summaryrefslogtreecommitdiffstats
path: root/Python/hamt.c
blob: c9acbbcc5acc3ca2eddce0edcbffd26e8171132b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
#include "Python.h"

#include "structmember.h"
#include "internal/pystate.h"
#include "internal/hamt.h"

/*
This file provides an implemention of an immutable mapping using the
Hash Array Mapped Trie (or HAMT) datastructure.

This design allows to have:

1. Efficient copy: immutable mappings can be copied by reference,
   making it an O(1) operation.

2. Efficient mutations: due to structural sharing, only a portion of
   the trie needs to be copied when the collection is mutated.  The
   cost of set/delete operations is O(log N).

3. Efficient lookups: O(log N).

(where N is number of key/value items in the immutable mapping.)


HAMT
====

The core idea of HAMT is that the shape of the trie is encoded into the
hashes of keys.

Say we want to store a K/V pair in our mapping.  First, we calculate the
hash of K, let's say it's 19830128, or in binary:

    0b1001011101001010101110000 = 19830128

Now let's partition this bit representation of the hash into blocks of
5 bits each:

    0b00_00000_10010_11101_00101_01011_10000 = 19830128
          (6)   (5)   (4)   (3)   (2)   (1)

Each block of 5 bits represents a number betwen 0 and 31.  So if we have
a tree that consists of nodes, each of which is an array of 32 pointers,
those 5-bit blocks will encode a position on a single tree level.

For example, storing the key K with hash 19830128, results in the following
tree structure:

                     (array of 32 pointers)
                     +---+ -- +----+----+----+ -- +----+
  root node          | 0 | .. | 15 | 16 | 17 | .. | 31 |   0b10000 = 16 (1)
  (level 1)          +---+ -- +----+----+----+ -- +----+
                                      |
                     +---+ -- +----+----+----+ -- +----+
  a 2nd level node   | 0 | .. | 10 | 11 | 12 | .. | 31 |   0b01011 = 11 (2)
                     +---+ -- +----+----+----+ -- +----+
                                      |
                     +---+ -- +----+----+----+ -- +----+
  a 3rd level node   | 0 | .. | 04 | 05 | 06 | .. | 31 |   0b00101 = 5  (3)
                     +---+ -- +----+----+----+ -- +----+
                                      |
                     +---+ -- +----+----+----+----+
  a 4th level node   | 0 | .. | 04 | 29 | 30 | 31 |        0b11101 = 29 (4)
                     +---+ -- +----+----+----+----+
                                      |
                     +---+ -- +----+----+----+ -- +----+
  a 5th level node   | 0 | .. | 17 | 18 | 19 | .. | 31 |   0b10010 = 18 (5)
                     +---+ -- +----+----+----+ -- +----+
                                      |
                       +--------------+
                       |
                     +---+ -- +----+----+----+ -- +----+
  a 6th level node   | 0 | .. | 15 | 16 | 17 | .. | 31 |   0b00000 = 0  (6)
                     +---+ -- +----+----+----+ -- +----+
                       |
                       V -- our value (or collision)

To rehash: for a K/V pair, the hash of K encodes where in the tree V will
be stored.

To optimize memory footprint and handle hash collisions, our implementation
uses three different types of nodes:

 * A Bitmap node;
 * An Array node;
 * A Collision node.

Because we implement an immutable dictionary, our nodes are also
immutable.  Therefore, when we need to modify a node, we copy it, and
do that modification to the copy.


Array Nodes
-----------

These nodes are very simple.  Essentially they are arrays of 32 pointers
we used to illustrate the high-level idea in the previous section.

We use Array nodes only when we need to store more than 16 pointers
in a single node.

Array nodes do not store key objects or value objects.  They are used
only as an indirection level - their pointers point to other nodes in
the tree.


Bitmap Node
-----------

Allocating a new 32-pointers array for every node of our tree would be
very expensive.  Unless we store millions of keys, most of tree nodes would
be very sparse.

When we have less than 16 elements in a node, we don't want to use the
Array node, that would mean that we waste a lot of memory.  Instead,
we can use bitmap compression and can have just as many pointers
as we need!

Bitmap nodes consist of two fields:

1. An array of pointers.  If a Bitmap node holds N elements, the
   array will be of N pointers.

2. A 32bit integer -- a bitmap field.  If an N-th bit is set in the
   bitmap, it means that the node has an N-th element.

For example, say we need to store a 3 elements sparse array:

   +---+  --  +---+  --  +----+  --  +----+
   | 0 |  ..  | 4 |  ..  | 11 |  ..  | 17 |
   +---+  --  +---+  --  +----+  --  +----+
                |          |           |
                o1         o2          o3

We allocate a three-pointer Bitmap node.  Its bitmap field will be
then set to:

   0b_00100_00010_00000_10000 == (1 << 17) | (1 << 11) | (1 << 4)

To check if our Bitmap node has an I-th element we can do:

   bitmap & (1 << I)


And here's a formula to calculate a position in our pointer array
which would correspond to an I-th element:

   popcount(bitmap & ((1 << I) - 1))


Let's break it down:

 * `popcount` is a function that returns a number of bits set to 1;

 * `((1 << I) - 1)` is a mask to filter the bitmask to contain bits
   set to the *right* of our bit.


So for our 17, 11, and 4 indexes:

 * bitmap & ((1 << 17) - 1) == 0b100000010000 => 2 bits are set => index is 2.

 * bitmap & ((1 << 11) - 1) == 0b10000 => 1 bit is set => index is 1.

 * bitmap & ((1 << 4) - 1) == 0b0 => 0 bits are set => index is 0.


To conclude: Bitmap nodes are just like Array nodes -- they can store
a number of pointers, but use bitmap compression to eliminate unused
pointers.


Bitmap nodes have two pointers for each item:

  +----+----+----+----+  --  +----+----+
  | k1 | v1 | k2 | v2 |  ..  | kN | vN |
  +----+----+----+----+  --  +----+----+

When kI == NULL, vI points to another tree level.

When kI != NULL, the actual key object is stored in kI, and its
value is stored in vI.


Collision Nodes
---------------

Collision nodes are simple arrays of pointers -- two pointers per
key/value.  When there's a hash collision, say for k1/v1 and k2/v2
we have `hash(k1)==hash(k2)`.  Then our collision node will be:

  +----+----+----+----+
  | k1 | v1 | k2 | v2 |
  +----+----+----+----+


Tree Structure
--------------

All nodes are PyObjects.

The `PyHamtObject` object has a pointer to the root node (h_root),
and has a length field (h_count).

High-level functions accept a PyHamtObject object and dispatch to
lower-level functions depending on what kind of node h_root points to.


Operations
==========

There are three fundamental operations on an immutable dictionary:

1. "o.assoc(k, v)" will return a new immutable dictionary, that will be
   a copy of "o", but with the "k/v" item set.

   Functions in this file:

        hamt_node_assoc, hamt_node_bitmap_assoc,
        hamt_node_array_assoc, hamt_node_collision_assoc

   `hamt_node_assoc` function accepts a node object, and calls
   other functions depending on its actual type.

2. "o.find(k)" will lookup key "k" in "o".

   Functions:

        hamt_node_find, hamt_node_bitmap_find,
        hamt_node_array_find, hamt_node_collision_find

3. "o.without(k)" will return a new immutable dictionary, that will be
   a copy of "o", buth without the "k" key.

   Functions:

        hamt_node_without, hamt_node_bitmap_without,
        hamt_node_array_without, hamt_node_collision_without


Further Reading
===============

1. http://blog.higher-order.net/2009/09/08/understanding-clojures-persistenthashmap-deftwice.html

2. http://blog.higher-order.net/2010/08/16/assoc-and-clojures-persistenthashmap-part-ii.html

3. Clojure's PersistentHashMap implementation:
   https://github.com/clojure/clojure/blob/master/src/jvm/clojure/lang/PersistentHashMap.java


Debug
=====

The HAMT datatype is accessible for testing purposes under the
`_testcapi` module:

    >>> from _testcapi import hamt
    >>> h = hamt()
    >>> h2 = h.set('a', 2)
    >>> h3 = h2.set('b', 3)
    >>> list(h3)
    ['a', 'b']

When CPython is built in debug mode, a '__dump__()' method is available
to introspect the tree:

    >>> print(h3.__dump__())
    HAMT(len=2):
        BitmapNode(size=4 count=2 bitmap=0b110 id=0x10eb9d9e8):
            'a': 2
            'b': 3
*/


#define IS_ARRAY_NODE(node)     (Py_TYPE(node) == &_PyHamt_ArrayNode_Type)
#define IS_BITMAP_NODE(node)    (Py_TYPE(node) == &_PyHamt_BitmapNode_Type)
#define IS_COLLISION_NODE(node) (Py_TYPE(node) == &_PyHamt_CollisionNode_Type)


/* Return type for 'find' (lookup a key) functions.

   * F_ERROR - an error occurred;
   * F_NOT_FOUND - the key was not found;
   * F_FOUND - the key was found.
*/
typedef enum {F_ERROR, F_NOT_FOUND, F_FOUND} hamt_find_t;


/* Return type for 'without' (delete a key) functions.

   * W_ERROR - an error occurred;
   * W_NOT_FOUND - the key was not found: there's nothing to delete;
   * W_EMPTY - the key was found: the node/tree would be empty
     if the key is deleted;
   * W_NEWNODE - the key was found: a new node/tree is returned
     without that key.
*/
typedef enum {W_ERROR, W_NOT_FOUND, W_EMPTY, W_NEWNODE} hamt_without_t;


/* Low-level iterator protocol type.

