summaryrefslogtreecommitdiffstats
path: root/Lib/plat-linux2
ModeNameSize
-rw-r--r--CDROM.py5035logstatsplain
-rw-r--r--DLFCN.py1632logstatsplain
-rw-r--r--IN.py12412logstatsplain
-rw-r--r--TYPES.py3425logstatsplain
-rwxr-xr-xregen195logstatsplain
id='n103' href='#n103'>103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
#include <stdbool.h>

#include <Python.h>

#include "tokenizer.h"
#include "pegen.h"
#include "string_parser.h"

//// STRING HANDLING FUNCTIONS ////

static int
warn_invalid_escape_sequence(Parser *p, unsigned char first_invalid_escape_char, Token *t)
{
    PyObject *msg =
        PyUnicode_FromFormat("invalid escape sequence '\\%c'", first_invalid_escape_char);
    if (msg == NULL) {
        return -1;
    }
    if (PyErr_WarnExplicitObject(PyExc_DeprecationWarning, msg, p->tok->filename,
                                 t->lineno, NULL, NULL) < 0) {
        if (PyErr_ExceptionMatches(PyExc_DeprecationWarning)) {
            /* Replace the DeprecationWarning exception with a SyntaxError
               to get a more accurate error report */
            PyErr_Clear();

            /* This is needed, in order for the SyntaxError to point to the token t,
               since _PyPegen_raise_error uses p->tokens[p->fill - 1] for the
               error location, if p->known_err_token is not set. */
            p->known_err_token = t;
            RAISE_SYNTAX_ERROR("invalid escape sequence '\\%c'", first_invalid_escape_char);
        }
        Py_DECREF(msg);
        return -1;
    }
    Py_DECREF(msg);
    return 0;
}

static PyObject *
decode_utf8(const char **sPtr, const char *end)
{
    const char *s;
    const char *t;
    t = s = *sPtr;
    while (s < end && (*s & 0x80)) {
        s++;
    }
    *sPtr = s;
    return PyUnicode_DecodeUTF8(t, s - t, NULL);
}

static PyObject *
decode_unicode_with_escapes(Parser *parser, const char *s, size_t len, Token *t)
{
    PyObject *v;
    PyObject *u;
    char *buf;
    char *p;
    const char *end;

    /* check for integer overflow */
    if (len > SIZE_MAX / 6) {
        return NULL;
    }
    /* "ä" (2 bytes) may become "\U000000E4" (10 bytes), or 1:5
       "\ä" (3 bytes) may become "\u005c\U000000E4" (16 bytes), or ~1:6 */
    u = PyBytes_FromStringAndSize((char *)NULL, len * 6);
    if (u == NULL) {
        return NULL;
    }
    p = buf = PyBytes_AsString(u);
    if (p == NULL) {
        return NULL;
    }
    end = s + len;
    while (s < end) {
        if (*s == '\\') {
            *p++ = *s++;
            if (s >= end || *s & 0x80) {
                strcpy(p, "u005c");
                p += 5;
                if (s >= end) {
                    break;
                }
            }
        }
        if (*s & 0x80) {
            PyObject *w;
            int kind;
            const void *data;
            Py_ssize_t w_len;
            Py_ssize_t i;
            w = decode_utf8(&s, end);
            if (w == NULL) {
                Py_DECREF(u);
                return NULL;
            }
            kind = PyUnicode_KIND(w);
            data = PyUnicode_DATA(w);
            w_len = PyUnicode_GET_LENGTH(w);
            for (i = 0; i < w_len; i++) {
                Py_UCS4 chr = PyUnicode_READ(kind, data, i);
                sprintf(p, "\\U%08x", chr);
                p += 10;
            }
            /* Should be impossible to overflow */
            assert(p - buf <= PyBytes_GET_SIZE(u));
            Py_DECREF(w);
        }
        else {
            *p++ = *s++;
        }
    }
    len = p - buf;
    s = buf;

    const char *first_invalid_escape;
    v = _PyUnicode_DecodeUnicodeEscapeInternal(s, len, NULL, NULL, &first_invalid_escape);

    if (v != NULL && first_invalid_escape != NULL) {
        if (warn_invalid_escape_sequence(parser, *first_invalid_escape, t) < 0) {
            /* We have not decref u before because first_invalid_escape points
               inside u. */
            Py_XDECREF(u);
            Py_DECREF(v);
            return NULL;
        }
    }
    Py_XDECREF(u);
    return v;
}

static PyObject *
decode_bytes_with_escapes(Parser *p, const char *s, Py_ssize_t len, Token *t)
{
    const char *first_invalid_escape;
    PyObject *result = _PyBytes_DecodeEscape(s, len, NULL, &first_invalid_escape);
    if (result == NULL) {
        return NULL;
    }

    if (first_invalid_escape != NULL) {
        if (warn_invalid_escape_sequence(p, *first_invalid_escape, t) < 0) {
            Py_DECREF(result);
            return NULL;
        }
    }
    return result;
}

