summaryrefslogtreecommitdiffstats
path: root/Python/ast_opt.c
blob: 0310466b34f3f07fab8b281672433ac2e32a8b1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
/* AST Optimizer */
#include "Python.h"
#include "pycore_ast.h"           // _PyAST_GetDocString()
#include "pycore_compile.h"       // _PyASTOptimizeState


static int
make_const(expr_ty node, PyObject *val, PyArena *arena)
{
    // Even if no new value was calculated, make_const may still
    // need to clear an error (e.g. for division by zero)
    if (val == NULL) {
        if (PyErr_ExceptionMatches(PyExc_KeyboardInterrupt)) {
            return 0;
        }
        PyErr_Clear();
        return 1;
    }
    if (_PyArena_AddPyObject(arena, val) < 0) {
        Py_DECREF(val);
        return 0;
    }
    node->kind = Constant_kind;
    node->v.Constant.kind = NULL;
    node->v.Constant.value = val;
    return 1;
}

#define COPY_NODE(TO, FROM) (memcpy((TO), (FROM), sizeof(struct _expr)))

static PyObject*
unary_not(PyObject *v)
{
    int r = PyObject_IsTrue(v);
    if (r < 0)
        return NULL;
    return PyBool_FromLong(!r);
}

static int
fold_unaryop(expr_ty node, PyArena *arena, _PyASTOptimizeState *state)
{
    expr_ty arg = node->v.UnaryOp.operand;

    if (arg->kind != Constant_kind) {
        /* Fold not into comparison */
        if (node->v.UnaryOp.op == Not && arg->kind == Compare_kind &&
                asdl_seq_LEN(arg->v.Compare.ops) == 1) {
            /* Eq and NotEq are often implemented in terms of one another, so
               folding not (self == other) into self != other breaks implementation
               of !=. Detecting such cases doesn't seem worthwhile.
               Python uses </> for 'is subset'/'is superset' operations on sets.
               They don't satisfy not folding laws. */
            cmpop_ty op = asdl_seq_GET(arg->v.Compare.ops, 0);
            switch (op) {
            case Is:
                op = IsNot;
                break;
            case IsNot:
                op = Is;
                break;
            case In:
                op = NotIn;
                break;
            case NotIn:
                op = In;
                break;
            // The remaining comparison operators can't be safely inverted
            case Eq:
            case NotEq:
            case Lt:
            case LtE:
            case Gt:
            case GtE:
                op = 0; // The AST enums leave "0" free as an "unused" marker
                break;
            // No default case, so the compiler will emit a warning if new
            // comparison operators are added without being handled here
            }
            if (op) {
                asdl_seq_SET(arg->v.Compare.ops, 0, op);
                COPY_NODE(node, arg);
                return 1;
            }
        }
        return 1;
    }

    typedef PyObject *(*unary_op)(PyObject*);
    static const unary_op ops[] = {
        [Invert] = PyNumber_Invert,
        [Not] = unary_not,
        [UAdd] = PyNumber_Positive,
        [USub] = PyNumber_Negative,
    };
    PyObject *newval = ops[node->v.UnaryOp.op](arg->v.Constant.value);
    return make_const(node, newval, arena);
}

/* Check whether a collection doesn't containing too much items (including
   subcollections).  This protects from creating a constant that needs
   too much time for calculating a hash.
   "limit" is the maximal number of items.
   Returns the negative number if the total number of items exceeds the
   limit.  Otherwise returns the limit minus the total number of items.
*/

static Py_ssize_t
check_complexity(PyObject *obj, Py_ssize_t limit)
{
    if (PyTuple_Check(obj)) {
        Py_ssize_t i;
        limit -= PyTuple_GET_SIZE(obj);
        for (i = 0; limit >= 0 && i < PyTuple_GET_SIZE(obj); i++) {
            limit = check_complexity(PyTuple_GET_ITEM(obj, i), limit);
        }
        return limit;
    }
    else if (PyFrozenSet_Check(obj)) {
        Py_ssize_t i = 0;
        PyObject *item;
        Py_hash_t hash;
        limit -= PySet_GET_SIZE(obj);
        while (limit >= 0 && _PySet_NextEntry(obj, &i, &item, &hash)) {
            limit = check_complexity(item, limit);
        }
    }
    return limit;
}

