summaryrefslogtreecommitdiffstats
path: root/Python/jit.c
blob: df14e48c564447a44399b4d5711e71fe2ce262c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
#ifdef _Py_JIT

#include "Python.h"

#include "pycore_abstract.h"
#include "pycore_call.h"
#include "pycore_ceval.h"
#include "pycore_dict.h"
#include "pycore_intrinsics.h"
#include "pycore_long.h"
#include "pycore_opcode_metadata.h"
#include "pycore_opcode_utils.h"
#include "pycore_optimizer.h"
#include "pycore_pyerrors.h"
#include "pycore_setobject.h"
#include "pycore_sliceobject.h"
#include "pycore_jit.h"

#include "jit_stencils.h"

// Memory management stuff: ////////////////////////////////////////////////////

#ifndef MS_WINDOWS
    #include <sys/mman.h>
#endif

static size_t
get_page_size(void)
{
#ifdef MS_WINDOWS
    SYSTEM_INFO si;
    GetSystemInfo(&si);
    return si.dwPageSize;
#else
    return sysconf(_SC_PAGESIZE);
#endif
}

static void
jit_error(const char *message)
{
#ifdef MS_WINDOWS
    int hint = GetLastError();
#else
    int hint = errno;
#endif
    PyErr_Format(PyExc_RuntimeWarning, "JIT %s (%d)", message, hint);
}

static unsigned char *
jit_alloc(size_t size)
{
    assert(size);
    assert(size % get_page_size() == 0);
#ifdef MS_WINDOWS
    int flags = MEM_COMMIT | MEM_RESERVE;
    unsigned char *memory = VirtualAlloc(NULL, size, flags, PAGE_READWRITE);
    int failed = memory == NULL;
#else
    int flags = MAP_ANONYMOUS | MAP_PRIVATE;
    unsigned char *memory = mmap(NULL, size, PROT_READ | PROT_WRITE, flags, -1, 0);
    int failed = memory == MAP_FAILED;
#endif
    if (failed) {
        jit_error("unable to allocate memory");
        return NULL;
    }
    return memory;
}

static int
jit_free(unsigned char *memory, size_t size)
{
    assert(size);
    assert(size % get_page_size() == 0);
#ifdef MS_WINDOWS
    int failed = !VirtualFree(memory, 0, MEM_RELEASE);
#else
    int failed = munmap(memory, size);
#endif
    if (failed) {
        jit_error("unable to free memory");
        return -1;
    }
    return 0;
}

static int
mark_executable(unsigned char *memory, size_t size)
{
    if (size == 0) {
        return 0;
    }
    assert(size % get_page_size() == 0);
    // Do NOT ever leave the memory writable! Also, don't forget to flush the
    // i-cache (I cannot begin to tell you how horrible that is to debug):
#ifdef MS_WINDOWS
    if (!FlushInstructionCache(GetCurrentProcess(), memory, size)) {
        jit_error("unable to flush instruction cache");
        return -1;
    }
    int old;
    int failed = !VirtualProtect(memory, size, PAGE_EXECUTE_READ, &old);
#else
    __builtin___clear_cache((char *)memory, (char *)memory + size);
    int failed = mprotect(memory, size, PROT_EXEC | PROT_READ);
#endif
    if (failed) {
        jit_error("unable to protect executable memory");
        return -1;
    }
    return 0;
}

// JIT compiler stuff: /////////////////////////////////////////////////////////

// Warning! AArch64 requires you to get your hands dirty. These are your gloves:

// value[value_start : value_start + len]
static uint32_t
get_bits(uint64_t value, uint8_t value_start, uint8_t width)
{
    assert(width <= 32);
    return (value >> value_start) & ((1ULL << width) - 1);
}

// *loc[loc_start : loc_start + width] = value[value_start : value_start + width]
static void
set_bits(uint32_t *loc, uint8_t loc_start, uint64_t value, uint8_t value_start,
         uint8_t width)
{
    assert(loc_start + width <= 32);
    // Clear the bits we're about to patch:
    *loc &= ~(((1ULL << width) - 1) << loc_start);
    assert(get_bits(*loc, loc_start, width) == 0);
    // Patch the bits:
    *loc |= get_bits(value, value_start, width) << loc_start;
    assert(get_bits(*loc, loc_start, width) == get_bits(value, value_start, width));
}