/* s must include the bracketing quote characters, and r, b, u,
   &/or f prefixes (if any), and embedded escape sequences (if any).
   _PyPegen_parsestr parses it, and sets *result to decoded Python string object.
   If the string is an f-string, set *fstr and *fstrlen to the unparsed
   string object.  Return 0 if no errors occurred.  */
int
_PyPegen_parsestr(Parser *p, int *bytesmode, int *rawmode, PyObject **result,
                  const char **fstr, Py_ssize_t *fstrlen, Token *t)
{
    const char *s = PyBytes_AsString(t->bytes);
    if (s == NULL) {
        return -1;
    }

    size_t len;
    int quote = Py_CHARMASK(*s);
    int fmode = 0;
    *bytesmode = 0;
    *rawmode = 0;
    *result = NULL;
    *fstr = NULL;
    if (Py_ISALPHA(quote)) {
        while (!*bytesmode || !*rawmode) {
            if (quote == 'b' || quote == 'B') {
                quote =(unsigned char)*++s;
                *bytesmode = 1;
            }
            else if (quote == 'u' || quote == 'U') {
                quote = (unsigned char)*++s;
            }
            else if (quote == 'r' || quote == 'R') {
                quote = (unsigned char)*++s;
                *rawmode = 1;
            }
            else if (quote == 'f' || quote == 'F') {
                quote = (unsigned char)*++s;
                fmode = 1;
            }
            else {
                break;
            }
        }
    }

    /* fstrings are only allowed in Python 3.6 and greater */
    if (fmode && p->feature_version < 6) {
        p->error_indicator = 1;
        RAISE_SYNTAX_ERROR("Format strings are only supported in Python 3.6 and greater");
        return -1;
    }

    if (fmode && *bytesmode) {
        PyErr_BadInternalCall();
        return -1;
    }
    if (quote != '\'' && quote != '\"') {
        PyErr_BadInternalCall();
        return -1;
    }
    /* Skip the leading quote char. */
    s++;
    len = strlen(s);
    if (len > INT_MAX) {
        PyErr_SetString(PyExc_OverflowError, "string to parse is too long");
        return -1;
    }
    if (s[--len] != quote) {
        /* Last quote char must match the first. */
        PyErr_BadInternalCall();
        return -1;
    }
    if (len >= 4 && s[0] == quote && s[1] == quote) {
        /* A triple quoted string. We've already skipped one quote at
           the start and one at the end of the string. Now skip the
           two at the start. */
        s += 2;
        len -= 2;
        /* And check that the last two match. */
        if (s[--len] != quote || s[--len] != quote) {
            PyErr_BadInternalCall();
            return -1;
        }
    }

    if (fmode) {
        /* Just return the bytes. The caller will parse the resulting
           string. */
        *fstr = s;
        *fstrlen = len;
        return 0;
    }

    /* Not an f-string. */
    /* Avoid invoking escape decoding routines if possible. */
    *rawmode = *rawmode || strchr(s, '\\') == NULL;
    if (*bytesmode) {
        /* Disallow non-ASCII characters. */
        const char *ch;
        for (ch = s; *ch; ch++) {
            if (Py_CHARMASK(*ch) >= 0x80) {
                RAISE_SYNTAX_ERROR(
                                   "bytes can only contain ASCII "
                                   "literal characters");
                return -1;
            }
        }
        if (*rawmode) {
            *result = PyBytes_FromStringAndSize(s, len);
        }
        else {
            *result = decode_bytes_with_escapes(p, s, len, t);
        }
    }
    else {
        if (*rawmode) {
            *result = PyUnicode_DecodeUTF8Stateful(s, len, NULL, NULL);
        }
        else {
            *result = decode_unicode_with_escapes(p, s, len, t);
        }
    }
    return *result == NULL ? -1 : 0;
}



// FSTRING STUFF

/* Fix locations for the given node and its children.

