summaryrefslogtreecommitdiffstats
path: root/Python/errors.c
blob: 5a9a624279ddf86430bed890f122890da46adcfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889

/* Error handling */

#include "Python.h"

#ifndef __STDC__
#ifndef MS_WINDOWS
extern char *strerror(int);
#endif
#endif

#ifdef MS_WINDOWS
#include <windows.h>
#include <winbase.h>
#endif

#include <ctype.h>

#ifdef __cplusplus
extern "C" {
#endif


void
PyErr_Restore(PyObject *type, PyObject *value, PyObject *traceback)
{
    PyThreadState *tstate = PyThreadState_GET();
    PyObject *oldtype, *oldvalue, *oldtraceback;

    if (traceback != NULL && !PyTraceBack_Check(traceback)) {
        /* XXX Should never happen -- fatal error instead? */
        /* Well, it could be None. */
        Py_DECREF(traceback);
        traceback = NULL;
    }

    /* Save these in locals to safeguard against recursive
       invocation through Py_XDECREF */
    oldtype = tstate->curexc_type;
    oldvalue = tstate->curexc_value;
    oldtraceback = tstate->curexc_traceback;

    tstate->curexc_type = type;
    tstate->curexc_value = value;
    tstate->curexc_traceback = traceback;

    Py_XDECREF(oldtype);
    Py_XDECREF(oldvalue);
    Py_XDECREF(oldtraceback);
}

void
PyErr_SetObject(PyObject *exception, PyObject *value)
{
    PyThreadState *tstate = PyThreadState_GET();
    PyObject *exc_value;
    PyObject *tb = NULL;

    if (exception != NULL &&
        !PyExceptionClass_Check(exception)) {
        PyErr_Format(PyExc_SystemError,
                     "exception %R not a BaseException subclass",
                     exception);
        return;
    }
    Py_XINCREF(value);
    exc_value = tstate->exc_value;
    if (exc_value != NULL && exc_value != Py_None) {
        /* Implicit exception chaining */
        Py_INCREF(exc_value);
        if (value == NULL || !PyExceptionInstance_Check(value)) {
            /* We must normalize the value right now */
            PyObject *args, *fixed_value;
            if (value == NULL || value == Py_None)
                args = PyTuple_New(0);
            else if (PyTuple_Check(value)) {
                Py_INCREF(value);
                args = value;
            }
            else
                args = PyTuple_Pack(1, value);
            fixed_value = args ?
                PyEval_CallObject(exception, args) : NULL;
            Py_XDECREF(args);
            Py_XDECREF(value);
            if (fixed_value == NULL)
                return;
            value = fixed_value;
        }
        /* Avoid reference cycles through the context chain.
           This is O(chain length) but context chains are
           usually very short. Sensitive readers may try
           to inline the call to PyException_GetContext. */
        if (exc_value != value) {
            PyObject *o = exc_value, *context;
            while ((context = PyException_GetContext(o))) {
                Py_DECREF(context);
                if (context == value) {
                    PyException_SetContext(o, NULL);
                    break;
                }
                o = context;
            }
            PyException_SetContext(value, exc_value);
        } else {
            Py_DECREF(exc_value);
        }
    }
    if (value != NULL && PyExceptionInstance_Check(value))
        tb = PyException_GetTraceback(value);
    Py_XINCREF(exception);
    PyErr_Restore(exception, value, tb);
}

void
PyErr_SetNone(PyObject *exception)
{
    PyErr_SetObject(exception, (PyObject *)NULL);
}

void
PyErr_SetString(PyObject *exception, const char *string)
{
    PyObject *value = PyUnicode_FromString(string);
    PyErr_SetObject(exception, value);
    Py_XDECREF(value);
}


PyObject *
PyErr_Occurred(void)
{
    /* If there is no thread state, PyThreadState_GET calls
       Py_FatalError, which calls PyErr_Occurred.  To avoid the
       resulting infinite loop, we inline PyThreadState_GET here and
       treat no thread as no error. */
    PyThreadState *tstate =
        ((PyThreadState*)_Py_atomic_load_relaxed(&_PyThreadState_Current));

    return tstate == NULL ? NULL : tstate->curexc_type;
}


int
PyErr_GivenExceptionMatches(PyObject *err, PyObject *exc)
{
    if (err == NULL || exc == NULL) {
        /* maybe caused by "import exceptions" that failed early on */
        return 0;
    }
    if (PyTuple_Check(exc)) {
        Py_ssize_t i, n;
        n = PyTuple_Size(exc);
        for (i = 0; i < n; i++) {
            /* Test recursively */
             if (PyErr_GivenExceptionMatches(
                 err, PyTuple_GET_ITEM(exc, i)))
             {
                 return 1;
             }
        }
        return 0;
    }
    /* err might be an instance, so check its class. */
    if (PyExceptionInstance_Check(err))
        err = PyExceptionInstance_Class(err);

    if (PyExceptionClass_Check(err) && PyExceptionClass_Check(exc)) {
        int res = 0;
        PyObject *exception, *value, *tb;
        PyErr_Fetch(&exception, &value, &tb);
        /* PyObject_IsSubclass() can recurse and therefore is
           not safe (see test_bad_getattr in test.pickletester). */
        res = PyType_IsSubtype((PyTypeObject *)err, (PyTypeObject *)exc);
        /* This function must not fail, so print the error here */
        if (res == -1) {
            PyErr_WriteUnraisable(err);
            res = 0;
        }
        PyErr_Restore(exception, value, tb);
        return res;
    }

    return err == exc;
}


int
PyErr_ExceptionMatches(PyObject *exc)
{
    return PyErr_GivenExceptionMatches(PyErr_Occurred(), exc);
}


/* Used in many places to normalize a raised exception, including in
   eval_code2(), do_raise(), and PyErr_Print()

   XXX: should PyErr_NormalizeException() also call
            PyException_SetTraceback() with the resulting value and tb?
*/
void
PyErr_NormalizeException(PyObject **exc, PyObject **val, PyObject **tb)
{
    PyObject *type = *exc;
    PyObject *value = *val;
    PyObject *inclass = NULL;
    PyObject *initial_tb = NULL;
    PyThreadState *tstate = NULL;

    if (type == NULL) {
        /* There was no exception, so nothing to do. */
        return;
    }

    /* If PyErr_SetNone() was used, the value will have been actually
       set to NULL.
    */
    if (!value) {
        value = Py_None;
        Py_INCREF(value);
    }

    if (PyExceptionInstance_Check(value))
        inclass = PyExceptionInstance_Class(value);

    /* Normalize the exception so that if the type is a class, the
       value will be an instance.
    */
    if (PyExceptionClass_Check(type)) {
        /* if the value was not an instance, or is not an instance
           whose class is (or is derived from) type, then use the
           value as an argument to instantiation of the type
           class.
        */
        if (!inclass || !PyObject_IsSubclass(inclass, type)) {
            PyObject *args, *res;

            if (value == Py_None)
                args = PyTuple_New(0);
            else if (PyTuple_Check(value)) {
                Py_INCREF(value);
                args = value;
            }
            else
                args = PyTuple_Pack(1, value);

            if (args == NULL)
                goto finally;
            res = PyEval_CallObject(type, args);
            Py_DECREF(args);
            if (res == NULL)
                goto finally;
            Py_DECREF(value);
            value = res;
        }
        /* if the class of the instance doesn't exactly match the
           class of the type, believe the instance
        */
        else if (inclass != type) {
            Py_DECREF(type);
            type = inclass;
            Py_INCREF(type);
        }
    }
    *exc = type;
    *val = value;
    return;
finally:
    Py_DECREF(type);
    Py_DECREF(value);
    /* If the new exception doesn't set a traceback and the old
       exception had a traceback, use the old traceback for the
       new exception.  It's better than nothing.
    */
    initial_tb = *tb;
    PyErr_Fetch(exc, val, tb);
    if (initial_tb != NULL) {
        if (*tb == NULL)
            *tb = initial_tb;
        else
            Py_DECREF(initial_tb);
    }
    /* normalize recursively */
    tstate = PyThreadState_GET();
    if (++tstate->recursion_depth > Py_GetRecursionLimit()) {
        --tstate->recursion_depth;
        /* throw away the old exception... */
        Py_DECREF(*exc);
        Py_DECREF(*val);
        /* ... and use the recursion error instead */
        *exc = PyExc_RuntimeError;
        *val = PyExc_RecursionErrorInst;
        Py_INCREF(*exc);
        Py_INCREF(*val);
        /* just keeping the old traceback */
        return;
    }
    PyErr_NormalizeException(exc, val, tb);
    --tstate->recursion_depth;
}


void
PyErr_Fetch(PyObject **p_type, PyObject **p_value, PyObject **p_traceback)
{
    PyThreadState *tstate = PyThreadState_GET();

    *p_type = tstate->curexc_type;
    *p_value = tstate->curexc_value;
    *p_traceback = tstate->curexc_traceback;

    tstate->curexc_type = NULL;
    tstate->curexc_value = NULL;
    tstate->curexc_traceback = NULL;
}

void
PyErr_Clear(void)
{
    PyErr_Restore(NULL, NULL, NULL);
}

/* Convenience functions to set a type error exception and return 0 */

int
PyErr_BadArgument(void)
{
    PyErr_SetString(PyExc_TypeError,
                    "bad argument type for built-in operation");
    return 0;
}

PyObject *
PyErr_NoMemory(void)
{
    PyErr_SetNone(PyExc_MemoryError);
    return NULL;
}

PyObject *
PyErr_SetFromErrnoWithFilenameObject(PyObject *exc, PyObject *filenameObject)
{
    PyObject *message;
    PyObject *v;
    int i = errno;
#ifndef MS_WINDOWS
    char *s;
#else
    WCHAR *s_buf = NULL;
#endif /* Unix/Windows */

#ifdef EINTR
    if (i == EINTR && PyErr_CheckSignals())
        return NULL;
#endif

#ifndef MS_WINDOWS
    if (i == 0)
        s = "Error"; /* Sometimes errno didn't get set */
    else
        s = strerror(i);
    message = PyUnicode_DecodeUTF8(s, strlen(s), "ignore");
#else
    if (i == 0)
        message = PyUnicode_FromString("Error"); /* Sometimes errno didn't get set */
    else
    {
        /* Note that the Win32 errors do not lineup with the
           errno error.  So if the error is in the MSVC error
           table, we use it, otherwise we assume it really _is_
           a Win32 error code
        */
        if (i > 0 && i < _sys_nerr) {
            message = PyUnicode_FromString(_sys_errlist[i]);
        }
        else {
            int len = FormatMessageW(
                FORMAT_MESSAGE_ALLOCATE_BUFFER |
                FORMAT_MESSAGE_FROM_SYSTEM |
                FORMAT_MESSAGE_IGNORE_INSERTS,
                NULL,                   /* no message source */
                i,
                MAKELANGID(LANG_NEUTRAL,
                           SUBLANG_DEFAULT),
                           /* Default language */
                (LPWSTR) &s_buf,
                0,                      /* size not used */
                NULL);                  /* no args */
            if (len==0) {
                /* Only ever seen this in out-of-mem
                   situations */
                s_buf = NULL;
                message = PyUnicode_FromFormat("Windows Error 0x%X", i);
            } else {
                /* remove trailing cr/lf and dots */
                while (len > 0 && (s_buf[len-1] <= L' ' || s_buf[len-1] == L'.'))
                    s_buf[--len] = L'\0';
                message = PyUnicode_FromUnicode(s_buf, len);
            }
        }
    }
#endif /* Unix/Windows */

    if (message == NULL)
    {
#ifdef MS_WINDOWS
        LocalFree(s_buf);
#endif
        return NULL;
    }

    if (filenameObject != NULL)
        v = Py_BuildValue("(iOO)", i, message, filenameObject);
    else
        v = Py_BuildValue("(iO)", i, message);
    Py_DECREF(message);

    if (v != NULL) {
        PyErr_SetObject(exc, v);
        Py_DECREF(v);
    }
#ifdef MS_WINDOWS
    LocalFree(s_buf);
#endif
    return NULL;
}


PyObject *
PyErr_SetFromErrnoWithFilename(PyObject *exc, const char *filename)
{
    PyObject *name = filename ? PyUnicode_DecodeFSDefault(filename) : NULL;
    PyObject *result = PyErr_SetFromErrnoWithFilenameObject(exc, name);
    Py_XDECREF(name);
    return result;
}

#ifdef MS_WINDOWS
PyObject *
PyErr_SetFromErrnoWithUnicodeFilename(PyObject *exc, const Py_UNICODE *filename)
{
    PyObject *name = filename ?
                     PyUnicode_FromUnicode(filename, wcslen(filename)) :
             NULL;
    PyObject *result = PyErr_SetFromErrnoWithFilenameObject(exc, name);
    Py_XDECREF(name);
    return result;
}
#endif /* MS_WINDOWS */

PyObject *
PyErr_SetFromErrno(PyObject *exc)
{
    return PyErr_SetFromErrnoWithFilenameObject(exc, NULL);
}

#ifdef MS_WINDOWS
/* Windows specific error code handling */
PyObject *PyErr_SetExcFromWindowsErrWithFilenameObject(
    PyObject *exc,
    int ierr,
    PyObject *filenameObject)
{
    int len;
    WCHAR *s_buf = NULL; /* Free via LocalFree */
    PyObject *message;
    PyObject *v;
    DWORD err = (DWORD)ierr;
    if (err==0) err = GetLastError();
    len = FormatMessageW(
        /* Error API error */
        FORMAT_MESSAGE_ALLOCATE_BUFFER |
        FORMAT_MESSAGE_FROM_SYSTEM |
        FORMAT_MESSAGE_IGNORE_INSERTS,
        NULL,           /* no message source */
        err,
        MAKELANGID(LANG_NEUTRAL,
        SUBLANG_DEFAULT), /* Default language */
        (LPWSTR) &s_buf,
        0,              /* size not used */
        NULL);          /* no args */
    if (len==0) {
        /* Only seen this in out of mem situations */
        message = PyUnicode_FromFormat("Windows Error 0x%X", err);
        s_buf = NULL;
    } else {
        /* remove trailing cr/lf and dots */
        while (len > 0 && (s_buf[len-1] <= L' ' || s_buf[len-1] == L'.'))
            s_buf[--len] = L'\0';
        message = PyUnicode_FromUnicode(s_buf, len);
    }

    if (message == NULL)
    {
        LocalFree(s_buf);
        return NULL;
    }

    if (filenameObject != NULL)
        v = Py_BuildValue("(iOO)", err, message, filenameObject);
    else
        v = Py_BuildValue("(iO)", err, message);
    Py_DECREF(message);

    if (v != NULL) {
        PyErr_SetObject(exc, v);
        Py_DECREF(v);
    }
    LocalFree(s_buf);
    return NULL;
}

PyObject *PyErr_SetExcFromWindowsErrWithFilename(
    PyObject *exc,
    int ierr,
    const char *filename)
{
    PyObject *name = filename ? PyUnicode_DecodeFSDefault(filename) : NULL;
    PyObject *ret = PyErr_SetExcFromWindowsErrWithFilenameObject(exc,
                                                                 ierr,
                                                                 name);
    Py_XDECREF(name);
    return ret;
}

PyObject *PyErr_SetExcFromWindowsErrWithUnicodeFilename(
    PyObject *exc,
    int ierr,
    const Py_UNICODE *filename)
{
    PyObject *name = filename ?
                     PyUnicode_FromUnicode(filename, wcslen(filename)) :
             NULL;
    PyObject *ret = PyErr_SetExcFromWindowsErrWithFilenameObject(exc,
                                                                 ierr,
                                                                 name);
    Py_XDECREF(name);
    return ret;
}

PyObject *PyErr_SetExcFromWindowsErr(PyObject *exc, int ierr)
{
    return PyErr_SetExcFromWindowsErrWithFilename(exc, ierr, NULL);
}

PyObject *PyErr_SetFromWindowsErr(int ierr)
{
    return PyErr_SetExcFromWindowsErrWithFilename(PyExc_WindowsError,
                                                  ierr, NULL);
}
PyObject *PyErr_SetFromWindowsErrWithFilename(
    int ierr,
    const char *filename)
{
    PyObject *name = filename ? PyUnicode_DecodeFSDefault(filename) : NULL;
    PyObject *result = PyErr_SetExcFromWindowsErrWithFilenameObject(
                                                  PyExc_WindowsError,
                                                  ierr, name);
    Py_XDECREF(name);
    return result;
}

