summaryrefslogtreecommitdiffstats
path: root/Python/thread_pthread.h
blob: 1c5b320813af83dbf803475e2003fa3a6b6f5425 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
#include "pycore_interp.h"    // _PyInterpreterState.threads.stacksize

/* Posix threads interface */

#include <stdlib.h>
#include <string.h>
#if defined(__APPLE__) || defined(HAVE_PTHREAD_DESTRUCTOR)
#define destructor xxdestructor
#endif
#ifndef HAVE_PTHREAD_STUBS
#  include <pthread.h>
#endif
#if defined(__APPLE__) || defined(HAVE_PTHREAD_DESTRUCTOR)
#undef destructor
#endif
#include <signal.h>

#if defined(__linux__)
#   include <sys/syscall.h>     /* syscall(SYS_gettid) */
#elif defined(__FreeBSD__)
#   include <pthread_np.h>      /* pthread_getthreadid_np() */
#elif defined(__OpenBSD__)
#   include <unistd.h>          /* getthrid() */
#elif defined(_AIX)
#   include <sys/thread.h>      /* thread_self() */
#elif defined(__NetBSD__)
#   include <lwp.h>             /* _lwp_self() */
#elif defined(__DragonFly__)
#   include <sys/lwp.h>         /* lwp_gettid() */
#endif

/* The POSIX spec requires that use of pthread_attr_setstacksize
   be conditional on _POSIX_THREAD_ATTR_STACKSIZE being defined. */
#ifdef _POSIX_THREAD_ATTR_STACKSIZE
#ifndef THREAD_STACK_SIZE
#define THREAD_STACK_SIZE       0       /* use default stack size */
#endif

/* The default stack size for new threads on BSD is small enough that
 * we'll get hard crashes instead of 'maximum recursion depth exceeded'
 * exceptions.
 *
 * The default stack size below is the empirically determined minimal stack
 * sizes where a simple recursive function doesn't cause a hard crash.
 *
 * For macOS the value of THREAD_STACK_SIZE is determined in configure.ac
 * as it also depends on the other configure options like chosen sanitizer
 * runtimes.
 */
#if defined(__FreeBSD__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0
#undef  THREAD_STACK_SIZE
#define THREAD_STACK_SIZE       0x400000
#endif
#if defined(_AIX) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0
#undef  THREAD_STACK_SIZE
#define THREAD_STACK_SIZE       0x200000
#endif
/* bpo-38852: test_threading.test_recursion_limit() checks that 1000 recursive
   Python calls (default recursion limit) doesn't crash, but raise a regular
   RecursionError exception. In debug mode, Python function calls allocates
   more memory on the stack, so use a stack of 8 MiB. */
#if defined(__ANDROID__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0
#   ifdef Py_DEBUG
#   undef  THREAD_STACK_SIZE
#   define THREAD_STACK_SIZE    0x800000
#   endif
#endif
#if defined(__VXWORKS__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0
#undef  THREAD_STACK_SIZE
#define THREAD_STACK_SIZE       0x100000
#endif
/* for safety, ensure a viable minimum stacksize */
#define THREAD_STACK_MIN        0x8000  /* 32 KiB */
#else  /* !_POSIX_THREAD_ATTR_STACKSIZE */
#ifdef THREAD_STACK_SIZE
#error "THREAD_STACK_SIZE defined but _POSIX_THREAD_ATTR_STACKSIZE undefined"
#endif
#endif

/* The POSIX spec says that implementations supporting the sem_*
   family of functions must indicate this by defining
   _POSIX_SEMAPHORES. */
#ifdef _POSIX_SEMAPHORES
/* On FreeBSD 4.x, _POSIX_SEMAPHORES is defined empty, so
   we need to add 0 to make it work there as well. */
#if (_POSIX_SEMAPHORES+0) == -1
#define HAVE_BROKEN_POSIX_SEMAPHORES
#else
#include <semaphore.h>
#include <errno.h>
#endif
#endif


/* Whether or not to use semaphores directly rather than emulating them with
 * mutexes and condition variables:
 */
#if (defined(_POSIX_SEMAPHORES) && !defined(HAVE_BROKEN_POSIX_SEMAPHORES) && \
     (defined(HAVE_SEM_TIMEDWAIT) || defined(HAVE_SEM_CLOCKWAIT)))
#  define USE_SEMAPHORES
#else
#  undef USE_SEMAPHORES
#endif