   `parent` is the enclosing node.
   `expr_start` is the starting position of the expression (pointing to the open brace).
   `n` is the node which locations are going to be fixed relative to parent.
   `expr_str` is the child node's string representation, including braces.
*/
static bool
fstring_find_expr_location(Token *parent, const char* expr_start, char *expr_str, int *p_lines, int *p_cols)
{
    *p_lines = 0;
    *p_cols = 0;
    assert(expr_start != NULL && *expr_start == '{');
    if (parent && parent->bytes) {
        const char *parent_str = PyBytes_AsString(parent->bytes);
        if (!parent_str) {
            return false;
        }
        // The following is needed, in order to correctly shift the column
        // offset, in the case that (disregarding any whitespace) a newline
        // immediately follows the opening curly brace of the fstring expression.
        bool newline_after_brace = 1;
        const char *start = expr_start + 1;
        while (start && *start != '}' && *start != '\n') {
            if (*start != ' ' && *start != '\t' && *start != '\f') {
                newline_after_brace = 0;
                break;
            }
            start++;
        }

        // Account for the characters from the last newline character to our
        // left until the beginning of expr_start.
        if (!newline_after_brace) {
            start = expr_start;
            while (start > parent_str && *start != '\n') {
                start--;
            }
            *p_cols += (int)(expr_start - start);
        }
        /* adjust the start based on the number of newlines encountered
           before the f-string expression */
        for (const char *p = parent_str; p < expr_start; p++) {
            if (*p == '\n') {
                (*p_lines)++;
            }
        }
    }
    return true;
}


/* Compile this expression in to an expr_ty.  Add parens around the
   expression, in order to allow leading spaces in the expression. */
static expr_ty
fstring_compile_expr(Parser *p, const char *expr_start, const char *expr_end,
                     Token *t)
{
    expr_ty expr = NULL;
    char *str;
    Py_ssize_t len;
    const char *s;
    expr_ty result = NULL;

    assert(expr_end >= expr_start);
    assert(*(expr_start-1) == '{');
    assert(*expr_end == '}' || *expr_end == '!' || *expr_end == ':' ||
           *expr_end == '=');

    /* If the substring is all whitespace, it's an error.  We need to catch this
       here, and not when we call PyParser_SimpleParseStringFlagsFilename,
       because turning the expression '' in to '()' would go from being invalid
       to valid. */
    for (s = expr_start; s != expr_end; s++) {
        char c = *s;
        /* The Python parser ignores only the following whitespace
           characters (\r already is converted to \n). */
        if (!(c == ' ' || c == '\t' || c == '\n' || c == '\f')) {
            break;
        }
    }
    if (s == expr_end) {
        RAISE_SYNTAX_ERROR("f-string: empty expression not allowed");
        return NULL;
    }

    len = expr_end - expr_start;
    /* Allocate 3 extra bytes: open paren, close paren, null byte. */
    str = PyMem_Calloc(len + 3, sizeof(char));
    if (str == NULL) {
        PyErr_NoMemory();
        return NULL;
    }

    // The call to fstring_find_expr_location is responsible for finding the column offset
    // the generated AST nodes need to be shifted to the right, which is equal to the number
    // of the f-string characters before the expression starts.
    memcpy(str+1, expr_start, len);
    int lines, cols;
    if (!fstring_find_expr_location(t, expr_start-1, str+1, &lines, &cols)) {
        PyMem_Free(str);
        return NULL;
    }

    // The parentheses are needed in order to allow for leading whitespace within
    // the f-string expression. This consequently gets parsed as a group (see the
    // group rule in python.gram).
    str[0] = '(';
    str[len+1] = ')';

    struct tok_state* tok = _PyTokenizer_FromString(str, 1);
    if (tok == NULL) {
        PyMem_Free(str);
        return NULL;
    }
    Py_INCREF(p->tok->filename);

    tok->filename = p->tok->filename;
    tok->lineno = t->lineno + lines - 1;

    Parser *p2 = _PyPegen_Parser_New(tok, Py_fstring_input, p->flags, p->feature_version,
                                     NULL, p->arena);

    p2->starting_lineno = t->lineno + lines;
    p2->starting_col_offset = t->col_offset + cols;

    expr = _PyPegen_run_parser(p2);

    if (expr == NULL) {
        goto exit;
    }
    result = expr;

exit:
    PyMem_Free(str);
    _PyPegen_Parser_Free(p2);
    _PyTokenizer_Free(tok);
    return result;
}

/* Return -1 on error.

   Return 0 if we reached the end of the literal.

   Return 1 if we haven't reached the end of the literal, but we want
   the caller to process the literal up to this point. Used for
   doubled braces.
*/
static int
fstring_find_literal(Parser *p, const char **str, const char *end, int raw,
                     PyObject **literal, int recurse_lvl, Token *t)
{
    /* Get any literal string. It ends when we hit an un-doubled left
       brace (which isn't part of a unicode name escape such as
       "\N{EULER CONSTANT}"), or the end of the string. */

    const char *s = *str;
    const char *literal_start = s;
    int result = 0;

