/* Thread package. This is intended to be usable independently from Python. The implementation for system foobar is in a file thread_foobar.h which is included by this file dependent on config settings. Stuff shared by all thread_*.h files is collected here. */#include"Python.h"#ifndef _POSIX_THREADS/* This means pthreads are not implemented in libc headers, hence the macro not present in unistd.h. But they still can be implemented as an external library (e.g. gnu pth in pthread emulation) */# ifdef HAVE_PTHREAD_H# include <pthread.h>/* _POSIX_THREADS */# endif#endif#ifndef DONT_HAVE_STDIO_H#include <stdio.h>#endif#include <stdlib.h>#include"pythread.h"#ifndef _POSIX_THREADS/* Check if we're running on HP-UX and _SC_THREADS is defined. If so, then enough of the Posix threads package is implemented to support python threads. This is valid for HP-UX 11.23 running on an ia64 system. If needed, add a check of __ia64 to verify that we're running on a ia64 system instead of a pa-risc system.*/#ifdef __hpux#ifdef _SC_THREADS#define _POSIX_THREADS#endif#endif#endif/* _POSIX_THREADS */#ifdef Py_DEBUGstatic int thread_debug =0;#define dprintf(args) (void)((thread_debug & 1) && printf args)#define d2printf(args) ((thread_debug & 8) && printf args)#else#define dprintf(args)#define d2printf(args)#endifstatic int initialized;static voidPyThread__init_thread(void);/* Forward */voidPyThread_init_thread(void){#ifdef Py_DEBUGchar*p =Py_GETENV("PYTHONTHREADDEBUG");if(p) {if(*p)
thread_debug =atoi(p);else
thread_debug =1;}#endif/* Py_DEBUG */if(initialized)return;
initialized =1;dprintf(("PyThread_init_thread called\n"));PyThread__init_thread();}/* Support for runtime thread stack size tuning. A value of 0 means using the platform's default stack size or the size specified by the THREAD_STACK_SIZE macro. */static size_t _pythread_stacksize =0;#ifdef _POSIX_THREADS#define PYTHREAD_NAME"pthread"#include"thread_pthread.h"#endif#ifdef NT_THREADS#define PYTHREAD_NAME"nt"#include"thread_nt.h"#endif/*#ifdef FOOBAR_THREADS#include "thread_foobar.h"#endif*//* return the current thread stack size */size_tPyThread_get_stacksize(void){return _pythread_stacksize;}/* Only platforms defining a THREAD_SET_STACKSIZE() macro in thread_<platform>.h support changing the stack size. Return 0 if stack size is valid, -1 if stack size value is invalid, -2 if setting stack size is not supported. */intPyThread_set_stacksize(size_t size){#if defined(THREAD_SET_STACKSIZE)returnTHREAD_SET_STACKSIZE(size);#elsereturn-2;#endif}#ifndef Py_HAVE_NATIVE_TLS/* If the platform has not supplied a platform specific TLS implementation, provide our own. This code stolen from "thread_sgi.h", where it was the only implementation of an existing Python TLS API.*//* ------------------------------------------------------------------------Per-thread data ("key") support.Use PyThread_create_key() to create a new key. This is typically sharedacross threads.Use PyThread_set_key_value(thekey, value) to associate void* value withthekey in the current thread. Each thread has a distinct mapping of thekeyto a void* value. Caution: if the current thread already has a mappingfor thekey, value is ignored.Use PyThread_get_key_value(thekey) to retrieve the void* value associatedwith thekey in the current thread. This returns NULL if no value isassociated with thekey in the current thread.Use PyThread_delete_key_value(thekey) to forget the current thread's associatedvalue for thekey. PyThread_delete_key(thekey) forgets the values associatedwith thekey across *all* threads.While some of these functions have error-return values, none set anyPython exception.None of the functions does memory management on behalf of the void* values.You need to allocate and deallocate them yourself. If the void* valueshappen to be PyObject*, these functions don't do refcount operations onthem either.The GIL does not need to be held when calling these functions; they supplytheir own locking. This isn't true of PyThread_create_key(), though (seenext paragraph).There's a hidden assumption that PyThread_create_key() will be called beforeany of the other functions are called. There's also a hidden assumptionthat calls to PyThread_create_key() are serialized externally.------------------------------------------------------------------------ *//* A singly-linked list of struct key objects remembers all the key->value * associations. File static keyhead heads the list. keymutex is used * to enforce exclusion internally. */struct key {/* Next record in the list, or NULL if this is the last record. */struct key *next;/* The thread id, according to PyThread_get_thread_ident(). */long id;/* The key and its associated value. */int key;void*value;};static struct key *keyhead = NULL;static PyThread_type_lock keymutex = NULL;static int nkeys =0;/* PyThread_create_key() hands out nkeys+1 next *//* Internal helper. * If the current thread has a mapping for key, the appropriate struct key* * is returned. NB: value is ignored in this case! * If there is no mapping for key in the current thread, then: * If value is NULL, NULL is returned. * Else a mapping of key to value is created for the current thread, * and a pointer to a new struct key* is returned; except that if * malloc() can't find room for a new struct key*, NULL is returned. * So when value==NULL, this acts like a pure lookup routine, and when * value!=NULL, this acts like dict.setdefault(), returning an existing * mapping if one exists, else creating a new mapping. * * Caution: this used to be too clever, trying to hold keymutex only * around the "p->next = keyhead; keyhead = p" pair. That allowed * another thread to mutate the list, via key deletion, concurrent with * find_key() crawling over the list. Hilarity ensued. For example, when * the for-loop here does "p = p->next", p could end up pointing at a * record that PyThread_delete_key_value() was concurrently free()'ing. * That could lead to anything, from failing to find a key that exists, to * segfaults. Now we lock the whole routine. */static struct key *find_key(int set_value,int key,void*value){struct key *p, *prev_p;long id =PyThread_get_thread_ident();if(!keymutex)return NULL;PyThread_acquire_lock(keymutex,1);
prev_p = NULL;for(p = keyhead; p != NULL; p = p->next) {if(p->id == id && p->key == key) {if(set_value)
p->value = value;goto Done;}/* Sanity check. These states should never happen but if * they do we must abort. Otherwise we'll end up spinning * in a tight loop with the lock held. A similar check is done * in pystate.c tstate_delete_common(). */if(p == prev_p)Py_FatalError("tls find_key: small circular list(!)");
prev_p = p;if(p->next == keyhead)Py_FatalError("tls find_key: circular list(!)");}if(!set_value && value == NULL) {assert(p == NULL);goto Done;}
p = (struct key *)PyMem_RawMalloc(sizeof(struct key));if(p != NULL) {
p->id = id;
p->key = key;
p->value = value;
p->next = keyhead;
keyhead = p;}
Done:PyThread_release_lock(keymutex);return p;}/* Return a new key. This must be called before any other functions in * this family, and callers must arrange to serialize calls to this * function. No violations are detected. */intPyThread_create_key(void){/* All parts of this function are wrong if it's called by multiple * threads simultaneously. */if(keymutex == NULL)
keymutex =PyThread_allocate_lock();return++nkeys;}/* Forget the associations for key across *all* threads. */voidPyThread_delete_key(int key){struct key *p, **q;PyThread_acquire_lock(keymutex,1);
q = &keyhead;while((p = *q) != NULL) {if(p->key == key) {*q = p->next;PyMem_RawFree((void*)p);/* NB This does *not* free p->value! */}else
q = &p->next;}PyThread_release_lock(keymutex);}intPyThread_set_key_value(int key,void*value){struct key *p;
p =find_key(1, key, value);if(p == NULL)return-1;elsereturn0;}/* Retrieve the value associated with key in the current thread, or NULL * if the current thread doesn't have an association for key. */void*PyThread_get_key_value(int key){struct key *p =find_key(0, key, NULL);if(p == NULL)return NULL;elsereturn p->value;}/* Forget the current thread's association for key, if any. */voidPyThread_delete_key_value(int key){long id =PyThread_get_thread_ident();struct key *p, **q;PyThread_acquire_lock(keymutex,1);
q = &keyhead;while((p = *q) != NULL) {if(p->key == key && p->id == id) {*q = p->next;PyMem_RawFree((void*)p);/* NB This does *not* free p->value! */break;}else
q = &p->next;}PyThread_release_lock(keymutex);}/* Forget everything not associated with the current thread id. * This function is called from PyOS_AfterFork(). It is necessary * because other thread ids which were in use at the time of the fork * may be reused for new threads created in the forked process. */voidPyThread_ReInitTLS(void){long id =PyThread_get_thread_ident();struct key *p, **q;if(!keymutex)return;/* As with interpreter_lock in PyEval_ReInitThreads() we just create a new lock without freeing the old one */
keymutex =PyThread_allocate_lock();/* Delete all keys which do not match the current thread id */
q = &keyhead;while((p = *q) != NULL) {if(p->id != id) {*q = p->next;PyMem_RawFree((void*)p);/* NB This does *not* free p->value! */}else
q = &p->next;}}#endif/* Py_HAVE_NATIVE_TLS */PyDoc_STRVAR(threadinfo__doc__,"sys.thread_info\n\\n\A struct sequence holding information about the thread implementation.");static PyStructSequence_Field threadinfo_fields[] = {{"name","name of the thread implementation"},{"lock","name of the lock implementation"},{"version","name and version of the thread library"},{0}};static PyStructSequence_Desc threadinfo_desc = {"sys.thread_info",/* name */
threadinfo__doc__,/* doc */
threadinfo_fields,/* fields */3};static PyTypeObject ThreadInfoType;
PyObject*PyThread_GetInfo(void){
PyObject *threadinfo, *value;int pos =0;#if (defined(_POSIX_THREADS) && defined(HAVE_CONFSTR) \ && defined(_CS_GNU_LIBPTHREAD_VERSION))char buffer[255];int len;#endifif(ThreadInfoType.tp_name ==0) {if(PyStructSequence_InitType2(&ThreadInfoType, &threadinfo_desc) <0)return NULL;}
threadinfo =PyStructSequence_New(&ThreadInfoType);if(threadinfo == NULL)return NULL;
value =PyUnicode_FromString(PYTHREAD_NAME);if(value == NULL) {Py_DECREF(threadinfo);return NULL;}PyStructSequence_SET_ITEM(threadinfo, pos++, value);#ifdef _POSIX_THREADS#ifdef USE_SEMAPHORES
value =PyUnicode_FromString("semaphore");#else
value =PyUnicode_FromString("mutex+cond");#endifif(value == NULL) {Py_DECREF(threadinfo);return NULL;}#elsePy_INCREF(Py_None);
value = Py_None;#endifPyStructSequence_SET_ITEM(threadinfo, pos++, value);#if (defined(_POSIX_THREADS) && defined(HAVE_CONFSTR) \ && defined(_CS_GNU_LIBPTHREAD_VERSION))
value = NULL;
len =confstr(_CS_GNU_LIBPTHREAD_VERSION, buffer,sizeof(buffer));if(1< len && len <sizeof(buffer)) {
value =PyUnicode_DecodeFSDefaultAndSize(buffer, len-1);if(value == NULL)PyErr_Clear();}if(value == NULL)#endif{Py_INCREF(Py_None);
value = Py_None;}PyStructSequence_SET_ITEM(threadinfo, pos++, value);return threadinfo;}
/* Execute compiled code *//* XXX TO DO: XXX speed up searching for keywords by using a dictionary XXX document it! */#include"Python.h"#include"compile.h"#include"frameobject.h"#include"eval.h"#include"opcode.h"#include"structmember.h"#ifdef macintosh#include"macglue.h"#endif#include <ctype.h>/* Turn this on if your compiler chokes on the big switch: *//* #define CASE_TOO_BIG 1 */#ifdef Py_DEBUG/* For debugging the interpreter: */#define LLTRACE 1/* Low-level trace feature */#define CHECKEXC 1/* Double-check exception checking */#endiftypedef PyObject *(*callproc)(PyObject *, PyObject *, PyObject *);/* Forward declarations */static PyObject *eval_frame(PyFrameObject *);static PyObject *call_function(PyObject ***,int);static PyObject *fast_function(PyObject *, PyObject ***,int,int,int);static PyObject *do_call(PyObject *, PyObject ***,int,int);static PyObject *ext_do_call(PyObject *, PyObject ***,int,int,int);static PyObject *update_keyword_args(PyObject *,int, PyObject ***,PyObject *);static PyObject *update_star_args(int,int, PyObject *, PyObject ***);static PyObject *load_args(PyObject ***,int);#define CALL_FLAG_VAR 1#define CALL_FLAG_KW 2#ifdef LLTRACEstatic intprtrace(PyObject *,char*);#endifstatic intcall_trace(Py_tracefunc, PyObject *, PyFrameObject *,int, PyObject *);static voidcall_trace_protected(Py_tracefunc, PyObject *,