#define MAX_INT_SIZE           128  /* bits */
#define MAX_COLLECTION_SIZE    256  /* items */
#define MAX_STR_SIZE          4096  /* characters */
#define MAX_TOTAL_ITEMS       1024  /* including nested collections */

static PyObject *
safe_multiply(PyObject *v, PyObject *w)
{
    if (PyLong_Check(v) && PyLong_Check(w) && Py_SIZE(v) && Py_SIZE(w)) {
        size_t vbits = _PyLong_NumBits(v);
        size_t wbits = _PyLong_NumBits(w);
        if (vbits == (size_t)-1 || wbits == (size_t)-1) {
            return NULL;
        }
        if (vbits + wbits > MAX_INT_SIZE) {
            return NULL;
        }
    }
    else if (PyLong_Check(v) && (PyTuple_Check(w) || PyFrozenSet_Check(w))) {
        Py_ssize_t size = PyTuple_Check(w) ? PyTuple_GET_SIZE(w) :
                                             PySet_GET_SIZE(w);
        if (size) {
            long n = PyLong_AsLong(v);
            if (n < 0 || n > MAX_COLLECTION_SIZE / size) {
                return NULL;
            }
            if (n && check_complexity(w, MAX_TOTAL_ITEMS / n) < 0) {
                return NULL;
            }
        }
    }
    else if (PyLong_Check(v) && (PyUnicode_Check(w) || PyBytes_Check(w))) {
        Py_ssize_t size = PyUnicode_Check(w) ? PyUnicode_GET_LENGTH(w) :
                                               PyBytes_GET_SIZE(w);
        if (size) {
            long n = PyLong_AsLong(v);
            if (n < 0 || n > MAX_STR_SIZE / size) {
                return NULL;
            }
        }
    }
    else if (PyLong_Check(w) &&
             (PyTuple_Check(v) || PyFrozenSet_Check(v) ||
              PyUnicode_Check(v) || PyBytes_Check(v)))
    {
        return safe_multiply(w, v);
    }

    return PyNumber_Multiply(v, w);
}

static PyObject *
safe_power(PyObject *v, PyObject *w)
{
    if (PyLong_Check(v) && PyLong_Check(w) && Py_SIZE(v) && Py_SIZE(w) > 0) {
        size_t vbits = _PyLong_NumBits(v);
        size_t wbits = PyLong_AsSize_t(w);
        if (vbits == (size_t)-1 || wbits == (size_t)-1) {
            return NULL;
        }
        if (vbits > MAX_INT_SIZE / wbits) {
            return NULL;
        }
    }

    return PyNumber_Power(v, w, Py_None);
}

static PyObject *
safe_lshift(PyObject *v, PyObject *w)
{
    if (PyLong_Check(v) && PyLong_Check(w) && Py_SIZE(v) && Py_SIZE(w)) {
        size_t vbits = _PyLong_NumBits(v);
        size_t wbits = PyLong_AsSize_t(w);
        if (vbits == (size_t)-1 || wbits == (size_t)-1) {
            return NULL;
        }
        if (wbits > MAX_INT_SIZE || vbits > MAX_INT_SIZE - wbits) {
            return NULL;
        }
    }

    return PyNumber_Lshift(v, w);
}

static PyObject *
safe_mod(PyObject *v, PyObject *w)
{
    if (PyUnicode_Check(v) || PyBytes_Check(v)) {
        return NULL;
    }

    return PyNumber_Remainder(v, w);
}

static int
fold_binop(expr_ty node, PyArena *arena, _PyASTOptimizeState *state)
{
    expr_ty lhs, rhs;
    lhs = node->v.BinOp.left;
    rhs = node->v.BinOp.right;
    if (lhs->kind != Constant_kind || rhs->kind != Constant_kind) {
        return 1;
    }

