (ABS(Py_SIZE(v)) <=1)
return PyLong_FromLong(-(MEDIUM_VALUE(v)+1));
w = (PyLongObject *)PyLong_FromLong(1L);
if (w == NULL)
return NULL;
x = (PyLongObject *) long_add(v, w);
Py_DECREF(w);
if (x == NULL)
return NULL;
Py_SIZE(x) = -(Py_SIZE(x));
return (PyObject *)maybe_small_long(x);
}
static PyObject *
long_neg(PyLongObject *v)
{
PyLongObject *z;
if (ABS(Py_SIZE(v)) <= 1)
return PyLong_FromLong(-MEDIUM_VALUE(v));
z = (PyLongObject *)_PyLong_Copy(v);
if (z != NULL)
Py_SIZE(z) = -(Py_SIZE(v));
return (PyObject *)z;
}
static PyObject *
long_abs(PyLongObject *v)
{
if (Py_SIZE(v) < 0)
return long_neg(v);
else
return long_long((PyObject *)v);
}
static int
long_bool(PyLongObject *v)
{
return ABS(Py_SIZE(v)) != 0;
}
static PyObject *
long_rshift(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z = NULL;
long shiftby;
Py_ssize_t newsize, wordshift, loshift, hishift, i, j;
digit lomask, himask;
CHECK_BINOP(a, b);
if (Py_SIZE(a) < 0) {
/* Right shifting negative numbers is harder */
PyLongObject *a1, *a2;
a1 = (PyLongObject *) long_invert(a);
if (a1 == NULL)
goto rshift_error;
a2 = (PyLongObject *) long_rshift(a1, b);
Py_DECREF(a1);
if (a2 == NULL)
goto rshift_error;
z = (PyLongObject *) long_invert(a2);
Py_DECREF(a2);
}
else {
shiftby = PyLong_AsLong((PyObject *)b);
if (shiftby == -1L && PyErr_Occurred())
goto rshift_error;
if (shiftby < 0) {
PyErr_SetString(PyExc_ValueError,
"negative shift count");
goto rshift_error;
}
wordshift = shiftby / PyLong_SHIFT;
newsize = ABS(Py_SIZE(a)) - wordshift;
if (newsize <= 0)
return PyLong_FromLong(0);
loshift = shiftby % PyLong_SHIFT;
hishift = PyLong_SHIFT - loshift;
lomask = ((digit)1 << hishift) - 1;
himask = PyLong_MASK ^ lomask;
z = _PyLong_New(newsize);
if (z == NULL)
goto rshift_error;
if (Py_SIZE(a) < 0)
Py_SIZE(z) = -(Py_SIZE(z));
for (i = 0, j = wordshift; i < newsize; i++, j++) {
z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask;
if (i+1 < newsize)
z->ob_digit[i] |=
(a->ob_digit[j+1] << hishift) & himask;
}
z = long_normalize(z);
}
rshift_error:
return (PyObject *) maybe_small_long(z);
}
static PyObject *
long_lshift(PyObject *v, PyObject *w)
{
/* This version due to Tim Peters */
PyLongObject *a = (PyLongObject*)v;
PyLongObject *b = (PyLongObject*)w;
PyLongObject *z = NULL;
long shiftby;
Py_ssize_t oldsize, newsize, wordshift, remshift, i, j;
twodigits accum;
CHECK_BINOP(a, b);
shiftby = PyLong_AsLong((PyObject *)b);
if (shiftby == -1L && PyErr_Occurred())
goto lshift_error;
if (shiftby < 0) {
PyErr_SetString(PyExc_ValueError, "negative shift count");
goto lshift_error;
}
if ((long)(int)shiftby != shiftby) {
PyErr_SetString(PyExc_ValueError,
"outrageous left shift count");
goto lshift_error;
}
/* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
wordshift = (int)shiftby / PyLong_SHIFT;
remshift = (int)shiftby - wordshift * PyLong_SHIFT;
oldsize = ABS(Py_SIZE(a));
newsize = oldsize + wordshift;
if (remshift)
++newsize;
z = _PyLong_New(newsize);
if (z == NULL)
goto lshift_error;
if (Py_SIZE(a) < 0)
NEGATE(z);
for (i = 0; i < wordshift; i++)
z->ob_digit[i] = 0;
accum = 0;
for (i = wordshift, j = 0; j < oldsize; i++, j++) {
accum |= (twodigits)a->ob_digit[j] << remshift;
z->ob_digit[i] = (digit)(accum & PyLong_MASK);
accum >>= PyLong_SHIFT;
}
if (remshift)
z->ob_digit[newsize-1] = (digit)accum;
else
assert(!accum);
z = long_normalize(z);
lshift_error:
return (PyObject *) maybe_small_long(z);
}
/* Compute two's complement of digit vector a[0:m], writing result to
z[0:m]. The digit vector a need not be normalized, but should not