PyFrameObject *,int);static voidcall_exc_trace(Py_tracefunc, PyObject *, PyFrameObject *);static intmaybe_call_line_trace(Py_tracefunc, PyObject *,
PyFrameObject *,int*,int*);static PyObject *apply_slice(PyObject *, PyObject *, PyObject *);static intassign_slice(PyObject *, PyObject *,
PyObject *, PyObject *);static PyObject *cmp_outcome(int, PyObject *, PyObject *);static PyObject *import_from(PyObject *, PyObject *);static intimport_all_from(PyObject *, PyObject *);static PyObject *build_class(PyObject *, PyObject *, PyObject *);static intexec_statement(PyFrameObject *,
PyObject *, PyObject *, PyObject *);static voidset_exc_info(PyThreadState *, PyObject *, PyObject *, PyObject *);static voidreset_exc_info(PyThreadState *);static voidformat_exc_check_arg(PyObject *,char*, PyObject *);#define NAME_ERROR_MSG \"name '%.200s' is not defined"#define GLOBAL_NAME_ERROR_MSG \"global name '%.200s' is not defined"#define UNBOUNDLOCAL_ERROR_MSG \"local variable '%.200s' referenced before assignment"#define UNBOUNDFREE_ERROR_MSG \"free variable '%.200s' referenced before assignment" \" in enclosing scope"/* Dynamic execution profile */#ifdef DYNAMIC_EXECUTION_PROFILE#ifdef DXPAIRSstatic long dxpairs[257][256];#define dxp dxpairs[256]#elsestatic long dxp[256];#endif#endif/* Function call profile */#ifdef CALL_PROFILE#define PCALL_NUM 11static int pcall[PCALL_NUM];#define PCALL_ALL 0#define PCALL_FUNCTION 1#define PCALL_FAST_FUNCTION 2#define PCALL_FASTER_FUNCTION 3#define PCALL_METHOD 4#define PCALL_BOUND_METHOD 5#define PCALL_CFUNCTION 6#define PCALL_TYPE 7#define PCALL_GENERATOR 8#define PCALL_OTHER 9#define PCALL_POP 10/* Notes about the statistics PCALL_FAST stats FAST_FUNCTION means no argument tuple needs to be created. FASTER_FUNCTION means that the fast-path frame setup code is used. If there is a method call where the call can be optimized by changing the argument tuple and calling the function directly, it gets recorded twice. As a result, the relationship among the statistics appears to be PCALL_ALL == PCALL_FUNCTION + PCALL_METHOD - PCALL_BOUND_METHOD + PCALL_CFUNCTION + PCALL_TYPE + PCALL_GENERATOR + PCALL_OTHER PCALL_FUNCTION > PCALL_FAST_FUNCTION > PCALL_FASTER_FUNCTION PCALL_METHOD > PCALL_BOUND_METHOD*/#define PCALL(POS) pcall[POS]++
PyObject *PyEval_GetCallStats(PyObject *self){returnPy_BuildValue("iiiiiiiiii",
pcall[0], pcall[1], pcall[2], pcall[3],
pcall[4], pcall[5], pcall[6], pcall[7],
pcall[8], pcall[9]);}#else#define PCALL(O)
PyObject *PyEval_GetCallStats(PyObject *self){Py_INCREF(Py_None);return Py_None;}#endifstatic PyTypeObject gentype;typedefstruct{
PyObject_HEAD
/* The gi_ prefix is intended to remind of generator-iterator. */
PyFrameObject *gi_frame;/* True if generator is being executed. */int gi_running;/* List of weak reference. */
PyObject *gi_weakreflist;} genobject;static PyObject *gen_new(PyFrameObject *f){
genobject *gen =PyObject_GC_New(genobject, &gentype);if(gen == NULL) {Py_DECREF(f);return NULL;}
gen->gi_frame = f;
gen->gi_running =0;
gen->gi_weakreflist = NULL;_PyObject_GC_TRACK(gen);return(PyObject *)gen;}static intgen_traverse(genobject *gen, visitproc visit,void*arg){returnvisit((PyObject *)gen->gi_frame, arg);}static voidgen_dealloc(genobject *gen){_PyObject_GC_UNTRACK(gen);if(gen->gi_weakreflist != NULL)PyObject_ClearWeakRefs((PyObject *) gen);Py_DECREF(gen->gi_frame);PyObject_GC_Del(gen);}static PyObject *gen_iternext(genobject *gen){
PyThreadState *tstate =PyThreadState_GET();
PyFrameObject *f = gen->gi_frame;
PyObject *result;if(gen->gi_running) {PyErr_SetString(PyExc_ValueError,"generator already executing");return NULL;}if(f->f_stacktop == NULL)return NULL;/* Generators always return to their most recent caller, not * necessarily their creator. */Py_XINCREF(tstate->frame);assert(f->f_back == NULL);
f->f_back = tstate->frame;
gen->gi_running =1;
result =eval_frame(f);
gen->gi_running =0;/* Don't keep the reference to f_back any longer than necessary. It * may keep a chain of frames alive or it could create a reference * cycle. */Py_XDECREF(f->f_back);
f->f_back = NULL;/* If the generator just returned (as opposed to yielding), signal * that the generator is exhausted. */if(result == Py_None && f->f_stacktop == NULL) {Py_DECREF(result);
result = NULL;}return result;}static PyObject *gen_getiter(PyObject *gen){Py_INCREF(gen);return gen;}static PyMemberDef gen_memberlist[] = {{"gi_frame", T_OBJECT,offsetof(genobject, gi_frame), RO},{"gi_running", T_INT,offsetof(genobject, gi_running), RO},{NULL}/* Sentinel */};static PyTypeObject gentype = {PyObject_HEAD_INIT(&PyType_Type)0,/* ob_size */"generator",/* tp_name */sizeof(genobject),/* tp_basicsize */0,/* tp_itemsize *//* methods */(destructor)gen_dealloc,/* tp_dealloc */0,/* tp_print */0,/* tp_getattr */0,/* tp_setattr */0,/* tp_compare */0,/* tp_repr */0,/* tp_as_number */0,/* tp_as_sequence */0,/* tp_as_mapping */0,/* tp_hash */0,/* tp_call */0,/* tp_str */
PyObject_GenericGetAttr,/* tp_getattro */0,/* tp_setattro */0,/* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */0,/* tp_doc */(traverseproc)gen_traverse,/* tp_traverse */0,/* tp_clear */0,/* tp_richcompare */offsetof(genobject, gi_weakreflist),/* tp_weaklistoffset */(getiterfunc)gen_getiter,/* tp_iter */(iternextfunc)gen_iternext,/* tp_iternext */0,/* tp_methods */
gen_memberlist,/* tp_members */0,/* tp_getset */0,/* tp_base */0,/* tp_dict */};#ifdef WITH_THREAD#ifndef DONT_HAVE_ERRNO_H#include <errno.h>#endif#include"pythread.h"externint _PyThread_Started;/* Flag for Py_Exit */static PyThread_type_lock interpreter_lock =0;/* This is the GIL */static long main_thread =0;voidPyEval_InitThreads(void){if(interpreter_lock)return;
_PyThread_Started =1;
interpreter_lock =PyThread_allocate_lock();PyThread_acquire_lock(interpreter_lock,1);
main_thread =PyThread_get_thread_ident();}voidPyEval_AcquireLock(void){PyThread_acquire_lock(interpreter_lock,1);}voidPyEval_ReleaseLock(void){PyThread_release_lock(interpreter_lock);}voidPyEval_AcquireThread(PyThreadState *tstate){if(tstate == NULL)Py_FatalError("PyEval_AcquireThread: NULL new thread state");/* Check someone has called PyEval_InitThreads() to create the lock */assert(interpreter_lock);PyThread_acquire_lock(interpreter_lock,1);if(PyThreadState_Swap(tstate) != NULL)Py_FatalError("PyEval_AcquireThread: non-NULL old thread state");}voidPyEval_ReleaseThread(PyThreadState *tstate){if(tstate == NULL)Py_FatalError("PyEval_ReleaseThread: NULL thread state");if(PyThreadState_Swap(NULL) != tstate)Py_FatalError("PyEval_ReleaseThread: wrong thread state");PyThread_release_lock(interpreter_lock);}/* This function is called from PyOS_AfterFork to ensure that newly created child processes don't hold locks referring to threads which are not running in the child process. (This could also be done using pthread_atfork mechanism, at least for the pthreads implementation.) */voidPyEval_ReInitThreads(void){if(!interpreter_lock)return;/*XXX Can't use PyThread_free_lock here because it does too much error-checking. Doing this cleanly would require adding a new function to each thread_*.h. Instead, just create a new lock and waste a little bit of memory */
interpreter_lock =PyThread_allocate_lock();PyThread_acquire_lock(interpreter_lock,1);
main_thread =PyThread_get_thread_ident();}#endif/* Functions save_thread and restore_thread are always defined so dynamically loaded modules needn't be compiled separately for use with and without threads: */
PyThreadState *PyEval_SaveThread(void){
PyThreadState *tstate =PyThreadState_Swap(NULL);if(tstate == NULL)Py_FatalError("PyEval_SaveThread: NULL tstate");#ifdef WITH_THREADif(interpreter_lock)PyThread_release_lock(interpreter_lock);#endifreturn tstate;}voidPyEval_RestoreThread(PyThreadState *tstate){if(tstate == NULL)Py_FatalError("PyEval_RestoreThread: NULL tstate");#ifdef WITH_THREADif(interpreter_lock) {int err = errno;PyThread_acquire_lock(interpreter_lock,1);
errno = err;}#endifPyThreadState_Swap(tstate);}/* Mechanism whereby asynchronously executing callbacks (e.g. UNIX signal handlers or Mac I/O completion routines) can schedule calls to a function to be called synchronously. The synchronous function is called with one void* argument. It should return 0 for success or -1 for failure -- failure should be accompanied by an exception. If registry succeeds, the registry function returns 0; if it fails (e.g. due to too many pending calls) it returns -1 (without setting an exception condition). Note that because registry may occur from within signal handlers, or other asynchronous events, calling malloc() is unsafe!#ifdef WITH_THREAD Any thread can schedule pending calls, but only the main thread will execute them.#endif XXX WARNING! ASYNCHRONOUSLY EXECUTING CODE! There are two possible race conditions: (1) nested asynchronous registry calls; (2) registry calls made while pending calls are being processed. While (1) is very unlikely, (2) is a real possibility. The current code is safe against (2), but not against (1). The safety against (2) is derived from the fact that only one thread (the main thread) ever takes things out of the queue. XXX Darn! With the advent of thread state, we should have an array of pending calls per thread in the thread state! Later...*/#define NPENDINGCALLS 32static struct{int(*func)(void*);void*arg;} pendingcalls[NPENDINGCALLS];staticvolatileint pendingfirst =0;staticvolatileint pendinglast =0;staticvolatileint things_to_do =0;intPy_AddPendingCall(int(*func)(void*),void*arg){static int busy =0;int i, j;/* XXX Begin critical section *//* XXX If you want this to be safe against nested XXX asynchronous calls, you'll have to work harder! */if(busy)return-1;
busy =1;
i = pendinglast;
j = (i +1) % NPENDINGCALLS;if(j == pendingfirst) {
busy =0;return-1;/* Queue full */}
pendingcalls[i].func = func;
pendingcalls[i].arg = arg;
pendinglast = j;
_Py_Ticker =0;
things_to_do =1;/* Signal main loop */
busy =0;/* XXX End critical section */return0;}intPy_MakePendingCalls(void){static int busy =0;#ifdef WITH_THREADif(main_thread &&PyThread_get_thread_ident() != main_thread)return0;#endifif(busy)return0;
busy =1;
things_to_do =0;for(;;) {int i;int(*func)(void*);void*arg;
i = pendingfirst;if(i == pendinglast)break;/* Queue empty */
func = pendingcalls[i].func;
arg = pendingcalls[i].arg;
pendingfirst = (i +1) % NPENDINGCALLS;if(func(arg) <0) {
busy =0;
things_to_do =1;/* We're not done yet */return-1;}}
busy =0;return0;}/* The interpreter's recursion limit */static int recursion_limit =1000;intPy_GetRecursionLimit(void){return recursion_limit;}voidPy_SetRecursionLimit(int new_limit){
recursion_limit = new_limit;}/* Status code for main loop (reason for stack unwind) */enum why_code {
WHY_NOT,/* No error */
WHY_EXCEPTION,/* Exception occurred */
WHY_RERAISE,/* Exception re-raised by 'finally' */
WHY_RETURN,/* 'return' statement */
WHY_BREAK,/* 'break' statement */
WHY_CONTINUE,/* 'continue' statement */
WHY_YIELD /* 'yield' operator */};static enum why_code do_raise(PyObject *, PyObject *, PyObject *);static intunpack_iterable(PyObject *,int, PyObject **);/* for manipulating the thread switch and periodic "stuff" - used to be per thread, now just a pair o' globals */int _Py_CheckInterval =100;volatileint _Py_Ticker =100;
PyObject *PyEval_EvalCode(PyCodeObject *co, PyObject *globals, PyObject *locals){/* XXX raise SystemError if globals is NULL */returnPyEval_EvalCodeEx(co,
globals, locals,(PyObject **)NULL,0,(PyObject **)NULL,0,(PyObject **)NULL,0,
NULL);}/* Interpreter main loop */static PyObject *eval_frame(PyFrameObject *f){#ifdef DXPAIRSint lastopcode =0;#endif
PyObject **stack_pointer;/* Next free slot in value stack */registerunsigned char*next_instr;registerint opcode=0;/* Current opcode */registerint oparg=0;/* Current opcode argument, if any */registerenum why_code why;/* Reason for block stack unwind */registerint err;/* Error status -- nonzero if error */register PyObject *x;/* Result object -- NULL if error */register PyObject *v;/* Temporary objects popped off stack */register PyObject *w;register PyObject *u;register PyObject *t;register PyObject *stream = NULL;/* for PRINT opcodes */register PyObject **fastlocals, **freevars;
PyObject *retval = NULL;/* Return value */
PyThreadState *tstate =PyThreadState_GET();