// See https://developer.arm.com/documentation/ddi0602/2023-09/Base-Instructions
// for instruction encodings:
#define IS_AARCH64_ADD_OR_SUB(I) (((I) & 0x11C00000) == 0x11000000)
#define IS_AARCH64_ADRP(I)       (((I) & 0x9F000000) == 0x90000000)
#define IS_AARCH64_BRANCH(I)     (((I) & 0x7C000000) == 0x14000000)
#define IS_AARCH64_LDR_OR_STR(I) (((I) & 0x3B000000) == 0x39000000)
#define IS_AARCH64_MOV(I)        (((I) & 0x9F800000) == 0x92800000)

// Fill all of stencil's holes in the memory pointed to by base, using the
// values in patches.
static void
patch(unsigned char *base, const Stencil *stencil, uintptr_t patches[])
{
    for (size_t i = 0; i < stencil->holes_size; i++) {
        const Hole *hole = &stencil->holes[i];
        unsigned char *location = base + hole->offset;
        uint64_t value = patches[hole->value] + (uintptr_t)hole->symbol + hole->addend;
        uint8_t *loc8 = (uint8_t *)location;
        uint32_t *loc32 = (uint32_t *)location;
        uint64_t *loc64 = (uint64_t *)location;
        // LLD is a great reference for performing relocations... just keep in
        // mind that Tools/jit/build.py does filtering and preprocessing for us!
        // Here's a good place to start for each platform:
        // - aarch64-apple-darwin:
        //   - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64.cpp
        //   - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.cpp
        //   - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.h
        // - aarch64-pc-windows-msvc:
        //   - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp
        // - aarch64-unknown-linux-gnu:
        //   - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/AArch64.cpp
        // - i686-pc-windows-msvc:
        //   - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp
        // - x86_64-apple-darwin:
        //   - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/X86_64.cpp
        // - x86_64-pc-windows-msvc:
        //   - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp
        // - x86_64-unknown-linux-gnu:
        //   - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/X86_64.cpp
        switch (hole->kind) {
            case HoleKind_IMAGE_REL_I386_DIR32:
                // 32-bit absolute address.
                // Check that we're not out of range of 32 unsigned bits:
                assert(value < (1ULL << 32));
                *loc32 = (uint32_t)value;
                continue;
            case HoleKind_ARM64_RELOC_UNSIGNED:
            case HoleKind_R_AARCH64_ABS64:
            case HoleKind_X86_64_RELOC_UNSIGNED:
            case HoleKind_R_X86_64_64:
                // 64-bit absolute address.
                *loc64 = value;
                continue;
            case HoleKind_IMAGE_REL_AMD64_REL32:
            case HoleKind_IMAGE_REL_I386_REL32:
            case HoleKind_R_X86_64_GOTPCRELX:
            case HoleKind_R_X86_64_REX_GOTPCRELX:
            case HoleKind_X86_64_RELOC_GOT:
            case HoleKind_X86_64_RELOC_GOT_LOAD: {
                // 32-bit relative address.
                // Try to relax the GOT load into an immediate value:
                uint64_t relaxed = *(uint64_t *)(value + 4) - 4;
                if ((int64_t)relaxed - (int64_t)location >= -(1LL << 31) &&
                    (int64_t)relaxed - (int64_t)location + 1 < (1LL << 31))
                {
                    if (loc8[-2] == 0x8B) {
                        // mov reg, dword ptr [rip + AAA] -> lea reg, [rip + XXX]
                        loc8[-2] = 0x8D;
                        value = relaxed;
                    }
                    else if (loc8[-2] == 0xFF && loc8[-1] == 0x15) {
                        // call qword ptr [rip + AAA] -> nop; call XXX
                        loc8[-2] = 0x90;
                        loc8[-1] = 0xE8;
                        value = relaxed;
                    }
