summaryrefslogtreecommitdiffstats
path: root/Python/specialize.c
blob: 5ebe596418b032a0996660fe2d71db327834f6cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

#include "Python.h"
#include "pycore_code.h"
#include "pycore_dict.h"
#include "pycore_long.h"
#include "pycore_moduleobject.h"
#include "opcode.h"
#include "structmember.h"         // struct PyMemberDef, T_OFFSET_EX

/* For guidance on adding or extending families of instructions see
 * ./adaptive.md
 */


/* We layout the quickened data as a bi-directional array:
 * Instructions upwards, cache entries downwards.
 * first_instr is aligned to a SpecializedCacheEntry.
 * The nth instruction is located at first_instr[n]
 * The nth cache is located at ((SpecializedCacheEntry *)first_instr)[-1-n]
 * The first (index 0) cache entry is reserved for the count, to enable finding
 * the first instruction from the base pointer.
 * The cache_count argument must include space for the count.
 * We use the SpecializedCacheOrInstruction union to refer to the data
 * to avoid type punning.

 Layout of quickened data, each line 8 bytes for M cache entries and N instructions:

 <cache_count>                              <---- co->co_quickened
 <cache M-1>
 <cache M-2>
 ...
 <cache 0>
 <instr 0> <instr 1> <instr 2> <instr 3>    <--- co->co_first_instr
 <instr 4> <instr 5> <instr 6> <instr 7>
 ...
 <instr N-1>
*/

Py_ssize_t _Py_QuickenedCount = 0;
#if SPECIALIZATION_STATS
SpecializationStats _specialization_stats[256] = { 0 };

#define PRINT_STAT(name, field) fprintf(stderr, "    %s." #field " : %" PRIu64 "\n", name, stats->field);

static void
print_stats(SpecializationStats *stats, const char *name)
{
    PRINT_STAT(name, specialization_success);
    PRINT_STAT(name, specialization_failure);
    PRINT_STAT(name, hit);
    PRINT_STAT(name, deferred);
    PRINT_STAT(name, miss);
    PRINT_STAT(name, deopt);
    PRINT_STAT(name, unquickened);
#if SPECIALIZATION_STATS_DETAILED
    if (stats->miss_types == NULL) {
        return;
    }
    fprintf(stderr, "    %s.fails:\n", name);
    PyObject *key, *count;
    Py_ssize_t pos = 0;
    while (PyDict_Next(stats->miss_types, &pos, &key, &count)) {
        PyObject *type = PyTuple_GetItem(key, 0);
        PyObject *name = PyTuple_GetItem(key, 1);
        PyObject *kind = PyTuple_GetItem(key, 2);
        fprintf(stderr, "        %s.", ((PyTypeObject *)type)->tp_name);
        PyObject_Print(name, stderr, Py_PRINT_RAW);
        fprintf(stderr, " (");
        PyObject_Print(kind, stderr, Py_PRINT_RAW);
        fprintf(stderr, "): %ld\n", PyLong_AsLong(count));
    }
#endif
}

void
_Py_PrintSpecializationStats(void)
{
    printf("Specialization stats:\n");
    print_stats(&_specialization_stats[LOAD_ATTR], "load_attr");
    print_stats(&_specialization_stats[LOAD_GLOBAL], "load_global");
    print_stats(&_specialization_stats[BINARY_SUBSCR], "binary_subscr");
}

