1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
#include "Python.h"
#include "pycore_code.h"
#include "pycore_dict.h"
#include "pycore_moduleobject.h"
#include "opcode.h"
#include "structmember.h" // struct PyMemberDef, T_OFFSET_EX
/* We layout the quickened data as a bi-directional array:
* Instructions upwards, cache entries downwards.
* first_instr is aligned to a SpecializedCacheEntry.
* The nth instruction is located at first_instr[n]
* The nth cache is located at ((SpecializedCacheEntry *)first_instr)[-1-n]
* The first (index 0) cache entry is reserved for the count, to enable finding
* the first instruction from the base pointer.
* The cache_count argument must include space for the count.
* We use the SpecializedCacheOrInstruction union to refer to the data
* to avoid type punning.
Layout of quickened data, each line 8 bytes for M cache entries and N instructions:
<cache_count> <---- co->co_quickened
<cache M-1>
<cache M-2>
...
<cache 0>
<instr 0> <instr 1> <instr 2> <instr 3> <--- co->co_first_instr
<instr 4> <instr 5> <instr 6> <instr 7>
...
<instr N-1>
*/
Py_ssize_t _Py_QuickenedCount = 0;
#if SPECIALIZATION_STATS
SpecializationStats _specialization_stats = { 0 };
#define PRINT_STAT(name) fprintf(stderr, #name " : %" PRIu64" \n", _specialization_stats.name);
void
_Py_PrintSpecializationStats(void)
{
PRINT_STAT(specialization_success);
PRINT_STAT(specialization_failure);
PRINT_STAT(loadattr_hit);
PRINT_STAT(loadattr_deferred);
PRINT_STAT(loadattr_miss);
PRINT_STAT(loadattr_deopt);
}
#endif
static SpecializedCacheOrInstruction *
allocate(int cache_count, int instruction_count)
{
assert(sizeof(SpecializedCacheOrInstruction) == 2*sizeof(int32_t));
assert(sizeof(SpecializedCacheEntry) == 2*sizeof(int32_t));
assert(cache_count > 0);
assert(instruction_count > 0);
int count = cache_count + (instruction_count + INSTRUCTIONS_PER_ENTRY -1)/INSTRUCTIONS_PER_ENTRY;
SpecializedCacheOrInstruction *array = (SpecializedCacheOrInstruction *)
PyMem_Malloc(sizeof(SpecializedCacheOrInstruction) * count);
if (array == NULL) {
PyErr_NoMemory();
return NULL;
}
_Py_QuickenedCount++;
array[0].entry.zero.cache_count = cache_count;
return array;
}
static int
get_cache_count(SpecializedCacheOrInstruction *quickened) {
return quickened[0].entry.zero.cache_count;
}
/* Map from opcode to adaptive opcode.
Values of zero are ignored. */
static uint8_t adaptive_opcodes[256] = {
[LOAD_ATTR] = LOAD_ATTR_ADAPTIVE,
};
/* The number of cache entries required for a "family" of instructions. */
static uint8_t cache_requirements[256] = {
[LOAD_ATTR] = 2,
};
/* Return the oparg for the cache_offset and instruction index.
*
* If no cache is needed then return the original oparg.
* If a cache is needed, but cannot be accessed because
* oparg would be too large, then return -1.
*
* Also updates the cache_offset, as it may need to be incremented by
* more than the cache requirements, if many instructions do not need caches.
*
* See pycore_code.h for details of how the cache offset,
* instruction index and oparg are related */
static int
oparg_from_instruction_and_update_offset(int index, int opcode, int original_oparg, int *cache_offset) {
/* The instruction pointer in the interpreter points to the next
* instruction, so we compute the offset using nexti (index + 1) */
int nexti = index + 1;
uint8_t need = cache_requirements[opcode];
if (need == 0) {
return original_oparg;
}
assert(adaptive_opcodes[opcode] != 0);
int oparg = oparg_from_offset_and_nexti(*cache_offset, nexti);
assert(*cache_offset == offset_from_oparg_and_nexti(oparg, nexti));
/* Some cache space is wasted here as the minimum possible offset is (nexti>>1) */
if (oparg < 0) {
oparg = 0;
*cache_offset = offset_from_oparg_and_nexti(oparg, nexti);
}
else if (oparg > 255) {
return -1;
}
*cache_offset += need;
return oparg;
}
static int
entries_needed(const _Py_CODEUNIT *code, int len)
{
int cache_offset = 0;
int previous_opcode = -1;
for (int i = 0; i < len; i++) {
uint8_t opcode = _Py_OPCODE(code[i]);
if (previous_opcode != EXTENDED_ARG) {
oparg_from_instruction_and_update_offset(i, opcode, 0, &cache_offset);
}
previous_opcode = opcode;
}
return cache_offset + 1; // One extra for the count entry
}
static inline _Py_CODEUNIT *
first_instruction(SpecializedCacheOrInstruction *quickened)
{
return &quickened[get_cache_count(quickened)].code[0];
}
/** Insert adaptive instructions and superinstructions.