   * I_ITEM - a new item has been yielded;
   * I_END - the whole tree was visited (similar to StopIteration).
*/
typedef enum {I_ITEM, I_END} hamt_iter_t;


#define HAMT_ARRAY_NODE_SIZE 32


typedef struct {
    PyObject_HEAD
    PyHamtNode *a_array[HAMT_ARRAY_NODE_SIZE];
    Py_ssize_t a_count;
} PyHamtNode_Array;


typedef struct {
    PyObject_VAR_HEAD
    uint32_t b_bitmap;
    PyObject *b_array[1];
} PyHamtNode_Bitmap;


typedef struct {
    PyObject_VAR_HEAD
    int32_t c_hash;
    PyObject *c_array[1];
} PyHamtNode_Collision;


static PyHamtNode_Bitmap *_empty_bitmap_node;
static PyHamtObject *_empty_hamt;


static PyHamtObject *
hamt_alloc(void);

static PyHamtNode *
hamt_node_assoc(PyHamtNode *node,
                uint32_t shift, int32_t hash,
                PyObject *key, PyObject *val, int* added_leaf);

static hamt_without_t
hamt_node_without(PyHamtNode *node,
                  uint32_t shift, int32_t hash,
                  PyObject *key,
                  PyHamtNode **new_node);

static hamt_find_t
hamt_node_find(PyHamtNode *node,
               uint32_t shift, int32_t hash,
               PyObject *key, PyObject **val);

#ifdef Py_DEBUG
static int
hamt_node_dump(PyHamtNode *node,
               _PyUnicodeWriter *writer, int level);
#endif

static PyHamtNode *
hamt_node_array_new(Py_ssize_t);

static PyHamtNode *
hamt_node_collision_new(int32_t hash, Py_ssize_t size);

static inline Py_ssize_t
hamt_node_collision_count(PyHamtNode_Collision *node);


#ifdef Py_DEBUG
static void
_hamt_node_array_validate(void *o)
{
    assert(IS_ARRAY_NODE(o));
    PyHamtNode_Array *node = (PyHamtNode_Array*)(o);
    Py_ssize_t i = 0, count = 0;
    for (; i < HAMT_ARRAY_NODE_SIZE; i++) {
        if (node->a_array[i] != NULL) {
            count++;
        }
    }
    assert(count == node->a_count);
}

#define VALIDATE_ARRAY_NODE(NODE) \
    do { _hamt_node_array_validate(NODE); } while (0);
#else
#define VALIDATE_ARRAY_NODE(NODE)
#endif


/* Returns -1 on error */
static inline int32_t
hamt_hash(PyObject *o)
{
    Py_hash_t hash = PyObject_Hash(o);

#if SIZEOF_PY_HASH_T <= 4
    return hash;
#else
    if (hash == -1) {
        /* exception */
        return -1;
    }

    /* While it's suboptimal to reduce Python's 64 bit hash to
       32 bits via XOR, it seems that the resulting hash function
       is good enough (this is also how Long type is hashed in Java.)
       Storing 10, 100, 1000 Python strings results in a relatively
       shallow and uniform tree structure.

       Please don't change this hashing algorithm, as there are many
       tests that test some exact tree shape to cover all code paths.
    */
    int32_t xored = (int32_t)(hash & 0xffffffffl) ^ (int32_t)(hash >> 32);
    return xored == -1 ? -2 : xored;
#endif
}

static inline uint32_t
hamt_mask(int32_t hash, uint32_t shift)
{
    return (((uint32_t)hash >> shift) & 0x01f);
}

static inline uint32_t
hamt_bitpos(int32_t hash, uint32_t shift)
{
    return (uint32_t)1 << hamt_mask(hash, shift);
}

static inline uint32_t
hamt_bitcount(uint32_t i)
{
    /* We could use native popcount instruction but that would
       require to either add configure flags to enable SSE4.2
       support or to detect it dynamically.  Otherwise, we have
       a risk of CPython not working properly on older hardware.

       In practice, there's no observable difference in
       performance between using a popcount instruction or the
       following fallback code.

       The algorithm is copied from:
       https://graphics.stanford.edu/~seander/bithacks.html
    */
    i = i - ((i >> 1) & 0x55555555);
    i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
    return (((i + (i >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
}

static inline uint32_t
hamt_bitindex(uint32_t bitmap, uint32_t bit)
{
    return hamt_bitcount(bitmap & (bit - 1));
}


/////////////////////////////////// Dump Helpers
#ifdef Py_DEBUG

static int
_hamt_dump_ident(_PyUnicodeWriter *writer, int level)
{
    /* Write `'    ' * level` to the `writer` */
    PyObject *str = NULL;
    PyObject *num = NULL;
    PyObject *res = NULL;
    int ret = -1;

    str = PyUnicode_FromString("    ");
    if (str == NULL) {
        goto error;
    }

    num = PyLong_FromLong((long)level);
    if (num == NULL) {
        goto error;
    }

    res = PyNumber_Multiply(str, num);
    if (res == NULL) {
        goto error;
    }

    ret = _PyUnicodeWriter_WriteStr(writer, res);

error:
    Py_XDECREF(res);
    Py_XDECREF(str);
    Py_XDECREF(num);
    return ret;
}

static int
_hamt_dump_format(_PyUnicodeWriter *writer, const char *format, ...)
{
    /* A convenient helper combining _PyUnicodeWriter_WriteStr and
       PyUnicode_FromFormatV.
    */
    PyObject* msg;
    int ret;

    va_list vargs;
#ifdef HAVE_STDARG_PROTOTYPES
    va_start(vargs, format);
#else
    va_start(vargs);
#endif
    msg = PyUnicode_FromFormatV(format, vargs);
    va_end(vargs);

    if (msg == NULL) {
        return -1;
    }

    ret = _PyUnicodeWriter_WriteStr(writer, msg);
    Py_DECREF(msg);
    return ret;
}

#endif  /* Py_DEBUG */
/////////////////////////////////// Bitmap Node


static PyHamtNode *
hamt_node_bitmap_new(Py_ssize_t size)
{
    /* Create a new bitmap node of size 'size' */

    PyHamtNode_Bitmap *node;
    Py_ssize_t i;

    assert(size >= 0);
    assert(size % 2 == 0);

    if (size == 0 && _empty_bitmap_node != NULL) {
        Py_INCREF(_empty_bitmap_node);
        return (PyHamtNode *)_empty_bitmap_node;
    }

    /* No freelist; allocate a new bitmap node */
    node = PyObject_GC_NewVar(
        PyHamtNode_Bitmap, &_PyHamt_BitmapNode_Type, size);
    if (node == NULL) {
        return NULL;
    }

    Py_SIZE(node) = size;

    for (i = 0; i < size; i++) {
        node->b_array[i] = NULL;
    }

    node->b_bitmap = 0;

    _PyObject_GC_TRACK(node);

    if (size == 0 && _empty_bitmap_node == NULL) {
        /* Since bitmap nodes are immutable, we can cache the instance
           for size=0 and reuse it whenever we need an empty bitmap node.
        */
        _empty_bitmap_node = node;
        Py_INCREF(_empty_bitmap_node);
    }

    return (PyHamtNode *)node;
}

static inline Py_ssize_t
hamt_node_bitmap_count(PyHamtNode_Bitmap *node)
{
    return Py_SIZE(node) / 2;
}

static PyHamtNode_Bitmap *
hamt_node_bitmap_clone(PyHamtNode_Bitmap *node)
{
    /* Clone a bitmap node; return a new one with the same child notes. */

    PyHamtNode_Bitmap *clone;
    Py_ssize_t i;

    clone = (PyHamtNode_Bitmap *)hamt_node_bitmap_new(Py_SIZE(node));
    if (clone == NULL) {
        return NULL;
    }

    for (i = 0; i < Py_SIZE(node); i++) {
        Py_XINCREF(node->b_array[i]);
        clone->b_array[i] = node->b_array[i];
    }

    clone->b_bitmap = node->b_bitmap;
    return clone;
}

static PyHamtNode_Bitmap *
hamt_node_bitmap_clone_without(PyHamtNode_Bitmap *o, uint32_t bit)
{
    assert(bit & o->b_bitmap);
    assert(hamt_node_bitmap_count(o) > 1);

    PyHamtNode_Bitmap *new = (PyHamtNode_Bitmap *)hamt_node_bitmap_new(
        Py_SIZE(o) - 2);
    if (new == NULL) {
        return NULL;
    }

    uint32_t idx = hamt_bitindex(o->b_bitmap, bit);
    uint32_t key_idx = 2 * idx;
    uint32_t val_idx = key_idx + 1;
    uint32_t i;

    for (i = 0; i < key_idx; i++) {
        Py_XINCREF(o->b_array[i]);
        new->b_array[i] = o->b_array[i];
    }

    assert(Py_SIZE(o) >= 0 && Py_SIZE(o) <= 32);
    for (i = val_idx + 1; i < (uint32_t)Py_SIZE(o); i++) {
        Py_XINCREF(o->b_array[i]);
        new->b_array[i - 2] = o->b_array[i];
    }

    new->b_bitmap = o->b_bitmap & ~bit;
    return new;
}

static PyHamtNode *
hamt_node_new_bitmap_or_collision(uint32_t shift,
                                  PyObject *key1, PyObject *val1,
                                  int32_t key2_hash,
                                  PyObject *key2, PyObject *val2)
{
    /* Helper method.  Creates a new node for key1/val and key2/val2
       pairs.

       If key1 hash is equal to the hash of key2, a Collision node
       will be created.  If they are not equal, a Bitmap node is
       created.
    */

    int32_t key1_hash = hamt_hash(key1);
    if (key1_hash == -1) {
        return NULL;
    }

    if (key1_hash == key2_hash) {
        PyHamtNode_Collision *n;
        n = (PyHamtNode_Collision *)hamt_node_collision_new(key1_hash, 4);
        if (n == NULL) {
            return NULL;
        }

        Py_INCREF(key1);
        n->c_array[0] = key1;
        Py_INCREF(val1);
        n->c_array[1] = val1;

        Py_INCREF(key2);
        n->c_array[2] = key2;
        Py_INCREF(val2);
        n->c_array[3] = val2;

        return (PyHamtNode *)n;
    }
    else {
        int added_leaf = 0;
        PyHamtNode *n = hamt_node_bitmap_new(0);
        if (n == NULL) {
            return NULL;
        }

        PyHamtNode *n2 = hamt_node_assoc(
            n, shift, key1_hash, key1, val1, &added_leaf);
        Py_DECREF(n);
        if (n2 == NULL) {
            return NULL;
        }

        n = hamt_node_assoc(n2, shift, key2_hash, key2, val2, &added_leaf);
        Py_DECREF(n2);
        if (n == NULL) {
            return NULL;
        }

        return n;
    }
}

static PyHamtNode *
hamt_node_bitmap_assoc(PyHamtNode_Bitmap *self,
                       uint32_t shift, int32_t hash,
                       PyObject *key, PyObject *val, int* added_leaf)
{
    /* assoc operation for bitmap nodes.

       Return: a new node, or self if key/val already is in the
       collection.

       'added_leaf' is later used in '_PyHamt_Assoc' to determine if
       `hamt.set(key, val)` increased the size of the collection.
    */

    uint32_t bit = hamt_bitpos(hash, shift);
    uint32_t idx = hamt_bitindex(self->b_bitmap, bit);

    /* Bitmap node layout:

    +------+------+------+------+  ---  +------+------+
    | key1 | val1 | key2 | val2 |  ...  | keyN | valN |
    +------+------+------+------+  ---  +------+------+
    where `N < Py_SIZE(node)`.