#if SPECIALIZATION_STATS_DETAILED
void
_Py_IncrementTypeCounter(int opcode, PyObject *type, PyObject *name, const char *kind)
{
    PyObject *counter = _specialization_stats[opcode].miss_types;
    if (counter == NULL) {
        _specialization_stats[opcode].miss_types = PyDict_New();
        counter = _specialization_stats[opcode].miss_types;
        if (counter == NULL) {
            return;
        }
    }
    PyObject *key = NULL;
    PyObject *kind_object = _PyUnicode_FromASCII(kind, strlen(kind));
    if (kind_object == NULL) {
        PyErr_Clear();
        goto done;
    }
    key = PyTuple_Pack(3, type, name, kind_object);
    if (key == NULL) {
        PyErr_Clear();
        goto done;
    }
    PyObject *count = PyDict_GetItem(counter, key);
    if (count == NULL) {
        count = _PyLong_GetZero();
        if (PyDict_SetItem(counter, key, count) < 0) {
            PyErr_Clear();
            goto done;
        }
    }
    count = PyNumber_Add(count, _PyLong_GetOne());
    if (count == NULL) {
        PyErr_Clear();
        goto done;
    }
    if (PyDict_SetItem(counter, key, count)) {
        PyErr_Clear();
    }
done:
    Py_XDECREF(kind_object);
    Py_XDECREF(key);
}

#define SPECIALIZATION_FAIL(opcode, type, attribute, kind) _Py_IncrementTypeCounter(opcode, (PyObject *)(type), attribute, kind)

#endif
#endif

#ifndef SPECIALIZATION_FAIL
#define SPECIALIZATION_FAIL(opcode, type, attribute, kind) ((void)0)
#endif

static SpecializedCacheOrInstruction *
allocate(int cache_count, int instruction_count)
{
    assert(sizeof(SpecializedCacheOrInstruction) == 2*sizeof(int32_t));
    assert(sizeof(SpecializedCacheEntry) == 2*sizeof(int32_t));
    assert(cache_count > 0);
    assert(instruction_count > 0);
    int count = cache_count + (instruction_count + INSTRUCTIONS_PER_ENTRY -1)/INSTRUCTIONS_PER_ENTRY;
    SpecializedCacheOrInstruction *array = (SpecializedCacheOrInstruction *)
        PyMem_Malloc(sizeof(SpecializedCacheOrInstruction) * count);
    if (array == NULL) {
        PyErr_NoMemory();
        return NULL;
    }
    _Py_QuickenedCount++;
    array[0].entry.zero.cache_count = cache_count;
    return array;
}

static int
get_cache_count(SpecializedCacheOrInstruction *quickened) {
    return quickened[0].entry.zero.cache_count;
}

/* Map from opcode to adaptive opcode.
  Values of zero are ignored. */
static uint8_t adaptive_opcodes[256] = {
    [LOAD_ATTR] = LOAD_ATTR_ADAPTIVE,
    [LOAD_GLOBAL] = LOAD_GLOBAL_ADAPTIVE,
    [BINARY_SUBSCR] = BINARY_SUBSCR_ADAPTIVE,
};

/* The number of cache entries required for a "family" of instructions. */
static uint8_t cache_requirements[256] = {
    [LOAD_ATTR] = 2, /* _PyAdaptiveEntry and _PyLoadAttrCache */
    [LOAD_GLOBAL] = 2, /* _PyAdaptiveEntry and _PyLoadGlobalCache */
    [BINARY_SUBSCR] = 0,
};

/* Return the oparg for the cache_offset and instruction index.
 *
 * If no cache is needed then return the original oparg.
 * If a cache is needed, but cannot be accessed because
 * oparg would be too large, then return -1.
 *
 * Also updates the cache_offset, as it may need to be incremented by
 * more than the cache requirements, if many instructions do not need caches.
 *
 * See pycore_code.h for details of how the cache offset,
 * instruction index and oparg are related */
static int
oparg_from_instruction_and_update_offset(int index, int opcode, int original_oparg, int *cache_offset) {
    /* The instruction pointer in the interpreter points to the next
     * instruction, so we compute the offset using nexti (index + 1) */
    int nexti = index + 1;
    uint8_t need = cache_requirements[opcode];
    if (need == 0) {
        return original_oparg;
    }
    assert(adaptive_opcodes[opcode] != 0);
    int oparg = oparg_from_offset_and_nexti(*cache_offset, nexti);
    assert(*cache_offset == offset_from_oparg_and_nexti(oparg, nexti));
    /* Some cache space is wasted here as the minimum possible offset is (nexti>>1) */
    if (oparg < 0) {
        oparg = 0;
        *cache_offset = offset_from_oparg_and_nexti(oparg, nexti);
    }
    else if (oparg > 255) {
        return -1;
    }
    *cache_offset += need;
    return oparg;
}

