summaryrefslogtreecommitdiffstats
path: root/Python/specialize.c
blob: 07152d80538307b0689bd0b29207b97ff72a5676 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

#include "Python.h"
#include "pycore_code.h"
#include "opcode.h"


/* We layout the quickened data as a bi-directional array:
 * Instructions upwards, cache entries downwards.
 * first_instr is aligned to a SpecializedCacheEntry.
 * The nth instruction is located at first_instr[n]
 * The nth cache is located at ((SpecializedCacheEntry *)first_instr)[-1-n]
 * The first (index 0) cache entry is reserved for the count, to enable finding
 * the first instruction from the base pointer.
 * The cache_count argument must include space for the count.
 * We use the SpecializedCacheOrInstruction union to refer to the data
 * to avoid type punning.

 Layout of quickened data, each line 8 bytes for M cache entries and N instructions:

 <cache_count>                              <---- co->co_quickened
 <cache M-1>
 <cache M-2>
 ...
 <cache 0>
 <instr 0> <instr 1> <instr 2> <instr 3>    <--- co->co_first_instr
 <instr 4> <instr 5> <instr 6> <instr 7>
 ...
 <instr N-1>
*/

Py_ssize_t _Py_QuickenedCount = 0;

static SpecializedCacheOrInstruction *
allocate(int cache_count, int instruction_count)
{
    assert(sizeof(SpecializedCacheOrInstruction) == 2*sizeof(int32_t));
    assert(sizeof(SpecializedCacheEntry) == 2*sizeof(int32_t));
    assert(cache_count > 0);
    assert(instruction_count > 0);
    int count = cache_count + (instruction_count + INSTRUCTIONS_PER_ENTRY -1)/INSTRUCTIONS_PER_ENTRY;
    SpecializedCacheOrInstruction *array = (SpecializedCacheOrInstruction *)
        PyMem_Malloc(sizeof(SpecializedCacheOrInstruction) * count);
    if (array == NULL) {
        PyErr_NoMemory();
        return NULL;
    }
    _Py_QuickenedCount++;
    array[0].entry.zero.cache_count = cache_count;
    return array;
}

static int
get_cache_count(SpecializedCacheOrInstruction *quickened) {
    return quickened[0].entry.zero.cache_count;
}

/* Map from opcode to adaptive opcode.
  Values of zero are ignored. */
static uint8_t adaptive_opcodes[256] = { 0 };

/* The number of cache entries required for a "family" of instructions. */
static uint8_t cache_requirements[256] = { 0 };

/* Return the oparg for the cache_offset and instruction index.
 *
 * If no cache is needed then return the original oparg.
 * If a cache is needed, but cannot be accessed because
 * oparg would be too large, then return -1.
 *
 * Also updates the cache_offset, as it may need to be incremented by
 * more than the cache requirements, if many instructions do not need caches.
 *
 * See pycore_code.h for details of how the cache offset,
 * instruction index and oparg are related */
static int
oparg_from_instruction_and_update_offset(int index, int opcode, int original_oparg, int *cache_offset) {
    /* The instruction pointer in the interpreter points to the next
     * instruction, so we compute the offset using nexti (index + 1) */
    int nexti = index + 1;
    uint8_t need = cache_requirements[opcode];
    if (need == 0) {
        return original_oparg;
    }
    assert(adaptive_opcodes[opcode] != 0);
    int oparg = oparg_from_offset_and_nexti(*cache_offset, nexti);
    assert(*cache_offset == offset_from_oparg_and_nexti(oparg, nexti));
    /* Some cache space is wasted here as the minimum possible offset is (nexti>>1) */
    if (oparg < 0) {
        oparg = 0;
        *cache_offset = offset_from_oparg_and_nexti(oparg, nexti);
    }
    else if (oparg > 255) {
        return -1;
    }
    *cache_offset += need;
    return oparg;
}

static int
entries_needed(_Py_CODEUNIT *code, int len)
{
    int cache_offset = 0;
    int previous_opcode = -1;
    for (int i = 0; i < len; i++) {
        uint8_t opcode = _Py_OPCODE(code[i]);
        if (previous_opcode != EXTENDED_ARG) {
            oparg_from_instruction_and_update_offset(i, opcode, 0, &cache_offset);
        }
        previous_opcode = opcode;
    }
    return cache_offset + 1;   // One extra for the count entry
}

static inline _Py_CODEUNIT *
first_instruction(SpecializedCacheOrInstruction *quickened)
{
    return &quickened[get_cache_count(quickened)].code[0];
}

/** Insert adaptive instructions and superinstructions.
 *
 * Skip instruction preceded by EXTENDED_ARG for adaptive
 * instructions as those are both very rare and tricky
 * to handle.
 */
static void
optimize(SpecializedCacheOrInstruction *quickened, int len)
{
    _Py_CODEUNIT *instructions = first_instruction(quickened);
    int cache_offset = 0;
    int previous_opcode = -1;
    for(int i = 0; i < len; i++) {
        int opcode = _Py_OPCODE(instructions[i]);
        int oparg = _Py_OPARG(instructions[i]);
        uint8_t adaptive_opcode = adaptive_opcodes[opcode];
        if (adaptive_opcode && previous_opcode != EXTENDED_ARG) {
            int new_oparg = oparg_from_instruction_and_update_offset(
                i, opcode, oparg, &cache_offset
            );
            if (new_oparg < 0) {
                /* Not possible to allocate a cache for this instruction */
                previous_opcode = opcode;
                continue;
            }
            instructions[i] = _Py_MAKECODEUNIT(adaptive_opcode, new_oparg);
            previous_opcode = adaptive_opcode;
            int entries_needed = cache_requirements[opcode];
            if (entries_needed) {
                /* Initialize the adpative cache entry */
                int cache0_offset = cache_offset-entries_needed;
                SpecializedCacheEntry *cache =
                    _GetSpecializedCacheEntry(instructions, cache0_offset);
                cache->adaptive.original_oparg = oparg;
                cache->adaptive.counter = 0;
            }
        }
        else {
            /* Super instructions don't use the cache,
             * so no need to update the offset. */
            switch (opcode) {
                /* Insert superinstructions here
                 E.g.
                case LOAD_FAST:
                    if (previous_opcode == LOAD_FAST)
                        instructions[i-1] = _Py_MAKECODEUNIT(LOAD_FAST__LOAD_FAST, oparg);
                 */
            }
            previous_opcode = opcode;
        }
    }
    assert(cache_offset+1 == get_cache_count(quickened));
}

int
_Py_Quicken(PyCodeObject *code) {
    if (code->co_quickened) {
        return 0;
    }
    Py_ssize_t size = PyBytes_GET_SIZE(code->co_code);
    int instr_count = (int)(size/sizeof(_Py_CODEUNIT));
    if (instr_count > MAX_SIZE_TO_QUICKEN) {
        code->co_warmup = QUICKENING_WARMUP_COLDEST;
        return 0;
    }
    int entry_count = entries_needed(code->co_firstinstr, instr_count);
    SpecializedCacheOrInstruction *quickened = allocate(entry_count, instr_count);
    if (quickened == NULL) {
        return -1;
    }
    _Py_CODEUNIT *new_instructions = first_instruction(quickened);
    memcpy(new_instructions, code->co_firstinstr, size);
    optimize(quickened, instr_count);
    code->co_quickened = quickened;
    code->co_firstinstr = new_instructions;
    return 0;
}