/* On platforms that don't use standard POSIX threads pthread_sigmask()
 * isn't present.  DEC threads uses sigprocmask() instead as do most
 * other UNIX International compliant systems that don't have the full
 * pthread implementation.
 */
#if defined(HAVE_PTHREAD_SIGMASK) && !defined(HAVE_BROKEN_PTHREAD_SIGMASK)
#  define SET_THREAD_SIGMASK pthread_sigmask
#else
#  define SET_THREAD_SIGMASK sigprocmask
#endif


/*
 * pthread_cond support
 */

#if defined(HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC)
// monotonic is supported statically.  It doesn't mean it works on runtime.
#define CONDATTR_MONOTONIC
#endif

// NULL when pthread_condattr_setclock(CLOCK_MONOTONIC) is not supported.
static pthread_condattr_t *condattr_monotonic = NULL;

static void
init_condattr(void)
{
#ifdef CONDATTR_MONOTONIC
    static pthread_condattr_t ca;
    pthread_condattr_init(&ca);
    if (pthread_condattr_setclock(&ca, CLOCK_MONOTONIC) == 0) {
        condattr_monotonic = &ca;  // Use monotonic clock
    }
#endif
}

int
_PyThread_cond_init(PyCOND_T *cond)
{
    return pthread_cond_init(cond, condattr_monotonic);
}


void
_PyThread_cond_after(long long us, struct timespec *abs)
{
    _PyTime_t timeout = _PyTime_FromMicrosecondsClamp(us);
    _PyTime_t t;
#ifdef CONDATTR_MONOTONIC
    if (condattr_monotonic) {
        t = _PyTime_GetMonotonicClock();
    }
    else
#endif
    {
        t = _PyTime_GetSystemClock();
    }
    t = _PyTime_Add(t, timeout);
    _PyTime_AsTimespec_clamp(t, abs);
}


/* A pthread mutex isn't sufficient to model the Python lock type
 * because, according to Draft 5 of the docs (P1003.4a/D5), both of the
 * following are undefined:
 *  -> a thread tries to lock a mutex it already has locked
 *  -> a thread tries to unlock a mutex locked by a different thread
 * pthread mutexes are designed for serializing threads over short pieces
 * of code anyway, so wouldn't be an appropriate implementation of
 * Python's locks regardless.
 *
 * The pthread_lock struct implements a Python lock as a "locked?" bit
 * and a <condition, mutex> pair.  In general, if the bit can be acquired
 * instantly, it is, else the pair is used to block the thread until the
 * bit is cleared.     9 May 1994 tim@ksr.com
 */

typedef struct {
    char             locked; /* 0=unlocked, 1=locked */
    /* a <cond, mutex> pair to handle an acquire of a locked lock */
    pthread_cond_t   lock_released;
    pthread_mutex_t  mut;
} pthread_lock;

#define CHECK_STATUS(name)  if (status != 0) { perror(name); error = 1; }
#define CHECK_STATUS_PTHREAD(name)  if (status != 0) { fprintf(stderr, \
    "%s: %s\n", name, strerror(status)); error = 1; }

/*
 * Initialization.
 */
static void
PyThread__init_thread(void)
{
#if defined(_AIX) && defined(__GNUC__)
    extern void pthread_init(void);
    pthread_init();
#endif
    init_condattr();
}

/*
 * Thread support.
 */

/* bpo-33015: pythread_callback struct and pythread_wrapper() cast
   "void func(void *)" to "void* func(void *)": always return NULL.

   PyThread_start_new_thread() uses "void func(void *)" type, whereas
   pthread_create() requires a void* return value. */
typedef struct {
    void (*func) (void *);
    void *arg;
} pythread_callback;

static void *
pythread_wrapper(void *arg)
{
    /* copy func and func_arg and free the temporary structure */
    pythread_callback *callback = arg;
    void (*func)(void *) = callback->func;
    void *func_arg = callback->arg;
    PyMem_RawFree(arg);

    func(func_arg);
    return NULL;
}

unsigned long
PyThread_start_new_thread(void (*func)(void *), void *arg)
{
    pthread_t th;
    int status;
#if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
    pthread_attr_t attrs;
#endif
#if defined(THREAD_STACK_SIZE)
    size_t      tss;
#endif

    if (!initialized)
        PyThread_init_thread();