    assert(*literal == NULL);
    while (s < end) {
        char ch = *s++;
        if (!raw && ch == '\\' && s < end) {
            ch = *s++;
            if (ch == 'N') {
                if (s < end && *s++ == '{') {
                    while (s < end && *s++ != '}') {
                    }
                    continue;
                }
                break;
            }
            if (ch == '{' && warn_invalid_escape_sequence(p, ch, t) < 0) {
                return -1;
            }
        }
        if (ch == '{' || ch == '}') {
            /* Check for doubled braces, but only at the top level. If
               we checked at every level, then f'{0:{3}}' would fail
               with the two closing braces. */
            if (recurse_lvl == 0) {
                if (s < end && *s == ch) {
                    /* We're going to tell the caller that the literal ends
                       here, but that they should continue scanning. But also
                       skip over the second brace when we resume scanning. */
                    *str = s + 1;
                    result = 1;
                    goto done;
                }

                /* Where a single '{' is the start of a new expression, a
                   single '}' is not allowed. */
                if (ch == '}') {
                    *str = s - 1;
                    RAISE_SYNTAX_ERROR("f-string: single '}' is not allowed");
                    return -1;
                }
            }
            /* We're either at a '{', which means we're starting another
               expression; or a '}', which means we're at the end of this
               f-string (for a nested format_spec). */
            s--;
            break;
        }
    }
    *str = s;
    assert(s <= end);
    assert(s == end || *s == '{' || *s == '}');
done:
    if (literal_start != s) {
        if (raw) {
            *literal = PyUnicode_DecodeUTF8Stateful(literal_start,
                                                    s - literal_start,
                                                    NULL, NULL);
        } else {
            *literal = decode_unicode_with_escapes(p, literal_start,
                                                   s - literal_start, t);
        }
        if (!*literal) {
            return -1;
        }
    }
    return result;
}

/* Forward declaration because parsing is recursive. */
static expr_ty
fstring_parse(Parser *p, const char **str, const char *end, int raw, int recurse_lvl,
              Token *first_token, Token* t, Token *last_token);

/* Parse the f-string at *str, ending at end.  We know *str starts an
   expression (so it must be a '{'). Returns the FormattedValue node, which
   includes the expression, conversion character, format_spec expression, and
   optionally the text of the expression (if = is used).

   Note that I don't do a perfect job here: I don't make sure that a
   closing brace doesn't match an opening paren, for example. It
   doesn't need to error on all invalid expressions, just correctly
   find the end of all valid ones. Any errors inside the expression
   will be caught when we parse it later.

   *expression is set to the expression.  For an '=' "debug" expression,
   *expr_text is set to the debug text (the original text of the expression,
   including the '=' and any whitespace around it, as a string object).  If
   not a debug expression, *expr_text set to NULL. */
static int
fstring_find_expr(Parser *p, const char **str, const char *end, int raw, int recurse_lvl,
                  PyObject **expr_text, expr_ty *expression, Token *first_token,
                  Token *t, Token *last_token)
{
    /* Return -1 on error, else 0. */

    const char *expr_start;
    const char *expr_end;
    expr_ty simple_expression;
    expr_ty format_spec = NULL; /* Optional format specifier. */
    int conversion = -1; /* The conversion char.  Use default if not
                            specified, or !r if using = and no format
                            spec. */

    /* 0 if we're not in a string, else the quote char we're trying to
       match (single or double quote). */
    char quote_char = 0;

    /* If we're inside a string, 1=normal, 3=triple-quoted. */
    int string_type = 0;

    /* Keep track of nesting level for braces/parens/brackets in
       expressions. */
    Py_ssize_t nested_depth = 0;
    char parenstack[MAXLEVEL];

    *expr_text = NULL;

    /* Can only nest one level deep. */
    if (recurse_lvl >= 2) {
        RAISE_SYNTAX_ERROR("f-string: expressions nested too deeply");
        goto error;
    }

    /* The first char must be a left brace, or we wouldn't have gotten
       here. Skip over it. */
    assert(**str == '{');
    *str += 1;

    expr_start = *str;
    for (; *str < end; (*str)++) {
        char ch;

        /* Loop invariants. */
        assert(nested_depth >= 0);
        assert(*str >= expr_start && *str < end);
        if (quote_char) {
            assert(string_type == 1 || string_type == 3);
        } else {
            assert(string_type == 0);
        }