be entirely zero. a and z may point to the same digit vector. */
static void
v_complement(digit *z, digit *a, Py_ssize_t m)
{
Py_ssize_t i;
digit carry = 1;
for (i = 0; i < m; ++i) {
carry += a[i] ^ PyLong_MASK;
z[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
assert(carry == 0);
}
/* Bitwise and/xor/or operations */
static PyObject *
long_bitwise(PyLongObject *a,
int op, /* '&', '|', '^' */
PyLongObject *b)
{
int nega, negb, negz;
Py_ssize_t size_a, size_b, size_z, i;
PyLongObject *z;
/* Bitwise operations for negative numbers operate as though
on a two's complement representation. So convert arguments
from sign-magnitude to two's complement, and convert the
result back to sign-magnitude at the end. */
/* If a is negative, replace it by its two's complement. */
size_a = ABS(Py_SIZE(a));
nega = Py_SIZE(a) < 0;
if (nega) {
z = _PyLong_New(size_a);
if (z == NULL)
return NULL;
v_complement(z->ob_digit, a->ob_digit, size_a);
a = z;
}
else
/* Keep reference count consistent. */
Py_INCREF(a);
/* Same for b. */
size_b = ABS(Py_SIZE(b));
negb = Py_SIZE(b) < 0;
if (negb) {
z = _PyLong_New(size_b);
if (z == NULL) {
Py_DECREF(a);
return NULL;
}
v_complement(z->ob_digit, b->ob_digit, size_b);
b = z;
}
else
Py_INCREF(b);
/* Swap a and b if necessary to ensure size_a >= size_b. */
if (size_a < size_b) {
z = a; a = b; b = z;
size_z = size_a; size_a = size_b; size_b = size_z;
negz = nega; nega = negb; negb = negz;
}
/* JRH: The original logic here was to allocate the result value (z)
as the longer of the two operands. However, there are some cases
where the result is guaranteed to be shorter than that: AND of two
positives, OR of two negatives: use the shorter number. AND with
mixed signs: use the positive number. OR with mixed signs: use the
negative number.
*/
switch (op) {
case '^':
negz = nega ^ negb;
size_z = size_a;
break;
case '&':
negz = nega & negb;
size_z = negb ? size_a : size_b;
break;
case '|':
negz = nega | negb;
size_z = negb ? size_b : size_a;
break;
default:
PyErr_BadArgument();
return NULL;
}
/* We allow an extra digit if z is negative, to make sure that
the final two's complement of z doesn't overflow. */
z = _PyLong_New(size_z + negz);
if (z == NULL) {
Py_DECREF(a);
Py_DECREF(b);
return NULL;
}
/* Compute digits for overlap of a and b. */
switch(op) {
case '&':
for (i = 0; i < size_b; ++i)
z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i];
break;
case '|':
for (i = 0; i < size_b; ++i)
z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i];
break;
case '^':
for (i = 0; i < size_b; ++i)
z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i];
break;
default:
PyErr_BadArgument();
return NULL;
}
/* Copy any remaining digits of a, inverting if necessary. */
if (op == '^' && negb)
for (; i < size_z; ++i)
z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK;
else if (i < size_z)
memcpy(&z->ob_digit[i], &a->ob_digit[i],
(size_z-i)*sizeof(digit));
/* Complement result if negative. */
if (negz) {
Py_SIZE(z) = -(Py_SIZE(z));
z->ob_digit[size_z] = PyLong_MASK;
v_complement(z->ob_digit, z->ob_digit, size_z+1);
}
Py_DECREF(a);
Py_DECREF(b);
return (PyObject *)maybe_small_long(long_normalize(z));
}
static PyObject *
long_and(PyObject *a, PyObject *b)
{
PyObject *c;
CHECK_BINOP(a, b);
c = long_bitwise((PyLongObject*)a, '&', (PyLongObject*)b);
return c;
}
static PyObject *
long_xor(PyObject *a, PyObject *b)
{
PyObject *c;
CHECK_BINOP(a, b);
c = long_bitwise((PyLongObject*)a, '^', (PyLongObject*)b);
return c;
}
static PyObject *
long_or(PyObject *a, PyObject *b)