    PyObject *lv = lhs->v.Constant.value;
    PyObject *rv = rhs->v.Constant.value;
    PyObject *newval = NULL;

    switch (node->v.BinOp.op) {
    case Add:
        newval = PyNumber_Add(lv, rv);
        break;
    case Sub:
        newval = PyNumber_Subtract(lv, rv);
        break;
    case Mult:
        newval = safe_multiply(lv, rv);
        break;
    case Div:
        newval = PyNumber_TrueDivide(lv, rv);
        break;
    case FloorDiv:
        newval = PyNumber_FloorDivide(lv, rv);
        break;
    case Mod:
        newval = safe_mod(lv, rv);
        break;
    case Pow:
        newval = safe_power(lv, rv);
        break;
    case LShift:
        newval = safe_lshift(lv, rv);
        break;
    case RShift:
        newval = PyNumber_Rshift(lv, rv);
        break;
    case BitOr:
        newval = PyNumber_Or(lv, rv);
        break;
    case BitXor:
        newval = PyNumber_Xor(lv, rv);
        break;
    case BitAnd:
        newval = PyNumber_And(lv, rv);
        break;
    // No builtin constants implement the following operators
    case MatMult:
        return 1;
    // No default case, so the compiler will emit a warning if new binary
    // operators are added without being handled here
    }

    return make_const(node, newval, arena);
}

static PyObject*
make_const_tuple(asdl_expr_seq *elts)
{
    for (int i = 0; i < asdl_seq_LEN(elts); i++) {
        expr_ty e = (expr_ty)asdl_seq_GET(elts, i);
        if (e->kind != Constant_kind) {
            return NULL;
        }
    }

    PyObject *newval = PyTuple_New(asdl_seq_LEN(elts));
    if (newval == NULL) {
        return NULL;
    }

    for (int i = 0; i < asdl_seq_LEN(elts); i++) {
        expr_ty e = (expr_ty)asdl_seq_GET(elts, i);
        PyObject *v = e->v.Constant.value;
        Py_INCREF(v);
        PyTuple_SET_ITEM(newval, i, v);
    }
    return newval;
}

static int
fold_tuple(expr_ty node, PyArena *arena, _PyASTOptimizeState *state)
{
    PyObject *newval;

    if (node->v.Tuple.ctx != Load)
        return 1;

    newval = make_const_tuple(node->v.Tuple.elts);
    return make_const(node, newval, arena);
}

static int
fold_subscr(expr_ty node, PyArena *arena, _PyASTOptimizeState *state)
{
    PyObject *newval;
    expr_ty arg, idx;

    arg = node->v.Subscript.value;
    idx = node->v.Subscript.slice;
    if (node->v.Subscript.ctx != Load ||
            arg->kind != Constant_kind ||
            idx->kind != Constant_kind)
    {
        return 1;
    }

    newval = PyObject_GetItem(arg->v.Constant.value, idx->v.Constant.value);
    return make_const(node, newval, arena);
}

/* Change literal list or set of constants into constant
   tuple or frozenset respectively.  Change literal list of
   non-constants into tuple.
   Used for right operand of "in" and "not in" tests and for iterable
   in "for" loop and comprehensions.
*/
static int
fold_iter(expr_ty arg, PyArena *arena, _PyASTOptimizeState *state)
{
    PyObject *newval;
    if (arg->kind == List_kind) {
        /* First change a list into tuple. */
        asdl_expr_seq *elts = arg->v.List.elts;
        Py_ssize_t n = asdl_seq_LEN(elts);
        for (Py_ssize_t i = 0; i < n; i++) {
            expr_ty e = (expr_ty)asdl_seq_GET(elts, i);
            if (e->kind == Starred_kind) {
                return 1;
            }
        }
        expr_context_ty ctx = arg->v.List.ctx;
        arg->kind = Tuple_kind;
        arg->v.Tuple.elts = elts;
        arg->v.Tuple.ctx = ctx;
        /* Try to create a constant tuple. */
        newval = make_const_tuple(elts);
    }
    else if (arg->kind == Set_kind) {
        newval = make_const_tuple(arg->v.Set.elts);
        if (newval) {
            Py_SETREF(newval, PyFrozenSet_New(newval));
        }
    }
    else {
        return 1;
    }
    return make_const(arg, newval, arena);
}