PyObject *PyErr_SetFromWindowsErrWithUnicodeFilename(
    int ierr,
    const Py_UNICODE *filename)
{
    PyObject *name = filename ?
                     PyUnicode_FromUnicode(filename, wcslen(filename)) :
             NULL;
    PyObject *result = PyErr_SetExcFromWindowsErrWithFilenameObject(
                                                  PyExc_WindowsError,
                                                  ierr, name);
    Py_XDECREF(name);
    return result;
}
#endif /* MS_WINDOWS */

void
_PyErr_BadInternalCall(const char *filename, int lineno)
{
    PyErr_Format(PyExc_SystemError,
                 "%s:%d: bad argument to internal function",
                 filename, lineno);
}

/* Remove the preprocessor macro for PyErr_BadInternalCall() so that we can
   export the entry point for existing object code: */
#undef PyErr_BadInternalCall
void
PyErr_BadInternalCall(void)
{
    PyErr_Format(PyExc_SystemError,
                 "bad argument to internal function");
}
#define PyErr_BadInternalCall() _PyErr_BadInternalCall(__FILE__, __LINE__)



PyObject *
PyErr_Format(PyObject *exception, const char *format, ...)
{
    va_list vargs;
    PyObject* string;

#ifdef HAVE_STDARG_PROTOTYPES
    va_start(vargs, format);
#else
    va_start(vargs);
#endif

    string = PyUnicode_FromFormatV(format, vargs);
    PyErr_SetObject(exception, string);
    Py_XDECREF(string);
    va_end(vargs);
    return NULL;
}



PyObject *
PyErr_NewException(const char *name, PyObject *base, PyObject *dict)
{
    const char *dot;
    PyObject *modulename = NULL;
    PyObject *classname = NULL;
    PyObject *mydict = NULL;
    PyObject *bases = NULL;
    PyObject *result = NULL;
    dot = strrchr(name, '.');
    if (dot == NULL) {
        PyErr_SetString(PyExc_SystemError,
            "PyErr_NewException: name must be module.class");
        return NULL;
    }
    if (base == NULL)
        base = PyExc_Exception;
    if (dict == NULL) {
        dict = mydict = PyDict_New();
        if (dict == NULL)
            goto failure;
    }
    if (PyDict_GetItemString(dict, "__module__") == NULL) {
        modulename = PyUnicode_FromStringAndSize(name,
                                             (Py_ssize_t)(dot-name));
        if (modulename == NULL)
            goto failure;
        if (PyDict_SetItemString(dict, "__module__", modulename) != 0)
            goto failure;
    }
    if (PyTuple_Check(base)) {
        bases = base;
        /* INCREF as we create a new ref in the else branch */
        Py_INCREF(bases);
    } else {
        bases = PyTuple_Pack(1, base);
        if (bases == NULL)
            goto failure;
    }
    /* Create a real new-style class. */
    result = PyObject_CallFunction((PyObject *)&PyType_Type, "sOO",
                                   dot+1, bases, dict);
  failure:
    Py_XDECREF(bases);
    Py_XDECREF(mydict);
    Py_XDECREF(classname);
    Py_XDECREF(modulename);
    return result;
}


/* Create an exception with docstring */
PyObject *
PyErr_NewExceptionWithDoc(const char *name, const char *doc,
                          PyObject *base, PyObject *dict)
{
    int result;
    PyObject *ret = NULL;
    PyObject *mydict = NULL; /* points to the dict only if we create it */
    PyObject *docobj;

    if (dict == NULL) {
        dict = mydict = PyDict_New();
        if (dict == NULL) {
            return NULL;
        }
    }

    if (doc != NULL) {
        docobj = PyUnicode_FromString(doc);
        if (docobj == NULL)
            goto failure;
        result = PyDict_SetItemString(dict, "__doc__", docobj);
        Py_DECREF(docobj);
        if (result < 0)
            goto failure;
    }

    ret = PyErr_NewException(name, base, dict);
  failure:
    Py_XDECREF(mydict);
    return ret;
}


/* Call when an exception has occurred but there is no way for Python
   to handle it.  Examples: exception in __del__ or during GC. */
void
PyErr_WriteUnraisable(PyObject *obj)
{
    PyObject *f, *t, *v, *tb;
    PyErr_Fetch(&t, &v, &tb);
    f = PySys_GetObject("stderr");
    if (f != NULL && f != Py_None) {
        PyFile_WriteString("Exception ", f);
        if (t) {
            PyObject* moduleName;
            char* className;
            assert(PyExceptionClass_Check(t));
            className = PyExceptionClass_Name(t);
            if (className != NULL) {
                char *dot = strrchr(className, '.');
                if (dot != NULL)
                    className = dot+1;
            }

            moduleName = PyObject_GetAttrString(t, "__module__");
            if (moduleName == NULL)
                PyFile_WriteString("<unknown>", f);
            else {
                char* modstr = _PyUnicode_AsString(moduleName);
                if (modstr &&
                    strcmp(modstr, "builtins") != 0)
                {
                    PyFile_WriteString(modstr, f);
                    PyFile_WriteString(".", f);
                }
            }
            if (className == NULL)
                PyFile_WriteString("<unknown>", f);
            else
                PyFile_WriteString(className, f);
            if (v && v != Py_None) {
                PyFile_WriteString(": ", f);
                PyFile_WriteObject(v, f, 0);
            }
            Py_XDECREF(moduleName);
        }
        if (obj) {
            PyFile_WriteString(" in ", f);
            PyFile_WriteObject(obj, f, 0);
        }
        PyFile_WriteString(" ignored\n", f);
        PyErr_Clear(); /* Just in case */
    }
    Py_XDECREF(t);
    Py_XDECREF(v);
    Py_XDECREF(tb);
}

extern PyObject *PyModule_GetWarningsModule(void);


void
PyErr_SyntaxLocation(const char *filename, int lineno) {
    PyErr_SyntaxLocationEx(filename, lineno, -1);
}


/* Set file and line information for the current exception.
   If the exception is not a SyntaxError, also sets additional attributes
   to make printing of exceptions believe it is a syntax error. */

void
PyErr_SyntaxLocationEx(const char *filename, int lineno, int col_offset)
{
    PyObject *exc, *v, *tb, *tmp;

    /* add attributes for the line number and filename for the error */
    PyErr_Fetch(&exc, &v, &tb);
    PyErr_NormalizeException(&exc, &v, &tb);
    /* XXX check that it is, indeed, a syntax error. It might not
     * be, though. */
    tmp = PyLong_FromLong(lineno);
    if (tmp == NULL)
        PyErr_Clear();
    else {
        if (PyObject_SetAttrString(v, "lineno", tmp))
            PyErr_Clear();
        Py_DECREF(tmp);
    }
    if (col_offset >= 0) {
        tmp = PyLong_FromLong(col_offset);
        if (tmp == NULL)
            PyErr_Clear();
        else {
            if (PyObject_SetAttrString(v, "offset", tmp))
                PyErr_Clear();
            Py_DECREF(tmp);
        }
    }
    if (filename != NULL) {
        tmp = PyUnicode_DecodeFSDefault(filename);
        if (tmp == NULL)
            PyErr_Clear();
        else {
            if (PyObject_SetAttrString(v, "filename", tmp))
                PyErr_Clear();
            Py_DECREF(tmp);
        }

        tmp = PyErr_ProgramText(filename, lineno);
        if (tmp) {
            if (PyObject_SetAttrString(v, "text", tmp))
                PyErr_Clear();
            Py_DECREF(tmp);
        }
    }
    if (PyObject_SetAttrString(v, "offset", Py_None)) {
        PyErr_Clear();
    }
    if (exc != PyExc_SyntaxError) {
        if (!PyObject_HasAttrString(v, "msg")) {
            tmp = PyObject_Str(v);
            if (tmp) {
                if (PyObject_SetAttrString(v, "msg", tmp))
                    PyErr_Clear();
                Py_DECREF(tmp);
            } else {
                PyErr_Clear();
            }
        }
        if (!PyObject_HasAttrString(v, "print_file_and_line")) {
            if (PyObject_SetAttrString(v, "print_file_and_line",
                                       Py_None))
                PyErr_Clear();
        }
    }
    PyErr_Restore(exc, v, tb);
}

/* Attempt to load the line of text that the exception refers to.  If it
   fails, it will return NULL but will not set an exception.

   XXX The functionality of this function is quite similar to the
   functionality in tb_displayline() in traceback.c. */

PyObject *
PyErr_ProgramText(const char *filename, int lineno)
{
    FILE *fp;
    int i;
    char linebuf[1000];

    if (filename == NULL || *filename == '\0' || lineno <= 0)
        return NULL;
    fp = fopen(filename, "r" PY_STDIOTEXTMODE);
    if (fp == NULL)
        return NULL;
    for (i = 0; i < lineno; i++) {
        char *pLastChar = &linebuf[sizeof(linebuf) - 2];
        do {
            *pLastChar = '\0';
            if (Py_UniversalNewlineFgets(linebuf, sizeof linebuf,
                                         fp, NULL) == NULL)
                break;
            /* fgets read *something*; if it didn't get as
               far as pLastChar, it must have found a newline
               or hit the end of the file; if pLastChar is \n,
               it obviously found a newline; else we haven't
               yet seen a newline, so must continue */
        } while (*pLastChar != '\0' && *pLastChar != '\n');
    }
    fclose(fp);
    if (i == lineno) {
        char *p = linebuf;
        PyObject *res;
        while (*p == ' ' || *p == '\t' || *p == '\014')
            p++;
        res = PyUnicode_FromString(p);
        if (res == NULL)
            PyErr_Clear();
        return res;
    }
    return NULL;
}

#ifdef __cplusplus
}
#endif
ef='#n3328'>3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363

/* Execute compiled code */

/* XXX TO DO:
   XXX speed up searching for keywords by using a dictionary
   XXX document it!
   */

/* enable more aggressive intra-module optimizations, where available */
#define PY_LOCAL_AGGRESSIVE

#include "Python.h"

#include "code.h"
#include "frameobject.h"
#include "eval.h"
#include "opcode.h"
#include "structmember.h"

#include <ctype.h>

#ifndef WITH_TSC

#define READ_TIMESTAMP(var)

#else

typedef unsigned long long uint64;

#if defined(__ppc__) /* <- Don't know if this is the correct symbol; this
			   section should work for GCC on any PowerPC
			   platform, irrespective of OS.
			   POWER?  Who knows :-) */

#define READ_TIMESTAMP(var) ppc_getcounter(&var)

static void
ppc_getcounter(uint64 *v)
{
	register unsigned long tbu, tb, tbu2;

  loop:
	asm volatile ("mftbu %0" : "=r" (tbu) );
	asm volatile ("mftb  %0" : "=r" (tb)  );
	asm volatile ("mftbu %0" : "=r" (tbu2));
	if (__builtin_expect(tbu != tbu2, 0)) goto loop;

	/* The slightly peculiar way of writing the next lines is
	   compiled better by GCC than any other way I tried. */
	((long*)(v))[0] = tbu;
	((long*)(v))[1] = tb;
}

#else /* this is for linux/x86 (and probably any other GCC/x86 combo) */

#define READ_TIMESTAMP(val) \
     __asm__ __volatile__("rdtsc" : "=A" (val))

#endif

void dump_tsc(int opcode, int ticked, uint64 inst0, uint64 inst1,
	      uint64 loop0, uint64 loop1, uint64 intr0, uint64 intr1)
{
	uint64 intr, inst, loop;
	PyThreadState *tstate = PyThreadState_Get();
	if (!tstate->interp->tscdump)
		return;
	intr = intr1 - intr0;
	inst = inst1 - inst0 - intr;
	loop = loop1 - loop0 - intr;
	fprintf(stderr, "opcode=%03d t=%d inst=%06lld loop=%06lld\n",
		opcode, ticked, inst, loop);
}

#endif

/* Turn this on if your compiler chokes on the big switch: */
/* #define CASE_TOO_BIG 1 */

#ifdef Py_DEBUG
/* For debugging the interpreter: */
#define LLTRACE  1	/* Low-level trace feature */
#define CHECKEXC 1	/* Double-check exception checking */
#endif

typedef PyObject *(*callproc)(PyObject *, PyObject *, PyObject *);

/* Forward declarations */
#ifdef WITH_TSC
static PyObject * call_function(PyObject ***, int, uint64*, uint64*);
#else
static PyObject * call_function(PyObject ***, int);
#endif
static PyObject * fast_function(PyObject *, PyObject ***, int, int, int);
static PyObject * do_call(PyObject *, PyObject ***, int, int);
static PyObject * ext_do_call(PyObject *, PyObject ***, int, int, int);
static PyObject * update_keyword_args(PyObject *, int, PyObject ***,
				      PyObject *);
static PyObject * update_star_args(int, int, PyObject *, PyObject ***);
static PyObject * load_args(PyObject ***, int);
#define CALL_FLAG_VAR 1
#define CALL_FLAG_KW 2

#ifdef LLTRACE
static int lltrace;
static int prtrace(PyObject *, char *);
#endif
static int call_trace(Py_tracefunc, PyObject *, PyFrameObject *,
		      int, PyObject *);
static int call_trace_protected(Py_tracefunc, PyObject *,
				 PyFrameObject *, int, PyObject *);
static void call_exc_trace(Py_tracefunc, PyObject *, PyFrameObject *);
static int maybe_call_line_trace(Py_tracefunc, PyObject *,
				  PyFrameObject *, int *, int *, int *);

static PyObject * cmp_outcome(int, PyObject *, PyObject *);
static PyObject * import_from(PyObject *, PyObject *);
static int import_all_from(PyObject *, PyObject *);
static void format_exc_check_arg(PyObject *, const char *, PyObject *);
static PyObject * unicode_concatenate(PyObject *, PyObject *,
                                      PyFrameObject *, unsigned char *);

#define NAME_ERROR_MSG \
	"name '%.200s' is not defined"
#define GLOBAL_NAME_ERROR_MSG \
	"global name '%.200s' is not defined"
#define UNBOUNDLOCAL_ERROR_MSG \
	"local variable '%.200s' referenced before assignment"
#define UNBOUNDFREE_ERROR_MSG \
	"free variable '%.200s' referenced before assignment" \
        " in enclosing scope"

/* Dynamic execution profile */
#ifdef DYNAMIC_EXECUTION_PROFILE
#ifdef DXPAIRS
static long dxpairs[257][256];
#define dxp dxpairs[256]
#else
static long dxp[256];
#endif
#endif

/* Function call profile */
#ifdef CALL_PROFILE
#define PCALL_NUM 11
static int pcall[PCALL_NUM];

#define PCALL_ALL 0
#define PCALL_FUNCTION 1
#define PCALL_FAST_FUNCTION 2
#define PCALL_FASTER_FUNCTION 3
#define PCALL_METHOD 4
#define PCALL_BOUND_METHOD 5
#define PCALL_CFUNCTION 6
#define PCALL_TYPE 7
#define PCALL_GENERATOR 8
#define PCALL_OTHER 9
#define PCALL_POP 10

/* Notes about the statistics

   PCALL_FAST stats

   FAST_FUNCTION means no argument tuple needs to be created.
   FASTER_FUNCTION means that the fast-path frame setup code is used.

   If there is a method call where the call can be optimized by changing
   the argument tuple and calling the function directly, it gets recorded
   twice.