{
PyObject *c;
CHECK_BINOP(a, b);
c = long_bitwise((PyLongObject*)a, '|', (PyLongObject*)b);
return c;
}
static PyObject *
long_long(PyObject *v)
{
if (PyLong_CheckExact(v))
Py_INCREF(v);
else
v = _PyLong_Copy((PyLongObject *)v);
return v;
}
static PyObject *
long_float(PyObject *v)
{
double result;
result = PyLong_AsDouble(v);
if (result == -1.0 && PyErr_Occurred())
return NULL;
return PyFloat_FromDouble(result);
}
static PyObject *
long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static PyObject *
long_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *x = NULL;
int base = -909; /* unlikely! */
static char *kwlist[] = {"x", "base", 0};
if (type != &PyLong_Type)
return long_subtype_new(type, args, kwds); /* Wimp out */
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:int", kwlist,
&x, &base))
return NULL;
if (x == NULL)
return PyLong_FromLong(0L);
if (base == -909)
return PyNumber_Long(x);
else if (PyUnicode_Check(x))
return PyLong_FromUnicode(PyUnicode_AS_UNICODE(x),
PyUnicode_GET_SIZE(x),
base);
else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
/* Since PyLong_FromString doesn't have a length parameter,
* check here for possible NULs in the string. */
char *string;
Py_ssize_t size = Py_SIZE(x);
if (PyByteArray_Check(x))
string = PyByteArray_AS_STRING(x);
else
string = PyBytes_AS_STRING(x);
if (strlen(string) != (size_t)size) {
/* We only see this if there's a null byte in x,
x is a bytes or buffer, *and* a base is given. */
PyErr_Format(PyExc_ValueError,
"invalid literal for int() with base %d: %R",
base, x);
return NULL;
}
return PyLong_FromString(string, NULL, base);
}
else {
PyErr_SetString(PyExc_TypeError,
"int() can't convert non-string with explicit base");
return NULL;
}
}
/* Wimpy, slow approach to tp_new calls for subtypes of long:
first create a regular long from whatever arguments we got,
then allocate a subtype instance and initialize it from
the regular long. The regular long is then thrown away.
*/
static PyObject *
long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyLongObject *tmp, *newobj;
Py_ssize_t i, n;
assert(PyType_IsSubtype(type, &PyLong_Type));
tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds);
if (tmp == NULL)
return NULL;
assert(PyLong_CheckExact(tmp));
n = Py_SIZE(tmp);
if (n < 0)
n = -n;
newobj = (PyLongObject *)type->tp_alloc(type, n);
if (newobj == NULL) {
Py_DECREF(tmp);
return NULL;
}
assert(PyLong_Check(newobj));
Py_SIZE(newobj) = Py_SIZE(tmp);
for (i = 0; i < n; i++)
newobj->ob_digit[i] = tmp->ob_digit[i];
Py_DECREF(tmp);
return (PyObject *)newobj;
}
static PyObject *
long_getnewargs(PyLongObject *v)
{
return Py_BuildValue("(N)", _PyLong_Copy(v));
}
static PyObject *
long_get0(PyLongObject *v, void *context) {
return PyLong_FromLong(0L);
}
static PyObject *
long_get1(PyLongObject *v, void *context) {
return PyLong_FromLong(1L);
}
static PyObject *
long__format__(PyObject *self, PyObject *args)
{
PyObject *format_spec;
if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
return NULL;
return _PyLong_FormatAdvanced(self,
PyUnicode_AS_UNICODE(format_spec),
PyUnicode_GET_SIZE(format_spec));
}
static PyObject *
long_round(PyObject *self, PyObject *args)
{
PyObject *o_ndigits=NULL, *temp;
PyLongObject *pow=NULL, *q=NULL, *r=NULL, *ndigits=NULL, *one;
int errcode;
digit q_mod_4;
/* Notes on the algorithm: to round to the nearest 10**n (n positive),
the straightforward method is:
(1) divide by 10**n
(2) round to nearest integer (round to even in case of tie)
(3) multiply result by 10**n.