static int
fold_compare(expr_ty node, PyArena *arena, _PyASTOptimizeState *state)
{
    asdl_int_seq *ops;
    asdl_expr_seq *args;
    Py_ssize_t i;

    ops = node->v.Compare.ops;
    args = node->v.Compare.comparators;
    /* TODO: optimize cases with literal arguments. */
    /* Change literal list or set in 'in' or 'not in' into
       tuple or frozenset respectively. */
    i = asdl_seq_LEN(ops) - 1;
    int op = asdl_seq_GET(ops, i);
    if (op == In || op == NotIn) {
        if (!fold_iter((expr_ty)asdl_seq_GET(args, i), arena, state)) {
            return 0;
        }
    }
    return 1;
}

static int astfold_mod(mod_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_stmt(stmt_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_expr(expr_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_arguments(arguments_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_comprehension(comprehension_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_keyword(keyword_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_withitem(withitem_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_excepthandler(excepthandler_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_match_case(match_case_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);
static int astfold_pattern(expr_ty node_, PyArena *ctx_, _PyASTOptimizeState *state);

#define CALL(FUNC, TYPE, ARG) \
    if (!FUNC((ARG), ctx_, state)) \
        return 0;

#define CALL_OPT(FUNC, TYPE, ARG) \
    if ((ARG) != NULL && !FUNC((ARG), ctx_, state)) \
        return 0;

#define CALL_SEQ(FUNC, TYPE, ARG) { \
    int i; \
    asdl_ ## TYPE ## _seq *seq = (ARG); /* avoid variable capture */ \
    for (i = 0; i < asdl_seq_LEN(seq); i++) { \
        TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, i); \
        if (elt != NULL && !FUNC(elt, ctx_, state)) \
            return 0; \
    } \
}

#define CALL_INT_SEQ(FUNC, TYPE, ARG) { \
    int i; \
    asdl_int_seq *seq = (ARG); /* avoid variable capture */ \
    for (i = 0; i < asdl_seq_LEN(seq); i++) { \
        TYPE elt = (TYPE)asdl_seq_GET(seq, i); \
        if (!FUNC(elt, ctx_, state)) \
            return 0; \
    } \
}

static int
astfold_body(asdl_stmt_seq *stmts, PyArena *ctx_, _PyASTOptimizeState *state)
{
    int docstring = _PyAST_GetDocString(stmts) != NULL;
    CALL_SEQ(astfold_stmt, stmt, stmts);
    if (!docstring && _PyAST_GetDocString(stmts) != NULL) {
        stmt_ty st = (stmt_ty)asdl_seq_GET(stmts, 0);
        asdl_expr_seq *values = _Py_asdl_expr_seq_new(1, ctx_);
        if (!values) {
            return 0;
        }
        asdl_seq_SET(values, 0, st->v.Expr.value);
        expr_ty expr = JoinedStr(values, st->lineno, st->col_offset,
                                 st->end_lineno, st->end_col_offset, ctx_);
        if (!expr) {
            return 0;
        }
        st->v.Expr.value = expr;
    }
    return 1;
}

static int
astfold_mod(mod_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
    switch (node_->kind) {
    case Module_kind:
        CALL(astfold_body, asdl_seq, node_->v.Module.body);
        break;
    case Interactive_kind:
        CALL_SEQ(astfold_stmt, stmt, node_->v.Interactive.body);
        break;
    case Expression_kind:
        CALL(astfold_expr, expr_ty, node_->v.Expression.body);
        break;
    // The following top level nodes don't participate in constant folding
    case FunctionType_kind:
        break;
    // No default case, so the compiler will emit a warning if new top level
    // compilation nodes are added without being handled here
    }
    return 1;
}