    The `node->b_bitmap` field is a bitmap.  For a given
    `(shift, hash)` pair we can determine:

     - If this node has the corresponding key/val slots.
     - The index of key/val slots.
    */

    if (self->b_bitmap & bit) {
        /* The key is set in this node */

        uint32_t key_idx = 2 * idx;
        uint32_t val_idx = key_idx + 1;

        assert(val_idx < Py_SIZE(self));

        PyObject *key_or_null = self->b_array[key_idx];
        PyObject *val_or_node = self->b_array[val_idx];

        if (key_or_null == NULL) {
            /* key is NULL.  This means that we have a few keys
               that have the same (hash, shift) pair. */

            assert(val_or_node != NULL);

            PyHamtNode *sub_node = hamt_node_assoc(
                (PyHamtNode *)val_or_node,
                shift + 5, hash, key, val, added_leaf);
            if (sub_node == NULL) {
                return NULL;
            }

            if (val_or_node == (PyObject *)sub_node) {
                Py_DECREF(sub_node);
                Py_INCREF(self);
                return (PyHamtNode *)self;
            }

            PyHamtNode_Bitmap *ret = hamt_node_bitmap_clone(self);
            if (ret == NULL) {
                return NULL;
            }
            Py_SETREF(ret->b_array[val_idx], (PyObject*)sub_node);
            return (PyHamtNode *)ret;
        }

        assert(key != NULL);
        /* key is not NULL.  This means that we have only one other
           key in this collection that matches our hash for this shift. */

        int comp_err = PyObject_RichCompareBool(key, key_or_null, Py_EQ);
        if (comp_err < 0) {  /* exception in __eq__ */
            return NULL;
        }
        if (comp_err == 1) {  /* key == key_or_null */
            if (val == val_or_node) {
                /* we already have the same key/val pair; return self. */
                Py_INCREF(self);
                return (PyHamtNode *)self;
            }

            /* We're setting a new value for the key we had before.
               Make a new bitmap node with a replaced value, and return it. */
            PyHamtNode_Bitmap *ret = hamt_node_bitmap_clone(self);
            if (ret == NULL) {
                return NULL;
            }
            Py_INCREF(val);
            Py_SETREF(ret->b_array[val_idx], val);
            return (PyHamtNode *)ret;
        }

        /* It's a new key, and it has the same index as *one* another key.
           We have a collision.  We need to create a new node which will
           combine the existing key and the key we're adding.

           `hamt_node_new_bitmap_or_collision` will either create a new
           Collision node if the keys have identical hashes, or
           a new Bitmap node.
        */
        PyHamtNode *sub_node = hamt_node_new_bitmap_or_collision(
            shift + 5,
            key_or_null, val_or_node,  /* existing key/val */
            hash,
            key, val  /* new key/val */
        );
        if (sub_node == NULL) {
            return NULL;
        }

        PyHamtNode_Bitmap *ret = hamt_node_bitmap_clone(self);
        if (ret == NULL) {
            Py_DECREF(sub_node);
            return NULL;
        }
        Py_SETREF(ret->b_array[key_idx], NULL);
        Py_SETREF(ret->b_array[val_idx], (PyObject *)sub_node);

        *added_leaf = 1;
        return (PyHamtNode *)ret;
    }
    else {
        /* There was no key before with the same (shift,hash). */

        uint32_t n = hamt_bitcount(self->b_bitmap);

        if (n >= 16) {
            /* When we have a situation where we want to store more
               than 16 nodes at one level of the tree, we no longer
               want to use the Bitmap node with bitmap encoding.

               Instead we start using an Array node, which has
               simpler (faster) implementation at the expense of
               having prealocated 32 pointers for its keys/values
               pairs.

               Small hamt objects (<30 keys) usually don't have any
               Array nodes at all.  Betwen ~30 and ~400 keys hamt
               objects usually have one Array node, and usually it's
               a root node.
            */

            uint32_t jdx = hamt_mask(hash, shift);
            /* 'jdx' is the index of where the new key should be added
               in the new Array node we're about to create. */

            PyHamtNode *empty = NULL;
            PyHamtNode_Array *new_node = NULL;
            PyHamtNode *res = NULL;

            /* Create a new Array node. */
            new_node = (PyHamtNode_Array *)hamt_node_array_new(n + 1);
            if (new_node == NULL) {
                goto fin;
            }

            /* Create an empty bitmap node for the next
               hamt_node_assoc call. */
            empty = hamt_node_bitmap_new(0);
            if (empty == NULL) {
                goto fin;
            }

            /* Make a new bitmap node for the key/val we're adding.
               Set that bitmap node to new-array-node[jdx]. */
            new_node->a_array[jdx] = hamt_node_assoc(
                empty, shift + 5, hash, key, val, added_leaf);
            if (new_node->a_array[jdx] == NULL) {
                goto fin;
            }

            /* Copy existing key/value pairs from the current Bitmap
               node to the new Array node we've just created. */
            Py_ssize_t i, j;
            for (i = 0, j = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
                if (((self->b_bitmap >> i) & 1) != 0) {
                    /* Ensure we don't accidentally override `jdx` element
                       we set few lines above.
                    */
                    assert(new_node->a_array[i] == NULL);

                    if (self->b_array[j] == NULL) {
                        new_node->a_array[i] =
                            (PyHamtNode *)self->b_array[j + 1];
                        Py_INCREF(new_node->a_array[i]);
                    }
                    else {
                        int32_t rehash = hamt_hash(self->b_array[j]);
                        if (rehash == -1) {
                            goto fin;
                        }

                        new_node->a_array[i] = hamt_node_assoc(
                            empty, shift + 5,
                            rehash,
                            self->b_array[j],
                            self->b_array[j + 1],
                            added_leaf);

                        if (new_node->a_array[i] == NULL) {
                            goto fin;
                        }
                    }
                    j += 2;
                }
            }

            VALIDATE_ARRAY_NODE(new_node)

            /* That's it! */
            res = (PyHamtNode *)new_node;

        fin:
            Py_XDECREF(empty);
            if (res == NULL) {
                Py_XDECREF(new_node);
            }
            return res;
        }
        else {
            /* We have less than 16 keys at this level; let's just
               create a new bitmap node out of this node with the
               new key/val pair added. */

            uint32_t key_idx = 2 * idx;
            uint32_t val_idx = key_idx + 1;
            uint32_t i;

            *added_leaf = 1;

            /* Allocate new Bitmap node which can have one more key/val
               pair in addition to what we have already. */
            PyHamtNode_Bitmap *new_node =
                (PyHamtNode_Bitmap *)hamt_node_bitmap_new(2 * (n + 1));
            if (new_node == NULL) {
                return NULL;
            }

            /* Copy all keys/values that will be before the new key/value
               we are adding. */
            for (i = 0; i < key_idx; i++) {
                Py_XINCREF(self->b_array[i]);
                new_node->b_array[i] = self->b_array[i];
            }

            /* Set the new key/value to the new Bitmap node. */
            Py_INCREF(key);
            new_node->b_array[key_idx] = key;
            Py_INCREF(val);
            new_node->b_array[val_idx] = val;

            /* Copy all keys/values that will be after the new key/value
               we are adding. */
            assert(Py_SIZE(self) >= 0 && Py_SIZE(self) <= 32);
            for (i = key_idx; i < (uint32_t)Py_SIZE(self); i++) {
                Py_XINCREF(self->b_array[i]);
                new_node->b_array[i + 2] = self->b_array[i];
            }

            new_node->b_bitmap = self->b_bitmap | bit;
            return (PyHamtNode *)new_node;
        }
    }
}

static hamt_without_t
hamt_node_bitmap_without(PyHamtNode_Bitmap *self,
                         uint32_t shift, int32_t hash,
                         PyObject *key,
                         PyHamtNode **new_node)
{
    uint32_t bit = hamt_bitpos(hash, shift);
    if ((self->b_bitmap & bit) == 0) {
        return W_NOT_FOUND;
    }

    uint32_t idx = hamt_bitindex(self->b_bitmap, bit);

    uint32_t key_idx = 2 * idx;
    uint32_t val_idx = key_idx + 1;

    PyObject *key_or_null = self->b_array[key_idx];
    PyObject *val_or_node = self->b_array[val_idx];

    if (key_or_null == NULL) {
        /* key == NULL means that 'value' is another tree node. */

        PyHamtNode *sub_node = NULL;

        hamt_without_t res = hamt_node_without(
            (PyHamtNode *)val_or_node,
            shift + 5, hash, key, &sub_node);

        switch (res) {
            case W_EMPTY:
                /* It's impossible for us to receive a W_EMPTY here:

                    - Array nodes are converted to Bitmap nodes when
                      we delete 16th item from them;

                    - Collision nodes are converted to Bitmap when
                      there is one item in them;

                    - Bitmap node's without() inlines single-item
                      sub-nodes.

                   So in no situation we can have a single-item
                   Bitmap child of another Bitmap node.
                */
                Py_UNREACHABLE();

            case W_NEWNODE: {
                assert(sub_node != NULL);

                if (IS_BITMAP_NODE(sub_node)) {
                    PyHamtNode_Bitmap *sub_tree = (PyHamtNode_Bitmap *)sub_node;
                    if (hamt_node_bitmap_count(sub_tree) == 1 &&
                            sub_tree->b_array[0] != NULL)
                    {
                        /* A bitmap node with one key/value pair.  Just
                           merge it into this node.