        ch = **str;
        /* Nowhere inside an expression is a backslash allowed. */
        if (ch == '\\') {
            /* Error: can't include a backslash character, inside
               parens or strings or not. */
            RAISE_SYNTAX_ERROR(
                      "f-string expression part "
                      "cannot include a backslash");
            goto error;
        }
        if (quote_char) {
            /* We're inside a string. See if we're at the end. */
            /* This code needs to implement the same non-error logic
               as tok_get from tokenizer.c, at the letter_quote
               label. To actually share that code would be a
               nightmare. But, it's unlikely to change and is small,
               so duplicate it here. Note we don't need to catch all
               of the errors, since they'll be caught when parsing the
               expression. We just need to match the non-error
               cases. Thus we can ignore \n in single-quoted strings,
               for example. Or non-terminated strings. */
            if (ch == quote_char) {
                /* Does this match the string_type (single or triple
                   quoted)? */
                if (string_type == 3) {
                    if (*str+2 < end && *(*str+1) == ch && *(*str+2) == ch) {
                        /* We're at the end of a triple quoted string. */
                        *str += 2;
                        string_type = 0;
                        quote_char = 0;
                        continue;
                    }
                } else {
                    /* We're at the end of a normal string. */
                    quote_char = 0;
                    string_type = 0;
                    continue;
                }
            }
        } else if (ch == '\'' || ch == '"') {
            /* Is this a triple quoted string? */
            if (*str+2 < end && *(*str+1) == ch && *(*str+2) == ch) {
                string_type = 3;
                *str += 2;
            } else {
                /* Start of a normal string. */
                string_type = 1;
            }
            /* Start looking for the end of the string. */
            quote_char = ch;
        } else if (ch == '[' || ch == '{' || ch == '(') {
            if (nested_depth >= MAXLEVEL) {
                RAISE_SYNTAX_ERROR("f-string: too many nested parenthesis");
                goto error;
            }
            parenstack[nested_depth] = ch;
            nested_depth++;
        } else if (ch == '#') {
            /* Error: can't include a comment character, inside parens
               or not. */
            RAISE_SYNTAX_ERROR("f-string expression part cannot include '#'");
            goto error;
        } else if (nested_depth == 0 &&
                   (ch == '!' || ch == ':' || ch == '}' ||
                    ch == '=' || ch == '>' || ch == '<')) {
            /* See if there's a next character. */
            if (*str+1 < end) {
                char next = *(*str+1);

                /* For "!=". since '=' is not an allowed conversion character,
                   nothing is lost in this test. */
                if ((ch == '!' && next == '=') ||   /* != */
                    (ch == '=' && next == '=') ||   /* == */
                    (ch == '<' && next == '=') ||   /* <= */
                    (ch == '>' && next == '=')      /* >= */
                    ) {
                    *str += 1;
                    continue;
                }
                /* Don't get out of the loop for these, if they're single
                   chars (not part of 2-char tokens). If by themselves, they
                   don't end an expression (unlike say '!'). */
                if (ch == '>' || ch == '<') {
                    continue;
                }
            }

            /* Normal way out of this loop. */
            break;
        } else if (ch == ']' || ch == '}' || ch == ')') {
            if (!nested_depth) {
                RAISE_SYNTAX_ERROR("f-string: unmatched '%c'", ch);
                goto error;
            }
            nested_depth--;
            int opening = (unsigned char)parenstack[nested_depth];
            if (!((opening == '(' && ch == ')') ||
                  (opening == '[' && ch == ']') ||
                  (opening == '{' && ch == '}')))
            {
                RAISE_SYNTAX_ERROR(
                          "f-string: closing parenthesis '%c' "
                          "does not match opening parenthesis '%c'",
                          ch, opening);
                goto error;
            }
        } else {
            /* Just consume this char and loop around. */
        }
    }
    expr_end = *str;
    /* If we leave this loop in a string or with mismatched parens, we
       don't care. We'll get a syntax error when compiling the
       expression. But, we can produce a better error message, so
       let's just do that.*/
    if (quote_char) {
        RAISE_SYNTAX_ERROR("f-string: unterminated string");
        goto error;
    }
    if (nested_depth) {
        int opening = (unsigned char)parenstack[nested_depth - 1];
        RAISE_SYNTAX_ERROR("f-string: unmatched '%c'", opening);
        goto error;
    }

    if (*str >= end) {
        goto unexpected_end_of_string;
    }

    /* Compile the expression as soon as possible, so we show errors
       related to the expression before errors related to the
       conversion or format_spec. */
    simple_expression = fstring_compile_expr(p, expr_start, expr_end, t);
    if (!simple_expression) {
        goto error;
    }

    /* Check for =, which puts the text value of the expression in
       expr_text. */
    if (**str == '=') {
        if (p->feature_version < 8) {
            RAISE_SYNTAX_ERROR("f-string: self documenting expressions are "
                               "only supported in Python 3.8 and greater");
            goto error;
        }
        *str += 1;

        /* Skip over ASCII whitespace.  No need to test for end of string
           here, since we know there's at least a trailing quote somewhere
           ahead. */
        while (Py_ISSPACE(**str)) {
            *str += 1;
        }