PyCodeObject *co;/* when tracing we set things up so that not (instr_lb <= current_bytecode_offset < instr_ub) is true when the line being executed has changed. The initial values are such as to make this false the first time it is tested. */int instr_ub = -1, instr_lb =0;unsigned char*first_instr;
PyObject *names;
PyObject *consts;#ifdef LLTRACEint lltrace;#endif#if defined(Py_DEBUG) || defined(LLTRACE)/* Make it easier to find out where we are with a debugger */char*filename;#endif/* Tuple access macros */#ifndef Py_DEBUG#define GETITEM(v, i) PyTuple_GET_ITEM((PyTupleObject *)(v), (i))#else#define GETITEM(v, i) PyTuple_GetItem((v), (i))#endif/* Code access macros */#define INSTR_OFFSET() (next_instr - first_instr)#define NEXTOP() (*next_instr++)#define NEXTARG() (next_instr += 2, (next_instr[-1]<<8) + next_instr[-2])#define JUMPTO(x) (next_instr = first_instr + (x))#define JUMPBY(x) (next_instr += (x))/* OpCode prediction macros Some opcodes tend to come in pairs thus making it possible to predict the second code when the first is run. For example, COMPARE_OP is often followed by JUMP_IF_FALSE or JUMP_IF_TRUE. And, those opcodes are often followed by a POP_TOP. Verifying the prediction costs a single high-speed test of register variable against a constant. If the pairing was good, then the processor has a high likelihood of making its own successful branch prediction which results in a nearly zero overhead transition to the next opcode. A successful prediction saves a trip through the eval-loop including its two unpredictable branches, the HASARG test and the switch-case.*/#define PREDICT(op) if (*next_instr == op) goto PRED_##op#define PREDICTED(op) PRED_##op: next_instr++#define PREDICTED_WITH_ARG(op) PRED_##op: oparg = (next_instr[2]<<8) + \ next_instr[1]; next_instr += 3/* Stack manipulation macros */#define STACK_LEVEL() (stack_pointer - f->f_valuestack)#define EMPTY() (STACK_LEVEL() == 0)#define TOP() (stack_pointer[-1])#define SECOND() (stack_pointer[-2])#define THIRD() (stack_pointer[-3])#define FOURTH() (stack_pointer[-4])#define SET_TOP(v) (stack_pointer[-1] = (v))#define SET_SECOND(v) (stack_pointer[-2] = (v))#define SET_THIRD(v) (stack_pointer[-3] = (v))#define SET_FOURTH(v) (stack_pointer[-4] = (v))#define BASIC_STACKADJ(n) (stack_pointer += n)#define BASIC_PUSH(v) (*stack_pointer++ = (v))#define BASIC_POP() (*--stack_pointer)#ifdef LLTRACE#define PUSH(v) { (void)(BASIC_PUSH(v), \ lltrace && prtrace(TOP(),"push")); \ assert(STACK_LEVEL() <= f->f_stacksize); }#define POP() ((void)(lltrace && prtrace(TOP(),"pop")), BASIC_POP())#define STACKADJ(n) { (void)(BASIC_STACKADJ(n), \ lltrace && prtrace(TOP(),"stackadj")); \ assert(STACK_LEVEL() <= f->f_stacksize); }#else#define PUSH(v) BASIC_PUSH(v)#define POP() BASIC_POP()#define STACKADJ(n) BASIC_STACKADJ(n)#endif/* Local variable macros */#define GETLOCAL(i) (fastlocals[i])/* The SETLOCAL() macro must not DECREF the local variable in-place and then store the new value; it must copy the old value to a temporary value, then store the new value, and then DECREF the temporary value. This is because it is possible that during the DECREF the frame is accessed by other code (e.g. a __del__ method or gc.collect()) and the variable would be pointing to already-freed memory. */#define SETLOCAL(i, value) do { PyObject *tmp = GETLOCAL(i); \ GETLOCAL(i) = value; \ Py_XDECREF(tmp); } while (0)/* Start of code */if(f == NULL)return NULL;#ifdef USE_STACKCHECKif(tstate->recursion_depth%10==0&&PyOS_CheckStack()) {PyErr_SetString(PyExc_MemoryError,"Stack overflow");return NULL;}#endif/* push frame */if(++tstate->recursion_depth > recursion_limit) {--tstate->recursion_depth;PyErr_SetString(PyExc_RuntimeError,"maximum recursion depth exceeded");
tstate->frame = f->f_back;return NULL;}
tstate->frame = f;if(tstate->use_tracing) {if(tstate->c_tracefunc != NULL) {/* tstate->c_tracefunc, if defined, is a function that will be called on *every* entry to a code block. Its return value, if not None, is a function that will be called at the start of each executed line of code. (Actually, the function must return itself in order to continue tracing.) The trace functions are called with three arguments: a pointer to the current frame, a string indicating why the function is called, and an argument which depends on the situation. The global trace function is also called whenever an exception is detected. */if(call_trace(tstate->c_tracefunc, tstate->c_traceobj,
f, PyTrace_CALL, Py_None)) {/* Trace function raised an error */--tstate->recursion_depth;
tstate->frame = f->f_back;return NULL;}}if(tstate->c_profilefunc != NULL) {/* Similar for c_profilefunc, except it needn't return itself and isn't called for "line" events */if(call_trace(tstate->c_profilefunc,
tstate->c_profileobj,
f, PyTrace_CALL, Py_None)) {/* Profile function raised an error */--tstate->recursion_depth;
tstate->frame = f->f_back;return NULL;}}}
co = f->f_code;
names = co->co_names;
consts = co->co_consts;
fastlocals = f->f_localsplus;
freevars = f->f_localsplus + f->f_nlocals;_PyCode_GETCODEPTR(co, &first_instr);/* An explanation is in order for the next line. f->f_lasti now refers to the index of the last instruction executed. You might think this was obvious from the name, but this wasn't always true before 2.3! PyFrame_New now sets f->f_lasti to -1 (i.e. the index *before* the first instruction) and YIELD_VALUE doesn't fiddle with f_lasti any more. So this does work. Promise. */
next_instr = first_instr + f->f_lasti +1;
stack_pointer = f->f_stacktop;assert(stack_pointer != NULL);
f->f_stacktop = NULL;/* remains NULL unless yield suspends frame */#ifdef LLTRACE
lltrace =PyDict_GetItemString(f->f_globals,"__lltrace__") != NULL;#endif#if defined(Py_DEBUG) || defined(LLTRACE)
filename =PyString_AsString(co->co_filename);#endif
why = WHY_NOT;
err =0;
x = Py_None;/* Not a reference, just anything non-NULL */
w = NULL;for(;;) {assert(stack_pointer >= f->f_valuestack);/* else underflow */assert(STACK_LEVEL() <= f->f_stacksize);/* else overflow *//* Do periodic things. Doing this every time through the loop would add too much overhead, so we do it only every Nth instruction. We also do it if ``things_to_do'' is set, i.e. when an asynchronous event needs attention (e.g. a signal handler or async I/O handler); see Py_AddPendingCall() and Py_MakePendingCalls() above. */if(--_Py_Ticker <0) {if(*next_instr == SETUP_FINALLY) {/* Make the last opcode before a try: finally: block uninterruptable. */goto fast_next_opcode;}
_Py_Ticker = _Py_CheckInterval;
tstate->tick_counter++;if(things_to_do) {if(Py_MakePendingCalls() <0) {
why = WHY_EXCEPTION;goto on_error;}}#if !defined(HAVE_SIGNAL_H) || defined(macintosh)/* If we have true signals, the signal handler will call Py_AddPendingCall() so we don't have to call PyErr_CheckSignals(). On the Mac and DOS, alas, we have to call it. */if(PyErr_CheckSignals()) {
why = WHY_EXCEPTION;goto on_error;}#endif#ifdef WITH_THREADif(interpreter_lock) {/* Give another thread a chance */if(PyThreadState_Swap(NULL) != tstate)Py_FatalError("ceval: tstate mix-up");PyThread_release_lock(interpreter_lock);/* Other threads may run now */PyThread_acquire_lock(interpreter_lock,1);if(PyThreadState_Swap(tstate) != NULL)Py_FatalError("ceval: orphan tstate");/* Check for thread interrupts */if(tstate->async_exc != NULL) {
x = tstate->async_exc;
tstate->async_exc = NULL;PyErr_SetNone(x);Py_DECREF(x);
why = WHY_EXCEPTION;goto on_error;}}#endif}
fast_next_opcode:
f->f_lasti =INSTR_OFFSET();/* line-by-line tracing support */if(tstate->c_tracefunc != NULL && !tstate->tracing) {/* see maybe_call_line_trace for expository comments */
f->f_stacktop = stack_pointer;
err =maybe_call_line_trace(tstate->c_tracefunc,
tstate->c_traceobj,
f, &instr_lb, &instr_ub);/* Reload possibly changed frame fields */JUMPTO(f->f_lasti);if(f->f_stacktop != NULL) {
stack_pointer = f->f_stacktop;
f->f_stacktop = NULL;}if(err) {/* trace function raised an exception */goto on_error;}}/* Extract opcode and argument */
opcode =NEXTOP();if(HAS_ARG(opcode))
oparg =NEXTARG();
dispatch_opcode:#ifdef DYNAMIC_EXECUTION_PROFILE#ifdef DXPAIRS
dxpairs[lastopcode][opcode]++;
lastopcode = opcode;#endif
dxp[opcode]++;#endif#ifdef LLTRACE/* Instruction tracing */if(lltrace) {if(HAS_ARG(opcode)) {printf("%d: %d, %d\n",
f->f_lasti, opcode, oparg);}else{printf("%d: %d\n",
f->f_lasti, opcode);}}#endif/* Main switch on opcode */switch(opcode) {/* BEWARE! It is essential that any operation that fails sets either x to NULL, err to nonzero, or why to anything but WHY_NOT, and that no operation that succeeds does this! *//* case STOP_CODE: this is an error! */case LOAD_FAST:
x =GETLOCAL(oparg);if(x != NULL) {Py_INCREF(x);PUSH(x);goto fast_next_opcode;}format_exc_check_arg(PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG,PyTuple_GetItem(co->co_varnames, oparg));break;case LOAD_CONST:
x =GETITEM(consts, oparg);Py_INCREF(x);PUSH(x);goto fast_next_opcode;PREDICTED_WITH_ARG(STORE_FAST);case STORE_FAST:
v =POP();SETLOCAL(oparg, v);goto fast_next_opcode;PREDICTED(POP_TOP);case POP_TOP:
v =POP();Py_DECREF(v);goto fast_next_opcode;case ROT_TWO:
v =TOP();
w =SECOND();SET_TOP(w);SET_SECOND(v);goto fast_next_opcode;case ROT_THREE:
v =TOP();
w =SECOND();
x =THIRD();SET_TOP(w);SET_SECOND(x);SET_THIRD(v);goto fast_next_opcode;case ROT_FOUR:
u =TOP();
v =SECOND();
w =THIRD();
x =FOURTH();SET_TOP(v);SET_SECOND(w);SET_THIRD(x);SET_FOURTH(u);goto fast_next_opcode;case DUP_TOP:
v =TOP();Py_INCREF(v);PUSH(v);goto fast_next_opcode;case DUP_TOPX:if(oparg ==2) {
x =TOP();Py_INCREF(x);
w =SECOND();Py_INCREF(w);STACKADJ(2);SET_TOP(x);SET_SECOND(w);goto fast_next_opcode;}else if(oparg ==3) {
x =TOP();Py_INCREF(x);
w =SECOND();Py_INCREF(w);
v =THIRD();Py_INCREF(v);STACKADJ(3);SET_TOP(x);SET_SECOND(w);SET_THIRD(v);goto fast_next_opcode;}Py_FatalError("invalid argument to DUP_TOPX"" (bytecode corruption?)");break;case UNARY_POSITIVE:
v =TOP();
x =PyNumber_Positive(v);Py_DECREF(v);SET_TOP(x);if(x != NULL)continue;break;case UNARY_NEGATIVE:
v =TOP();
x =PyNumber_Negative(v);Py_DECREF(v);SET_TOP(x);if(x != NULL)continue;break;case UNARY_NOT:
v =TOP();
err =PyObject_IsTrue(v);Py_DECREF(v);if(err ==0) {Py_INCREF(Py_True);SET_TOP(Py_True);continue;}else if(err >0) {Py_INCREF(Py_False);SET_TOP(Py_False);
err =0;continue;}STACKADJ(-1);break;case UNARY_CONVERT:
v =TOP();
x =PyObject_Repr(v);Py_DECREF(v);SET_TOP(x);if(x != NULL)continue;break;case UNARY_INVERT:
v =TOP();
x =PyNumber_Invert(v);Py_DECREF(v);SET_TOP(x);if(x != NULL)continue;break;case BINARY_POWER:
w =POP();
v =TOP();
x =PyNumber_Power(v, w, Py_None);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case BINARY_MULTIPLY:
w =POP();
v =TOP();
x =PyNumber_Multiply(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case BINARY_DIVIDE:if(!_Py_QnewFlag) {
w =POP();
v =TOP();
x =PyNumber_Divide(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;}/* -Qnew is in effect: fall through to BINARY_TRUE_DIVIDE */case BINARY_TRUE_DIVIDE:
w =POP();
v =TOP();
x =PyNumber_TrueDivide(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case BINARY_FLOOR_DIVIDE:
w =POP();
v =TOP();
x =PyNumber_FloorDivide(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case BINARY_MODULO:
w =POP();
v =TOP();
x =PyNumber_Remainder(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case BINARY_ADD:
w =POP();
v =TOP();if(PyInt_CheckExact(v) &&PyInt_CheckExact(w)) {/* INLINE: int + int */registerlong a, b, i;
a =PyInt_AS_LONG(v);
b =PyInt_AS_LONG(w);
i = a + b;if((i^a) <0&& (i^b) <0)goto slow_add;
x =PyInt_FromLong(i);}else{
slow_add:
x =PyNumber_Add(v, w);}Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case BINARY_SUBTRACT:
w =POP();
v =TOP();if(PyInt_CheckExact(v) &&PyInt_CheckExact(w)) {/* INLINE: int - int */registerlong a, b, i;
a =PyInt_AS_LONG(v);
b =PyInt_AS_LONG(w);
i = a - b;if((i^a) <0&& (i^~b) <0)goto slow_sub;
x =PyInt_FromLong(i);}else{
slow_sub:
x =PyNumber_Subtract(v, w);}Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case BINARY_SUBSCR:
w =POP();
v =TOP();if(PyList_CheckExact(v) &&PyInt_CheckExact(w)) {/* INLINE: list[int] */long i =PyInt_AsLong(w);if(i <0)
i +=PyList_GET_SIZE(v);if(i <0||
i >=PyList_GET_SIZE(v)) {PyErr_SetString(PyExc_IndexError,"list index out of range");
x = NULL;}else{
x =PyList_GET_ITEM(v, i);Py_INCREF(x);}}else
x =PyObject_GetItem(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case BINARY_LSHIFT:
w =POP();
v =TOP();
x =PyNumber_Lshift(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case BINARY_RSHIFT:
