summaryrefslogtreecommitdiffstats
path: root/Objects/mimalloc/init.c
blob: 81b241063ff40fcb2c71e8785ccd6c9b7b8cf4f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2022, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/prim.h"

#include <string.h>  // memcpy, memset
#include <stdlib.h>  // atexit


// Empty page used to initialize the small free pages array
const mi_page_t _mi_page_empty;

#define MI_PAGE_EMPTY() ((mi_page_t*)&_mi_page_empty)

#if (MI_SMALL_WSIZE_MAX==128)
#if (MI_PADDING>0) && (MI_INTPTR_SIZE >= 8)
#define MI_SMALL_PAGES_EMPTY  { MI_INIT128(MI_PAGE_EMPTY), MI_PAGE_EMPTY(), MI_PAGE_EMPTY() }
#elif (MI_PADDING>0)
#define MI_SMALL_PAGES_EMPTY  { MI_INIT128(MI_PAGE_EMPTY), MI_PAGE_EMPTY(), MI_PAGE_EMPTY(), MI_PAGE_EMPTY() }
#else
#define MI_SMALL_PAGES_EMPTY  { MI_INIT128(MI_PAGE_EMPTY), MI_PAGE_EMPTY() }
#endif
#else
#error "define right initialization sizes corresponding to MI_SMALL_WSIZE_MAX"
#endif

// Empty page queues for every bin
#define QNULL(sz)  { NULL, NULL, (sz)*sizeof(uintptr_t) }
#define MI_PAGE_QUEUES_EMPTY \
  { QNULL(1), \
    QNULL(     1), QNULL(     2), QNULL(     3), QNULL(     4), QNULL(     5), QNULL(     6), QNULL(     7), QNULL(     8), /* 8 */ \
    QNULL(    10), QNULL(    12), QNULL(    14), QNULL(    16), QNULL(    20), QNULL(    24), QNULL(    28), QNULL(    32), /* 16 */ \
    QNULL(    40), QNULL(    48), QNULL(    56), QNULL(    64), QNULL(    80), QNULL(    96), QNULL(   112), QNULL(   128), /* 24 */ \
    QNULL(   160), QNULL(   192), QNULL(   224), QNULL(   256), QNULL(   320), QNULL(   384), QNULL(   448), QNULL(   512), /* 32 */ \
    QNULL(   640), QNULL(   768), QNULL(   896), QNULL(  1024), QNULL(  1280), QNULL(  1536), QNULL(  1792), QNULL(  2048), /* 40 */ \
    QNULL(  2560), QNULL(  3072), QNULL(  3584), QNULL(  4096), QNULL(  5120), QNULL(  6144), QNULL(  7168), QNULL(  8192), /* 48 */ \
    QNULL( 10240), QNULL( 12288), QNULL( 14336), QNULL( 16384), QNULL( 20480), QNULL( 24576), QNULL( 28672), QNULL( 32768), /* 56 */ \
    QNULL( 40960), QNULL( 49152), QNULL( 57344), QNULL( 65536), QNULL( 81920), QNULL( 98304), QNULL(114688), QNULL(131072), /* 64 */ \
    QNULL(163840), QNULL(196608), QNULL(229376), QNULL(262144), QNULL(327680), QNULL(393216), QNULL(458752), QNULL(524288), /* 72 */ \
    QNULL(MI_MEDIUM_OBJ_WSIZE_MAX + 1  /* 655360, Huge queue */), \
    QNULL(MI_MEDIUM_OBJ_WSIZE_MAX + 2) /* Full queue */ }

#define MI_STAT_COUNT_NULL()  {0,0,0,0}

// Empty statistics
#if MI_STAT>1
#define MI_STAT_COUNT_END_NULL()  , { MI_STAT_COUNT_NULL(), MI_INIT32(MI_STAT_COUNT_NULL) }
#else
#define MI_STAT_COUNT_END_NULL()
#endif

#define MI_STATS_NULL  \
  MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
  MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
  MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
  MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
  MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
  MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
  MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
  MI_STAT_COUNT_NULL(), \
  { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \
  { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } \
  MI_STAT_COUNT_END_NULL()