static int
astfold_expr(expr_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
    switch (node_->kind) {
    case BoolOp_kind:
        CALL_SEQ(astfold_expr, expr, node_->v.BoolOp.values);
        break;
    case BinOp_kind:
        CALL(astfold_expr, expr_ty, node_->v.BinOp.left);
        CALL(astfold_expr, expr_ty, node_->v.BinOp.right);
        CALL(fold_binop, expr_ty, node_);
        break;
    case UnaryOp_kind:
        CALL(astfold_expr, expr_ty, node_->v.UnaryOp.operand);
        CALL(fold_unaryop, expr_ty, node_);
        break;
    case Lambda_kind:
        CALL(astfold_arguments, arguments_ty, node_->v.Lambda.args);
        CALL(astfold_expr, expr_ty, node_->v.Lambda.body);
        break;
    case IfExp_kind:
        CALL(astfold_expr, expr_ty, node_->v.IfExp.test);
        CALL(astfold_expr, expr_ty, node_->v.IfExp.body);
        CALL(astfold_expr, expr_ty, node_->v.IfExp.orelse);
        break;
    case Dict_kind:
        CALL_SEQ(astfold_expr, expr, node_->v.Dict.keys);
        CALL_SEQ(astfold_expr, expr, node_->v.Dict.values);
        break;
    case Set_kind:
        CALL_SEQ(astfold_expr, expr, node_->v.Set.elts);
        break;
    case ListComp_kind:
        CALL(astfold_expr, expr_ty, node_->v.ListComp.elt);
        CALL_SEQ(astfold_comprehension, comprehension, node_->v.ListComp.generators);
        break;
    case SetComp_kind:
        CALL(astfold_expr, expr_ty, node_->v.SetComp.elt);
        CALL_SEQ(astfold_comprehension, comprehension, node_->v.SetComp.generators);
        break;
    case DictComp_kind:
        CALL(astfold_expr, expr_ty, node_->v.DictComp.key);
        CALL(astfold_expr, expr_ty, node_->v.DictComp.value);
        CALL_SEQ(astfold_comprehension, comprehension, node_->v.DictComp.generators);
        break;
    case GeneratorExp_kind:
        CALL(astfold_expr, expr_ty, node_->v.GeneratorExp.elt);
        CALL_SEQ(astfold_comprehension, comprehension, node_->v.GeneratorExp.generators);
        break;
    case Await_kind:
        CALL(astfold_expr, expr_ty, node_->v.Await.value);
        break;
    case Yield_kind:
        CALL_OPT(astfold_expr, expr_ty, node_->v.Yield.value);
        break;
    case YieldFrom_kind:
        CALL(astfold_expr, expr_ty, node_->v.YieldFrom.value);
        break;
    case Compare_kind:
        CALL(astfold_expr, expr_ty, node_->v.Compare.left);
        CALL_SEQ(astfold_expr, expr, node_->v.Compare.comparators);
        CALL(fold_compare, expr_ty, node_);
        break;
    case Call_kind:
        CALL(astfold_expr, expr_ty, node_->v.Call.func);
        CALL_SEQ(astfold_expr, expr, node_->v.Call.args);
        CALL_SEQ(astfold_keyword, keyword, node_->v.Call.keywords);
        break;
    case FormattedValue_kind:
        CALL(astfold_expr, expr_ty, node_->v.FormattedValue.value);
        CALL_OPT(astfold_expr, expr_ty, node_->v.FormattedValue.format_spec);
        break;
    case JoinedStr_kind:
        CALL_SEQ(astfold_expr, expr, node_->v.JoinedStr.values);
        break;
    case Attribute_kind:
        CALL(astfold_expr, expr_ty, node_->v.Attribute.value);
        break;
    case Subscript_kind:
        CALL(astfold_expr, expr_ty, node_->v.Subscript.value);
        CALL(astfold_expr, expr_ty, node_->v.Subscript.slice);
        CALL(fold_subscr, expr_ty, node_);
        break;
    case Starred_kind:
        CALL(astfold_expr, expr_ty, node_->v.Starred.value);
        break;
    case Slice_kind:
        CALL_OPT(astfold_expr, expr_ty, node_->v.Slice.lower);
        CALL_OPT(astfold_expr, expr_ty, node_->v.Slice.upper);
        CALL_OPT(astfold_expr, expr_ty, node_->v.Slice.step);
        break;
    case List_kind:
        CALL_SEQ(astfold_expr, expr, node_->v.List.elts);
        break;
    case Tuple_kind:
        CALL_SEQ(astfold_expr, expr, node_->v.Tuple.elts);
        CALL(fold_tuple, expr_ty, node_);
        break;
    case Name_kind:
        if (node_->v.Name.ctx == Load &&
                _PyUnicode_EqualToASCIIString(node_->v.Name.id, "__debug__")) {
            return make_const(node_, PyBool_FromLong(!state->optimize), ctx_);
        }
        break;
    case NamedExpr_kind:
        CALL(astfold_expr, expr_ty, node_->v.NamedExpr.value);
        break;
    case Constant_kind:
        // Already a constant, nothing further to do
        break;
    case MatchAs_kind:
    case MatchOr_kind:
        // These can't occur outside of patterns.
        Py_UNREACHABLE();
    // No default case, so the compiler will emit a warning if new expression
    // kinds are added without being handled here
    }
    return 1;
}