w =POP();
v =TOP();
x =PyNumber_Rshift(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case BINARY_AND:
w =POP();
v =TOP();
x =PyNumber_And(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case BINARY_XOR:
w =POP();
v =TOP();
x =PyNumber_Xor(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case BINARY_OR:
w =POP();
v =TOP();
x =PyNumber_Or(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case INPLACE_POWER:
w =POP();
v =TOP();
x =PyNumber_InPlacePower(v, w, Py_None);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case INPLACE_MULTIPLY:
w =POP();
v =TOP();
x =PyNumber_InPlaceMultiply(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case INPLACE_DIVIDE:if(!_Py_QnewFlag) {
w =POP();
v =TOP();
x =PyNumber_InPlaceDivide(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;}/* -Qnew is in effect: fall through to INPLACE_TRUE_DIVIDE */case INPLACE_TRUE_DIVIDE:
w =POP();
v =TOP();
x =PyNumber_InPlaceTrueDivide(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case INPLACE_FLOOR_DIVIDE:
w =POP();
v =TOP();
x =PyNumber_InPlaceFloorDivide(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case INPLACE_MODULO:
w =POP();
v =TOP();
x =PyNumber_InPlaceRemainder(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case INPLACE_ADD:
w =POP();
v =TOP();if(PyInt_CheckExact(v) &&PyInt_CheckExact(w)) {/* INLINE: int + int */registerlong a, b, i;
a =PyInt_AS_LONG(v);
b =PyInt_AS_LONG(w);
i = a + b;if((i^a) <0&& (i^b) <0)goto slow_iadd;
x =PyInt_FromLong(i);}else{
slow_iadd:
x =PyNumber_InPlaceAdd(v, w);}Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case INPLACE_SUBTRACT:
w =POP();
v =TOP();if(PyInt_CheckExact(v) &&PyInt_CheckExact(w)) {/* INLINE: int - int */registerlong a, b, i;
a =PyInt_AS_LONG(v);
b =PyInt_AS_LONG(w);
i = a - b;if((i^a) <0&& (i^~b) <0)goto slow_isub;
x =PyInt_FromLong(i);}else{
slow_isub:
x =PyNumber_InPlaceSubtract(v, w);}Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case INPLACE_LSHIFT:
w =POP();
v =TOP();
x =PyNumber_InPlaceLshift(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case INPLACE_RSHIFT:
w =POP();
v =TOP();
x =PyNumber_InPlaceRshift(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case INPLACE_AND:
w =POP();
v =TOP();
x =PyNumber_InPlaceAnd(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case INPLACE_XOR:
w =POP();
v =TOP();
x =PyNumber_InPlaceXor(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case INPLACE_OR:
w =POP();
v =TOP();
x =PyNumber_InPlaceOr(v, w);Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case SLICE+0:case SLICE+1:case SLICE+2:case SLICE+3:if((opcode-SLICE) &2)
w =POP();else
w = NULL;if((opcode-SLICE) &1)
v =POP();else
v = NULL;
u =TOP();
x =apply_slice(u, v, w);Py_DECREF(u);Py_XDECREF(v);Py_XDECREF(w);SET_TOP(x);if(x != NULL)continue;break;case STORE_SLICE+0:case STORE_SLICE+1:case STORE_SLICE+2:case STORE_SLICE+3:if((opcode-STORE_SLICE) &2)
w =POP();else
w = NULL;if((opcode-STORE_SLICE) &1)
v =POP();else
v = NULL;
u =POP();
t =POP();
err =assign_slice(u, v, w, t);/* u[v:w] = t */Py_DECREF(t);Py_DECREF(u);Py_XDECREF(v);Py_XDECREF(w);if(err ==0)continue;break;case DELETE_SLICE+0:case DELETE_SLICE+1:case DELETE_SLICE+2:case DELETE_SLICE+3:if((opcode-DELETE_SLICE) &2)
w =POP();else
w = NULL;if((opcode-DELETE_SLICE) &1)
v =POP();else
v = NULL;
u =POP();
err =assign_slice(u, v, w, (PyObject *)NULL);/* del u[v:w] */Py_DECREF(u);Py_XDECREF(v);Py_XDECREF(w);if(err ==0)continue;break;case STORE_SUBSCR:
w =TOP();
v =SECOND();
u =THIRD();STACKADJ(-3);/* v[w] = u */
err =PyObject_SetItem(v, w, u);Py_DECREF(u);Py_DECREF(v);Py_DECREF(w);if(err ==0)continue;break;case DELETE_SUBSCR:
w =TOP();
v =SECOND();STACKADJ(-2);/* del v[w] */
err =PyObject_DelItem(v, w);Py_DECREF(v);Py_DECREF(w);if(err ==0)continue;break;case PRINT_EXPR:
v =POP();
w =PySys_GetObject("displayhook");if(w == NULL) {PyErr_SetString(PyExc_RuntimeError,"lost sys.displayhook");
err = -1;
x = NULL;}if(err ==0) {
x =Py_BuildValue("(O)", v);if(x == NULL)
err = -1;}if(err ==0) {
w =PyEval_CallObject(w, x);Py_XDECREF(w);if(w == NULL)
err = -1;}Py_DECREF(v);Py_XDECREF(x);break;case PRINT_ITEM_TO:
w = stream =POP();/* fall through to PRINT_ITEM */case PRINT_ITEM:
v =POP();if(stream == NULL || stream == Py_None) {
w =PySys_GetObject("stdout");if(w == NULL) {PyErr_SetString(PyExc_RuntimeError,"lost sys.stdout");
err = -1;}}/* PyFile_SoftSpace() can exececute arbitrary code if sys.stdout is an instance with a __getattr__. If __getattr__ raises an exception, w will be freed, so we need to prevent that temporarily. */Py_XINCREF(w);if(w != NULL &&PyFile_SoftSpace(w,0))
err =PyFile_WriteString(" ", w);if(err ==0)
err =PyFile_WriteObject(v, w, Py_PRINT_RAW);if(err ==0) {/* XXX move into writeobject() ? */if(PyString_Check(v)) {char*s =PyString_AS_STRING(v);int len =PyString_GET_SIZE(v);if(len ==0||!isspace(Py_CHARMASK(s[len-1])) ||
s[len-1] ==' ')PyFile_SoftSpace(w,1);}#ifdef Py_USING_UNICODEelse if(PyUnicode_Check(v)) {
Py_UNICODE *s =PyUnicode_AS_UNICODE(v);int len =PyUnicode_GET_SIZE(v);if(len ==0||!Py_UNICODE_ISSPACE(s[len-1]) ||
s[len-1] ==' ')PyFile_SoftSpace(w,1);}#endifelsePyFile_SoftSpace(w,1);}Py_XDECREF(w);Py_DECREF(v);Py_XDECREF(stream);
stream = NULL;if(err ==0)continue;break;case PRINT_NEWLINE_TO:
w = stream =POP();/* fall through to PRINT_NEWLINE */case PRINT_NEWLINE:if(stream == NULL || stream == Py_None) {
w =PySys_GetObject("stdout");if(w == NULL)PyErr_SetString(PyExc_RuntimeError,"lost sys.stdout");}if(w != NULL) {
err =PyFile_WriteString("\n", w);if(err ==0)PyFile_SoftSpace(w,0);}Py_XDECREF(stream);
stream = NULL;break;#ifdef CASE_TOO_BIGdefault:switch(opcode) {#endifcase BREAK_LOOP:
why = WHY_BREAK;break;case CONTINUE_LOOP:
retval =PyInt_FromLong(oparg);
why = WHY_CONTINUE;break;case RAISE_VARARGS:
u = v = w = NULL;switch(oparg) {case3:
u =POP();/* traceback *//* Fallthrough */case2:
v =POP();/* value *//* Fallthrough */case1:
w =POP();/* exc */case0:/* Fallthrough */
why =do_raise(w, v, u);break;default:PyErr_SetString(PyExc_SystemError,"bad RAISE_VARARGS oparg");
why = WHY_EXCEPTION;break;}break;case LOAD_LOCALS:if((x = f->f_locals) == NULL) {PyErr_SetString(PyExc_SystemError,"no locals");break;}Py_INCREF(x);PUSH(x);break;case RETURN_VALUE:
retval =POP();
why = WHY_RETURN;break;case YIELD_VALUE:
retval =POP();
f->f_stacktop = stack_pointer;
why = WHY_YIELD;break;case EXEC_STMT:
w =TOP();
v =SECOND();
u =THIRD();STACKADJ(-3);
err =exec_statement(f, u, v, w);Py_DECREF(u);Py_DECREF(v);Py_DECREF(w);break;case POP_BLOCK:{
PyTryBlock *b =PyFrame_BlockPop(f);while(STACK_LEVEL() > b->b_level) {
v =POP();Py_DECREF(v);}}break;case END_FINALLY:
v =POP();if(PyInt_Check(v)) {
why = (enum why_code)PyInt_AS_LONG(v);if(why == WHY_RETURN ||
why == WHY_YIELD ||
why == WHY_CONTINUE)
retval =POP();}else if(PyString_Check(v) ||PyClass_Check(v)) {
w =POP();
u =POP();PyErr_Restore(v, w, u);
why = WHY_RERAISE;break;}else if(v != Py_None) {PyErr_SetString(PyExc_SystemError,"'finally' pops bad exception");
why = WHY_EXCEPTION;}Py_DECREF(v);break;case BUILD_CLASS:
u =TOP();
v =SECOND();
w =THIRD();STACKADJ(-2);
x =build_class(u, v, w);SET_TOP(x);Py_DECREF(u);Py_DECREF(v);Py_DECREF(w);break;case STORE_NAME:
w =GETITEM(names, oparg);
v =POP();if((x = f->f_locals) == NULL) {PyErr_Format(PyExc_SystemError,"no locals found when storing %s",PyObject_REPR(w));break;}
err =PyDict_SetItem(x, w, v);Py_DECREF(v);break;case DELETE_NAME:
w =GETITEM(names, oparg);if((x = f->f_locals) == NULL) {PyErr_Format(PyExc_SystemError,"no locals when deleting %s",PyObject_REPR(w));break;}if((err =PyDict_DelItem(x, w)) !=0)format_exc_check_arg(PyExc_NameError,
NAME_ERROR_MSG ,w);break;PREDICTED_WITH_ARG(UNPACK_SEQUENCE);case UNPACK_SEQUENCE:
v =POP();if(PyTuple_CheckExact(v)) {if(PyTuple_Size(v) != oparg) {PyErr_SetString(PyExc_ValueError,"unpack tuple of wrong size");
why = WHY_EXCEPTION;}else{for(; --oparg >=0; ) {
w =PyTuple_GET_ITEM(v, oparg);Py_INCREF(w);PUSH(w);}}}else if(PyList_CheckExact(v)) {if(PyList_Size(v) != oparg) {PyErr_SetString(PyExc_ValueError,"unpack list of wrong size");
why = WHY_EXCEPTION;}else{for(; --oparg >=0; ) {
w =PyList_GET_ITEM(v, oparg);Py_INCREF(w);PUSH(w);}}}else if(unpack_iterable(v, oparg,
stack_pointer + oparg))
stack_pointer += oparg;else{if(PyErr_ExceptionMatches(PyExc_TypeError))PyErr_SetString(PyExc_TypeError,"unpack non-sequence");
why = WHY_EXCEPTION;}Py_DECREF(v);break;case STORE_ATTR:
w =GETITEM(names, oparg);
v =TOP();
u =SECOND();STACKADJ(-2);
err =PyObject_SetAttr(v, w, u);/* v.w = u */Py_DECREF(v);Py_DECREF(u);break;case DELETE_ATTR:
w =GETITEM(names, oparg);
v =POP();
err =PyObject_SetAttr(v, w, (PyObject *)NULL);/* del v.w */Py_DECREF(v);break;case STORE_GLOBAL:
w =GETITEM(names, oparg);
v =POP();
err =PyDict_SetItem(f->f_globals, w, v);Py_DECREF(v);break;case DELETE_GLOBAL:
w =GETITEM(names, oparg);if((err =PyDict_DelItem(f->f_globals, w)) !=0)format_exc_check_arg(
PyExc_NameError, GLOBAL_NAME_ERROR_MSG, w);break;case LOAD_NAME:
w =GETITEM(names, oparg);if((x = f->f_locals) == NULL) {PyErr_Format(PyExc_SystemError,"no locals when loading %s",PyObject_REPR(w));break;}
x =PyDict_GetItem(x, w);if(x == NULL) {
x =PyDict_GetItem(f->f_globals, w);if(x == NULL) {
x =PyDict_GetItem(f->f_builtins, w);if(x == NULL) {format_exc_check_arg(
PyExc_NameError,
NAME_ERROR_MSG ,w);break;}}}Py_INCREF(x);PUSH(x);break;case LOAD_GLOBAL:
w =GETITEM(names, oparg);if(PyString_CheckExact(w)) {/* Inline the PyDict_GetItem() calls. WARNING: this is an extreme speed hack. Do not try this at home. */long hash = ((PyStringObject *)w)->ob_shash;if(hash != -1) {
PyDictObject *d;
d = (PyDictObject *)(f->f_globals);
x = d->ma_lookup(d, w, hash)->me_value;if(x != NULL) {Py_INCREF(x);PUSH(x);continue;}
d = (PyDictObject *)(f->f_builtins);
x = d->ma_lookup(d, w, hash)->me_value;if(x != NULL) {Py_INCREF(x);PUSH(x);continue;}goto load_global_error;}}/* This is the un-inlined version of the code above */
x =PyDict_GetItem(f->f_globals, w);if(x == NULL) {
x =PyDict_GetItem(f->f_builtins, w);if(x == NULL) {
load_global_error:format_exc_check_arg(
PyExc_NameError,
GLOBAL_NAME_ERROR_MSG, w);break;}}Py_INCREF(x);PUSH(x);break;case DELETE_FAST:
x =GETLOCAL(oparg);if(x == NULL) {format_exc_check_arg(
PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG,PyTuple_GetItem(co->co_varnames, oparg));break;}SETLOCAL(oparg, NULL);continue;case LOAD_CLOSURE:
x = freevars[oparg];Py_INCREF(x);PUSH(x);break;case LOAD_DEREF:
x = freevars[oparg];
w =PyCell_Get(x);if(w == NULL) {
err = -1;/* Don't stomp existing exception */if(PyErr_Occurred())break;if(oparg < f->f_ncells) {
v =PyTuple_GetItem(co->co_cellvars,
oparg);format_exc_check_arg(
PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG,
v);}else{
v =PyTuple_GetItem(
co->co_freevars,
oparg - f->f_ncells);format_exc_check_arg(
PyExc_NameError,
UNBOUNDFREE_ERROR_MSG,
v);}break;}PUSH(w);break;case STORE_DEREF:
w =POP();
x = freevars[oparg];PyCell_Set(x, w);Py_DECREF(w);continue;case BUILD_TUPLE:
x =PyTuple_New(oparg);if(x != NULL) {for(; --oparg >=0;) {
w =POP();PyTuple_SET_ITEM(x, oparg, w);}PUSH(x);continue;}break;case BUILD_LIST:
x =PyList_New(oparg);if(x != NULL) {for(; --oparg >=0;) {
w =POP();PyList_SET_ITEM(x, oparg, w);}PUSH(x);continue;}break;case BUILD_MAP:
x =PyDict_New();PUSH(x);if(x != NULL)continue;break;case LOAD_ATTR:
w =GETITEM(names, oparg);
v =TOP();
x =PyObject_GetAttr(v, w);Py_DECREF(v);SET_TOP(x);if(x != NULL)continue;break;case COMPARE_OP:
w =POP();
v =TOP();if(PyInt_CheckExact(w) &&PyInt_CheckExact(v)) {/* INLINE: cmp(int, int) */registerlong a, b;registerint res;
a =PyInt_AS_LONG(v);
b =PyInt_AS_LONG(w);switch(oparg) {case PyCmp_LT: res = a < b;break;case PyCmp_LE: res = a <= b;break;case PyCmp_EQ: res = a == b;break;case PyCmp_NE: res = a != b;break;case PyCmp_GT: res = a > b;break;case PyCmp_GE: res = a >= b;break;case PyCmp_IS: res = v == w;break;case PyCmp_IS_NOT: res = v != w;break;default:goto slow_compare;}
x = res ? Py_True : Py_False;Py_INCREF(x);}else{
slow_compare:
x =cmp_outcome(oparg, v, w);}Py_DECREF(v);Py_DECREF(w);SET_TOP(x);if(x == NULL)break;PREDICT(JUMP_IF_FALSE);PREDICT(JUMP_IF_TRUE);continue;case IMPORT_NAME:
w =GETITEM(names, oparg);
x =PyDict_GetItemString(f->f_builtins,"__import__");if(x == NULL) {PyErr_SetString(PyExc_ImportError,"__import__ not found");break;}
u =TOP();
w =Py_BuildValue("(OOOO)",
w,
f->f_globals,
f->f_locals == NULL ?