   As a result, the relationship among the statistics appears to be
   PCALL_ALL == PCALL_FUNCTION + PCALL_METHOD - PCALL_BOUND_METHOD +
                PCALL_CFUNCTION + PCALL_TYPE + PCALL_GENERATOR + PCALL_OTHER
   PCALL_FUNCTION > PCALL_FAST_FUNCTION > PCALL_FASTER_FUNCTION
   PCALL_METHOD > PCALL_BOUND_METHOD
*/

#define PCALL(POS) pcall[POS]++

PyObject *
PyEval_GetCallStats(PyObject *self)
{
	return Py_BuildValue("iiiiiiiiiii",
			     pcall[0], pcall[1], pcall[2], pcall[3],
			     pcall[4], pcall[5], pcall[6], pcall[7],
			     pcall[8], pcall[9], pcall[10]);
}
#else
#define PCALL(O)

PyObject *
PyEval_GetCallStats(PyObject *self)
{
	Py_INCREF(Py_None);
	return Py_None;
}
#endif


#ifdef WITH_THREAD

#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#include "pythread.h"

static PyThread_type_lock interpreter_lock = 0; /* This is the GIL */
static PyThread_type_lock pending_lock = 0; /* for pending calls */
static long main_thread = 0;

int
PyEval_ThreadsInitialized(void)
{
	return interpreter_lock != 0;
}

void
PyEval_InitThreads(void)
{
	if (interpreter_lock)
		return;
	interpreter_lock = PyThread_allocate_lock();
	PyThread_acquire_lock(interpreter_lock, 1);
	main_thread = PyThread_get_thread_ident();
}

void
PyEval_AcquireLock(void)
{
	PyThread_acquire_lock(interpreter_lock, 1);
}

void
PyEval_ReleaseLock(void)
{
	PyThread_release_lock(interpreter_lock);
}

void
PyEval_AcquireThread(PyThreadState *tstate)
{
	if (tstate == NULL)
		Py_FatalError("PyEval_AcquireThread: NULL new thread state");
	/* Check someone has called PyEval_InitThreads() to create the lock */
	assert(interpreter_lock);
	PyThread_acquire_lock(interpreter_lock, 1);
	if (PyThreadState_Swap(tstate) != NULL)
		Py_FatalError(
			"PyEval_AcquireThread: non-NULL old thread state");
}

void
PyEval_ReleaseThread(PyThreadState *tstate)
{
	if (tstate == NULL)
		Py_FatalError("PyEval_ReleaseThread: NULL thread state");
	if (PyThreadState_Swap(NULL) != tstate)
		Py_FatalError("PyEval_ReleaseThread: wrong thread state");
	PyThread_release_lock(interpreter_lock);
}

/* This function is called from PyOS_AfterFork to ensure that newly
   created child processes don't hold locks referring to threads which
   are not running in the child process.  (This could also be done using
   pthread_atfork mechanism, at least for the pthreads implementation.) */

void
PyEval_ReInitThreads(void)
{
	PyObject *threading, *result;
	PyThreadState *tstate;

	if (!interpreter_lock)
		return;
	/*XXX Can't use PyThread_free_lock here because it does too
	  much error-checking.  Doing this cleanly would require
	  adding a new function to each thread_*.h.  Instead, just
	  create a new lock and waste a little bit of memory */
	interpreter_lock = PyThread_allocate_lock();
	pending_lock = PyThread_allocate_lock();
	PyThread_acquire_lock(interpreter_lock, 1);
	main_thread = PyThread_get_thread_ident();

	/* Update the threading module with the new state.
	 */
	tstate = PyThreadState_GET();
	threading = PyMapping_GetItemString(tstate->interp->modules,
					    "threading");
	if (threading == NULL) {
		/* threading not imported */
		PyErr_Clear();
		return;
	}
	result = PyObject_CallMethod(threading, "_after_fork", NULL);
	if (result == NULL)
		PyErr_WriteUnraisable(threading);
	else
		Py_DECREF(result);
	Py_DECREF(threading);
}
#endif

/* Functions save_thread and restore_thread are always defined so
   dynamically loaded modules needn't be compiled separately for use
   with and without threads: */

PyThreadState *
PyEval_SaveThread(void)
{
	PyThreadState *tstate = PyThreadState_Swap(NULL);
	if (tstate == NULL)
		Py_FatalError("PyEval_SaveThread: NULL tstate");
#ifdef WITH_THREAD
	if (interpreter_lock)
		PyThread_release_lock(interpreter_lock);
#endif
	return tstate;
}

void
PyEval_RestoreThread(PyThreadState *tstate)
{
	if (tstate == NULL)
		Py_FatalError("PyEval_RestoreThread: NULL tstate");
#ifdef WITH_THREAD
	if (interpreter_lock) {
		int err = errno;
		PyThread_acquire_lock(interpreter_lock, 1);
		errno = err;
	}
#endif
	PyThreadState_Swap(tstate);
}


/* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
   signal handlers or Mac I/O completion routines) can schedule calls
   to a function to be called synchronously.
   The synchronous function is called with one void* argument.
   It should return 0 for success or -1 for failure -- failure should
   be accompanied by an exception.

   If registry succeeds, the registry function returns 0; if it fails
   (e.g. due to too many pending calls) it returns -1 (without setting
   an exception condition).

   Note that because registry may occur from within signal handlers,
   or other asynchronous events, calling malloc() is unsafe!

#ifdef WITH_THREAD
   Any thread can schedule pending calls, but only the main thread
   will execute them.
   There is no facility to schedule calls to a particular thread, but
   that should be easy to change, should that ever be required.  In
   that case, the static variables here should go into the python
   threadstate.
#endif
*/

#ifdef WITH_THREAD

/* The WITH_THREAD implementation is thread-safe.  It allows
   scheduling to be made from any thread, and even from an executing
   callback.
 */

#define NPENDINGCALLS 32
static struct {
	int (*func)(void *);
	void *arg;
} pendingcalls[NPENDINGCALLS];
static int pendingfirst = 0;
static int pendinglast = 0;
static volatile int pendingcalls_to_do = 1; /* trigger initialization of lock */
static char pendingbusy = 0;

int
Py_AddPendingCall(int (*func)(void *), void *arg)
{
	int i, j, result=0;
	PyThread_type_lock lock = pending_lock;
	
	/* try a few times for the lock.  Since this mechanism is used
	 * for signal handling (on the main thread), there is a (slim)
	 * chance that a signal is delivered on the same thread while we
	 * hold the lock during the Py_MakePendingCalls() function.
	 * This avoids a deadlock in that case.
	 * Note that signals can be delivered on any thread.  In particular,
	 * on Windows, a SIGINT is delivered on a system-created worker
	 * thread.
	 * We also check for lock being NULL, in the unlikely case that
	 * this function is called before any bytecode evaluation takes place.
	 */
	if (lock != NULL) {
		for (i = 0; i<100; i++) {
			if (PyThread_acquire_lock(lock, NOWAIT_LOCK))
				break;
		}
		if (i == 100)
			return -1;
	}

	i = pendinglast;
	j = (i + 1) % NPENDINGCALLS;
	if (j == pendingfirst) {
		result = -1; /* Queue full */
	} else {
		pendingcalls[i].func = func;
		pendingcalls[i].arg = arg;
		pendinglast = j;
	}
	/* signal main loop */
	_Py_Ticker = 0;
	pendingcalls_to_do = 1;
	if (lock != NULL)
		PyThread_release_lock(lock);
	return result;
}

int
Py_MakePendingCalls(void)
{
	int i;
	int r = 0;

	if (!pending_lock) {
		/* initial allocation of the lock */
		pending_lock = PyThread_allocate_lock();
		if (pending_lock == NULL)
			return -1;
	}

	/* only service pending calls on main thread */
	if (main_thread && PyThread_get_thread_ident() != main_thread)
		return 0; 
	/* don't perform recursive pending calls */
	if (pendingbusy)
		return 0;
	pendingbusy = 1;
	/* perform a bounded number of calls, in case of recursion */
	for (i=0; i<NPENDINGCALLS; i++) {
		int j;  
		int (*func)(void *);
		void *arg = NULL;
		
		/* pop one item off the queue while holding the lock */
		PyThread_acquire_lock(pending_lock, WAIT_LOCK);
		j = pendingfirst;
		if (j == pendinglast) {
			func = NULL; /* Queue empty */
		} else {
			func = pendingcalls[j].func;
			arg = pendingcalls[j].arg;
			pendingfirst = (j + 1) % NPENDINGCALLS;
		}
		pendingcalls_to_do = pendingfirst != pendinglast;
		PyThread_release_lock(pending_lock);
		/* having released the lock, perform the callback */
		if (func == NULL)
			break;
		r = func(arg);
		if (r)
			break;
	}
	pendingbusy = 0;
	return r;
}

#else /* if ! defined WITH_THREAD */

/*
   WARNING!  ASYNCHRONOUSLY EXECUTING CODE!
   This code is used for signal handling in python that isn't built
   with WITH_THREAD.
   Don't use this implementation when Py_AddPendingCalls() can happen
   on a different thread!
 
   There are two possible race conditions:
   (1) nested asynchronous calls to Py_AddPendingCall()
   (2) AddPendingCall() calls made while pending calls are being processed.
   
   (1) is very unlikely because typically signal delivery
   is blocked during signal handling.  So it should be impossible.
   (2) is a real possibility.
   The current code is safe against (2), but not against (1).
   The safety against (2) is derived from the fact that only one
   thread is present, interrupted by signals, and that the critical
   section is protected with the "busy" variable.  On Windows, which
   delivers SIGINT on a system thread, this does not hold and therefore
   Windows really shouldn't use this version.
   The two threads could theoretically wiggle around the "busy" variable.
*/

#define NPENDINGCALLS 32
static struct {
	int (*func)(void *);
	void *arg;
} pendingcalls[NPENDINGCALLS];
static volatile int pendingfirst = 0;
static volatile int pendinglast = 0;
static volatile int pendingcalls_to_do = 0;

int
Py_AddPendingCall(int (*func)(void *), void *arg)
{
	static volatile int busy = 0;
	int i, j;
	/* XXX Begin critical section */
	if (busy)
		return -1;
	busy = 1;
	i = pendinglast;
	j = (i + 1) % NPENDINGCALLS;
	if (j == pendingfirst) {
		busy = 0;
		return -1; /* Queue full */
	}
	pendingcalls[i].func = func;
	pendingcalls[i].arg = arg;
	pendinglast = j;

	_Py_Ticker = 0;
	pendingcalls_to_do = 1; /* Signal main loop */
	busy = 0;
	/* XXX End critical section */
	return 0;
}

int
Py_MakePendingCalls(void)
{
	static int busy = 0;
	if (busy)
		return 0;
	busy = 1;
	pendingcalls_to_do = 0;
	for (;;) {
		int i;
		int (*func)(void *);
		void *arg;
		i = pendingfirst;
		if (i == pendinglast)
			break; /* Queue empty */
		func = pendingcalls[i].func;
		arg = pendingcalls[i].arg;
		pendingfirst = (i + 1) % NPENDINGCALLS;
		if (func(arg) < 0) {
			busy = 0;
			pendingcalls_to_do = 1; /* We're not done yet */
			return -1;
		}
	}
	busy = 0;
	return 0;
}

#endif /* WITH_THREAD */


/* The interpreter's recursion limit */

#ifndef Py_DEFAULT_RECURSION_LIMIT
#define Py_DEFAULT_RECURSION_LIMIT 1000
#endif
static int recursion_limit = Py_DEFAULT_RECURSION_LIMIT;
int _Py_CheckRecursionLimit = Py_DEFAULT_RECURSION_LIMIT;

int
Py_GetRecursionLimit(void)
{
	return recursion_limit;
}

void
Py_SetRecursionLimit(int new_limit)
{
	recursion_limit = new_limit;
	_Py_CheckRecursionLimit = recursion_limit;
}

/* the macro Py_EnterRecursiveCall() only calls _Py_CheckRecursiveCall()
   if the recursion_depth reaches _Py_CheckRecursionLimit.
   If USE_STACKCHECK, the macro decrements _Py_CheckRecursionLimit
   to guarantee that _Py_CheckRecursiveCall() is regularly called.
   Without USE_STACKCHECK, there is no need for this. */
int
_Py_CheckRecursiveCall(char *where)
{
	PyThreadState *tstate = PyThreadState_GET();

#ifdef USE_STACKCHECK
	if (PyOS_CheckStack()) {
		--tstate->recursion_depth;
		PyErr_SetString(PyExc_MemoryError, "Stack overflow");
		return -1;
	}
#endif
	_Py_CheckRecursionLimit = recursion_limit;
	if (tstate->recursion_critical)
		/* Somebody asked that we don't check for recursion. */
		return 0;
	if (tstate->overflowed) {
		if (tstate->recursion_depth > recursion_limit + 50) {
			/* Overflowing while handling an overflow. Give up. */
			Py_FatalError("Cannot recover from stack overflow.");
		}
		return 0;
	}
	if (tstate->recursion_depth > recursion_limit) {
		--tstate->recursion_depth;
		tstate->overflowed = 1;
		PyErr_Format(PyExc_RuntimeError,
			     "maximum recursion depth exceeded%s",
			     where);
		return -1;
	}
	return 0;
}

/* Status code for main loop (reason for stack unwind) */
enum why_code {
		WHY_NOT =	0x0001,	/* No error */
		WHY_EXCEPTION = 0x0002,	/* Exception occurred */
		WHY_RERAISE =	0x0004,	/* Exception re-raised by 'finally' */
		WHY_RETURN =	0x0008,	/* 'return' statement */
		WHY_BREAK =	0x0010,	/* 'break' statement */
		WHY_CONTINUE =	0x0020,	/* 'continue' statement */
		WHY_YIELD =	0x0040,	/* 'yield' operator */
		WHY_SILENCED = 0x0080 /* Exception silenced by 'with' */
};

static enum why_code do_raise(PyObject *, PyObject *);
static int unpack_iterable(PyObject *, int, int, PyObject **);

/* Records whether tracing is on for any thread.  Counts the number of
   threads for which tstate->c_tracefunc is non-NULL, so if the value
   is 0, we know we don't have to check this thread's c_tracefunc.
   This speeds up the if statement in PyEval_EvalFrameEx() after
   fast_next_opcode*/
static int _Py_TracingPossible = 0;

/* for manipulating the thread switch and periodic "stuff" - used to be
   per thread, now just a pair o' globals */
int _Py_CheckInterval = 100;
volatile int _Py_Ticker = 0; /* so that we hit a "tick" first thing */

PyObject *
PyEval_EvalCode(PyCodeObject *co, PyObject *globals, PyObject *locals)
{
	return PyEval_EvalCodeEx(co,
			  globals, locals,
			  (PyObject **)NULL, 0,
			  (PyObject **)NULL, 0,
			  (PyObject **)NULL, 0,
			  NULL, NULL);
}


/* Interpreter main loop */

PyObject *
PyEval_EvalFrame(PyFrameObject *f) {
	/* This is for backward compatibility with extension modules that
           used this API; core interpreter code should call
           PyEval_EvalFrameEx() */
	return PyEval_EvalFrameEx(f, 0);
}

PyObject *
PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
{
#ifdef DXPAIRS
	int lastopcode = 0;
#endif
	register PyObject **stack_pointer;  /* Next free slot in value stack */
	register unsigned char *next_instr;
	register int opcode;	/* Current opcode */
	register int oparg;	/* Current opcode argument, if any */
	register enum why_code why; /* Reason for block stack unwind */
	register int err;	/* Error status -- nonzero if error */
	register PyObject *x;	/* Result object -- NULL if error */
	register PyObject *v;	/* Temporary objects popped off stack */
	register PyObject *w;
	register PyObject *u;
	register PyObject *t;
	register PyObject **fastlocals, **freevars;
	PyObject *retval = NULL;	/* Return value */
	PyThreadState *tstate = PyThreadState_GET();
	PyCodeObject *co;

	/* when tracing we set things up so that

               not (instr_lb <= current_bytecode_offset < instr_ub)

	   is true when the line being executed has changed.  The
           initial values are such as to make this false the first
           time it is tested. */
	int instr_ub = -1, instr_lb = 0, instr_prev = -1;

	unsigned char *first_instr;
	PyObject *names;
	PyObject *consts;
#if defined(Py_DEBUG) || defined(LLTRACE)
	/* Make it easier to find out where we are with a debugger */
	char *filename;
#endif

/* Computed GOTOs, or
       the-optimization-commonly-but-improperly-known-as-"threaded code"
   using gcc's labels-as-values extension
   (http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html).

   The traditional bytecode evaluation loop uses a "switch" statement, which
   decent compilers will optimize as a single indirect branch instruction 
   combined with a lookup table of jump addresses. However, since the
   indirect jump instruction is shared by all opcodes, the CPU will have a
   hard time making the right prediction for where to jump next (actually,
   it will be always wrong except in the uncommon case of a sequence of
   several identical opcodes).