                    else if (loc8[-2] == 0xFF && loc8[-1] == 0x25) {
                        // jmp qword ptr [rip + AAA] -> nop; jmp XXX
                        loc8[-2] = 0x90;
                        loc8[-1] = 0xE9;
                        value = relaxed;
                    }
                }
            }
            // Fall through...
            case HoleKind_R_X86_64_GOTPCREL:
            case HoleKind_R_X86_64_PC32:
            case HoleKind_X86_64_RELOC_SIGNED:
            case HoleKind_X86_64_RELOC_BRANCH:
                // 32-bit relative address.
                value -= (uintptr_t)location;
                // Check that we're not out of range of 32 signed bits:
                assert((int64_t)value >= -(1LL << 31));
                assert((int64_t)value < (1LL << 31));
                *loc32 = (uint32_t)value;
                continue;
            case HoleKind_ARM64_RELOC_BRANCH26:
            case HoleKind_IMAGE_REL_ARM64_BRANCH26:
            case HoleKind_R_AARCH64_CALL26:
            case HoleKind_R_AARCH64_JUMP26:
                // 28-bit relative branch.
                assert(IS_AARCH64_BRANCH(*loc32));
                value -= (uintptr_t)location;
                // Check that we're not out of range of 28 signed bits:
                assert((int64_t)value >= -(1 << 27));
                assert((int64_t)value < (1 << 27));
                // Since instructions are 4-byte aligned, only use 26 bits:
                assert(get_bits(value, 0, 2) == 0);
                set_bits(loc32, 0, value, 2, 26);
                continue;
            case HoleKind_R_AARCH64_MOVW_UABS_G0_NC:
                // 16-bit low part of an absolute address.
                assert(IS_AARCH64_MOV(*loc32));
                // Check the implicit shift (this is "part 0 of 3"):
                assert(get_bits(*loc32, 21, 2) == 0);
                set_bits(loc32, 5, value, 0, 16);
                continue;
            case HoleKind_R_AARCH64_MOVW_UABS_G1_NC:
                // 16-bit middle-low part of an absolute address.
                assert(IS_AARCH64_MOV(*loc32));
                // Check the implicit shift (this is "part 1 of 3"):
                assert(get_bits(*loc32, 21, 2) == 1);
                set_bits(loc32, 5, value, 16, 16);
                continue;
            case HoleKind_R_AARCH64_MOVW_UABS_G2_NC:
                // 16-bit middle-high part of an absolute address.
                assert(IS_AARCH64_MOV(*loc32));
                // Check the implicit shift (this is "part 2 of 3"):
                assert(get_bits(*loc32, 21, 2) == 2);
                set_bits(loc32, 5, value, 32, 16);
                continue;
            case HoleKind_R_AARCH64_MOVW_UABS_G3:
                // 16-bit high part of an absolute address.
                assert(IS_AARCH64_MOV(*loc32));
                // Check the implicit shift (this is "part 3 of 3"):
                assert(get_bits(*loc32, 21, 2) == 3);
                set_bits(loc32, 5, value, 48, 16);
                continue;
            case HoleKind_ARM64_RELOC_GOT_LOAD_PAGE21:
            case HoleKind_IMAGE_REL_ARM64_PAGEBASE_REL21:
            case HoleKind_R_AARCH64_ADR_GOT_PAGE:
            case HoleKind_R_AARCH64_ADR_PREL_PG_HI21:
                // 21-bit count of pages between this page and an absolute address's
                // page... I know, I know, it's weird. Pairs nicely with
                // ARM64_RELOC_GOT_LOAD_PAGEOFF12 (below).
                assert(IS_AARCH64_ADRP(*loc32));
                // Try to relax the pair of GOT loads into an immediate value:
                const Hole *next_hole = &stencil->holes[i + 1];
                if (i + 1 < stencil->holes_size &&
                    (next_hole->kind == HoleKind_ARM64_RELOC_GOT_LOAD_PAGEOFF12 ||
                     next_hole->kind == HoleKind_IMAGE_REL_ARM64_PAGEOFFSET_12L ||
                     next_hole->kind == HoleKind_R_AARCH64_LD64_GOT_LO12_NC) &&
