1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
|
"""Print a summary of specialization stats for all files in the
default stats folders.
"""
import argparse
import collections
import json
import os.path
import opcode
from datetime import date
import itertools
import sys
if os.name == "nt":
DEFAULT_DIR = "c:\\temp\\py_stats\\"
else:
DEFAULT_DIR = "/tmp/py_stats/"
TOTAL = "specialization.hit", "specialization.miss", "execution_count"
def format_ratio(num, den):
"""
Format a ratio as a percentage. When the denominator is 0, returns the empty
string.
"""
if den == 0:
return ""
else:
return f"{num/den:.01%}"
def join_rows(a_rows, b_rows):
"""
Joins two tables together, side-by-side, where the first column in each is a
common key.
"""
if len(a_rows) == 0 and len(b_rows) == 0:
return []
if len(a_rows):
a_ncols = list(set(len(x) for x in a_rows))
if len(a_ncols) != 1:
raise ValueError("Table a is ragged")
if len(b_rows):
b_ncols = list(set(len(x) for x in b_rows))
if len(b_ncols) != 1:
raise ValueError("Table b is ragged")
if len(a_rows) and len(b_rows) and a_ncols[0] != b_ncols[0]:
raise ValueError("Tables have different widths")
if len(a_rows):
ncols = a_ncols[0]
else:
ncols = b_ncols[0]
default = [""] * (ncols - 1)
a_data = {x[0]: x[1:] for x in a_rows}
b_data = {x[0]: x[1:] for x in b_rows}
if len(a_data) != len(a_rows) or len(b_data) != len(b_rows):
raise ValueError("Duplicate keys")
# To preserve ordering, use A's keys as is and then add any in B that aren't
# in A
keys = list(a_data.keys()) + [k for k in b_data.keys() if k not in a_data]
return [(k, *a_data.get(k, default), *b_data.get(k, default)) for k in keys]
def calculate_specialization_stats(family_stats, total):
rows = []
for key in sorted(family_stats):
if key.startswith("specialization.failure_kinds"):
continue
if key in ("specialization.hit", "specialization.miss"):
label = key[len("specialization."):]
elif key == "execution_count":
continue
elif key in ("specialization.success", "specialization.failure", "specializable"):
continue
elif key.startswith("pair"):
continue
else:
label = key
rows.append((f"{label:>12}", f"{family_stats[key]:>12}", format_ratio(family_stats[key], total)))
return rows
def calculate_specialization_success_failure(family_stats):
total_attempts = 0
for key in ("specialization.success", "specialization.failure"):
total_attempts += family_stats.get(key, 0)
rows = []
if total_attempts:
for key in ("specialization.success", "specialization.failure"):
label = key[len("specialization."):]
label = label[0].upper() + label[1:]
val = family_stats.get(key, 0)
rows.append((label, val, format_ratio(val, total_attempts)))
return rows
def calculate_specialization_failure_kinds(name, family_stats, defines):
total_failures = family_stats.get("specialization.failure", 0)
failure_kinds = [ 0 ] * 40
for key in family_stats:
if not key.startswith("specialization.failure_kind"):
continue
_, index = key[:-1].split("[")
index = int(index)
failure_kinds[index] = family_stats[key]
failures = [(value, index) for (index, value) in enumerate(failure_kinds)]
failures.sort(reverse=True)
rows = []
for value, index in failures:
if not value:
continue
rows.append((kind_to_text(index, defines, name), value, format_ratio(value, total_failures)))
return rows
def print_specialization_stats(name, family_stats, defines):
if "specializable" not in family_stats:
return
total = sum(family_stats.get(kind, 0) for kind in TOTAL)
if total == 0:
return
with Section(name, 3, f"specialization stats for {name} family"):
rows = calculate_specialization_stats(family_stats, total)
emit_table(("Kind", "Count", "Ratio"), rows)
rows = calculate_specialization_success_failure(family_stats)
if rows:
print_title("Specialization attempts", 4)
emit_table(("", "Count:", "Ratio:"), rows)
rows = calculate_specialization_failure_kinds(name, family_stats, defines)