   "Threaded code" in contrast, uses an explicit jump table and an explicit
   indirect jump instruction at the end of each opcode. Since the jump
   instruction is at a different address for each opcode, the CPU will make a
   separate prediction for each of these instructions, which is equivalent to
   predicting the second opcode of each opcode pair. These predictions have
   a much better chance to turn out valid, especially in small bytecode loops.

   A mispredicted branch on a modern CPU flushes the whole pipeline and
   can cost several CPU cycles (depending on the pipeline depth), 
   and potentially many more instructions (depending on the pipeline width).
   A correctly predicted branch, however, is nearly free.

   At the time of this writing, the "threaded code" version is up to 15-20%
   faster than the normal "switch" version, depending on the compiler and the
   CPU architecture.

   We disable the optimization if DYNAMIC_EXECUTION_PROFILE is defined,
   because it would render the measurements invalid.


   NOTE: care must be taken that the compiler doesn't try to "optimize" the
   indirect jumps by sharing them between all opcodes. Such optimizations
   can be disabled on gcc by using the -fno-gcse flag (or possibly
   -fno-crossjumping).
*/

#if defined(USE_COMPUTED_GOTOS) && defined(DYNAMIC_EXECUTION_PROFILE)
#undef USE_COMPUTED_GOTOS
#endif

#ifdef USE_COMPUTED_GOTOS
/* Import the static jump table */
#include "opcode_targets.h"

/* This macro is used when several opcodes defer to the same implementation
   (e.g. SETUP_LOOP, SETUP_FINALLY) */
#define TARGET_WITH_IMPL(op, impl) \
	TARGET_##op: \
		opcode = op; \
		if (HAS_ARG(op)) \
			oparg = NEXTARG(); \
	case op: \
		goto impl; \

#define TARGET(op) \
	TARGET_##op: \
		opcode = op; \
		if (HAS_ARG(op)) \
			oparg = NEXTARG(); \
	case op:


#define DISPATCH() \
	{ \
		/* Avoid multiple loads from _Py_Ticker despite `volatile` */ \
		int _tick = _Py_Ticker - 1; \
		_Py_Ticker = _tick; \
		if (_tick >= 0) { \
			FAST_DISPATCH(); \
		} \
		continue; \
	}

#ifdef LLTRACE
#define FAST_DISPATCH() \
	{ \
		if (!lltrace && !_Py_TracingPossible) { \
			f->f_lasti = INSTR_OFFSET(); \
			goto *opcode_targets[*next_instr++]; \
		} \
		goto fast_next_opcode; \
	}
#else
#define FAST_DISPATCH() \
	{ \
		if (!_Py_TracingPossible) { \
			f->f_lasti = INSTR_OFFSET(); \
			goto *opcode_targets[*next_instr++]; \
		} \
		goto fast_next_opcode; \
	}
#endif

#else
#define TARGET(op) \
	case op:
#define TARGET_WITH_IMPL(op, impl) \
	/* silence compiler warnings about `impl` unused */ \
	if (0) goto impl; \
	case op:
#define DISPATCH() continue
#define FAST_DISPATCH() goto fast_next_opcode
#endif


/* Tuple access macros */

#ifndef Py_DEBUG
#define GETITEM(v, i) PyTuple_GET_ITEM((PyTupleObject *)(v), (i))
#else
#define GETITEM(v, i) PyTuple_GetItem((v), (i))
#endif

#ifdef WITH_TSC
/* Use Pentium timestamp counter to mark certain events:
   inst0 -- beginning of switch statement for opcode dispatch
   inst1 -- end of switch statement (may be skipped)
   loop0 -- the top of the mainloop
   loop1 -- place where control returns again to top of mainloop
            (may be skipped)
   intr1 -- beginning of long interruption
   intr2 -- end of long interruption

   Many opcodes call out to helper C functions.  In some cases, the
   time in those functions should be counted towards the time for the
   opcode, but not in all cases.  For example, a CALL_FUNCTION opcode
   calls another Python function; there's no point in charge all the
   bytecode executed by the called function to the caller.

   It's hard to make a useful judgement statically.  In the presence
   of operator overloading, it's impossible to tell if a call will
   execute new Python code or not.

   It's a case-by-case judgement.  I'll use intr1 for the following
   cases:

   IMPORT_STAR
   IMPORT_FROM
   CALL_FUNCTION (and friends)

 */
	uint64 inst0, inst1, loop0, loop1, intr0 = 0, intr1 = 0;
	int ticked = 0;

	READ_TIMESTAMP(inst0);
	READ_TIMESTAMP(inst1);
	READ_TIMESTAMP(loop0);
	READ_TIMESTAMP(loop1);

	/* shut up the compiler */
	opcode = 0;
#endif

/* Code access macros */

#define INSTR_OFFSET()	((int)(next_instr - first_instr))
#define NEXTOP()	(*next_instr++)
#define NEXTARG()	(next_instr += 2, (next_instr[-1]<<8) + next_instr[-2])
#define PEEKARG()	((next_instr[2]<<8) + next_instr[1])
#define JUMPTO(x)	(next_instr = first_instr + (x))
#define JUMPBY(x)	(next_instr += (x))

/* OpCode prediction macros
	Some opcodes tend to come in pairs thus making it possible to
	predict the second code when the first is run.  For example,
	COMPARE_OP is often followed by JUMP_IF_FALSE or JUMP_IF_TRUE.  And,
	those opcodes are often followed by a POP_TOP.

	Verifying the prediction costs a single high-speed test of a register
	variable against a constant.  If the pairing was good, then the
	processor's own internal branch predication has a high likelihood of
	success, resulting in a nearly zero-overhead transition to the
	next opcode.  A successful prediction saves a trip through the eval-loop
	including its two unpredictable branches, the HAS_ARG test and the
	switch-case.  Combined with the processor's internal branch prediction,
	a successful PREDICT has the effect of making the two opcodes run as if
	they were a single new opcode with the bodies combined.

    If collecting opcode statistics, your choices are to either keep the
	predictions turned-on and interpret the results as if some opcodes
	had been combined or turn-off predictions so that the opcode frequency
	counter updates for both opcodes.

    Opcode prediction is disabled with threaded code, since the latter allows
	the CPU to record separate branch prediction information for each
	opcode.

*/

#if defined(DYNAMIC_EXECUTION_PROFILE) || defined(USE_COMPUTED_GOTOS)
#define PREDICT(op)		if (0) goto PRED_##op
#define PREDICTED(op)		PRED_##op:
#define PREDICTED_WITH_ARG(op)	PRED_##op:
#else
#define PREDICT(op)		if (*next_instr == op) goto PRED_##op
#define PREDICTED(op)		PRED_##op: next_instr++
#define PREDICTED_WITH_ARG(op)	PRED_##op: oparg = PEEKARG(); next_instr += 3
#endif


/* Stack manipulation macros */

/* The stack can grow at most MAXINT deep, as co_nlocals and
   co_stacksize are ints. */
#define STACK_LEVEL()	((int)(stack_pointer - f->f_valuestack))
#define EMPTY()		(STACK_LEVEL() == 0)
#define TOP()		(stack_pointer[-1])
#define SECOND()	(stack_pointer[-2])
#define THIRD() 	(stack_pointer[-3])
#define FOURTH()	(stack_pointer[-4])
#define SET_TOP(v)	(stack_pointer[-1] = (v))
#define SET_SECOND(v)	(stack_pointer[-2] = (v))
#define SET_THIRD(v)	(stack_pointer[-3] = (v))
#define SET_FOURTH(v)	(stack_pointer[-4] = (v))
#define BASIC_STACKADJ(n)	(stack_pointer += n)
#define BASIC_PUSH(v)	(*stack_pointer++ = (v))
#define BASIC_POP()	(*--stack_pointer)

#ifdef LLTRACE
#define PUSH(v)		{ (void)(BASIC_PUSH(v), \
                               lltrace && prtrace(TOP(), "push")); \
                               assert(STACK_LEVEL() <= co->co_stacksize); }
#define POP()		((void)(lltrace && prtrace(TOP(), "pop")), \
			 BASIC_POP())
#define STACKADJ(n)	{ (void)(BASIC_STACKADJ(n), \
                               lltrace && prtrace(TOP(), "stackadj")); \
                               assert(STACK_LEVEL() <= co->co_stacksize); }
#define EXT_POP(STACK_POINTER) ((void)(lltrace && \
				prtrace((STACK_POINTER)[-1], "ext_pop")), \
				*--(STACK_POINTER))
#else
#define PUSH(v)		BASIC_PUSH(v)
#define POP()		BASIC_POP()
#define STACKADJ(n)	BASIC_STACKADJ(n)
#define EXT_POP(STACK_POINTER) (*--(STACK_POINTER))
#endif

/* Local variable macros */

#define GETLOCAL(i)	(fastlocals[i])

/* The SETLOCAL() macro must not DECREF the local variable in-place and
   then store the new value; it must copy the old value to a temporary
   value, then store the new value, and then DECREF the temporary value.
   This is because it is possible that during the DECREF the frame is
   accessed by other code (e.g. a __del__ method or gc.collect()) and the
   variable would be pointing to already-freed memory. */
#define SETLOCAL(i, value)	do { PyObject *tmp = GETLOCAL(i); \
				     GETLOCAL(i) = value; \
                                     Py_XDECREF(tmp); } while (0)


#define UNWIND_BLOCK(b) \
	while (STACK_LEVEL() > (b)->b_level) { \
		PyObject *v = POP(); \
		Py_XDECREF(v); \
	}

#define UNWIND_EXCEPT_HANDLER(b) \
	{ \
		PyObject *type, *value, *traceback; \
		assert(STACK_LEVEL() >= (b)->b_level + 3); \
		while (STACK_LEVEL() > (b)->b_level + 3) { \
			value = POP(); \
			Py_XDECREF(value); \
		} \
		type = tstate->exc_type; \
		value = tstate->exc_value; \
		traceback = tstate->exc_traceback; \
		tstate->exc_type = POP(); \
		tstate->exc_value = POP(); \
		tstate->exc_traceback = POP(); \
		Py_XDECREF(type); \
		Py_XDECREF(value); \
		Py_XDECREF(traceback); \
	}

#define SAVE_EXC_STATE() \
	{ \
		PyObject *type, *value, *traceback; \
		Py_XINCREF(tstate->exc_type); \
		Py_XINCREF(tstate->exc_value); \
		Py_XINCREF(tstate->exc_traceback); \
		type = f->f_exc_type; \
		value = f->f_exc_value; \
		traceback = f->f_exc_traceback; \
		f->f_exc_type = tstate->exc_type; \
		f->f_exc_value = tstate->exc_value; \
		f->f_exc_traceback = tstate->exc_traceback; \
		Py_XDECREF(type); \
		Py_XDECREF(value); \
		Py_XDECREF(traceback); \
	}

#define SWAP_EXC_STATE() \
	{ \
		PyObject *tmp; \
		tmp = tstate->exc_type; \
		tstate->exc_type = f->f_exc_type; \
		f->f_exc_type = tmp; \
		tmp = tstate->exc_value; \
		tstate->exc_value = f->f_exc_value; \
		f->f_exc_value = tmp; \
		tmp = tstate->exc_traceback; \
		tstate->exc_traceback = f->f_exc_traceback; \
		f->f_exc_traceback = tmp; \
	}

/* Start of code */

	if (f == NULL)
		return NULL;

	/* push frame */
	if (Py_EnterRecursiveCall(""))
		return NULL;

	tstate->frame = f;

	if (tstate->use_tracing) {
		if (tstate->c_tracefunc != NULL) {
			/* tstate->c_tracefunc, if defined, is a
			   function that will be called on *every* entry
			   to a code block.  Its return value, if not
			   None, is a function that will be called at
			   the start of each executed line of code.
			   (Actually, the function must return itself
			   in order to continue tracing.)  The trace
			   functions are called with three arguments:
			   a pointer to the current frame, a string
			   indicating why the function is called, and
			   an argument which depends on the situation.
			   The global trace function is also called
			   whenever an exception is detected. */
			if (call_trace_protected(tstate->c_tracefunc,
						 tstate->c_traceobj,
						 f, PyTrace_CALL, Py_None)) {
				/* Trace function raised an error */
				goto exit_eval_frame;
			}
		}
		if (tstate->c_profilefunc != NULL) {
			/* Similar for c_profilefunc, except it needn't
			   return itself and isn't called for "line" events */
			if (call_trace_protected(tstate->c_profilefunc,
						 tstate->c_profileobj,
						 f, PyTrace_CALL, Py_None)) {
				/* Profile function raised an error */
				goto exit_eval_frame;
			}
		}
	}

	co = f->f_code;
	names = co->co_names;
	consts = co->co_consts;
	fastlocals = f->f_localsplus;
	freevars = f->f_localsplus + co->co_nlocals;
	first_instr = (unsigned char*) PyBytes_AS_STRING(co->co_code);
	/* An explanation is in order for the next line.

	   f->f_lasti now refers to the index of the last instruction
	   executed.  You might think this was obvious from the name, but
	   this wasn't always true before 2.3!  PyFrame_New now sets
	   f->f_lasti to -1 (i.e. the index *before* the first instruction)
	   and YIELD_VALUE doesn't fiddle with f_lasti any more.  So this
	   does work.  Promise.

	   When the PREDICT() macros are enabled, some opcode pairs follow in
           direct succession without updating f->f_lasti.  A successful
           prediction effectively links the two codes together as if they
           were a single new opcode; accordingly,f->f_lasti will point to
           the first code in the pair (for instance, GET_ITER followed by
           FOR_ITER is effectively a single opcode and f->f_lasti will point
           at to the beginning of the combined pair.)
	*/
	next_instr = first_instr + f->f_lasti + 1;
	stack_pointer = f->f_stacktop;
	assert(stack_pointer != NULL);
	f->f_stacktop = NULL;	/* remains NULL unless yield suspends frame */

	if (f->f_code->co_flags & CO_GENERATOR) {
		if (f->f_exc_type != NULL && f->f_exc_type != Py_None) {
			/* We were in an except handler when we left,
			   restore the exception state which was put aside
			   (see YIELD_VALUE). */
			SWAP_EXC_STATE();
		}
		else {
			SAVE_EXC_STATE();
		}
	}

#ifdef LLTRACE
	lltrace = PyDict_GetItemString(f->f_globals, "__lltrace__") != NULL;
#endif
#if defined(Py_DEBUG) || defined(LLTRACE)
	filename = _PyUnicode_AsString(co->co_filename);
#endif

	why = WHY_NOT;
	err = 0;
	x = Py_None;	/* Not a reference, just anything non-NULL */
	w = NULL;

	if (throwflag) { /* support for generator.throw() */
		why = WHY_EXCEPTION;
		goto on_error;
	}

	for (;;) {
#ifdef WITH_TSC
		if (inst1 == 0) {
			/* Almost surely, the opcode executed a break
			   or a continue, preventing inst1 from being set
			   on the way out of the loop.
			*/
			READ_TIMESTAMP(inst1);
			loop1 = inst1;
		}
		dump_tsc(opcode, ticked, inst0, inst1, loop0, loop1,
			 intr0, intr1);
		ticked = 0;
		inst1 = 0;
		intr0 = 0;
		intr1 = 0;
		READ_TIMESTAMP(loop0);
#endif
		assert(stack_pointer >= f->f_valuestack); /* else underflow */
		assert(STACK_LEVEL() <= co->co_stacksize);  /* else overflow */

		/* Do periodic things.  Doing this every time through
		   the loop would add too much overhead, so we do it
		   only every Nth instruction.  We also do it if
		   ``pendingcalls_to_do'' is set, i.e. when an asynchronous
		   event needs attention (e.g. a signal handler or
		   async I/O handler); see Py_AddPendingCall() and
		   Py_MakePendingCalls() above. */

		if (--_Py_Ticker < 0) {
			if (*next_instr == SETUP_FINALLY) {
				/* Make the last opcode before
				   a try: finally: block uninterruptable. */
				goto fast_next_opcode;
			}
			_Py_Ticker = _Py_CheckInterval;
			tstate->tick_counter++;
#ifdef WITH_TSC
			ticked = 1;
#endif
			if (pendingcalls_to_do) {
				if (Py_MakePendingCalls() < 0) {
					why = WHY_EXCEPTION;
					goto on_error;
				}
				if (pendingcalls_to_do)
					/* MakePendingCalls() didn't succeed.
					   Force early re-execution of this
					   "periodic" code, possibly after
					   a thread switch */
					_Py_Ticker = 0;
			}
#ifdef WITH_THREAD
			if (interpreter_lock) {
				/* Give another thread a chance */

				if (PyThreadState_Swap(NULL) != tstate)
					Py_FatalError("ceval: tstate mix-up");
				PyThread_release_lock(interpreter_lock);