Py_None : f->f_locals,
u);Py_DECREF(u);if(w == NULL) {
u =POP();
x = NULL;break;}
x =PyEval_CallObject(x, w);Py_DECREF(w);SET_TOP(x);if(x != NULL)continue;break;case IMPORT_STAR:
v =POP();PyFrame_FastToLocals(f);if((x = f->f_locals) == NULL) {PyErr_SetString(PyExc_SystemError,"no locals found during 'import *'");break;}
err =import_all_from(x, v);PyFrame_LocalsToFast(f,0);Py_DECREF(v);if(err ==0)continue;break;case IMPORT_FROM:
w =GETITEM(names, oparg);
v =TOP();
x =import_from(v, w);PUSH(x);if(x != NULL)continue;break;case JUMP_FORWARD:JUMPBY(oparg);goto fast_next_opcode;PREDICTED_WITH_ARG(JUMP_IF_FALSE);case JUMP_IF_FALSE:
w =TOP();if(w == Py_True) {PREDICT(POP_TOP);goto fast_next_opcode;}if(w == Py_False) {JUMPBY(oparg);goto fast_next_opcode;}
err =PyObject_IsTrue(w);if(err >0)
err =0;else if(err ==0)JUMPBY(oparg);elsebreak;continue;PREDICTED_WITH_ARG(JUMP_IF_TRUE);case JUMP_IF_TRUE:
w =TOP();if(w == Py_False) {PREDICT(POP_TOP);goto fast_next_opcode;}if(w == Py_True) {JUMPBY(oparg);goto fast_next_opcode;}
err =PyObject_IsTrue(w);if(err >0) {
err =0;JUMPBY(oparg);}else if(err ==0);elsebreak;continue;case JUMP_ABSOLUTE:JUMPTO(oparg);continue;case GET_ITER:/* before: [obj]; after [getiter(obj)] */
v =TOP();
x =PyObject_GetIter(v);Py_DECREF(v);if(x != NULL) {SET_TOP(x);PREDICT(FOR_ITER);continue;}STACKADJ(-1);break;PREDICTED_WITH_ARG(FOR_ITER);case FOR_ITER:/* before: [iter]; after: [iter, iter()] *or* [] */
v =TOP();
x =PyIter_Next(v);if(x != NULL) {PUSH(x);PREDICT(STORE_FAST);PREDICT(UNPACK_SEQUENCE);continue;}if(!PyErr_Occurred()) {/* iterator ended normally */
x = v =POP();Py_DECREF(v);JUMPBY(oparg);continue;}break;case SETUP_LOOP:case SETUP_EXCEPT:case SETUP_FINALLY:PyFrame_BlockSetup(f, opcode,INSTR_OFFSET() + oparg,STACK_LEVEL());continue;case CALL_FUNCTION:PCALL(PCALL_ALL);
x =call_function(&stack_pointer, oparg);PUSH(x);if(x != NULL)continue;break;case CALL_FUNCTION_VAR:case CALL_FUNCTION_KW:case CALL_FUNCTION_VAR_KW:{int na = oparg &0xff;int nk = (oparg>>8) &0xff;int flags = (opcode - CALL_FUNCTION) &3;int n = na +2* nk;
PyObject **pfunc, *func;PCALL(PCALL_ALL);if(flags & CALL_FLAG_VAR)
n++;if(flags & CALL_FLAG_KW)
n++;
pfunc = stack_pointer - n -1;
func = *pfunc;if(PyMethod_Check(func)&&PyMethod_GET_SELF(func) != NULL) {
PyObject *self =PyMethod_GET_SELF(func);Py_INCREF(self);
func =PyMethod_GET_FUNCTION(func);Py_INCREF(func);Py_DECREF(*pfunc);*pfunc = self;
na++;
n++;}elsePy_INCREF(func);
x =ext_do_call(func, &stack_pointer, flags, na, nk);Py_DECREF(func);while(stack_pointer > pfunc) {
w =POP();Py_DECREF(w);}PUSH(x);if(x != NULL)continue;break;}case MAKE_FUNCTION:
v =POP();/* code object */
x =PyFunction_New(v, f->f_globals);Py_DECREF(v);/* XXX Maybe this should be a separate opcode? */if(x != NULL && oparg >0) {
v =PyTuple_New(oparg);if(v == NULL) {Py_DECREF(x);
x = NULL;break;}while(--oparg >=0) {
w =POP();PyTuple_SET_ITEM(v, oparg, w);}
err =PyFunction_SetDefaults(x, v);Py_DECREF(v);}PUSH(x);break;case MAKE_CLOSURE:{int nfree;
v =POP();/* code object */
x =PyFunction_New(v, f->f_globals);
nfree =PyCode_GetNumFree((PyCodeObject *)v);Py_DECREF(v);/* XXX Maybe this should be a separate opcode? */if(x != NULL && nfree >0) {
v =PyTuple_New(nfree);if(v == NULL) {Py_DECREF(x);
x = NULL;break;}while(--nfree >=0) {
w =POP();PyTuple_SET_ITEM(v, nfree, w);}
err =PyFunction_SetClosure(x, v);Py_DECREF(v);}if(x != NULL && oparg >0) {
v =PyTuple_New(oparg);if(v == NULL) {Py_DECREF(x);
x = NULL;break;}while(--oparg >=0) {
w =POP();PyTuple_SET_ITEM(v, oparg, w);}
err =PyFunction_SetDefaults(x, v);Py_DECREF(v);}PUSH(x);break;}case BUILD_SLICE:if(oparg ==3)
w =POP();else
w = NULL;
v =POP();
u =TOP();
x =PySlice_New(u, v, w);Py_DECREF(u);Py_DECREF(v);Py_XDECREF(w);SET_TOP(x);if(x != NULL)continue;break;case EXTENDED_ARG:
opcode =NEXTOP();
oparg = oparg<<16|NEXTARG();goto dispatch_opcode;default:fprintf(stderr,"XXX lineno: %d, opcode: %d\n",PyCode_Addr2Line(f->f_code, f->f_lasti),
opcode);PyErr_SetString(PyExc_SystemError,"unknown opcode");
why = WHY_EXCEPTION;break;#ifdef CASE_TOO_BIG}#endif}/* switch */
on_error:/* Quickly continue if no error occurred */if(why == WHY_NOT) {if(err ==0&& x != NULL) {#ifdef CHECKEXC/* This check is expensive! */if(PyErr_Occurred())fprintf(stderr,"XXX undetected error\n");else#endifcontinue;/* Normal, fast path */}
why = WHY_EXCEPTION;
x = Py_None;
err =0;}/* Double-check exception status */if(why == WHY_EXCEPTION || why == WHY_RERAISE) {if(!PyErr_Occurred()) {PyErr_SetString(PyExc_SystemError,"error return without exception set");
why = WHY_EXCEPTION;}}#ifdef CHECKEXCelse{/* This check is expensive! */if(PyErr_Occurred()) {fprintf(stderr,"XXX undetected error (why=%d)\n",
why);
why = WHY_EXCEPTION;}}#endif/* Log traceback info if this is a real exception */if(why == WHY_EXCEPTION) {PyTraceBack_Here(f);if(tstate->c_tracefunc != NULL)call_exc_trace(tstate->c_tracefunc,
tstate->c_traceobj, f);}/* For the rest, treat WHY_RERAISE as WHY_EXCEPTION */if(why == WHY_RERAISE)
why = WHY_EXCEPTION;/* Unwind stacks if a (pseudo) exception occurred */while(why != WHY_NOT && why != WHY_YIELD && f->f_iblock >0) {
PyTryBlock *b =PyFrame_BlockPop(f);if(b->b_type == SETUP_LOOP && why == WHY_CONTINUE) {/* For a continue inside a try block, don't pop the block for the loop. */PyFrame_BlockSetup(f, b->b_type, b->b_handler,
b->b_level);
why = WHY_NOT;JUMPTO(PyInt_AS_LONG(retval));Py_DECREF(retval);break;}while(STACK_LEVEL() > b->b_level) {
v =POP();Py_XDECREF(v);}if(b->b_type == SETUP_LOOP && why == WHY_BREAK) {
why = WHY_NOT;JUMPTO(b->b_handler);break;}if(b->b_type == SETUP_FINALLY ||(b->b_type == SETUP_EXCEPT &&
why == WHY_EXCEPTION)) {if(why == WHY_EXCEPTION) {
PyObject *exc, *val, *tb;PyErr_Fetch(&exc, &val, &tb);if(val == NULL) {
val = Py_None;Py_INCREF(val);}/* Make the raw exception data available to the handler, so a program can emulate the Python main loop. Don't do this for 'finally'. */if(b->b_type == SETUP_EXCEPT) {PyErr_NormalizeException(&exc, &val, &tb);set_exc_info(tstate,
exc, val, tb);}if(tb == NULL) {Py_INCREF(Py_None);PUSH(Py_None);}elsePUSH(tb);PUSH(val);PUSH(exc);}else{if(why == WHY_RETURN ||
why == WHY_CONTINUE)PUSH(retval);
v =PyInt_FromLong((long)why);PUSH(v);}
why = WHY_NOT;JUMPTO(b->b_handler);break;}}/* unwind stack *//* End the loop if we still have an error (or return) */if(why != WHY_NOT)break;}/* main loop */if(why != WHY_YIELD) {/* Pop remaining stack entries -- but when yielding */while(!EMPTY()) {
v =POP();Py_XDECREF(v);}}if(why != WHY_RETURN && why != WHY_YIELD)
retval = NULL;if(tstate->use_tracing) {if(tstate->c_tracefunc
&& (why == WHY_RETURN || why == WHY_YIELD)) {if(call_trace(tstate->c_tracefunc,
tstate->c_traceobj, f,
PyTrace_RETURN, retval)) {Py_XDECREF(retval);
retval = NULL;
why = WHY_EXCEPTION;}}if(tstate->c_profilefunc) {if(why == WHY_EXCEPTION)call_trace_protected(tstate->c_profilefunc,
tstate->c_profileobj, f,
PyTrace_RETURN);else if(call_trace(tstate->c_profilefunc,
tstate->c_profileobj, f,
PyTrace_RETURN, retval)) {Py_XDECREF(retval);
retval = NULL;
why = WHY_EXCEPTION;}}}reset_exc_info(tstate);/* pop frame */--tstate->recursion_depth;
tstate->frame = f->f_back;return retval;}
PyObject *PyEval_EvalCodeEx(PyCodeObject *co, PyObject *globals, PyObject *locals,
PyObject **args,int argcount, PyObject **kws,int kwcount,
PyObject **defs,int defcount, PyObject *closure){register PyFrameObject *f;register PyObject *retval = NULL;register PyObject **fastlocals, **freevars;
PyThreadState *tstate =PyThreadState_GET();
PyObject *x, *u;if(globals == NULL) {PyErr_SetString(PyExc_SystemError,"PyEval_EvalCodeEx: NULL globals");return NULL;}assert(globals != NULL);
f =PyFrame_New(tstate, co, globals, locals);if(f == NULL)return NULL;
fastlocals = f->f_localsplus;
freevars = f->f_localsplus + f->f_nlocals;if(co->co_argcount >0||
co->co_flags & (CO_VARARGS | CO_VARKEYWORDS)) {int i;int n = argcount;
PyObject *kwdict = NULL;if(co->co_flags & CO_VARKEYWORDS) {
kwdict =PyDict_New();if(kwdict == NULL)goto fail;
i = co->co_argcount;if(co->co_flags & CO_VARARGS)
i++;SETLOCAL(i, kwdict);}if(argcount > co->co_argcount) {if(!(co->co_flags & CO_VARARGS)) {PyErr_Format(PyExc_TypeError,"%.200s() takes %s %d ""%sargument%s (%d given)",PyString_AsString(co->co_name),
defcount ? "at most":"exactly",
co->co_argcount,
kwcount ? "non-keyword ":"",
co->co_argcount ==1 ? "":"s",
argcount);goto fail;}
n = co->co_argcount;}for(i =0; i < n; i++) {
x = args[i];Py_INCREF(x);SETLOCAL(i, x);}if(co->co_flags & CO_VARARGS) {
u =PyTuple_New(argcount - n);if(u == NULL)goto fail;SETLOCAL(co->co_argcount, u);for(i = n; i < argcount; i++) {
x = args[i];Py_INCREF(x);PyTuple_SET_ITEM(u, i-n, x);}}for(i =0; i < kwcount; i++) {
PyObject *keyword = kws[2*i];
PyObject *value = kws[2*i +1];int j;if(keyword == NULL || !PyString_Check(keyword)) {PyErr_Format(PyExc_TypeError,"%.200s() keywords must be strings",PyString_AsString(co->co_name));goto fail;}/* XXX slow -- speed up using dictionary? */for(j =0; j < co->co_argcount; j++) {
PyObject *nm =PyTuple_GET_ITEM(
co->co_varnames, j);int cmp =PyObject_RichCompareBool(
keyword, nm, Py_EQ);if(cmp >0)break;else if(cmp <0)goto fail;}/* Check errors from Compare */if(PyErr_Occurred())goto fail;if(j >= co->co_argcount) {if(kwdict == NULL) {PyErr_Format(PyExc_TypeError,"%.200s() got an unexpected ""keyword argument '%.400s'",PyString_AsString(co->co_name),PyString_AsString(keyword));goto fail;}PyDict_SetItem(kwdict, keyword, value);}else{if(GETLOCAL(j) != NULL) {PyErr_Format(PyExc_TypeError,"%.200s() got multiple ""values for keyword ""argument '%.400s'",PyString_AsString(co->co_name),PyString_AsString(keyword));goto fail;}Py_INCREF(value);SETLOCAL(j, value);}}if(argcount < co->co_argcount) {int m = co->co_argcount - defcount;for(i = argcount; i < m; i++) {if(GETLOCAL(i) == NULL) {PyErr_Format(PyExc_TypeError,"%.200s() takes %s %d ""%sargument%s (%d given)",PyString_AsString(co->co_name),((co->co_flags & CO_VARARGS) ||
defcount) ? "at least":"exactly",
m, kwcount ? "non-keyword ":"",
m ==1 ? "":"s", i);goto fail;}}if(n > m)
i = n - m;else
i =0;for(; i < defcount; i++) {if(GETLOCAL(m+i) == NULL) {
PyObject *def = defs[i];Py_INCREF(def);SETLOCAL(m+i, def);}}}}else{if(argcount >0|| kwcount >0) {PyErr_Format(PyExc_TypeError,"%.200s() takes no arguments (%d given)",PyString_AsString(co->co_name),
argcount + kwcount);goto fail;}}/* Allocate and initialize storage for cell vars, and copy free vars into frame. This isn't too efficient right now. */if(f->f_ncells) {int i =0, j =0, nargs, found;char*cellname, *argname;
PyObject *c;
nargs = co->co_argcount;if(co->co_flags & CO_VARARGS)
nargs++;if(co->co_flags & CO_VARKEYWORDS)
nargs++;/* Check for cells that shadow args */for(i =0; i < f->f_ncells && j < nargs; ++i) {
cellname =PyString_AS_STRING(PyTuple_GET_ITEM(co->co_cellvars, i));
found =0;while(j < nargs) {
argname =PyString_AS_STRING(PyTuple_GET_ITEM(co->co_varnames, j));if(strcmp(cellname, argname) ==0) {
c =PyCell_New(GETLOCAL(j));if(c == NULL)goto fail;GETLOCAL(f->f_nlocals + i) = c;
found =1;break;}
j++;}if(found ==0) {
c =PyCell_New(NULL);if(c == NULL)goto fail;SETLOCAL(f->f_nlocals + i, c);}}/* Initialize any that are left */while(i < f->f_ncells) {
c =PyCell_New(NULL);if(c == NULL)goto fail;SETLOCAL(f->f_nlocals + i, c);