                           Note that we don't inline Bitmap nodes that
                           have a NULL key -- those nodes point to another
                           tree level, and we cannot simply move tree levels
                           up or down.
                        */

                        PyHamtNode_Bitmap *clone = hamt_node_bitmap_clone(self);
                        if (clone == NULL) {
                            Py_DECREF(sub_node);
                            return W_ERROR;
                        }

                        PyObject *key = sub_tree->b_array[0];
                        PyObject *val = sub_tree->b_array[1];

                        Py_INCREF(key);
                        Py_XSETREF(clone->b_array[key_idx], key);
                        Py_INCREF(val);
                        Py_SETREF(clone->b_array[val_idx], val);

                        Py_DECREF(sub_tree);

                        *new_node = (PyHamtNode *)clone;
                        return W_NEWNODE;
                    }
                }

#ifdef Py_DEBUG
                /* Ensure that Collision.without implementation
                   converts to Bitmap nodes itself.
                */
                if (IS_COLLISION_NODE(sub_node)) {
                    assert(hamt_node_collision_count(
                            (PyHamtNode_Collision*)sub_node) > 1);
                }
#endif

                PyHamtNode_Bitmap *clone = hamt_node_bitmap_clone(self);
                if (clone == NULL) {
                    return W_ERROR;
                }

                Py_SETREF(clone->b_array[val_idx],
                          (PyObject *)sub_node);  /* borrow */

                *new_node = (PyHamtNode *)clone;
                return W_NEWNODE;
            }

            case W_ERROR:
            case W_NOT_FOUND:
                assert(sub_node == NULL);
                return res;

            default:
                Py_UNREACHABLE();
        }
    }
    else {
        /* We have a regular key/value pair */

        int cmp = PyObject_RichCompareBool(key_or_null, key, Py_EQ);
        if (cmp < 0) {
            return W_ERROR;
        }
        if (cmp == 0) {
            return W_NOT_FOUND;
        }

        if (hamt_node_bitmap_count(self) == 1) {
            return W_EMPTY;
        }

        *new_node = (PyHamtNode *)
            hamt_node_bitmap_clone_without(self, bit);
        if (*new_node == NULL) {
            return W_ERROR;
        }

        return W_NEWNODE;
    }
}

static hamt_find_t
hamt_node_bitmap_find(PyHamtNode_Bitmap *self,
                      uint32_t shift, int32_t hash,
                      PyObject *key, PyObject **val)
{
    /* Lookup a key in a Bitmap node. */

    uint32_t bit = hamt_bitpos(hash, shift);
    uint32_t idx;
    uint32_t key_idx;
    uint32_t val_idx;
    PyObject *key_or_null;
    PyObject *val_or_node;
    int comp_err;

    if ((self->b_bitmap & bit) == 0) {
        return F_NOT_FOUND;
    }

    idx = hamt_bitindex(self->b_bitmap, bit);
    key_idx = idx * 2;
    val_idx = key_idx + 1;

    assert(val_idx < Py_SIZE(self));

    key_or_null = self->b_array[key_idx];
    val_or_node = self->b_array[val_idx];

    if (key_or_null == NULL) {
        /* There are a few keys that have the same hash at the current shift
           that match our key.  Dispatch the lookup further down the tree. */
        assert(val_or_node != NULL);
        return hamt_node_find((PyHamtNode *)val_or_node,
                              shift + 5, hash, key, val);
    }

    /* We have only one key -- a potential match.  Let's compare if the
       key we are looking at is equal to the key we are looking for. */
    assert(key != NULL);
    comp_err = PyObject_RichCompareBool(key, key_or_null, Py_EQ);
    if (comp_err < 0) {  /* exception in __eq__ */
        return F_ERROR;
    }
    if (comp_err == 1) {  /* key == key_or_null */
        *val = val_or_node;
        return F_FOUND;
    }

    return F_NOT_FOUND;
}

static int
hamt_node_bitmap_traverse(PyHamtNode_Bitmap *self, visitproc visit, void *arg)
{
    /* Bitmap's tp_traverse */

    Py_ssize_t i;

    for (i = Py_SIZE(self); --i >= 0; ) {
        Py_VISIT(self->b_array[i]);
    }

    return 0;
}

static void
hamt_node_bitmap_dealloc(PyHamtNode_Bitmap *self)
{
    /* Bitmap's tp_dealloc */

    Py_ssize_t len = Py_SIZE(self);
    Py_ssize_t i;

    PyObject_GC_UnTrack(self);
    Py_TRASHCAN_SAFE_BEGIN(self)

    if (len > 0) {
        i = len;
        while (--i >= 0) {
            Py_XDECREF(self->b_array[i]);
        }
    }

    Py_TYPE(self)->tp_free((PyObject *)self);
    Py_TRASHCAN_SAFE_END(self)
}

#ifdef Py_DEBUG
static int
hamt_node_bitmap_dump(PyHamtNode_Bitmap *node,
                      _PyUnicodeWriter *writer, int level)
{
    /* Debug build: __dump__() method implementation for Bitmap nodes. */

    Py_ssize_t i;
    PyObject *tmp1;
    PyObject *tmp2;

    if (_hamt_dump_ident(writer, level + 1)) {
        goto error;
    }

    if (_hamt_dump_format(writer, "BitmapNode(size=%zd count=%zd ",
                          Py_SIZE(node), Py_SIZE(node) / 2))
    {
        goto error;
    }

    tmp1 = PyLong_FromUnsignedLong(node->b_bitmap);
    if (tmp1 == NULL) {
        goto error;
    }
    tmp2 = _PyLong_Format(tmp1, 2);
    Py_DECREF(tmp1);
    if (tmp2 == NULL) {
        goto error;
    }
    if (_hamt_dump_format(writer, "bitmap=%S id=%p):\n", tmp2, node)) {
        Py_DECREF(tmp2);
        goto error;
    }
    Py_DECREF(tmp2);

    for (i = 0; i < Py_SIZE(node); i += 2) {
        PyObject *key_or_null = node->b_array[i];
        PyObject *val_or_node = node->b_array[i + 1];

        if (_hamt_dump_ident(writer, level + 2)) {
            goto error;
        }

        if (key_or_null == NULL) {
            if (_hamt_dump_format(writer, "NULL:\n")) {
                goto error;
            }

            if (hamt_node_dump((PyHamtNode *)val_or_node,
                               writer, level + 2))
            {
                goto error;
            }
        }
        else {
            if (_hamt_dump_format(writer, "%R: %R", key_or_null,
                                  val_or_node))
            {
                goto error;
            }
        }

        if (_hamt_dump_format(writer, "\n")) {
            goto error;
        }
    }

    return 0;
error:
    return -1;
}
#endif  /* Py_DEBUG */


/////////////////////////////////// Collision Node


static PyHamtNode *
hamt_node_collision_new(int32_t hash, Py_ssize_t size)
{
    /* Create a new Collision node. */

    PyHamtNode_Collision *node;
    Py_ssize_t i;

    assert(size >= 4);
    assert(size % 2 == 0);

    node = PyObject_GC_NewVar(
        PyHamtNode_Collision, &_PyHamt_CollisionNode_Type, size);
    if (node == NULL) {
        return NULL;
    }

    for (i = 0; i < size; i++) {
        node->c_array[i] = NULL;
    }

    Py_SIZE(node) = size;
    node->c_hash = hash;

    _PyObject_GC_TRACK(node);

    return (PyHamtNode *)node;
}

static hamt_find_t
hamt_node_collision_find_index(PyHamtNode_Collision *self, PyObject *key,
                               Py_ssize_t *idx)
{
    /* Lookup `key` in the Collision node `self`.  Set the index of the
       found key to 'idx'. */

    Py_ssize_t i;
    PyObject *el;

    for (i = 0; i < Py_SIZE(self); i += 2) {
        el = self->c_array[i];

        assert(el != NULL);
        int cmp = PyObject_RichCompareBool(key, el, Py_EQ);
        if (cmp < 0) {
            return F_ERROR;
        }
        if (cmp == 1) {
            *idx = i;
            return F_FOUND;
        }
    }

    return F_NOT_FOUND;
}

static PyHamtNode *
hamt_node_collision_assoc(PyHamtNode_Collision *self,
                          uint32_t shift, int32_t hash,
                          PyObject *key, PyObject *val, int* added_leaf)
{
    /* Set a new key to this level (currently a Collision node)
       of the tree. */

    if (hash == self->c_hash) {
        /* The hash of the 'key' we are adding matches the hash of
           other keys in this Collision node. */

        Py_ssize_t key_idx = -1;
        hamt_find_t found;
        PyHamtNode_Collision *new_node;
        Py_ssize_t i;

        /* Let's try to lookup the new 'key', maybe we already have it. */
        found = hamt_node_collision_find_index(self, key, &key_idx);
        switch (found) {
            case F_ERROR:
                /* Exception. */
                return NULL;

            case F_NOT_FOUND:
                /* This is a totally new key.  Clone the current node,
                   add a new key/value to the cloned node. */

                new_node = (PyHamtNode_Collision *)hamt_node_collision_new(
                    self->c_hash, Py_SIZE(self) + 2);
                if (new_node == NULL) {
                    return NULL;
                }

                for (i = 0; i < Py_SIZE(self); i++) {
                    Py_INCREF(self->c_array[i]);
                    new_node->c_array[i] = self->c_array[i];
                }

                Py_INCREF(key);
                new_node->c_array[i] = key;
                Py_INCREF(val);
                new_node->c_array[i + 1] = val;

                *added_leaf = 1;
                return (PyHamtNode *)new_node;

            case F_FOUND:
                /* There's a key which is equal to the key we are adding. */

                assert(key_idx >= 0);
                assert(key_idx < Py_SIZE(self));
                Py_ssize_t val_idx = key_idx + 1;

                if (self->c_array[val_idx] == val) {
                    /* We're setting a key/value pair that's already set. */
                    Py_INCREF(self);
                    return (PyHamtNode *)self;
                }

                /* We need to replace old value for the key
                   with a new value.  Create a new Collision node.*/
                new_node = (PyHamtNode_Collision *)hamt_node_collision_new(
                    self->c_hash, Py_SIZE(self));
                if (new_node == NULL) {
                    return NULL;
                }

                /* Copy all elements of the old node to the new one. */
                for (i = 0; i < Py_SIZE(self); i++) {
                    Py_INCREF(self->c_array[i]);
                    new_node->c_array[i] = self->c_array[i];
                }

                /* Replace the old value with the new value for the our key. */
                Py_DECREF(new_node->c_array[val_idx]);
                Py_INCREF(val);
                new_node->c_array[val_idx] = val;

                return (PyHamtNode *)new_node;

            default:
                Py_UNREACHABLE();
        }
    }
    else {
        /* The hash of the new key is different from the hash that
           all keys of this Collision node have.

