1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
|
/* Long (arbitrary precision) integer object implementation */
/* XXX The functional organization of this file is terrible */
#include "Python.h"
#include "pycore_interp.h" // _PY_NSMALLPOSINTS
#include "pycore_pystate.h" // _Py_IsMainInterpreter()
#include "longintrepr.h"
#include <float.h>
#include <ctype.h>
#include <stddef.h>
#include "clinic/longobject.c.h"
/*[clinic input]
class int "PyObject *" "&PyLong_Type"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=ec0275e3422a36e3]*/
#define NSMALLPOSINTS _PY_NSMALLPOSINTS
#define NSMALLNEGINTS _PY_NSMALLNEGINTS
_Py_IDENTIFIER(little);
_Py_IDENTIFIER(big);
/* convert a PyLong of size 1, 0 or -1 to an sdigit */
#define MEDIUM_VALUE(x) (assert(-1 <= Py_SIZE(x) && Py_SIZE(x) <= 1), \
Py_SIZE(x) < 0 ? -(sdigit)(x)->ob_digit[0] : \
(Py_SIZE(x) == 0 ? (sdigit)0 : \
(sdigit)(x)->ob_digit[0]))
PyObject *_PyLong_Zero = NULL;
PyObject *_PyLong_One = NULL;
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
#define IS_SMALL_INT(ival) (-NSMALLNEGINTS <= (ival) && (ival) < NSMALLPOSINTS)
#define IS_SMALL_UINT(ival) ((ival) < NSMALLPOSINTS)
static PyObject *
get_small_int(sdigit ival)
{
assert(IS_SMALL_INT(ival));
PyThreadState *tstate = _PyThreadState_GET();
PyObject *v = (PyObject*)tstate->interp->small_ints[ival + NSMALLNEGINTS];
Py_INCREF(v);
return v;
}
static PyLongObject *
maybe_small_long(PyLongObject *v)
{
if (v && Py_ABS(Py_SIZE(v)) <= 1) {
sdigit ival = MEDIUM_VALUE(v);
if (IS_SMALL_INT(ival)) {
Py_DECREF(v);
return (PyLongObject *)get_small_int(ival);
}
}
return v;
}
#else
#define IS_SMALL_INT(ival) 0
#define IS_SMALL_UINT(ival) 0
#define get_small_int(ival) (Py_UNREACHABLE(), NULL)
#define maybe_small_long(val) (val)
#endif
/* If a freshly-allocated int is already shared, it must
be a small integer, so negating it must go to PyLong_FromLong */
Py_LOCAL_INLINE(void)
_PyLong_Negate(PyLongObject **x_p)
{
PyLongObject *x;
x = (PyLongObject *)*x_p;
if (Py_REFCNT(x) == 1) {
Py_SET_SIZE(x, -Py_SIZE(x));
return;
}
*x_p = (PyLongObject *)PyLong_FromLong(-MEDIUM_VALUE(x));
Py_DECREF(x);
}
/* For int multiplication, use the O(N**2) school algorithm unless
* both operands contain more than KARATSUBA_CUTOFF digits (this
* being an internal Python int digit, in base BASE).
*/
#define KARATSUBA_CUTOFF 70
#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
/* For exponentiation, use the binary left-to-right algorithm
* unless the exponent contains more than FIVEARY_CUTOFF digits.
* In that case, do 5 bits at a time. The potential drawback is that
* a table of 2**5 intermediate results is computed.
*/
#define FIVEARY_CUTOFF 8
#define SIGCHECK(PyTryBlock) \
do { \
if (PyErr_CheckSignals()) PyTryBlock \
} while(0)
/* Normalize (remove leading zeros from) an int object.
Doesn't attempt to free the storage--in most cases, due to the nature
of the algorithms used, this could save at most be one word anyway. */
static PyLongObject *
long_normalize(PyLongObject *v)
{
Py_ssize_t j = Py_ABS(Py_SIZE(v));
Py_ssize_t i = j;
while (i > 0 && v->ob_digit[i-1] == 0)
--i;
if (i != j) {
Py_SET_SIZE(v, (Py_SIZE(v) < 0) ? -(i) : i);
}
return v;
}
/* Allocate a new int object with size digits.
Return NULL and set exception if we run out of memory. */
#define MAX_LONG_DIGITS \
((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit))
PyLongObject *
_PyLong_New(Py_ssize_t size)
{
PyLongObject *result;
/* Number of bytes needed is: offsetof(PyLongObject, ob_digit) +
sizeof(digit)*size. Previous incarnations of this code used
sizeof(PyVarObject) instead of the offsetof, but this risks being
incorrect in the presence of padding between the PyVarObject header
and the digits. */
if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
PyErr_SetString(PyExc_OverflowError,
"too many digits in integer");
return NULL;
}
result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) +
size*sizeof(digit));
if (!result) {
PyErr_NoMemory();
return NULL;
}
return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size);
}
PyObject *
_PyLong_Copy(PyLongObject *src)
{
PyLongObject *result;
Py_ssize_t i;
assert(src != NULL);
i = Py_SIZE(src);
if (i < 0)
i = -(i);
if (i < 2) {
sdigit ival = MEDIUM_VALUE(src);
if (IS_SMALL_INT(ival)) {
return get_small_int(ival);
}
}
result = _PyLong_New(i);
if (result != NULL) {
Py_SET_SIZE(result, Py_SIZE(src));
while (--i >= 0) {
result->ob_digit[i] = src->ob_digit[i];
}
}
return (PyObject *)result;
}
/* Create a new int object from a C long int */
PyObject *
PyLong_FromLong(long ival)
{
PyLongObject *v;
unsigned long abs_ival;
unsigned long t; /* unsigned so >> doesn't propagate sign bit */
int ndigits = 0;
int sign;
if (IS_SMALL_INT(ival)) {
return get_small_int((sdigit)ival);
}
if (ival < 0) {
/* negate: can't write this as abs_ival = -ival since that
invokes undefined behaviour when ival is LONG_MIN */
abs_ival = 0U-(unsigned long)ival;
sign = -1;
}
else {
abs_ival = (unsigned long)ival;
sign = ival == 0 ? 0 : 1;
}
/* Fast path for single-digit ints */
if (!(abs_ival >> PyLong_SHIFT)) {
v = _PyLong_New(1);
if (v) {
Py_SET_SIZE(v, sign);
v->ob_digit[0] = Py_SAFE_DOWNCAST(
abs_ival, unsigned long, digit);
}
return (PyObject*)v;
}
#if PyLong_SHIFT==15
/* 2 digits */
if (!(abs_ival >> 2*PyLong_SHIFT)) {
v = _PyLong_New(2);
if (v) {
Py_SET_SIZE(v, 2 * sign);
v->ob_digit[0] = Py_SAFE_DOWNCAST(
abs_ival & PyLong_MASK, unsigned long, digit);
v->ob_digit[1] = Py_SAFE_DOWNCAST(
abs_ival >> PyLong_SHIFT, unsigned long, digit);
}
return (PyObject*)v;
}
#endif
/* Larger numbers: loop to determine number of digits */
t = abs_ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SET_SIZE(v, ndigits * sign);
t = abs_ival;
while (t) {
*p++ = Py_SAFE_DOWNCAST(
t & PyLong_MASK, unsigned long, digit);
t >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
#define PYLONG_FROM_UINT(INT_TYPE, ival) \
do { \
if (IS_SMALL_UINT(ival)) { \
return get_small_int((sdigit)(ival)); \
} \
/* Count the number of Python digits. */ \
Py_ssize_t ndigits = 0; \
INT_TYPE t = (ival); \
while (t) { \
++ndigits; \
t >>= PyLong_SHIFT; \
} \
PyLongObject *v = _PyLong_New(ndigits); \
if (v == NULL) { \
return NULL; \
} \
digit *p = v->ob_digit; \
while ((ival)) { \
*p++ = (digit)((ival) & PyLong_MASK); \
(ival) >>= PyLong_SHIFT; \
} \
return (PyObject *)v; \
} while(0)
/* Create a new int object from a C unsigned long int */
PyObject *
PyLong_FromUnsignedLong(unsigned long ival)
{
PYLONG_FROM_UINT(unsigned long, ival);
}
/* Create a new int object from a C unsigned long long int. */
PyObject *
PyLong_FromUnsignedLongLong(unsigned long long ival)
{
PYLONG_FROM_UINT(unsigned long long, ival);
}
/* Create a new int object from a C size_t. */
PyObject *
PyLong_FromSize_t(size_t ival)
{
PYLONG_FROM_UINT(size_t, ival);
}
/* Create a new int object from a C double */
PyObject *
PyLong_FromDouble(double dval)
{
/* Try to get out cheap if this fits in a long. When a finite value of real
* floating type is converted to an integer type, the value is truncated
* toward zero. If the value of the integral part cannot be represented by
* the integer type, the behavior is undefined. Thus, we must check that
* value is in range (LONG_MIN - 1, LONG_MAX + 1). If a long has more bits
* of precision than a double, casting LONG_MIN - 1 to double may yield an
* approximation, but LONG_MAX + 1 is a power of two and can be represented
* as double exactly (assuming FLT_RADIX is 2 or 16), so for simplicity
* check against [-(LONG_MAX + 1), LONG_MAX + 1).
*/
const double int_max = (unsigned long)LONG_MAX + 1;
if (-int_max < dval && dval < int_max) {
return PyLong_FromLong((long)dval);
}
PyLongObject *v;
double frac;
int i, ndig, expo, neg;
neg = 0;
if (Py_IS_INFINITY(dval)) {
PyErr_SetString(PyExc_OverflowError,
"cannot convert float infinity to integer");
return NULL;
}
if (Py_IS_NAN(dval)) {
PyErr_SetString(PyExc_ValueError,
"cannot convert float NaN to integer");
return NULL;
}
if (dval < 0.0) {
neg = 1;
dval = -dval;
}
frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
assert(expo > 0);
ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
v = _PyLong_New(ndig);
if (v == NULL)
return NULL;
frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
for (i = ndig; --i >= 0; ) {
digit bits = (digit)frac;
v->ob_digit[i] = bits;
frac = frac - (double)bits;
frac = ldexp(frac, PyLong_SHIFT);
}
if (neg) {
Py_SET_SIZE(v, -(Py_SIZE(v)));
}
return (PyObject *)v;
}
/* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
* anything about what happens when a signed integer operation overflows,
* and some compilers think they're doing you a favor by being "clever"
* then. The bit pattern for the largest positive signed long is
* (unsigned long)LONG_MAX, and for the smallest negative signed long
* it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
* However, some other compilers warn about applying unary minus to an
* unsigned operand. Hence the weird "0-".
*/
#define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN)
#define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN)
/* Get a C long int from an int object or any object that has an __index__
method.
On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
the result. Otherwise *overflow is 0.
For other errors (e.g., TypeError), return -1 and set an error condition.
In this case *overflow will be 0.
*/
long
PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
{
/* This version by Tim Peters */
PyLongObject *v;
unsigned long x, prev;
long res;
Py_ssize_t i;
int sign;
int do_decref = 0; /* if PyNumber_Index was called */
*overflow = 0;
if (vv == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (PyLong_Check(vv)) {
v = (PyLongObject *)vv;
}
else {
v = (PyLongObject *)PyNumber_Index(vv);
if (v == NULL)
return -1;
do_decref = 1;
}
res = -1;
i = Py_SIZE(v);
switch (i) {
case -1:
res = -(sdigit)v->ob_digit[0];
break;
case 0:
res = 0;
break;
case 1:
res = v->ob_digit[0];
break;
default:
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -(i);
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
*overflow = sign;
goto exit;
}
}
/* Haven't lost any bits, but casting to long requires extra
* care (see comment above).
*/
if (x <= (unsigned long)LONG_MAX) {
res = (long)x * sign;
}
else if (sign < 0 && x == PY_ABS_LONG_MIN) {
res = LONG_MIN;
}
else {
*overflow = sign;
/* res is already set to -1 */
}
}
exit:
if (do_decref) {
Py_DECREF(v);
}
return res;
}
/* Get a C long int from an int object or any object that has an __index__
method. Return -1 and set an error if overflow occurs. */
long
PyLong_AsLong(PyObject *obj)
{
int overflow;
long result = PyLong_AsLongAndOverflow(obj, &overflow);
if (overflow) {
/* XXX: could be cute and give a different
message for overflow == -1 */
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C long");
}
return result;
}
/* Get a C int from an int object or any object that has an __index__
method. Return -1 and set an error if overflow occurs. */
int
_PyLong_AsInt(PyObject *obj)
{
int overflow;
long result = PyLong_AsLongAndOverflow(obj, &overflow);
if (overflow || result > INT_MAX || result < INT_MIN) {
/* XXX: could be cute and give a different
message for overflow == -1 */
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C int");
return -1;
}
return (int)result;
}
/* Get a Py_ssize_t from an int object.
Returns -1 and sets an error condition if overflow occurs. */
Py_ssize_t
PyLong_AsSsize_t(PyObject *vv) {
PyLongObject *v;
size_t x, prev;
Py_ssize_t i;
int sign;
if (vv == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (!PyLong_Check(vv)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return -1;
}
v = (PyLongObject *)vv;
i = Py_SIZE(v);
switch (i) {
case -1: return -(sdigit)v->ob_digit[0];
case 0: return 0;
case 1: return v->ob_digit[0];
}
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -(i);
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev)
goto overflow;
}
/* Haven't lost any bits, but casting to a signed type requires
* extra care (see comment above).
*/
if (x <= (size_t)PY_SSIZE_T_MAX) {
return (Py_ssize_t)x * sign;
}
else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
return PY_SSIZE_T_MIN;
}
/* else overflow */
overflow:
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C ssize_t");
return -1;
}
/* Get a C unsigned long int from an int object.
Returns -1 and sets an error condition if overflow occurs. */
unsigned long
PyLong_AsUnsignedLong(PyObject *vv)
{
PyLongObject *v;
unsigned long x, prev;
Py_ssize_t i;
if (vv == NULL) {
PyErr_BadInternalCall();
return (unsigned long)-1;
}
if (!PyLong_Check(vv)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return (unsigned long)-1;
}
v = (PyLongObject *)vv;
i = Py_SIZE(v);
x = 0;
if (i < 0) {
PyErr_SetString(PyExc_OverflowError,
"can't convert negative value to unsigned int");
return (unsigned long) -1;
}
switch (i) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert "
"to C unsigned long");
return (unsigned long) -1;
}
}
return x;
}
/* Get a C size_t from an int object. Returns (size_t)-1 and sets
an error condition if overflow occurs. */
size_t
PyLong_AsSize_t(PyObject *vv)
{
PyLongObject *v;
size_t x, prev;
Py_ssize_t i;
if (vv == NULL) {
PyErr_BadInternalCall();
return (size_t) -1;
}
if (!PyLong_Check(vv)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return (size_t)-1;
}
v = (PyLongObject *)vv;
i = Py_SIZE(v);
x = 0;
if (i < 0) {
PyErr_SetString(PyExc_OverflowError,
"can't convert negative value to size_t");
return (size_t) -1;
}
switch (i) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C size_t");
return (size_t) -1;
}
}
return x;
}
/* Get a C unsigned long int from an int object, ignoring the high bits.