static int
entries_needed(const _Py_CODEUNIT *code, int len)
{
    int cache_offset = 0;
    int previous_opcode = -1;
    for (int i = 0; i < len; i++) {
        uint8_t opcode = _Py_OPCODE(code[i]);
        if (previous_opcode != EXTENDED_ARG) {
            oparg_from_instruction_and_update_offset(i, opcode, 0, &cache_offset);
        }
        previous_opcode = opcode;
    }
    return cache_offset + 1;   // One extra for the count entry
}

static inline _Py_CODEUNIT *
first_instruction(SpecializedCacheOrInstruction *quickened)
{
    return &quickened[get_cache_count(quickened)].code[0];
}

/** Insert adaptive instructions and superinstructions.
 *
 * Skip instruction preceded by EXTENDED_ARG for adaptive
 * instructions as those are both very rare and tricky
 * to handle.
 */
static void
optimize(SpecializedCacheOrInstruction *quickened, int len)
{
    _Py_CODEUNIT *instructions = first_instruction(quickened);
    int cache_offset = 0;
    int previous_opcode = -1;
    for(int i = 0; i < len; i++) {
        int opcode = _Py_OPCODE(instructions[i]);
        int oparg = _Py_OPARG(instructions[i]);
        uint8_t adaptive_opcode = adaptive_opcodes[opcode];
        if (adaptive_opcode && previous_opcode != EXTENDED_ARG) {
            int new_oparg = oparg_from_instruction_and_update_offset(
                i, opcode, oparg, &cache_offset
            );
            if (new_oparg < 0) {
                /* Not possible to allocate a cache for this instruction */
                previous_opcode = opcode;
                continue;
            }
            previous_opcode = adaptive_opcode;
            int entries_needed = cache_requirements[opcode];
            if (entries_needed) {
                /* Initialize the adpative cache entry */
                int cache0_offset = cache_offset-entries_needed;
                SpecializedCacheEntry *cache =
                    _GetSpecializedCacheEntry(instructions, cache0_offset);
                cache->adaptive.original_oparg = oparg;
                cache->adaptive.counter = 0;
            } else {
                // oparg is the adaptive cache counter
                new_oparg = 0;
            }
            instructions[i] = _Py_MAKECODEUNIT(adaptive_opcode, new_oparg);
        }
        else {
            /* Super instructions don't use the cache,
             * so no need to update the offset. */
            switch (opcode) {
                case JUMP_ABSOLUTE:
                    instructions[i] = _Py_MAKECODEUNIT(JUMP_ABSOLUTE_QUICK, oparg);
                    break;
                /* Insert superinstructions here
                 E.g.
                case LOAD_FAST:
                    if (previous_opcode == LOAD_FAST)
                        instructions[i-1] = _Py_MAKECODEUNIT(LOAD_FAST__LOAD_FAST, oparg);
                 */
            }
            previous_opcode = opcode;
        }
    }
    assert(cache_offset+1 == get_cache_count(quickened));
}