static int
astfold_keyword(keyword_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
    CALL(astfold_expr, expr_ty, node_->value);
    return 1;
}

static int
astfold_comprehension(comprehension_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
    CALL(astfold_expr, expr_ty, node_->target);
    CALL(astfold_expr, expr_ty, node_->iter);
    CALL_SEQ(astfold_expr, expr, node_->ifs);

    CALL(fold_iter, expr_ty, node_->iter);
    return 1;
}

static int
astfold_arguments(arguments_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
    CALL_SEQ(astfold_expr, expr, node_->kw_defaults);
    CALL_SEQ(astfold_expr, expr, node_->defaults);
    return 1;
}

static int
astfold_stmt(stmt_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
    switch (node_->kind) {
    case FunctionDef_kind:
        CALL(astfold_arguments, arguments_ty, node_->v.FunctionDef.args);
        CALL(astfold_body, asdl_seq, node_->v.FunctionDef.body);
        CALL_SEQ(astfold_expr, expr, node_->v.FunctionDef.decorator_list);
        break;
    case AsyncFunctionDef_kind:
        CALL(astfold_arguments, arguments_ty, node_->v.AsyncFunctionDef.args);
        CALL(astfold_body, asdl_seq, node_->v.AsyncFunctionDef.body);
        CALL_SEQ(astfold_expr, expr, node_->v.AsyncFunctionDef.decorator_list);
        break;
    case ClassDef_kind:
        CALL_SEQ(astfold_expr, expr, node_->v.ClassDef.bases);
        CALL_SEQ(astfold_keyword, keyword, node_->v.ClassDef.keywords);
        CALL(astfold_body, asdl_seq, node_->v.ClassDef.body);
        CALL_SEQ(astfold_expr, expr, node_->v.ClassDef.decorator_list);
        break;
    case Return_kind:
        CALL_OPT(astfold_expr, expr_ty, node_->v.Return.value);
        break;
    case Delete_kind:
        CALL_SEQ(astfold_expr, expr, node_->v.Delete.targets);
        break;
    case Assign_kind:
        CALL_SEQ(astfold_expr, expr, node_->v.Assign.targets);
        CALL(astfold_expr, expr_ty, node_->v.Assign.value);
        break;
    case AugAssign_kind:
        CALL(astfold_expr, expr_ty, node_->v.AugAssign.target);
        CALL(astfold_expr, expr_ty, node_->v.AugAssign.value);
        break;
    case AnnAssign_kind:
        CALL(astfold_expr, expr_ty, node_->v.AnnAssign.target);
        CALL_OPT(astfold_expr, expr_ty, node_->v.AnnAssign.value);
        break;
    case For_kind:
        CALL(astfold_expr, expr_ty, node_->v.For.target);
        CALL(astfold_expr, expr_ty, node_->v.For.iter);
        CALL_SEQ(astfold_stmt, stmt, node_->v.For.body);
        CALL_SEQ(astfold_stmt, stmt, node_->v.For.orelse);