// Empty slice span queues for every bin
#define SQNULL(sz)  { NULL, NULL, sz }
#define MI_SEGMENT_SPAN_QUEUES_EMPTY \
  { SQNULL(1), \
    SQNULL(     1), SQNULL(     2), SQNULL(     3), SQNULL(     4), SQNULL(     5), SQNULL(     6), SQNULL(     7), SQNULL(    10), /*  8 */ \
    SQNULL(    12), SQNULL(    14), SQNULL(    16), SQNULL(    20), SQNULL(    24), SQNULL(    28), SQNULL(    32), SQNULL(    40), /* 16 */ \
    SQNULL(    48), SQNULL(    56), SQNULL(    64), SQNULL(    80), SQNULL(    96), SQNULL(   112), SQNULL(   128), SQNULL(   160), /* 24 */ \
    SQNULL(   192), SQNULL(   224), SQNULL(   256), SQNULL(   320), SQNULL(   384), SQNULL(   448), SQNULL(   512), SQNULL(   640), /* 32 */ \
    SQNULL(   768), SQNULL(   896), SQNULL(  1024) /* 35 */ }


// --------------------------------------------------------
// Statically allocate an empty heap as the initial
// thread local value for the default heap,
// and statically allocate the backing heap for the main
// thread so it can function without doing any allocation
// itself (as accessing a thread local for the first time
// may lead to allocation itself on some platforms)
// --------------------------------------------------------

mi_decl_cache_align const mi_heap_t _mi_heap_empty = {
  NULL,
  MI_SMALL_PAGES_EMPTY,
  MI_PAGE_QUEUES_EMPTY,
  MI_ATOMIC_VAR_INIT(NULL),
  0,                // tid
  0,                // cookie
  0,                // arena id
  { 0, 0 },         // keys
  { {0}, {0}, 0, true }, // random
  0,                // page count
  MI_BIN_FULL, 0,   // page retired min/max
  NULL,             // next
  false,
  0,
  0
};

#define tld_empty_stats  ((mi_stats_t*)((uint8_t*)&tld_empty + offsetof(mi_tld_t,stats)))
#define tld_empty_os     ((mi_os_tld_t*)((uint8_t*)&tld_empty + offsetof(mi_tld_t,os)))

mi_decl_cache_align static const mi_tld_t tld_empty = {
  0,
  false,
  NULL, NULL,
  { MI_SEGMENT_SPAN_QUEUES_EMPTY, 0, 0, 0, 0, tld_empty_stats, tld_empty_os, &_mi_abandoned_default }, // segments
  { 0, tld_empty_stats }, // os
  { MI_STATS_NULL }       // stats
};

mi_threadid_t _mi_thread_id(void) mi_attr_noexcept {
  return _mi_prim_thread_id();
}

// the thread-local default heap for allocation
mi_decl_thread mi_heap_t* _mi_heap_default = (mi_heap_t*)&_mi_heap_empty;

extern mi_heap_t _mi_heap_main;

static mi_tld_t tld_main = {
  0, false,
  &_mi_heap_main, & _mi_heap_main,
  { MI_SEGMENT_SPAN_QUEUES_EMPTY, 0, 0, 0, 0, &tld_main.stats, &tld_main.os, &_mi_abandoned_default }, // segments
  { 0, &tld_main.stats },  // os
  { MI_STATS_NULL }       // stats
};

mi_heap_t _mi_heap_main = {
  &tld_main,
  MI_SMALL_PAGES_EMPTY,
  MI_PAGE_QUEUES_EMPTY,
  MI_ATOMIC_VAR_INIT(NULL),
  0,                // thread id
  0,                // initial cookie
  0,                // arena id
  { 0, 0 },         // the key of the main heap can be fixed (unlike page keys that need to be secure!)
  { {0x846ca68b}, {0}, 0, true },  // random
  0,                // page count
  MI_BIN_FULL, 0,   // page retired min/max
  NULL,             // next heap
  false             // can reclaim
};

bool _mi_process_is_initialized = false;  // set to `true` in `mi_process_init`.