int
_Py_Quicken(PyCodeObject *code) {
    if (code->co_quickened) {
        return 0;
    }
    Py_ssize_t size = PyBytes_GET_SIZE(code->co_code);
    int instr_count = (int)(size/sizeof(_Py_CODEUNIT));
    if (instr_count > MAX_SIZE_TO_QUICKEN) {
        code->co_warmup = QUICKENING_WARMUP_COLDEST;
        return 0;
    }
    int entry_count = entries_needed(code->co_firstinstr, instr_count);
    SpecializedCacheOrInstruction *quickened = allocate(entry_count, instr_count);
    if (quickened == NULL) {
        return -1;
    }
    _Py_CODEUNIT *new_instructions = first_instruction(quickened);
    memcpy(new_instructions, code->co_firstinstr, size);
    optimize(quickened, instr_count);
    code->co_quickened = quickened;
    code->co_firstinstr = new_instructions;
    return 0;
}



static int
specialize_module_load_attr(
    PyObject *owner, _Py_CODEUNIT *instr, PyObject *name,
    _PyAdaptiveEntry *cache0, _PyLoadAttrCache *cache1)
{
    PyModuleObject *m = (PyModuleObject *)owner;
    PyObject *value = NULL;
    PyObject *getattr;
    _Py_IDENTIFIER(__getattr__);
    PyDictObject *dict = (PyDictObject *)m->md_dict;
    if (dict == NULL) {
        SPECIALIZATION_FAIL(LOAD_ATTR, Py_TYPE(owner), name, "no __dict__");
        return -1;
    }
    if (dict->ma_keys->dk_kind != DICT_KEYS_UNICODE) {
        SPECIALIZATION_FAIL(LOAD_ATTR, Py_TYPE(owner), name, "non-string keys (or split)");
        return -1;
    }
    getattr = _PyUnicode_FromId(&PyId___getattr__); /* borrowed */
    if (getattr == NULL) {
        SPECIALIZATION_FAIL(LOAD_ATTR, Py_TYPE(owner), name, "module.__getattr__ overridden");
        PyErr_Clear();
        return -1;
    }
    Py_ssize_t index = _PyDict_GetItemHint(dict, getattr, -1,  &value);
    assert(index != DKIX_ERROR);
    if (index != DKIX_EMPTY) {
        SPECIALIZATION_FAIL(LOAD_ATTR, Py_TYPE(owner), name, "module attribute not found");
        return -1;
    }
    index = _PyDict_GetItemHint(dict, name, -1, &value);
    assert (index != DKIX_ERROR);
    if (index != (uint16_t)index) {
        SPECIALIZATION_FAIL(LOAD_ATTR, Py_TYPE(owner), name, "index out of range");
        return -1;
    }
    uint32_t keys_version = _PyDictKeys_GetVersionForCurrentState(dict);
    if (keys_version == 0) {
        SPECIALIZATION_FAIL(LOAD_ATTR, Py_TYPE(owner), name, "no more key versions");
        return -1;
    }
    cache1->dk_version_or_hint = keys_version;
    cache0->index = (uint16_t)index;
    *instr = _Py_MAKECODEUNIT(LOAD_ATTR_MODULE, _Py_OPARG(*instr));
    return 0;
}



/* Attribute specialization */

typedef enum {
    OVERRIDING, /* Is an overriding descriptor, and will remain so. */
    METHOD, /* Attribute has Py_TPFLAGS_METHOD_DESCRIPTOR set */
    PROPERTY, /* Is a property */
    OBJECT_SLOT, /* Is an object slot descriptor */
    OTHER_SLOT, /* Is a slot descriptor of another type */
    NON_OVERRIDING, /* Is another non-overriding descriptor, and is an instance of an immutable class*/
    NON_DESCRIPTOR, /* Is not a descriptor, and is an instance of an immutable class */
    MUTABLE,   /* Instance of a mutable class; might, or might not, be a descriptor */
    ABSENT, /* Attribute is not present on the class */
    DUNDER_CLASS, /* __class__ attribute */
    GETATTRIBUTE_OVERRIDDEN /* __getattribute__ has been overridden */
} DesciptorClassification;