emit_table(("Failure kind", "Count:", "Ratio:"), rows)
def print_comparative_specialization_stats(name, base_family_stats, head_family_stats, defines):
if "specializable" not in base_family_stats:
return
base_total = sum(base_family_stats.get(kind, 0) for kind in TOTAL)
head_total = sum(head_family_stats.get(kind, 0) for kind in TOTAL)
if base_total + head_total == 0:
return
with Section(name, 3, f"specialization stats for {name} family"):
base_rows = calculate_specialization_stats(base_family_stats, base_total)
head_rows = calculate_specialization_stats(head_family_stats, head_total)
emit_table(
("Kind", "Base Count", "Base Ratio", "Head Count", "Head Ratio"),
join_rows(base_rows, head_rows)
)
base_rows = calculate_specialization_success_failure(base_family_stats)
head_rows = calculate_specialization_success_failure(head_family_stats)
rows = join_rows(base_rows, head_rows)
if rows:
print_title("Specialization attempts", 4)
emit_table(("", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"), rows)
base_rows = calculate_specialization_failure_kinds(name, base_family_stats, defines)
head_rows = calculate_specialization_failure_kinds(name, head_family_stats, defines)
emit_table(
("Failure kind", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"),
join_rows(base_rows, head_rows)
)
def gather_stats(input):
# Note the output of this function must be JSON-serializable
if os.path.isfile(input):
with open(input, "r") as fd:
return json.load(fd)
elif os.path.isdir(input):
stats = collections.Counter()
for filename in os.listdir(input):
with open(os.path.join(input, filename)) as fd:
for line in fd:
try:
key, value = line.split(":")
except ValueError:
print(f"Unparsable line: '{line.strip()}' in {filename}", file=sys.stderr)
continue
key = key.strip()
value = int(value)
stats[key] += value
stats['__nfiles__'] += 1
return stats
else:
raise ValueError(f"{input:r} is not a file or directory path")
def extract_opcode_stats(stats):
opcode_stats = collections.defaultdict(dict)
for key, value in stats.items():
if not key.startswith("opcode"):
continue
name, _, rest = key[7:].partition("]")
opcode_stats[name][rest.strip(".")] = value
return opcode_stats
def parse_kinds(spec_src, prefix="SPEC_FAIL"):
defines = collections.defaultdict(list)
start = "#define " + prefix + "_"
for line in spec_src:
line = line.strip()
if not line.startswith(start):
continue
line = line[len(start):]
name, val = line.split()
defines[int(val.strip())].append(name.strip())
return defines
def pretty(defname):
return defname.replace("_", " ").lower()
def kind_to_text(kind, defines, opname):
if kind <= 8:
return pretty(defines[kind][0])
if opname == "LOAD_SUPER_ATTR":
opname = "SUPER"
elif opname.endswith("ATTR"):
opname = "ATTR"
elif opname in ("FOR_ITER", "SEND"):
opname = "ITER"
elif opname.endswith("SUBSCR"):
opname = "SUBSCR"
for name in defines[kind]:
if name.startswith(opname):
return pretty(name[len(opname)+1:])
return "kind " + str(kind)
def categorized_counts(opcode_stats):
basic = 0
specialized = 0
not_specialized = 0
specialized_instructions = {
op for op in opcode._specialized_opmap.keys()
if "__" not in op}
for name, opcode_stat in opcode_stats.items():
if "execution_count" not in opcode_stat:
continue
count = opcode_stat['execution_count']
if "specializable" in opcode_stat:
not_specialized += count
elif name in specialized_instructions:
miss = opcode_stat.get("specialization.miss", 0)
not_specialized += miss
specialized += count - miss
else:
basic += count
return basic, not_specialized, specialized
def print_title(name, level=2):
print("#"*level, name)
print()
class Section:
def __init__(self, title, level=2, summary=None):
self.title = title
self.level = level
if summary is None:
self.summary = title.lower()
else:
self.summary = summary