mi_stats_t _mi_stats_main = { MI_STATS_NULL };


static void mi_heap_main_init(void) {
  if (_mi_heap_main.cookie == 0) {
    _mi_heap_main.thread_id = _mi_thread_id();
    _mi_heap_main.cookie = 1;
    #if defined(_WIN32) && !defined(MI_SHARED_LIB)
      _mi_random_init_weak(&_mi_heap_main.random);    // prevent allocation failure during bcrypt dll initialization with static linking
    #else
      _mi_random_init(&_mi_heap_main.random);
    #endif
    _mi_heap_main.cookie  = _mi_heap_random_next(&_mi_heap_main);
    _mi_heap_main.keys[0] = _mi_heap_random_next(&_mi_heap_main);
    _mi_heap_main.keys[1] = _mi_heap_random_next(&_mi_heap_main);
  }
}

mi_heap_t* _mi_heap_main_get(void) {
  mi_heap_main_init();
  return &_mi_heap_main;
}


/* -----------------------------------------------------------
  Initialization and freeing of the thread local heaps
----------------------------------------------------------- */

// note: in x64 in release build `sizeof(mi_thread_data_t)` is under 4KiB (= OS page size).
typedef struct mi_thread_data_s {
  mi_heap_t  heap;  // must come first due to cast in `_mi_heap_done`
  mi_tld_t   tld;
  mi_memid_t memid;
} mi_thread_data_t;


// Thread meta-data is allocated directly from the OS. For
// some programs that do not use thread pools and allocate and
// destroy many OS threads, this may causes too much overhead
// per thread so we maintain a small cache of recently freed metadata.

#define TD_CACHE_SIZE (16)
static _Atomic(mi_thread_data_t*) td_cache[TD_CACHE_SIZE];

static mi_thread_data_t* mi_thread_data_zalloc(void) {
  // try to find thread metadata in the cache
  bool is_zero = false;
  mi_thread_data_t* td = NULL;
  for (int i = 0; i < TD_CACHE_SIZE; i++) {
    td = mi_atomic_load_ptr_relaxed(mi_thread_data_t, &td_cache[i]);
    if (td != NULL) {
      // found cached allocation, try use it
      td = mi_atomic_exchange_ptr_acq_rel(mi_thread_data_t, &td_cache[i], NULL);
      if (td != NULL) {
        break;
      }
    }
  }

  // if that fails, allocate as meta data
  if (td == NULL) {
    mi_memid_t memid;
    td = (mi_thread_data_t*)_mi_os_alloc(sizeof(mi_thread_data_t), &memid, &_mi_stats_main);
    if (td == NULL) {
      // if this fails, try once more. (issue #257)
      td = (mi_thread_data_t*)_mi_os_alloc(sizeof(mi_thread_data_t), &memid, &_mi_stats_main);
      if (td == NULL) {
        // really out of memory
        _mi_error_message(ENOMEM, "unable to allocate thread local heap metadata (%zu bytes)\n", sizeof(mi_thread_data_t));
      }
    }
    if (td != NULL) {
      td->memid = memid;
      is_zero = memid.initially_zero;
    }
  }

  if (td != NULL && !is_zero) {
    _mi_memzero_aligned(td, sizeof(*td));
  }
  return td;
}

static void mi_thread_data_free( mi_thread_data_t* tdfree ) {
  // try to add the thread metadata to the cache
  for (int i = 0; i < TD_CACHE_SIZE; i++) {
    mi_thread_data_t* td = mi_atomic_load_ptr_relaxed(mi_thread_data_t, &td_cache[i]);
    if (td == NULL) {
      mi_thread_data_t* expected = NULL;
      if (mi_atomic_cas_ptr_weak_acq_rel(mi_thread_data_t, &td_cache[i], &expected, tdfree)) {
        return;
      }
    }
  }
  // if that fails, just free it directly
  _mi_os_free(tdfree, sizeof(mi_thread_data_t), tdfree->memid, &_mi_stats_main);
}

void _mi_thread_data_collect(void) {
  // free all thread metadata from the cache
  for (int i = 0; i < TD_CACHE_SIZE; i++) {
    mi_thread_data_t* td = mi_atomic_load_ptr_relaxed(mi_thread_data_t, &td_cache[i]);
    if (td != NULL) {
      td = mi_atomic_exchange_ptr_acq_rel(mi_thread_data_t, &td_cache[i], NULL);
      if (td != NULL) {
        _mi_os_free(td, sizeof(mi_thread_data_t), td->memid, &_mi_stats_main);
      }
    }
  }
}

