summaryrefslogtreecommitdiffstats
path: root/Python/jit.c
blob: d0c0d24f4539e29ab7bb66ad634c78ae46a9bbfe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#ifdef _Py_JIT

#include "Python.h"

#include "pycore_abstract.h"
#include "pycore_call.h"
#include "pycore_ceval.h"
#include "pycore_critical_section.h"
#include "pycore_dict.h"
#include "pycore_intrinsics.h"
#include "pycore_long.h"
#include "pycore_opcode_metadata.h"
#include "pycore_opcode_utils.h"
#include "pycore_optimizer.h"
#include "pycore_pyerrors.h"
#include "pycore_setobject.h"
#include "pycore_sliceobject.h"
#include "pycore_jit.h"

// Memory management stuff: ////////////////////////////////////////////////////

#ifndef MS_WINDOWS
    #include <sys/mman.h>
#endif

static size_t
get_page_size(void)
{
#ifdef MS_WINDOWS
    SYSTEM_INFO si;
    GetSystemInfo(&si);
    return si.dwPageSize;
#else
    return sysconf(_SC_PAGESIZE);
#endif
}

static void
jit_error(const char *message)
{
#ifdef MS_WINDOWS
    int hint = GetLastError();
#else
    int hint = errno;
#endif
    PyErr_Format(PyExc_RuntimeWarning, "JIT %s (%d)", message, hint);
}

static unsigned char *
jit_alloc(size_t size)
{
    assert(size);
    assert(size % get_page_size() == 0);
#ifdef MS_WINDOWS
    int flags = MEM_COMMIT | MEM_RESERVE;
    unsigned char *memory = VirtualAlloc(NULL, size, flags, PAGE_READWRITE);
    int failed = memory == NULL;
#else
    int flags = MAP_ANONYMOUS | MAP_PRIVATE;
    unsigned char *memory = mmap(NULL, size, PROT_READ | PROT_WRITE, flags, -1, 0);
    int failed = memory == MAP_FAILED;
#endif
    if (failed) {
        jit_error("unable to allocate memory");
        return NULL;
    }
    return memory;
}

static int
jit_free(unsigned char *memory, size_t size)
{
    assert(size);
    assert(size % get_page_size() == 0);
#ifdef MS_WINDOWS
    int failed = !VirtualFree(memory, 0, MEM_RELEASE);
#else
    int failed = munmap(memory, size);
#endif
    if (failed) {
        jit_error("unable to free memory");
        return -1;
    }
    return 0;
}

static int
mark_executable(unsigned char *memory, size_t size)
{
    if (size == 0) {
        return 0;
    }
    assert(size % get_page_size() == 0);
    // Do NOT ever leave the memory writable! Also, don't forget to flush the
    // i-cache (I cannot begin to tell you how horrible that is to debug):
#ifdef MS_WINDOWS
    if (!FlushInstructionCache(GetCurrentProcess(), memory, size)) {
        jit_error("unable to flush instruction cache");
        return -1;
    }
    int old;
    int failed = !VirtualProtect(memory, size, PAGE_EXECUTE_READ, &old);
#else
    __builtin___clear_cache((char *)memory, (char *)memory + size);
    int failed = mprotect(memory, size, PROT_EXEC | PROT_READ);
#endif
    if (failed) {
        jit_error("unable to protect executable memory");
        return -1;
    }
    return 0;
}

// JIT compiler stuff: /////////////////////////////////////////////////////////

// Warning! AArch64 requires you to get your hands dirty. These are your gloves:

// value[value_start : value_start + len]
static uint32_t
get_bits(uint64_t value, uint8_t value_start, uint8_t width)
{
    assert(width <= 32);
    return (value >> value_start) & ((1ULL << width) - 1);
}

// *loc[loc_start : loc_start + width] = value[value_start : value_start + width]
static void
set_bits(uint32_t *loc, uint8_t loc_start, uint64_t value, uint8_t value_start,
         uint8_t width)
{
    assert(loc_start + width <= 32);
    // Clear the bits we're about to patch:
    *loc &= ~(((1ULL << width) - 1) << loc_start);
    assert(get_bits(*loc, loc_start, width) == 0);
    // Patch the bits:
    *loc |= get_bits(value, value_start, width) << loc_start;
    assert(get_bits(*loc, loc_start, width) == get_bits(value, value_start, width));
}