				/* Other threads may run now */

				PyThread_acquire_lock(interpreter_lock, 1);
				if (PyThreadState_Swap(tstate) != NULL)
					Py_FatalError("ceval: orphan tstate");

				/* Check for thread interrupts */

				if (tstate->async_exc != NULL) {
					x = tstate->async_exc;
					tstate->async_exc = NULL;
					PyErr_SetNone(x);
					Py_DECREF(x);
					why = WHY_EXCEPTION;
					goto on_error;
				}
			}
#endif
		}

	fast_next_opcode:
		f->f_lasti = INSTR_OFFSET();

		/* line-by-line tracing support */

		if (_Py_TracingPossible &&
		    tstate->c_tracefunc != NULL && !tstate->tracing) {
			/* see maybe_call_line_trace
			   for expository comments */
			f->f_stacktop = stack_pointer;

			err = maybe_call_line_trace(tstate->c_tracefunc,
						    tstate->c_traceobj,
						    f, &instr_lb, &instr_ub,
						    &instr_prev);
			/* Reload possibly changed frame fields */
			JUMPTO(f->f_lasti);
			if (f->f_stacktop != NULL) {
				stack_pointer = f->f_stacktop;
				f->f_stacktop = NULL;
			}
			if (err) {
				/* trace function raised an exception */
				goto on_error;
			}
		}

		/* Extract opcode and argument */

		opcode = NEXTOP();
		oparg = 0;   /* allows oparg to be stored in a register because
			it doesn't have to be remembered across a full loop */
		if (HAS_ARG(opcode))
			oparg = NEXTARG();
	  dispatch_opcode:
#ifdef DYNAMIC_EXECUTION_PROFILE
#ifdef DXPAIRS
		dxpairs[lastopcode][opcode]++;
		lastopcode = opcode;
#endif
		dxp[opcode]++;
#endif

#ifdef LLTRACE
		/* Instruction tracing */

		if (lltrace) {
			if (HAS_ARG(opcode)) {
				printf("%d: %d, %d\n",
				       f->f_lasti, opcode, oparg);
			}
			else {
				printf("%d: %d\n",
				       f->f_lasti, opcode);
			}
		}
#endif

		/* Main switch on opcode */
		READ_TIMESTAMP(inst0);

		switch (opcode) {

		/* BEWARE!
		   It is essential that any operation that fails sets either
		   x to NULL, err to nonzero, or why to anything but WHY_NOT,
		   and that no operation that succeeds does this! */

		/* case STOP_CODE: this is an error! */

		TARGET(NOP)
			FAST_DISPATCH();

		TARGET(LOAD_FAST)
			x = GETLOCAL(oparg);
			if (x != NULL) {
				Py_INCREF(x);
				PUSH(x);
				FAST_DISPATCH();
			}
			format_exc_check_arg(PyExc_UnboundLocalError,
				UNBOUNDLOCAL_ERROR_MSG,
				PyTuple_GetItem(co->co_varnames, oparg));
			break;

		TARGET(LOAD_CONST)
			x = GETITEM(consts, oparg);
			Py_INCREF(x);
			PUSH(x);
			FAST_DISPATCH();

		PREDICTED_WITH_ARG(STORE_FAST);
		TARGET(STORE_FAST)
			v = POP();
			SETLOCAL(oparg, v);
			FAST_DISPATCH();

		TARGET(POP_TOP)
			v = POP();
			Py_DECREF(v);
			FAST_DISPATCH();

		TARGET(ROT_TWO)
			v = TOP();
			w = SECOND();
			SET_TOP(w);
			SET_SECOND(v);
			FAST_DISPATCH();

		TARGET(ROT_THREE)
			v = TOP();
			w = SECOND();
			x = THIRD();
			SET_TOP(w);
			SET_SECOND(x);
			SET_THIRD(v);
			FAST_DISPATCH();

		TARGET(ROT_FOUR)
			u = TOP();
			v = SECOND();
			w = THIRD();
			x = FOURTH();
			SET_TOP(v);
			SET_SECOND(w);
			SET_THIRD(x);
			SET_FOURTH(u);
			FAST_DISPATCH();

		TARGET(DUP_TOP)
			v = TOP();
			Py_INCREF(v);
			PUSH(v);
			FAST_DISPATCH();

		TARGET(DUP_TOPX)
			if (oparg == 2) {
				x = TOP();
				Py_INCREF(x);
				w = SECOND();
				Py_INCREF(w);
				STACKADJ(2);
				SET_TOP(x);
				SET_SECOND(w);
				FAST_DISPATCH();
			} else if (oparg == 3) {
				x = TOP();
				Py_INCREF(x);
				w = SECOND();
				Py_INCREF(w);
				v = THIRD();
				Py_INCREF(v);
				STACKADJ(3);
				SET_TOP(x);
				SET_SECOND(w);
				SET_THIRD(v);
				FAST_DISPATCH();
			}
			Py_FatalError("invalid argument to DUP_TOPX"
				      " (bytecode corruption?)");
			/* Never returns, so don't bother to set why. */
			break;

		TARGET(UNARY_POSITIVE)
			v = TOP();
			x = PyNumber_Positive(v);
			Py_DECREF(v);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(UNARY_NEGATIVE)
			v = TOP();
			x = PyNumber_Negative(v);
			Py_DECREF(v);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(UNARY_NOT)
			v = TOP();
			err = PyObject_IsTrue(v);
			Py_DECREF(v);
			if (err == 0) {
				Py_INCREF(Py_True);
				SET_TOP(Py_True);
				DISPATCH();
			}
			else if (err > 0) {
				Py_INCREF(Py_False);
				SET_TOP(Py_False);
				err = 0;
				DISPATCH();
			}
			STACKADJ(-1);
			break;

		TARGET(UNARY_INVERT)
			v = TOP();
			x = PyNumber_Invert(v);
			Py_DECREF(v);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(BINARY_POWER)
			w = POP();
			v = TOP();
			x = PyNumber_Power(v, w, Py_None);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(BINARY_MULTIPLY)
			w = POP();
			v = TOP();
			x = PyNumber_Multiply(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(BINARY_TRUE_DIVIDE)
			w = POP();
			v = TOP();
			x = PyNumber_TrueDivide(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(BINARY_FLOOR_DIVIDE)
			w = POP();
			v = TOP();
			x = PyNumber_FloorDivide(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(BINARY_MODULO)
			w = POP();
			v = TOP();
			if (PyUnicode_CheckExact(v))
				x = PyUnicode_Format(v, w);
			else
				x = PyNumber_Remainder(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(BINARY_ADD)
			w = POP();
			v = TOP();
			if (PyUnicode_CheckExact(v) &&
				 PyUnicode_CheckExact(w)) {
				x = unicode_concatenate(v, w, f, next_instr);
				/* unicode_concatenate consumed the ref to v */
				goto skip_decref_vx;
			}
			else {
				x = PyNumber_Add(v, w);
			}
			Py_DECREF(v);
		  skip_decref_vx:
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(BINARY_SUBTRACT)
			w = POP();
			v = TOP();
			x = PyNumber_Subtract(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(BINARY_SUBSCR)
			w = POP();
			v = TOP();
			x = PyObject_GetItem(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(BINARY_LSHIFT)
			w = POP();
			v = TOP();
			x = PyNumber_Lshift(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(BINARY_RSHIFT)
			w = POP();
			v = TOP();
			x = PyNumber_Rshift(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(BINARY_AND)
			w = POP();
			v = TOP();
			x = PyNumber_And(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(BINARY_XOR)
			w = POP();
			v = TOP();
			x = PyNumber_Xor(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(BINARY_OR)
			w = POP();
			v = TOP();
			x = PyNumber_Or(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(LIST_APPEND)
			w = POP();
			v = stack_pointer[-oparg];
			err = PyList_Append(v, w);
			Py_DECREF(w);
			if (err == 0) {
				PREDICT(JUMP_ABSOLUTE);
				DISPATCH();
			}
			break;

		TARGET(SET_ADD)
			w = POP();
			v = stack_pointer[-oparg];
			err = PySet_Add(v, w);
			Py_DECREF(w);
			if (err == 0) {
				PREDICT(JUMP_ABSOLUTE);
				DISPATCH();
			}
			break;

		TARGET(INPLACE_POWER)
			w = POP();
			v = TOP();
			x = PyNumber_InPlacePower(v, w, Py_None);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(INPLACE_MULTIPLY)
			w = POP();
			v = TOP();
			x = PyNumber_InPlaceMultiply(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(INPLACE_TRUE_DIVIDE)
			w = POP();
			v = TOP();
			x = PyNumber_InPlaceTrueDivide(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(INPLACE_FLOOR_DIVIDE)
			w = POP();
			v = TOP();
			x = PyNumber_InPlaceFloorDivide(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(INPLACE_MODULO)
			w = POP();
			v = TOP();
			x = PyNumber_InPlaceRemainder(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(INPLACE_ADD)
			w = POP();
			v = TOP();
			if (PyUnicode_CheckExact(v) &&
				 PyUnicode_CheckExact(w)) {
				x = unicode_concatenate(v, w, f, next_instr);
				/* unicode_concatenate consumed the ref to v */
				goto skip_decref_v;
			}
			else {
				x = PyNumber_InPlaceAdd(v, w);
			}
			Py_DECREF(v);
		  skip_decref_v:
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(INPLACE_SUBTRACT)
			w = POP();
			v = TOP();
			x = PyNumber_InPlaceSubtract(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(INPLACE_LSHIFT)
			w = POP();
			v = TOP();
			x = PyNumber_InPlaceLshift(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(INPLACE_RSHIFT)
			w = POP();
			v = TOP();
			x = PyNumber_InPlaceRshift(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(INPLACE_AND)
			w = POP();
			v = TOP();
			x = PyNumber_InPlaceAnd(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(INPLACE_XOR)
			w = POP();
			v = TOP();
			x = PyNumber_InPlaceXor(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(INPLACE_OR)
			w = POP();
			v = TOP();
			x = PyNumber_InPlaceOr(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(STORE_SUBSCR)
			w = TOP();
			v = SECOND();
			u = THIRD();
			STACKADJ(-3);
			/* v[w] = u */
			err = PyObject_SetItem(v, w, u);
			Py_DECREF(u);
			Py_DECREF(v);
			Py_DECREF(w);
			if (err == 0) DISPATCH();
			break;

		TARGET(DELETE_SUBSCR)
			w = TOP();
			v = SECOND();
			STACKADJ(-2);
			/* del v[w] */
			err = PyObject_DelItem(v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			if (err == 0) DISPATCH();
			break;

		TARGET(PRINT_EXPR)
			v = POP();
			w = PySys_GetObject("displayhook");
			if (w == NULL) {
				PyErr_SetString(PyExc_RuntimeError,
						"lost sys.displayhook");
				err = -1;
				x = NULL;
			}
			if (err == 0) {
				x = PyTuple_Pack(1, v);
				if (x == NULL)
					err = -1;
			}
			if (err == 0) {
				w = PyEval_CallObject(w, x);
				Py_XDECREF(w);
				if (w == NULL)
					err = -1;
			}
			Py_DECREF(v);
			Py_XDECREF(x);
			break;

#ifdef CASE_TOO_BIG
		default: switch (opcode) {
#endif
		TARGET(RAISE_VARARGS)
			v = w = NULL;
			switch (oparg) {
			case 2:
				v = POP(); /* cause */
			case 1:
				w = POP(); /* exc */
			case 0: /* Fallthrough */
				why = do_raise(w, v);
				break;
			default:
				PyErr_SetString(PyExc_SystemError,
					   "bad RAISE_VARARGS oparg");
				why = WHY_EXCEPTION;
				break;
			}
			break;

		TARGET(STORE_LOCALS)
			x = POP();
			v = f->f_locals;
			Py_XDECREF(v);
			f->f_locals = x;
			DISPATCH();

		TARGET(RETURN_VALUE)
			retval = POP();
			why = WHY_RETURN;
			goto fast_block_end;

		TARGET(YIELD_VALUE)
			retval = POP();
			f->f_stacktop = stack_pointer;
			why = WHY_YIELD;
			/* Put aside the current exception state and restore
			   that of the calling frame. This only serves when
			   "yield" is used inside an except handler. */
			SWAP_EXC_STATE();
			goto fast_yield;

		TARGET(POP_EXCEPT)
			{
				PyTryBlock *b = PyFrame_BlockPop(f);
				if (b->b_type != EXCEPT_HANDLER) {
					PyErr_SetString(PyExc_SystemError,
						"popped block is not an except handler");
					why = WHY_EXCEPTION;
					break;
				}
				UNWIND_EXCEPT_HANDLER(b);
			}
			DISPATCH();

		TARGET(POP_BLOCK)
			{
				PyTryBlock *b = PyFrame_BlockPop(f);
				UNWIND_BLOCK(b);
			}
			DISPATCH();

		PREDICTED(END_FINALLY);
		TARGET(END_FINALLY)
			v = POP();
			if (PyLong_Check(v)) {
				why = (enum why_code) PyLong_AS_LONG(v);
				assert(why != WHY_YIELD);
				if (why == WHY_RETURN ||
				    why == WHY_CONTINUE)
					retval = POP();
				if (why == WHY_SILENCED) {
					/* An exception was silenced by 'with', we must
					manually unwind the EXCEPT_HANDLER block which was
					created when the exception was caught, otherwise
					the stack will be in an inconsistent state. */
					PyTryBlock *b = PyFrame_BlockPop(f);
					if (b->b_type != EXCEPT_HANDLER) {
						PyErr_SetString(PyExc_SystemError,
							"popped block is not an except handler");
						why = WHY_EXCEPTION;
					}
					else {
						UNWIND_EXCEPT_HANDLER(b);
						why = WHY_NOT;
					}
				}
			}
			else if (PyExceptionClass_Check(v)) {
				w = POP();
				u = POP();
				PyErr_Restore(v, w, u);
				why = WHY_RERAISE;
				break;
			}
			else if (v != Py_None) {
				PyErr_SetString(PyExc_SystemError,
					"'finally' pops bad exception");
				why = WHY_EXCEPTION;
			}
			Py_DECREF(v);
			break;

		TARGET(LOAD_BUILD_CLASS)
			x = PyDict_GetItemString(f->f_builtins,
						 "__build_class__");
			if (x == NULL) {
				PyErr_SetString(PyExc_ImportError,
						"__build_class__ not found");
				break;
			}
			Py_INCREF(x);
			PUSH(x);
			break;

		TARGET(STORE_NAME)
			w = GETITEM(names, oparg);
			v = POP();
			if ((x = f->f_locals) != NULL) {
				if (PyDict_CheckExact(x))
					err = PyDict_SetItem(x, w, v);
				else
					err = PyObject_SetItem(x, w, v);
				Py_DECREF(v);
				if (err == 0) DISPATCH();
				break;
			}
			PyErr_Format(PyExc_SystemError,
				     "no locals found when storing %R", w);
			break;

		TARGET(DELETE_NAME)
			w = GETITEM(names, oparg);
			if ((x = f->f_locals) != NULL) {
				if ((err = PyObject_DelItem(x, w)) != 0)
					format_exc_check_arg(PyExc_NameError,
							     NAME_ERROR_MSG,
							     w);
				break;
			}
			PyErr_Format(PyExc_SystemError,
				     "no locals when deleting %R", w);
			break;