def __enter__(self):
print_title(self.title, self.level)
print("<details>")
print("<summary>", self.summary, "</summary>")
print()
return self
def __exit__(*args):
print()
print("</details>")
print()
def to_str(x):
if isinstance(x, int):
return format(x, ",d")
else:
return str(x)
def emit_table(header, rows):
width = len(header)
header_line = "|"
under_line = "|"
for item in header:
under = "---"
if item.endswith(":"):
item = item[:-1]
under += ":"
header_line += item + " | "
under_line += under + "|"
print(header_line)
print(under_line)
for row in rows:
if width is not None and len(row) != width:
raise ValueError("Wrong number of elements in row '" + str(row) + "'")
print("|", " | ".join(to_str(i) for i in row), "|")
print()
def calculate_execution_counts(opcode_stats, total):
counts = []
for name, opcode_stat in opcode_stats.items():
if "execution_count" in opcode_stat:
count = opcode_stat['execution_count']
miss = 0
if "specializable" not in opcode_stat:
miss = opcode_stat.get("specialization.miss")
counts.append((count, name, miss))
counts.sort(reverse=True)
cumulative = 0
rows = []
for (count, name, miss) in counts:
cumulative += count
if miss:
miss = format_ratio(miss, count)
else:
miss = ""
rows.append((name, count, format_ratio(count, total),
format_ratio(cumulative, total), miss))
return rows
def emit_execution_counts(opcode_stats, total):
with Section("Execution counts", summary="execution counts for all instructions"):
rows = calculate_execution_counts(opcode_stats, total)
emit_table(
("Name", "Count:", "Self:", "Cumulative:", "Miss ratio:"),
rows
)
def emit_comparative_execution_counts(
base_opcode_stats, base_total, head_opcode_stats, head_total
):
with Section("Execution counts", summary="execution counts for all instructions"):
base_rows = calculate_execution_counts(base_opcode_stats, base_total)
head_rows = calculate_execution_counts(head_opcode_stats, head_total)
base_data = dict((x[0], x[1:]) for x in base_rows)
head_data = dict((x[0], x[1:]) for x in head_rows)
opcodes = set(base_data.keys()) | set(head_data.keys())
rows = []
default = [0, "0.0%", "0.0%", 0]
for opcode in opcodes:
base_entry = base_data.get(opcode, default)
head_entry = head_data.get(opcode, default)
if base_entry[0] == 0:
change = 1
else:
change = (head_entry[0] - base_entry[0]) / base_entry[0]
rows.append(
(opcode, base_entry[0], head_entry[0],
f"{100*change:0.1f}%"))
rows.sort(key=lambda x: -abs(float(x[-1][:-1])))
emit_table(
("Name", "Base Count:", "Head Count:", "Change:"),
rows
)
def get_defines():
spec_path = os.path.join(os.path.dirname(__file__), "../../Python/specialize.c")
with open(spec_path) as spec_src:
defines = parse_kinds(spec_src)
return defines
def emit_specialization_stats(opcode_stats):
defines = get_defines()
with Section("Specialization stats", summary="specialization stats by family"):
for name, opcode_stat in opcode_stats.items():
print_specialization_stats(name, opcode_stat, defines)
def emit_comparative_specialization_stats(base_opcode_stats, head_opcode_stats):
defines = get_defines()
with Section("Specialization stats", summary="specialization stats by family"):
opcodes = set(base_opcode_stats.keys()) & set(head_opcode_stats.keys())
for opcode in opcodes:
print_comparative_specialization_stats(
opcode, base_opcode_stats[opcode], head_opcode_stats[opcode], defines
)
def calculate_specialization_effectiveness(opcode_stats, total):
basic, not_specialized, specialized = categorized_counts(opcode_stats)
return [
("Basic", basic, format_ratio(basic, total)),
("Not specialized", not_specialized, format_ratio(not_specialized, total)),
("Specialized", specialized, format_ratio(specialized, total)),
]
def emit_specialization_overview(opcode_stats, total):
with Section("Specialization effectiveness"):
rows = calculate_specialization_effectiveness(opcode_stats, total)