#if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
    if (pthread_attr_init(&attrs) != 0)
        return PYTHREAD_INVALID_THREAD_ID;
#endif
#if defined(THREAD_STACK_SIZE)
    PyThreadState *tstate = _PyThreadState_GET();
    size_t stacksize = tstate ? tstate->interp->threads.stacksize : 0;
    tss = (stacksize != 0) ? stacksize : THREAD_STACK_SIZE;
    if (tss != 0) {
        if (pthread_attr_setstacksize(&attrs, tss) != 0) {
            pthread_attr_destroy(&attrs);
            return PYTHREAD_INVALID_THREAD_ID;
        }
    }
#endif
#if defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
    pthread_attr_setscope(&attrs, PTHREAD_SCOPE_SYSTEM);
#endif

    pythread_callback *callback = PyMem_RawMalloc(sizeof(pythread_callback));

    if (callback == NULL) {
      return PYTHREAD_INVALID_THREAD_ID;
    }

    callback->func = func;
    callback->arg = arg;

    status = pthread_create(&th,
#if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
                             &attrs,
#else
                             (pthread_attr_t*)NULL,
#endif
                             pythread_wrapper, callback);

#if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
    pthread_attr_destroy(&attrs);
#endif

    if (status != 0) {
        PyMem_RawFree(callback);
        return PYTHREAD_INVALID_THREAD_ID;
    }

    pthread_detach(th);

#if SIZEOF_PTHREAD_T <= SIZEOF_LONG
    return (unsigned long) th;
#else
    return (unsigned long) *(unsigned long *) &th;
#endif
}

/* XXX This implementation is considered (to quote Tim Peters) "inherently
   hosed" because:
     - It does not guarantee the promise that a non-zero integer is returned.
     - The cast to unsigned long is inherently unsafe.
     - It is not clear that the 'volatile' (for AIX?) are any longer necessary.
*/
unsigned long
PyThread_get_thread_ident(void)
{
    volatile pthread_t threadid;
    if (!initialized)
        PyThread_init_thread();
    threadid = pthread_self();
    return (unsigned long) threadid;
}

#ifdef PY_HAVE_THREAD_NATIVE_ID
unsigned long
PyThread_get_thread_native_id(void)
{
    if (!initialized)
        PyThread_init_thread();
#ifdef __APPLE__
    uint64_t native_id;
    (void) pthread_threadid_np(NULL, &native_id);
#elif defined(__linux__)
    pid_t native_id;
    native_id = syscall(SYS_gettid);
#elif defined(__FreeBSD__)
    int native_id;
    native_id = pthread_getthreadid_np();
#elif defined(__OpenBSD__)
    pid_t native_id;
    native_id = getthrid();
#elif defined(_AIX)
    tid_t native_id;
    native_id = thread_self();
#elif defined(__NetBSD__)
    lwpid_t native_id;
    native_id = _lwp_self();
#elif defined(__DragonFly__)
    lwpid_t native_id;
    native_id = lwp_gettid();
#endif
    return (unsigned long) native_id;
}
#endif

void _Py_NO_RETURN
PyThread_exit_thread(void)
{
    if (!initialized)
        exit(0);
    pthread_exit(0);
}

#ifdef USE_SEMAPHORES

/*
 * Lock support.
 */

PyThread_type_lock
PyThread_allocate_lock(void)
{
    sem_t *lock;
    int status, error = 0;

    if (!initialized)
        PyThread_init_thread();

    lock = (sem_t *)PyMem_RawMalloc(sizeof(sem_t));

    if (lock) {
        status = sem_init(lock,0,1);
        CHECK_STATUS("sem_init");

        if (error) {
            PyMem_RawFree((void *)lock);
            lock = NULL;
        }
    }

    return (PyThread_type_lock)lock;
}

void
PyThread_free_lock(PyThread_type_lock lock)
{
    sem_t *thelock = (sem_t *)lock;
    int status, error = 0;

    (void) error; /* silence unused-but-set-variable warning */

    if (!thelock)
        return;

    status = sem_destroy(thelock);
    CHECK_STATUS("sem_destroy");

    PyMem_RawFree((void *)thelock);
}

/*
 * As of February 2002, Cygwin thread implementations mistakenly report error
 * codes in the return value of the sem_ calls (like the pthread_ functions).
 * Correct implementations return -1 and put the code in errno. This supports
 * either.
 */
static int
fix_status(int status)
{
    return (status == -1) ? errno : status;
}

PyLockStatus
PyThread_acquire_lock_timed(PyThread_type_lock lock, PY_TIMEOUT_T microseconds,
                            int intr_flag)
{
    PyLockStatus success;
    sem_t *thelock = (sem_t *)lock;
    int status, error = 0;