// See https://developer.arm.com/documentation/ddi0602/2023-09/Base-Instructions
// for instruction encodings:
#define IS_AARCH64_ADD_OR_SUB(I) (((I) & 0x11C00000) == 0x11000000)
#define IS_AARCH64_ADRP(I)       (((I) & 0x9F000000) == 0x90000000)
#define IS_AARCH64_BRANCH(I)     (((I) & 0x7C000000) == 0x14000000)
#define IS_AARCH64_LDR_OR_STR(I) (((I) & 0x3B000000) == 0x39000000)
#define IS_AARCH64_MOV(I)        (((I) & 0x9F800000) == 0x92800000)

// LLD is a great reference for performing relocations... just keep in
// mind that Tools/jit/build.py does filtering and preprocessing for us!
// Here's a good place to start for each platform:
// - aarch64-apple-darwin:
//   - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64.cpp
//   - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.cpp
//   - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.h
// - aarch64-pc-windows-msvc:
//   - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp
// - aarch64-unknown-linux-gnu:
//   - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/AArch64.cpp
// - i686-pc-windows-msvc:
//   - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp
// - x86_64-apple-darwin:
//   - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/X86_64.cpp
// - x86_64-pc-windows-msvc:
//   - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp
// - x86_64-unknown-linux-gnu:
//   - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/X86_64.cpp

// Many of these patches are "relaxing", meaning that they can rewrite the
// code they're patching to be more efficient (like turning a 64-bit memory
// load into a 32-bit immediate load). These patches have an "x" in their name.
// Relative patches have an "r" in their name.

// 32-bit absolute address.
void
patch_32(unsigned char *location, uint64_t value)
{
    uint32_t *loc32 = (uint32_t *)location;
    // Check that we're not out of range of 32 unsigned bits:
    assert(value < (1ULL << 32));
    *loc32 = (uint32_t)value;
}

// 32-bit relative address.
void
patch_32r(unsigned char *location, uint64_t value)
{
    uint32_t *loc32 = (uint32_t *)location;
    value -= (uintptr_t)location;
    // Check that we're not out of range of 32 signed bits:
    assert((int64_t)value >= -(1LL << 31));
    assert((int64_t)value < (1LL << 31));
    *loc32 = (uint32_t)value;
}

// 64-bit absolute address.
void
patch_64(unsigned char *location, uint64_t value)
{
    uint64_t *loc64 = (uint64_t *)location;
    *loc64 = value;
}

// 12-bit low part of an absolute address. Pairs nicely with patch_aarch64_21r
// (below).
void
patch_aarch64_12(unsigned char *location, uint64_t value)
{
    uint32_t *loc32 = (uint32_t *)location;
    assert(IS_AARCH64_LDR_OR_STR(*loc32) || IS_AARCH64_ADD_OR_SUB(*loc32));
    // There might be an implicit shift encoded in the instruction:
    uint8_t shift = 0;
    if (IS_AARCH64_LDR_OR_STR(*loc32)) {
        shift = (uint8_t)get_bits(*loc32, 30, 2);
        // If both of these are set, the shift is supposed to be 4.
        // That's pretty weird, and it's never actually been observed...
        assert(get_bits(*loc32, 23, 1) == 0 || get_bits(*loc32, 26, 1) == 0);
    }
    value = get_bits(value, 0, 12);
    assert(get_bits(value, 0, shift) == 0);
    set_bits(loc32, 10, value, shift, 12);
}

// Relaxable 12-bit low part of an absolute address. Pairs nicely with
// patch_aarch64_21rx (below).
void
patch_aarch64_12x(unsigned char *location, uint64_t value)
{
    // This can *only* be relaxed if it occurs immediately before a matching
    // patch_aarch64_21rx. If that happens, the JIT build step will replace both
    // calls with a single call to patch_aarch64_33rx. Otherwise, we end up
    // here, and the instruction is patched normally:
    patch_aarch64_12(location, value);
}

// 16-bit low part of an absolute address.
void
patch_aarch64_16a(unsigned char *location, uint64_t value)
{
    uint32_t *loc32 = (uint32_t *)location;
    assert(IS_AARCH64_MOV(*loc32));
    // Check the implicit shift (this is "part 0 of 3"):
    assert(get_bits(*loc32, 21, 2) == 0);
    set_bits(loc32, 5, value, 0, 16);
}

// 16-bit middle-low part of an absolute address.
void
patch_aarch64_16b(unsigned char *location, uint64_t value)
{
    uint32_t *loc32 = (uint32_t *)location;
    assert(IS_AARCH64_MOV(*loc32));
    // Check the implicit shift (this is "part 1 of 3"):
    assert(get_bits(*loc32, 21, 2) == 1);
    set_bits(loc32, 5, value, 16, 16);
}