emit_table(("Instructions", "Count:", "Ratio:"), rows)
for title, field in (("Deferred", "specialization.deferred"), ("Misses", "specialization.miss")):
total = 0
counts = []
for name, opcode_stat in opcode_stats.items():
# Avoid double counting misses
if title == "Misses" and "specializable" in opcode_stat:
continue
value = opcode_stat.get(field, 0)
counts.append((value, name))
total += value
counts.sort(reverse=True)
if total:
with Section(f"{title} by instruction", 3):
rows = [ (name, count, format_ratio(count, total)) for (count, name) in counts[:10] ]
emit_table(("Name", "Count:", "Ratio:"), rows)
def emit_comparative_specialization_overview(base_opcode_stats, base_total, head_opcode_stats, head_total):
with Section("Specialization effectiveness"):
base_rows = calculate_specialization_effectiveness(base_opcode_stats, base_total)
head_rows = calculate_specialization_effectiveness(head_opcode_stats, head_total)
emit_table(
("Instructions", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"),
join_rows(base_rows, head_rows)
)
def get_stats_defines():
stats_path = os.path.join(os.path.dirname(__file__), "../../Include/cpython/pystats.h")
with open(stats_path) as stats_src:
defines = parse_kinds(stats_src, prefix="EVAL_CALL")
return defines
def calculate_call_stats(stats):
defines = get_stats_defines()
total = 0
for key, value in stats.items():
if "Calls to" in key:
total += value
rows = []
for key, value in stats.items():
if "Calls to" in key:
rows.append((key, value, format_ratio(value, total)))
elif key.startswith("Calls "):
name, index = key[:-1].split("[")
index = int(index)
label = name + " (" + pretty(defines[index][0]) + ")"
rows.append((label, value, format_ratio(value, total)))
for key, value in stats.items():
if key.startswith("Frame"):
rows.append((key, value, format_ratio(value, total)))
return rows
def emit_call_stats(stats):
with Section("Call stats", summary="Inlined calls and frame stats"):
rows = calculate_call_stats(stats)
emit_table(("", "Count:", "Ratio:"), rows)
def emit_comparative_call_stats(base_stats, head_stats):
with Section("Call stats", summary="Inlined calls and frame stats"):
base_rows = calculate_call_stats(base_stats)
head_rows = calculate_call_stats(head_stats)
rows = join_rows(base_rows, head_rows)
rows.sort(key=lambda x: -float(x[-1][:-1]))
emit_table(
("", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"),
rows
)
def calculate_object_stats(stats):
total_materializations = stats.get("Object new values")
total_allocations = stats.get("Object allocations") + stats.get("Object allocations from freelist")
total_increfs = stats.get("Object interpreter increfs") + stats.get("Object increfs")
total_decrefs = stats.get("Object interpreter decrefs") + stats.get("Object decrefs")
rows = []
for key, value in stats.items():
if key.startswith("Object"):
if "materialize" in key:
ratio = format_ratio(value, total_materializations)
elif "allocations" in key:
ratio = format_ratio(value, total_allocations)
elif "increfs" in key:
ratio = format_ratio(value, total_increfs)
elif "decrefs" in key:
ratio = format_ratio(value, total_decrefs)
else:
ratio = ""
label = key[6:].strip()
label = label[0].upper() + label[1:]
rows.append((label, value, ratio))
return rows
def calculate_gc_stats(stats):
gc_stats = []
for key, value in stats.items():
if not key.startswith("GC"):
continue
n, _, rest = key[3:].partition("]")
name = rest.strip()
gen_n = int(n)
while len(gc_stats) <= gen_n:
gc_stats.append({})
gc_stats[gen_n][name] = value
return [
(i, gen["collections"], gen["objects collected"], gen["object visits"])
for (i, gen) in enumerate(gc_stats)
]
def emit_object_stats(stats):
with Section("Object stats", summary="allocations, frees and dict materializatons"):
rows = calculate_object_stats(stats)
emit_table(("", "Count:", "Ratio:"), rows)