    (void) error; /* silence unused-but-set-variable warning */

    _PyTime_t timeout;  // relative timeout
    if (microseconds >= 0) {
        // bpo-41710: PyThread_acquire_lock_timed() cannot report timeout
        // overflow to the caller, so clamp the timeout to
        // [_PyTime_MIN, _PyTime_MAX].
        //
        // _PyTime_MAX nanoseconds is around 292.3 years.
        //
        // _thread.Lock.acquire() and _thread.RLock.acquire() raise an
        // OverflowError if microseconds is greater than PY_TIMEOUT_MAX.
        timeout = _PyTime_FromMicrosecondsClamp(microseconds);
    }
    else {
        timeout = _PyTime_FromNanoseconds(-1);
    }

#ifdef HAVE_SEM_CLOCKWAIT
    struct timespec abs_timeout;
    // Local scope for deadline
    {
        _PyTime_t deadline = _PyTime_Add(_PyTime_GetMonotonicClock(), timeout);
        _PyTime_AsTimespec_clamp(deadline, &abs_timeout);
    }
#else
    _PyTime_t deadline = 0;
    if (timeout > 0 && !intr_flag) {
        deadline = _PyDeadline_Init(timeout);
    }
#endif

    while (1) {
        if (timeout > 0) {
#ifdef HAVE_SEM_CLOCKWAIT
            status = fix_status(sem_clockwait(thelock, CLOCK_MONOTONIC,
                                              &abs_timeout));
#else
            _PyTime_t abs_time = _PyTime_Add(_PyTime_GetSystemClock(),
                                             timeout);
            struct timespec ts;
            _PyTime_AsTimespec_clamp(abs_time, &ts);
            status = fix_status(sem_timedwait(thelock, &ts));
#endif
        }
        else if (timeout == 0) {
            status = fix_status(sem_trywait(thelock));
        }
        else {
            status = fix_status(sem_wait(thelock));
        }

        /* Retry if interrupted by a signal, unless the caller wants to be
           notified.  */
        if (intr_flag || status != EINTR) {
            break;
        }

        // sem_clockwait() uses an absolute timeout, there is no need
        // to recompute the relative timeout.
#ifndef HAVE_SEM_CLOCKWAIT
        if (timeout > 0) {
            /* wait interrupted by a signal (EINTR): recompute the timeout */
            timeout = _PyDeadline_Get(deadline);
            if (timeout < 0) {
                status = ETIMEDOUT;
                break;
            }
        }
#endif
    }

    /* Don't check the status if we're stopping because of an interrupt.  */
    if (!(intr_flag && status == EINTR)) {
        if (timeout > 0) {
            if (status != ETIMEDOUT) {
#ifdef HAVE_SEM_CLOCKWAIT
                CHECK_STATUS("sem_clockwait");
#else
                CHECK_STATUS("sem_timedwait");
#endif
            }
        }
        else if (timeout == 0) {
            if (status != EAGAIN) {
                CHECK_STATUS("sem_trywait");
            }
        }
        else {
            CHECK_STATUS("sem_wait");
        }
    }

    if (status == 0) {
        success = PY_LOCK_ACQUIRED;
    } else if (intr_flag && status == EINTR) {
        success = PY_LOCK_INTR;
    } else {
        success = PY_LOCK_FAILURE;
    }

    return success;
}

void
PyThread_release_lock(PyThread_type_lock lock)
{
    sem_t *thelock = (sem_t *)lock;
    int status, error = 0;

    (void) error; /* silence unused-but-set-variable warning */

    status = sem_post(thelock);
    CHECK_STATUS("sem_post");
}

#else /* USE_SEMAPHORES */

/*
 * Lock support.
 */
PyThread_type_lock
PyThread_allocate_lock(void)
{
    pthread_lock *lock;
    int status, error = 0;

    if (!initialized)
        PyThread_init_thread();

    lock = (pthread_lock *) PyMem_RawCalloc(1, sizeof(pthread_lock));
    if (lock) {
        lock->locked = 0;

        status = pthread_mutex_init(&lock->mut, NULL);
        CHECK_STATUS_PTHREAD("pthread_mutex_init");
        /* Mark the pthread mutex underlying a Python mutex as
           pure happens-before.  We can't simply mark the
           Python-level mutex as a mutex because it can be
           acquired and released in different threads, which
           will cause errors. */
        _Py_ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX(&lock->mut);

        status = _PyThread_cond_init(&lock->lock_released);
        CHECK_STATUS_PTHREAD("pthread_cond_init");

        if (error) {
            PyMem_RawFree((void *)lock);
            lock = 0;
        }
    }

    return (PyThread_type_lock) lock;
}

void
PyThread_free_lock(PyThread_type_lock lock)
{
    pthread_lock *thelock = (pthread_lock *)lock;
    int status, error = 0;