*
* Skip instruction preceded by EXTENDED_ARG for adaptive
* instructions as those are both very rare and tricky
* to handle.
*/
static void
optimize(SpecializedCacheOrInstruction *quickened, int len)
{
_Py_CODEUNIT *instructions = first_instruction(quickened);
int cache_offset = 0;
int previous_opcode = -1;
for(int i = 0; i < len; i++) {
int opcode = _Py_OPCODE(instructions[i]);
int oparg = _Py_OPARG(instructions[i]);
uint8_t adaptive_opcode = adaptive_opcodes[opcode];
if (adaptive_opcode && previous_opcode != EXTENDED_ARG) {
int new_oparg = oparg_from_instruction_and_update_offset(
i, opcode, oparg, &cache_offset
);
if (new_oparg < 0) {
/* Not possible to allocate a cache for this instruction */
previous_opcode = opcode;
continue;
}
instructions[i] = _Py_MAKECODEUNIT(adaptive_opcode, new_oparg);
previous_opcode = adaptive_opcode;
int entries_needed = cache_requirements[opcode];
if (entries_needed) {
/* Initialize the adpative cache entry */
int cache0_offset = cache_offset-entries_needed;
SpecializedCacheEntry *cache =
_GetSpecializedCacheEntry(instructions, cache0_offset);
cache->adaptive.original_oparg = oparg;
cache->adaptive.counter = 0;
}
}
else {
/* Super instructions don't use the cache,
* so no need to update the offset. */
switch (opcode) {
case JUMP_ABSOLUTE:
instructions[i] = _Py_MAKECODEUNIT(JUMP_ABSOLUTE_QUICK, oparg);
break;
/* Insert superinstructions here
E.g.
case LOAD_FAST:
if (previous_opcode == LOAD_FAST)
instructions[i-1] = _Py_MAKECODEUNIT(LOAD_FAST__LOAD_FAST, oparg);
*/
}
previous_opcode = opcode;
}
}
assert(cache_offset+1 == get_cache_count(quickened));
}
int
_Py_Quicken(PyCodeObject *code) {
if (code->co_quickened) {
return 0;
}
Py_ssize_t size = PyBytes_GET_SIZE(code->co_code);
int instr_count = (int)(size/sizeof(_Py_CODEUNIT));
if (instr_count > MAX_SIZE_TO_QUICKEN) {
code->co_warmup = QUICKENING_WARMUP_COLDEST;
return 0;
}
int entry_count = entries_needed(code->co_firstinstr, instr_count);
SpecializedCacheOrInstruction *quickened = allocate(entry_count, instr_count);
if (quickened == NULL) {
return -1;
}
_Py_CODEUNIT *new_instructions = first_instruction(quickened);
memcpy(new_instructions, code->co_firstinstr, size);
optimize(quickened, instr_count);
code->co_quickened = quickened;
code->co_firstinstr = new_instructions;
return 0;
}
static int
specialize_module_load_attr(
PyObject *owner, _Py_CODEUNIT *instr, PyObject *name,
_PyAdaptiveEntry *cache0, _PyLoadAttrCache *cache1)
{
PyModuleObject *m = (PyModuleObject *)owner;
PyObject *value = NULL;
PyObject *getattr;
_Py_IDENTIFIER(__getattr__);
PyDictObject *dict = (PyDictObject *)m->md_dict;
if (dict == NULL) {
return -1;
}
if (dict->ma_keys->dk_kind != DICT_KEYS_UNICODE) {
return -1;
}
getattr = _PyUnicode_FromId(&PyId___getattr__); /* borrowed */
if (getattr == NULL) {
PyErr_Clear();
return -1;
}
Py_ssize_t index = _PyDict_GetItemHint(dict, getattr, -1, &value);
assert(index != DKIX_ERROR);
if (index != DKIX_EMPTY) {
return -1;
}
index = _PyDict_GetItemHint(dict, name, -1, &value);
assert (index != DKIX_ERROR);
if (index != (uint16_t)index) {