static DesciptorClassification
analyze_descriptor(PyTypeObject *type, PyObject *name, PyObject **descr)
{
    if (type->tp_getattro != PyObject_GenericGetAttr) {
        *descr = NULL;
        return GETATTRIBUTE_OVERRIDDEN;
    }
    PyObject *descriptor = _PyType_Lookup(type, name);
    *descr = descriptor;
    if (descriptor == NULL) {
        return ABSENT;
    }
    PyTypeObject *desc_cls = Py_TYPE(descriptor);
    if (!(desc_cls->tp_flags & Py_TPFLAGS_IMMUTABLETYPE)) {
        return MUTABLE;
    }
    if (desc_cls->tp_descr_set) {
        if (desc_cls == &PyMemberDescr_Type) {
            PyMemberDescrObject *member = (PyMemberDescrObject *)descriptor;
            struct PyMemberDef *dmem = member->d_member;
            if (dmem->type == T_OBJECT_EX) {
                return OBJECT_SLOT;
            }
            return OTHER_SLOT;
        }
        if (desc_cls == &PyProperty_Type) {
            return PROPERTY;
        }
        if (PyUnicode_CompareWithASCIIString(name, "__class__") == 0) {
            if (descriptor == _PyType_Lookup(&PyBaseObject_Type, name)) {
                return DUNDER_CLASS;
            }
        }
        return OVERRIDING;
    }
    if (desc_cls->tp_descr_get) {
        if (desc_cls->tp_flags & Py_TPFLAGS_METHOD_DESCRIPTOR) {
            return METHOD;
        }
        return NON_OVERRIDING;
    }
    return NON_DESCRIPTOR;
}