But the rounding step involves examining the fractional part of the
quotient to see whether it's greater than 0.5 or not. Since we
want to do the whole calculation in integer arithmetic, it's
simpler to do:
(1) divide by (10**n)/2
(2) round to nearest multiple of 2 (multiple of 4 in case of tie)
(3) multiply result by (10**n)/2.
Then all we need to know about the fractional part of the quotient
arising in step (2) is whether it's zero or not.
Doing both a multiplication and division is wasteful, and is easily
avoided if we just figure out how much to adjust the original input
by to do the rounding.
Here's the whole algorithm expressed in Python.
def round(self, ndigits = None):
"""round(int, int) -> int"""
if ndigits is None or ndigits >= 0:
return self
pow = 10**-ndigits >> 1
q, r = divmod(self, pow)
self -= r
if (q & 1 != 0):
if (q & 2 == r == 0):
self -= pow
else:
self += pow
return self
*/
if (!PyArg_ParseTuple(args, "|O", &o_ndigits))
return NULL;
if (o_ndigits == NULL)
return long_long(self);
ndigits = (PyLongObject *)PyNumber_Index(o_ndigits);
if (ndigits == NULL)
return NULL;
if (Py_SIZE(ndigits) >= 0) {
Py_DECREF(ndigits);
return long_long(self);
}
Py_INCREF(self); /* to keep refcounting simple */
/* we now own references to self, ndigits */
/* pow = 10 ** -ndigits >> 1 */
pow = (PyLongObject *)PyLong_FromLong(10L);
if (pow == NULL)
goto error;
temp = long_neg(ndigits);
Py_DECREF(ndigits);
ndigits = (PyLongObject *)temp;
if (ndigits == NULL)
goto error;
temp = long_pow((PyObject *)pow, (PyObject *)ndigits, Py_None);
Py_DECREF(pow);
pow = (PyLongObject *)temp;
if (pow == NULL)
goto error;
assert(PyLong_Check(pow)); /* check long_pow returned a long */
one = (PyLongObject *)PyLong_FromLong(1L);
if (one == NULL)
goto error;
temp = long_rshift(pow, one);
Py_DECREF(one);
Py_DECREF(pow);
pow = (PyLongObject *)temp;
if (pow == NULL)
goto error;
/* q, r = divmod(self, pow) */
errcode = l_divmod((PyLongObject *)self, pow, &q, &r);
if (errcode == -1)
goto error;
/* self -= r */
temp = long_sub((PyLongObject *)self, r);
Py_DECREF(self);
self = temp;
if (self == NULL)
goto error;
/* get value of quotient modulo 4 */
if (Py_SIZE(q) == 0)
q_mod_4 = 0;
else if (Py_SIZE(q) > 0)
q_mod_4 = q->ob_digit[0] & 3;
else
q_mod_4 = (PyLong_BASE-q->ob_digit[0]) & 3;
if ((q_mod_4 & 1) == 1) {
/* q is odd; round self up or down by adding or subtracting pow */
if (q_mod_4 == 1 && Py_SIZE(r) == 0)
temp = (PyObject *)long_sub((PyLongObject *)self, pow);
else
temp = (PyObject *)long_add((PyLongObject *)self, pow);
Py_DECREF(self);
self = temp;
if (self == NULL)
goto error;
}
Py_DECREF(q);
Py_DECREF(r);
Py_DECREF(pow);
Py_DECREF(ndigits);
return self;
error:
Py_XDECREF(q);
Py_XDECREF(r);
Py_XDECREF(pow);
Py_XDECREF(self);
Py_XDECREF(ndigits);
return NULL;
}
static PyObject *
long_sizeof(PyLongObject *v)
{
Py_ssize_t res;
res = offsetof(PyLongObject, ob_digit) + ABS(Py_SIZE(v))*sizeof(digit);
return PyLong_FromSsize_t(res);
}
static PyObject *
long_bit_length(PyLongObject *v)
{
PyLongObject *result, *x, *y;
Py_ssize_t ndigits, msd_bits = 0;
digit msd;
assert(v != NULL);
assert(PyLong_Check(v));
ndigits = ABS(Py_SIZE(v));
if (ndigits == 0)
return PyLong_FromLong(0);
msd = v->ob_digit[ndigits-1];
while (msd >= 32) {
msd_bits += 6;
msd >>= 6;
}
msd_bits += (long)(BitLengthTable[msd]);
if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
/* expression above may overflow; use Python integers instead */
result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
if (result == NULL)
return NULL;
x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
if (x == NULL)
goto error;
y = (PyLongObject *)long_mul(result, x);
Py_DECREF(x);
if (y == NULL)
goto error;
Py_DECREF(result);
result = y;
x = (PyLongObject *)PyLong_FromLong(msd_bits);
if (x == NULL)
goto error;
y = (PyLongObject *)long_add(result, x);
Py_DECREF(x);
if (y == NULL)
goto error;
Py_DECREF(result);
result = y;