    (void) error; /* silence unused-but-set-variable warning */

    /* some pthread-like implementations tie the mutex to the cond
     * and must have the cond destroyed first.
     */
    status = pthread_cond_destroy( &thelock->lock_released );
    CHECK_STATUS_PTHREAD("pthread_cond_destroy");

    status = pthread_mutex_destroy( &thelock->mut );
    CHECK_STATUS_PTHREAD("pthread_mutex_destroy");

    PyMem_RawFree((void *)thelock);
}

PyLockStatus
PyThread_acquire_lock_timed(PyThread_type_lock lock, PY_TIMEOUT_T microseconds,
                            int intr_flag)
{
    PyLockStatus success = PY_LOCK_FAILURE;
    pthread_lock *thelock = (pthread_lock *)lock;
    int status, error = 0;

    if (microseconds == 0) {
        status = pthread_mutex_trylock( &thelock->mut );
        if (status != EBUSY) {
            CHECK_STATUS_PTHREAD("pthread_mutex_trylock[1]");
        }
    }
    else {
        status = pthread_mutex_lock( &thelock->mut );
        CHECK_STATUS_PTHREAD("pthread_mutex_lock[1]");
    }
    if (status != 0) {
        goto done;
    }

    if (thelock->locked == 0) {
        success = PY_LOCK_ACQUIRED;
        goto unlock;
    }
    if (microseconds == 0) {
        goto unlock;
    }

    struct timespec abs_timeout;
    if (microseconds > 0) {
        _PyThread_cond_after(microseconds, &abs_timeout);
    }
    // Continue trying until we get the lock

    // mut must be locked by me -- part of the condition protocol
    while (1) {
        if (microseconds > 0) {
            status = pthread_cond_timedwait(&thelock->lock_released,
                                            &thelock->mut, &abs_timeout);
            if (status == 1) {
                break;
            }
            if (status == ETIMEDOUT) {
                break;
            }
            CHECK_STATUS_PTHREAD("pthread_cond_timedwait");
        }
        else {
            status = pthread_cond_wait(
                &thelock->lock_released,
                &thelock->mut);
            CHECK_STATUS_PTHREAD("pthread_cond_wait");
        }

        if (intr_flag && status == 0 && thelock->locked) {
            // We were woken up, but didn't get the lock.  We probably received
            // a signal.  Return PY_LOCK_INTR to allow the caller to handle
            // it and retry.
            success = PY_LOCK_INTR;
            break;
        }

        if (status == 0 && !thelock->locked) {
            success = PY_LOCK_ACQUIRED;
            break;
        }

        // Wait got interrupted by a signal: retry
    }

unlock:
    if (success == PY_LOCK_ACQUIRED) {
        thelock->locked = 1;
    }
    status = pthread_mutex_unlock( &thelock->mut );
    CHECK_STATUS_PTHREAD("pthread_mutex_unlock[1]");

done:
    if (error) {
        success = PY_LOCK_FAILURE;
    }
    return success;
}

void
PyThread_release_lock(PyThread_type_lock lock)
{
    pthread_lock *thelock = (pthread_lock *)lock;
    int status, error = 0;

    (void) error; /* silence unused-but-set-variable warning */

    status = pthread_mutex_lock( &thelock->mut );
    CHECK_STATUS_PTHREAD("pthread_mutex_lock[3]");

    thelock->locked = 0;

    /* wake up someone (anyone, if any) waiting on the lock */
    status = pthread_cond_signal( &thelock->lock_released );
    CHECK_STATUS_PTHREAD("pthread_cond_signal");

    status = pthread_mutex_unlock( &thelock->mut );
    CHECK_STATUS_PTHREAD("pthread_mutex_unlock[3]");
}

#endif /* USE_SEMAPHORES */

int
_PyThread_at_fork_reinit(PyThread_type_lock *lock)
{
    PyThread_type_lock new_lock = PyThread_allocate_lock();
    if (new_lock == NULL) {
        return -1;
    }

    /* bpo-6721, bpo-40089: The old lock can be in an inconsistent state.
       fork() can be called in the middle of an operation on the lock done by
       another thread. So don't call PyThread_free_lock(*lock).