        /* Set *expr_text to the text of the expression. */
        *expr_text = PyUnicode_FromStringAndSize(expr_start, *str-expr_start);
        if (!*expr_text) {
            goto error;
        }
    }

    /* Check for a conversion char, if present. */
    if (**str == '!') {
        *str += 1;
        if (*str >= end) {
            goto unexpected_end_of_string;
        }

        conversion = (unsigned char)**str;
        *str += 1;

        /* Validate the conversion. */
        if (!(conversion == 's' || conversion == 'r' || conversion == 'a')) {
            RAISE_SYNTAX_ERROR(
                      "f-string: invalid conversion character: "
                      "expected 's', 'r', or 'a'");
            goto error;
        }

    }

    /* Check for the format spec, if present. */
    if (*str >= end) {
        goto unexpected_end_of_string;
    }
    if (**str == ':') {
        *str += 1;
        if (*str >= end) {
            goto unexpected_end_of_string;
        }

        /* Parse the format spec. */
        format_spec = fstring_parse(p, str, end, raw, recurse_lvl+1,
                                    first_token, t, last_token);
        if (!format_spec) {
            goto error;
        }
    }

    if (*str >= end || **str != '}') {
        goto unexpected_end_of_string;
    }

    /* We're at a right brace. Consume it. */
    assert(*str < end);
    assert(**str == '}');
    *str += 1;

    /* If we're in = mode (detected by non-NULL expr_text), and have no format
       spec and no explicit conversion, set the conversion to 'r'. */
    if (*expr_text && format_spec == NULL && conversion == -1) {
        conversion = 'r';
    }

    /* And now create the FormattedValue node that represents this
       entire expression with the conversion and format spec. */
    //TODO: Fix this
    *expression = _PyAST_FormattedValue(simple_expression, conversion,
                                        format_spec, first_token->lineno,
                                        first_token->col_offset,
                                        last_token->end_lineno,
                                        last_token->end_col_offset, p->arena);
    if (!*expression) {
        goto error;
    }

    return 0;

unexpected_end_of_string:
    RAISE_SYNTAX_ERROR("f-string: expecting '}'");
    /* Falls through to error. */

error:
    Py_XDECREF(*expr_text);
    return -1;

}

/* Return -1 on error.

   Return 0 if we have a literal (possible zero length) and an
   expression (zero length if at the end of the string.

   Return 1 if we have a literal, but no expression, and we want the
   caller to call us again. This is used to deal with doubled
   braces.

   When called multiple times on the string 'a{{b{0}c', this function
   will return:

   1. the literal 'a{' with no expression, and a return value
      of 1. Despite the fact that there's no expression, the return
      value of 1 means we're not finished yet.

   2. the literal 'b' and the expression '0', with a return value of
      0. The fact that there's an expression means we're not finished.

   3. literal 'c' with no expression and a return value of 0. The
      combination of the return value of 0 with no expression means
      we're finished.
*/
static int
fstring_find_literal_and_expr(Parser *p, const char **str, const char *end, int raw,
                              int recurse_lvl, PyObject **literal,
                              PyObject **expr_text, expr_ty *expression,
                              Token *first_token, Token *t, Token *last_token)
{
    int result;

    assert(*literal == NULL && *expression == NULL);

    /* Get any literal string. */
    result = fstring_find_literal(p, str, end, raw, literal, recurse_lvl, t);
    if (result < 0) {
        goto error;
    }

    assert(result == 0 || result == 1);

    if (result == 1) {
        /* We have a literal, but don't look at the expression. */
        return 1;
    }

    if (*str >= end || **str == '}') {
        /* We're at the end of the string or the end of a nested
           f-string: no expression. The top-level error case where we
           expect to be at the end of the string but we're at a '}' is
           handled later. */
        return 0;
    }

    /* We must now be the start of an expression, on a '{'. */
    assert(**str == '{');

    if (fstring_find_expr(p, str, end, raw, recurse_lvl, expr_text,
                          expression, first_token, t, last_token) < 0) {
        goto error;
    }

    return 0;

error:
    Py_CLEAR(*literal);
    return -1;
}

#ifdef NDEBUG
#define ExprList_check_invariants(l)
#else
static void
ExprList_check_invariants(ExprList *l)
{
    /* Check our invariants. Make sure this object is "live", and
       hasn't been deallocated. */
    assert(l->size >= 0);
    assert(l->p != NULL);
    if (l->size <= EXPRLIST_N_CACHED) {
        assert(l->data == l->p);
    }
}
#endif

static void
ExprList_Init(ExprList *l)
{
    l->allocated = EXPRLIST_N_CACHED;
    l->size = 0;

    /* Until we start allocating dynamically, p points to data. */
    l->p = l->data;