return (PyObject *)result;
error:
Py_DECREF(result);
return NULL;
}
PyDoc_STRVAR(long_bit_length_doc,
"int.bit_length() -> int\n\
\n\
Number of bits necessary to represent self in binary.\n\
>>> bin(37)\n\
'0b100101'\n\
>>> (37).bit_length()\n\
6");
#if 0
static PyObject *
long_is_finite(PyObject *v)
{
Py_RETURN_TRUE;
}
#endif
static PyObject *
long_to_bytes(PyLongObject *v, PyObject *args, PyObject *kwds)
{
PyObject *byteorder_str;
PyObject *is_signed_obj = NULL;
Py_ssize_t length;
int little_endian;
int is_signed;
PyObject *bytes;
static char *kwlist[] = {"length", "byteorder", "signed", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "nU|O:to_bytes", kwlist,
&length, &byteorder_str,
&is_signed_obj))
return NULL;
if (args != NULL && Py_SIZE(args) > 2) {
PyErr_SetString(PyExc_TypeError,
"'signed' is a keyword-only argument");
return NULL;
}
if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little"))
little_endian = 1;
else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big"))
little_endian = 0;
else {
PyErr_SetString(PyExc_ValueError,
"byteorder must be either 'little' or 'big'");
return NULL;
}
if (is_signed_obj != NULL) {
int cmp = PyObject_IsTrue(is_signed_obj);
if (cmp < 0)
return NULL;
is_signed = cmp ? 1 : 0;
}
else {
/* If the signed argument was omitted, use False as the
default. */
is_signed = 0;
}
if (length < 0) {
PyErr_SetString(PyExc_ValueError,
"length argument must be non-negative");
return NULL;
}
bytes = PyBytes_FromStringAndSize(NULL, length);
if (bytes == NULL)
return NULL;
if (_PyLong_AsByteArray(v, (unsigned char *)PyBytes_AS_STRING(bytes),
length, little_endian, is_signed) < 0) {
Py_DECREF(bytes);
return NULL;
}
return bytes;
}
PyDoc_STRVAR(long_to_bytes_doc,
"int.to_bytes(length, byteorder, *, signed=False) -> bytes\n\
\n\
Return an array of bytes representing an integer.\n\
\n\
The integer is represented using length bytes. An OverflowError is\n\
raised if the integer is not representable with the given number of\n\
bytes.\n\
\n\
The byteorder argument determines the byte order used to represent the\n\
integer. If byteorder is 'big', the most significant byte is at the\n\
beginning of the byte array. If byteorder is 'little', the most\n\
significant byte is at the end of the byte array. To request the native\n\
byte order of the host system, use `sys.byteorder' as the byte order value.\n\
\n\
The signed keyword-only argument determines whether two's complement is\n\
used to represent the integer. If signed is False and a negative integer\n\
is given, an OverflowError is raised.");
static PyObject *
long_from_bytes(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *byteorder_str;
PyObject *is_signed_obj = NULL;
int little_endian;
int is_signed;
PyObject *obj;
PyObject *bytes;
PyObject *long_obj;
static char *kwlist[] = {"bytes", "byteorder", "signed", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "OU|O:from_bytes", kwlist,
&obj, &byteorder_str,
&is_signed_obj))
return NULL;
if (args != NULL && Py_SIZE(args) > 2) {
PyErr_SetString(PyExc_TypeError,
"'signed' is a keyword-only argument");
return NULL;
}
if (!PyUnicode_CompareWithASCIIString(byteorder_str, "little"))
little_endian = 1;
else if (!PyUnicode_CompareWithASCIIString(byteorder_str, "big"))
little_endian = 0;
else {
PyErr_SetString(PyExc_ValueError,
"byteorder must be either 'little' or 'big'");
return NULL;
}
if (is_signed_obj != NULL) {
int cmp = PyObject_IsTrue(is_signed_obj);
if (cmp < 0)
return NULL;
is_signed = cmp ? 1 : 0;
}
else {
/* If the signed argument was omitted, use False as the
default. */
is_signed = 0;
}
bytes = PyObject_Bytes(obj);
if (bytes == NULL)
return NULL;
long_obj = _PyLong_FromByteArray(
(unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes),
little_endian, is_signed);
Py_DECREF(bytes);
/* If from_bytes() was used on subclass, allocate new subclass
* instance, initialize it with decoded long value and return it.