		PREDICTED_WITH_ARG(UNPACK_SEQUENCE);
		TARGET(UNPACK_SEQUENCE)
			v = POP();
			if (PyTuple_CheckExact(v) &&
			    PyTuple_GET_SIZE(v) == oparg) {
				PyObject **items = \
					((PyTupleObject *)v)->ob_item;
				while (oparg--) {
					w = items[oparg];
					Py_INCREF(w);
					PUSH(w);
				}
				Py_DECREF(v);
				DISPATCH();
			} else if (PyList_CheckExact(v) &&
				   PyList_GET_SIZE(v) == oparg) {
				PyObject **items = \
					((PyListObject *)v)->ob_item;
				while (oparg--) {
					w = items[oparg];
					Py_INCREF(w);
					PUSH(w);
				}
			} else if (unpack_iterable(v, oparg, -1,
						   stack_pointer + oparg)) {
				stack_pointer += oparg;
			} else {
				/* unpack_iterable() raised an exception */
				why = WHY_EXCEPTION;
			}
			Py_DECREF(v);
			break;

		TARGET(UNPACK_EX)
		{
			int totalargs = 1 + (oparg & 0xFF) + (oparg >> 8);
			v = POP();

			if (unpack_iterable(v, oparg & 0xFF, oparg >> 8,
					    stack_pointer + totalargs)) {
				stack_pointer += totalargs;
			} else {
				why = WHY_EXCEPTION;
			}
			Py_DECREF(v);
			break;
		}

		TARGET(STORE_ATTR)
			w = GETITEM(names, oparg);
			v = TOP();
			u = SECOND();
			STACKADJ(-2);
			err = PyObject_SetAttr(v, w, u); /* v.w = u */
			Py_DECREF(v);
			Py_DECREF(u);
			if (err == 0) DISPATCH();
			break;

		TARGET(DELETE_ATTR)
			w = GETITEM(names, oparg);
			v = POP();
			err = PyObject_SetAttr(v, w, (PyObject *)NULL);
							/* del v.w */
			Py_DECREF(v);
			break;

		TARGET(STORE_GLOBAL)
			w = GETITEM(names, oparg);
			v = POP();
			err = PyDict_SetItem(f->f_globals, w, v);
			Py_DECREF(v);
			if (err == 0) DISPATCH();
			break;

		TARGET(DELETE_GLOBAL)
			w = GETITEM(names, oparg);
			if ((err = PyDict_DelItem(f->f_globals, w)) != 0)
				format_exc_check_arg(
				    PyExc_NameError, GLOBAL_NAME_ERROR_MSG, w);
			break;

		TARGET(LOAD_NAME)
			w = GETITEM(names, oparg);
			if ((v = f->f_locals) == NULL) {
				PyErr_Format(PyExc_SystemError,
					     "no locals when loading %R", w);
				why = WHY_EXCEPTION;
				break;
			}
			if (PyDict_CheckExact(v)) {
				x = PyDict_GetItem(v, w);
				Py_XINCREF(x);
			}
			else {
				x = PyObject_GetItem(v, w);
				if (x == NULL && PyErr_Occurred()) {
					if (!PyErr_ExceptionMatches(
							PyExc_KeyError))
						break;
					PyErr_Clear();
				}
			}
			if (x == NULL) {
				x = PyDict_GetItem(f->f_globals, w);
				if (x == NULL) {
					x = PyDict_GetItem(f->f_builtins, w);
					if (x == NULL) {
						format_exc_check_arg(
							    PyExc_NameError,
							    NAME_ERROR_MSG, w);
						break;
					}
				}
				Py_INCREF(x);
			}
			PUSH(x);
			DISPATCH();

		TARGET(LOAD_GLOBAL)
			w = GETITEM(names, oparg);
			if (PyUnicode_CheckExact(w)) {
				/* Inline the PyDict_GetItem() calls.
				   WARNING: this is an extreme speed hack.
				   Do not try this at home. */
				long hash = ((PyUnicodeObject *)w)->hash;
				if (hash != -1) {
					PyDictObject *d;
					PyDictEntry *e;
					d = (PyDictObject *)(f->f_globals);
					e = d->ma_lookup(d, w, hash);
					if (e == NULL) {
						x = NULL;
						break;
					}
					x = e->me_value;
					if (x != NULL) {
						Py_INCREF(x);
						PUSH(x);
						DISPATCH();
					}
					d = (PyDictObject *)(f->f_builtins);
					e = d->ma_lookup(d, w, hash);
					if (e == NULL) {
						x = NULL;
						break;
					}
					x = e->me_value;
					if (x != NULL) {
						Py_INCREF(x);
						PUSH(x);
						DISPATCH();
					}
					goto load_global_error;
				}
			}
			/* This is the un-inlined version of the code above */
			x = PyDict_GetItem(f->f_globals, w);
			if (x == NULL) {
				x = PyDict_GetItem(f->f_builtins, w);
				if (x == NULL) {
				  load_global_error:
					format_exc_check_arg(
						    PyExc_NameError,
						    GLOBAL_NAME_ERROR_MSG, w);
					break;
				}
			}
			Py_INCREF(x);
			PUSH(x);
			DISPATCH();

		TARGET(DELETE_FAST)
			x = GETLOCAL(oparg);
			if (x != NULL) {
				SETLOCAL(oparg, NULL);
				DISPATCH();
			}
			format_exc_check_arg(
				PyExc_UnboundLocalError,
				UNBOUNDLOCAL_ERROR_MSG,
				PyTuple_GetItem(co->co_varnames, oparg)
				);
			break;

		TARGET(LOAD_CLOSURE)
			x = freevars[oparg];
			Py_INCREF(x);
			PUSH(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(LOAD_DEREF)
			x = freevars[oparg];
			w = PyCell_Get(x);
			if (w != NULL) {
				PUSH(w);
				DISPATCH();
			}
			err = -1;
			/* Don't stomp existing exception */
			if (PyErr_Occurred())
				break;
			if (oparg < PyTuple_GET_SIZE(co->co_cellvars)) {
				v = PyTuple_GET_ITEM(co->co_cellvars,
						       oparg);
			       format_exc_check_arg(
				       PyExc_UnboundLocalError,
				       UNBOUNDLOCAL_ERROR_MSG,
				       v);
			} else {
				v = PyTuple_GET_ITEM(co->co_freevars, oparg -
					PyTuple_GET_SIZE(co->co_cellvars));
				format_exc_check_arg(PyExc_NameError,
						     UNBOUNDFREE_ERROR_MSG, v);
			}
			break;

		TARGET(STORE_DEREF)
			w = POP();
			x = freevars[oparg];
			PyCell_Set(x, w);
			Py_DECREF(w);
			DISPATCH();

		TARGET(BUILD_TUPLE)
			x = PyTuple_New(oparg);
			if (x != NULL) {
				for (; --oparg >= 0;) {
					w = POP();
					PyTuple_SET_ITEM(x, oparg, w);
				}
				PUSH(x);
				DISPATCH();
			}
			break;

		TARGET(BUILD_LIST)
			x =  PyList_New(oparg);
			if (x != NULL) {
				for (; --oparg >= 0;) {
					w = POP();
					PyList_SET_ITEM(x, oparg, w);
				}
				PUSH(x);
				DISPATCH();
			}
			break;

		TARGET(BUILD_SET)
			x = PySet_New(NULL);
			if (x != NULL) {
				for (; --oparg >= 0;) {
					w = POP();
					if (err == 0)
						err = PySet_Add(x, w);
					Py_DECREF(w);
				}
				if (err != 0) {
					Py_DECREF(x);
					break;
				}
				PUSH(x);
				DISPATCH();
			}
			break;

		TARGET(BUILD_MAP)
			x = _PyDict_NewPresized((Py_ssize_t)oparg);
			PUSH(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(STORE_MAP)
			w = TOP();     /* key */
			u = SECOND();  /* value */
			v = THIRD();   /* dict */
			STACKADJ(-2);
			assert (PyDict_CheckExact(v));
			err = PyDict_SetItem(v, w, u);  /* v[w] = u */
			Py_DECREF(u);
			Py_DECREF(w);
			if (err == 0) DISPATCH();
			break;

		TARGET(MAP_ADD)
			w = TOP();     /* key */
			u = SECOND();  /* value */
			STACKADJ(-2);
			v = stack_pointer[-oparg];  /* dict */
			assert (PyDict_CheckExact(v));
			err = PyDict_SetItem(v, w, u);  /* v[w] = u */
			Py_DECREF(u);
			Py_DECREF(w);
			if (err == 0) {
				PREDICT(JUMP_ABSOLUTE);
				DISPATCH();
			}
			break;

		TARGET(LOAD_ATTR)
			w = GETITEM(names, oparg);
			v = TOP();
			x = PyObject_GetAttr(v, w);
			Py_DECREF(v);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(COMPARE_OP)
			w = POP();
			v = TOP();
			x = cmp_outcome(oparg, v, w);
			Py_DECREF(v);
			Py_DECREF(w);
			SET_TOP(x);
			if (x == NULL) break;
			PREDICT(POP_JUMP_IF_FALSE);
			PREDICT(POP_JUMP_IF_TRUE);
			DISPATCH();

		TARGET(IMPORT_NAME)
			w = GETITEM(names, oparg);
			x = PyDict_GetItemString(f->f_builtins, "__import__");
			if (x == NULL) {
				PyErr_SetString(PyExc_ImportError,
						"__import__ not found");
				break;
			}
			Py_INCREF(x);
			v = POP();
			u = TOP();
			if (PyLong_AsLong(u) != -1 || PyErr_Occurred())
				w = PyTuple_Pack(5,
					    w,
					    f->f_globals,
					    f->f_locals == NULL ?
						  Py_None : f->f_locals,
					    v,
					    u);
			else
				w = PyTuple_Pack(4,
					    w,
					    f->f_globals,
					    f->f_locals == NULL ?
						  Py_None : f->f_locals,
					    v);
			Py_DECREF(v);
			Py_DECREF(u);
			if (w == NULL) {
				u = POP();
				Py_DECREF(x);
				x = NULL;
				break;
			}
			READ_TIMESTAMP(intr0);
			v = x;
			x = PyEval_CallObject(v, w);
			Py_DECREF(v);
			READ_TIMESTAMP(intr1);
			Py_DECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(IMPORT_STAR)
			v = POP();
			PyFrame_FastToLocals(f);
			if ((x = f->f_locals) == NULL) {
				PyErr_SetString(PyExc_SystemError,
					"no locals found during 'import *'");
				break;
			}
			READ_TIMESTAMP(intr0);
			err = import_all_from(x, v);
			READ_TIMESTAMP(intr1);
			PyFrame_LocalsToFast(f, 0);
			Py_DECREF(v);
			if (err == 0) DISPATCH();
			break;

		TARGET(IMPORT_FROM)
			w = GETITEM(names, oparg);
			v = TOP();
			READ_TIMESTAMP(intr0);
			x = import_from(v, w);
			READ_TIMESTAMP(intr1);
			PUSH(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(JUMP_FORWARD)
			JUMPBY(oparg);
			FAST_DISPATCH();

		PREDICTED_WITH_ARG(POP_JUMP_IF_FALSE);
		TARGET(POP_JUMP_IF_FALSE)
			w = POP();
			if (w == Py_True) {
				Py_DECREF(w);
				FAST_DISPATCH();
			}
			if (w == Py_False) {
				Py_DECREF(w);
				JUMPTO(oparg);
				FAST_DISPATCH();
			}
			err = PyObject_IsTrue(w);
			Py_DECREF(w);
			if (err > 0)
				err = 0;
			else if (err == 0)
				JUMPTO(oparg);
			else
				break;
			DISPATCH();

		PREDICTED_WITH_ARG(POP_JUMP_IF_TRUE);
		TARGET(POP_JUMP_IF_TRUE)
			w = POP();
			if (w == Py_False) {
				Py_DECREF(w);
				FAST_DISPATCH();
			}
			if (w == Py_True) {
				Py_DECREF(w);
				JUMPTO(oparg);
				FAST_DISPATCH();
			}
			err = PyObject_IsTrue(w);
			Py_DECREF(w);
			if (err > 0) {
				err = 0;
				JUMPTO(oparg);
			}
			else if (err == 0)
				;
			else
				break;
			DISPATCH();

		TARGET(JUMP_IF_FALSE_OR_POP)
			w = TOP();
			if (w == Py_True) {
				STACKADJ(-1);
				Py_DECREF(w);
				FAST_DISPATCH();
			}
			if (w == Py_False) {
				JUMPTO(oparg);
				FAST_DISPATCH();
			}
			err = PyObject_IsTrue(w);
			if (err > 0) {
				STACKADJ(-1);
				Py_DECREF(w);
				err = 0;
			}
			else if (err == 0)
				JUMPTO(oparg);
			else
				break;
			DISPATCH();

		TARGET(JUMP_IF_TRUE_OR_POP)
			w = TOP();
			if (w == Py_False) {
				STACKADJ(-1);
				Py_DECREF(w);
				FAST_DISPATCH();
			}
			if (w == Py_True) {
				JUMPTO(oparg);
				FAST_DISPATCH();
			}
			err = PyObject_IsTrue(w);
			if (err > 0) {
				err = 0;
				JUMPTO(oparg);
			}
			else if (err == 0) {
				STACKADJ(-1);
				Py_DECREF(w);
			}
			else
				break;
			DISPATCH();

		PREDICTED_WITH_ARG(JUMP_ABSOLUTE);
		TARGET(JUMP_ABSOLUTE)
			JUMPTO(oparg);
#if FAST_LOOPS
			/* Enabling this path speeds-up all while and for-loops by bypassing
                           the per-loop checks for signals.  By default, this should be turned-off
                           because it prevents detection of a control-break in tight loops like
                           "while 1: pass".  Compile with this option turned-on when you need
                           the speed-up and do not need break checking inside tight loops (ones
                           that contain only instructions ending with FAST_DISPATCH).
                        */
			FAST_DISPATCH();
#else
			DISPATCH();
#endif

		TARGET(GET_ITER)
			/* before: [obj]; after [getiter(obj)] */
			v = TOP();
			x = PyObject_GetIter(v);
			Py_DECREF(v);
			if (x != NULL) {
				SET_TOP(x);
				PREDICT(FOR_ITER);
				DISPATCH();
			}
			STACKADJ(-1);
			break;

		PREDICTED_WITH_ARG(FOR_ITER);
		TARGET(FOR_ITER)
			/* before: [iter]; after: [iter, iter()] *or* [] */
			v = TOP();
			x = (*v->ob_type->tp_iternext)(v);
			if (x != NULL) {
				PUSH(x);
				PREDICT(STORE_FAST);
				PREDICT(UNPACK_SEQUENCE);
				DISPATCH();
			}
			if (PyErr_Occurred()) {
				if (!PyErr_ExceptionMatches(
						PyExc_StopIteration))
					break;
				PyErr_Clear();
			}
			/* iterator ended normally */
 			x = v = POP();
			Py_DECREF(v);
			JUMPBY(oparg);
			DISPATCH();

		TARGET(BREAK_LOOP)
			why = WHY_BREAK;
			goto fast_block_end;

		TARGET(CONTINUE_LOOP)
			retval = PyLong_FromLong(oparg);
			if (!retval) {
				x = NULL;
				break;
			}
			why = WHY_CONTINUE;
			goto fast_block_end;

		TARGET_WITH_IMPL(SETUP_LOOP, _setup_finally)
		TARGET_WITH_IMPL(SETUP_EXCEPT, _setup_finally)
		TARGET(SETUP_FINALLY)
		_setup_finally:
			/* NOTE: If you add any new block-setup opcodes that
		           are not try/except/finally handlers, you may need
		           to update the PyGen_NeedsFinalizing() function.
		           */

			PyFrame_BlockSetup(f, opcode, INSTR_OFFSET() + oparg,
					   STACK_LEVEL());
			DISPATCH();

		TARGET(WITH_CLEANUP)
		{
			/* At the top of the stack are 1-3 values indicating
			   how/why we entered the finally clause:
			   - TOP = None
			   - (TOP, SECOND) = (WHY_{RETURN,CONTINUE}), retval
			   - TOP = WHY_*; no retval below it
			   - (TOP, SECOND, THIRD) = exc_info()
			   Below them is EXIT, the context.__exit__ bound method.
			   In the last case, we must call
			     EXIT(TOP, SECOND, THIRD)
			   otherwise we must call
			     EXIT(None, None, None)

			   In all cases, we remove EXIT from the stack, leaving
			   the rest in the same order.