    ExprList_check_invariants(l);
}

static int
ExprList_Append(ExprList *l, expr_ty exp)
{
    ExprList_check_invariants(l);
    if (l->size >= l->allocated) {
        /* We need to alloc (or realloc) the memory. */
        Py_ssize_t new_size = l->allocated * 2;

        /* See if we've ever allocated anything dynamically. */
        if (l->p == l->data) {
            Py_ssize_t i;
            /* We're still using the cached data. Switch to
               alloc-ing. */
            l->p = PyMem_Malloc(sizeof(expr_ty) * new_size);
            if (!l->p) {
                return -1;
            }
            /* Copy the cached data into the new buffer. */
            for (i = 0; i < l->size; i++) {
                l->p[i] = l->data[i];
            }
        } else {
            /* Just realloc. */
            expr_ty *tmp = PyMem_Realloc(l->p, sizeof(expr_ty) * new_size);
            if (!tmp) {
                PyMem_Free(l->p);
                l->p = NULL;
                return -1;
            }
            l->p = tmp;
        }

        l->allocated = new_size;
        assert(l->allocated == 2 * l->size);
    }

    l->p[l->size++] = exp;

    ExprList_check_invariants(l);
    return 0;
}

static void
ExprList_Dealloc(ExprList *l)
{
    ExprList_check_invariants(l);

    /* If there's been an error, or we've never dynamically allocated,
       do nothing. */
    if (!l->p || l->p == l->data) {
        /* Do nothing. */
    } else {
        /* We have dynamically allocated. Free the memory. */
        PyMem_Free(l->p);
    }
    l->p = NULL;
    l->size = -1;
}

static asdl_expr_seq *
ExprList_Finish(ExprList *l, PyArena *arena)
{
    asdl_expr_seq *seq;

    ExprList_check_invariants(l);

    /* Allocate the asdl_seq and copy the expressions in to it. */
    seq = _Py_asdl_expr_seq_new(l->size, arena);
    if (seq) {
        Py_ssize_t i;
        for (i = 0; i < l->size; i++) {
            asdl_seq_SET(seq, i, l->p[i]);
        }
    }
    ExprList_Dealloc(l);
    return seq;
}

#ifdef NDEBUG
#define FstringParser_check_invariants(state)
#else
static void
FstringParser_check_invariants(FstringParser *state)
{
    if (state->last_str) {
        assert(PyUnicode_CheckExact(state->last_str));
    }
    ExprList_check_invariants(&state->expr_list);
}
#endif

void
_PyPegen_FstringParser_Init(FstringParser *state)
{
    state->last_str = NULL;
    state->fmode = 0;
    ExprList_Init(&state->expr_list);
    FstringParser_check_invariants(state);
}

void
_PyPegen_FstringParser_Dealloc(FstringParser *state)
{
    FstringParser_check_invariants(state);

    Py_XDECREF(state->last_str);
    ExprList_Dealloc(&state->expr_list);
}

/* Make a Constant node, but decref the PyUnicode object being added. */
static expr_ty
make_str_node_and_del(Parser *p, PyObject **str, Token* first_token, Token *last_token)
{
    PyObject *s = *str;
    PyObject *kind = NULL;
    *str = NULL;
    assert(PyUnicode_CheckExact(s));
    if (_PyArena_AddPyObject(p->arena, s) < 0) {
        Py_DECREF(s);
        return NULL;
    }
    const char* the_str = PyBytes_AsString(first_token->bytes);
    if (the_str && the_str[0] == 'u') {
        kind = _PyPegen_new_identifier(p, "u");
    }

    if (kind == NULL && PyErr_Occurred()) {
        return NULL;
    }

    return _PyAST_Constant(s, kind, first_token->lineno, first_token->col_offset,
                           last_token->end_lineno, last_token->end_col_offset,
                           p->arena);

}


/* Add a non-f-string (that is, a regular literal string). str is
   decref'd. */
int
_PyPegen_FstringParser_ConcatAndDel(FstringParser *state, PyObject *str)
{
    FstringParser_check_invariants(state);

    assert(PyUnicode_CheckExact(str));

    if (PyUnicode_GET_LENGTH(str) == 0) {
        Py_DECREF(str);
        return 0;
    }

    if (!state->last_str) {
        /* We didn't have a string before, so just remember this one. */
        state->last_str = str;
    } else {
        /* Concatenate this with the previous string. */
        PyUnicode_AppendAndDel(&state->last_str, str);
        if (!state->last_str) {
            return -1;
        }
    }
    FstringParser_check_invariants(state);
    return 0;
}

/* Parse an f-string. The f-string is in *str to end, with no
   'f' or quotes. */
int
_PyPegen_FstringParser_ConcatFstring(Parser *p, FstringParser *state, const char **str,
                            const char *end, int raw, int recurse_lvl,
                            Token *first_token, Token* t, Token *last_token)
{
    FstringParser_check_invariants(state);
    state->fmode = 1;