*/
if (type != &PyLong_Type && PyType_IsSubtype(type, &PyLong_Type)) {
PyLongObject *newobj;
int i;
Py_ssize_t n = ABS(Py_SIZE(long_obj));
newobj = (PyLongObject *)type->tp_alloc(type, n);
if (newobj == NULL) {
Py_DECREF(long_obj);
return NULL;
}
assert(PyLong_Check(newobj));
Py_SIZE(newobj) = Py_SIZE(long_obj);
for (i = 0; i < n; i++) {
newobj->ob_digit[i] =
((PyLongObject *)long_obj)->ob_digit[i];
}
Py_DECREF(long_obj);
return (PyObject *)newobj;
}
return long_obj;
}
PyDoc_STRVAR(long_from_bytes_doc,
"int.from_bytes(bytes, byteorder, *, signed=False) -> int\n\
\n\
Return the integer represented by the given array of bytes.\n\
\n\
The bytes argument must either support the buffer protocol or be an\n\
iterable object producing bytes. Bytes and bytearray are examples of\n\
built-in objects that support the buffer protocol.\n\
\n\
The byteorder argument determines the byte order used to represent the\n\
integer. If byteorder is 'big', the most significant byte is at the\n\
beginning of the byte array. If byteorder is 'little', the most\n\
significant byte is at the end of the byte array. To request the native\n\
byte order of the host system, use `sys.byteorder' as the byte order value.\n\
\n\
The signed keyword-only argument indicates whether two's complement is\n\
used to represent the integer.");
static PyMethodDef long_methods[] = {
{"conjugate", (PyCFunction)long_long, METH_NOARGS,
"Returns self, the complex conjugate of any int."},
{"bit_length", (PyCFunction)long_bit_length, METH_NOARGS,
long_bit_length_doc},
#if 0
{"is_finite", (PyCFunction)long_is_finite, METH_NOARGS,
"Returns always True."},
#endif
{"to_bytes", (PyCFunction)long_to_bytes,
METH_VARARGS|METH_KEYWORDS, long_to_bytes_doc},
{"from_bytes", (PyCFunction)long_from_bytes,
METH_VARARGS|METH_KEYWORDS|METH_CLASS, long_from_bytes_doc},
{"__trunc__", (PyCFunction)long_long, METH_NOARGS,
"Truncating an Integral returns itself."},
{"__floor__", (PyCFunction)long_long, METH_NOARGS,
"Flooring an Integral returns itself."},
{"__ceil__", (PyCFunction)long_long, METH_NOARGS,
"Ceiling of an Integral returns itself."},
{"__round__", (PyCFunction)long_round, METH_VARARGS,
"Rounding an Integral returns itself.\n"
"Rounding with an ndigits argument also returns an integer."},
{"__getnewargs__", (PyCFunction)long_getnewargs, METH_NOARGS},
{"__format__", (PyCFunction)long__format__, METH_VARARGS},
{"__sizeof__", (PyCFunction)long_sizeof, METH_NOARGS,
"Returns size in memory, in bytes"},
{NULL, NULL} /* sentinel */
};
static PyGetSetDef long_getset[] = {
{"real",
(getter)long_long, (setter)NULL,
"the real part of a complex number",
NULL},
{"imag",
(getter)long_get0, (setter)NULL,
"the imaginary part of a complex number",
NULL},
{"numerator",
(getter)long_long, (setter)NULL,
"the numerator of a rational number in lowest terms",
NULL},
{"denominator",
(getter)long_get1, (setter)NULL,
"the denominator of a rational number in lowest terms",
NULL},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(long_doc,
"int(x[, base]) -> integer\n\
\n\
Convert a string or number to an integer, if possible. A floating\n\
point argument will be truncated towards zero (this does not include a\n\
string representation of a floating point number!) When converting a\n\
string, use the optional base. It is an error to supply a base when\n\
converting a non-string.");
static PyNumberMethods long_as_number = {
(binaryfunc) long_add, /*nb_add*/
(binaryfunc) long_sub, /*nb_subtract*/
(binaryfunc) long_mul, /*nb_multiply*/
long_mod, /*nb_remainder*/
long_divmod, /*nb_divmod*/
long_pow, /*nb_power*/
(unaryfunc) long_neg, /*nb_negative*/