        CALL(fold_iter, expr_ty, node_->v.For.iter);
        break;
    case AsyncFor_kind:
        CALL(astfold_expr, expr_ty, node_->v.AsyncFor.target);
        CALL(astfold_expr, expr_ty, node_->v.AsyncFor.iter);
        CALL_SEQ(astfold_stmt, stmt, node_->v.AsyncFor.body);
        CALL_SEQ(astfold_stmt, stmt, node_->v.AsyncFor.orelse);
        break;
    case While_kind:
        CALL(astfold_expr, expr_ty, node_->v.While.test);
        CALL_SEQ(astfold_stmt, stmt, node_->v.While.body);
        CALL_SEQ(astfold_stmt, stmt, node_->v.While.orelse);
        break;
    case If_kind:
        CALL(astfold_expr, expr_ty, node_->v.If.test);
        CALL_SEQ(astfold_stmt, stmt, node_->v.If.body);
        CALL_SEQ(astfold_stmt, stmt, node_->v.If.orelse);
        break;
    case With_kind:
        CALL_SEQ(astfold_withitem, withitem, node_->v.With.items);
        CALL_SEQ(astfold_stmt, stmt, node_->v.With.body);
        break;
    case AsyncWith_kind:
        CALL_SEQ(astfold_withitem, withitem, node_->v.AsyncWith.items);
        CALL_SEQ(astfold_stmt, stmt, node_->v.AsyncWith.body);
        break;
    case Raise_kind:
        CALL_OPT(astfold_expr, expr_ty, node_->v.Raise.exc);
        CALL_OPT(astfold_expr, expr_ty, node_->v.Raise.cause);
        break;
    case Try_kind:
        CALL_SEQ(astfold_stmt, stmt, node_->v.Try.body);
        CALL_SEQ(astfold_excepthandler, excepthandler, node_->v.Try.handlers);
        CALL_SEQ(astfold_stmt, stmt, node_->v.Try.orelse);
        CALL_SEQ(astfold_stmt, stmt, node_->v.Try.finalbody);
        break;
    case Assert_kind:
        CALL(astfold_expr, expr_ty, node_->v.Assert.test);
        CALL_OPT(astfold_expr, expr_ty, node_->v.Assert.msg);
        break;
    case Expr_kind:
        CALL(astfold_expr, expr_ty, node_->v.Expr.value);
        break;
    case Match_kind:
        CALL(astfold_expr, expr_ty, node_->v.Match.subject);
        CALL_SEQ(astfold_match_case, match_case, node_->v.Match.cases);
        break;
    // The following statements don't contain any subexpressions to be folded
    case Import_kind:
    case ImportFrom_kind:
    case Global_kind:
    case Nonlocal_kind:
    case Pass_kind:
    case Break_kind:
    case Continue_kind:
        break;
    // No default case, so the compiler will emit a warning if new statement
    // kinds are added without being handled here
    }
    return 1;
}

static int
astfold_excepthandler(excepthandler_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
    switch (node_->kind) {
    case ExceptHandler_kind:
        CALL_OPT(astfold_expr, expr_ty, node_->v.ExceptHandler.type);
        CALL_SEQ(astfold_stmt, stmt, node_->v.ExceptHandler.body);
        break;
    // No default case, so the compiler will emit a warning if new handler
    // kinds are added without being handled here
    }
    return 1;
}

static int
astfold_withitem(withitem_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
    CALL(astfold_expr, expr_ty, node_->context_expr);
    CALL_OPT(astfold_expr, expr_ty, node_->optional_vars);
    return 1;
}

static int
astfold_pattern_negative(expr_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
    assert(node_->kind == UnaryOp_kind);
    assert(node_->v.UnaryOp.op == USub);
    assert(node_->v.UnaryOp.operand->kind == Constant_kind);
    PyObject *value = node_->v.UnaryOp.operand->v.Constant.value;
    assert(PyComplex_CheckExact(value) ||
           PyFloat_CheckExact(value) ||
           PyLong_CheckExact(value));
    PyObject *negated = PyNumber_Negative(value);
    if (negated == NULL) {
        return 0;
    }
    assert(PyComplex_CheckExact(negated) ||
           PyFloat_CheckExact(negated) ||
           PyLong_CheckExact(negated));
    return make_const(node_, negated, ctx_);
}