i++;}}if(f->f_nfreevars) {int i;for(i =0; i < f->f_nfreevars; ++i) {
PyObject *o =PyTuple_GET_ITEM(closure, i);Py_INCREF(o);
freevars[f->f_ncells + i] = o;}}if(co->co_flags & CO_GENERATOR) {/* Don't need to keep the reference to f_back, it will be set * when the generator is resumed. */Py_XDECREF(f->f_back);
f->f_back = NULL;PCALL(PCALL_GENERATOR);/* Create a new generator that owns the ready to run frame * and return that as the value. */returngen_new(f);}
retval =eval_frame(f);
fail:/* Jump here from prelude on failure *//* decref'ing the frame can cause __del__ methods to get invoked, which can call back into Python. While we're done with the current Python frame (f), the associated C stack is still in use, so recursion_depth must be boosted for the duration. */assert(tstate != NULL);++tstate->recursion_depth;Py_DECREF(f);--tstate->recursion_depth;return retval;}/* Implementation notes for set_exc_info() and reset_exc_info():- Below, 'exc_ZZZ' stands for 'exc_type', 'exc_value' and 'exc_traceback'. These always travel together.- tstate->curexc_ZZZ is the "hot" exception that is set by PyErr_SetString(), cleared by PyErr_Clear(), and so on.- Once an exception is caught by an except clause, it is transferred from tstate->curexc_ZZZ to tstate->exc_ZZZ, from which sys.exc_info() can pick it up. This is the primary task of set_exc_info().- Now let me explain the complicated dance with frame->f_exc_ZZZ. Long ago, when none of this existed, there were just a few globals: one set corresponding to the "hot" exception, and one set corresponding to sys.exc_ZZZ. (Actually, the latter weren't C globals; they were simply stored as sys.exc_ZZZ. For backwards compatibility, they still are!) The problem was that in code like this: try: "something that may fail" except "some exception": "do something else first" "print the exception from sys.exc_ZZZ." if "do something else first" invoked something that raised and caught an exception, sys.exc_ZZZ were overwritten. That was a frequent cause of subtle bugs. I fixed this by changing the semantics as follows: - Within one frame, sys.exc_ZZZ will hold the last exception caught *in that frame*. - But initially, and as long as no exception is caught in a given frame, sys.exc_ZZZ will hold the last exception caught in the previous frame (or the frame before that, etc.). The first bullet fixed the bug in the above example. The second bullet was for backwards compatibility: it was (and is) common to have a function that is called when an exception is caught, and to have that function access the caught exception via sys.exc_ZZZ. (Example: traceback.print_exc()). At the same time I fixed the problem that sys.exc_ZZZ weren't thread-safe, by introducing sys.exc_info() which gets it from tstate; but that's really a separate improvement. The reset_exc_info() function in ceval.c restores the tstate->exc_ZZZ variables to what they were before the current frame was called. The set_exc_info() function saves them on the frame so that reset_exc_info() can restore them. The invariant is that frame->f_exc_ZZZ is NULL iff the current frame never caught an exception (where "catching" an exception applies only to successful except clauses); and if the current frame ever caught an exception, frame->f_exc_ZZZ is the exception that was stored in tstate->exc_ZZZ at the start of the current frame.*/static voidset_exc_info(PyThreadState *tstate,
PyObject *type, PyObject *value, PyObject *tb){
PyFrameObject *frame;
PyObject *tmp_type, *tmp_value, *tmp_tb;
frame = tstate->frame;if(frame->f_exc_type == NULL) {/* This frame didn't catch an exception before *//* Save previous exception of this thread in this frame */if(tstate->exc_type == NULL) {Py_INCREF(Py_None);
tstate->exc_type = Py_None;}
tmp_type = frame->f_exc_type;
tmp_value = frame->f_exc_value;
tmp_tb = frame->f_exc_traceback;Py_XINCREF(tstate->exc_type);Py_XINCREF(tstate->exc_value);Py_XINCREF(tstate->exc_traceback);
frame->f_exc_type = tstate->exc_type;
frame->f_exc_value = tstate->exc_value;
frame->f_exc_traceback = tstate->exc_traceback;Py_XDECREF(tmp_type);Py_XDECREF(tmp_value);Py_XDECREF(tmp_tb);}/* Set new exception for this thread */
tmp_type = tstate->exc_type;
tmp_value = tstate->exc_value;
tmp_tb = tstate->exc_traceback;Py_XINCREF(type);Py_XINCREF(value);Py_XINCREF(tb);
tstate->exc_type = type;
tstate->exc_value = value;
tstate->exc_traceback = tb;Py_XDECREF(tmp_type);Py_XDECREF(tmp_value);Py_XDECREF(tmp_tb);/* For b/w compatibility */PySys_SetObject("exc_type", type);PySys_SetObject("exc_value", value);PySys_SetObject("exc_traceback", tb);}static voidreset_exc_info(PyThreadState *tstate){
PyFrameObject *frame;
PyObject *tmp_type, *tmp_value, *tmp_tb;
frame = tstate->frame;if(frame->f_exc_type != NULL) {/* This frame caught an exception */
tmp_type = tstate->exc_type;
tmp_value = tstate->exc_value;
tmp_tb = tstate->exc_traceback;Py_XINCREF(frame->f_exc_type);Py_XINCREF(frame->f_exc_value);Py_XINCREF(frame->f_exc_traceback);
tstate->exc_type = frame->f_exc_type;
tstate->exc_value = frame->f_exc_value;
tstate->exc_traceback = frame->f_exc_traceback;Py_XDECREF(tmp_type);Py_XDECREF(tmp_value);Py_XDECREF(tmp_tb);/* For b/w compatibility */PySys_SetObject("exc_type", frame->f_exc_type);PySys_SetObject("exc_value", frame->f_exc_value);PySys_SetObject("exc_traceback", frame->f_exc_traceback);}
tmp_type = frame->f_exc_type;
tmp_value = frame->f_exc_value;
tmp_tb = frame->f_exc_traceback;
frame->f_exc_type = NULL;
frame->f_exc_value = NULL;
frame->f_exc_traceback = NULL;Py_XDECREF(tmp_type);Py_XDECREF(tmp_value);Py_XDECREF(tmp_tb);}/* Logic for the raise statement (too complicated for inlining). This *consumes* a reference count to each of its arguments. */static enum why_code
do_raise(PyObject *type, PyObject *value, PyObject *tb){if(type == NULL) {/* Reraise */
PyThreadState *tstate =PyThreadState_Get();
type = tstate->exc_type == NULL ? Py_None : tstate->exc_type;
value = tstate->exc_value;
tb = tstate->exc_traceback;Py_XINCREF(type);Py_XINCREF(value);Py_XINCREF(tb);}/* We support the following forms of raise: raise <class>, <classinstance> raise <class>, <argument tuple> raise <class>, None raise <class>, <argument> raise <classinstance>, None raise <string>, <object> raise <string>, None An omitted second argument is the same as None. In addition, raise <tuple>, <anything> is the same as raising the tuple's first item (and it better have one!); this rule is applied recursively. Finally, an optional third argument can be supplied, which gives the traceback to be substituted (useful when re-raising an exception after examining it). *//* First, check the traceback argument, replacing None with NULL. */if(tb == Py_None) {Py_DECREF(tb);
tb = NULL;}else if(tb != NULL && !PyTraceBack_Check(tb)) {PyErr_SetString(PyExc_TypeError,"raise: arg 3 must be a traceback or None");goto raise_error;}/* Next, replace a missing value with None */if(value == NULL) {
value = Py_None;Py_INCREF(value);}/* Next, repeatedly, replace a tuple exception with its first item */while(PyTuple_Check(type) &&PyTuple_Size(type) >0) {
PyObject *tmp = type;
type =PyTuple_GET_ITEM(type,0);Py_INCREF(type);Py_DECREF(tmp);}if(PyString_CheckExact(type))/* Raising builtin string is deprecated but still allowed -- * do nothing. Raising an instance of a new-style str * subclass is right out. */PyErr_Warn(PyExc_PendingDeprecationWarning,"raising a string exception is deprecated");else if(PyClass_Check(type))PyErr_NormalizeException(&type, &value, &tb);else if(PyInstance_Check(type)) {/* Raising an instance. The value should be a dummy. */if(value != Py_None) {PyErr_SetString(PyExc_TypeError,"instance exception may not have a separate value");goto raise_error;}else{/* Normalize to raise <class>, <instance> */Py_DECREF(value);
value = type;
type = (PyObject*) ((PyInstanceObject*)type)->in_class;Py_INCREF(type);}}else{/* Not something you can raise. You get an exception anyway, just not what you specified :-) */PyErr_Format(PyExc_TypeError,"exceptions must be classes, instances, or ""strings (deprecated), not %s",
type->ob_type->tp_name);goto raise_error;}PyErr_Restore(type, value, tb);if(tb == NULL)return WHY_EXCEPTION;elsereturn WHY_RERAISE;
raise_error:Py_XDECREF(value);Py_XDECREF(type);Py_XDECREF(tb);return WHY_EXCEPTION;}/* Iterate v argcnt times and store the results on the stack (via decreasing sp). Return 1 for success, 0 if error. */static intunpack_iterable(PyObject *v,int argcnt, PyObject **sp){int i =0;
PyObject *it;/* iter(v) */
PyObject *w;assert(v != NULL);
it =PyObject_GetIter(v);if(it == NULL)goto Error;for(; i < argcnt; i++) {
w =PyIter_Next(it);if(w == NULL) {/* Iterator done, via error or exhaustion. */if(!PyErr_Occurred()) {PyErr_Format(PyExc_ValueError,"need more than %d value%s to unpack",
i, i ==1 ? "":"s");}goto Error;}*--sp = w;}/* We better have exhausted the iterator now. */
w =PyIter_Next(it);if(w == NULL) {if(PyErr_Occurred())goto Error;Py_DECREF(it);return1;}Py_DECREF(w);PyErr_SetString(PyExc_ValueError,"too many values to unpack");/* fall through */
Error:for(; i >0; i--, sp++)Py_DECREF(*sp);Py_XDECREF(it);return0;}#ifdef LLTRACEstatic intprtrace(PyObject *v,char*str){printf("%s ", str);if(PyObject_Print(v, stdout,0) !=0)PyErr_Clear();/* Don't know what else to do */printf("\n");return1;}#endifstatic voidcall_exc_trace(Py_tracefunc func, PyObject *self, PyFrameObject *f){
PyObject *type, *value, *traceback, *arg;int err;PyErr_Fetch(&type, &value, &traceback);if(value == NULL) {
value = Py_None;Py_INCREF(value);}
arg =Py_BuildValue("(OOO)", type, value, traceback);if(arg == NULL) {PyErr_Restore(type, value, traceback);return;}
err =call_trace(func, self, f, PyTrace_EXCEPTION, arg);Py_DECREF(arg);if(err ==0)PyErr_Restore(type, value, traceback);else{Py_XDECREF(type);Py_XDECREF(value);Py_XDECREF(traceback);}}static voidcall_trace_protected(Py_tracefunc func, PyObject *obj, PyFrameObject *frame,int what){
PyObject *type, *value, *traceback;int err;PyErr_Fetch(&type, &value, &traceback);
err =call_trace(func, obj, frame, what, NULL);if(err ==0)PyErr_Restore(type, value, traceback);else{Py_XDECREF(type);Py_XDECREF(value);Py_XDECREF(traceback);}}static intcall_trace(Py_tracefunc func, PyObject *obj, PyFrameObject *frame,int what, PyObject *arg){register PyThreadState *tstate = frame->f_tstate;int result;if(tstate->tracing)return0;
tstate->tracing++;
tstate->use_tracing =0;
result =func(obj, frame, what, arg);
tstate->use_tracing = ((tstate->c_tracefunc != NULL)|| (tstate->c_profilefunc != NULL));
tstate->tracing--;return result;}
PyObject *_PyEval_CallTracing(PyObject *func, PyObject *args){
PyFrameObject *frame =PyEval_GetFrame();
PyThreadState *tstate = frame->f_tstate;int save_tracing = tstate->tracing;int save_use_tracing = tstate->use_tracing;
PyObject *result;
tstate->tracing =0;
tstate->use_tracing = ((tstate->c_tracefunc != NULL)|| (tstate->c_profilefunc != NULL));
result =PyObject_Call(func, args, NULL);
tstate->tracing = save_tracing;
tstate->use_tracing = save_use_tracing;return result;}static intmaybe_call_line_trace(Py_tracefunc func, PyObject *obj,