			   In addition, if the stack represents an exception,
			   *and* the function call returns a 'true' value, we
			   "zap" this information, to prevent END_FINALLY from
			   re-raising the exception.  (But non-local gotos
			   should still be resumed.)
			*/

			PyObject *exit_func = POP();
			u = TOP();
			if (u == Py_None) {
				v = w = Py_None;
			}
			else if (PyLong_Check(u)) {
				u = v = w = Py_None;
			}
			else {
				v = SECOND();
				w = THIRD();
			}
			/* XXX Not the fastest way to call it... */
			x = PyObject_CallFunctionObjArgs(exit_func, u, v, w,
							 NULL);
			Py_DECREF(exit_func);
			if (x == NULL)
				break; /* Go to error exit */

			if (u != Py_None)
				err = PyObject_IsTrue(x);
			else
				err = 0;
			Py_DECREF(x);

			if (err < 0)
				break; /* Go to error exit */
			else if (err > 0) {
				err = 0;
				/* There was an exception and a True return */
				STACKADJ(-2);
				SET_TOP(PyLong_FromLong((long) WHY_SILENCED));
				Py_DECREF(u);
				Py_DECREF(v);
				Py_DECREF(w);
			}
			PREDICT(END_FINALLY);
			break;
		}

		TARGET(CALL_FUNCTION)
		{
			PyObject **sp;
			PCALL(PCALL_ALL);
			sp = stack_pointer;
#ifdef WITH_TSC
			x = call_function(&sp, oparg, &intr0, &intr1);
#else
			x = call_function(&sp, oparg);
#endif
			stack_pointer = sp;
			PUSH(x);
			if (x != NULL)
				DISPATCH();
			break;
		}

		TARGET_WITH_IMPL(CALL_FUNCTION_VAR, _call_function_var_kw)
		TARGET_WITH_IMPL(CALL_FUNCTION_KW, _call_function_var_kw)
		TARGET(CALL_FUNCTION_VAR_KW)
		_call_function_var_kw:
		{
		    int na = oparg & 0xff;
		    int nk = (oparg>>8) & 0xff;
		    int flags = (opcode - CALL_FUNCTION) & 3;
		    int n = na + 2 * nk;
		    PyObject **pfunc, *func, **sp;
		    PCALL(PCALL_ALL);
		    if (flags & CALL_FLAG_VAR)
			    n++;
		    if (flags & CALL_FLAG_KW)
			    n++;
		    pfunc = stack_pointer - n - 1;
		    func = *pfunc;

		    if (PyMethod_Check(func)
			&& PyMethod_GET_SELF(func) != NULL) {
			    PyObject *self = PyMethod_GET_SELF(func);
			    Py_INCREF(self);
			    func = PyMethod_GET_FUNCTION(func);
			    Py_INCREF(func);
			    Py_DECREF(*pfunc);
			    *pfunc = self;
			    na++;
			    n++;
		    } else
			    Py_INCREF(func);
		    sp = stack_pointer;
		    READ_TIMESTAMP(intr0);
		    x = ext_do_call(func, &sp, flags, na, nk);
		    READ_TIMESTAMP(intr1);
		    stack_pointer = sp;
		    Py_DECREF(func);

		    while (stack_pointer > pfunc) {
			    w = POP();
			    Py_DECREF(w);
		    }
		    PUSH(x);
		    if (x != NULL)
			    DISPATCH();
		    break;
		}

		TARGET_WITH_IMPL(MAKE_CLOSURE, _make_function)
		TARGET(MAKE_FUNCTION)
		_make_function:
		{
		    int posdefaults = oparg & 0xff;
		    int kwdefaults = (oparg>>8) & 0xff;
		    int num_annotations = (oparg >> 16) & 0x7fff;

			v = POP(); /* code object */
			x = PyFunction_New(v, f->f_globals);
			Py_DECREF(v);

			if (x != NULL && opcode == MAKE_CLOSURE) {
				v = POP();
				if (PyFunction_SetClosure(x, v) != 0) {
					/* Can't happen unless bytecode is corrupt. */
					why = WHY_EXCEPTION;
				}
				Py_DECREF(v);
			}

			if (x != NULL && num_annotations > 0) {
				Py_ssize_t name_ix;
				u = POP(); /* names of args with annotations */
				v = PyDict_New();
				if (v == NULL) {
					Py_DECREF(x);
					x = NULL;
					break;
				}
				name_ix = PyTuple_Size(u);
				assert(num_annotations == name_ix+1);
				while (name_ix > 0) {
					--name_ix;
					t = PyTuple_GET_ITEM(u, name_ix);
					w = POP();
					/* XXX(nnorwitz): check for errors */
					PyDict_SetItem(v, t, w);
					Py_DECREF(w);
				}

				if (PyFunction_SetAnnotations(x, v) != 0) {
					/* Can't happen unless
					   PyFunction_SetAnnotations changes. */
					why = WHY_EXCEPTION;
				}
				Py_DECREF(v);
				Py_DECREF(u);
			}

			/* XXX Maybe this should be a separate opcode? */
			if (x != NULL && posdefaults > 0) {
				v = PyTuple_New(posdefaults);
				if (v == NULL) {
					Py_DECREF(x);
					x = NULL;
					break;
				}
				while (--posdefaults >= 0) {
					w = POP();
					PyTuple_SET_ITEM(v, posdefaults, w);
				}
				if (PyFunction_SetDefaults(x, v) != 0) {
					/* Can't happen unless
                                           PyFunction_SetDefaults changes. */
					why = WHY_EXCEPTION;
				}
				Py_DECREF(v);
			}
			if (x != NULL && kwdefaults > 0) {
				v = PyDict_New();
				if (v == NULL) {
					Py_DECREF(x);
					x = NULL;
					break;
				}
				while (--kwdefaults >= 0) {
					w = POP(); /* default value */
					u = POP(); /* kw only arg name */
					/* XXX(nnorwitz): check for errors */
					PyDict_SetItem(v, u, w);
					Py_DECREF(w);
					Py_DECREF(u);
				}
				if (PyFunction_SetKwDefaults(x, v) != 0) {
					/* Can't happen unless
                                           PyFunction_SetKwDefaults changes. */
					why = WHY_EXCEPTION;
				}
				Py_DECREF(v);
			}
			PUSH(x);
			break;
		}

		TARGET(BUILD_SLICE)
			if (oparg == 3)
				w = POP();
			else
				w = NULL;
			v = POP();
			u = TOP();
			x = PySlice_New(u, v, w);
			Py_DECREF(u);
			Py_DECREF(v);
			Py_XDECREF(w);
			SET_TOP(x);
			if (x != NULL) DISPATCH();
			break;

		TARGET(EXTENDED_ARG)
			opcode = NEXTOP();
			oparg = oparg<<16 | NEXTARG();
			goto dispatch_opcode;

#ifdef USE_COMPUTED_GOTOS
		_unknown_opcode:
#endif
		default:
			fprintf(stderr,
				"XXX lineno: %d, opcode: %d\n",
				PyCode_Addr2Line(f->f_code, f->f_lasti),
				opcode);
			PyErr_SetString(PyExc_SystemError, "unknown opcode");
			why = WHY_EXCEPTION;
			break;

#ifdef CASE_TOO_BIG
		}
#endif

		} /* switch */

	    on_error:

		READ_TIMESTAMP(inst1);

		/* Quickly continue if no error occurred */

		if (why == WHY_NOT) {
			if (err == 0 && x != NULL) {
#ifdef CHECKEXC
				/* This check is expensive! */
				if (PyErr_Occurred())
					fprintf(stderr,
						"XXX undetected error\n");
				else {
#endif
					READ_TIMESTAMP(loop1);
					continue; /* Normal, fast path */
#ifdef CHECKEXC
				}
#endif
			}
			why = WHY_EXCEPTION;
			x = Py_None;
			err = 0;
		}

		/* Double-check exception status */

		if (why == WHY_EXCEPTION || why == WHY_RERAISE) {
			if (!PyErr_Occurred()) {
				PyErr_SetString(PyExc_SystemError,
					"error return without exception set");
				why = WHY_EXCEPTION;
			}
		}
#ifdef CHECKEXC
		else {
			/* This check is expensive! */
			if (PyErr_Occurred()) {
				char buf[128];
				sprintf(buf, "Stack unwind with exception "
					"set and why=%d", why);
				Py_FatalError(buf);
			}
		}
#endif

		/* Log traceback info if this is a real exception */

		if (why == WHY_EXCEPTION) {
			PyTraceBack_Here(f);

			if (tstate->c_tracefunc != NULL)
				call_exc_trace(tstate->c_tracefunc,
					       tstate->c_traceobj, f);
		}

		/* For the rest, treat WHY_RERAISE as WHY_EXCEPTION */

		if (why == WHY_RERAISE)
			why = WHY_EXCEPTION;

		/* Unwind stacks if a (pseudo) exception occurred */

fast_block_end:
		while (why != WHY_NOT && f->f_iblock > 0) {
			PyTryBlock *b = PyFrame_BlockPop(f);

			assert(why != WHY_YIELD);
			if (b->b_type == SETUP_LOOP && why == WHY_CONTINUE) {
				/* For a continue inside a try block,
				   don't pop the block for the loop. */
				PyFrame_BlockSetup(f, b->b_type, b->b_handler,
						   b->b_level);
				why = WHY_NOT;
				JUMPTO(PyLong_AS_LONG(retval));
				Py_DECREF(retval);
				break;
			}

			if (b->b_type == EXCEPT_HANDLER) {
				UNWIND_EXCEPT_HANDLER(b);
				continue;
			}
			UNWIND_BLOCK(b);
			if (b->b_type == SETUP_LOOP && why == WHY_BREAK) {
				why = WHY_NOT;
				JUMPTO(b->b_handler);
				break;
			}
			if (why == WHY_EXCEPTION && (b->b_type == SETUP_EXCEPT
				|| b->b_type == SETUP_FINALLY)) {
				PyObject *exc, *val, *tb;
				int handler = b->b_handler;
				/* Beware, this invalidates all b->b_* fields */
 				PyFrame_BlockSetup(f, EXCEPT_HANDLER, -1, STACK_LEVEL());
				PUSH(tstate->exc_traceback);
				PUSH(tstate->exc_value);
				if (tstate->exc_type != NULL) {
					PUSH(tstate->exc_type);
				}
				else {
					Py_INCREF(Py_None);
					PUSH(Py_None);
				}
				PyErr_Fetch(&exc, &val, &tb);
				/* Make the raw exception data
				   available to the handler,
				   so a program can emulate the
				   Python main loop. */
				PyErr_NormalizeException(
					&exc, &val, &tb);
				PyException_SetTraceback(val, tb);
				Py_INCREF(exc);
				tstate->exc_type = exc;
				Py_INCREF(val);
				tstate->exc_value = val;
				tstate->exc_traceback = tb;
				if (tb == NULL)
					tb = Py_None;
				Py_INCREF(tb);
				PUSH(tb);
				PUSH(val);
				PUSH(exc);
				why = WHY_NOT;
				JUMPTO(handler);
				break;
			}
			if (b->b_type == SETUP_FINALLY) {
				if (why & (WHY_RETURN | WHY_CONTINUE))
					PUSH(retval);
				PUSH(PyLong_FromLong((long)why));
				why = WHY_NOT;
				JUMPTO(b->b_handler);
				break;
			}
		} /* unwind stack */

		/* End the loop if we still have an error (or return) */

		if (why != WHY_NOT)
			break;
		READ_TIMESTAMP(loop1);

	} /* main loop */

	assert(why != WHY_YIELD);
	/* Pop remaining stack entries. */
	while (!EMPTY()) {
		v = POP();
		Py_XDECREF(v);
	}

	if (why != WHY_RETURN)
		retval = NULL;

fast_yield:
	if (tstate->use_tracing) {
		if (tstate->c_tracefunc) {
			if (why == WHY_RETURN || why == WHY_YIELD) {
				if (call_trace(tstate->c_tracefunc,
					       tstate->c_traceobj, f,
					       PyTrace_RETURN, retval)) {
					Py_XDECREF(retval);
					retval = NULL;
					why = WHY_EXCEPTION;
				}
			}
			else if (why == WHY_EXCEPTION) {
				call_trace_protected(tstate->c_tracefunc,
						     tstate->c_traceobj, f,
						     PyTrace_RETURN, NULL);
			}
		}
		if (tstate->c_profilefunc) {
			if (why == WHY_EXCEPTION)
				call_trace_protected(tstate->c_profilefunc,
						     tstate->c_profileobj, f,
						     PyTrace_RETURN, NULL);
			else if (call_trace(tstate->c_profilefunc,
					    tstate->c_profileobj, f,
					    PyTrace_RETURN, retval)) {
				Py_XDECREF(retval);
				retval = NULL;
				why = WHY_EXCEPTION;
			}
		}
	}

	/* pop frame */
exit_eval_frame:
	Py_LeaveRecursiveCall();
	tstate->frame = f->f_back;

	return retval;
}

/* This is gonna seem *real weird*, but if you put some other code between
   PyEval_EvalFrame() and PyEval_EvalCodeEx() you will need to adjust
   the test in the if statements in Misc/gdbinit (pystack and pystackv). */

PyObject *
PyEval_EvalCodeEx(PyCodeObject *co, PyObject *globals, PyObject *locals,
	   PyObject **args, int argcount, PyObject **kws, int kwcount,
	   PyObject **defs, int defcount, PyObject *kwdefs, PyObject *closure)
{
	register PyFrameObject *f;
	register PyObject *retval = NULL;
	register PyObject **fastlocals, **freevars;
	PyThreadState *tstate = PyThreadState_GET();
	PyObject *x, *u;

	if (globals == NULL) {
		PyErr_SetString(PyExc_SystemError,
				"PyEval_EvalCodeEx: NULL globals");
		return NULL;
	}

	assert(tstate != NULL);
	assert(globals != NULL);
	f = PyFrame_New(tstate, co, globals, locals);
	if (f == NULL)
		return NULL;

	fastlocals = f->f_localsplus;
	freevars = f->f_localsplus + co->co_nlocals;