return -1;
}
uint32_t keys_version = _PyDictKeys_GetVersionForCurrentState(dict);
if (keys_version == 0) {
return -1;
}
cache1->dk_version_or_hint = keys_version;
cache0->index = (uint16_t)index;
*instr = _Py_MAKECODEUNIT(LOAD_ATTR_MODULE, _Py_OPARG(*instr));
return 0;
}
int
_Py_Specialize_LoadAttr(PyObject *owner, _Py_CODEUNIT *instr, PyObject *name, SpecializedCacheEntry *cache)
{
_PyAdaptiveEntry *cache0 = &cache->adaptive;
_PyLoadAttrCache *cache1 = &cache[-1].load_attr;
if (PyModule_CheckExact(owner)) {
int err = specialize_module_load_attr(owner, instr, name, cache0, cache1);
if (err) {
goto fail;
}
goto success;
}
PyTypeObject *type = Py_TYPE(owner);
if (type->tp_getattro != PyObject_GenericGetAttr) {
goto fail;
}
if (type->tp_dict == NULL) {
if (PyType_Ready(type) < 0) {
return -1;
}
}
PyObject *descr = _PyType_Lookup(type, name);
if (descr != NULL) {
// We found an attribute with a data-like descriptor.
PyTypeObject *dtype = Py_TYPE(descr);
if (dtype != &PyMemberDescr_Type) {
goto fail;
}
// It's a slot
PyMemberDescrObject *member = (PyMemberDescrObject *)descr;
struct PyMemberDef *dmem = member->d_member;
if (dmem->type != T_OBJECT_EX) {
// It's a slot of a different type. We don't handle those.
goto fail;
}
Py_ssize_t offset = dmem->offset;
if (offset != (uint16_t)offset) {
goto fail;
}
assert(offset > 0);
cache0->index = (uint16_t)offset;
cache1->tp_version = type->tp_version_tag;
*instr = _Py_MAKECODEUNIT(LOAD_ATTR_SLOT, _Py_OPARG(*instr));
goto success;
}
// No desciptor
if (type->tp_dictoffset <= 0) {
// No dictionary, or computed offset dictionary
goto fail;
}
PyObject **dictptr = (PyObject **) ((char *)owner + type->tp_dictoffset);
if (*dictptr == NULL || !PyDict_CheckExact(*dictptr)) {
goto fail;
}
// We found an instance with a __dict__.
PyDictObject *dict = (PyDictObject *)*dictptr;
if ((type->tp_flags & Py_TPFLAGS_HEAPTYPE)
&& dict->ma_keys == ((PyHeapTypeObject*)type)->ht_cached_keys
) {
// Keys are shared
assert(PyUnicode_CheckExact(name));
Py_hash_t hash = PyObject_Hash(name);
if (hash == -1) {
return -1;
}
PyObject *value;
Py_ssize_t index = _Py_dict_lookup(dict, name, hash, &value);
assert (index != DKIX_ERROR);
if (index != (uint16_t)index) {
goto fail;
}
uint32_t keys_version = _PyDictKeys_GetVersionForCurrentState(dict);
if (keys_version == 0) {
goto fail;
}
cache1->dk_version_or_hint = keys_version;
cache1->tp_version = type->tp_version_tag;
cache0->index = (uint16_t)index;
*instr = _Py_MAKECODEUNIT(LOAD_ATTR_SPLIT_KEYS, _Py_OPARG(*instr));
goto success;
}
else {
PyObject *value = NULL;
Py_ssize_t hint =
_PyDict_GetItemHint(dict, name, -1, &value);
if (hint != (uint32_t)hint) {
goto fail;
}
cache1->dk_version_or_hint = (uint32_t)hint;
cache1->tp_version = type->tp_version_tag;
*instr = _Py_MAKECODEUNIT(LOAD_ATTR_WITH_HINT, _Py_OPARG(*instr));
goto success;
}
fail:
STAT_INC(specialization_failure);
assert(!PyErr_Occurred());
cache_backoff(cache0);
return 0;
success:
STAT_INC(specialization_success);
assert(!PyErr_Occurred());
cache0->counter = saturating_start();
return 0;
}
|