Returns -1 and sets an error condition if an error occurs. */
static unsigned long
_PyLong_AsUnsignedLongMask(PyObject *vv)
{
PyLongObject *v;
unsigned long x;
Py_ssize_t i;
int sign;
if (vv == NULL || !PyLong_Check(vv)) {
PyErr_BadInternalCall();
return (unsigned long) -1;
}
v = (PyLongObject *)vv;
i = Py_SIZE(v);
switch (i) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -i;
}
while (--i >= 0) {
x = (x << PyLong_SHIFT) | v->ob_digit[i];
}
return x * sign;
}
unsigned long
PyLong_AsUnsignedLongMask(PyObject *op)
{
PyLongObject *lo;
unsigned long val;
if (op == NULL) {
PyErr_BadInternalCall();
return (unsigned long)-1;
}
if (PyLong_Check(op)) {
return _PyLong_AsUnsignedLongMask(op);
}
lo = (PyLongObject *)PyNumber_Index(op);
if (lo == NULL)
return (unsigned long)-1;
val = _PyLong_AsUnsignedLongMask((PyObject *)lo);
Py_DECREF(lo);
return val;
}
int
_PyLong_Sign(PyObject *vv)
{
PyLongObject *v = (PyLongObject *)vv;
assert(v != NULL);
assert(PyLong_Check(v));
return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
}
size_t
_PyLong_NumBits(PyObject *vv)
{
PyLongObject *v = (PyLongObject *)vv;
size_t result = 0;
Py_ssize_t ndigits;
int msd_bits;
assert(v != NULL);
assert(PyLong_Check(v));
ndigits = Py_ABS(Py_SIZE(v));
assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
if (ndigits > 0) {
digit msd = v->ob_digit[ndigits - 1];
if ((size_t)(ndigits - 1) > SIZE_MAX / (size_t)PyLong_SHIFT)
goto Overflow;
result = (size_t)(ndigits - 1) * (size_t)PyLong_SHIFT;
msd_bits = _Py_bit_length(msd);
if (SIZE_MAX - msd_bits < result)
goto Overflow;
result += msd_bits;
}
return result;
Overflow:
PyErr_SetString(PyExc_OverflowError, "int has too many bits "
"to express in a platform size_t");
return (size_t)-1;
}
PyObject *
_PyLong_FromByteArray(const unsigned char* bytes, size_t n,
int little_endian, int is_signed)
{
const unsigned char* pstartbyte; /* LSB of bytes */
int incr; /* direction to move pstartbyte */
const unsigned char* pendbyte; /* MSB of bytes */
size_t numsignificantbytes; /* number of bytes that matter */
Py_ssize_t ndigits; /* number of Python int digits */
PyLongObject* v; /* result */
Py_ssize_t idigit = 0; /* next free index in v->ob_digit */
if (n == 0)
return PyLong_FromLong(0L);
if (little_endian) {
pstartbyte = bytes;
pendbyte = bytes + n - 1;
incr = 1;
}
else {
pstartbyte = bytes + n - 1;
pendbyte = bytes;
incr = -1;
}
if (is_signed)
is_signed = *pendbyte >= 0x80;
/* Compute numsignificantbytes. This consists of finding the most
significant byte. Leading 0 bytes are insignificant if the number
is positive, and leading 0xff bytes if negative. */
{
size_t i;
const unsigned char* p = pendbyte;
const int pincr = -incr; /* search MSB to LSB */
const unsigned char insignificant = is_signed ? 0xff : 0x00;
for (i = 0; i < n; ++i, p += pincr) {
if (*p != insignificant)
break;
}
numsignificantbytes = n - i;
/* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
actually has 2 significant bytes. OTOH, 0xff0001 ==
-0x00ffff, so we wouldn't *need* to bump it there; but we
do for 0xffff = -0x0001. To be safe without bothering to
check every case, bump it regardless. */
if (is_signed && numsignificantbytes < n)
++numsignificantbytes;
}
/* How many Python int digits do we need? We have
8*numsignificantbytes bits, and each Python int digit has
PyLong_SHIFT bits, so it's the ceiling of the quotient. */
/* catch overflow before it happens */
if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
PyErr_SetString(PyExc_OverflowError,
"byte array too long to convert to int");
return NULL;
}
ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
v = _PyLong_New(ndigits);
if (v == NULL)
return NULL;
/* Copy the bits over. The tricky parts are computing 2's-comp on
the fly for signed numbers, and dealing with the mismatch between
8-bit bytes and (probably) 15-bit Python digits.*/
{
size_t i;
twodigits carry = 1; /* for 2's-comp calculation */
twodigits accum = 0; /* sliding register */
unsigned int accumbits = 0; /* number of bits in accum */
const unsigned char* p = pstartbyte;
for (i = 0; i < numsignificantbytes; ++i, p += incr) {
twodigits thisbyte = *p;
/* Compute correction for 2's comp, if needed. */
if (is_signed) {
thisbyte = (0xff ^ thisbyte) + carry;
carry = thisbyte >> 8;
thisbyte &= 0xff;
}
/* Because we're going LSB to MSB, thisbyte is
more significant than what's already in accum,
so needs to be prepended to accum. */
accum |= thisbyte << accumbits;
accumbits += 8;
if (accumbits >= PyLong_SHIFT) {
/* There's enough to fill a Python digit. */
assert(idigit < ndigits);
v->ob_digit[idigit] = (digit)(accum & PyLong_MASK);
++idigit;
accum >>= PyLong_SHIFT;
accumbits -= PyLong_SHIFT;
assert(accumbits < PyLong_SHIFT);
}
}
assert(accumbits < PyLong_SHIFT);
if (accumbits) {
assert(idigit < ndigits);
v->ob_digit[idigit] = (digit)accum;
++idigit;
}
}
Py_SET_SIZE(v, is_signed ? -idigit : idigit);
return (PyObject *)long_normalize(v);
}
int
_PyLong_AsByteArray(PyLongObject* v,
unsigned char* bytes, size_t n,
int little_endian, int is_signed)
{
Py_ssize_t i; /* index into v->ob_digit */
Py_ssize_t ndigits; /* |v->ob_size| */
twodigits accum; /* sliding register */
unsigned int accumbits; /* # bits in accum */
int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */
digit carry; /* for computing 2's-comp */
size_t j; /* # bytes filled */
unsigned char* p; /* pointer to next byte in bytes */
int pincr; /* direction to move p */
assert(v != NULL && PyLong_Check(v));
if (Py_SIZE(v) < 0) {
ndigits = -(Py_SIZE(v));
if (!is_signed) {
PyErr_SetString(PyExc_OverflowError,
"can't convert negative int to unsigned");
return -1;
}
do_twos_comp = 1;
}
else {
ndigits = Py_SIZE(v);
do_twos_comp = 0;
}
if (little_endian) {
p = bytes;
pincr = 1;
}
else {
p = bytes + n - 1;
pincr = -1;
}
/* Copy over all the Python digits.
It's crucial that every Python digit except for the MSD contribute
exactly PyLong_SHIFT bits to the total, so first assert that the int is
normalized. */
assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
j = 0;
accum = 0;
accumbits = 0;
carry = do_twos_comp ? 1 : 0;
for (i = 0; i < ndigits; ++i) {
digit thisdigit = v->ob_digit[i];
if (do_twos_comp) {
thisdigit = (thisdigit ^ PyLong_MASK) + carry;
carry = thisdigit >> PyLong_SHIFT;
thisdigit &= PyLong_MASK;
}
/* Because we're going LSB to MSB, thisdigit is more
significant than what's already in accum, so needs to be
prepended to accum. */
accum |= (twodigits)thisdigit << accumbits;
/* The most-significant digit may be (probably is) at least
partly empty. */
if (i == ndigits - 1) {
/* Count # of sign bits -- they needn't be stored,
* although for signed conversion we need later to
* make sure at least one sign bit gets stored. */
digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
while (s != 0) {
s >>= 1;
accumbits++;
}
}
else
accumbits += PyLong_SHIFT;
/* Store as many bytes as possible. */
while (accumbits >= 8) {
if (j >= n)
goto Overflow;
++j;
*p = (unsigned char)(accum & 0xff);
p += pincr;
accumbits -= 8;
accum >>= 8;
}
}
/* Store the straggler (if any). */
assert(accumbits < 8);
assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */
if (accumbits > 0) {
if (j >= n)
goto Overflow;
++j;
if (do_twos_comp) {
/* Fill leading bits of the byte with sign bits
(appropriately pretending that the int had an
infinite supply of sign bits). */
accum |= (~(twodigits)0) << accumbits;
}
*p = (unsigned char)(accum & 0xff);
p += pincr;
}
else if (j == n && n > 0 && is_signed) {
/* The main loop filled the byte array exactly, so the code
just above didn't get to ensure there's a sign bit, and the
loop below wouldn't add one either. Make sure a sign bit
exists. */
unsigned char msb = *(p - pincr);
int sign_bit_set = msb >= 0x80;
assert(accumbits == 0);
if (sign_bit_set == do_twos_comp)
return 0;
else
goto Overflow;
}
/* Fill remaining bytes with copies of the sign bit. */
{
unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
for ( ; j < n; ++j, p += pincr)
*p = signbyte;
}
return 0;
Overflow:
PyErr_SetString(PyExc_OverflowError, "int too big to convert");
return -1;
}
/* Create a new int object from a C pointer */
PyObject *
PyLong_FromVoidPtr(void *p)
{
#if SIZEOF_VOID_P <= SIZEOF_LONG
return PyLong_FromUnsignedLong((unsigned long)(uintptr_t)p);
#else
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
# error "PyLong_FromVoidPtr: sizeof(long long) < sizeof(void*)"
#endif
return PyLong_FromUnsignedLongLong((unsigned long long)(uintptr_t)p);
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
}
/* Get a C pointer from an int object. */
void *
PyLong_AsVoidPtr(PyObject *vv)
{
#if SIZEOF_VOID_P <= SIZEOF_LONG
long x;
if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
x = PyLong_AsLong(vv);
else
x = PyLong_AsUnsignedLong(vv);
#else
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
# error "PyLong_AsVoidPtr: sizeof(long long) < sizeof(void*)"
#endif
long long x;
if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
x = PyLong_AsLongLong(vv);
else
x = PyLong_AsUnsignedLongLong(vv);
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
if (x == -1 && PyErr_Occurred())
return NULL;
return (void *)x;
}
/* Initial long long support by Chris Herborth (chrish@qnx.com), later
* rewritten to use the newer PyLong_{As,From}ByteArray API.
*/
#define PY_ABS_LLONG_MIN (0-(unsigned long long)LLONG_MIN)
/* Create a new int object from a C long long int. */
PyObject *
PyLong_FromLongLong(long long ival)
{
PyLongObject *v;
unsigned long long abs_ival;
unsigned long long t; /* unsigned so >> doesn't propagate sign bit */
int ndigits = 0;
int negative = 0;
if (IS_SMALL_INT(ival)) {
return get_small_int((sdigit)ival);
}
if (ival < 0) {
/* avoid signed overflow on negation; see comments
in PyLong_FromLong above. */
abs_ival = (unsigned long long)(-1-ival) + 1;
negative = 1;
}
else {
abs_ival = (unsigned long long)ival;
}
/* Count the number of Python digits.
We used to pick 5 ("big enough for anything"), but that's a
waste of time and space given that 5*15 = 75 bits are rarely
needed. */
t = abs_ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SET_SIZE(v, negative ? -ndigits : ndigits);
t = abs_ival;
while (t) {
*p++ = (digit)(t & PyLong_MASK);
t >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Create a new int object from a C Py_ssize_t. */
PyObject *
PyLong_FromSsize_t(Py_ssize_t ival)
{
PyLongObject *v;
size_t abs_ival;
size_t t; /* unsigned so >> doesn't propagate sign bit */
int ndigits = 0;
int negative = 0;
if (IS_SMALL_INT(ival)) {
return get_small_int((sdigit)ival);
}
if (ival < 0) {
/* avoid signed overflow when ival = SIZE_T_MIN */
abs_ival = (size_t)(-1-ival)+1;
negative = 1;
}
else {
abs_ival = (size_t)ival;
}
/* Count the number of Python digits. */
t = abs_ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SET_SIZE(v, negative ? -ndigits : ndigits);
t = abs_ival;
while (t) {
*p++ = (digit)(t & PyLong_MASK);
t >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Get a C long long int from an int object or any object that has an
__index__ method. Return -1 and set an error if overflow occurs. */
long long
PyLong_AsLongLong(PyObject *vv)
{
PyLongObject *v;
long long bytes;
int res;
int do_decref = 0; /* if PyNumber_Index was called */
if (vv == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (PyLong_Check(vv)) {
v = (PyLongObject *)vv;
}
else {
v = (PyLongObject *)PyNumber_Index(vv);
if (v == NULL)
return -1;
do_decref = 1;
}
res = 0;
switch(Py_SIZE(v)) {
case -1:
bytes = -(sdigit)v->ob_digit[0];
break;
case 0:
bytes = 0;
break;
case 1:
bytes = v->ob_digit[0];
break;
default:
res = _PyLong_AsByteArray((PyLongObject *)v, (unsigned char *)&bytes,
SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 1);
}
if (do_decref) {
Py_DECREF(v);
}
/* Plan 9 can't handle long long in ? : expressions */
if (res < 0)
return (long long)-1;
else
return bytes;
}
/* Get a C unsigned long long int from an int object.
Return -1 and set an error if overflow occurs. */
unsigned long long
PyLong_AsUnsignedLongLong(PyObject *vv)
{
PyLongObject *v;
unsigned long long bytes;
int res;
if (vv == NULL) {
PyErr_BadInternalCall();
return (unsigned long long)-1;
}
if (!PyLong_Check(vv)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return (unsigned long long)-1;
}
v = (PyLongObject*)vv;
switch(Py_SIZE(v)) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 0);
/* Plan 9 can't handle long long in ? : expressions */
if (res < 0)
return (unsigned long long)res;
else
return bytes;
}
/* Get a C unsigned long int from an int object, ignoring the high bits.
Returns -1 and sets an error condition if an error occurs. */
static unsigned long long
_PyLong_AsUnsignedLongLongMask(PyObject *vv)
{
PyLongObject *v;
unsigned long long x;
Py_ssize_t i;
int sign;
if (vv == NULL || !PyLong_Check(vv)) {
PyErr_BadInternalCall();
return (unsigned long long) -1;
}
v = (PyLongObject *)vv;
switch(Py_SIZE(v)) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
i = Py_SIZE(v);
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -i;
}
while (--i >= 0) {
x = (x << PyLong_SHIFT) | v->ob_digit[i];
}
return x * sign;
}
unsigned long long
PyLong_AsUnsignedLongLongMask(PyObject *op)
{
PyLongObject *lo;
unsigned long long val;
if (op == NULL) {
PyErr_BadInternalCall();
return (unsigned long long)-1;
}
if (PyLong_Check(op)) {
return _PyLong_AsUnsignedLongLongMask(op);
}
lo = (PyLongObject *)PyNumber_Index(op);
if (lo == NULL)
return (unsigned long long)-1;
val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo);
Py_DECREF(lo);
return val;
}
/* Get a C long long int from an int object or any object that has an
__index__ method.
On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
the result. Otherwise *overflow is 0.
For other errors (e.g., TypeError), return -1 and set an error condition.
In this case *overflow will be 0.
*/
long long
PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
{
/* This version by Tim Peters */
PyLongObject *v;
unsigned long long x, prev;
long long res;
Py_ssize_t i;
int sign;
int do_decref = 0; /* if PyNumber_Index was called */
*overflow = 0;
if (vv == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (PyLong_Check(vv)) {
v = (PyLongObject *)vv;
}
else {
v = (PyLongObject *)PyNumber_Index(vv);
if (v == NULL)
return -1;
do_decref = 1;
}
res = -1;
i = Py_SIZE(v);
switch (i) {
case -1:
res = -(sdigit)v->ob_digit[0];
break;
case 0:
res = 0;
break;
case 1:
res = v->ob_digit[0];
break;
default:
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -(i);
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) + v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
*overflow = sign;
goto exit;
}
}
/* Haven't lost any bits, but casting to long requires extra
* care (see comment above).
*/
if (x <= (unsigned long long)LLONG_MAX) {
res = (long long)x * sign;
}
else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
res = LLONG_MIN;
}
else {
*overflow = sign;
/* res is already set to -1 */
}
}
exit:
if (do_decref) {
Py_DECREF(v);
}
return res;
}
int
_PyLong_UnsignedShort_Converter(PyObject *obj, void *ptr)
{
unsigned long uval;
if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
PyErr_SetString(PyExc_ValueError, "value must be positive");
return 0;
}
uval = PyLong_AsUnsignedLong(obj);
if (uval == (unsigned long)-1 && PyErr_Occurred())
return 0;
if (uval > USHRT_MAX) {
PyErr_SetString(PyExc_OverflowError,
"Python int too large for C unsigned short");
return 0;
}
*(unsigned short *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned short);
return 1;
}
int
_PyLong_UnsignedInt_Converter(PyObject *obj, void *ptr)
{
unsigned long uval;
if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
PyErr_SetString(PyExc_ValueError, "value must be positive");
return 0;
}
uval = PyLong_AsUnsignedLong(obj);
if (uval == (unsigned long)-1 && PyErr_Occurred())
return 0;
if (uval > UINT_MAX) {
PyErr_SetString(PyExc_OverflowError,
"Python int too large for C unsigned int");
return 0;
}
*(unsigned int *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned int);
return 1;
}
int
_PyLong_UnsignedLong_Converter(PyObject *obj, void *ptr)
{
unsigned long uval;
if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
PyErr_SetString(PyExc_ValueError, "value must be positive");
return 0;
}
uval = PyLong_AsUnsignedLong(obj);
if (uval == (unsigned long)-1 && PyErr_Occurred())
return 0;
*(unsigned long *)ptr = uval;
return 1;
}
int
_PyLong_UnsignedLongLong_Converter(PyObject *obj, void *ptr)
{
unsigned long long uval;
if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
PyErr_SetString(PyExc_ValueError, "value must be positive");
return 0;
}
uval = PyLong_AsUnsignedLongLong(obj);
if (uval == (unsigned long long)-1 && PyErr_Occurred())
return 0;
*(unsigned long long *)ptr = uval;
return 1;
}
int
_PyLong_Size_t_Converter(PyObject *obj, void *ptr)
{
size_t uval;
if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) {
PyErr_SetString(PyExc_ValueError, "value must be positive");
return 0;
}
uval = PyLong_AsSize_t(obj);
if (uval == (size_t)-1 && PyErr_Occurred())
return 0;
*(size_t *)ptr = uval;
return 1;
}
#define CHECK_BINOP(v,w) \
do { \
if (!PyLong_Check(v) || !PyLong_Check(w)) \
Py_RETURN_NOTIMPLEMENTED; \
} while(0)
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
* is modified in place, by adding y to it. Carries are propagated as far as
* x[m-1], and the remaining carry (0 or 1) is returned.
*/
static digit
v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
{
Py_ssize_t i;
digit carry = 0;
assert(m >= n);
for (i = 0; i < n; ++i) {
carry += x[i] + y[i];
x[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
assert((carry & 1) == carry);
}
for (; carry && i < m; ++i) {
carry += x[i];
x[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
assert((carry & 1) == carry);
}
return carry;
}
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
* is modified in place, by subtracting y from it. Borrows are propagated as
* far as x[m-1], and the remaining borrow (0 or 1) is returned.
*/
static digit
v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
{
Py_ssize_t i;
digit borrow = 0;
assert(m >= n);
for (i = 0; i < n; ++i) {
borrow = x[i] - y[i] - borrow;
x[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1; /* keep only 1 sign bit */
}
for (; borrow && i < m; ++i) {
borrow = x[i] - borrow;
x[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1;
}
return borrow;
}
/* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put
* result in z[0:m], and return the d bits shifted out of the top.
*/
static digit
v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
{
Py_ssize_t i;
digit carry = 0;
assert(0 <= d && d < PyLong_SHIFT);
for (i=0; i < m; i++) {
twodigits acc = (twodigits)a[i] << d | carry;
z[i] = (digit)acc & PyLong_MASK;
carry = (digit)(acc >> PyLong_SHIFT);
}
return carry;
}
/* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put
* result in z[0:m], and return the d bits shifted out of the bottom.
*/
static digit
v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
{
Py_ssize_t i;
digit carry = 0;
digit mask = ((digit)1 << d) - 1U;
assert(0 <= d && d < PyLong_SHIFT);
for (i=m; i-- > 0;) {
twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
carry = (digit)acc & mask;
z[i] = (digit)(acc >> d);
}
return carry;
}
/* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
in pout, and returning the remainder. pin and pout point at the LSD.
It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
_PyLong_Format, but that should be done with great care since ints are
immutable. */
static digit
inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
{
twodigits rem = 0;
assert(n > 0 && n <= PyLong_MASK);
pin += size;
pout += size;
while (--size >= 0) {
digit hi;
rem = (rem << PyLong_SHIFT) | *--pin;
*--pout = hi = (digit)(rem / n);
rem -= (twodigits)hi * n;
}
return (digit)rem;
}
/* Divide an integer by a digit, returning both the quotient
(as function result) and the remainder (through *prem).