                    next_hole->offset == hole->offset + 4 &&
                    next_hole->symbol == hole->symbol &&
                    next_hole->addend == hole->addend &&
                    next_hole->value == hole->value)
                {
                    unsigned char reg = get_bits(loc32[0], 0, 5);
                    assert(IS_AARCH64_LDR_OR_STR(loc32[1]));
                    // There should be only one register involved:
                    assert(reg == get_bits(loc32[1], 0, 5));  // ldr's output register.
                    assert(reg == get_bits(loc32[1], 5, 5));  // ldr's input register.
                    uint64_t relaxed = *(uint64_t *)value;
                    if (relaxed < (1UL << 16)) {
                        // adrp reg, AAA; ldr reg, [reg + BBB] -> movz reg, XXX; nop
                        loc32[0] = 0xD2800000 | (get_bits(relaxed, 0, 16) << 5) | reg;
                        loc32[1] = 0xD503201F;
                        i++;
                        continue;
                    }
                    if (relaxed < (1ULL << 32)) {
                        // adrp reg, AAA; ldr reg, [reg + BBB] -> movz reg, XXX; movk reg, YYY
                        loc32[0] = 0xD2800000 | (get_bits(relaxed,  0, 16) << 5) | reg;
                        loc32[1] = 0xF2A00000 | (get_bits(relaxed, 16, 16) << 5) | reg;
                        i++;
                        continue;
                    }
                    relaxed = value - (uintptr_t)location;
                    if ((relaxed & 0x3) == 0 &&
                        (int64_t)relaxed >= -(1L << 19) &&
                        (int64_t)relaxed < (1L << 19))
                    {
                        // adrp reg, AAA; ldr reg, [reg + BBB] -> ldr reg, XXX; nop
                        loc32[0] = 0x58000000 | (get_bits(relaxed, 2, 19) << 5) | reg;
                        loc32[1] = 0xD503201F;
                        i++;
                        continue;
                    }
                }
                // Fall through...
            case HoleKind_ARM64_RELOC_PAGE21:
                // Number of pages between this page and the value's page:
                value = (value >> 12) - ((uintptr_t)location >> 12);
                // Check that we're not out of range of 21 signed bits:
                assert((int64_t)value >= -(1 << 20));
                assert((int64_t)value < (1 << 20));
                // value[0:2] goes in loc[29:31]:
                set_bits(loc32, 29, value, 0, 2);
                // value[2:21] goes in loc[5:26]:
                set_bits(loc32, 5, value, 2, 19);
                continue;
            case HoleKind_ARM64_RELOC_GOT_LOAD_PAGEOFF12:
            case HoleKind_ARM64_RELOC_PAGEOFF12:
            case HoleKind_IMAGE_REL_ARM64_PAGEOFFSET_12A:
            case HoleKind_IMAGE_REL_ARM64_PAGEOFFSET_12L:
            case HoleKind_R_AARCH64_ADD_ABS_LO12_NC:
            case HoleKind_R_AARCH64_LD64_GOT_LO12_NC:
                // 12-bit low part of an absolute address. Pairs nicely with
                // ARM64_RELOC_GOT_LOAD_PAGE21 (above).
                assert(IS_AARCH64_LDR_OR_STR(*loc32) || IS_AARCH64_ADD_OR_SUB(*loc32));
                // There might be an implicit shift encoded in the instruction:
                uint8_t shift = 0;
                if (IS_AARCH64_LDR_OR_STR(*loc32)) {
                    shift = (uint8_t)get_bits(*loc32, 30, 2);
                    // If both of these are set, the shift is supposed to be 4.
                    // That's pretty weird, and it's never actually been observed...
                    assert(get_bits(*loc32, 23, 1) == 0 || get_bits(*loc32, 26, 1) == 0);
                }
                value = get_bits(value, 0, 12);
                assert(get_bits(value, 0, shift) == 0);
                set_bits(loc32, 10, value, shift, 12);
                continue;
        }
        Py_UNREACHABLE();
    }
}