// Initialize the thread local default heap, called from `mi_thread_init`
static bool _mi_heap_init(void) {
  if (mi_heap_is_initialized(mi_prim_get_default_heap())) return true;
  if (_mi_is_main_thread()) {
    // mi_assert_internal(_mi_heap_main.thread_id != 0);  // can happen on freeBSD where alloc is called before any initialization
    // the main heap is statically allocated
    mi_heap_main_init();
    _mi_heap_set_default_direct(&_mi_heap_main);
    //mi_assert_internal(_mi_heap_default->tld->heap_backing == mi_prim_get_default_heap());
  }
  else {
    // use `_mi_os_alloc` to allocate directly from the OS
    mi_thread_data_t* td = mi_thread_data_zalloc();
    if (td == NULL) return false;

    _mi_tld_init(&td->tld, &td->heap);
    _mi_heap_init_ex(&td->heap, &td->tld, _mi_arena_id_none(), false, 0);
    _mi_heap_set_default_direct(&td->heap);
  }
  return false;
}

void _mi_tld_init(mi_tld_t* tld, mi_heap_t* bheap) {
    _mi_memcpy_aligned(tld, &tld_empty, sizeof(*tld));
    tld->segments.stats = &tld->stats;
    tld->segments.os = &tld->os;
    tld->segments.abandoned = &_mi_abandoned_default;
    tld->os.stats = &tld->stats;
    tld->heap_backing = bheap;
}

// Free the thread local default heap (called from `mi_thread_done`)
static bool _mi_heap_done(mi_heap_t* heap) {
  if (!mi_heap_is_initialized(heap)) return true;

  // reset default heap
  _mi_heap_set_default_direct(_mi_is_main_thread() ? &_mi_heap_main : (mi_heap_t*)&_mi_heap_empty);

  // switch to backing heap
  heap = heap->tld->heap_backing;
  if (!mi_heap_is_initialized(heap)) return false;

  // delete all non-backing heaps in this thread
  mi_heap_t* curr = heap->tld->heaps;
  while (curr != NULL) {
    mi_heap_t* next = curr->next; // save `next` as `curr` will be freed
    if (curr != heap) {
      mi_assert_internal(!mi_heap_is_backing(curr));
      mi_heap_delete(curr);
    }
    curr = next;
  }
  mi_assert_internal(heap->tld->heaps == heap && heap->next == NULL);
  mi_assert_internal(mi_heap_is_backing(heap));

  // collect if not the main thread
  if (heap != &_mi_heap_main) {
    _mi_heap_collect_abandon(heap);
  }

  // merge stats
  _mi_stats_done(&heap->tld->stats);

  // free if not the main thread
  if (heap != &_mi_heap_main) {
    // the following assertion does not always hold for huge segments as those are always treated
    // as abondened: one may allocate it in one thread, but deallocate in another in which case
    // the count can be too large or negative. todo: perhaps not count huge segments? see issue #363
    // mi_assert_internal(heap->tld->segments.count == 0 || heap->thread_id != _mi_thread_id());
    mi_thread_data_free((mi_thread_data_t*)heap);
  }
  else {
    #if 0
    // never free the main thread even in debug mode; if a dll is linked statically with mimalloc,
    // there may still be delete/free calls after the mi_fls_done is called. Issue #207
    _mi_heap_destroy_pages(heap);
    mi_assert_internal(heap->tld->heap_backing == &_mi_heap_main);
    #endif
  }
  return false;
}



// --------------------------------------------------------
// Try to run `mi_thread_done()` automatically so any memory
// owned by the thread but not yet released can be abandoned
// and re-owned by another thread.
//
// 1. windows dynamic library:
//     call from DllMain on DLL_THREAD_DETACH
// 2. windows static library:
//     use `FlsAlloc` to call a destructor when the thread is done
// 3. unix, pthreads:
//     use a pthread key to call a destructor when a pthread is done
//
// In the last two cases we also need to call `mi_process_init`
// to set up the thread local keys.
// --------------------------------------------------------