static int
astfold_pattern_complex(expr_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
    expr_ty left = node_->v.BinOp.left;
    expr_ty right = node_->v.BinOp.right;
    if (left->kind == UnaryOp_kind) {
        CALL(astfold_pattern_negative, expr_ty, left);
    }
    assert(left->kind = Constant_kind);
    assert(right->kind = Constant_kind);
    // LHS must be real, RHS must be imaginary:
    if (!(PyFloat_CheckExact(left->v.Constant.value) ||
          PyLong_CheckExact(left->v.Constant.value)) ||
        !PyComplex_CheckExact(right->v.Constant.value))
    {
        // Not actually valid, but it's the compiler's job to complain:
        return 1;
    }
    PyObject *new;
    if (node_->v.BinOp.op == Add) {
        new = PyNumber_Add(left->v.Constant.value, right->v.Constant.value);
    }
    else {
        assert(node_->v.BinOp.op == Sub);
        new = PyNumber_Subtract(left->v.Constant.value, right->v.Constant.value);
    }
    if (new == NULL) {
        return 0;
    }
    assert(PyComplex_CheckExact(new));
    return make_const(node_, new, ctx_);
}

static int
astfold_pattern_keyword(keyword_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
    CALL(astfold_pattern, expr_ty, node_->value);
    return 1;
}

static int
astfold_pattern(expr_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
    // Don't blindly optimize the pattern as an expr; it plays by its own rules!
    // Currently, this is only used to form complex/negative numeric constants.
    switch (node_->kind) {
        case Attribute_kind:
            break;
        case BinOp_kind:
            CALL(astfold_pattern_complex, expr_ty, node_);
            break;
        case Call_kind:
            CALL_SEQ(astfold_pattern, expr, node_->v.Call.args);
            CALL_SEQ(astfold_pattern_keyword, keyword, node_->v.Call.keywords);
            break;
        case Constant_kind:
            break;
        case Dict_kind:
            CALL_SEQ(astfold_pattern, expr, node_->v.Dict.keys);
            CALL_SEQ(astfold_pattern, expr, node_->v.Dict.values);
            break;
        // Not actually valid, but it's the compiler's job to complain:
        case JoinedStr_kind:
            break;
        case List_kind:
            CALL_SEQ(astfold_pattern, expr, node_->v.List.elts);
            break;
        case MatchAs_kind:
            CALL(astfold_pattern, expr_ty, node_->v.MatchAs.pattern);
            break;
        case MatchOr_kind:
            CALL_SEQ(astfold_pattern, expr, node_->v.MatchOr.patterns);
            break;
        case Name_kind:
            break;
        case Starred_kind:
            CALL(astfold_pattern, expr_ty, node_->v.Starred.value);
            break;
        case Tuple_kind:
            CALL_SEQ(astfold_pattern, expr, node_->v.Tuple.elts);
            break;
        case UnaryOp_kind:
            CALL(astfold_pattern_negative, expr_ty, node_);
            break;
        default:
            Py_UNREACHABLE();
    }
    return 1;
}

static int
astfold_match_case(match_case_ty node_, PyArena *ctx_, _PyASTOptimizeState *state)
{
    CALL(astfold_pattern, expr_ty, node_->pattern);
    CALL_OPT(astfold_expr, expr_ty, node_->guard);
    CALL_SEQ(astfold_stmt, stmt, node_->body);
    return 1;
}

#undef CALL
#undef CALL_OPT
#undef CALL_SEQ
#undef CALL_INT_SEQ

int
_PyAST_Optimize(mod_ty mod, PyArena *arena, _PyASTOptimizeState *state)
{
    int ret = astfold_mod(mod, arena, state);
    assert(ret || PyErr_Occurred());
    return ret;
}