static void
copy_and_patch(unsigned char *base, const Stencil *stencil, uintptr_t patches[])
{
    memcpy(base, stencil->body, stencil->body_size);
    patch(base, stencil, patches);
}

static void
emit(const StencilGroup *group, uintptr_t patches[])
{
    copy_and_patch((unsigned char *)patches[HoleValue_DATA], &group->data, patches);
    copy_and_patch((unsigned char *)patches[HoleValue_CODE], &group->code, patches);
}

// Compiles executor in-place. Don't forget to call _PyJIT_Free later!
int
_PyJIT_Compile(_PyExecutorObject *executor, const _PyUOpInstruction *trace, size_t length)
{
    // Loop once to find the total compiled size:
    size_t instruction_starts[UOP_MAX_TRACE_LENGTH];
    size_t code_size = trampoline.code.body_size;
    size_t data_size = trampoline.data.body_size;
    for (size_t i = 0; i < length; i++) {
        _PyUOpInstruction *instruction = (_PyUOpInstruction *)&trace[i];
        const StencilGroup *group = &stencil_groups[instruction->opcode];
        instruction_starts[i] = code_size;
        code_size += group->code.body_size;
        data_size += group->data.body_size;
    }
    code_size += stencil_groups[_FATAL_ERROR].code.body_size;
    data_size += stencil_groups[_FATAL_ERROR].data.body_size;
    // Round up to the nearest page:
    size_t page_size = get_page_size();
    assert((page_size & (page_size - 1)) == 0);
    size_t padding = page_size - ((code_size + data_size) & (page_size - 1));
    size_t total_size = code_size + data_size + padding;
    unsigned char *memory = jit_alloc(total_size);
    if (memory == NULL) {
        return -1;
    }
    // Loop again to emit the code:
    unsigned char *code = memory;
    unsigned char *data = memory + code_size;
    {
        // Compile the trampoline, which handles converting between the native
        // calling convention and the calling convention used by jitted code
        // (which may be different for efficiency reasons). On platforms where
        // we don't change calling conventions, the trampoline is empty and
        // nothing is emitted here:
        const StencilGroup *group = &trampoline;
        // Think of patches as a dictionary mapping HoleValue to uintptr_t:
        uintptr_t patches[] = GET_PATCHES();
        patches[HoleValue_CODE] = (uintptr_t)code;
        patches[HoleValue_CONTINUE] = (uintptr_t)code + group->code.body_size;
        patches[HoleValue_DATA] = (uintptr_t)data;
        patches[HoleValue_EXECUTOR] = (uintptr_t)executor;
        patches[HoleValue_TOP] = (uintptr_t)memory + trampoline.code.body_size;
        patches[HoleValue_ZERO] = 0;
        emit(group, patches);
        code += group->code.body_size;
        data += group->data.body_size;
    }
    assert(trace[0].opcode == _START_EXECUTOR || trace[0].opcode == _COLD_EXIT);
    for (size_t i = 0; i < length; i++) {
        _PyUOpInstruction *instruction = (_PyUOpInstruction *)&trace[i];
        const StencilGroup *group = &stencil_groups[instruction->opcode];
        uintptr_t patches[] = GET_PATCHES();
        patches[HoleValue_CODE] = (uintptr_t)code;
        patches[HoleValue_CONTINUE] = (uintptr_t)code + group->code.body_size;
        patches[HoleValue_DATA] = (uintptr_t)data;
        patches[HoleValue_EXECUTOR] = (uintptr_t)executor;
        patches[HoleValue_OPARG] = instruction->oparg;
    #if SIZEOF_VOID_P == 8
        patches[HoleValue_OPERAND] = instruction->operand;
    #else
        assert(SIZEOF_VOID_P == 4);
        patches[HoleValue_OPERAND_HI] = instruction->operand >> 32;
        patches[HoleValue_OPERAND_LO] = instruction->operand & UINT32_MAX;
    #endif
        switch (instruction->format) {
            case UOP_FORMAT_TARGET:
                patches[HoleValue_TARGET] = instruction->target;
                break;
            case UOP_FORMAT_EXIT:
                assert(instruction->exit_index < executor->exit_count);
                patches[HoleValue_EXIT_INDEX] = instruction->exit_index;
                if (instruction->error_target < length) {
                    patches[HoleValue_ERROR_TARGET] = (uintptr_t)memory + instruction_starts[instruction->error_target];
                }
                break;
            case UOP_FORMAT_JUMP:
                assert(instruction->jump_target < length);
                patches[HoleValue_JUMP_TARGET] = (uintptr_t)memory + instruction_starts[instruction->jump_target];
                if (instruction->error_target < length) {
                    patches[HoleValue_ERROR_TARGET] = (uintptr_t)memory + instruction_starts[instruction->error_target];
                }
                break;
            default:
                assert(0);
                Py_FatalError("Illegal instruction format");
        }
        patches[HoleValue_TOP] = (uintptr_t)memory + instruction_starts[1];
        patches[HoleValue_ZERO] = 0;
        emit(group, patches);
        code += group->code.body_size;
        data += group->data.body_size;
    }
    {
        // Protect against accidental buffer overrun into data:
        const StencilGroup *group = &stencil_groups[_FATAL_ERROR];
        uintptr_t patches[] = GET_PATCHES();
        patches[HoleValue_CODE] = (uintptr_t)code;
        patches[HoleValue_CONTINUE] = (uintptr_t)code;
        patches[HoleValue_DATA] = (uintptr_t)data;
        patches[HoleValue_EXECUTOR] = (uintptr_t)executor;
        patches[HoleValue_TOP] = (uintptr_t)code;
        patches[HoleValue_ZERO] = 0;
        emit(group, patches);
        code += group->code.body_size;
        data += group->data.body_size;
    }
    assert(code == memory + code_size);
    assert(data == memory + code_size + data_size);
    if (mark_executable(memory, total_size)) {
        jit_free(memory, total_size);
        return -1;
    }
    executor->jit_code = memory;
    executor->jit_side_entry = memory + trampoline.code.body_size;
    executor->jit_size = total_size;
    return 0;
}

void
_PyJIT_Free(_PyExecutorObject *executor)
{
    unsigned char *memory = (unsigned char *)executor->jit_code;
    size_t size = executor->jit_size;
    if (memory) {
        executor->jit_code = NULL;
        executor->jit_side_entry = NULL;
        executor->jit_size = 0;
        if (jit_free(memory, size)) {
            PyErr_WriteUnraisable(NULL);
        }
    }
}

#endif  // _Py_JIT