The sign of a is ignored; n should not be zero. */
static PyLongObject *
divrem1(PyLongObject *a, digit n, digit *prem)
{
const Py_ssize_t size = Py_ABS(Py_SIZE(a));
PyLongObject *z;
assert(n > 0 && n <= PyLong_MASK);
z = _PyLong_New(size);
if (z == NULL)
return NULL;
*prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
return long_normalize(z);
}
/* Convert an integer to a base 10 string. Returns a new non-shared
string. (Return value is non-shared so that callers can modify the
returned value if necessary.) */
static int
long_to_decimal_string_internal(PyObject *aa,
PyObject **p_output,
_PyUnicodeWriter *writer,
_PyBytesWriter *bytes_writer,
char **bytes_str)
{
PyLongObject *scratch, *a;
PyObject *str = NULL;
Py_ssize_t size, strlen, size_a, i, j;
digit *pout, *pin, rem, tenpow;
int negative;
int d;
enum PyUnicode_Kind kind;
a = (PyLongObject *)aa;
if (a == NULL || !PyLong_Check(a)) {
PyErr_BadInternalCall();
return -1;
}
size_a = Py_ABS(Py_SIZE(a));
negative = Py_SIZE(a) < 0;
/* quick and dirty upper bound for the number of digits
required to express a in base _PyLong_DECIMAL_BASE:
#digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
But log2(a) < size_a * PyLong_SHIFT, and
log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
> 3.3 * _PyLong_DECIMAL_SHIFT
size_a * PyLong_SHIFT / (3.3 * _PyLong_DECIMAL_SHIFT) =
size_a + size_a / d < size_a + size_a / floor(d),
where d = (3.3 * _PyLong_DECIMAL_SHIFT) /
(PyLong_SHIFT - 3.3 * _PyLong_DECIMAL_SHIFT)
*/
d = (33 * _PyLong_DECIMAL_SHIFT) /
(10 * PyLong_SHIFT - 33 * _PyLong_DECIMAL_SHIFT);
assert(size_a < PY_SSIZE_T_MAX/2);
size = 1 + size_a + size_a / d;
scratch = _PyLong_New(size);
if (scratch == NULL)
return -1;
/* convert array of base _PyLong_BASE digits in pin to an array of
base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
Volume 2 (3rd edn), section 4.4, Method 1b). */
pin = a->ob_digit;
pout = scratch->ob_digit;
size = 0;
for (i = size_a; --i >= 0; ) {
digit hi = pin[i];
for (j = 0; j < size; j++) {
twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
hi = (digit)(z / _PyLong_DECIMAL_BASE);
pout[j] = (digit)(z - (twodigits)hi *
_PyLong_DECIMAL_BASE);
}
while (hi) {
pout[size++] = hi % _PyLong_DECIMAL_BASE;
hi /= _PyLong_DECIMAL_BASE;
}
/* check for keyboard interrupt */
SIGCHECK({
Py_DECREF(scratch);
return -1;
});
}
/* pout should have at least one digit, so that the case when a = 0
works correctly */
if (size == 0)
pout[size++] = 0;
/* calculate exact length of output string, and allocate */
strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
tenpow = 10;
rem = pout[size-1];
while (rem >= tenpow) {
tenpow *= 10;
strlen++;
}
if (writer) {
if (_PyUnicodeWriter_Prepare(writer, strlen, '9') == -1) {
Py_DECREF(scratch);
return -1;
}
kind = writer->kind;
}
else if (bytes_writer) {
*bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, strlen);
if (*bytes_str == NULL) {
Py_DECREF(scratch);
return -1;
}
}
else {
str = PyUnicode_New(strlen, '9');
if (str == NULL) {
Py_DECREF(scratch);
return -1;
}
kind = PyUnicode_KIND(str);
}
#define WRITE_DIGITS(p) \
do { \
/* pout[0] through pout[size-2] contribute exactly \
_PyLong_DECIMAL_SHIFT digits each */ \
for (i=0; i < size - 1; i++) { \
rem = pout[i]; \
for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) { \
*--p = '0' + rem % 10; \
rem /= 10; \
} \
} \
/* pout[size-1]: always produce at least one decimal digit */ \
rem = pout[i]; \
do { \
*--p = '0' + rem % 10; \
rem /= 10; \
} while (rem != 0); \
\
/* and sign */ \
if (negative) \
*--p = '-'; \
} while (0)
#define WRITE_UNICODE_DIGITS(TYPE) \
do { \
if (writer) \
p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + strlen; \
else \
p = (TYPE*)PyUnicode_DATA(str) + strlen; \
\
WRITE_DIGITS(p); \
\
/* check we've counted correctly */ \
if (writer) \
assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
else \
assert(p == (TYPE*)PyUnicode_DATA(str)); \
} while (0)
/* fill the string right-to-left */
if (bytes_writer) {
char *p = *bytes_str + strlen;
WRITE_DIGITS(p);
assert(p == *bytes_str);
}
else if (kind == PyUnicode_1BYTE_KIND) {
Py_UCS1 *p;
WRITE_UNICODE_DIGITS(Py_UCS1);
}
else if (kind == PyUnicode_2BYTE_KIND) {
Py_UCS2 *p;
WRITE_UNICODE_DIGITS(Py_UCS2);
}
else {
Py_UCS4 *p;
assert (kind == PyUnicode_4BYTE_KIND);
WRITE_UNICODE_DIGITS(Py_UCS4);
}
#undef WRITE_DIGITS
#undef WRITE_UNICODE_DIGITS
Py_DECREF(scratch);
if (writer) {
writer->pos += strlen;
}
else if (bytes_writer) {
(*bytes_str) += strlen;
}
else {
assert(_PyUnicode_CheckConsistency(str, 1));
*p_output = (PyObject *)str;
}
return 0;
}
static PyObject *
long_to_decimal_string(PyObject *aa)
{
PyObject *v;
if (long_to_decimal_string_internal(aa, &v, NULL, NULL, NULL) == -1)
return NULL;
return v;
}
/* Convert an int object to a string, using a given conversion base,
which should be one of 2, 8 or 16. Return a string object.
If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'
if alternate is nonzero. */
static int
long_format_binary(PyObject *aa, int base, int alternate,
PyObject **p_output, _PyUnicodeWriter *writer,
_PyBytesWriter *bytes_writer, char **bytes_str)
{
PyLongObject *a = (PyLongObject *)aa;
PyObject *v = NULL;
Py_ssize_t sz;
Py_ssize_t size_a;
enum PyUnicode_Kind kind;
int negative;
int bits;
assert(base == 2 || base == 8 || base == 16);
if (a == NULL || !PyLong_Check(a)) {
PyErr_BadInternalCall();
return -1;
}
size_a = Py_ABS(Py_SIZE(a));
negative = Py_SIZE(a) < 0;
/* Compute a rough upper bound for the length of the string */
switch (base) {
case 16:
bits = 4;
break;
case 8:
bits = 3;
break;
case 2:
bits = 1;
break;
default:
Py_UNREACHABLE();
}
/* Compute exact length 'sz' of output string. */
if (size_a == 0) {
sz = 1;
}
else {
Py_ssize_t size_a_in_bits;
/* Ensure overflow doesn't occur during computation of sz. */
if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
PyErr_SetString(PyExc_OverflowError,
"int too large to format");
return -1;
}
size_a_in_bits = (size_a - 1) * PyLong_SHIFT +
_Py_bit_length(a->ob_digit[size_a - 1]);
/* Allow 1 character for a '-' sign. */
sz = negative + (size_a_in_bits + (bits - 1)) / bits;
}
if (alternate) {
/* 2 characters for prefix */
sz += 2;
}
if (writer) {
if (_PyUnicodeWriter_Prepare(writer, sz, 'x') == -1)
return -1;
kind = writer->kind;
}
else if (bytes_writer) {
*bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, sz);
if (*bytes_str == NULL)
return -1;
}
else {
v = PyUnicode_New(sz, 'x');
if (v == NULL)
return -1;
kind = PyUnicode_KIND(v);
}
#define WRITE_DIGITS(p) \
do { \
if (size_a == 0) { \
*--p = '0'; \
} \
else { \
/* JRH: special case for power-of-2 bases */ \
twodigits accum = 0; \
int accumbits = 0; /* # of bits in accum */ \
Py_ssize_t i; \
for (i = 0; i < size_a; ++i) { \
accum |= (twodigits)a->ob_digit[i] << accumbits; \
accumbits += PyLong_SHIFT; \
assert(accumbits >= bits); \
do { \
char cdigit; \
cdigit = (char)(accum & (base - 1)); \
cdigit += (cdigit < 10) ? '0' : 'a'-10; \
*--p = cdigit; \
accumbits -= bits; \
accum >>= bits; \
} while (i < size_a-1 ? accumbits >= bits : accum > 0); \
} \
} \
\
if (alternate) { \
if (base == 16) \
*--p = 'x'; \
else if (base == 8) \
*--p = 'o'; \
else /* (base == 2) */ \
*--p = 'b'; \
*--p = '0'; \
} \
if (negative) \
*--p = '-'; \
} while (0)
#define WRITE_UNICODE_DIGITS(TYPE) \
do { \
if (writer) \
p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + sz; \
else \
p = (TYPE*)PyUnicode_DATA(v) + sz; \
\
WRITE_DIGITS(p); \
\
if (writer) \
assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
else \
assert(p == (TYPE*)PyUnicode_DATA(v)); \
} while (0)
if (bytes_writer) {
char *p = *bytes_str + sz;
WRITE_DIGITS(p);
assert(p == *bytes_str);
}
else if (kind == PyUnicode_1BYTE_KIND) {
Py_UCS1 *p;
WRITE_UNICODE_DIGITS(Py_UCS1);
}
else if (kind == PyUnicode_2BYTE_KIND) {
Py_UCS2 *p;
WRITE_UNICODE_DIGITS(Py_UCS2);
}
else {
Py_UCS4 *p;
assert (kind == PyUnicode_4BYTE_KIND);
WRITE_UNICODE_DIGITS(Py_UCS4);
}
#undef WRITE_DIGITS
#undef WRITE_UNICODE_DIGITS
if (writer) {
writer->pos += sz;
}
else if (bytes_writer) {
(*bytes_str) += sz;
}
else {
assert(_PyUnicode_CheckConsistency(v, 1));
*p_output = v;
}
return 0;
}
PyObject *
_PyLong_Format(PyObject *obj, int base)
{
PyObject *str;
int err;
if (base == 10)
err = long_to_decimal_string_internal(obj, &str, NULL, NULL, NULL);
else
err = long_format_binary(obj, base, 1, &str, NULL, NULL, NULL);
if (err == -1)
return NULL;
return str;
}
int
_PyLong_FormatWriter(_PyUnicodeWriter *writer,
PyObject *obj,
int base, int alternate)
{
if (base == 10)
return long_to_decimal_string_internal(obj, NULL, writer,
NULL, NULL);
else
return long_format_binary(obj, base, alternate, NULL, writer,
NULL, NULL);
}
char*
_PyLong_FormatBytesWriter(_PyBytesWriter *writer, char *str,
PyObject *obj,
int base, int alternate)
{
char *str2;
int res;
str2 = str;
if (base == 10)
res = long_to_decimal_string_internal(obj, NULL, NULL,
writer, &str2);
else
res = long_format_binary(obj, base, alternate, NULL, NULL,
writer, &str2);
if (res < 0)
return NULL;
assert(str2 != NULL);
return str2;
}
/* Table of digit values for 8-bit string -> integer conversion.
* '0' maps to 0, ..., '9' maps to 9.
* 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
* All other indices map to 37.
* Note that when converting a base B string, a char c is a legitimate
* base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B.
*/
unsigned char _PyLong_DigitValue[256] = {
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37,
37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
};
/* *str points to the first digit in a string of base `base` digits. base
* is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first
* non-digit (which may be *str!). A normalized int is returned.
* The point to this routine is that it takes time linear in the number of
* string characters.
*
* Return values:
* -1 on syntax error (exception needs to be set, *res is untouched)
* 0 else (exception may be set, in that case *res is set to NULL)
*/
static int
long_from_binary_base(const char **str, int base, PyLongObject **res)
{
const char *p = *str;
const char *start = p;
char prev = 0;
Py_ssize_t digits = 0;
int bits_per_char;
Py_ssize_t n;
PyLongObject *z;
twodigits accum;
int bits_in_accum;
digit *pdigit;
assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
n = base;
for (bits_per_char = -1; n; ++bits_per_char) {
n >>= 1;
}
/* count digits and set p to end-of-string */
while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base || *p == '_') {
if (*p == '_') {
if (prev == '_') {
*str = p - 1;
return -1;
}
} else {
++digits;
}
prev = *p;
++p;
}
if (prev == '_') {
/* Trailing underscore not allowed. */
*str = p - 1;
return -1;
}
*str = p;
/* n <- the number of Python digits needed,
= ceiling((digits * bits_per_char) / PyLong_SHIFT). */
if (digits > (PY_SSIZE_T_MAX - (PyLong_SHIFT - 1)) / bits_per_char) {
PyErr_SetString(PyExc_ValueError,
"int string too large to convert");
*res = NULL;
return 0;
}
n = (digits * bits_per_char + PyLong_SHIFT - 1) / PyLong_SHIFT;
z = _PyLong_New(n);
if (z == NULL) {
*res = NULL;
return 0;
}
/* Read string from right, and fill in int from left; i.e.,
* from least to most significant in both.
*/
accum = 0;
bits_in_accum = 0;
pdigit = z->ob_digit;
while (--p >= start) {
int k;
if (*p == '_') {
continue;
}
k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)];
assert(k >= 0 && k < base);
accum |= (twodigits)k << bits_in_accum;
bits_in_accum += bits_per_char;
if (bits_in_accum >= PyLong_SHIFT) {
*pdigit++ = (digit)(accum & PyLong_MASK);
assert(pdigit - z->ob_digit <= n);
accum >>= PyLong_SHIFT;
bits_in_accum -= PyLong_SHIFT;
assert(bits_in_accum < PyLong_SHIFT);
}
}
if (bits_in_accum) {
assert(bits_in_accum <= PyLong_SHIFT);
*pdigit++ = (digit)accum;
assert(pdigit - z->ob_digit <= n);
}
while (pdigit - z->ob_digit < n)
*pdigit++ = 0;
*res = long_normalize(z);
return 0;
}
/* Parses an int from a bytestring. Leading and trailing whitespace will be
* ignored.
*
* If successful, a PyLong object will be returned and 'pend' will be pointing
* to the first unused byte unless it's NULL.
*
* If unsuccessful, NULL will be returned.
*/
PyObject *
PyLong_FromString(const char *str, char **pend, int base)
{
int sign = 1, error_if_nonzero = 0;
const char *start, *orig_str = str;
PyLongObject *z = NULL;
PyObject *strobj;
Py_ssize_t slen;
if ((base != 0 && base < 2) || base > 36) {
PyErr_SetString(PyExc_ValueError,
"int() arg 2 must be >= 2 and <= 36");
return NULL;
}
while (*str != '\0' && Py_ISSPACE(*str)) {
str++;
}
if (*str == '+') {
++str;
}
else if (*str == '-') {
++str;
sign = -1;
}
if (base == 0) {
if (str[0] != '0') {
base = 10;
}
else if (str[1] == 'x' || str[1] == 'X') {
base = 16;
}
else if (str[1] == 'o' || str[1] == 'O') {
base = 8;
}
else if (str[1] == 'b' || str[1] == 'B') {
base = 2;
}
else {
/* "old" (C-style) octal literal, now invalid.
it might still be zero though */
error_if_nonzero = 1;
base = 10;
}
}
if (str[0] == '0' &&
((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
(base == 8 && (str[1] == 'o' || str[1] == 'O')) ||
(base == 2 && (str[1] == 'b' || str[1] == 'B')))) {
str += 2;
/* One underscore allowed here. */
if (*str == '_') {
++str;
}
}
if (str[0] == '_') {
/* May not start with underscores. */
goto onError;
}
start = str;
if ((base & (base - 1)) == 0) {
int res = long_from_binary_base(&str, base, &z);
if (res < 0) {
/* Syntax error. */
goto onError;
}
}
else {
/***
Binary bases can be converted in time linear in the number of digits, because
Python's representation base is binary. Other bases (including decimal!) use
the simple quadratic-time algorithm below, complicated by some speed tricks.
First some math: the largest integer that can be expressed in N base-B digits
is B**N-1. Consequently, if we have an N-digit input in base B, the worst-
case number of Python digits needed to hold it is the smallest integer n s.t.
BASE**n-1 >= B**N-1 [or, adding 1 to both sides]
BASE**n >= B**N [taking logs to base BASE]
n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
this quickly. A Python int with that much space is reserved near the start,
and the result is computed into it.
The input string is actually treated as being in base base**i (i.e., i digits
are processed at a time), where two more static arrays hold:
convwidth_base[base] = the largest integer i such that base**i <= BASE
convmultmax_base[base] = base ** convwidth_base[base]
The first of these is the largest i such that i consecutive input digits
must fit in a single Python digit. The second is effectively the input
base we're really using.
Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
convmultmax_base[base], the result is "simply"
(((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
where B = convmultmax_base[base].
Error analysis: as above, the number of Python digits `n` needed is worst-
case
n >= N * log(B)/log(BASE)
where `N` is the number of input digits in base `B`. This is computed via
size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
below. Two numeric concerns are how much space this can waste, and whether
the computed result can be too small. To be concrete, assume BASE = 2**15,
which is the default (and it's unlikely anyone changes that).
Waste isn't a problem: provided the first input digit isn't 0, the difference
between the worst-case input with N digits and the smallest input with N
digits is about a factor of B, but B is small compared to BASE so at most
one allocated Python digit can remain unused on that count. If
N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
and adding 1 returns a result 1 larger than necessary. However, that can't
happen: whenever B is a power of 2, long_from_binary_base() is called
instead, and it's impossible for B**i to be an integer power of 2**15 when
B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
an exact integer when B is not a power of 2, since B**i has a prime factor
other than 2 in that case, but (2**15)**j's only prime factor is 2).
The computed result can be too small if the true value of N*log(B)/log(BASE)
is a little bit larger than an exact integer, but due to roundoff errors (in
computing log(B), log(BASE), their quotient, and/or multiplying that by N)
yields a numeric result a little less than that integer. Unfortunately, "how
close can a transcendental function get to an integer over some range?"
questions are generally theoretically intractable. Computer analysis via
continued fractions is practical: expand log(B)/log(BASE) via continued
fractions, giving a sequence i/j of "the best" rational approximations. Then
j*log(B)/log(BASE) is approximately equal to (the integer) i. This shows that
we can get very close to being in trouble, but very rarely. For example,
76573 is a denominator in one of the continued-fraction approximations to
log(10)/log(2**15), and indeed:
>>> log(10)/log(2**15)*76573
16958.000000654003
is very close to an integer. If we were working with IEEE single-precision,
rounding errors could kill us. Finding worst cases in IEEE double-precision
requires better-than-double-precision log() functions, and Tim didn't bother.