// Set up handlers so `mi_thread_done` is called automatically
static void mi_process_setup_auto_thread_done(void) {
  static bool tls_initialized = false; // fine if it races
  if (tls_initialized) return;
  tls_initialized = true;
  _mi_prim_thread_init_auto_done();
  _mi_heap_set_default_direct(&_mi_heap_main);
}


bool _mi_is_main_thread(void) {
  return (_mi_heap_main.thread_id==0 || _mi_heap_main.thread_id == _mi_thread_id());
}

static _Atomic(size_t) thread_count = MI_ATOMIC_VAR_INIT(1);

size_t  _mi_current_thread_count(void) {
  return mi_atomic_load_relaxed(&thread_count);
}

// This is called from the `mi_malloc_generic`
void mi_thread_init(void) mi_attr_noexcept
{
  // ensure our process has started already
  mi_process_init();

  // initialize the thread local default heap
  // (this will call `_mi_heap_set_default_direct` and thus set the
  //  fiber/pthread key to a non-zero value, ensuring `_mi_thread_done` is called)
  if (_mi_heap_init()) return;  // returns true if already initialized

  _mi_stat_increase(&_mi_stats_main.threads, 1);
  mi_atomic_increment_relaxed(&thread_count);
  //_mi_verbose_message("thread init: 0x%zx\n", _mi_thread_id());
}

void mi_thread_done(void) mi_attr_noexcept {
  _mi_thread_done(NULL);
}

void _mi_thread_done(mi_heap_t* heap)
{
  // calling with NULL implies using the default heap
  if (heap == NULL) {
    heap = mi_prim_get_default_heap();
    if (heap == NULL) return;
  }

  // prevent re-entrancy through heap_done/heap_set_default_direct (issue #699)
  if (!mi_heap_is_initialized(heap)) {
    return;
  }

  // adjust stats
  mi_atomic_decrement_relaxed(&thread_count);
  _mi_stat_decrease(&_mi_stats_main.threads, 1);

  // check thread-id as on Windows shutdown with FLS the main (exit) thread may call this on thread-local heaps...
  if (heap->thread_id != _mi_thread_id()) return;

  // abandon the thread local heap
  if (_mi_heap_done(heap)) return;  // returns true if already ran
}

void _mi_heap_set_default_direct(mi_heap_t* heap)  {
  mi_assert_internal(heap != NULL);
  #if defined(MI_TLS_SLOT)
  mi_prim_tls_slot_set(MI_TLS_SLOT,heap);
  #elif defined(MI_TLS_PTHREAD_SLOT_OFS)
  *mi_tls_pthread_heap_slot() = heap;
  #elif defined(MI_TLS_PTHREAD)
  // we use _mi_heap_default_key
  #else
  _mi_heap_default = heap;
  #endif

  // ensure the default heap is passed to `_mi_thread_done`
  // setting to a non-NULL value also ensures `mi_thread_done` is called.
  _mi_prim_thread_associate_default_heap(heap);
}


// --------------------------------------------------------
// Run functions on process init/done, and thread init/done
// --------------------------------------------------------
static void mi_cdecl mi_process_done(void);

static bool os_preloading = true;    // true until this module is initialized
static bool mi_redirected = false;   // true if malloc redirects to mi_malloc

// Returns true if this module has not been initialized; Don't use C runtime routines until it returns false.
bool mi_decl_noinline _mi_preloading(void) {
  return os_preloading;
}

mi_decl_nodiscard bool mi_is_redirected(void) mi_attr_noexcept {
  return mi_redirected;
}

// Communicate with the redirection module on Windows
#if defined(_WIN32) && defined(MI_SHARED_LIB) && !defined(MI_WIN_NOREDIRECT)
#ifdef __cplusplus
extern "C" {
#endif
mi_decl_export void _mi_redirect_entry(DWORD reason) {
  // called on redirection; careful as this may be called before DllMain
  if (reason == DLL_PROCESS_ATTACH) {
    mi_redirected = true;
  }
  else if (reason == DLL_PROCESS_DETACH) {
    mi_redirected = false;
  }
  else if (reason == DLL_THREAD_DETACH) {
    mi_thread_done();
  }
}
__declspec(dllimport) bool mi_cdecl mi_allocator_init(const char** message);
__declspec(dllimport) void mi_cdecl mi_allocator_done(void);
#ifdef __cplusplus
}
#endif
#else
static bool mi_allocator_init(const char** message) {
  if (message != NULL) *message = NULL;
  return true;
}
static void mi_allocator_done(void) {
  // nothing to do
}
#endif