int
_Py_Specialize_LoadAttr(PyObject *owner, _Py_CODEUNIT *instr, PyObject *name, SpecializedCacheEntry *cache)
{
    _PyAdaptiveEntry *cache0 = &cache->adaptive;
    _PyLoadAttrCache *cache1 = &cache[-1].load_attr;
    if (PyModule_CheckExact(owner)) {
        int err = specialize_module_load_attr(owner, instr, name, cache0, cache1);
        if (err) {
            goto fail;
        }
        goto success;
    }
    PyTypeObject *type = Py_TYPE(owner);
    if (type->tp_dict == NULL) {
        if (PyType_Ready(type) < 0) {
            return -1;
        }
    }
    PyObject *descr;
    DesciptorClassification kind = analyze_descriptor(type, name, &descr);
    switch(kind) {
        case OVERRIDING:
            SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "overriding descriptor");
            goto fail;
        case METHOD:
            SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "method");
            goto fail;
        case PROPERTY:
            SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "property");
            goto fail;
        case OBJECT_SLOT:
        {
            PyMemberDescrObject *member = (PyMemberDescrObject *)descr;
            struct PyMemberDef *dmem = member->d_member;
            Py_ssize_t offset = dmem->offset;
            if (offset != (uint16_t)offset) {
                SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "offset out of range");
                goto fail;
            }
            assert(dmem->type == T_OBJECT_EX);
            assert(offset > 0);
            cache0->index = (uint16_t)offset;
            cache1->tp_version = type->tp_version_tag;
            *instr = _Py_MAKECODEUNIT(LOAD_ATTR_SLOT, _Py_OPARG(*instr));
            goto success;
        }
        case DUNDER_CLASS:
        {
            Py_ssize_t offset = offsetof(PyObject, ob_type);
            assert(offset == (uint16_t)offset);
            cache0->index = (uint16_t)offset;
            cache1->tp_version = type->tp_version_tag;
            *instr = _Py_MAKECODEUNIT(LOAD_ATTR_SLOT, _Py_OPARG(*instr));
            goto success;
        }
        case OTHER_SLOT:
            SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "non-object slot");
            goto fail;
        case MUTABLE:
            SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "mutable class attribute");
            goto fail;
        case GETATTRIBUTE_OVERRIDDEN:
            SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "__getattribute__ overridden");
            goto fail;
        case NON_OVERRIDING:
        case NON_DESCRIPTOR:
        case ABSENT:
            break;
    }
    assert(kind == NON_OVERRIDING || kind == NON_DESCRIPTOR || kind == ABSENT);
    // No desciptor, or non overriding.
    if (type->tp_dictoffset < 0) {
        SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "negative offset");
        goto fail;
    }
    if (type->tp_dictoffset > 0) {
        PyObject **dictptr = (PyObject **) ((char *)owner + type->tp_dictoffset);
        if (*dictptr == NULL || !PyDict_CheckExact(*dictptr)) {
            SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "no dict or not a dict");
            goto fail;
        }
        // We found an instance with a __dict__.
        PyDictObject *dict = (PyDictObject *)*dictptr;
        if ((type->tp_flags & Py_TPFLAGS_HEAPTYPE)
            && dict->ma_keys == ((PyHeapTypeObject*)type)->ht_cached_keys
        ) {
            // Keys are shared
            assert(PyUnicode_CheckExact(name));
            Py_hash_t hash = PyObject_Hash(name);
            if (hash == -1) {
                return -1;
            }
            PyObject *value;
            Py_ssize_t index = _Py_dict_lookup(dict, name, hash, &value);
            assert (index != DKIX_ERROR);
            if (index != (uint16_t)index) {
                SPECIALIZATION_FAIL(LOAD_ATTR, type, name,
                                    index < 0 ? "attribute not in dict" : "index out of range");
                goto fail;
            }
            uint32_t keys_version = _PyDictKeys_GetVersionForCurrentState(dict);
            if (keys_version == 0) {
                SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "no more key versions");
                goto fail;
            }
            cache1->dk_version_or_hint = keys_version;
            cache1->tp_version = type->tp_version_tag;
            cache0->index = (uint16_t)index;
            *instr = _Py_MAKECODEUNIT(LOAD_ATTR_SPLIT_KEYS, _Py_OPARG(*instr));
            goto success;
        }
        else {
            PyObject *value = NULL;
            Py_ssize_t hint =
                _PyDict_GetItemHint(dict, name, -1, &value);
            if (hint != (uint32_t)hint) {
                SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "hint out of range");
                goto fail;
            }
            cache1->dk_version_or_hint = (uint32_t)hint;
            cache1->tp_version = type->tp_version_tag;
            *instr = _Py_MAKECODEUNIT(LOAD_ATTR_WITH_HINT, _Py_OPARG(*instr));
            goto success;
        }
    }
    assert(type->tp_dictoffset == 0);
    /* No attribute in instance dictionary */
    switch(kind) {
        case NON_OVERRIDING:
            SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "non-overriding descriptor");
            goto fail;
        case NON_DESCRIPTOR:
            /* To do -- Optimize this case */
            SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "non descriptor");
            goto fail;
        case ABSENT:
            SPECIALIZATION_FAIL(LOAD_ATTR, type, name, "no attribute");
            goto fail;
        default:
            Py_UNREACHABLE();
    }
fail:
    STAT_INC(LOAD_ATTR, specialization_failure);
    assert(!PyErr_Occurred());
    cache_backoff(cache0);
    return 0;
success:
    STAT_INC(LOAD_ATTR, specialization_success);
    assert(!PyErr_Occurred());
    cache0->counter = saturating_start();
    return 0;
}