Instead the code checks to see whether the allocated space is enough as each
new Python digit is added, and copies the whole thing to a larger int if not.
This should happen extremely rarely, and in fact I don't have a test case
that triggers it(!). Instead the code was tested by artificially allocating
just 1 digit at the start, so that the copying code was exercised for every
digit beyond the first.
***/
twodigits c; /* current input character */
Py_ssize_t size_z;
Py_ssize_t digits = 0;
int i;
int convwidth;
twodigits convmultmax, convmult;
digit *pz, *pzstop;
const char *scan, *lastdigit;
char prev = 0;
static double log_base_BASE[37] = {0.0e0,};
static int convwidth_base[37] = {0,};
static twodigits convmultmax_base[37] = {0,};
if (log_base_BASE[base] == 0.0) {
twodigits convmax = base;
int i = 1;
log_base_BASE[base] = (log((double)base) /
log((double)PyLong_BASE));
for (;;) {
twodigits next = convmax * base;
if (next > PyLong_BASE) {
break;
}
convmax = next;
++i;
}
convmultmax_base[base] = convmax;
assert(i > 0);
convwidth_base[base] = i;
}
/* Find length of the string of numeric characters. */
scan = str;
lastdigit = str;
while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base || *scan == '_') {
if (*scan == '_') {
if (prev == '_') {
/* Only one underscore allowed. */
str = lastdigit + 1;
goto onError;
}
}
else {
++digits;
lastdigit = scan;
}
prev = *scan;
++scan;
}
if (prev == '_') {
/* Trailing underscore not allowed. */
/* Set error pointer to first underscore. */
str = lastdigit + 1;
goto onError;
}
/* Create an int object that can contain the largest possible
* integer with this base and length. Note that there's no
* need to initialize z->ob_digit -- no slot is read up before
* being stored into.
*/
double fsize_z = (double)digits * log_base_BASE[base] + 1.0;
if (fsize_z > (double)MAX_LONG_DIGITS) {
/* The same exception as in _PyLong_New(). */
PyErr_SetString(PyExc_OverflowError,
"too many digits in integer");
return NULL;
}
size_z = (Py_ssize_t)fsize_z;
/* Uncomment next line to test exceedingly rare copy code */
/* size_z = 1; */
assert(size_z > 0);
z = _PyLong_New(size_z);
if (z == NULL) {
return NULL;
}
Py_SET_SIZE(z, 0);
/* `convwidth` consecutive input digits are treated as a single
* digit in base `convmultmax`.
*/
convwidth = convwidth_base[base];
convmultmax = convmultmax_base[base];
/* Work ;-) */
while (str < scan) {
if (*str == '_') {
str++;
continue;
}
/* grab up to convwidth digits from the input string */
c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
for (i = 1; i < convwidth && str != scan; ++str) {
if (*str == '_') {
continue;
}
i++;
c = (twodigits)(c * base +
(int)_PyLong_DigitValue[Py_CHARMASK(*str)]);
assert(c < PyLong_BASE);
}
convmult = convmultmax;
/* Calculate the shift only if we couldn't get
* convwidth digits.
*/
if (i != convwidth) {
convmult = base;
for ( ; i > 1; --i) {
convmult *= base;
}
}
/* Multiply z by convmult, and add c. */
pz = z->ob_digit;
pzstop = pz + Py_SIZE(z);
for (; pz < pzstop; ++pz) {
c += (twodigits)*pz * convmult;
*pz = (digit)(c & PyLong_MASK);
c >>= PyLong_SHIFT;
}
/* carry off the current end? */
if (c) {
assert(c < PyLong_BASE);
if (Py_SIZE(z) < size_z) {
*pz = (digit)c;
Py_SET_SIZE(z, Py_SIZE(z) + 1);
}
else {
PyLongObject *tmp;
/* Extremely rare. Get more space. */
assert(Py_SIZE(z) == size_z);
tmp = _PyLong_New(size_z + 1);
if (tmp == NULL) {
Py_DECREF(z);
return NULL;
}
memcpy(tmp->ob_digit,
z->ob_digit,
sizeof(digit) * size_z);
Py_DECREF(z);
z = tmp;
z->ob_digit[size_z] = (digit)c;
++size_z;
}
}
}
}
if (z == NULL) {
return NULL;
}
if (error_if_nonzero) {
/* reset the base to 0, else the exception message
doesn't make too much sense */
base = 0;
if (Py_SIZE(z) != 0) {
goto onError;
}
/* there might still be other problems, therefore base
remains zero here for the same reason */
}
if (str == start) {
goto onError;
}
if (sign < 0) {
Py_SET_SIZE(z, -(Py_SIZE(z)));
}
while (*str && Py_ISSPACE(*str)) {
str++;
}
if (*str != '\0') {
goto onError;
}
long_normalize(z);
z = maybe_small_long(z);
if (z == NULL) {
return NULL;
}
if (pend != NULL) {
*pend = (char *)str;
}
return (PyObject *) z;
onError:
if (pend != NULL) {
*pend = (char *)str;
}
Py_XDECREF(z);
slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
strobj = PyUnicode_FromStringAndSize(orig_str, slen);
if (strobj == NULL) {
return NULL;
}
PyErr_Format(PyExc_ValueError,
"invalid literal for int() with base %d: %.200R",
base, strobj);
Py_DECREF(strobj);
return NULL;
}
/* Since PyLong_FromString doesn't have a length parameter,
* check here for possible NULs in the string.
*
* Reports an invalid literal as a bytes object.
*/
PyObject *
_PyLong_FromBytes(const char *s, Py_ssize_t len, int base)
{
PyObject *result, *strobj;
char *end = NULL;
result = PyLong_FromString(s, &end, base);
if (end == NULL || (result != NULL && end == s + len))
return result;
Py_XDECREF(result);
strobj = PyBytes_FromStringAndSize(s, Py_MIN(len, 200));
if (strobj != NULL) {
PyErr_Format(PyExc_ValueError,
"invalid literal for int() with base %d: %.200R",
base, strobj);
Py_DECREF(strobj);
}
return NULL;
}
PyObject *
PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
{
PyObject *v, *unicode = PyUnicode_FromWideChar(u, length);
if (unicode == NULL)
return NULL;
v = PyLong_FromUnicodeObject(unicode, base);
Py_DECREF(unicode);
return v;
}
PyObject *
PyLong_FromUnicodeObject(PyObject *u, int base)
{
PyObject *result, *asciidig;
const char *buffer;
char *end = NULL;
Py_ssize_t buflen;
asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u);
if (asciidig == NULL)
return NULL;
assert(PyUnicode_IS_ASCII(asciidig));
/* Simply get a pointer to existing ASCII characters. */
buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen);
assert(buffer != NULL);
result = PyLong_FromString(buffer, &end, base);
if (end == NULL || (result != NULL && end == buffer + buflen)) {
Py_DECREF(asciidig);
return result;
}
Py_DECREF(asciidig);
Py_XDECREF(result);
PyErr_Format(PyExc_ValueError,
"invalid literal for int() with base %d: %.200R",
base, u);
return NULL;
}
/* forward */
static PyLongObject *x_divrem
(PyLongObject *, PyLongObject *, PyLongObject **);
static PyObject *long_long(PyObject *v);
/* Int division with remainder, top-level routine */
static int
long_divrem(PyLongObject *a, PyLongObject *b,
PyLongObject **pdiv, PyLongObject **prem)
{
Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
PyLongObject *z;
if (size_b == 0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"integer division or modulo by zero");
return -1;
}
if (size_a < size_b ||
(size_a == size_b &&
a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
/* |a| < |b|. */
*prem = (PyLongObject *)long_long((PyObject *)a);
if (*prem == NULL) {
return -1;
}
Py_INCREF(_PyLong_Zero);
*pdiv = (PyLongObject*)_PyLong_Zero;
return 0;
}
if (size_b == 1) {
digit rem = 0;
z = divrem1(a, b->ob_digit[0], &rem);
if (z == NULL)
return -1;
*prem = (PyLongObject *) PyLong_FromLong((long)rem);
if (*prem == NULL) {
Py_DECREF(z);
return -1;
}
}
else {
z = x_divrem(a, b, prem);
if (z == NULL)
return -1;
}
/* Set the signs.
The quotient z has the sign of a*b;
the remainder r has the sign of a,
so a = b*z + r. */
if ((Py_SIZE(a) < 0) != (Py_SIZE(b) < 0)) {
_PyLong_Negate(&z);
if (z == NULL) {
Py_CLEAR(*prem);
return -1;
}
}
if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) {
_PyLong_Negate(prem);
if (*prem == NULL) {
Py_DECREF(z);
Py_CLEAR(*prem);
return -1;
}
}
*pdiv = maybe_small_long(z);
return 0;
}
/* Unsigned int division with remainder -- the algorithm. The arguments v1
and w1 should satisfy 2 <= Py_ABS(Py_SIZE(w1)) <= Py_ABS(Py_SIZE(v1)). */
static PyLongObject *
x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
{
PyLongObject *v, *w, *a;
Py_ssize_t i, k, size_v, size_w;
int d;
digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
twodigits vv;
sdigit zhi;
stwodigits z;
/* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
edn.), section 4.3.1, Algorithm D], except that we don't explicitly
handle the special case when the initial estimate q for a quotient
digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
that won't overflow a digit. */
/* allocate space; w will also be used to hold the final remainder */
size_v = Py_ABS(Py_SIZE(v1));
size_w = Py_ABS(Py_SIZE(w1));
assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
v = _PyLong_New(size_v+1);
if (v == NULL) {
*prem = NULL;
return NULL;
}
w = _PyLong_New(size_w);
if (w == NULL) {
Py_DECREF(v);
*prem = NULL;
return NULL;
}
/* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
shift v1 left by the same amount. Results go into w and v. */
d = PyLong_SHIFT - _Py_bit_length(w1->ob_digit[size_w-1]);
carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d);
assert(carry == 0);
carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d);
if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) {
v->ob_digit[size_v] = carry;
size_v++;
}
/* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
at most (and usually exactly) k = size_v - size_w digits. */
k = size_v - size_w;
assert(k >= 0);
a = _PyLong_New(k);
if (a == NULL) {
Py_DECREF(w);
Py_DECREF(v);
*prem = NULL;
return NULL;
}
v0 = v->ob_digit;
w0 = w->ob_digit;
wm1 = w0[size_w-1];
wm2 = w0[size_w-2];
for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) {
/* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
single-digit quotient q, remainder in vk[0:size_w]. */
SIGCHECK({
Py_DECREF(a);
Py_DECREF(w);
Py_DECREF(v);
*prem = NULL;
return NULL;
});
/* estimate quotient digit q; may overestimate by 1 (rare) */
vtop = vk[size_w];
assert(vtop <= wm1);
vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
q = (digit)(vv / wm1);
r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */
while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
| vk[size_w-2])) {
--q;
r += wm1;
if (r >= PyLong_BASE)
break;
}
assert(q <= PyLong_BASE);
/* subtract q*w0[0:size_w] from vk[0:size_w+1] */
zhi = 0;
for (i = 0; i < size_w; ++i) {
/* invariants: -PyLong_BASE <= -q <= zhi <= 0;
-PyLong_BASE * q <= z < PyLong_BASE */
z = (sdigit)vk[i] + zhi -
(stwodigits)q * (stwodigits)w0[i];
vk[i] = (digit)z & PyLong_MASK;
zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
z, PyLong_SHIFT);
}
/* add w back if q was too large (this branch taken rarely) */
assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
if ((sdigit)vtop + zhi < 0) {
carry = 0;
for (i = 0; i < size_w; ++i) {
carry += vk[i] + w0[i];
vk[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
--q;
}
/* store quotient digit */
assert(q < PyLong_BASE);
*--ak = q;
}
/* unshift remainder; we reuse w to store the result */
carry = v_rshift(w0, v0, size_w, d);
assert(carry==0);
Py_DECREF(v);
*prem = long_normalize(w);
return long_normalize(a);
}
/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is
rounded to DBL_MANT_DIG significant bits using round-half-to-even.
If a == 0, return 0.0 and set *e = 0. If the resulting exponent
e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
-1.0. */
/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
#if DBL_MANT_DIG == 53
#define EXP2_DBL_MANT_DIG 9007199254740992.0
#else
#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
#endif
double
_PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
{
Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
/* See below for why x_digits is always large enough. */
digit rem;
digit x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT] = {0,};
double dx;
/* Correction term for round-half-to-even rounding. For a digit x,
"x + half_even_correction[x & 7]" gives x rounded to the nearest
multiple of 4, rounding ties to a multiple of 8. */
static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
a_size = Py_ABS(Py_SIZE(a));
if (a_size == 0) {
/* Special case for 0: significand 0.0, exponent 0. */
*e = 0;
return 0.0;
}
a_bits = _Py_bit_length(a->ob_digit[a_size-1]);
/* The following is an overflow-free version of the check
"if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
(a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
goto overflow;
a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
/* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
(shifting left if a_bits <= DBL_MANT_DIG + 2).
Number of digits needed for result: write // for floor division.
Then if shifting left, we end up using
1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
digits. If shifting right, we use
a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
the inequalities
m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
m // PyLong_SHIFT - n // PyLong_SHIFT <=
1 + (m - n - 1) // PyLong_SHIFT,
valid for any integers m and n, we find that x_size satisfies
x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
in both cases.
*/
if (a_bits <= DBL_MANT_DIG + 2) {
shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
x_size = shift_digits;
rem = v_lshift(x_digits + x_size, a->ob_digit, a_size,
(int)shift_bits);
x_size += a_size;
x_digits[x_size++] = rem;
}
else {
shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
rem = v_rshift(x_digits, a->ob_digit + shift_digits,
a_size - shift_digits, (int)shift_bits);
x_size = a_size - shift_digits;
/* For correct rounding below, we need the least significant
bit of x to be 'sticky' for this shift: if any of the bits
shifted out was nonzero, we set the least significant bit
of x. */
if (rem)
x_digits[0] |= 1;
else
while (shift_digits > 0)
if (a->ob_digit[--shift_digits]) {
x_digits[0] |= 1;
break;
}
}
assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits));
/* Round, and convert to double. */
x_digits[0] += half_even_correction[x_digits[0] & 7];
dx = x_digits[--x_size];
while (x_size > 0)
dx = dx * PyLong_BASE + x_digits[--x_size];
/* Rescale; make correction if result is 1.0. */
dx /= 4.0 * EXP2_DBL_MANT_DIG;
if (dx == 1.0) {
if (a_bits == PY_SSIZE_T_MAX)
goto overflow;
dx = 0.5;
a_bits += 1;
}
*e = a_bits;
return Py_SIZE(a) < 0 ? -dx : dx;
overflow:
/* exponent > PY_SSIZE_T_MAX */
PyErr_SetString(PyExc_OverflowError,
"huge integer: number of bits overflows a Py_ssize_t");
*e = 0;
return -1.0;
}
/* Get a C double from an int object. Rounds to the nearest double,
using the round-half-to-even rule in the case of a tie. */
double
PyLong_AsDouble(PyObject *v)
{
Py_ssize_t exponent;
double x;
if (v == NULL) {
PyErr_BadInternalCall();
return -1.0;
}
if (!PyLong_Check(v)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return -1.0;
}
if (Py_ABS(Py_SIZE(v)) <= 1) {
/* Fast path; single digit long (31 bits) will cast safely
to double. This improves performance of FP/long operations
by 20%.
*/
return (double)MEDIUM_VALUE((PyLongObject *)v);
}
x = _PyLong_Frexp((PyLongObject *)v, &exponent);
if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
PyErr_SetString(PyExc_OverflowError,
"int too large to convert to float");
return -1.0;
}
return ldexp(x, (int)exponent);
}
/* Methods */
/* if a < b, return a negative number
if a == b, return 0
if a > b, return a positive number */
static Py_ssize_t
long_compare(PyLongObject *a, PyLongObject *b)
{
Py_ssize_t sign = Py_SIZE(a) - Py_SIZE(b);
if (sign == 0) {
Py_ssize_t i = Py_ABS(Py_SIZE(a));
sdigit diff = 0;
while (--i >= 0) {
diff = (sdigit) a->ob_digit[i] - (sdigit) b->ob_digit[i];
if (diff) {
break;
}
}
sign = Py_SIZE(a) < 0 ? -diff : diff;
}
return sign;
}
static PyObject *
long_richcompare(PyObject *self, PyObject *other, int op)
{
Py_ssize_t result;
CHECK_BINOP(self, other);
if (self == other)
result = 0;
else
result = long_compare((PyLongObject*)self, (PyLongObject*)other);
Py_RETURN_RICHCOMPARE(result, 0, op);
}
static Py_hash_t
long_hash(PyLongObject *v)
{
Py_uhash_t x;
Py_ssize_t i;
int sign;
i = Py_SIZE(v);
switch(i) {
case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0];
case 0: return 0;
case 1: return v->ob_digit[0];
}
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -(i);
}
while (--i >= 0) {
/* Here x is a quantity in the range [0, _PyHASH_MODULUS); we
want to compute x * 2**PyLong_SHIFT + v->ob_digit[i] modulo
_PyHASH_MODULUS.
The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS
amounts to a rotation of the bits of x. To see this, write
x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z
where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top
PyLong_SHIFT bits of x (those that are shifted out of the
original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
_PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT
bits of x, shifted up. Then since 2**_PyHASH_BITS is
congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is
congruent to y modulo _PyHASH_MODULUS. So
x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS).