// Called once by the process loader
static void mi_process_load(void) {
  mi_heap_main_init();
  #if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD)
  volatile mi_heap_t* dummy = _mi_heap_default; // access TLS to allocate it before setting tls_initialized to true;
  if (dummy == NULL) return;                    // use dummy or otherwise the access may get optimized away (issue #697)
  #endif
  os_preloading = false;
  mi_assert_internal(_mi_is_main_thread());
  #if !(defined(_WIN32) && defined(MI_SHARED_LIB))  // use Dll process detach (see below) instead of atexit (issue #521)
  atexit(&mi_process_done);
  #endif
  _mi_options_init();
  mi_process_setup_auto_thread_done();
  mi_process_init();
  if (mi_redirected) _mi_verbose_message("malloc is redirected.\n");

  // show message from the redirector (if present)
  const char* msg = NULL;
  mi_allocator_init(&msg);
  if (msg != NULL && (mi_option_is_enabled(mi_option_verbose) || mi_option_is_enabled(mi_option_show_errors))) {
    _mi_fputs(NULL,NULL,NULL,msg);
  }

  // reseed random
  _mi_random_reinit_if_weak(&_mi_heap_main.random);
}

#if defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64))
#include <intrin.h>
mi_decl_cache_align bool _mi_cpu_has_fsrm = false;

static void mi_detect_cpu_features(void) {
  // FSRM for fast rep movsb support (AMD Zen3+ (~2020) or Intel Ice Lake+ (~2017))
  int32_t cpu_info[4];
  __cpuid(cpu_info, 7);
  _mi_cpu_has_fsrm = ((cpu_info[3] & (1 << 4)) != 0); // bit 4 of EDX : see <https://en.wikipedia.org/wiki/CPUID#EAX=7,_ECX=0:_Extended_Features>
}
#else
static void mi_detect_cpu_features(void) {
  // nothing
}
#endif

// Initialize the process; called by thread_init or the process loader
void mi_process_init(void) mi_attr_noexcept {
  // ensure we are called once
  static mi_atomic_once_t process_init;
        #if _MSC_VER < 1920
        mi_heap_main_init(); // vs2017 can dynamically re-initialize _mi_heap_main
        #endif
  if (!mi_atomic_once(&process_init)) return;
  _mi_process_is_initialized = true;
  _mi_verbose_message("process init: 0x%zx\n", _mi_thread_id());
  mi_process_setup_auto_thread_done();

  mi_detect_cpu_features();
  _mi_os_init();
  mi_heap_main_init();
  #if MI_DEBUG
  _mi_verbose_message("debug level : %d\n", MI_DEBUG);
  #endif
  _mi_verbose_message("secure level: %d\n", MI_SECURE);
  _mi_verbose_message("mem tracking: %s\n", MI_TRACK_TOOL);
  #if MI_TSAN
  _mi_verbose_message("thread sanitizer enabled\n");
  #endif
  mi_thread_init();

  #if defined(_WIN32)
  // On windows, when building as a static lib the FLS cleanup happens to early for the main thread.
  // To avoid this, set the FLS value for the main thread to NULL so the fls cleanup
  // will not call _mi_thread_done on the (still executing) main thread. See issue #508.
  _mi_prim_thread_associate_default_heap(NULL);
  #endif

  mi_stats_reset();  // only call stat reset *after* thread init (or the heap tld == NULL)
  mi_track_init();

  if (mi_option_is_enabled(mi_option_reserve_huge_os_pages)) {
    size_t pages = mi_option_get_clamp(mi_option_reserve_huge_os_pages, 0, 128*1024);
    long reserve_at = mi_option_get(mi_option_reserve_huge_os_pages_at);
    if (reserve_at != -1) {
      mi_reserve_huge_os_pages_at(pages, reserve_at, pages*500);
    } else {
      mi_reserve_huge_os_pages_interleave(pages, 0, pages*500);
    }
  }
  if (mi_option_is_enabled(mi_option_reserve_os_memory)) {
    long ksize = mi_option_get(mi_option_reserve_os_memory);
    if (ksize > 0) {
      mi_reserve_os_memory((size_t)ksize*MI_KiB, true /* commit? */, true /* allow large pages? */);
    }
  }
}