// 16-bit middle-high part of an absolute address.
void
patch_aarch64_16c(unsigned char *location, uint64_t value)
{
    uint32_t *loc32 = (uint32_t *)location;
    assert(IS_AARCH64_MOV(*loc32));
    // Check the implicit shift (this is "part 2 of 3"):
    assert(get_bits(*loc32, 21, 2) == 2);
    set_bits(loc32, 5, value, 32, 16);
}

// 16-bit high part of an absolute address.
void
patch_aarch64_16d(unsigned char *location, uint64_t value)
{
    uint32_t *loc32 = (uint32_t *)location;
    assert(IS_AARCH64_MOV(*loc32));
    // Check the implicit shift (this is "part 3 of 3"):
    assert(get_bits(*loc32, 21, 2) == 3);
    set_bits(loc32, 5, value, 48, 16);
}

// 21-bit count of pages between this page and an absolute address's page... I
// know, I know, it's weird. Pairs nicely with patch_aarch64_12 (above).
void
patch_aarch64_21r(unsigned char *location, uint64_t value)
{
    uint32_t *loc32 = (uint32_t *)location;
    value = (value >> 12) - ((uintptr_t)location >> 12);
    // Check that we're not out of range of 21 signed bits:
    assert((int64_t)value >= -(1 << 20));
    assert((int64_t)value < (1 << 20));
    // value[0:2] goes in loc[29:31]:
    set_bits(loc32, 29, value, 0, 2);
    // value[2:21] goes in loc[5:26]:
    set_bits(loc32, 5, value, 2, 19);
}

// Relaxable 21-bit count of pages between this page and an absolute address's
// page. Pairs nicely with patch_aarch64_12x (above).
void
patch_aarch64_21rx(unsigned char *location, uint64_t value)
{
    // This can *only* be relaxed if it occurs immediately before a matching
    // patch_aarch64_12x. If that happens, the JIT build step will replace both
    // calls with a single call to patch_aarch64_33rx. Otherwise, we end up
    // here, and the instruction is patched normally:
    patch_aarch64_21r(location, value);
}

// 28-bit relative branch.
void
patch_aarch64_26r(unsigned char *location, uint64_t value)
{
    uint32_t *loc32 = (uint32_t *)location;
    assert(IS_AARCH64_BRANCH(*loc32));
    value -= (uintptr_t)location;
    // Check that we're not out of range of 28 signed bits:
    assert((int64_t)value >= -(1 << 27));
    assert((int64_t)value < (1 << 27));
    // Since instructions are 4-byte aligned, only use 26 bits:
    assert(get_bits(value, 0, 2) == 0);
    set_bits(loc32, 0, value, 2, 26);
}

// A pair of patch_aarch64_21rx and patch_aarch64_12x.
void
patch_aarch64_33rx(unsigned char *location, uint64_t value)
{
    uint32_t *loc32 = (uint32_t *)location;
    // Try to relax the pair of GOT loads into an immediate value:
    assert(IS_AARCH64_ADRP(*loc32));
    unsigned char reg = get_bits(loc32[0], 0, 5);
    assert(IS_AARCH64_LDR_OR_STR(loc32[1]));
    // There should be only one register involved:
    assert(reg == get_bits(loc32[1], 0, 5));  // ldr's output register.
    assert(reg == get_bits(loc32[1], 5, 5));  // ldr's input register.
    uint64_t relaxed = *(uint64_t *)value;
    if (relaxed < (1UL << 16)) {
        // adrp reg, AAA; ldr reg, [reg + BBB] -> movz reg, XXX; nop
        loc32[0] = 0xD2800000 | (get_bits(relaxed, 0, 16) << 5) | reg;
        loc32[1] = 0xD503201F;
        return;
    }
    if (relaxed < (1ULL << 32)) {
        // adrp reg, AAA; ldr reg, [reg + BBB] -> movz reg, XXX; movk reg, YYY
        loc32[0] = 0xD2800000 | (get_bits(relaxed,  0, 16) << 5) | reg;
        loc32[1] = 0xF2A00000 | (get_bits(relaxed, 16, 16) << 5) | reg;
        return;
    }
    relaxed = value - (uintptr_t)location;
    if ((relaxed & 0x3) == 0 &&
        (int64_t)relaxed >= -(1L << 19) &&
        (int64_t)relaxed < (1L << 19))
    {
        // adrp reg, AAA; ldr reg, [reg + BBB] -> ldr reg, XXX; nop
        loc32[0] = 0x58000000 | (get_bits(relaxed, 2, 19) << 5) | reg;
        loc32[1] = 0xD503201F;
        return;
    }
    // Couldn't do it. Just patch the two instructions normally:
    patch_aarch64_21rx(location, value);
    patch_aarch64_12x(location + 4, value);
}