PyFrameObject *frame,int*instr_lb,int*instr_ub){/* The theory of SET_LINENO-less tracing. In a nutshell, we use the co_lnotab field of the code object to tell when execution has moved onto a different line. As mentioned above, the basic idea is so set things up so that *instr_lb <= frame->f_lasti < *instr_ub is true so long as execution does not change lines. This is all fairly simple. Digging the information out of co_lnotab takes some work, but is conceptually clear. Somewhat harder to explain is why we don't *always* call the line trace function when the above test fails. Consider this code: 1: def f(a): 2: if a: 3: print 1 4: else: 5: print 2 which compiles to this: 2 0 LOAD_FAST 0 (a) 3 JUMP_IF_FALSE 9 (to 15) 6 POP_TOP 3 7 LOAD_CONST 1 (1) 10 PRINT_ITEM 11 PRINT_NEWLINE 12 JUMP_FORWARD 6 (to 21) >> 15 POP_TOP 5 16 LOAD_CONST 2 (2) 19 PRINT_ITEM 20 PRINT_NEWLINE >> 21 LOAD_CONST 0 (None) 24 RETURN_VALUE If 'a' is false, execution will jump to instruction at offset 15 and the co_lnotab will claim that execution has moved to line 3. This is at best misleading. In this case we could associate the POP_TOP with line 4, but that doesn't make sense in all cases (I think). What we do is only call the line trace function if the co_lnotab indicates we have jumped to the *start* of a line, i.e. if the current instruction offset matches the offset given for the start of a line by the co_lnotab. This also takes care of the situation where 'a' is true. Execution will jump from instruction offset 12 to offset 21. Then the co_lnotab would imply that execution has moved to line 5, which is again misleading. Why do we set f_lineno when tracing? Well, consider the code above when 'a' is true. If stepping through this with 'n' in pdb, you would stop at line 1 with a "call" type event, then line events on lines 2 and 3, then a "return" type event -- but you would be shown line 5 during this event. This is a change from the behaviour in 2.2 and before, and I've found it confusing in practice. By setting and using f_lineno when tracing, one can report a line number different from that suggested by f_lasti on this one occasion where it's desirable. */int result =0;if((frame->f_lasti < *instr_lb || frame->f_lasti >= *instr_ub)) {
PyCodeObject* co = frame->f_code;int size, addr, line;unsigned char* p;
size =PyString_GET_SIZE(co->co_lnotab) /2;
p = (unsigned char*)PyString_AS_STRING(co->co_lnotab);
addr =0;
line = co->co_firstlineno;/* possible optimization: if f->f_lasti == instr_ub (likely to be a common case) then we already know instr_lb -- if we stored the matching value of p somwhere we could skip the first while loop. *//* see comments in compile.c for the description of co_lnotab. A point to remember: increments to p should come in pairs -- although we don't care about the line increments here, treating them as byte increments gets confusing, to say the least. */while(size >0) {if(addr + *p > frame->f_lasti)break;
addr += *p++;if(*p) *instr_lb = addr;
line += *p++;--size;}if(addr == frame->f_lasti) {
frame->f_lineno = line;
result =call_trace(func, obj, frame,
PyTrace_LINE, Py_None);}if(size >0) {while(--size >=0) {
addr += *p++;if(*p++)break;}*instr_ub = addr;}else{*instr_ub = INT_MAX;}}return result;}voidPyEval_SetProfile(Py_tracefunc func, PyObject *arg){
PyThreadState *tstate =PyThreadState_Get();
PyObject *temp = tstate->c_profileobj;Py_XINCREF(arg);
tstate->c_profilefunc = NULL;
tstate->c_profileobj = NULL;
tstate->use_tracing = tstate->c_tracefunc != NULL;Py_XDECREF(temp);
tstate->c_profilefunc = func;
tstate->c_profileobj = arg;
tstate->use_tracing = (func != NULL) || (tstate->c_tracefunc != NULL);}voidPyEval_SetTrace(Py_tracefunc func, PyObject *arg){
PyThreadState *tstate =PyThreadState_Get();
PyObject *temp = tstate->c_traceobj;Py_XINCREF(arg);
tstate->c_tracefunc = NULL;
tstate->c_traceobj = NULL;
tstate->use_tracing = tstate->c_profilefunc != NULL;Py_XDECREF(temp);
tstate->c_tracefunc = func;
tstate->c_traceobj = arg;
tstate->use_tracing = ((func != NULL)|| (tstate->c_profilefunc != NULL));}
PyObject *PyEval_GetBuiltins(void){
PyFrameObject *current_frame =PyEval_GetFrame();if(current_frame == NULL)returnPyThreadState_Get()->interp->builtins;elsereturn current_frame->f_builtins;}
PyObject *PyEval_GetLocals(void){
PyFrameObject *current_frame =PyEval_GetFrame();if(current_frame == NULL)return NULL;PyFrame_FastToLocals(current_frame);return current_frame->f_locals;}
PyObject *PyEval_GetGlobals(void){
PyFrameObject *current_frame =PyEval_GetFrame();if(current_frame == NULL)return NULL;elsereturn current_frame->f_globals;}
PyFrameObject *PyEval_GetFrame(void){
PyThreadState *tstate =PyThreadState_Get();return_PyThreadState_GetFrame(tstate);}intPyEval_GetRestricted(void){
PyFrameObject *current_frame =PyEval_GetFrame();return current_frame == NULL ? 0: current_frame->f_restricted;}intPyEval_MergeCompilerFlags(PyCompilerFlags *cf){
PyFrameObject *current_frame =PyEval_GetFrame();int result = cf->cf_flags !=0;if(current_frame != NULL) {const int codeflags = current_frame->f_code->co_flags;const int compilerflags = codeflags & PyCF_MASK;if(compilerflags) {
result =1;
cf->cf_flags |= compilerflags;}#if 0/* future keyword */if(codeflags & CO_GENERATOR_ALLOWED) {
result =1;
cf->cf_flags |= CO_GENERATOR_ALLOWED;}#endif}return result;}intPy_FlushLine(void){
PyObject *f =PySys_GetObject("stdout");if(f == NULL)return0;if(!PyFile_SoftSpace(f,0))return0;returnPyFile_WriteString("\n", f);}/* External interface to call any callable object. The arg must be a tuple or NULL. */#undef PyEval_CallObject/* for backward compatibility: export this interface */
PyObject *PyEval_CallObject(PyObject *func, PyObject *arg){returnPyEval_CallObjectWithKeywords(func, arg, (PyObject *)NULL);}#define PyEval_CallObject(func,arg) \ PyEval_CallObjectWithKeywords(func, arg, (PyObject *)NULL)
PyObject *PyEval_CallObjectWithKeywords(PyObject *func, PyObject *arg, PyObject *kw){
PyObject *result;if(arg == NULL)
arg =PyTuple_New(0);else if(!PyTuple_Check(arg)) {PyErr_SetString(PyExc_TypeError,"argument list must be a tuple");return NULL;}elsePy_INCREF(arg);if(kw != NULL && !PyDict_Check(kw)) {PyErr_SetString(PyExc_TypeError,"keyword list must be a dictionary");Py_DECREF(arg);return NULL;}
result =PyObject_Call(func, arg, kw);Py_DECREF(arg);return result;}char*PyEval_GetFuncName(PyObject *func){if(PyMethod_Check(func))returnPyEval_GetFuncName(PyMethod_GET_FUNCTION(func));else if(PyFunction_Check(func))returnPyString_AsString(((PyFunctionObject*)func)->func_name);else if(PyCFunction_Check(func))return((PyCFunctionObject*)func)->m_ml->ml_name;else if(PyClass_Check(func))returnPyString_AsString(((PyClassObject*)func)->cl_name);else if(PyInstance_Check(func)) {returnPyString_AsString(((PyInstanceObject*)func)->in_class->cl_name);}else{return func->ob_type->tp_name;}}char*PyEval_GetFuncDesc(PyObject *func){if(PyMethod_Check(func))return"()";else if(PyFunction_Check(func))return"()";else if(PyCFunction_Check(func))return"()";else if(PyClass_Check(func))return" constructor";else if(PyInstance_Check(func)) {return" instance";}else{return" object";}}#define EXT_POP(STACK_POINTER) (*--(STACK_POINTER))static voiderr_args(PyObject *func,int flags,int nargs){if(flags & METH_NOARGS)PyErr_Format(PyExc_TypeError,"%.200s() takes no arguments (%d given)",((PyCFunctionObject *)func)->m_ml->ml_name,
nargs);elsePyErr_Format(PyExc_TypeError,"%.200s() takes exactly one argument (%d given)",((PyCFunctionObject *)func)->m_ml->ml_name,
nargs);}static PyObject *call_function(PyObject ***pp_stack,int oparg){int na = oparg &0xff;int nk = (oparg>>8) &0xff;int n = na +2* nk;
PyObject **pfunc = (*pp_stack) - n -1;
PyObject *func = *pfunc;
PyObject *x, *w;/* Always dispatch PyCFunction first, because these are presumed to be the most frequent callable object. */if(PyCFunction_Check(func) && nk ==0) {int flags =PyCFunction_GET_FLAGS(func);PCALL(PCALL_CFUNCTION);if(flags & (METH_NOARGS | METH_O)) {
PyCFunction meth =PyCFunction_GET_FUNCTION(func);
PyObject *self =PyCFunction_GET_SELF(func);if(flags & METH_NOARGS && na ==0)
x = (*meth)(self, NULL);else if(flags & METH_O && na ==1) {
PyObject *arg =EXT_POP(*pp_stack);
x = (*meth)(self, arg);Py_DECREF(arg);}else{err_args(func, flags, na);
x = NULL;}}else{
PyObject *callargs;
callargs =load_args(pp_stack, na);
x =PyCFunction_Call(func, callargs, NULL);Py_XDECREF(callargs);}}else{if(PyMethod_Check(func) &&PyMethod_GET_SELF(func) != NULL) {/* optimize access to bound methods */
PyObject *self =PyMethod_GET_SELF(func);PCALL(PCALL_METHOD);PCALL(PCALL_BOUND_METHOD);Py_INCREF(self);
func =PyMethod_GET_FUNCTION(func);Py_INCREF(func);Py_DECREF(*pfunc);*pfunc = self;
na++;
n++;}elsePy_INCREF(func);if(PyFunction_Check(func))
x =fast_function(func, pp_stack, n, na, nk);else
x =do_call(func, pp_stack, na, nk);Py_DECREF(func);}/* What does this do? */while((*pp_stack) > pfunc) {
w =EXT_POP(*pp_stack);Py_DECREF(w);PCALL(PCALL_POP);}return x;}/* The fast_function() function optimize calls for which no argument tuple is necessary; the objects are passed directly from the stack. For the simplest case -- a function that takes only positional arguments and is called with only positional arguments -- it inlines the most primitive frame setup code from PyEval_EvalCodeEx(), which vastly reduces the checks that must be done before evaluating the frame.*/static PyObject *fast_function(PyObject *func, PyObject ***pp_stack,int n,int na,int nk){
PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func);
PyObject *globals =PyFunction_GET_GLOBALS(func);
PyObject *argdefs =PyFunction_GET_DEFAULTS(func);
PyObject **d = NULL;int nd =0;PCALL(PCALL_FUNCTION);PCALL(PCALL_FAST_FUNCTION);if(argdefs == NULL && co->co_argcount == n && nk==0&&
co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) {
PyFrameObject *f;
PyObject *retval = NULL;
PyThreadState *tstate =PyThreadState_GET();
PyObject **fastlocals, **stack;int i;PCALL(PCALL_FASTER_FUNCTION);assert(globals != NULL);/* XXX Perhaps we should create a specialized PyFrame_New() that doesn't take locals, but does take builtins without sanity checking them. */
f =PyFrame_New(tstate, co, globals, NULL);if(f == NULL)return NULL;
fastlocals = f->f_localsplus;
stack = (*pp_stack) - n;for(i =0; i < n; i++) {Py_INCREF(*stack);
fastlocals[i] = *stack++;}
retval =eval_frame(f);assert(tstate != NULL);++tstate->recursion_depth;Py_DECREF(f);--tstate->recursion_depth;return retval;}if(argdefs != NULL) {
d = &PyTuple_GET_ITEM(argdefs,0);
nd = ((PyTupleObject *)argdefs)->ob_size;}returnPyEval_EvalCodeEx(co, globals,(PyObject *)NULL, (*pp_stack)-n, na,(*pp_stack)-2*nk, nk, d, nd,PyFunction_GET_CLOSURE(func));}static PyObject *update_keyword_args(PyObject *orig_kwdict,int nk, PyObject ***pp_stack,
PyObject *func){
PyObject *kwdict = NULL;if(orig_kwdict == NULL)
kwdict =PyDict_New();else{
kwdict =PyDict_Copy(orig_kwdict);Py_DECREF(orig_kwdict);}if(kwdict == NULL)return NULL;while(--nk >=0) {int err;
PyObject *value =EXT_POP(*pp_stack);
PyObject *key =EXT_POP(*pp_stack);if(PyDict_GetItem(kwdict, key) != NULL) {PyErr_Format(PyExc_TypeError,"%.200s%s got multiple values ""for keyword argument '%.200s'",PyEval_GetFuncName(func),PyEval_GetFuncDesc(func),PyString_AsString(key));Py_DECREF(key);Py_DECREF(value);Py_DECREF(kwdict);return NULL;}
err =PyDict_SetItem(kwdict, key, value);Py_DECREF(key);Py_DECREF(value);if(err) {Py_DECREF(kwdict);return NULL;}}return kwdict;}static PyObject *update_star_args(int nstack,int nstar, PyObject *stararg,