           Create a Bitmap node inplace with two children:
           key/value pair that we're adding, and the Collision node
           we're replacing on this tree level.
        */

        PyHamtNode_Bitmap *new_node;
        PyHamtNode *assoc_res;

        new_node = (PyHamtNode_Bitmap *)hamt_node_bitmap_new(2);
        if (new_node == NULL) {
            return NULL;
        }
        new_node->b_bitmap = hamt_bitpos(self->c_hash, shift);
        Py_INCREF(self);
        new_node->b_array[1] = (PyObject*) self;

        assoc_res = hamt_node_bitmap_assoc(
            new_node, shift, hash, key, val, added_leaf);
        Py_DECREF(new_node);
        return assoc_res;
    }
}

static inline Py_ssize_t
hamt_node_collision_count(PyHamtNode_Collision *node)
{
    return Py_SIZE(node) / 2;
}

static hamt_without_t
hamt_node_collision_without(PyHamtNode_Collision *self,
                            uint32_t shift, int32_t hash,
                            PyObject *key,
                            PyHamtNode **new_node)
{
    if (hash != self->c_hash) {
        return W_NOT_FOUND;
    }

    Py_ssize_t key_idx = -1;
    hamt_find_t found = hamt_node_collision_find_index(self, key, &key_idx);

    switch (found) {
        case F_ERROR:
            return W_ERROR;

        case F_NOT_FOUND:
            return W_NOT_FOUND;

        case F_FOUND:
            assert(key_idx >= 0);
            assert(key_idx < Py_SIZE(self));

            Py_ssize_t new_count = hamt_node_collision_count(self) - 1;

            if (new_count == 0) {
                /* The node has only one key/value pair and it's for the
                   key we're trying to delete.  So a new node will be empty
                   after the removal.
                */
                return W_EMPTY;
            }

            if (new_count == 1) {
                /* The node has two keys, and after deletion the
                   new Collision node would have one.  Collision nodes
                   with one key shouldn't exist, so convert it to a
                   Bitmap node.
                */
                PyHamtNode_Bitmap *node = (PyHamtNode_Bitmap *)
                    hamt_node_bitmap_new(2);
                if (node == NULL) {
                    return W_ERROR;
                }

                if (key_idx == 0) {
                    Py_INCREF(self->c_array[2]);
                    node->b_array[0] = self->c_array[2];
                    Py_INCREF(self->c_array[3]);
                    node->b_array[1] = self->c_array[3];
                }
                else {
                    assert(key_idx == 2);
                    Py_INCREF(self->c_array[0]);
                    node->b_array[0] = self->c_array[0];
                    Py_INCREF(self->c_array[1]);
                    node->b_array[1] = self->c_array[1];
                }

                node->b_bitmap = hamt_bitpos(hash, shift);

                *new_node = (PyHamtNode *)node;
                return W_NEWNODE;
            }

            /* Allocate a new Collision node with capacity for one
               less key/value pair */
            PyHamtNode_Collision *new = (PyHamtNode_Collision *)
                hamt_node_collision_new(
                    self->c_hash, Py_SIZE(self) - 2);

            /* Copy all other keys from `self` to `new` */
            Py_ssize_t i;
            for (i = 0; i < key_idx; i++) {
                Py_INCREF(self->c_array[i]);
                new->c_array[i] = self->c_array[i];
            }
            for (i = key_idx + 2; i < Py_SIZE(self); i++) {
                Py_INCREF(self->c_array[i]);
                new->c_array[i - 2] = self->c_array[i];
            }

            *new_node = (PyHamtNode*)new;
            return W_NEWNODE;

        default:
            Py_UNREACHABLE();
    }
}

static hamt_find_t
hamt_node_collision_find(PyHamtNode_Collision *self,
                         uint32_t shift, int32_t hash,
                         PyObject *key, PyObject **val)
{
    /* Lookup `key` in the Collision node `self`.  Set the value
       for the found key to 'val'. */

    Py_ssize_t idx = -1;
    hamt_find_t res;

    res = hamt_node_collision_find_index(self, key, &idx);
    if (res == F_ERROR || res == F_NOT_FOUND) {
        return res;
    }

    assert(idx >= 0);
    assert(idx + 1 < Py_SIZE(self));

    *val = self->c_array[idx + 1];
    assert(*val != NULL);

    return F_FOUND;
}


static int
hamt_node_collision_traverse(PyHamtNode_Collision *self,
                             visitproc visit, void *arg)
{
    /* Collision's tp_traverse */

    Py_ssize_t i;

    for (i = Py_SIZE(self); --i >= 0; ) {
        Py_VISIT(self->c_array[i]);
    }

    return 0;
}

static void
hamt_node_collision_dealloc(PyHamtNode_Collision *self)
{
    /* Collision's tp_dealloc */

    Py_ssize_t len = Py_SIZE(self);

    PyObject_GC_UnTrack(self);
    Py_TRASHCAN_SAFE_BEGIN(self)

    if (len > 0) {

        while (--len >= 0) {
            Py_XDECREF(self->c_array[len]);
        }
    }

    Py_TYPE(self)->tp_free((PyObject *)self);
    Py_TRASHCAN_SAFE_END(self)
}

#ifdef Py_DEBUG
static int
hamt_node_collision_dump(PyHamtNode_Collision *node,
                         _PyUnicodeWriter *writer, int level)
{
    /* Debug build: __dump__() method implementation for Collision nodes. */

    Py_ssize_t i;

    if (_hamt_dump_ident(writer, level + 1)) {
        goto error;
    }

    if (_hamt_dump_format(writer, "CollisionNode(size=%zd id=%p):\n",
                          Py_SIZE(node), node))
    {
        goto error;
    }

    for (i = 0; i < Py_SIZE(node); i += 2) {
        PyObject *key = node->c_array[i];
        PyObject *val = node->c_array[i + 1];

        if (_hamt_dump_ident(writer, level + 2)) {
            goto error;
        }

        if (_hamt_dump_format(writer, "%R: %R\n", key, val)) {
            goto error;
        }
    }

    return 0;
error:
    return -1;
}
#endif  /* Py_DEBUG */


/////////////////////////////////// Array Node


static PyHamtNode *
hamt_node_array_new(Py_ssize_t count)
{
    Py_ssize_t i;

    PyHamtNode_Array *node = PyObject_GC_New(
        PyHamtNode_Array, &_PyHamt_ArrayNode_Type);
    if (node == NULL) {
        return NULL;
    }

    for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
        node->a_array[i] = NULL;
    }

    node->a_count = count;

    _PyObject_GC_TRACK(node);
    return (PyHamtNode *)node;
}

static PyHamtNode_Array *
hamt_node_array_clone(PyHamtNode_Array *node)
{
    PyHamtNode_Array *clone;
    Py_ssize_t i;

    VALIDATE_ARRAY_NODE(node)

    /* Create a new Array node. */
    clone = (PyHamtNode_Array *)hamt_node_array_new(node->a_count);
    if (clone == NULL) {
        return NULL;
    }

    /* Copy all elements from the current Array node to the new one. */
    for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
        Py_XINCREF(node->a_array[i]);
        clone->a_array[i] = node->a_array[i];
    }

    VALIDATE_ARRAY_NODE(clone)
    return clone;
}

static PyHamtNode *
hamt_node_array_assoc(PyHamtNode_Array *self,
                      uint32_t shift, int32_t hash,
                      PyObject *key, PyObject *val, int* added_leaf)
{
    /* Set a new key to this level (currently a Collision node)
       of the tree.

       Array nodes don't store values, they can only point to
       other nodes.  They are simple arrays of 32 BaseNode pointers/
     */

    uint32_t idx = hamt_mask(hash, shift);
    PyHamtNode *node = self->a_array[idx];
    PyHamtNode *child_node;
    PyHamtNode_Array *new_node;
    Py_ssize_t i;

    if (node == NULL) {
        /* There's no child node for the given hash.  Create a new
           Bitmap node for this key. */

        PyHamtNode_Bitmap *empty = NULL;

        /* Get an empty Bitmap node to work with. */
        empty = (PyHamtNode_Bitmap *)hamt_node_bitmap_new(0);
        if (empty == NULL) {
            return NULL;
        }

        /* Set key/val to the newly created empty Bitmap, thus
           creating a new Bitmap node with our key/value pair. */
        child_node = hamt_node_bitmap_assoc(
            empty,
            shift + 5, hash, key, val, added_leaf);
        Py_DECREF(empty);
        if (child_node == NULL) {
            return NULL;
        }

        /* Create a new Array node. */
        new_node = (PyHamtNode_Array *)hamt_node_array_new(self->a_count + 1);
        if (new_node == NULL) {
            Py_DECREF(child_node);
            return NULL;
        }

        /* Copy all elements from the current Array node to the
           new one. */
        for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
            Py_XINCREF(self->a_array[i]);
            new_node->a_array[i] = self->a_array[i];
        }

        assert(new_node->a_array[idx] == NULL);
        new_node->a_array[idx] = child_node;  /* borrow */
        VALIDATE_ARRAY_NODE(new_node)
    }
    else {
        /* There's a child node for the given hash.
           Set the key to it./ */
        child_node = hamt_node_assoc(
            node, shift + 5, hash, key, val, added_leaf);
        if (child_node == (PyHamtNode *)self) {
            Py_DECREF(child_node);
            return (PyHamtNode *)self;
        }

        new_node = hamt_node_array_clone(self);
        if (new_node == NULL) {
            Py_DECREF(child_node);
            return NULL;
        }

        Py_SETREF(new_node->a_array[idx], child_node);  /* borrow */
        VALIDATE_ARRAY_NODE(new_node)
    }

    return (PyHamtNode *)new_node;
}

static hamt_without_t
hamt_node_array_without(PyHamtNode_Array *self,
                        uint32_t shift, int32_t hash,
                        PyObject *key,
                        PyHamtNode **new_node)
{
    uint32_t idx = hamt_mask(hash, shift);
    PyHamtNode *node = self->a_array[idx];

    if (node == NULL) {
        return W_NOT_FOUND;
    }

    PyHamtNode *sub_node = NULL;
    hamt_without_t res = hamt_node_without(
        (PyHamtNode *)node,
        shift + 5, hash, key, &sub_node);

    switch (res) {
        case W_NOT_FOUND:
        case W_ERROR:
            assert(sub_node == NULL);
            return res;

        case W_NEWNODE: {
            /* We need to replace a node at the `idx` index.
               Clone this node and replace.
            */
            assert(sub_node != NULL);

            PyHamtNode_Array *clone = hamt_node_array_clone(self);
            if (clone == NULL) {
                Py_DECREF(sub_node);
                return W_ERROR;
            }

            Py_SETREF(clone->a_array[idx], sub_node);  /* borrow */
            *new_node = (PyHamtNode*)clone;  /* borrow */
            return W_NEWNODE;
        }

        case W_EMPTY: {
            assert(sub_node == NULL);
            /* We need to remove a node at the `idx` index.
               Calculate the size of the replacement Array node.
            */
            Py_ssize_t new_count = self->a_count - 1;

            if (new_count == 0) {
                return W_EMPTY;
            }

            if (new_count >= 16) {
                /* We convert Bitmap nodes to Array nodes, when a
                   Bitmap node needs to store more than 15 key/value
                   pairs.  So we will create a new Array node if we
                   the number of key/values after deletion is still
                   greater than 15.
                */

                PyHamtNode_Array *new = hamt_node_array_clone(self);
                if (new == NULL) {
                    return W_ERROR;
                }
                new->a_count = new_count;
                Py_CLEAR(new->a_array[idx]);

                *new_node = (PyHamtNode*)new;  /* borrow */
                return W_NEWNODE;
            }

            /* New Array node would have less than 16 key/value
               pairs.  We need to create a replacement Bitmap node. */

            Py_ssize_t bitmap_size = new_count * 2;
            uint32_t bitmap = 0;

            PyHamtNode_Bitmap *new = (PyHamtNode_Bitmap *)
                hamt_node_bitmap_new(bitmap_size);
            if (new == NULL) {
                return W_ERROR;
            }

            Py_ssize_t new_i = 0;
            for (uint32_t i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
                if (i == idx) {
                    /* Skip the node we are deleting. */
                    continue;
                }

                PyHamtNode *node = self->a_array[i];
                if (node == NULL) {
                    /* Skip any missing nodes. */
                    continue;
                }

                bitmap |= 1 << i;

                if (IS_BITMAP_NODE(node)) {
                    PyHamtNode_Bitmap *child = (PyHamtNode_Bitmap *)node;

                    if (hamt_node_bitmap_count(child) == 1 &&
                            child->b_array[0] != NULL)
                    {
                        /* node is a Bitmap with one key/value pair, just
                           merge it into the new Bitmap node we're building.