// Called when the process is done (through `at_exit`)
static void mi_cdecl mi_process_done(void) {
  // only shutdown if we were initialized
  if (!_mi_process_is_initialized) return;
  // ensure we are called once
  static bool process_done = false;
  if (process_done) return;
  process_done = true;

  // release any thread specific resources and ensure _mi_thread_done is called on all but the main thread
  _mi_prim_thread_done_auto_done();

  #ifndef MI_SKIP_COLLECT_ON_EXIT
    #if (MI_DEBUG || !defined(MI_SHARED_LIB))
    // free all memory if possible on process exit. This is not needed for a stand-alone process
    // but should be done if mimalloc is statically linked into another shared library which
    // is repeatedly loaded/unloaded, see issue #281.
    mi_collect(true /* force */ );
    #endif
  #endif

  // Forcefully release all retained memory; this can be dangerous in general if overriding regular malloc/free
  // since after process_done there might still be other code running that calls `free` (like at_exit routines,
  // or C-runtime termination code.
  if (mi_option_is_enabled(mi_option_destroy_on_exit)) {
    mi_collect(true /* force */);
    _mi_heap_unsafe_destroy_all();     // forcefully release all memory held by all heaps (of this thread only!)
    _mi_arena_unsafe_destroy_all(& _mi_heap_main_get()->tld->stats);
  }

  if (mi_option_is_enabled(mi_option_show_stats) || mi_option_is_enabled(mi_option_verbose)) {
    mi_stats_print(NULL);
  }
  mi_allocator_done();
  _mi_verbose_message("process done: 0x%zx\n", _mi_heap_main.thread_id);
  os_preloading = true; // don't call the C runtime anymore
}



#if defined(_WIN32) && defined(MI_SHARED_LIB)
  // Windows DLL: easy to hook into process_init and thread_done
  __declspec(dllexport) BOOL WINAPI DllMain(HINSTANCE inst, DWORD reason, LPVOID reserved) {
    MI_UNUSED(reserved);
    MI_UNUSED(inst);
    if (reason==DLL_PROCESS_ATTACH) {
      mi_process_load();
    }
    else if (reason==DLL_PROCESS_DETACH) {
      mi_process_done();
    }
    else if (reason==DLL_THREAD_DETACH) {
      if (!mi_is_redirected()) {
        mi_thread_done();
      }
    }
    return TRUE;
  }

#elif defined(_MSC_VER)
  // MSVC: use data section magic for static libraries
  // See <https://www.codeguru.com/cpp/misc/misc/applicationcontrol/article.php/c6945/Running-Code-Before-and-After-Main.htm>
  static int _mi_process_init(void) {
    mi_process_load();
    return 0;
  }
  typedef int(*_mi_crt_callback_t)(void);
  #if defined(_M_X64) || defined(_M_ARM64)
    __pragma(comment(linker, "/include:" "_mi_msvc_initu"))
    #pragma section(".CRT$XIU", long, read)
  #else
    __pragma(comment(linker, "/include:" "__mi_msvc_initu"))
  #endif
  #pragma data_seg(".CRT$XIU")
  mi_decl_externc _mi_crt_callback_t _mi_msvc_initu[] = { &_mi_process_init };
  #pragma data_seg()

#elif defined(__cplusplus)
  // C++: use static initialization to detect process start
  static bool _mi_process_init(void) {
    mi_process_load();
    return (_mi_heap_main.thread_id != 0);
  }
  static bool mi_initialized = _mi_process_init();

#elif defined(__GNUC__) || defined(__clang__)
  // GCC,Clang: use the constructor attribute
  static void __attribute__((constructor)) _mi_process_init(void) {
    mi_process_load();
  }

#else
#pragma message("define a way to call mi_process_load on your platform")
#endif