PyObject ***pp_stack){
PyObject *callargs, *w;
callargs =PyTuple_New(nstack + nstar);if(callargs == NULL) {return NULL;}if(nstar) {int i;for(i =0; i < nstar; i++) {
PyObject *a =PyTuple_GET_ITEM(stararg, i);Py_INCREF(a);PyTuple_SET_ITEM(callargs, nstack + i, a);}}while(--nstack >=0) {
w =EXT_POP(*pp_stack);PyTuple_SET_ITEM(callargs, nstack, w);}return callargs;}static PyObject *load_args(PyObject ***pp_stack,int na){
PyObject *args =PyTuple_New(na);
PyObject *w;if(args == NULL)return NULL;while(--na >=0) {
w =EXT_POP(*pp_stack);PyTuple_SET_ITEM(args, na, w);}return args;}static PyObject *do_call(PyObject *func, PyObject ***pp_stack,int na,int nk){
PyObject *callargs = NULL;
PyObject *kwdict = NULL;
PyObject *result = NULL;if(nk >0) {
kwdict =update_keyword_args(NULL, nk, pp_stack, func);if(kwdict == NULL)goto call_fail;}
callargs =load_args(pp_stack, na);if(callargs == NULL)goto call_fail;#ifdef CALL_PROFILE/* At this point, we have to look at the type of func to update the call stats properly. Do it here so as to avoid exposing the call stats machinery outside ceval.c */if(PyFunction_Check(func))PCALL(PCALL_FUNCTION);else if(PyMethod_Check(func))PCALL(PCALL_METHOD);else if(PyType_Check(func))PCALL(PCALL_TYPE);elsePCALL(PCALL_OTHER);#endif
result =PyObject_Call(func, callargs, kwdict);
call_fail:Py_XDECREF(callargs);Py_XDECREF(kwdict);return result;}static PyObject *ext_do_call(PyObject *func, PyObject ***pp_stack,int flags,int na,int nk){int nstar =0;
PyObject *callargs = NULL;
PyObject *stararg = NULL;
PyObject *kwdict = NULL;
PyObject *result = NULL;if(flags & CALL_FLAG_KW) {
kwdict =EXT_POP(*pp_stack);if(!(kwdict &&PyDict_Check(kwdict))) {PyErr_Format(PyExc_TypeError,"%s%s argument after ** ""must be a dictionary",PyEval_GetFuncName(func),PyEval_GetFuncDesc(func));goto ext_call_fail;}}if(flags & CALL_FLAG_VAR) {
stararg =EXT_POP(*pp_stack);if(!PyTuple_Check(stararg)) {
PyObject *t = NULL;
t =PySequence_Tuple(stararg);if(t == NULL) {if(PyErr_ExceptionMatches(PyExc_TypeError)) {PyErr_Format(PyExc_TypeError,"%s%s argument after * ""must be a sequence",PyEval_GetFuncName(func),PyEval_GetFuncDesc(func));}goto ext_call_fail;}Py_DECREF(stararg);
stararg = t;}
nstar =PyTuple_GET_SIZE(stararg);}if(nk >0) {
kwdict =update_keyword_args(kwdict, nk, pp_stack, func);if(kwdict == NULL)goto ext_call_fail;}
callargs =update_star_args(na, nstar, stararg, pp_stack);if(callargs == NULL)goto ext_call_fail;#ifdef CALL_PROFILE/* At this point, we have to look at the type of func to update the call stats properly. Do it here so as to avoid exposing the call stats machinery outside ceval.c */if(PyFunction_Check(func))PCALL(PCALL_FUNCTION);else if(PyMethod_Check(func))PCALL(PCALL_METHOD);else if(PyType_Check(func))PCALL(PCALL_TYPE);elsePCALL(PCALL_OTHER);#endif
result =PyObject_Call(func, callargs, kwdict);
ext_call_fail:Py_XDECREF(callargs);Py_XDECREF(kwdict);Py_XDECREF(stararg);return result;}#define SLICE_ERROR_MSG \"standard sequence type does not support step size other than one"/* Extract a slice index from a PyInt or PyLong, and store in *pi. Silently reduce values larger than INT_MAX to INT_MAX, and silently boost values less than -INT_MAX to 0. Return 0 on error, 1 on success.*//* Note: If v is NULL, return success without storing into *pi. This is because_PyEval_SliceIndex() is called by apply_slice(), which can be called by the SLICE opcode with v and/or w equal to NULL.*/int_PyEval_SliceIndex(PyObject *v,int*pi){if(v != NULL) {long x;if(PyInt_Check(v)) {
x =PyInt_AsLong(v);}else if(PyLong_Check(v)) {
x =PyLong_AsLong(v);if(x==-1&&PyErr_Occurred()) {
PyObject *long_zero;int cmp;if(!PyErr_ExceptionMatches(
PyExc_OverflowError)) {/* It's not an overflow error, so just signal an error */return0;}/* Clear the OverflowError */PyErr_Clear();/* It's an overflow error, so we need to check the sign of the long integer, set the value to INT_MAX or -INT_MAX, and clear the error. *//* Create a long integer with a value of 0 */
long_zero =PyLong_FromLong(0L);if(long_zero == NULL)return0;/* Check sign */
cmp =PyObject_RichCompareBool(v, long_zero,
Py_GT);Py_DECREF(long_zero);if(cmp <0)return0;else if(cmp)
x = INT_MAX;else
x = -INT_MAX;}}else{PyErr_SetString(PyExc_TypeError,"slice indices must be integers");return0;}/* Truncate -- very long indices are truncated anyway */if(x > INT_MAX)
x = INT_MAX;else if(x < -INT_MAX)
x = -INT_MAX;*pi = x;}return1;}#undef ISINT#define ISINT(x) ((x) == NULL || PyInt_Check(x) || PyLong_Check(x))static PyObject *apply_slice(PyObject *u, PyObject *v, PyObject *w)/* return u[v:w] */{
PyTypeObject *tp = u->ob_type;
PySequenceMethods *sq = tp->tp_as_sequence;if(sq && sq->sq_slice &&ISINT(v) &&ISINT(w)) {int ilow =0, ihigh = INT_MAX;if(!_PyEval_SliceIndex(v, &ilow))return NULL;if(!_PyEval_SliceIndex(w, &ihigh))return NULL;returnPySequence_GetSlice(u, ilow, ihigh);}else{
PyObject *slice =PySlice_New(v, w, NULL);if(slice != NULL) {
PyObject *res =PyObject_GetItem(u, slice);Py_DECREF(slice);return res;}elsereturn NULL;}}static intassign_slice(PyObject *u, PyObject *v, PyObject *w, PyObject *x)/* u[v:w] = x */{
PyTypeObject *tp = u->ob_type;
PySequenceMethods *sq = tp->tp_as_sequence;if(sq && sq->sq_slice &&ISINT(v) &&ISINT(w)) {int ilow =0, ihigh = INT_MAX;if(!_PyEval_SliceIndex(v, &ilow))return-1;if(!_PyEval_SliceIndex(w, &ihigh))return-1;if(x == NULL)returnPySequence_DelSlice(u, ilow, ihigh);elsereturnPySequence_SetSlice(u, ilow, ihigh, x);}else{
PyObject *slice =PySlice_New(v, w, NULL);if(slice != NULL) {int res;if(x != NULL)
res =PyObject_SetItem(u, slice, x);else
res =PyObject_DelItem(u, slice);Py_DECREF(slice);return res;}elsereturn-1;}}static PyObject *cmp_outcome(int op,register PyObject *v,register PyObject *w){int res =0;switch(op) {case PyCmp_IS:
res = (v == w);break;case PyCmp_IS_NOT:
res = (v != w);break;case PyCmp_IN:
res =PySequence_Contains(w, v);if(res <0)return NULL;break;case PyCmp_NOT_IN:
res =PySequence_Contains(w, v);if(res <0)return NULL;
res = !res;break;case PyCmp_EXC_MATCH:
res =PyErr_GivenExceptionMatches(v, w);break;default:returnPyObject_RichCompare(v, w, op);}
v = res ? Py_True : Py_False;Py_INCREF(v);return v;}static PyObject *import_from(PyObject *v, PyObject *name){
PyObject *x;
x =PyObject_GetAttr(v, name);if(x == NULL &&PyErr_ExceptionMatches(PyExc_AttributeError)) {PyErr_Format(PyExc_ImportError,"cannot import name %.230s",PyString_AsString(name));}return x;}static intimport_all_from(PyObject *locals, PyObject *v){
PyObject *all =PyObject_GetAttrString(v,"__all__");
PyObject *dict, *name, *value;int skip_leading_underscores =0;int pos, err;if(all == NULL) {if(!PyErr_ExceptionMatches(PyExc_AttributeError))return-1;/* Unexpected error */PyErr_Clear();
dict =PyObject_GetAttrString(v,"__dict__");if(dict == NULL) {if(!PyErr_ExceptionMatches(PyExc_AttributeError))return-1;PyErr_SetString(PyExc_ImportError,"from-import-* object has no __dict__ and no __all__");return-1;}
all =PyMapping_Keys(dict);Py_DECREF(dict);if(all == NULL)return-1;
skip_leading_underscores =1;}for(pos =0, err =0; ; pos++) {
name =PySequence_GetItem(all, pos);if(name == NULL) {if(!PyErr_ExceptionMatches(PyExc_IndexError))
err = -1;elsePyErr_Clear();break;}if(skip_leading_underscores &&PyString_Check(name) &&PyString_AS_STRING(name)[0] =='_'){Py_DECREF(name);continue;}
value =PyObject_GetAttr(v, name);if(value == NULL)
err = -1;else
err =PyDict_SetItem(locals, name, value);Py_DECREF(name);Py_XDECREF(value);if(err !=0)break;}Py_DECREF(all);return err;}static PyObject *build_class(PyObject *methods, PyObject *bases, PyObject *name){
PyObject *metaclass = NULL, *result, *base;if(PyDict_Check(methods))
metaclass =PyDict_GetItemString(methods,"__metaclass__");if(metaclass != NULL)Py_INCREF(metaclass);else if(PyTuple_Check(bases) &&PyTuple_GET_SIZE(bases) >0) {
base =PyTuple_GET_ITEM(bases,0);
metaclass =PyObject_GetAttrString(base,"__class__");if(metaclass == NULL) {PyErr_Clear();
metaclass = (PyObject *)base->ob_type;Py_INCREF(metaclass);}}else{
PyObject *g =PyEval_GetGlobals();if(g != NULL &&PyDict_Check(g))
metaclass =PyDict_GetItemString(g,"__metaclass__");if(metaclass == NULL)
metaclass = (PyObject *) &PyClass_Type;Py_INCREF(metaclass);}
result =PyObject_CallFunction(metaclass,"OOO", name, bases, methods);Py_DECREF(metaclass);return result;}static intexec_statement(PyFrameObject *f, PyObject *prog, PyObject *globals,
PyObject *locals){int n;
PyObject *v;int plain =0;if(PyTuple_Check(prog) && globals == Py_None && locals == Py_None &&((n =PyTuple_Size(prog)) ==2|| n ==3)) {/* Backward compatibility hack */
globals =PyTuple_GetItem(prog,1);if(n ==3)
locals =PyTuple_GetItem(prog,2);
prog =PyTuple_GetItem(prog,0);}if(globals == Py_None) {
globals =PyEval_GetGlobals();if(locals == Py_None) {
locals =PyEval_GetLocals();
plain =1;}}else if(locals == Py_None)
locals = globals;if(!PyString_Check(prog) &&!PyUnicode_Check(prog) &&!PyCode_Check(prog) &&!PyFile_Check(prog)) {PyErr_SetString(PyExc_TypeError,"exec: arg 1 must be a string, file, or code object");return-1;}if(!PyDict_Check(globals)) {PyErr_SetString(PyExc_TypeError,"exec: arg 2 must be a dictionary or None");return-1;}if(!PyDict_Check(locals)) {PyErr_SetString(PyExc_TypeError,"exec: arg 3 must be a dictionary or None");return-1;}if(PyDict_GetItemString(globals,"__builtins__") == NULL)PyDict_SetItemString(globals,"__builtins__", f->f_builtins);if(PyCode_Check(prog)) {if(PyCode_GetNumFree((PyCodeObject *)prog) >0) {PyErr_SetString(PyExc_TypeError,"code object passed to exec may not contain free variables");return-1;}
v =PyEval_EvalCode((PyCodeObject *) prog, globals, locals);}else if(PyFile_Check(prog)) {FILE*fp =PyFile_AsFile(prog);char*name =PyString_AsString(PyFile_Name(prog));
PyCompilerFlags cf;
cf.cf_flags =0;if(PyEval_MergeCompilerFlags(&cf))
v =PyRun_FileFlags(fp, name, Py_file_input, globals,
locals, &cf);else
v =PyRun_File(fp, name, Py_file_input, globals,
locals);}else{
PyObject *tmp = NULL;char*str;
PyCompilerFlags cf;
cf.cf_flags =0;#ifdef Py_USING_UNICODEif(PyUnicode_Check(prog)) {
tmp =PyUnicode_AsUTF8String(prog);if(tmp == NULL)return-1;
prog = tmp;
cf.cf_flags |= PyCF_SOURCE_IS_UTF8;}#endifif(PyString_AsStringAndSize(prog, &str, NULL))return-1;if(PyEval_MergeCompilerFlags(&cf))
v =PyRun_StringFlags(str, Py_file_input, globals,
locals, &cf);else
v =PyRun_String(str, Py_file_input, globals, locals);Py_XDECREF(tmp);}if(plain)PyFrame_LocalsToFast(f,0);if(v == NULL)return-1;Py_DECREF(v);return0;}static voidformat_exc_check_arg(PyObject *exc,char*format_str, PyObject *obj){char*obj_str;if(!obj)return;
obj_str =PyString_AsString(obj);if(!obj_str)return;PyErr_Format(exc, format_str, obj_str);}#ifdef DYNAMIC_EXECUTION_PROFILEstatic PyObject *getarray(long a[256]){int i;
PyObject *l =PyList_New(256);if(l == NULL)return NULL;for(i =0; i <256; i++) {
PyObject *x =PyInt_FromLong(a[i]);if(x == NULL) {Py_DECREF(l);return NULL;}PyList_SetItem(l, i, x);}for(i =0; i <256; i++)
a[i] =0;return l;}
PyObject *_Py_GetDXProfile(PyObject *self, PyObject *args){#ifndef DXPAIRSreturngetarray(dxp);#elseint i;
PyObject *l =PyList_New(257);if(l == NULL)return NULL;for(i =0; i <257; i++) {
PyObject *x =getarray(dxpairs[i]);if(x == NULL) {Py_DECREF(l);return NULL;}PyList_SetItem(l, i, x);}return l;#endif}#endif