                           Note that we don't inline Bitmap nodes that
                           have a NULL key -- those nodes point to another
                           tree level, and we cannot simply move tree levels
                           up or down.
                        */
                        PyObject *key = child->b_array[0];
                        PyObject *val = child->b_array[1];

                        Py_INCREF(key);
                        new->b_array[new_i] = key;
                        Py_INCREF(val);
                        new->b_array[new_i + 1] = val;
                    }
                    else {
                        new->b_array[new_i] = NULL;
                        Py_INCREF(node);
                        new->b_array[new_i + 1] = (PyObject*)node;
                    }
                }
                else {

#ifdef Py_DEBUG
                    if (IS_COLLISION_NODE(node)) {
                        Py_ssize_t child_count = hamt_node_collision_count(
                            (PyHamtNode_Collision*)node);
                        assert(child_count > 1);
                    }
                    else if (IS_ARRAY_NODE(node)) {
                        assert(((PyHamtNode_Array*)node)->a_count >= 16);
                    }
#endif

                    /* Just copy the node into our new Bitmap */
                    new->b_array[new_i] = NULL;
                    Py_INCREF(node);
                    new->b_array[new_i + 1] = (PyObject*)node;
                }

                new_i += 2;
            }

            new->b_bitmap = bitmap;
            *new_node = (PyHamtNode*)new;  /* borrow */
            return W_NEWNODE;
        }

        default:
            Py_UNREACHABLE();
    }
}

static hamt_find_t
hamt_node_array_find(PyHamtNode_Array *self,
                     uint32_t shift, int32_t hash,
                     PyObject *key, PyObject **val)
{
    /* Lookup `key` in the Array node `self`.  Set the value
       for the found key to 'val'. */

    uint32_t idx = hamt_mask(hash, shift);
    PyHamtNode *node;

    node = self->a_array[idx];
    if (node == NULL) {
        return F_NOT_FOUND;
    }

    /* Dispatch to the generic hamt_node_find */
    return hamt_node_find(node, shift + 5, hash, key, val);
}

static int
hamt_node_array_traverse(PyHamtNode_Array *self,
                         visitproc visit, void *arg)
{
    /* Array's tp_traverse */

    Py_ssize_t i;

    for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
        Py_VISIT(self->a_array[i]);
    }

    return 0;
}

static void
hamt_node_array_dealloc(PyHamtNode_Array *self)
{
    /* Array's tp_dealloc */

    Py_ssize_t i;

    PyObject_GC_UnTrack(self);
    Py_TRASHCAN_SAFE_BEGIN(self)

    for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
        Py_XDECREF(self->a_array[i]);
    }

    Py_TYPE(self)->tp_free((PyObject *)self);
    Py_TRASHCAN_SAFE_END(self)
}

#ifdef Py_DEBUG
static int
hamt_node_array_dump(PyHamtNode_Array *node,
                     _PyUnicodeWriter *writer, int level)
{
    /* Debug build: __dump__() method implementation for Array nodes. */

    Py_ssize_t i;

    if (_hamt_dump_ident(writer, level + 1)) {
        goto error;
    }

    if (_hamt_dump_format(writer, "ArrayNode(id=%p):\n", node)) {
        goto error;
    }

    for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
        if (node->a_array[i] == NULL) {
            continue;
        }

        if (_hamt_dump_ident(writer, level + 2)) {
            goto error;
        }

        if (_hamt_dump_format(writer, "%d::\n", i)) {
            goto error;
        }

        if (hamt_node_dump(node->a_array[i], writer, level + 1)) {
            goto error;
        }

        if (_hamt_dump_format(writer, "\n")) {
            goto error;
        }
    }

    return 0;
error:
    return -1;
}
#endif  /* Py_DEBUG */


/////////////////////////////////// Node Dispatch


static PyHamtNode *
hamt_node_assoc(PyHamtNode *node,
                uint32_t shift, int32_t hash,
                PyObject *key, PyObject *val, int* added_leaf)
{
    /* Set key/value to the 'node' starting with the given shift/hash.
       Return a new node, or the same node if key/value already
       set.

       added_leaf will be set to 1 if key/value wasn't in the
       tree before.

       This method automatically dispatches to the suitable
       hamt_node_{nodetype}_assoc method.
    */

    if (IS_BITMAP_NODE(node)) {
        return hamt_node_bitmap_assoc(
            (PyHamtNode_Bitmap *)node,
            shift, hash, key, val, added_leaf);
    }
    else if (IS_ARRAY_NODE(node)) {
        return hamt_node_array_assoc(
            (PyHamtNode_Array *)node,
            shift, hash, key, val, added_leaf);
    }
    else {
        assert(IS_COLLISION_NODE(node));
        return hamt_node_collision_assoc(
            (PyHamtNode_Collision *)node,
            shift, hash, key, val, added_leaf);
    }
}

static hamt_without_t
hamt_node_without(PyHamtNode *node,
                  uint32_t shift, int32_t hash,
                  PyObject *key,
                  PyHamtNode **new_node)
{
    if (IS_BITMAP_NODE(node)) {
        return hamt_node_bitmap_without(
            (PyHamtNode_Bitmap *)node,
            shift, hash, key,
            new_node);
    }
    else if (IS_ARRAY_NODE(node)) {
        return hamt_node_array_without(
            (PyHamtNode_Array *)node,
            shift, hash, key,
            new_node);
    }
    else {
        assert(IS_COLLISION_NODE(node));
        return hamt_node_collision_without(
            (PyHamtNode_Collision *)node,
            shift, hash, key,
            new_node);
    }
}

static hamt_find_t
hamt_node_find(PyHamtNode *node,
               uint32_t shift, int32_t hash,
               PyObject *key, PyObject **val)
{
    /* Find the key in the node starting with the given shift/hash.

       If a value is found, the result will be set to F_FOUND, and
       *val will point to the found value object.

       If a value wasn't found, the result will be set to F_NOT_FOUND.

       If an exception occurs during the call, the result will be F_ERROR.

       This method automatically dispatches to the suitable
       hamt_node_{nodetype}_find method.
    */

    if (IS_BITMAP_NODE(node)) {
        return hamt_node_bitmap_find(
            (PyHamtNode_Bitmap *)node,
            shift, hash, key, val);

    }
    else if (IS_ARRAY_NODE(node)) {
        return hamt_node_array_find(
            (PyHamtNode_Array *)node,
            shift, hash, key, val);
    }
    else {
        assert(IS_COLLISION_NODE(node));
        return hamt_node_collision_find(
            (PyHamtNode_Collision *)node,
            shift, hash, key, val);
    }
}

#ifdef Py_DEBUG
static int
hamt_node_dump(PyHamtNode *node,
               _PyUnicodeWriter *writer, int level)
{
    /* Debug build: __dump__() method implementation for a node.

       This method automatically dispatches to the suitable
       hamt_node_{nodetype})_dump method.
    */

    if (IS_BITMAP_NODE(node)) {
        return hamt_node_bitmap_dump(
            (PyHamtNode_Bitmap *)node, writer, level);
    }
    else if (IS_ARRAY_NODE(node)) {
        return hamt_node_array_dump(
            (PyHamtNode_Array *)node, writer, level);
    }
    else {
        assert(IS_COLLISION_NODE(node));
        return hamt_node_collision_dump(
            (PyHamtNode_Collision *)node, writer, level);
    }
}
#endif  /* Py_DEBUG */


/////////////////////////////////// Iterators: Machinery


static hamt_iter_t
hamt_iterator_next(PyHamtIteratorState *iter, PyObject **key, PyObject **val);


static void
hamt_iterator_init(PyHamtIteratorState *iter, PyHamtNode *root)
{
    for (uint32_t i = 0; i < _Py_HAMT_MAX_TREE_DEPTH; i++) {
        iter->i_nodes[i] = NULL;
        iter->i_pos[i] = 0;
    }

    iter->i_level = 0;

    /* Note: we don't incref/decref nodes in i_nodes. */
    iter->i_nodes[0] = root;
}

static hamt_iter_t
hamt_iterator_bitmap_next(PyHamtIteratorState *iter,
                          PyObject **key, PyObject **val)
{
    int8_t level = iter->i_level;

    PyHamtNode_Bitmap *node = (PyHamtNode_Bitmap *)(iter->i_nodes[level]);
    Py_ssize_t pos = iter->i_pos[level];

    if (pos + 1 >= Py_SIZE(node)) {
#ifdef Py_DEBUG
        assert(iter->i_level >= 0);
        iter->i_nodes[iter->i_level] = NULL;
#endif
        iter->i_level--;
        return hamt_iterator_next(iter, key, val);
    }

    if (node->b_array[pos] == NULL) {
        iter->i_pos[level] = pos + 2;

        int8_t next_level = level + 1;
        assert(next_level < _Py_HAMT_MAX_TREE_DEPTH);
        iter->i_level = next_level;
        iter->i_pos[next_level] = 0;
        iter->i_nodes[next_level] = (PyHamtNode *)
            node->b_array[pos + 1];

        return hamt_iterator_next(iter, key, val);
    }

    *key = node->b_array[pos];
    *val = node->b_array[pos + 1];
    iter->i_pos[level] = pos + 2;
    return I_ITEM;
}

static hamt_iter_t
hamt_iterator_collision_next(PyHamtIteratorState *iter,
                             PyObject **key, PyObject **val)
{
    int8_t level = iter->i_level;