The right-hand side is just the result of rotating the
_PyHASH_BITS bits of x left by PyLong_SHIFT places; since
not all _PyHASH_BITS bits of x are 1s, the same is true
after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is
the reduction of x*2**PyLong_SHIFT modulo
_PyHASH_MODULUS. */
x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) |
(x >> (_PyHASH_BITS - PyLong_SHIFT));
x += v->ob_digit[i];
if (x >= _PyHASH_MODULUS)
x -= _PyHASH_MODULUS;
}
x = x * sign;
if (x == (Py_uhash_t)-1)
x = (Py_uhash_t)-2;
return (Py_hash_t)x;
}
/* Add the absolute values of two integers. */
static PyLongObject *
x_add(PyLongObject *a, PyLongObject *b)
{
Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
PyLongObject *z;
Py_ssize_t i;
digit carry = 0;
/* Ensure a is the larger of the two: */
if (size_a < size_b) {
{ PyLongObject *temp = a; a = b; b = temp; }
{ Py_ssize_t size_temp = size_a;
size_a = size_b;
size_b = size_temp; }
}
z = _PyLong_New(size_a+1);
if (z == NULL)
return NULL;
for (i = 0; i < size_b; ++i) {
carry += a->ob_digit[i] + b->ob_digit[i];
z->ob_digit[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
for (; i < size_a; ++i) {
carry += a->ob_digit[i];
z->ob_digit[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
z->ob_digit[i] = carry;
return long_normalize(z);
}
/* Subtract the absolute values of two integers. */
static PyLongObject *
x_sub(PyLongObject *a, PyLongObject *b)
{
Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
PyLongObject *z;
Py_ssize_t i;
int sign = 1;
digit borrow = 0;
/* Ensure a is the larger of the two: */
if (size_a < size_b) {
sign = -1;
{ PyLongObject *temp = a; a = b; b = temp; }
{ Py_ssize_t size_temp = size_a;
size_a = size_b;
size_b = size_temp; }
}
else if (size_a == size_b) {
/* Find highest digit where a and b differ: */
i = size_a;
while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
;
if (i < 0)
return (PyLongObject *)PyLong_FromLong(0);
if (a->ob_digit[i] < b->ob_digit[i]) {
sign = -1;
{ PyLongObject *temp = a; a = b; b = temp; }
}
size_a = size_b = i+1;
}
z = _PyLong_New(size_a);
if (z == NULL)
return NULL;
for (i = 0; i < size_b; ++i) {
/* The following assumes unsigned arithmetic
works module 2**N for some N>PyLong_SHIFT. */
borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
z->ob_digit[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1; /* Keep only one sign bit */
}
for (; i < size_a; ++i) {
borrow = a->ob_digit[i] - borrow;
z->ob_digit[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1; /* Keep only one sign bit */
}
assert(borrow == 0);
if (sign < 0) {
Py_SET_SIZE(z, -Py_SIZE(z));
}
return maybe_small_long(long_normalize(z));
}
static PyObject *
long_add(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
CHECK_BINOP(a, b);
if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
return PyLong_FromLong(MEDIUM_VALUE(a) + MEDIUM_VALUE(b));
}
if (Py_SIZE(a) < 0) {
if (Py_SIZE(b) < 0) {
z = x_add(a, b);
if (z != NULL) {
/* x_add received at least one multiple-digit int,
and thus z must be a multiple-digit int.
That also means z is not an element of
small_ints, so negating it in-place is safe. */
assert(Py_REFCNT(z) == 1);
Py_SET_SIZE(z, -(Py_SIZE(z)));
}
}
else
z = x_sub(b, a);
}
else {
if (Py_SIZE(b) < 0)
z = x_sub(a, b);
else
z = x_add(a, b);
}
return (PyObject *)z;
}
static PyObject *
long_sub(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
CHECK_BINOP(a, b);
if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
return PyLong_FromLong(MEDIUM_VALUE(a) - MEDIUM_VALUE(b));
}
if (Py_SIZE(a) < 0) {
if (Py_SIZE(b) < 0) {
z = x_sub(b, a);
}
else {
z = x_add(a, b);
if (z != NULL) {
assert(Py_SIZE(z) == 0 || Py_REFCNT(z) == 1);
Py_SET_SIZE(z, -(Py_SIZE(z)));
}
}
}
else {
if (Py_SIZE(b) < 0)
z = x_add(a, b);
else
z = x_sub(a, b);
}
return (PyObject *)z;
}
/* Grade school multiplication, ignoring the signs.
* Returns the absolute value of the product, or NULL if error.
*/
static PyLongObject *
x_mul(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
Py_ssize_t size_a = Py_ABS(Py_SIZE(a));
Py_ssize_t size_b = Py_ABS(Py_SIZE(b));
Py_ssize_t i;
z = _PyLong_New(size_a + size_b);
if (z == NULL)
return NULL;
memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit));
if (a == b) {
/* Efficient squaring per HAC, Algorithm 14.16:
* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
* Gives slightly less than a 2x speedup when a == b,
* via exploiting that each entry in the multiplication
* pyramid appears twice (except for the size_a squares).
*/
for (i = 0; i < size_a; ++i) {
twodigits carry;
twodigits f = a->ob_digit[i];
digit *pz = z->ob_digit + (i << 1);
digit *pa = a->ob_digit + i + 1;
digit *paend = a->ob_digit + size_a;
SIGCHECK({
Py_DECREF(z);
return NULL;
});
carry = *pz + f * f;
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
assert(carry <= PyLong_MASK);
/* Now f is added in twice in each column of the
* pyramid it appears. Same as adding f<<1 once.
*/
f <<= 1;
while (pa < paend) {
carry += *pz + *pa++ * f;
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
assert(carry <= (PyLong_MASK << 1));
}
if (carry) {
carry += *pz;
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
}
if (carry)
*pz += (digit)(carry & PyLong_MASK);
assert((carry >> PyLong_SHIFT) == 0);
}
}
else { /* a is not the same as b -- gradeschool int mult */
for (i = 0; i < size_a; ++i) {
twodigits carry = 0;
twodigits f = a->ob_digit[i];
digit *pz = z->ob_digit + i;
digit *pb = b->ob_digit;
digit *pbend = b->ob_digit + size_b;
SIGCHECK({
Py_DECREF(z);
return NULL;
});
while (pb < pbend) {
carry += *pz + *pb++ * f;
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
assert(carry <= PyLong_MASK);
}
if (carry)
*pz += (digit)(carry & PyLong_MASK);
assert((carry >> PyLong_SHIFT) == 0);
}
}
return long_normalize(z);
}
/* A helper for Karatsuba multiplication (k_mul).
Takes an int "n" and an integer "size" representing the place to
split, and sets low and high such that abs(n) == (high << size) + low,
viewing the shift as being by digits. The sign bit is ignored, and
the return values are >= 0.
Returns 0 on success, -1 on failure.
*/
static int
kmul_split(PyLongObject *n,
Py_ssize_t size,
PyLongObject **high,
PyLongObject **low)
{
PyLongObject *hi, *lo;
Py_ssize_t size_lo, size_hi;
const Py_ssize_t size_n = Py_ABS(Py_SIZE(n));
size_lo = Py_MIN(size_n, size);
size_hi = size_n - size_lo;
if ((hi = _PyLong_New(size_hi)) == NULL)
return -1;
if ((lo = _PyLong_New(size_lo)) == NULL) {
Py_DECREF(hi);
return -1;
}
memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
*high = long_normalize(hi);
*low = long_normalize(lo);
return 0;
}
static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
/* Karatsuba multiplication. Ignores the input signs, and returns the
* absolute value of the product (or NULL if error).
* See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
*/
static PyLongObject *
k_mul(PyLongObject *a, PyLongObject *b)
{
Py_ssize_t asize = Py_ABS(Py_SIZE(a));
Py_ssize_t bsize = Py_ABS(Py_SIZE(b));
PyLongObject *ah = NULL;
PyLongObject *al = NULL;
PyLongObject *bh = NULL;
PyLongObject *bl = NULL;
PyLongObject *ret = NULL;
PyLongObject *t1, *t2, *t3;
Py_ssize_t shift; /* the number of digits we split off */
Py_ssize_t i;
/* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
* Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl
* Then the original product is
* ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
* By picking X to be a power of 2, "*X" is just shifting, and it's
* been reduced to 3 multiplies on numbers half the size.
*/
/* We want to split based on the larger number; fiddle so that b
* is largest.
*/
if (asize > bsize) {
t1 = a;
a = b;
b = t1;
i = asize;
asize = bsize;
bsize = i;
}
/* Use gradeschool math when either number is too small. */
i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
if (asize <= i) {
if (asize == 0)
return (PyLongObject *)PyLong_FromLong(0);
else
return x_mul(a, b);
}
/* If a is small compared to b, splitting on b gives a degenerate
* case with ah==0, and Karatsuba may be (even much) less efficient
* than "grade school" then. However, we can still win, by viewing
* b as a string of "big digits", each of width a->ob_size. That
* leads to a sequence of balanced calls to k_mul.
*/
if (2 * asize <= bsize)
return k_lopsided_mul(a, b);
/* Split a & b into hi & lo pieces. */
shift = bsize >> 1;
if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */
if (a == b) {
bh = ah;
bl = al;
Py_INCREF(bh);
Py_INCREF(bl);
}
else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
/* The plan:
* 1. Allocate result space (asize + bsize digits: that's always
* enough).
* 2. Compute ah*bh, and copy into result at 2*shift.
* 3. Compute al*bl, and copy into result at 0. Note that this
* can't overlap with #2.
* 4. Subtract al*bl from the result, starting at shift. This may
* underflow (borrow out of the high digit), but we don't care:
* we're effectively doing unsigned arithmetic mod
* BASE**(sizea + sizeb), and so long as the *final* result fits,
* borrows and carries out of the high digit can be ignored.
* 5. Subtract ah*bh from the result, starting at shift.
* 6. Compute (ah+al)*(bh+bl), and add it into the result starting
* at shift.
*/
/* 1. Allocate result space. */
ret = _PyLong_New(asize + bsize);
if (ret == NULL) goto fail;
#ifdef Py_DEBUG
/* Fill with trash, to catch reference to uninitialized digits. */
memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit));
#endif
/* 2. t1 <- ah*bh, and copy into high digits of result. */
if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
assert(Py_SIZE(t1) >= 0);
assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret));
memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
Py_SIZE(t1) * sizeof(digit));
/* Zero-out the digits higher than the ah*bh copy. */
i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1);
if (i)
memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0,
i * sizeof(digit));
/* 3. t2 <- al*bl, and copy into the low digits. */
if ((t2 = k_mul(al, bl)) == NULL) {
Py_DECREF(t1);
goto fail;
}
assert(Py_SIZE(t2) >= 0);
assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */
memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit));
/* Zero out remaining digits. */
i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */
if (i)
memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit));
/* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first
* because it's fresher in cache.
*/
i = Py_SIZE(ret) - shift; /* # digits after shift */
(void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2));
Py_DECREF(t2);
(void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1));
Py_DECREF(t1);
/* 6. t3 <- (ah+al)(bh+bl), and add into result. */
if ((t1 = x_add(ah, al)) == NULL) goto fail;
Py_DECREF(ah);
Py_DECREF(al);
ah = al = NULL;
if (a == b) {
t2 = t1;
Py_INCREF(t2);
}
else if ((t2 = x_add(bh, bl)) == NULL) {
Py_DECREF(t1);
goto fail;
}
Py_DECREF(bh);
Py_DECREF(bl);
bh = bl = NULL;
t3 = k_mul(t1, t2);
Py_DECREF(t1);
Py_DECREF(t2);
if (t3 == NULL) goto fail;
assert(Py_SIZE(t3) >= 0);
/* Add t3. It's not obvious why we can't run out of room here.
* See the (*) comment after this function.
*/
(void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3));
Py_DECREF(t3);
return long_normalize(ret);
fail:
Py_XDECREF(ret);
Py_XDECREF(ah);
Py_XDECREF(al);
Py_XDECREF(bh);
Py_XDECREF(bl);
return NULL;
}
/* (*) Why adding t3 can't "run out of room" above.
Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts
to start with:
1. For any integer i, i = c(i/2) + f(i/2). In particular,
bsize = c(bsize/2) + f(bsize/2).
2. shift = f(bsize/2)
3. asize <= bsize
4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
routine, so asize > bsize/2 >= f(bsize/2) in this routine.
We allocated asize + bsize result digits, and add t3 into them at an offset
of shift. This leaves asize+bsize-shift allocated digit positions for t3
to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
asize + c(bsize/2) available digit positions.
bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has
at most c(bsize/2) digits + 1 bit.
If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
digits, and al has at most f(bsize/2) digits in any case. So ah+al has at
most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
The product (ah+al)*(bh+bl) therefore has at most
c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
and we have asize + c(bsize/2) available digit positions. We need to show
this is always enough. An instance of c(bsize/2) cancels out in both, so
the question reduces to whether asize digits is enough to hold
(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize,
then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4,
asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If
asize == bsize, then we're asking whether bsize digits is enough to hold
c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
is enough to hold 2 bits. This is so if bsize >= 2, which holds because
bsize >= KARATSUBA_CUTOFF >= 2.
Note that since there's always enough room for (ah+al)*(bh+bl), and that's
clearly >= each of ah*bh and al*bl, there's always enough room to subtract
ah*bh and al*bl too.
*/
/* b has at least twice the digits of a, and a is big enough that Karatsuba
* would pay off *if* the inputs had balanced sizes. View b as a sequence
* of slices, each with a->ob_size digits, and multiply the slices by a,
* one at a time. This gives k_mul balanced inputs to work with, and is
* also cache-friendly (we compute one double-width slice of the result
* at a time, then move on, never backtracking except for the helpful
* single-width slice overlap between successive partial sums).
*/
static PyLongObject *
k_lopsided_mul(PyLongObject *a, PyLongObject *b)
{
const Py_ssize_t asize = Py_ABS(Py_SIZE(a));
Py_ssize_t bsize = Py_ABS(Py_SIZE(b));
Py_ssize_t nbdone; /* # of b digits already multiplied */
PyLongObject *ret;
PyLongObject *bslice = NULL;
assert(asize > KARATSUBA_CUTOFF);
assert(2 * asize <= bsize);
/* Allocate result space, and zero it out. */
ret = _PyLong_New(asize + bsize);
if (ret == NULL)
return NULL;
memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit));
/* Successive slices of b are copied into bslice. */
bslice = _PyLong_New(asize);
if (bslice == NULL)
goto fail;
nbdone = 0;
while (bsize > 0) {
PyLongObject *product;
const Py_ssize_t nbtouse = Py_MIN(bsize, asize);
/* Multiply the next slice of b by a. */
memcpy(bslice->ob_digit, b->ob_digit + nbdone,
nbtouse * sizeof(digit));
Py_SET_SIZE(bslice, nbtouse);
product = k_mul(a, bslice);
if (product == NULL)
goto fail;
/* Add into result. */
(void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone,
product->ob_digit, Py_SIZE(product));
Py_DECREF(product);
bsize -= nbtouse;
nbdone += nbtouse;
}
Py_DECREF(bslice);
return long_normalize(ret);
fail:
Py_DECREF(ret);
Py_XDECREF(bslice);
return NULL;
}
static PyObject *
long_mul(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
CHECK_BINOP(a, b);
/* fast path for single-digit multiplication */
if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
stwodigits v = (stwodigits)(MEDIUM_VALUE(a)) * MEDIUM_VALUE(b);
return PyLong_FromLongLong((long long)v);
}
z = k_mul(a, b);
/* Negate if exactly one of the inputs is negative. */
if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z) {
_PyLong_Negate(&z);
if (z == NULL)
return NULL;
}
return (PyObject *)z;
}
/* Fast modulo division for single-digit longs. */
static PyObject *
fast_mod(PyLongObject *a, PyLongObject *b)
{
sdigit left = a->ob_digit[0];
sdigit right = b->ob_digit[0];
sdigit mod;
assert(Py_ABS(Py_SIZE(a)) == 1);
assert(Py_ABS(Py_SIZE(b)) == 1);
if (Py_SIZE(a) == Py_SIZE(b)) {
/* 'a' and 'b' have the same sign. */
mod = left % right;
}
else {
/* Either 'a' or 'b' is negative. */
mod = right - 1 - (left - 1) % right;
}
return PyLong_FromLong(mod * (sdigit)Py_SIZE(b));
}
/* Fast floor division for single-digit longs. */
static PyObject *
fast_floor_div(PyLongObject *a, PyLongObject *b)
{
sdigit left = a->ob_digit[0];
sdigit right = b->ob_digit[0];
sdigit div;
assert(Py_ABS(Py_SIZE(a)) == 1);
assert(Py_ABS(Py_SIZE(b)) == 1);
if (Py_SIZE(a) == Py_SIZE(b)) {
/* 'a' and 'b' have the same sign. */
div = left / right;
}
else {
/* Either 'a' or 'b' is negative. */
div = -1 - (left - 1) / right;
}
return PyLong_FromLong(div);
}
/* The / and % operators are now defined in terms of divmod().
The expression a mod b has the value a - b*floor(a/b).
The long_divrem function gives the remainder after division of
|a| by |b|, with the sign of a. This is also expressed
as a - b*trunc(a/b), if trunc truncates towards zero.
Some examples:
a b a rem b a mod b
13 10 3 3
-13 10 -3 7
13 -10 3 -7
-13 -10 -3 -3
So, to get from rem to mod, we have to add b if a and b
have different signs. We then subtract one from the 'div'
part of the outcome to keep the invariant intact. */
/* Compute
* *pdiv, *pmod = divmod(v, w)
* NULL can be passed for pdiv or pmod, in which case that part of
* the result is simply thrown away. The caller owns a reference to
* each of these it requests (does not pass NULL for).
*/
static int
l_divmod(PyLongObject *v, PyLongObject *w,
PyLongObject **pdiv, PyLongObject **pmod)
{
PyLongObject *div, *mod;
if (Py_ABS(Py_SIZE(v)) == 1 && Py_ABS(Py_SIZE(w)) == 1) {
/* Fast path for single-digit longs */
div = NULL;
if (pdiv != NULL) {
div = (PyLongObject *)fast_floor_div(v, w);
if (div == NULL) {
return -1;
}
}
if (pmod != NULL) {
mod = (PyLongObject *)fast_mod(v, w);
if (mod == NULL) {
Py_XDECREF(div);
return -1;
}
*pmod = mod;
}
if (pdiv != NULL) {
/* We only want to set `*pdiv` when `*pmod` is
set successfully. */
*pdiv = div;
}
return 0;
}
if (long_divrem(v, w, &div, &mod) < 0)
return -1;
if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
(Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
PyLongObject *temp;
temp = (PyLongObject *) long_add(mod, w);
Py_DECREF(mod);
mod = temp;
if (mod == NULL) {
Py_DECREF(div);
return -1;
}
temp = (PyLongObject *) long_sub(div, (PyLongObject *)_PyLong_One);
if (temp == NULL) {
Py_DECREF(mod);
Py_DECREF(div);
return -1;
}
Py_DECREF(div);
div = temp;
}
if (pdiv != NULL)
*pdiv = div;
else
Py_DECREF(div);
if (pmod != NULL)
*pmod = mod;
else
Py_DECREF(mod);
return 0;
}
static PyObject *
long_div(PyObject *a, PyObject *b)
{
PyLongObject *div;
CHECK_BINOP(a, b);
if (Py_ABS(Py_SIZE(a)) == 1 && Py_ABS(Py_SIZE(b)) == 1) {
return fast_floor_div((PyLongObject*)a, (PyLongObject*)b);
}
if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0)
div = NULL;
return (PyObject *)div;
}
/* PyLong/PyLong -> float, with correctly rounded result. */
#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
static PyObject *
long_true_divide(PyObject *v, PyObject *w)
{
PyLongObject *a, *b, *x;
Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
digit mask, low;
int inexact, negate, a_is_small, b_is_small;
double dx, result;
CHECK_BINOP(v, w);
a = (PyLongObject *)v;
b = (PyLongObject *)w;
/*
Method in a nutshell:
0. reduce to case a, b > 0; filter out obvious underflow/overflow
1. choose a suitable integer 'shift'
2. use integer arithmetic to compute x = floor(2**-shift*a/b)
3. adjust x for correct rounding
4. convert x to a double dx with the same value
5. return ldexp(dx, shift).