	if (co->co_argcount > 0 ||
	    co->co_kwonlyargcount > 0 ||
	    co->co_flags & (CO_VARARGS | CO_VARKEYWORDS)) {
		int i;
		int n = argcount;
		PyObject *kwdict = NULL;
		if (co->co_flags & CO_VARKEYWORDS) {
			kwdict = PyDict_New();
			if (kwdict == NULL)
				goto fail;
			i = co->co_argcount + co->co_kwonlyargcount;
			if (co->co_flags & CO_VARARGS)
				i++;
			SETLOCAL(i, kwdict);
		}
		if (argcount > co->co_argcount) {
			if (!(co->co_flags & CO_VARARGS)) {
				PyErr_Format(PyExc_TypeError,
				    "%U() takes %s %d "
				    "%spositional argument%s (%d given)",
				    co->co_name,
				    defcount ? "at most" : "exactly",
				    co->co_argcount,
				    kwcount ? "non-keyword " : "",
				    co->co_argcount == 1 ? "" : "s",
				    argcount);
				goto fail;
			}
			n = co->co_argcount;
		}
		for (i = 0; i < n; i++) {
			x = args[i];
			Py_INCREF(x);
			SETLOCAL(i, x);
		}
		if (co->co_flags & CO_VARARGS) {
			u = PyTuple_New(argcount - n);
			if (u == NULL)
				goto fail;
			SETLOCAL(co->co_argcount + co->co_kwonlyargcount, u);
			for (i = n; i < argcount; i++) {
				x = args[i];
				Py_INCREF(x);
				PyTuple_SET_ITEM(u, i-n, x);
			}
		}
		for (i = 0; i < kwcount; i++) {
			PyObject **co_varnames;
			PyObject *keyword = kws[2*i];
			PyObject *value = kws[2*i + 1];
			int j;
			if (keyword == NULL || !PyUnicode_Check(keyword)) {
				PyErr_Format(PyExc_TypeError,
				    "%U() keywords must be strings",
				    co->co_name);
				goto fail;
			}
			/* Speed hack: do raw pointer compares. As names are
			   normally interned this should almost always hit. */
			co_varnames = PySequence_Fast_ITEMS(co->co_varnames);
			for (j = 0;
			     j < co->co_argcount + co->co_kwonlyargcount;
			     j++) {
				PyObject *nm = co_varnames[j];
				if (nm == keyword)
					goto kw_found;
			}
			/* Slow fallback, just in case */
			for (j = 0;
			     j < co->co_argcount + co->co_kwonlyargcount;
			     j++) {
				PyObject *nm = co_varnames[j];
				int cmp = PyObject_RichCompareBool(
					keyword, nm, Py_EQ);
				if (cmp > 0)
					goto kw_found;
				else if (cmp < 0)
					goto fail;
			}
			/* Check errors from Compare */
			if (PyErr_Occurred())
				goto fail;
			if (j >= co->co_argcount + co->co_kwonlyargcount) {
				if (kwdict == NULL) {
					PyErr_Format(PyExc_TypeError,
					    "%U() got an unexpected "
					    "keyword argument '%S'",
					    co->co_name,
					    keyword);
					goto fail;
				}
				PyDict_SetItem(kwdict, keyword, value);
				continue;
			}
kw_found:
			if (GETLOCAL(j) != NULL) {
				PyErr_Format(PyExc_TypeError,
					 "%U() got multiple "
					 "values for keyword "
					 "argument '%S'",
					 co->co_name,
					 keyword);
				goto fail;
			}
			Py_INCREF(value);
			SETLOCAL(j, value);
		}
		if (co->co_kwonlyargcount > 0) {
			for (i = co->co_argcount;
			     i < co->co_argcount + co->co_kwonlyargcount;
			     i++) {
				PyObject *name, *def;
				if (GETLOCAL(i) != NULL)
					continue;
				name = PyTuple_GET_ITEM(co->co_varnames, i);
				def = NULL;
				if (kwdefs != NULL)
					def = PyDict_GetItem(kwdefs, name);
				if (def != NULL) {
					Py_INCREF(def);
					SETLOCAL(i, def);
					continue;
				}
				PyErr_Format(PyExc_TypeError,
					"%U() needs keyword-only argument %S",
					co->co_name, name);
				goto fail;
			}
		}
		if (argcount < co->co_argcount) {
			int m = co->co_argcount - defcount;
			for (i = argcount; i < m; i++) {
				if (GETLOCAL(i) == NULL) {
					PyErr_Format(PyExc_TypeError,
					    "%U() takes %s %d "
					    "%spositional argument%s "
					    "(%d given)",
					    co->co_name,
					    ((co->co_flags & CO_VARARGS) ||
					     defcount) ? "at least"
						       : "exactly",
					    m, kwcount ? "non-keyword " : "",
					    m == 1 ? "" : "s", i);
					goto fail;
				}
			}
			if (n > m)
				i = n - m;
			else
				i = 0;
			for (; i < defcount; i++) {
				if (GETLOCAL(m+i) == NULL) {
					PyObject *def = defs[i];
					Py_INCREF(def);
					SETLOCAL(m+i, def);
				}
			}
		}
	}
	else {
		if (argcount > 0 || kwcount > 0) {
			PyErr_Format(PyExc_TypeError,
				     "%U() takes no arguments (%d given)",
				     co->co_name,
				     argcount + kwcount);
			goto fail;
		}
	}
	/* Allocate and initialize storage for cell vars, and copy free
	   vars into frame.  This isn't too efficient right now. */
	if (PyTuple_GET_SIZE(co->co_cellvars)) {
		int i, j, nargs, found;
		Py_UNICODE *cellname, *argname;
		PyObject *c;

		nargs = co->co_argcount + co->co_kwonlyargcount;
		if (co->co_flags & CO_VARARGS)
			nargs++;
		if (co->co_flags & CO_VARKEYWORDS)
			nargs++;

		/* Initialize each cell var, taking into account
		   cell vars that are initialized from arguments.

		   Should arrange for the compiler to put cellvars
		   that are arguments at the beginning of the cellvars
		   list so that we can march over it more efficiently?
		*/
		for (i = 0; i < PyTuple_GET_SIZE(co->co_cellvars); ++i) {
			cellname = PyUnicode_AS_UNICODE(
				PyTuple_GET_ITEM(co->co_cellvars, i));
			found = 0;
			for (j = 0; j < nargs; j++) {
				argname = PyUnicode_AS_UNICODE(
					PyTuple_GET_ITEM(co->co_varnames, j));
				if (Py_UNICODE_strcmp(cellname, argname) == 0) {
					c = PyCell_New(GETLOCAL(j));
					if (c == NULL)
						goto fail;
					GETLOCAL(co->co_nlocals + i) = c;
					found = 1;
					break;
				}
			}
			if (found == 0) {
				c = PyCell_New(NULL);
				if (c == NULL)
					goto fail;
				SETLOCAL(co->co_nlocals + i, c);
			}
		}
	}
	if (PyTuple_GET_SIZE(co->co_freevars)) {
		int i;
		for (i = 0; i < PyTuple_GET_SIZE(co->co_freevars); ++i) {
			PyObject *o = PyTuple_GET_ITEM(closure, i);
			Py_INCREF(o);
			freevars[PyTuple_GET_SIZE(co->co_cellvars) + i] = o;
		}
	}

	if (co->co_flags & CO_GENERATOR) {
		/* Don't need to keep the reference to f_back, it will be set
		 * when the generator is resumed. */
		Py_XDECREF(f->f_back);
		f->f_back = NULL;

		PCALL(PCALL_GENERATOR);

		/* Create a new generator that owns the ready to run frame
		 * and return that as the value. */
		return PyGen_New(f);
	}

	retval = PyEval_EvalFrameEx(f,0);

fail: /* Jump here from prelude on failure */

	/* decref'ing the frame can cause __del__ methods to get invoked,
	   which can call back into Python.  While we're done with the
	   current Python frame (f), the associated C stack is still in use,
	   so recursion_depth must be boosted for the duration.
	*/
	assert(tstate != NULL);
	++tstate->recursion_depth;
	Py_DECREF(f);
	--tstate->recursion_depth;
	return retval;
}


/* Logic for the raise statement (too complicated for inlining).
   This *consumes* a reference count to each of its arguments. */
static enum why_code
do_raise(PyObject *exc, PyObject *cause)
{
	PyObject *type = NULL, *value = NULL;

	if (exc == NULL) {
		/* Reraise */
		PyThreadState *tstate = PyThreadState_GET();
		PyObject *tb;
		type = tstate->exc_type;
		value = tstate->exc_value;
		tb = tstate->exc_traceback;
		if (type == Py_None) {
			PyErr_SetString(PyExc_RuntimeError,
					"No active exception to reraise");
			return WHY_EXCEPTION;
			}
		Py_XINCREF(type);
		Py_XINCREF(value);
		Py_XINCREF(tb);
		PyErr_Restore(type, value, tb);
		return WHY_RERAISE;
	}

	/* We support the following forms of raise:
	   raise
       raise <instance>
       raise <type> */

	if (PyExceptionClass_Check(exc)) {
		type = exc;
		value = PyObject_CallObject(exc, NULL);
		if (value == NULL)
			goto raise_error;
	}
	else if (PyExceptionInstance_Check(exc)) {
		value = exc;
		type = PyExceptionInstance_Class(exc);
		Py_INCREF(type);
	}
	else {
		/* Not something you can raise.  You get an exception
		   anyway, just not what you specified :-) */
		Py_DECREF(exc);
		PyErr_SetString(PyExc_TypeError,
				"exceptions must derive from BaseException");
		goto raise_error;
	}

	if (cause) {
		PyObject *fixed_cause;
		if (PyExceptionClass_Check(cause)) {
			fixed_cause = PyObject_CallObject(cause, NULL);
			if (fixed_cause == NULL)
				goto raise_error;
			Py_DECREF(cause);
		}
		else if (PyExceptionInstance_Check(cause)) {
			fixed_cause = cause;
		}
		else {
			PyErr_SetString(PyExc_TypeError,
					"exception causes must derive from "
					"BaseException");
			goto raise_error;
		}
		PyException_SetCause(value, fixed_cause);
	}

	PyErr_SetObject(type, value);
	/* PyErr_SetObject incref's its arguments */
	Py_XDECREF(value);
	Py_XDECREF(type);
	return WHY_EXCEPTION;

raise_error:
	Py_XDECREF(value);
	Py_XDECREF(type);
	Py_XDECREF(cause);
	return WHY_EXCEPTION;
}

/* Iterate v argcnt times and store the results on the stack (via decreasing
   sp).  Return 1 for success, 0 if error.

   If argcntafter == -1, do a simple unpack. If it is >= 0, do an unpack
   with a variable target.
*/

static int
unpack_iterable(PyObject *v, int argcnt, int argcntafter, PyObject **sp)
{
	int i = 0, j = 0;
	Py_ssize_t ll = 0;
	PyObject *it;  /* iter(v) */
	PyObject *w;
	PyObject *l = NULL; /* variable list */

	assert(v != NULL);

	it = PyObject_GetIter(v);
	if (it == NULL)
		goto Error;

	for (; i < argcnt; i++) {
		w = PyIter_Next(it);
		if (w == NULL) {
			/* Iterator done, via error or exhaustion. */
			if (!PyErr_Occurred()) {
				PyErr_Format(PyExc_ValueError,
					"need more than %d value%s to unpack",
					i, i == 1 ? "" : "s");
			}
			goto Error;
		}
		*--sp = w;
	}

	if (argcntafter == -1) {
		/* We better have exhausted the iterator now. */
		w = PyIter_Next(it);
		if (w == NULL) {
			if (PyErr_Occurred())
				goto Error;
			Py_DECREF(it);
			return 1;
		}
		Py_DECREF(w);
		PyErr_SetString(PyExc_ValueError, "too many values to unpack");
		goto Error;
	}

	l = PySequence_List(it);
	if (l == NULL)
		goto Error;
	*--sp = l;
	i++;

	ll = PyList_GET_SIZE(l);
	if (ll < argcntafter) {
		PyErr_Format(PyExc_ValueError, "need more than %zd values to unpack",
			     argcnt + ll);
		goto Error;
	}

	/* Pop the "after-variable" args off the list. */
	for (j = argcntafter; j > 0; j--, i++) {
		*--sp = PyList_GET_ITEM(l, ll - j);
	}
	/* Resize the list. */
	Py_SIZE(l) = ll - argcntafter;
	Py_DECREF(it);
	return 1;

Error:
	for (; i > 0; i--, sp++)
		Py_DECREF(*sp);
	Py_XDECREF(it);
	return 0;
}


#ifdef LLTRACE
static int
prtrace(PyObject *v, char *str)
{
	printf("%s ", str);
	if (PyObject_Print(v, stdout, 0) != 0)
		PyErr_Clear(); /* Don't know what else to do */
	printf("\n");
	return 1;
}
#endif

static void
call_exc_trace(Py_tracefunc func, PyObject *self, PyFrameObject *f)
{
	PyObject *type, *value, *traceback, *arg;
	int err;
	PyErr_Fetch(&type, &value, &traceback);
	if (value == NULL) {
		value = Py_None;
		Py_INCREF(value);
	}
	arg = PyTuple_Pack(3, type, value, traceback);
	if (arg == NULL) {
		PyErr_Restore(type, value, traceback);
		return;
	}
	err = call_trace(func, self, f, PyTrace_EXCEPTION, arg);
	Py_DECREF(arg);
	if (err == 0)
		PyErr_Restore(type, value, traceback);
	else {
		Py_XDECREF(type);
		Py_XDECREF(value);
		Py_XDECREF(traceback);
	}
}

static int
call_trace_protected(Py_tracefunc func, PyObject *obj, PyFrameObject *frame,
		     int what, PyObject *arg)
{
	PyObject *type, *value, *traceback;
	int err;
	PyErr_Fetch(&type, &value, &traceback);
	err = call_trace(func, obj, frame, what, arg);
	if (err == 0)
	{
		PyErr_Restore(type, value, traceback);
		return 0;
	}
	else {
		Py_XDECREF(type);
		Py_XDECREF(value);
		Py_XDECREF(traceback);
		return -1;
	}
}

static int
call_trace(Py_tracefunc func, PyObject *obj, PyFrameObject *frame,
	   int what, PyObject *arg)
{
	register PyThreadState *tstate = frame->f_tstate;
	int result;
	if (tstate->tracing)
		return 0;
	tstate->tracing++;
	tstate->use_tracing = 0;
	result = func(obj, frame, what, arg);
	tstate->use_tracing = ((tstate->c_tracefunc != NULL)
			       || (tstate->c_profilefunc != NULL));
	tstate->tracing--;
	return result;
}

PyObject *
_PyEval_CallTracing(PyObject *func, PyObject *args)
{
	PyFrameObject *frame = PyEval_GetFrame();
	PyThreadState *tstate = frame->f_tstate;
	int save_tracing = tstate->tracing;
	int save_use_tracing = tstate->use_tracing;
	PyObject *result;

	tstate->tracing = 0;
	tstate->use_tracing = ((tstate->c_tracefunc != NULL)
			       || (tstate->c_profilefunc != NULL));
	result = PyObject_Call(func, args, NULL);
	tstate->tracing = save_tracing;
	tstate->use_tracing = save_use_tracing;
	return result;
}

static int
maybe_call_line_trace(Py_tracefunc func, PyObject *obj,
		      PyFrameObject *frame, int *instr_lb, int *instr_ub,
		      int *instr_prev)
{
	int result = 0;

        /* If the last instruction executed isn't in the current
           instruction window, reset the window.  If the last
           instruction happens to fall at the start of a line or if it
           represents a jump backwards, call the trace function.
        */
	if ((frame->f_lasti < *instr_lb || frame->f_lasti >= *instr_ub)) {
		int line;
		PyAddrPair bounds;

		line = PyCode_CheckLineNumber(frame->f_code, frame->f_lasti,
					      &bounds);
		if (line >= 0) {
			frame->f_lineno = line;
			result = call_trace(func, obj, frame,
					    PyTrace_LINE, Py_None);
		}
		*instr_lb = bounds.ap_lower;
		*instr_ub = bounds.ap_upper;
	}
	else if (frame->f_lasti <= *instr_prev) {
		result = call_trace(func, obj, frame, PyTrace_LINE, Py_None);
	}
	*instr_prev = frame->f_lasti;
	return result;
}

void
PyEval_SetProfile(Py_tracefunc func, PyObject *arg)
{
	PyThreadState *tstate = PyThreadState_GET();
	PyObject *temp = tstate->c_profileobj;
	Py_XINCREF(arg);
	tstate->c_profilefunc = NULL;
	tstate->c_profileobj = NULL;
	/* Must make sure that tracing is not ignored if 'temp' is freed */
	tstate->use_tracing = tstate->c_tracefunc != NULL;
	Py_XDECREF(temp);
	tstate->c_profilefunc = func;
	tstate->c_profileobj = arg;
	/* Flag that tracing or profiling is turned on */
	tstate->use_tracing = (func != NULL) || (tstate->c_tracefunc != NULL);
}

void
PyEval_SetTrace(Py_tracefunc func, PyObject *arg)
{
	PyThreadState *tstate = PyThreadState_GET();
	PyObject *temp = tstate->c_traceobj;
	_Py_TracingPossible += (func != NULL) - (tstate->c_tracefunc != NULL);
	Py_XINCREF(arg);
	tstate->c_tracefunc = NULL;
	tstate->c_traceobj = NULL;
	/* Must make sure that profiling is not ignored if 'temp' is freed */
	tstate->use_tracing = tstate->c_profilefunc != NULL;
	Py_XDECREF(temp);
	tstate->c_tracefunc = func;
	tstate->c_traceobj = arg;
	/* Flag that tracing or profiling is turned on */
	tstate->use_tracing = ((func != NULL)
			       || (tstate->c_profilefunc != NULL));
}

PyObject *
PyEval_GetBuiltins(void)
{
	PyFrameObject *current_frame = PyEval_GetFrame();
	if (current_frame == NULL)
		return PyThreadState_GET()->interp->builtins;
	else
		return current_frame->f_builtins;
}

PyObject *
PyEval_GetLocals(void)
{
	PyFrameObject *current_frame = PyEval_GetFrame();
	if (current_frame == NULL)
		return NULL;
	PyFrame_FastToLocals(current_frame);
	return current_frame->f_locals;
}

PyObject *
PyEval_GetGlobals(void)
{
	PyFrameObject *current_frame = PyEval_GetFrame();
	if (current_frame == NULL)
		return NULL;
	else
		return current_frame->f_globals;
}

PyFrameObject *
PyEval_GetFrame(void)
{