    PyHamtNode_Collision *node = (PyHamtNode_Collision *)(iter->i_nodes[level]);
    Py_ssize_t pos = iter->i_pos[level];

    if (pos + 1 >= Py_SIZE(node)) {
#ifdef Py_DEBUG
        assert(iter->i_level >= 0);
        iter->i_nodes[iter->i_level] = NULL;
#endif
        iter->i_level--;
        return hamt_iterator_next(iter, key, val);
    }

    *key = node->c_array[pos];
    *val = node->c_array[pos + 1];
    iter->i_pos[level] = pos + 2;
    return I_ITEM;
}

static hamt_iter_t
hamt_iterator_array_next(PyHamtIteratorState *iter,
                         PyObject **key, PyObject **val)
{
    int8_t level = iter->i_level;

    PyHamtNode_Array *node = (PyHamtNode_Array *)(iter->i_nodes[level]);
    Py_ssize_t pos = iter->i_pos[level];

    if (pos >= HAMT_ARRAY_NODE_SIZE) {
#ifdef Py_DEBUG
        assert(iter->i_level >= 0);
        iter->i_nodes[iter->i_level] = NULL;
#endif
        iter->i_level--;
        return hamt_iterator_next(iter, key, val);
    }

    for (Py_ssize_t i = pos; i < HAMT_ARRAY_NODE_SIZE; i++) {
        if (node->a_array[i] != NULL) {
            iter->i_pos[level] = i + 1;

            int8_t next_level = level + 1;
            assert(next_level < _Py_HAMT_MAX_TREE_DEPTH);
            iter->i_pos[next_level] = 0;
            iter->i_nodes[next_level] = node->a_array[i];
            iter->i_level = next_level;

            return hamt_iterator_next(iter, key, val);
        }
    }

#ifdef Py_DEBUG
        assert(iter->i_level >= 0);
        iter->i_nodes[iter->i_level] = NULL;
#endif

    iter->i_level--;
    return hamt_iterator_next(iter, key, val);
}

static hamt_iter_t
hamt_iterator_next(PyHamtIteratorState *iter, PyObject **key, PyObject **val)
{
    if (iter->i_level < 0) {
        return I_END;
    }

    assert(iter->i_level < _Py_HAMT_MAX_TREE_DEPTH);

    PyHamtNode *current = iter->i_nodes[iter->i_level];

    if (IS_BITMAP_NODE(current)) {
        return hamt_iterator_bitmap_next(iter, key, val);
    }
    else if (IS_ARRAY_NODE(current)) {
        return hamt_iterator_array_next(iter, key, val);
    }
    else {
        assert(IS_COLLISION_NODE(current));
        return hamt_iterator_collision_next(iter, key, val);
    }
}


/////////////////////////////////// HAMT high-level functions


PyHamtObject *
_PyHamt_Assoc(PyHamtObject *o, PyObject *key, PyObject *val)
{
    int32_t key_hash;
    int added_leaf = 0;
    PyHamtNode *new_root;
    PyHamtObject *new_o;

    key_hash = hamt_hash(key);
    if (key_hash == -1) {
        return NULL;
    }

    new_root = hamt_node_assoc(
        (PyHamtNode *)(o->h_root),
        0, key_hash, key, val, &added_leaf);
    if (new_root == NULL) {
        return NULL;
    }

    if (new_root == o->h_root) {
        Py_DECREF(new_root);
        Py_INCREF(o);
        return o;
    }

    new_o = hamt_alloc();
    if (new_o == NULL) {
        Py_DECREF(new_root);
        return NULL;
    }

    new_o->h_root = new_root;  /* borrow */
    new_o->h_count = added_leaf ? o->h_count + 1 : o->h_count;

    return new_o;
}

PyHamtObject *
_PyHamt_Without(PyHamtObject *o, PyObject *key)
{
    int32_t key_hash = hamt_hash(key);
    if (key_hash == -1) {
        return NULL;
    }

    PyHamtNode *new_root;

    hamt_without_t res = hamt_node_without(
        (PyHamtNode *)(o->h_root),
        0, key_hash, key,
        &new_root);

    switch (res) {
        case W_ERROR:
            return NULL;
        case W_EMPTY:
            return _PyHamt_New();
        case W_NOT_FOUND:
            Py_INCREF(o);
            return o;
        case W_NEWNODE: {
            assert(new_root != NULL);

            PyHamtObject *new_o = hamt_alloc();
            if (new_o == NULL) {
                Py_DECREF(new_root);
                return NULL;
            }

            new_o->h_root = new_root;  /* borrow */
            new_o->h_count = o->h_count - 1;
            assert(new_o->h_count >= 0);
            return new_o;
        }
        default:
            Py_UNREACHABLE();
    }
}

static hamt_find_t
hamt_find(PyHamtObject *o, PyObject *key, PyObject **val)
{
    if (o->h_count == 0) {
        return F_NOT_FOUND;
    }

    int32_t key_hash = hamt_hash(key);
    if (key_hash == -1) {
        return F_ERROR;
    }

    return hamt_node_find(o->h_root, 0, key_hash, key, val);
}


int
_PyHamt_Find(PyHamtObject *o, PyObject *key, PyObject **val)
{
    hamt_find_t res = hamt_find(o, key, val);
    switch (res) {
        case F_ERROR:
            return -1;
        case F_NOT_FOUND:
            return 0;
        case F_FOUND:
            return 1;
        default:
            Py_UNREACHABLE();
    }
}


int
_PyHamt_Eq(PyHamtObject *v, PyHamtObject *w)
{
    if (v == w) {
        return 1;
    }

    if (v->h_count != w->h_count) {
        return 0;
    }

    PyHamtIteratorState iter;
    hamt_iter_t iter_res;
    hamt_find_t find_res;
    PyObject *v_key;
    PyObject *v_val;
    PyObject *w_val;

    hamt_iterator_init(&iter, v->h_root);

    do {
        iter_res = hamt_iterator_next(&iter, &v_key, &v_val);
        if (iter_res == I_ITEM) {
            find_res = hamt_find(w, v_key, &w_val);
            switch (find_res) {
                case F_ERROR:
                    return -1;

                case F_NOT_FOUND:
                    return 0;

                case F_FOUND: {
                    int cmp = PyObject_RichCompareBool(v_val, w_val, Py_EQ);
                    if (cmp < 0) {
                        return -1;
                    }
                    if (cmp == 0) {
                        return 0;
                    }
                }
            }
        }
    } while (iter_res != I_END);

    return 1;
}

Py_ssize_t
_PyHamt_Len(PyHamtObject *o)
{
    return o->h_count;
}

static PyHamtObject *
hamt_alloc(void)
{
    PyHamtObject *o;
    o = PyObject_GC_New(PyHamtObject, &_PyHamt_Type);
    if (o == NULL) {
        return NULL;
    }
    o->h_weakreflist = NULL;
    PyObject_GC_Track(o);
    return o;
}

PyHamtObject *
_PyHamt_New(void)
{
    if (_empty_hamt != NULL) {
        /* HAMT is an immutable object so we can easily cache an
           empty instance. */
        Py_INCREF(_empty_hamt);
        return _empty_hamt;
    }

    PyHamtObject *o = hamt_alloc();
    if (o == NULL) {
        return NULL;
    }

    o->h_root = hamt_node_bitmap_new(0);
    if (o->h_root == NULL) {
        Py_DECREF(o);
        return NULL;
    }

    o->h_count = 0;

    if (_empty_hamt == NULL) {
        Py_INCREF(o);
        _empty_hamt = o;
    }

    return o;
}

#ifdef Py_DEBUG
static PyObject *
hamt_dump(PyHamtObject *self)
{
    _PyUnicodeWriter writer;

    _PyUnicodeWriter_Init(&writer);

    if (_hamt_dump_format(&writer, "HAMT(len=%zd):\n", self->h_count)) {
        goto error;
    }

    if (hamt_node_dump(self->h_root, &writer, 0)) {
        goto error;
    }

    return _PyUnicodeWriter_Finish(&writer);

error:
    _PyUnicodeWriter_Dealloc(&writer);
    return NULL;
}
#endif  /* Py_DEBUG */


/////////////////////////////////// Iterators: Shared Iterator Implementation


static int
hamt_baseiter_tp_clear(PyHamtIterator *it)
{
    Py_CLEAR(it->hi_obj);
    return 0;
}

static void
hamt_baseiter_tp_dealloc(PyHamtIterator *it)
{
    PyObject_GC_UnTrack(it);
    (void)hamt_baseiter_tp_clear(it);
    PyObject_GC_Del(it);
}

static int
hamt_baseiter_tp_traverse(PyHamtIterator *it, visitproc visit, void *arg)
{
    Py_VISIT(it->hi_obj);
    return 0;
}

static PyObject *
hamt_baseiter_tp_iternext(PyHamtIterator *it)
{
    PyObject *key;
    PyObject *val;
    hamt_iter_t res = hamt_iterator_next(&it->hi_iter, &key, &val);

    switch (res) {
        case I_END:
            PyErr_SetNone(PyExc_StopIteration);
            return NULL;

        case I_ITEM: {
            return (*(it->hi_yield))(key, val);
        }

        default: {
            Py_UNREACHABLE();
        }
    }
}

static Py_ssize_t
hamt_baseiter_tp_len(PyHamtIterator *it)
{
    return it->hi_obj->h_count;
}

static PyMappingMethods PyHamtIterator_as_mapping = {
    (lenfunc)hamt_baseiter_tp_len,
};

static PyObject *
hamt_baseiter_new(PyTypeObject *type, binaryfunc yield, PyHamtObject *o)
{
    PyHamtIterator *it = PyObject_GC_New(PyHamtIterator, type);
    if (it == NULL) {
        return NULL;
    }

    Py_INCREF(o);
    it->hi_obj = o;
    it->hi_yield = yield;

    hamt_iterator_init(&it->hi_iter, o->h_root);

    return (PyObject*)it;
}

#define ITERATOR_TYPE_SHARED_SLOTS                              \
    .tp_basicsize = sizeof(PyHamtIterator),                     \
    .tp_itemsize = 0,                                           \
    .tp_as_mapping = &PyHamtIterator_as_mapping,                \
    .tp_dealloc = (destructor)hamt_baseiter_tp_dealloc,         \
    .tp_getattro = PyObject_GenericGetAttr,                     \
    .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,        \
    .tp_traverse = (traverseproc)hamt_baseiter_tp_traverse,     \
    .tp_clear = (inquiry)hamt_baseiter_tp_clear,                \
    .tp_iter = PyObject_SelfIter,                               \
    .tp_iternext = (iternextfunc)hamt_baseiter_tp_iternext,