// Relaxable 32-bit relative address.
void
patch_x86_64_32rx(unsigned char *location, uint64_t value)
{
    uint8_t *loc8 = (uint8_t *)location;
    // Try to relax the GOT load into an immediate value:
    uint64_t relaxed = *(uint64_t *)(value + 4) - 4;
    if ((int64_t)relaxed - (int64_t)location >= -(1LL << 31) &&
        (int64_t)relaxed - (int64_t)location + 1 < (1LL << 31))
    {
        if (loc8[-2] == 0x8B) {
            // mov reg, dword ptr [rip + AAA] -> lea reg, [rip + XXX]
            loc8[-2] = 0x8D;
            value = relaxed;
        }
        else if (loc8[-2] == 0xFF && loc8[-1] == 0x15) {
            // call qword ptr [rip + AAA] -> nop; call XXX
            loc8[-2] = 0x90;
            loc8[-1] = 0xE8;
            value = relaxed;
        }
        else if (loc8[-2] == 0xFF && loc8[-1] == 0x25) {
            // jmp qword ptr [rip + AAA] -> nop; jmp XXX
            loc8[-2] = 0x90;
            loc8[-1] = 0xE9;
            value = relaxed;
        }
    }
    patch_32r(location, value);
}

#include "jit_stencils.h"

// Compiles executor in-place. Don't forget to call _PyJIT_Free later!
int
_PyJIT_Compile(_PyExecutorObject *executor, const _PyUOpInstruction trace[], size_t length)
{
    const StencilGroup *group;
    // Loop once to find the total compiled size:
    uintptr_t instruction_starts[UOP_MAX_TRACE_LENGTH];
    size_t code_size = 0;
    size_t data_size = 0;
    group = &trampoline;
    code_size += group->code_size;
    data_size += group->data_size;
    for (size_t i = 0; i < length; i++) {
        const _PyUOpInstruction *instruction = &trace[i];
        group = &stencil_groups[instruction->opcode];
        instruction_starts[i] = code_size;
        code_size += group->code_size;
        data_size += group->data_size;
    }
    group = &stencil_groups[_FATAL_ERROR];
    code_size += group->code_size;
    data_size += group->data_size;
    // Round up to the nearest page:
    size_t page_size = get_page_size();
    assert((page_size & (page_size - 1)) == 0);
    size_t padding = page_size - ((code_size + data_size) & (page_size - 1));
    size_t total_size = code_size + data_size + padding;
    unsigned char *memory = jit_alloc(total_size);
    if (memory == NULL) {
        return -1;
    }
    // Update the offsets of each instruction:
    for (size_t i = 0; i < length; i++) {
        instruction_starts[i] += (uintptr_t)memory;
    }
    // Loop again to emit the code:
    unsigned char *code = memory;
    unsigned char *data = memory + code_size;
    // Compile the trampoline, which handles converting between the native
    // calling convention and the calling convention used by jitted code
    // (which may be different for efficiency reasons). On platforms where
    // we don't change calling conventions, the trampoline is empty and
    // nothing is emitted here:
    group = &trampoline;
    group->emit(code, data, executor, NULL, instruction_starts);
    code += group->code_size;
    data += group->data_size;
    assert(trace[0].opcode == _START_EXECUTOR || trace[0].opcode == _COLD_EXIT);
    for (size_t i = 0; i < length; i++) {
        const _PyUOpInstruction *instruction = &trace[i];
        group = &stencil_groups[instruction->opcode];
        group->emit(code, data, executor, instruction, instruction_starts);
        code += group->code_size;
        data += group->data_size;
    }
    // Protect against accidental buffer overrun into data:
    group = &stencil_groups[_FATAL_ERROR];
    group->emit(code, data, executor, NULL, instruction_starts);
    code += group->code_size;
    data += group->data_size;
    assert(code == memory + code_size);
    assert(data == memory + code_size + data_size);
    if (mark_executable(memory, total_size)) {
        jit_free(memory, total_size);
        return -1;
    }
    executor->jit_code = memory;
    executor->jit_side_entry = memory + trampoline.code_size;
    executor->jit_size = total_size;
    return 0;
}

void
_PyJIT_Free(_PyExecutorObject *executor)
{
    unsigned char *memory = (unsigned char *)executor->jit_code;
    size_t size = executor->jit_size;
    if (memory) {
        executor->jit_code = NULL;
        executor->jit_side_entry = NULL;
        executor->jit_size = 0;
        if (jit_free(memory, size)) {
            PyErr_WriteUnraisable(NULL);
        }
    }
}

#endif  // _Py_JIT