(unaryfunc) long_long, /*tp_positive*/
(unaryfunc) long_abs, /*tp_absolute*/
(inquiry) long_bool, /*tp_bool*/
(unaryfunc) long_invert, /*nb_invert*/
long_lshift, /*nb_lshift*/
(binaryfunc) long_rshift, /*nb_rshift*/
long_and, /*nb_and*/
long_xor, /*nb_xor*/
long_or, /*nb_or*/
long_long, /*nb_int*/
0, /*nb_reserved*/
long_float, /*nb_float*/
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
long_div, /* nb_floor_divide */
long_true_divide, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
long_long, /* nb_index */
};
PyTypeObject PyLong_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"int", /* tp_name */
offsetof(PyLongObject, ob_digit), /* tp_basicsize */
sizeof(digit), /* tp_itemsize */
long_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
long_to_decimal_string, /* tp_repr */
&long_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)long_hash, /* tp_hash */
0, /* tp_call */
long_to_decimal_string, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
Py_TPFLAGS_LONG_SUBCLASS, /* tp_flags */
long_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
long_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
long_methods, /* tp_methods */
0, /* tp_members */
long_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
long_new, /* tp_new */
PyObject_Del, /* tp_free */
};
static PyTypeObject Int_InfoType;
PyDoc_STRVAR(int_info__doc__,
"sys.int_info\n\
\n\
A struct sequence that holds information about Python's\n\
internal representation of integers. The attributes are read only.");
static PyStructSequence_Field int_info_fields[] = {
{"bits_per_digit", "size of a digit in bits"},
{"sizeof_digit", "size in bytes of the C type used to "
"represent a digit"},
{NULL, NULL}
};
static PyStructSequence_Desc int_info_desc = {
"sys.int_info", /* name */
int_info__doc__, /* doc */
int_info_fields, /* fields */
2 /* number of fields */
};
PyObject *
PyLong_GetInfo(void)
{
PyObject* int_info;
int field = 0;
int_info = PyStructSequence_New(&Int_InfoType);
if (int_info == NULL)
return NULL;
PyStructSequence_SET_ITEM(int_info, field++,
PyLong_FromLong(PyLong_SHIFT));
PyStructSequence_SET_ITEM(int_info, field++,
PyLong_FromLong(sizeof(digit)));
if (PyErr_Occurred()) {
Py_CLEAR(int_info);
return NULL;
}
return int_info;
}
int
_PyLong_Init(void)
{
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
int ival, size;
PyLongObject *v = small_ints;
for (ival = -NSMALLNEGINTS; ival < NSMALLPOSINTS; ival++, v++) {
size = (ival < 0) ? -1 : ((ival == 0) ? 0 : 1);
if (Py_TYPE(v) == &PyLong_Type) {
/* The element is already initialized, most likely
* the Python interpreter was initialized before.
*/
Py_ssize_t refcnt;
PyObject* op = (PyObject*)v;
refcnt = Py_REFCNT(op) < 0 ? 0 : Py_REFCNT(op);
_Py_NewReference(op);
/* _Py_NewReference sets the ref count to 1 but
* the ref count might be larger. Set the refcnt
* to the original refcnt + 1 */
Py_REFCNT(op) = refcnt + 1;
assert(Py_SIZE(op) == size);
assert(v->ob_digit[0] == abs(ival));
}
else {
PyObject_INIT(v, &PyLong_Type);
}
Py_SIZE(v) = size;
v->ob_digit[0] = abs(ival);
}
#endif
/* initialize int_info */
if (Int_InfoType.tp_name == 0)
PyStructSequence_InitType(&Int_InfoType, &int_info_desc);
return 1;
}
void
PyLong_Fini(void)
{
/* Integers are currently statically allocated. Py_DECREF is not
needed, but Python must forget about the reference or multiple
reinitializations will fail. */
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
int i;
PyLongObject *v = small_ints;
for (i = 0; i < NSMALLNEGINTS + NSMALLPOSINTS; i++, v++) {
_Py_DEC_REFTOTAL;
_Py_ForgetReference((PyObject*)v);
}
#endif
}
|