       Leak memory on purpose. Don't release the memory either since the
       address of a mutex is relevant. Putting two mutexes at the same address
       can lead to problems. */

    *lock = new_lock;
    return 0;
}

int
PyThread_acquire_lock(PyThread_type_lock lock, int waitflag)
{
    return PyThread_acquire_lock_timed(lock, waitflag ? -1 : 0, /*intr_flag=*/0);
}

/* set the thread stack size.
 * Return 0 if size is valid, -1 if size is invalid,
 * -2 if setting stack size is not supported.
 */
static int
_pythread_pthread_set_stacksize(size_t size)
{
#if defined(THREAD_STACK_SIZE)
    pthread_attr_t attrs;
    size_t tss_min;
    int rc = 0;
#endif

    /* set to default */
    if (size == 0) {
        _PyInterpreterState_GET()->threads.stacksize = 0;
        return 0;
    }

#if defined(THREAD_STACK_SIZE)
#if defined(PTHREAD_STACK_MIN)
    tss_min = PTHREAD_STACK_MIN > THREAD_STACK_MIN ? PTHREAD_STACK_MIN
                                                   : THREAD_STACK_MIN;
#else
    tss_min = THREAD_STACK_MIN;
#endif
    if (size >= tss_min) {
        /* validate stack size by setting thread attribute */
        if (pthread_attr_init(&attrs) == 0) {
            rc = pthread_attr_setstacksize(&attrs, size);
            pthread_attr_destroy(&attrs);
            if (rc == 0) {
                _PyInterpreterState_GET()->threads.stacksize = size;
                return 0;
            }
        }
    }
    return -1;
#else
    return -2;
#endif
}

#define THREAD_SET_STACKSIZE(x) _pythread_pthread_set_stacksize(x)


/* Thread Local Storage (TLS) API

   This API is DEPRECATED since Python 3.7.  See PEP 539 for details.
*/

/* Issue #25658: On platforms where native TLS key is defined in a way that
   cannot be safely cast to int, PyThread_create_key returns immediately a
   failure status and other TLS functions all are no-ops.  This indicates
   clearly that the old API is not supported on platforms where it cannot be
   used reliably, and that no effort will be made to add such support.

   Note: PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT will be unnecessary after
   removing this API.
*/

int
PyThread_create_key(void)
{
#ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT
    pthread_key_t key;
    int fail = pthread_key_create(&key, NULL);
    if (fail)
        return -1;
    if (key > INT_MAX) {
        /* Issue #22206: handle integer overflow */
        pthread_key_delete(key);
        errno = ENOMEM;
        return -1;
    }
    return (int)key;
#else
    return -1;  /* never return valid key value. */
#endif
}

void
PyThread_delete_key(int key)
{
#ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT
    pthread_key_delete(key);
#endif
}

void
PyThread_delete_key_value(int key)
{
#ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT
    pthread_setspecific(key, NULL);
#endif
}

int
PyThread_set_key_value(int key, void *value)
{
#ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT
    int fail = pthread_setspecific(key, value);
    return fail ? -1 : 0;
#else
    return -1;
#endif
}

void *
PyThread_get_key_value(int key)
{
#ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT
    return pthread_getspecific(key);
#else
    return NULL;
#endif
}


void
PyThread_ReInitTLS(void)
{
}


/* Thread Specific Storage (TSS) API

   Platform-specific components of TSS API implementation.
*/

int
PyThread_tss_create(Py_tss_t *key)
{
    assert(key != NULL);
    /* If the key has been created, function is silently skipped. */
    if (key->_is_initialized) {
        return 0;
    }

    int fail = pthread_key_create(&(key->_key), NULL);
    if (fail) {
        return -1;
    }
    key->_is_initialized = 1;
    return 0;
}

void
PyThread_tss_delete(Py_tss_t *key)
{
    assert(key != NULL);
    /* If the key has not been created, function is silently skipped. */
    if (!key->_is_initialized) {
        return;
    }

    pthread_key_delete(key->_key);
    /* pthread has not provided the defined invalid value for the key. */
    key->_is_initialized = 0;
}

int
PyThread_tss_set(Py_tss_t *key, void *value)
{
    assert(key != NULL);
    int fail = pthread_setspecific(key->_key, value);
    return fail ? -1 : 0;
}

void *
PyThread_tss_get(Py_tss_t *key)
{
    assert(key != NULL);
    return pthread_getspecific(key->_key);
}