/////////////////////////////////// _PyHamtItems_Type


PyTypeObject _PyHamtItems_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    "items",
    ITERATOR_TYPE_SHARED_SLOTS
};

static PyObject *
hamt_iter_yield_items(PyObject *key, PyObject *val)
{
    return PyTuple_Pack(2, key, val);
}

PyObject *
_PyHamt_NewIterItems(PyHamtObject *o)
{
    return hamt_baseiter_new(
        &_PyHamtItems_Type, hamt_iter_yield_items, o);
}


/////////////////////////////////// _PyHamtKeys_Type


PyTypeObject _PyHamtKeys_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    "keys",
    ITERATOR_TYPE_SHARED_SLOTS
};

static PyObject *
hamt_iter_yield_keys(PyObject *key, PyObject *val)
{
    Py_INCREF(key);
    return key;
}

PyObject *
_PyHamt_NewIterKeys(PyHamtObject *o)
{
    return hamt_baseiter_new(
        &_PyHamtKeys_Type, hamt_iter_yield_keys, o);
}


/////////////////////////////////// _PyHamtValues_Type


PyTypeObject _PyHamtValues_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    "values",
    ITERATOR_TYPE_SHARED_SLOTS
};

static PyObject *
hamt_iter_yield_values(PyObject *key, PyObject *val)
{
    Py_INCREF(val);
    return val;
}

PyObject *
_PyHamt_NewIterValues(PyHamtObject *o)
{
    return hamt_baseiter_new(
        &_PyHamtValues_Type, hamt_iter_yield_values, o);
}


/////////////////////////////////// _PyHamt_Type


#ifdef Py_DEBUG
static PyObject *
hamt_dump(PyHamtObject *self);
#endif


static PyObject *
hamt_tp_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
    return (PyObject*)_PyHamt_New();
}

static int
hamt_tp_clear(PyHamtObject *self)
{
    Py_CLEAR(self->h_root);
    return 0;
}


static int
hamt_tp_traverse(PyHamtObject *self, visitproc visit, void *arg)
{
    Py_VISIT(self->h_root);
    return 0;
}

static void
hamt_tp_dealloc(PyHamtObject *self)
{
    PyObject_GC_UnTrack(self);
    if (self->h_weakreflist != NULL) {
        PyObject_ClearWeakRefs((PyObject*)self);
    }
    (void)hamt_tp_clear(self);
    Py_TYPE(self)->tp_free(self);
}


static PyObject *
hamt_tp_richcompare(PyObject *v, PyObject *w, int op)
{
    if (!PyHamt_Check(v) || !PyHamt_Check(w) || (op != Py_EQ && op != Py_NE)) {
        Py_RETURN_NOTIMPLEMENTED;
    }

    int res = _PyHamt_Eq((PyHamtObject *)v, (PyHamtObject *)w);
    if (res < 0) {
        return NULL;
    }

    if (op == Py_NE) {
        res = !res;
    }

    if (res) {
        Py_RETURN_TRUE;
    }
    else {
        Py_RETURN_FALSE;
    }
}

static int
hamt_tp_contains(PyHamtObject *self, PyObject *key)
{
    PyObject *val;
    return _PyHamt_Find(self, key, &val);
}

static PyObject *
hamt_tp_subscript(PyHamtObject *self, PyObject *key)
{
    PyObject *val;
    hamt_find_t res = hamt_find(self, key, &val);
    switch (res) {
        case F_ERROR:
            return NULL;
        case F_FOUND:
            Py_INCREF(val);
            return val;
        case F_NOT_FOUND:
            PyErr_SetObject(PyExc_KeyError, key);
            return NULL;
        default:
            Py_UNREACHABLE();
    }
}

static Py_ssize_t
hamt_tp_len(PyHamtObject *self)
{
    return _PyHamt_Len(self);
}

static PyObject *
hamt_tp_iter(PyHamtObject *self)
{
    return _PyHamt_NewIterKeys(self);
}

static PyObject *
hamt_py_set(PyHamtObject *self, PyObject *args)
{
    PyObject *key;
    PyObject *val;

    if (!PyArg_UnpackTuple(args, "set", 2, 2, &key, &val)) {
        return NULL;
    }

    return (PyObject *)_PyHamt_Assoc(self, key, val);
}

static PyObject *
hamt_py_get(PyHamtObject *self, PyObject *args)
{
    PyObject *key;
    PyObject *def = NULL;

    if (!PyArg_UnpackTuple(args, "get", 1, 2, &key, &def)) {
        return NULL;
    }

    PyObject *val = NULL;
    hamt_find_t res = hamt_find(self, key, &val);
    switch (res) {
        case F_ERROR:
            return NULL;
        case F_FOUND:
            Py_INCREF(val);
            return val;
        case F_NOT_FOUND:
            if (def == NULL) {
                Py_RETURN_NONE;
            }
            Py_INCREF(def);
            return def;
        default:
            Py_UNREACHABLE();
    }
}

static PyObject *
hamt_py_delete(PyHamtObject *self, PyObject *key)
{
    return (PyObject *)_PyHamt_Without(self, key);
}

static PyObject *
hamt_py_items(PyHamtObject *self, PyObject *args)
{
    return _PyHamt_NewIterItems(self);
}

static PyObject *
hamt_py_values(PyHamtObject *self, PyObject *args)
{
    return _PyHamt_NewIterValues(self);
}

static PyObject *
hamt_py_keys(PyHamtObject *self, PyObject *args)
{
    return _PyHamt_NewIterKeys(self);
}

#ifdef Py_DEBUG
static PyObject *
hamt_py_dump(PyHamtObject *self, PyObject *args)
{
    return hamt_dump(self);
}
#endif


static PyMethodDef PyHamt_methods[] = {
    {"set", (PyCFunction)hamt_py_set, METH_VARARGS, NULL},
    {"get", (PyCFunction)hamt_py_get, METH_VARARGS, NULL},
    {"delete", (PyCFunction)hamt_py_delete, METH_O, NULL},
    {"items", (PyCFunction)hamt_py_items, METH_NOARGS, NULL},
    {"keys", (PyCFunction)hamt_py_keys, METH_NOARGS, NULL},
    {"values", (PyCFunction)hamt_py_values, METH_NOARGS, NULL},
#ifdef Py_DEBUG
    {"__dump__", (PyCFunction)hamt_py_dump, METH_NOARGS, NULL},
#endif
    {NULL, NULL}
};

static PySequenceMethods PyHamt_as_sequence = {
    0,                                /* sq_length */
    0,                                /* sq_concat */
    0,                                /* sq_repeat */
    0,                                /* sq_item */
    0,                                /* sq_slice */
    0,                                /* sq_ass_item */
    0,                                /* sq_ass_slice */
    (objobjproc)hamt_tp_contains,     /* sq_contains */
    0,                                /* sq_inplace_concat */
    0,                                /* sq_inplace_repeat */
};

static PyMappingMethods PyHamt_as_mapping = {
    (lenfunc)hamt_tp_len,             /* mp_length */
    (binaryfunc)hamt_tp_subscript,    /* mp_subscript */
};

PyTypeObject _PyHamt_Type = {
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
    "hamt",
    sizeof(PyHamtObject),
    .tp_methods = PyHamt_methods,
    .tp_as_mapping = &PyHamt_as_mapping,
    .tp_as_sequence = &PyHamt_as_sequence,
    .tp_iter = (getiterfunc)hamt_tp_iter,
    .tp_dealloc = (destructor)hamt_tp_dealloc,
    .tp_getattro = PyObject_GenericGetAttr,
    .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
    .tp_richcompare = hamt_tp_richcompare,
    .tp_traverse = (traverseproc)hamt_tp_traverse,
    .tp_clear = (inquiry)hamt_tp_clear,
    .tp_new = hamt_tp_new,
    .tp_weaklistoffset = offsetof(PyHamtObject, h_weakreflist),
    .tp_hash = PyObject_HashNotImplemented,
};


/////////////////////////////////// Tree Node Types


PyTypeObject _PyHamt_ArrayNode_Type = {
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
    "hamt_array_node",
    sizeof(PyHamtNode_Array),
    0,
    .tp_dealloc = (destructor)hamt_node_array_dealloc,
    .tp_getattro = PyObject_GenericGetAttr,
    .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
    .tp_traverse = (traverseproc)hamt_node_array_traverse,
    .tp_free = PyObject_GC_Del,
    .tp_hash = PyObject_HashNotImplemented,
};

PyTypeObject _PyHamt_BitmapNode_Type = {
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
    "hamt_bitmap_node",
    sizeof(PyHamtNode_Bitmap) - sizeof(PyObject *),
    sizeof(PyObject *),
    .tp_dealloc = (destructor)hamt_node_bitmap_dealloc,
    .tp_getattro = PyObject_GenericGetAttr,
    .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
    .tp_traverse = (traverseproc)hamt_node_bitmap_traverse,
    .tp_free = PyObject_GC_Del,
    .tp_hash = PyObject_HashNotImplemented,
};

PyTypeObject _PyHamt_CollisionNode_Type = {
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
    "hamt_collision_node",
    sizeof(PyHamtNode_Collision) - sizeof(PyObject *),
    sizeof(PyObject *),
    .tp_dealloc = (destructor)hamt_node_collision_dealloc,
    .tp_getattro = PyObject_GenericGetAttr,
    .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
    .tp_traverse = (traverseproc)hamt_node_collision_traverse,
    .tp_free = PyObject_GC_Del,
    .tp_hash = PyObject_HashNotImplemented,
};


int
_PyHamt_Init(void)
{
    if ((PyType_Ready(&_PyHamt_Type) < 0) ||
        (PyType_Ready(&_PyHamt_ArrayNode_Type) < 0) ||
        (PyType_Ready(&_PyHamt_BitmapNode_Type) < 0) ||
        (PyType_Ready(&_PyHamt_CollisionNode_Type) < 0) ||
        (PyType_Ready(&_PyHamtKeys_Type) < 0) ||
        (PyType_Ready(&_PyHamtValues_Type) < 0) ||
        (PyType_Ready(&_PyHamtItems_Type) < 0))
    {
        return 0;
    }

    return 1;
}

void
_PyHamt_Fini(void)
{
    Py_CLEAR(_empty_hamt);
    Py_CLEAR(_empty_bitmap_node);
}