In more detail:
0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
returns either 0.0 or -0.0, depending on the sign of b. For a and
b both nonzero, ignore signs of a and b, and add the sign back in
at the end. Now write a_bits and b_bits for the bit lengths of a
and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
for b). Then
2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP -
DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of
the way, we can assume that
DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
1. The integer 'shift' is chosen so that x has the right number of
bits for a double, plus two or three extra bits that will be used
in the rounding decisions. Writing a_bits and b_bits for the
number of significant bits in a and b respectively, a
straightforward formula for shift is:
shift = a_bits - b_bits - DBL_MANT_DIG - 2
This is fine in the usual case, but if a/b is smaller than the
smallest normal float then it can lead to double rounding on an
IEEE 754 platform, giving incorrectly rounded results. So we
adjust the formula slightly. The actual formula used is:
shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
2. The quantity x is computed by first shifting a (left -shift bits
if shift <= 0, right shift bits if shift > 0) and then dividing by
b. For both the shift and the division, we keep track of whether
the result is inexact, in a flag 'inexact'; this information is
needed at the rounding stage.
With the choice of shift above, together with our assumption that
a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
that x >= 1.
3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace
this with an exactly representable float of the form
round(x/2**extra_bits) * 2**(extra_bits+shift).
For float representability, we need x/2**extra_bits <
2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
DBL_MANT_DIG. This translates to the condition:
extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
To round, we just modify the bottom digit of x in-place; this can
end up giving a digit with value > PyLONG_MASK, but that's not a
problem since digits can hold values up to 2*PyLONG_MASK+1.
With the original choices for shift above, extra_bits will always
be 2 or 3. Then rounding under the round-half-to-even rule, we
round up iff the most significant of the extra bits is 1, and
either: (a) the computation of x in step 2 had an inexact result,
or (b) at least one other of the extra bits is 1, or (c) the least
significant bit of x (above those to be rounded) is 1.
4. Conversion to a double is straightforward; all floating-point
operations involved in the conversion are exact, so there's no
danger of rounding errors.
5. Use ldexp(x, shift) to compute x*2**shift, the final result.
The result will always be exactly representable as a double, except
in the case that it overflows. To avoid dependence on the exact
behaviour of ldexp on overflow, we check for overflow before
applying ldexp. The result of ldexp is adjusted for sign before
returning.
*/
/* Reduce to case where a and b are both positive. */
a_size = Py_ABS(Py_SIZE(a));
b_size = Py_ABS(Py_SIZE(b));
negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0);
if (b_size == 0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"division by zero");
goto error;
}
if (a_size == 0)
goto underflow_or_zero;
/* Fast path for a and b small (exactly representable in a double).
Relies on floating-point division being correctly rounded; results
may be subject to double rounding on x86 machines that operate with
the x87 FPU set to 64-bit precision. */
a_is_small = a_size <= MANT_DIG_DIGITS ||
(a_size == MANT_DIG_DIGITS+1 &&
a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
b_is_small = b_size <= MANT_DIG_DIGITS ||
(b_size == MANT_DIG_DIGITS+1 &&
b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
if (a_is_small && b_is_small) {
double da, db;
da = a->ob_digit[--a_size];
while (a_size > 0)
da = da * PyLong_BASE + a->ob_digit[--a_size];
db = b->ob_digit[--b_size];
while (b_size > 0)
db = db * PyLong_BASE + b->ob_digit[--b_size];
result = da / db;
goto success;
}
/* Catch obvious cases of underflow and overflow */
diff = a_size - b_size;
if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
/* Extreme overflow */
goto overflow;
else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
/* Extreme underflow */
goto underflow_or_zero;
/* Next line is now safe from overflowing a Py_ssize_t */
diff = diff * PyLong_SHIFT + _Py_bit_length(a->ob_digit[a_size - 1]) -
_Py_bit_length(b->ob_digit[b_size - 1]);
/* Now diff = a_bits - b_bits. */
if (diff > DBL_MAX_EXP)
goto overflow;
else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
goto underflow_or_zero;
/* Choose value for shift; see comments for step 1 above. */
shift = Py_MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
inexact = 0;
/* x = abs(a * 2**-shift) */
if (shift <= 0) {
Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
digit rem;
/* x = a << -shift */
if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
/* In practice, it's probably impossible to end up
here. Both a and b would have to be enormous,
using close to SIZE_T_MAX bytes of memory each. */
PyErr_SetString(PyExc_OverflowError,
"intermediate overflow during division");
goto error;
}
x = _PyLong_New(a_size + shift_digits + 1);
if (x == NULL)
goto error;
for (i = 0; i < shift_digits; i++)
x->ob_digit[i] = 0;
rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit,
a_size, -shift % PyLong_SHIFT);
x->ob_digit[a_size + shift_digits] = rem;
}
else {
Py_ssize_t shift_digits = shift / PyLong_SHIFT;
digit rem;
/* x = a >> shift */
assert(a_size >= shift_digits);
x = _PyLong_New(a_size - shift_digits);
if (x == NULL)
goto error;
rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits,
a_size - shift_digits, shift % PyLong_SHIFT);
/* set inexact if any of the bits shifted out is nonzero */
if (rem)
inexact = 1;
while (!inexact && shift_digits > 0)
if (a->ob_digit[--shift_digits])
inexact = 1;
}
long_normalize(x);
x_size = Py_SIZE(x);
/* x //= b. If the remainder is nonzero, set inexact. We own the only
reference to x, so it's safe to modify it in-place. */
if (b_size == 1) {
digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size,
b->ob_digit[0]);
long_normalize(x);
if (rem)
inexact = 1;
}
else {
PyLongObject *div, *rem;
div = x_divrem(x, b, &rem);
Py_DECREF(x);
x = div;
if (x == NULL)
goto error;
if (Py_SIZE(rem))
inexact = 1;
Py_DECREF(rem);
}
x_size = Py_ABS(Py_SIZE(x));
assert(x_size > 0); /* result of division is never zero */
x_bits = (x_size-1)*PyLong_SHIFT+_Py_bit_length(x->ob_digit[x_size-1]);
/* The number of extra bits that have to be rounded away. */
extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
assert(extra_bits == 2 || extra_bits == 3);
/* Round by directly modifying the low digit of x. */
mask = (digit)1 << (extra_bits - 1);
low = x->ob_digit[0] | inexact;
if ((low & mask) && (low & (3U*mask-1U)))
low += mask;
x->ob_digit[0] = low & ~(2U*mask-1U);
/* Convert x to a double dx; the conversion is exact. */
dx = x->ob_digit[--x_size];
while (x_size > 0)
dx = dx * PyLong_BASE + x->ob_digit[--x_size];
Py_DECREF(x);
/* Check whether ldexp result will overflow a double. */
if (shift + x_bits >= DBL_MAX_EXP &&
(shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
goto overflow;
result = ldexp(dx, (int)shift);
success:
return PyFloat_FromDouble(negate ? -result : result);
underflow_or_zero:
return PyFloat_FromDouble(negate ? -0.0 : 0.0);
overflow:
PyErr_SetString(PyExc_OverflowError,
"integer division result too large for a float");
error:
return NULL;
}
static PyObject *
long_mod(PyObject *a, PyObject *b)
{
PyLongObject *mod;
CHECK_BINOP(a, b);
if (Py_ABS(Py_SIZE(a)) == 1 && Py_ABS(Py_SIZE(b)) == 1) {
return fast_mod((PyLongObject*)a, (PyLongObject*)b);
}
if (l_divmod((PyLongObject*)a, (PyLongObject*)b, NULL, &mod) < 0)
mod = NULL;
return (PyObject *)mod;
}
static PyObject *
long_divmod(PyObject *a, PyObject *b)
{
PyLongObject *div, *mod;
PyObject *z;
CHECK_BINOP(a, b);
if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) {
return NULL;
}
z = PyTuple_New(2);
if (z != NULL) {
PyTuple_SET_ITEM(z, 0, (PyObject *) div);
PyTuple_SET_ITEM(z, 1, (PyObject *) mod);
}
else {
Py_DECREF(div);
Py_DECREF(mod);
}
return z;
}
/* Compute an inverse to a modulo n, or raise ValueError if a is not
invertible modulo n. Assumes n is positive. The inverse returned
is whatever falls out of the extended Euclidean algorithm: it may
be either positive or negative, but will be smaller than n in
absolute value.
Pure Python equivalent for long_invmod:
def invmod(a, n):
b, c = 1, 0
while n:
q, r = divmod(a, n)
a, b, c, n = n, c, b - q*c, r
# at this point a is the gcd of the original inputs
if a == 1:
return b
raise ValueError("Not invertible")
*/
static PyLongObject *
long_invmod(PyLongObject *a, PyLongObject *n)
{
PyLongObject *b, *c;
/* Should only ever be called for positive n */
assert(Py_SIZE(n) > 0);
b = (PyLongObject *)PyLong_FromLong(1L);
if (b == NULL) {
return NULL;
}
c = (PyLongObject *)PyLong_FromLong(0L);
if (c == NULL) {
Py_DECREF(b);
return NULL;
}
Py_INCREF(a);
Py_INCREF(n);
/* references now owned: a, b, c, n */
while (Py_SIZE(n) != 0) {
PyLongObject *q, *r, *s, *t;
if (l_divmod(a, n, &q, &r) == -1) {
goto Error;
}
Py_DECREF(a);
a = n;
n = r;
t = (PyLongObject *)long_mul(q, c);
Py_DECREF(q);
if (t == NULL) {
goto Error;
}
s = (PyLongObject *)long_sub(b, t);
Py_DECREF(t);
if (s == NULL) {
goto Error;
}
Py_DECREF(b);
b = c;
c = s;
}
/* references now owned: a, b, c, n */
Py_DECREF(c);
Py_DECREF(n);
if (long_compare(a, (PyLongObject *)_PyLong_One)) {
/* a != 1; we don't have an inverse. */
Py_DECREF(a);
Py_DECREF(b);
PyErr_SetString(PyExc_ValueError,
"base is not invertible for the given modulus");
return NULL;
}
else {
/* a == 1; b gives an inverse modulo n */
Py_DECREF(a);
return b;
}
Error:
Py_DECREF(a);
Py_DECREF(b);
Py_DECREF(c);
Py_DECREF(n);
return NULL;
}
/* pow(v, w, x) */
static PyObject *
long_pow(PyObject *v, PyObject *w, PyObject *x)
{
PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
int negativeOutput = 0; /* if x<0 return negative output */
PyLongObject *z = NULL; /* accumulated result */
Py_ssize_t i, j, k; /* counters */
PyLongObject *temp = NULL;
/* 5-ary values. If the exponent is large enough, table is
* precomputed so that table[i] == a**i % c for i in range(32).
*/
PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
/* a, b, c = v, w, x */
CHECK_BINOP(v, w);
a = (PyLongObject*)v; Py_INCREF(a);
b = (PyLongObject*)w; Py_INCREF(b);
if (PyLong_Check(x)) {
c = (PyLongObject *)x;
Py_INCREF(x);
}
else if (x == Py_None)
c = NULL;
else {
Py_DECREF(a);
Py_DECREF(b);
Py_RETURN_NOTIMPLEMENTED;
}
if (Py_SIZE(b) < 0 && c == NULL) {
/* if exponent is negative and there's no modulus:
return a float. This works because we know
that this calls float_pow() which converts its
arguments to double. */
Py_DECREF(a);
Py_DECREF(b);
return PyFloat_Type.tp_as_number->nb_power(v, w, x);
}
if (c) {
/* if modulus == 0:
raise ValueError() */
if (Py_SIZE(c) == 0) {
PyErr_SetString(PyExc_ValueError,
"pow() 3rd argument cannot be 0");
goto Error;
}
/* if modulus < 0:
negativeOutput = True
modulus = -modulus */
if (Py_SIZE(c) < 0) {
negativeOutput = 1;
temp = (PyLongObject *)_PyLong_Copy(c);
if (temp == NULL)
goto Error;
Py_DECREF(c);
c = temp;
temp = NULL;
_PyLong_Negate(&c);
if (c == NULL)
goto Error;
}
/* if modulus == 1:
return 0 */
if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) {
z = (PyLongObject *)PyLong_FromLong(0L);
goto Done;
}
/* if exponent is negative, negate the exponent and
replace the base with a modular inverse */
if (Py_SIZE(b) < 0) {
temp = (PyLongObject *)_PyLong_Copy(b);
if (temp == NULL)
goto Error;
Py_DECREF(b);
b = temp;
temp = NULL;
_PyLong_Negate(&b);
if (b == NULL)
goto Error;
temp = long_invmod(a, c);
if (temp == NULL)
goto Error;
Py_DECREF(a);
a = temp;
}
/* Reduce base by modulus in some cases:
1. If base < 0. Forcing the base non-negative makes things easier.
2. If base is obviously larger than the modulus. The "small
exponent" case later can multiply directly by base repeatedly,
while the "large exponent" case multiplies directly by base 31
times. It can be unboundedly faster to multiply by
base % modulus instead.
We could _always_ do this reduction, but l_divmod() isn't cheap,
so we only do it when it buys something. */
if (Py_SIZE(a) < 0 || Py_SIZE(a) > Py_SIZE(c)) {
if (l_divmod(a, c, NULL, &temp) < 0)
goto Error;
Py_DECREF(a);
a = temp;
temp = NULL;
}
}
/* At this point a, b, and c are guaranteed non-negative UNLESS
c is NULL, in which case a may be negative. */
z = (PyLongObject *)PyLong_FromLong(1L);
if (z == NULL)
goto Error;
/* Perform a modular reduction, X = X % c, but leave X alone if c
* is NULL.