int
_Py_Specialize_LoadGlobal(
    PyObject *globals, PyObject *builtins,
    _Py_CODEUNIT *instr, PyObject *name,
    SpecializedCacheEntry *cache)
{
    _PyAdaptiveEntry *cache0 = &cache->adaptive;
    _PyLoadGlobalCache *cache1 = &cache[-1].load_global;
    assert(PyUnicode_CheckExact(name));
    if (!PyDict_CheckExact(globals)) {
        goto fail;
    }
    if (((PyDictObject *)globals)->ma_keys->dk_kind != DICT_KEYS_UNICODE) {
        goto fail;
    }
    PyObject *value = NULL;
    Py_ssize_t index = _PyDict_GetItemHint((PyDictObject *)globals, name, -1, &value);
    assert (index != DKIX_ERROR);
    if (index != DKIX_EMPTY) {
        if (index != (uint16_t)index) {
            goto fail;
        }
        uint32_t keys_version = _PyDictKeys_GetVersionForCurrentState((PyDictObject *)globals);
        if (keys_version == 0) {
            goto fail;
        }
        cache1->module_keys_version = keys_version;
        cache0->index = (uint16_t)index;
        *instr = _Py_MAKECODEUNIT(LOAD_GLOBAL_MODULE, _Py_OPARG(*instr));
        goto success;
    }
    if (!PyDict_CheckExact(builtins)) {
        goto fail;
    }
    if (((PyDictObject *)builtins)->ma_keys->dk_kind != DICT_KEYS_UNICODE) {
        goto fail;
    }
    index = _PyDict_GetItemHint((PyDictObject *)builtins, name, -1, &value);
    assert (index != DKIX_ERROR);
    if (index != (uint16_t)index) {
        goto fail;
    }
    uint32_t globals_version = _PyDictKeys_GetVersionForCurrentState((PyDictObject *)globals);
    if (globals_version == 0) {
        goto fail;
    }
    uint32_t builtins_version = _PyDictKeys_GetVersionForCurrentState((PyDictObject *)builtins);
    if (builtins_version == 0) {
        goto fail;
    }
    cache1->module_keys_version = globals_version;
    cache1->builtin_keys_version = builtins_version;
    cache0->index = (uint16_t)index;
    *instr = _Py_MAKECODEUNIT(LOAD_GLOBAL_BUILTIN, _Py_OPARG(*instr));
    goto success;
fail:
    STAT_INC(LOAD_GLOBAL, specialization_failure);
    assert(!PyErr_Occurred());
    cache_backoff(cache0);
    return 0;
success:
    STAT_INC(LOAD_GLOBAL, specialization_success);
    assert(!PyErr_Occurred());
    cache0->counter = saturating_start();
    return 0;
}

int
_Py_Specialize_BinarySubscr(
     PyObject *container, PyObject *sub, _Py_CODEUNIT *instr)
{
    PyTypeObject *container_type = Py_TYPE(container);
    if (container_type == &PyList_Type) {
        if (PyLong_CheckExact(sub)) {
            *instr = _Py_MAKECODEUNIT(BINARY_SUBSCR_LIST_INT, saturating_start());
            goto success;
        } else {
            SPECIALIZATION_FAIL(BINARY_SUBSCR, Py_TYPE(container), sub, "list; non-integer subscr");
        }
    }
    if (container_type == &PyTuple_Type) {
        if (PyLong_CheckExact(sub)) {
            *instr = _Py_MAKECODEUNIT(BINARY_SUBSCR_TUPLE_INT, saturating_start());
            goto success;
        } else {
            SPECIALIZATION_FAIL(BINARY_SUBSCR, Py_TYPE(container), sub, "tuple; non-integer subscr");
        }
    }
    if (container_type == &PyDict_Type) {
        *instr = _Py_MAKECODEUNIT(BINARY_SUBSCR_DICT, saturating_start());
        goto success;
    }

    SPECIALIZATION_FAIL(BINARY_SUBSCR, Py_TYPE(container), sub, "not list|tuple|dict");
    goto fail;
fail:
    STAT_INC(BINARY_SUBSCR, specialization_failure);
    assert(!PyErr_Occurred());
    *instr = _Py_MAKECODEUNIT(_Py_OPCODE(*instr), ADAPTIVE_CACHE_BACKOFF);
    return 0;
success:
    STAT_INC(BINARY_SUBSCR, specialization_success);
    assert(!PyErr_Occurred());
    return 0;
}