    /* Parse the f-string. */
    while (1) {
        PyObject *literal = NULL;
        PyObject *expr_text = NULL;
        expr_ty expression = NULL;

        /* If there's a zero length literal in front of the
           expression, literal will be NULL. If we're at the end of
           the f-string, expression will be NULL (unless result == 1,
           see below). */
        int result = fstring_find_literal_and_expr(p, str, end, raw, recurse_lvl,
                                                   &literal, &expr_text,
                                                   &expression, first_token, t, last_token);
        if (result < 0) {
            return -1;
        }

        /* Add the literal, if any. */
        if (literal && _PyPegen_FstringParser_ConcatAndDel(state, literal) < 0) {
            Py_XDECREF(expr_text);
            return -1;
        }
        /* Add the expr_text, if any. */
        if (expr_text && _PyPegen_FstringParser_ConcatAndDel(state, expr_text) < 0) {
            return -1;
        }

        /* We've dealt with the literal and expr_text, their ownership has
           been transferred to the state object.  Don't look at them again. */

        /* See if we should just loop around to get the next literal
           and expression, while ignoring the expression this
           time. This is used for un-doubling braces, as an
           optimization. */
        if (result == 1) {
            continue;
        }

        if (!expression) {
            /* We're done with this f-string. */
            break;
        }

        /* We know we have an expression. Convert any existing string
           to a Constant node. */
        if (state->last_str) {
            /* Convert the existing last_str literal to a Constant node. */
            expr_ty last_str = make_str_node_and_del(p, &state->last_str, first_token, last_token);
            if (!last_str || ExprList_Append(&state->expr_list, last_str) < 0) {
                return -1;
            }
        }

        if (ExprList_Append(&state->expr_list, expression) < 0) {
            return -1;
        }
    }

    /* If recurse_lvl is zero, then we must be at the end of the
       string. Otherwise, we must be at a right brace. */

    if (recurse_lvl == 0 && *str < end-1) {
        RAISE_SYNTAX_ERROR("f-string: unexpected end of string");
        return -1;
    }
    if (recurse_lvl != 0 && **str != '}') {
        RAISE_SYNTAX_ERROR("f-string: expecting '}'");
        return -1;
    }

    FstringParser_check_invariants(state);
    return 0;
}

/* Convert the partial state reflected in last_str and expr_list to an
   expr_ty. The expr_ty can be a Constant, or a JoinedStr. */
expr_ty
_PyPegen_FstringParser_Finish(Parser *p, FstringParser *state, Token* first_token,
                     Token *last_token)
{
    asdl_expr_seq *seq;

    FstringParser_check_invariants(state);

    /* If we're just a constant string with no expressions, return
       that. */
    if (!state->fmode) {
        assert(!state->expr_list.size);
        if (!state->last_str) {
            /* Create a zero length string. */
            state->last_str = PyUnicode_FromStringAndSize(NULL, 0);
            if (!state->last_str) {
                goto error;
            }
        }
        return make_str_node_and_del(p, &state->last_str, first_token, last_token);
    }

    /* Create a Constant node out of last_str, if needed. It will be the
       last node in our expression list. */
    if (state->last_str) {
        expr_ty str = make_str_node_and_del(p, &state->last_str, first_token, last_token);
        if (!str || ExprList_Append(&state->expr_list, str) < 0) {
            goto error;
        }
    }
    /* This has already been freed. */
    assert(state->last_str == NULL);

    seq = ExprList_Finish(&state->expr_list, p->arena);
    if (!seq) {
        goto error;
    }

    return _PyAST_JoinedStr(seq, first_token->lineno, first_token->col_offset,
                            last_token->end_lineno, last_token->end_col_offset,
                            p->arena);

error:
    _PyPegen_FstringParser_Dealloc(state);
    return NULL;
}

/* Given an f-string (with no 'f' or quotes) that's in *str and ends
   at end, parse it into an expr_ty.  Return NULL on error.  Adjust
   str to point past the parsed portion. */
static expr_ty
fstring_parse(Parser *p, const char **str, const char *end, int raw,
              int recurse_lvl, Token *first_token, Token* t, Token *last_token)
{
    FstringParser state;

    _PyPegen_FstringParser_Init(&state);
    if (_PyPegen_FstringParser_ConcatFstring(p, &state, str, end, raw, recurse_lvl,
                                    first_token, t, last_token) < 0) {
        _PyPegen_FstringParser_Dealloc(&state);
        return NULL;
    }

    return _PyPegen_FstringParser_Finish(p, &state, t, t);
}