*/
#define REDUCE(X) \
do { \
if (c != NULL) { \
if (l_divmod(X, c, NULL, &temp) < 0) \
goto Error; \
Py_XDECREF(X); \
X = temp; \
temp = NULL; \
} \
} while(0)
/* Multiply two values, then reduce the result:
result = X*Y % c. If c is NULL, skip the mod. */
#define MULT(X, Y, result) \
do { \
temp = (PyLongObject *)long_mul(X, Y); \
if (temp == NULL) \
goto Error; \
Py_XDECREF(result); \
result = temp; \
temp = NULL; \
REDUCE(result); \
} while(0)
if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
/* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
/* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */
for (i = Py_SIZE(b) - 1; i >= 0; --i) {
digit bi = b->ob_digit[i];
for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
MULT(z, z, z);
if (bi & j)
MULT(z, a, z);
}
}
}
else {
/* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */
Py_INCREF(z); /* still holds 1L */
table[0] = z;
for (i = 1; i < 32; ++i)
MULT(table[i-1], a, table[i]);
for (i = Py_SIZE(b) - 1; i >= 0; --i) {
const digit bi = b->ob_digit[i];
for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) {
const int index = (bi >> j) & 0x1f;
for (k = 0; k < 5; ++k)
MULT(z, z, z);
if (index)
MULT(z, table[index], z);
}
}
}
if (negativeOutput && (Py_SIZE(z) != 0)) {
temp = (PyLongObject *)long_sub(z, c);
if (temp == NULL)
goto Error;
Py_DECREF(z);
z = temp;
temp = NULL;
}
goto Done;
Error:
Py_CLEAR(z);
/* fall through */
Done:
if (Py_SIZE(b) > FIVEARY_CUTOFF) {
for (i = 0; i < 32; ++i)
Py_XDECREF(table[i]);
}
Py_DECREF(a);
Py_DECREF(b);
Py_XDECREF(c);
Py_XDECREF(temp);
return (PyObject *)z;
}
static PyObject *
long_invert(PyLongObject *v)
{
/* Implement ~x as -(x+1) */
PyLongObject *x;
if (Py_ABS(Py_SIZE(v)) <=1)
return PyLong_FromLong(-(MEDIUM_VALUE(v)+1));
x = (PyLongObject *) long_add(v, (PyLongObject *)_PyLong_One);
if (x == NULL)
return NULL;
_PyLong_Negate(&x);
/* No need for maybe_small_long here, since any small
longs will have been caught in the Py_SIZE <= 1 fast path. */
return (PyObject *)x;
}
static PyObject *
long_neg(PyLongObject *v)
{
PyLongObject *z;
if (Py_ABS(Py_SIZE(v)) <= 1)
return PyLong_FromLong(-MEDIUM_VALUE(v));
z = (PyLongObject *)_PyLong_Copy(v);
if (z != NULL)
Py_SET_SIZE(z, -(Py_SIZE(v)));
return (PyObject *)z;
}
static PyObject *
long_abs(PyLongObject *v)
{
if (Py_SIZE(v) < 0)
return long_neg(v);
else
return long_long((PyObject *)v);
}
static int
long_bool(PyLongObject *v)
{
return Py_SIZE(v) != 0;
}
/* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
static int
divmod_shift(PyObject *shiftby, Py_ssize_t *wordshift, digit *remshift)
{
assert(PyLong_Check(shiftby));
assert(Py_SIZE(shiftby) >= 0);
Py_ssize_t lshiftby = PyLong_AsSsize_t((PyObject *)shiftby);
if (lshiftby >= 0) {
*wordshift = lshiftby / PyLong_SHIFT;
*remshift = lshiftby % PyLong_SHIFT;
return 0;
}
/* PyLong_Check(shiftby) is true and Py_SIZE(shiftby) >= 0, so it must
be that PyLong_AsSsize_t raised an OverflowError. */
assert(PyErr_ExceptionMatches(PyExc_OverflowError));
PyErr_Clear();
PyLongObject *wordshift_obj = divrem1((PyLongObject *)shiftby, PyLong_SHIFT, remshift);
if (wordshift_obj == NULL) {
return -1;
}
*wordshift = PyLong_AsSsize_t((PyObject *)wordshift_obj);
Py_DECREF(wordshift_obj);
if (*wordshift >= 0 && *wordshift < PY_SSIZE_T_MAX / (Py_ssize_t)sizeof(digit)) {
return 0;
}
PyErr_Clear();
/* Clip the value. With such large wordshift the right shift
returns 0 and the left shift raises an error in _PyLong_New(). */
*wordshift = PY_SSIZE_T_MAX / sizeof(digit);
*remshift = 0;
return 0;
}
static PyObject *
long_rshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
{
PyLongObject *z = NULL;
Py_ssize_t newsize, hishift, i, j;
digit lomask, himask;
if (Py_SIZE(a) < 0) {
/* Right shifting negative numbers is harder */
PyLongObject *a1, *a2;
a1 = (PyLongObject *) long_invert(a);
if (a1 == NULL)
return NULL;
a2 = (PyLongObject *) long_rshift1(a1, wordshift, remshift);
Py_DECREF(a1);
if (a2 == NULL)
return NULL;
z = (PyLongObject *) long_invert(a2);
Py_DECREF(a2);
}
else {
newsize = Py_SIZE(a) - wordshift;
if (newsize <= 0)
return PyLong_FromLong(0);
hishift = PyLong_SHIFT - remshift;
lomask = ((digit)1 << hishift) - 1;
himask = PyLong_MASK ^ lomask;
z = _PyLong_New(newsize);
if (z == NULL)
return NULL;
for (i = 0, j = wordshift; i < newsize; i++, j++) {
z->ob_digit[i] = (a->ob_digit[j] >> remshift) & lomask;
if (i+1 < newsize)
z->ob_digit[i] |= (a->ob_digit[j+1] << hishift) & himask;
}
z = maybe_small_long(long_normalize(z));
}
return (PyObject *)z;
}
static PyObject *
long_rshift(PyObject *a, PyObject *b)
{
Py_ssize_t wordshift;
digit remshift;
CHECK_BINOP(a, b);
if (Py_SIZE(b) < 0) {
PyErr_SetString(PyExc_ValueError, "negative shift count");
return NULL;
}
if (Py_SIZE(a) == 0) {
return PyLong_FromLong(0);
}
if (divmod_shift(b, &wordshift, &remshift) < 0)
return NULL;
return long_rshift1((PyLongObject *)a, wordshift, remshift);
}
/* Return a >> shiftby. */
PyObject *
_PyLong_Rshift(PyObject *a, size_t shiftby)
{
Py_ssize_t wordshift;
digit remshift;
assert(PyLong_Check(a));
if (Py_SIZE(a) == 0) {
return PyLong_FromLong(0);
}
wordshift = shiftby / PyLong_SHIFT;
remshift = shiftby % PyLong_SHIFT;
return long_rshift1((PyLongObject *)a, wordshift, remshift);
}
static PyObject *
long_lshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
{
/* This version due to Tim Peters */
PyLongObject *z = NULL;
Py_ssize_t oldsize, newsize, i, j;
twodigits accum;
oldsize = Py_ABS(Py_SIZE(a));
newsize = oldsize + wordshift;
if (remshift)
++newsize;
z = _PyLong_New(newsize);
if (z == NULL)
return NULL;
if (Py_SIZE(a) < 0) {
assert(Py_REFCNT(z) == 1);
Py_SET_SIZE(z, -Py_SIZE(z));
}
for (i = 0; i < wordshift; i++)
z->ob_digit[i] = 0;
accum = 0;
for (i = wordshift, j = 0; j < oldsize; i++, j++) {
accum |= (twodigits)a->ob_digit[j] << remshift;
z->ob_digit[i] = (digit)(accum & PyLong_MASK);
accum >>= PyLong_SHIFT;
}
if (remshift)
z->ob_digit[newsize-1] = (digit)accum;
else
assert(!accum);
z = long_normalize(z);
return (PyObject *) maybe_small_long(z);
}
static PyObject *
long_lshift(PyObject *a, PyObject *b)
{
Py_ssize_t wordshift;
digit remshift;
CHECK_BINOP(a, b);
if (Py_SIZE(b) < 0) {
PyErr_SetString(PyExc_ValueError, "negative shift count");
return NULL;
}
if (Py_SIZE(a) == 0) {
return PyLong_FromLong(0);
}
if (divmod_shift(b, &wordshift, &remshift) < 0)
return NULL;
return long_lshift1((PyLongObject *)a, wordshift, remshift);
}
/* Return a << shiftby. */
PyObject *
_PyLong_Lshift(PyObject *a, size_t shiftby)
{
Py_ssize_t wordshift;
digit remshift;
assert(PyLong_Check(a));
if (Py_SIZE(a) == 0) {
return PyLong_FromLong(0);
}
wordshift = shiftby / PyLong_SHIFT;
remshift = shiftby % PyLong_SHIFT;
return long_lshift1((PyLongObject *)a, wordshift, remshift);
}
/* Compute two's complement of digit vector a[0:m], writing result to
z[0:m]. The digit vector a need not be normalized, but should not
be entirely zero. a and z may point to the same digit vector. */
static void
v_complement(digit *z, digit *a, Py_ssize_t m)
{
Py_ssize_t i;
digit carry = 1;
for (i = 0; i < m; ++i) {
carry += a[i] ^ PyLong_MASK;
z[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
assert(carry == 0);
}
/* Bitwise and/xor/or operations */
static PyObject *
long_bitwise(PyLongObject *a,
char op, /* '&', '|', '^' */
PyLongObject *b)
{
int nega, negb, negz;
Py_ssize_t size_a, size_b, size_z, i;
PyLongObject *z;
/* Bitwise operations for negative numbers operate as though
on a two's complement representation. So convert arguments
from sign-magnitude to two's complement, and convert the
result back to sign-magnitude at the end. */
/* If a is negative, replace it by its two's complement. */
size_a = Py_ABS(Py_SIZE(a));
nega = Py_SIZE(a) < 0;
if (nega) {
z = _PyLong_New(size_a);
if (z == NULL)
return NULL;
v_complement(z->ob_digit, a->ob_digit, size_a);
a = z;
}
else
/* Keep reference count consistent. */
Py_INCREF(a);
/* Same for b. */
size_b = Py_ABS(Py_SIZE(b));
negb = Py_SIZE(b) < 0;
if (negb) {
z = _PyLong_New(size_b);
if (z == NULL) {
Py_DECREF(a);
return NULL;
}
v_complement(z->ob_digit, b->ob_digit, size_b);
b = z;
}
else
Py_INCREF(b);
/* Swap a and b if necessary to ensure size_a >= size_b. */
if (size_a < size_b) {
z = a; a = b; b = z;
size_z = size_a; size_a = size_b; size_b = size_z;
negz = nega; nega = negb; negb = negz;
}
/* JRH: The original logic here was to allocate the result value (z)
as the longer of the two operands. However, there are some cases
where the result is guaranteed to be shorter than that: AND of two
positives, OR of two negatives: use the shorter number. AND with
mixed signs: use the positive number. OR with mixed signs: use the
negative number.
*/
switch (op) {
case '^':
negz = nega ^ negb;
size_z = size_a;
break;
case '&':
negz = nega & negb;
size_z = negb ? size_a : size_b;
break;
case '|':
negz = nega | negb;
size_z = negb ? size_b : size_a;
break;
default:
Py_UNREACHABLE();
}
/* We allow an extra digit if z is negative, to make sure that
the final two's complement of z doesn't overflow. */
z = _PyLong_New(size_z + negz);
if (z == NULL) {
Py_DECREF(a);
Py_DECREF(b);
return NULL;
}
/* Compute digits for overlap of a and b. */
switch(op) {
case '&':
for (i = 0; i < size_b; ++i)
z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i];
break;
case '|':
for (i = 0; i < size_b; ++i)
z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i];
break;
case '^':
for (i = 0; i < size_b; ++i)
z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i];
break;
default:
Py_UNREACHABLE();
}
/* Copy any remaining digits of a, inverting if necessary. */
if (op == '^' && negb)
for (; i < size_z; ++i)
z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK;
else if (i < size_z)
memcpy(&z->ob_digit[i], &a->ob_digit[i],
(size_z-i)*sizeof(digit));
/* Complement result if negative. */
if (negz) {
Py_SET_SIZE(z, -(Py_SIZE(z)));
z->ob_digit[size_z] = PyLong_MASK;
v_complement(z->ob_digit, z->ob_digit, size_z+1);
}
Py_DECREF(a);
Py_DECREF(b);
return (PyObject *)maybe_small_long(long_normalize(z));
}
static PyObject *
long_and(PyObject *a, PyObject *b)
{
PyObject *c;
CHECK_BINOP(a, b);
c = long_bitwise((PyLongObject*)a, '&', (PyLongObject*)b);
return c;
}
static PyObject *
long_xor(PyObject *a, PyObject *b)
{
PyObject *c;
CHECK_BINOP(a, b);
c = long_bitwise((PyLongObject*)a, '^', (PyLongObject*)b);
return c;
}
static PyObject *
long_or(PyObject *a, PyObject *b)
{
PyObject *c;
CHECK_BINOP(a, b);
c = long_bitwise((PyLongObject*)a, '|', (PyLongObject*)b);
return c;
}
static PyObject *
long_long(PyObject *v)
{
if (PyLong_CheckExact(v))
Py_INCREF(v);
else
v = _PyLong_Copy((PyLongObject *)v);
return v;
}
PyObject *
_PyLong_GCD(PyObject *aarg, PyObject *barg)
{
PyLongObject *a, *b, *c = NULL, *d = NULL, *r;
stwodigits x, y, q, s, t, c_carry, d_carry;
stwodigits A, B, C, D, T;
int nbits, k;
Py_ssize_t size_a, size_b, alloc_a, alloc_b;
digit *a_digit, *b_digit, *c_digit, *d_digit, *a_end, *b_end;
a = (PyLongObject *)aarg;
b = (PyLongObject *)barg;
size_a = Py_SIZE(a);
size_b = Py_SIZE(b);
if (-2 <= size_a && size_a <= 2 && -2 <= size_b && size_b <= 2) {
Py_INCREF(a);
Py_INCREF(b);
goto simple;
}
/* Initial reduction: make sure that 0 <= b <= a. */
a = (PyLongObject *)long_abs(a);
if (a == NULL)
return NULL;
b = (PyLongObject *)long_abs(b);
if (b == NULL) {
Py_DECREF(a);
return NULL;
}
if (long_compare(a, b) < 0) {
r = a;
a = b;
b = r;
}
/* We now own references to a and b */
alloc_a = Py_SIZE(a);
alloc_b = Py_SIZE(b);
/* reduce until a fits into 2 digits */
while ((size_a = Py_SIZE(a)) > 2) {
nbits = _Py_bit_length(a->ob_digit[size_a-1]);
/* extract top 2*PyLong_SHIFT bits of a into x, along with
corresponding bits of b into y */
size_b = Py_SIZE(b);
assert(size_b <= size_a);
if (size_b == 0) {
if (size_a < alloc_a) {
r = (PyLongObject *)_PyLong_Copy(a);
Py_DECREF(a);
}
else
r = a;
Py_DECREF(b);
Py_XDECREF(c);
Py_XDECREF(d);
return (PyObject *)r;
}
x = (((twodigits)a->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits)) |
((twodigits)a->ob_digit[size_a-2] << (PyLong_SHIFT-nbits)) |
(a->ob_digit[size_a-3] >> nbits));
y = ((size_b >= size_a - 2 ? b->ob_digit[size_a-3] >> nbits : 0) |
(size_b >= size_a - 1 ? (twodigits)b->ob_digit[size_a-2] << (PyLong_SHIFT-nbits) : 0) |
(size_b >= size_a ? (twodigits)b->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits) : 0));
/* inner loop of Lehmer's algorithm; A, B, C, D never grow
larger than PyLong_MASK during the algorithm. */
A = 1; B = 0; C = 0; D = 1;
for (k=0;; k++) {
if (y-C == 0)
break;
q = (x+(A-1))/(y-C);
s = B+q*D;
t = x-q*y;
if (s > t)
break;
x = y; y = t;
t = A+q*C; A = D; B = C; C = s; D = t;
}
if (k == 0) {
/* no progress; do a Euclidean step */
if (l_divmod(a, b, NULL, &r) < 0)
goto error;
Py_DECREF(a);
a = b;
b = r;
alloc_a = alloc_b;
alloc_b = Py_SIZE(b);
continue;
}
/*
a, b = A*b-B*a, D*a-C*b if k is odd
a, b = A*a-B*b, D*b-C*a if k is even
*/
if (k&1) {
T = -A; A = -B; B = T;
T = -C; C = -D; D = T;
}
if (c != NULL) {
Py_SET_SIZE(c, size_a);
}
else if (Py_REFCNT(a) == 1) {
Py_INCREF(a);
c = a;
}
else {
alloc_a = size_a;
c = _PyLong_New(size_a);
if (c == NULL)
goto error;
}
if (d != NULL) {
Py_SET_SIZE(d, size_a);
}
else if (Py_REFCNT(b) == 1 && size_a <= alloc_b) {
Py_INCREF(b);
d = b;
Py_SET_SIZE(d, size_a);
}
else {
alloc_b = size_a;
d = _PyLong_New(size_a);
if (d == NULL)
goto error;
}
a_end = a->ob_digit + size_a;
b_end = b->ob_digit + size_b;
/* compute new a and new b in parallel */
a_digit = a->ob_digit;
b_digit = b->ob_digit;
c_digit = c->ob_digit;
d_digit = d->ob_digit;
c_carry = 0;
d_carry = 0;
while (b_digit < b_end) {
c_carry += (A * *a_digit) - (B * *b_digit);
d_carry += (D * *b_digit++) - (C * *a_digit++);
*c_digit++ = (digit)(c_carry & PyLong_MASK);
*d_digit++ = (digit)(d_carry & PyLong_MASK);
c_carry >>= PyLong_SHIFT;
d_carry >>= PyLong_SHIFT;
}
while (a_digit < a_end) {
c_carry += A * *a_digit;
d_carry -= C * *a_digit++;
*c_digit++ = (digit)(c_carry & PyLong_MASK);
*d_digit++ = (digit)(d_carry & PyLong_MASK);
c_carry >>= PyLong_SHIFT;
d_carry >>= PyLong_SHIFT;
}
assert(c_carry == 0);
assert(d_carry == 0);
Py_INCREF(c);
Py_INCREF(d);
Py_DECREF(a);
Py_DECREF(b);
a = long_normalize(c);
b = long_normalize(d);
}
Py_XDECREF(c);
Py_XDECREF(d);
simple:
assert(Py_REFCNT(a) > 0);
assert(Py_REFCNT(b) > 0);
/* Issue #24999: use two shifts instead of ">> 2*PyLong_SHIFT" to avoid
undefined behaviour when LONG_MAX type is smaller than 60 bits */
#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
/* a fits into a long, so b must too */
x = PyLong_AsLong((PyObject *)a);
y = PyLong_AsLong((PyObject *)b);
#elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
x = PyLong_AsLongLong((PyObject *)a);
y = PyLong_AsLongLong((PyObject *)b);
#else
# error "_PyLong_GCD"
#endif
x = Py_ABS(x);
y = Py_ABS(y);
Py_DECREF(a);
Py_DECREF(b);
/* usual Euclidean algorithm for longs */
while (y != 0) {
t = y;
y = x % y;
x = t;
}
#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
return PyLong_FromLong(x);
#elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
return PyLong_FromLongLong(x);
#else
# error "_PyLong_GCD"
#endif
error:
Py_DECREF(a);
Py_DECREF(b);
Py_XDECREF(c);
Py_XDECREF(d);
return NULL;
}
static PyObject *
long_float(PyObject *v)
{
double result;
result = PyLong_AsDouble(v);
if (result == -1.0 && PyErr_Occurred())
return NULL;
return PyFloat_FromDouble(result);
}
static PyObject *
long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase);
/*[clinic input]
@classmethod
int.__new__ as long_new
x: object(c_default="NULL") = 0
/
base as obase: object(c_default="NULL") = 10
[clinic start generated code]*/
static PyObject *
long_new_impl(PyTypeObject *type, PyObject *x, PyObject *obase)
/*[clinic end generated code: output=e47cfe777ab0f24c input=81c98f418af9eb6f]*/
{
Py_ssize_t base;
if (type != &PyLong_Type)
return long_subtype_new(type, x, obase); /* Wimp out */
if (x == NULL) {
if (obase != NULL) {
PyErr_SetString(PyExc_TypeError,
"int() missing string argument");
return NULL;
}
return PyLong_FromLong(0L);
}
if (obase == NULL)
return PyNumber_Long(x);
base = PyNumber_AsSsize_t(obase, NULL);
if (base == -1 && PyErr_Occurred())
return NULL;
if ((base != 0 && base < 2) || base > 36) {
PyErr_SetString(PyExc_ValueError,
"int() base must be >= 2 and <= 36, or 0");
return NULL;
}
if (PyUnicode_Check(x))
return PyLong_FromUnicodeObject(x, (int)base);
else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
const char *string;
if (PyByteArray_Check(x))
string = PyByteArray_AS_STRING(x);
else
string = PyBytes_AS_STRING(x);
return _PyLong_FromBytes(string, Py_SIZE(x), (int)base);
}
else {
PyErr_SetString(PyExc_TypeError,
"int() can't convert non-string with explicit base");
return NULL;
}
}
/* Wimpy, slow approach to tp_new calls for subtypes of int:
first create a regular int from whatever arguments we got,
then allocate a subtype instance and initialize it from
the regular int. The regular int is then thrown away.
*/
static PyObject *
long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase)
{
PyLongObject *tmp, *newobj;
Py_ssize_t i, n;
assert(PyType_IsSubtype(type, &PyLong_Type));
tmp = (PyLongObject *)long_new_impl(&PyLong_Type, x, obase);
if (tmp == NULL)
return NULL;
assert(PyLong_Check(tmp));
n = Py_SIZE(tmp);
if (n < 0)
n = -n;
newobj = (PyLongObject *)type->tp_alloc(type, n);
if (newobj == NULL) {
Py_DECREF(tmp);
return NULL;
}
assert(PyLong_Check(newobj));
Py_SET_SIZE(newobj, Py_SIZE(tmp));
for (i = 0; i < n; i++) {
newobj->ob_digit[i] = tmp->ob_digit[i];
}
Py_DECREF(tmp);
return (PyObject *)newobj;
}
/*[clinic input]
int.__getnewargs__
[clinic start generated code]*/
static PyObject *
int___getnewargs___impl(PyObject *self)
/*[clinic end generated code: output=839a49de3f00b61b input=5904770ab1fb8c75]*/
{
return Py_BuildValue("(N)", _PyLong_Copy((PyLongObject *)self));
}
static PyObject *
long_get0(PyObject *Py_UNUSED(self), void *Py_UNUSED(context))
{
return PyLong_FromLong(0L);
}
static PyObject *
long_get1(PyObject *Py_UNUSED(self), void *Py_UNUSED(ignored))
{
return PyLong_FromLong(1L);
}
/*[clinic input]
int.__format__
format_spec: unicode
/
[clinic start generated code]*/
static PyObject *
int___format___impl(PyObject *self, PyObject *format_spec)
/*[clinic end generated code: output=b4929dee9ae18689 input=e31944a9b3e428b7]*/
{
_PyUnicodeWriter writer;
int ret;
_PyUnicodeWriter_Init(&writer);
ret = _PyLong_FormatAdvancedWriter(
&writer,
self,
format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
if (ret == -1) {
_PyUnicodeWriter_Dealloc(&writer);
return NULL;
}
return _PyUnicodeWriter_Finish(&writer);
}
/* Return a pair (q, r) such that a = b * q + r, and
abs(r) <= abs(b)/2, with equality possible only if q is even.
In other words, q == a / b, rounded to the nearest integer using
round-half-to-even. */
PyObject *
_PyLong_DivmodNear(PyObject *a, PyObject *b)
{
PyLongObject *quo = NULL, *rem = NULL;
PyObject *twice_rem, *result, *temp;
int quo_is_odd, quo_is_neg;
Py_ssize_t cmp;
/* Equivalent Python code:
def divmod_near(a, b):
q, r = divmod(a, b)
# round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
# The expression r / b > 0.5 is equivalent to 2 * r > b if b is
# positive, 2 * r < b if b negative.
greater_than_half = 2*r > b if b > 0 else 2*r < b
exactly_half = 2*r == b
if greater_than_half or exactly_half and q % 2 == 1:
q += 1
r -= b
return q, r
*/
if (!PyLong_Check(a) || !PyLong_Check(b)) {
PyErr_SetString(PyExc_TypeError,
"non-integer arguments in division");
return NULL;
}
/* Do a and b have different signs? If so, quotient is negative. */
quo_is_neg = (Py_SIZE(a) < 0) != (Py_SIZE(b) < 0);
if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0)
goto error;
/* compare twice the remainder with the divisor, to see
if we need to adjust the quotient and remainder */
twice_rem = long_lshift((PyObject *)rem, _PyLong_One);
if (twice_rem == NULL)
goto error;
if (quo_is_neg) {
temp = long_neg((PyLongObject*)twice_rem);
Py_DECREF(twice_rem);
twice_rem = temp;
if (twice_rem == NULL)
goto error;
}
cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b);
Py_DECREF(twice_rem);
quo_is_odd = Py_SIZE(quo) != 0 && ((quo->ob_digit[0] & 1) != 0);
if ((Py_SIZE(b) < 0 ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) {
/* fix up quotient */
if (quo_is_neg)
temp = long_sub(quo, (PyLongObject *)_PyLong_One);
else
temp = long_add(quo, (PyLongObject *)_PyLong_One);
Py_DECREF(quo);
quo = (PyLongObject *)temp;
if (quo == NULL)
goto error;
/* and remainder */
if (quo_is_neg)
temp = long_add(rem, (PyLongObject *)b);
else
temp = long_sub(rem, (PyLongObject *)b);
Py_DECREF(rem);
rem = (PyLongObject *)temp;
if (rem == NULL)
goto error;
}
result = PyTuple_New(2);
if (result == NULL)
goto error;
/* PyTuple_SET_ITEM steals references */
PyTuple_SET_ITEM(result, 0, (PyObject *)quo);
PyTuple_SET_ITEM(result, 1, (PyObject *)rem);
return result;
error:
Py_XDECREF(quo);
Py_XDECREF(rem);
return NULL;
}
static PyObject *
long_round(PyObject *self, PyObject *args)
{
PyObject *o_ndigits=NULL, *temp, *result, *ndigits;
/* To round an integer m to the nearest 10**n (n positive), we make use of
* the divmod_near operation, defined by:
*
* divmod_near(a, b) = (q, r)
*
* where q is the nearest integer to the quotient a / b (the
* nearest even integer in the case of a tie) and r == a - q * b.
* Hence q * b = a - r is the nearest multiple of b to a,
* preferring even multiples in the case of a tie.
*
* So the nearest multiple of 10**n to m is:
*
* m - divmod_near(m, 10**n)[1].
*/
if (!PyArg_ParseTuple(args, "|O", &o_ndigits))
return NULL;
if (o_ndigits == NULL)
return long_long(self);
ndigits = PyNumber_Index(o_ndigits);
if (ndigits == NULL)
return NULL;
/* if ndigits >= 0 then no rounding is necessary; return self unchanged */
if (Py_SIZE(ndigits) >= 0) {
Py_DECREF(ndigits);
return long_long(self);
}
/* result = self - divmod_near(self, 10 ** -ndigits)[1] */
temp = long_neg((PyLongObject*)ndigits);
Py_DECREF(ndigits);
ndigits = temp;
if (ndigits == NULL)
return NULL;
result = PyLong_FromLong(10L);
if (result == NULL) {
Py_DECREF(ndigits);
return NULL;
}
temp = long_pow(result, ndigits, Py_None);
Py_DECREF(ndigits);
Py_DECREF(result);
result = temp;
if (result == NULL)
return NULL;
temp = _PyLong_DivmodNear(self, result);
Py_DECREF(result);
result = temp;
if (result == NULL)
return NULL;
temp = long_sub((PyLongObject *)self,
(PyLongObject *)PyTuple_GET_ITEM(result, 1));
Py_DECREF(result);
result = temp;
return result;
}
/*[clinic input]
int.__sizeof__ -> Py_ssize_t
Returns size in memory, in bytes.
[clinic start generated code]*/
static Py_ssize_t
int___sizeof___impl(PyObject *self)
/*[clinic end generated code: output=3303f008eaa6a0a5 input=9b51620c76fc4507]*/
{
Py_ssize_t res;
res = offsetof(PyLongObject, ob_digit) + Py_ABS(Py_SIZE(self))*sizeof(digit);
return res;
}
/*[clinic input]
int.bit_length
Number of bits necessary to represent self in binary.
>>> bin(37)
'0b100101'
>>> (37).bit_length()
6
[clinic start generated code]*/
static PyObject *
int_bit_length_impl(PyObject *self)
/*[clinic end generated code: output=fc1977c9353d6a59 input=e4eb7a587e849a32]*/
{
PyLongObject *result, *x, *y;
Py_ssize_t ndigits;
int msd_bits;
digit msd;
assert(self != NULL);
assert(PyLong_Check(self));
ndigits = Py_ABS(Py_SIZE(self));
if (ndigits == 0)
return PyLong_FromLong(0);
msd = ((PyLongObject *)self)->ob_digit[ndigits-1];
msd_bits = _Py_bit_length(msd);
if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
/* expression above may overflow; use Python integers instead */
result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
if (result == NULL)
return NULL;
x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
if (x == NULL)
goto error;
y = (PyLongObject *)long_mul(result, x);
Py_DECREF(x);
if (y == NULL)
goto error;
Py_DECREF(result);
result = y;
x = (PyLongObject *)PyLong_FromLong((long)msd_bits);
if (x == NULL)
goto error;
y = (PyLongObject *)long_add(result, x);
Py_DECREF(x);
if (y == NULL)
goto error;
Py_DECREF(result);
result = y;
return (PyObject *)result;
error:
Py_DECREF(result);
return NULL;
}
/*[clinic input]
int.as_integer_ratio
Return integer ratio.
Return a pair of integers, whose ratio is exactly equal to the original int
and with a positive denominator.
>>> (10).as_integer_ratio()
(10, 1)
>>> (-10).as_integer_ratio()
(-10, 1)
>>> (0).as_integer_ratio()
(0, 1)
[clinic start generated code]*/
static PyObject *
int_as_integer_ratio_impl(PyObject *self)
/*[clinic end generated code: output=e60803ae1cc8621a input=55ce3058e15de393]*/
{
PyObject *ratio_tuple;
PyObject *numerator = long_long(self);
if (numerator == NULL) {
return NULL;
}
ratio_tuple = PyTuple_Pack(2, numerator, _PyLong_One);
Py_DECREF(numerator);
return ratio_tuple;
}
/*[clinic input]
int.to_bytes
length: Py_ssize_t
Length of bytes object to use. An OverflowError is raised if the
integer is not representable with the given number of bytes.
byteorder: unicode
The byte order used to represent the integer. If byteorder is 'big',
the most significant byte is at the beginning of the byte array. If
byteorder is 'little', the most significant byte is at the end of the
byte array. To request the native byte order of the host system, use
`sys.byteorder' as the byte order value.
*
signed as is_signed: bool = False
Determines whether two's complement is used to represent the integer.
If signed is False and a negative integer is given, an OverflowError
is raised.
Return an array of bytes representing an integer.
[clinic start generated code]*/
static PyObject *
int_to_bytes_impl(PyObject *self, Py_ssize_t length, PyObject *byteorder,
int is_signed)
/*[clinic end generated code: output=89c801df114050a3 input=ddac63f4c7bf414c]*/
{
int little_endian;
PyObject *bytes;
if (_PyUnicode_EqualToASCIIId(byteorder, &PyId_little))
little_endian = 1;
else if (_PyUnicode_EqualToASCIIId(byteorder, &PyId_big))
little_endian = 0;
else {
PyErr_SetString(PyExc_ValueError,
"byteorder must be either 'little' or 'big'");
return NULL;
}
if (length < 0) {
PyErr_SetString(PyExc_ValueError,
"length argument must be non-negative");
return NULL;
}
bytes = PyBytes_FromStringAndSize(NULL, length);
if (bytes == NULL)
return NULL;
if (_PyLong_AsByteArray((PyLongObject *)self,
(unsigned char *)PyBytes_AS_STRING(bytes),
length, little_endian, is_signed) < 0) {
Py_DECREF(bytes);
return NULL;
}
return bytes;
}
/*[clinic input]
@classmethod
int.from_bytes
bytes as bytes_obj: object
Holds the array of bytes to convert. The argument must either
support the buffer protocol or be an iterable object producing bytes.
Bytes and bytearray are examples of built-in objects that support the
buffer protocol.
byteorder: unicode
The byte order used to represent the integer. If byteorder is 'big',
the most significant byte is at the beginning of the byte array. If
byteorder is 'little', the most significant byte is at the end of the
byte array. To request the native byte order of the host system, use
`sys.byteorder' as the byte order value.
*
signed as is_signed: bool = False
Indicates whether two's complement is used to represent the integer.
Return the integer represented by the given array of bytes.
[clinic start generated code]*/
static PyObject *
int_from_bytes_impl(PyTypeObject *type, PyObject *bytes_obj,
PyObject *byteorder, int is_signed)
/*[clinic end generated code: output=efc5d68e31f9314f input=cdf98332b6a821b0]*/
{
int little_endian;
PyObject *long_obj, *bytes;
if (_PyUnicode_EqualToASCIIId(byteorder, &PyId_little))
little_endian = 1;
else if (_PyUnicode_EqualToASCIIId(byteorder, &PyId_big))
little_endian = 0;
else {
PyErr_SetString(PyExc_ValueError,
"byteorder must be either 'little' or 'big'");
return NULL;
}
bytes = PyObject_Bytes(bytes_obj);
if (bytes == NULL)
return NULL;
long_obj = _PyLong_FromByteArray(
(unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes),
little_endian, is_signed);
Py_DECREF(bytes);
if (long_obj != NULL && type != &PyLong_Type) {
Py_SETREF(long_obj, PyObject_CallOneArg((PyObject *)type, long_obj));
}
return long_obj;
}
static PyObject *
long_long_meth(PyObject *self, PyObject *Py_UNUSED(ignored))
{
return long_long(self);
}
static PyMethodDef long_methods[] = {
{"conjugate", long_long_meth, METH_NOARGS,
"Returns self, the complex conjugate of any int."},
INT_BIT_LENGTH_METHODDEF
INT_TO_BYTES_METHODDEF
INT_FROM_BYTES_METHODDEF
INT_AS_INTEGER_RATIO_METHODDEF
{"__trunc__", long_long_meth, METH_NOARGS,
"Truncating an Integral returns itself."},
{"__floor__", long_long_meth, METH_NOARGS,
"Flooring an Integral returns itself."},
{"__ceil__", long_long_meth, METH_NOARGS,
"Ceiling of an Integral returns itself."},
{"__round__", (PyCFunction)long_round, METH_VARARGS,
"Rounding an Integral returns itself.\n"
"Rounding with an ndigits argument also returns an integer."},
INT___GETNEWARGS___METHODDEF
INT___FORMAT___METHODDEF
INT___SIZEOF___METHODDEF
{NULL, NULL} /* sentinel */
};
static PyGetSetDef long_getset[] = {
{"real",
(getter)long_long_meth, (setter)NULL,
"the real part of a complex number",
NULL},
{"imag",
long_get0, (setter)NULL,
"the imaginary part of a complex number",
NULL},
{"numerator",
(getter)long_long_meth, (setter)NULL,
"the numerator of a rational number in lowest terms",
NULL},
{"denominator",
long_get1, (setter)NULL,
"the denominator of a rational number in lowest terms",
NULL},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(long_doc,
"int([x]) -> integer\n\
int(x, base=10) -> integer\n\
\n\
Convert a number or string to an integer, or return 0 if no arguments\n\
are given. If x is a number, return x.__int__(). For floating point\n\
numbers, this truncates towards zero.\n\
\n\
If x is not a number or if base is given, then x must be a string,\n\
bytes, or bytearray instance representing an integer literal in the\n\
given base. The literal can be preceded by '+' or '-' and be surrounded\n\
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.\n\
Base 0 means to interpret the base from the string as an integer literal.\n\
>>> int('0b100', base=0)\n\
4");
static PyNumberMethods long_as_number = {
(binaryfunc)long_add, /*nb_add*/
(binaryfunc)long_sub, /*nb_subtract*/
(binaryfunc)long_mul, /*nb_multiply*/
long_mod, /*nb_remainder*/
long_divmod, /*nb_divmod*/
long_pow, /*nb_power*/
(unaryfunc)long_neg, /*nb_negative*/
long_long, /*tp_positive*/
(unaryfunc)long_abs, /*tp_absolute*/
(inquiry)long_bool, /*tp_bool*/
(unaryfunc)long_invert, /*nb_invert*/
long_lshift, /*nb_lshift*/
long_rshift, /*nb_rshift*/
long_and, /*nb_and*/
long_xor, /*nb_xor*/
long_or, /*nb_or*/
long_long, /*nb_int*/
0, /*nb_reserved*/
long_float, /*nb_float*/
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
long_div, /* nb_floor_divide */
long_true_divide, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
long_long, /* nb_index */
};
PyTypeObject PyLong_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"int", /* tp_name */
offsetof(PyLongObject, ob_digit), /* tp_basicsize */
sizeof(digit), /* tp_itemsize */
0, /* tp_dealloc */
0, /* tp_vectorcall_offset */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
long_to_decimal_string, /* tp_repr */
&long_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)long_hash, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
Py_TPFLAGS_LONG_SUBCLASS, /* tp_flags */
long_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
long_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
long_methods, /* tp_methods */
0, /* tp_members */
long_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
long_new, /* tp_new */
PyObject_Del, /* tp_free */
};
static PyTypeObject Int_InfoType;
PyDoc_STRVAR(int_info__doc__,
"sys.int_info\n\
\n\
A named tuple that holds information about Python's\n\
internal representation of integers. The attributes are read only.");
static PyStructSequence_Field int_info_fields[] = {
{"bits_per_digit", "size of a digit in bits"},
{"sizeof_digit", "size in bytes of the C type used to represent a digit"},
{NULL, NULL}
};
static PyStructSequence_Desc int_info_desc = {
"sys.int_info", /* name */
int_info__doc__, /* doc */
int_info_fields, /* fields */
2 /* number of fields */
};
PyObject *
PyLong_GetInfo(void)
{
PyObject* int_info;
int field = 0;
int_info = PyStructSequence_New(&Int_InfoType);
if (int_info == NULL)
return NULL;
PyStructSequence_SET_ITEM(int_info, field++,
PyLong_FromLong(PyLong_SHIFT));
PyStructSequence_SET_ITEM(int_info, field++,
PyLong_FromLong(sizeof(digit)));
if (PyErr_Occurred()) {
Py_CLEAR(int_info);
return NULL;
}
return int_info;
}
int
_PyLong_Init(PyThreadState *tstate)
{
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
for (Py_ssize_t i=0; i < NSMALLNEGINTS + NSMALLPOSINTS; i++) {
sdigit ival = (sdigit)i - NSMALLNEGINTS;
int size = (ival < 0) ? -1 : ((ival == 0) ? 0 : 1);
PyLongObject *v = _PyLong_New(1);
if (!v) {
return -1;
}
Py_SET_SIZE(v, size);
v->ob_digit[0] = (digit)abs(ival);
tstate->interp->small_ints[i] = v;
}
#endif
if (_Py_IsMainInterpreter(tstate)) {
_PyLong_Zero = PyLong_FromLong(0);
if (_PyLong_Zero == NULL) {
return 0;
}
_PyLong_One = PyLong_FromLong(1);
if (_PyLong_One == NULL) {
return 0;
}
/* initialize int_info */
if (Int_InfoType.tp_name == NULL) {
if (PyStructSequence_InitType2(&Int_InfoType, &int_info_desc) < 0) {
return 0;
}
}
}
return 1;
}
void
_PyLong_Fini(PyThreadState *tstate)
{
if (_Py_IsMainInterpreter(tstate)) {
Py_CLEAR(_PyLong_One);
Py_CLEAR(_PyLong_Zero);
}
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
for (Py_ssize_t i = 0; i < NSMALLNEGINTS + NSMALLPOSINTS; i++) {
Py_CLEAR(tstate->interp->small_ints[i]);
}
#endif
}
|