def emit_comparative_object_stats(base_stats, head_stats):
with Section("Object stats", summary="allocations, frees and dict materializatons"):
base_rows = calculate_object_stats(base_stats)
head_rows = calculate_object_stats(head_stats)
emit_table(("", "Base Count:", "Base Ratio:", "Head Count:", "Head Ratio:"), join_rows(base_rows, head_rows))
def emit_gc_stats(stats):
with Section("GC stats", summary="GC collections and effectiveness"):
rows = calculate_gc_stats(stats)
emit_table(("Generation:", "Collections:", "Objects collected:", "Object visits:"), rows)
def emit_comparative_gc_stats(base_stats, head_stats):
with Section("GC stats", summary="GC collections and effectiveness"):
base_rows = calculate_gc_stats(base_stats)
head_rows = calculate_gc_stats(head_stats)
emit_table(
("Generation:",
"Base collections:", "Head collections:",
"Base objects collected:", "Head objects collected:",
"Base object visits:", "Head object visits:"),
join_rows(base_rows, head_rows))
def get_total(opcode_stats):
total = 0
for opcode_stat in opcode_stats.values():
if "execution_count" in opcode_stat:
total += opcode_stat['execution_count']
return total
def emit_pair_counts(opcode_stats, total):
pair_counts = []
for name_i, opcode_stat in opcode_stats.items():
for key, value in opcode_stat.items():
if key.startswith("pair_count"):
name_j, _, _ = key[11:].partition("]")
if value:
pair_counts.append((value, (name_i, name_j)))
with Section("Pair counts", summary="Pair counts for top 100 pairs"):
pair_counts.sort(reverse=True)
cumulative = 0
rows = []
for (count, pair) in itertools.islice(pair_counts, 100):
name_i, name_j = pair
cumulative += count
rows.append((f"{name_i} {name_j}", count, format_ratio(count, total),
format_ratio(cumulative, total)))
emit_table(("Pair", "Count:", "Self:", "Cumulative:"),
rows
)
with Section("Predecessor/Successor Pairs", summary="Top 5 predecessors and successors of each opcode"):
predecessors = collections.defaultdict(collections.Counter)
successors = collections.defaultdict(collections.Counter)
total_predecessors = collections.Counter()
total_successors = collections.Counter()
for count, (first, second) in pair_counts:
if count:
predecessors[second][first] = count
successors[first][second] = count
total_predecessors[second] += count
total_successors[first] += count
for name in opcode_stats.keys():
total1 = total_predecessors[name]
total2 = total_successors[name]
if total1 == 0 and total2 == 0:
continue
pred_rows = succ_rows = ()
if total1:
pred_rows = [(pred, count, f"{count/total1:.1%}")
for (pred, count) in predecessors[name].most_common(5)]
if total2:
succ_rows = [(succ, count, f"{count/total2:.1%}")
for (succ, count) in successors[name].most_common(5)]
with Section(name, 3, f"Successors and predecessors for {name}"):
emit_table(("Predecessors", "Count:", "Percentage:"),
pred_rows
)
emit_table(("Successors", "Count:", "Percentage:"),
succ_rows
)
def output_single_stats(stats):
opcode_stats = extract_opcode_stats(stats)
total = get_total(opcode_stats)
emit_execution_counts(opcode_stats, total)
emit_pair_counts(opcode_stats, total)
emit_specialization_stats(opcode_stats)
emit_specialization_overview(opcode_stats, total)
emit_call_stats(stats)
emit_object_stats(stats)
emit_gc_stats(stats)
with Section("Meta stats", summary="Meta statistics"):
emit_table(("", "Count:"), [('Number of data files', stats['__nfiles__'])])
def output_comparative_stats(base_stats, head_stats):
base_opcode_stats = extract_opcode_stats(base_stats)
base_total = get_total(base_opcode_stats)
head_opcode_stats = extract_opcode_stats(head_stats)
head_total = get_total(head_opcode_stats)
emit_comparative_execution_counts(
base_opcode_stats, base_total, head_opcode_stats, head_total
)
emit_comparative_specialization_stats(
base_opcode_stats, head_opcode_stats
)
emit_comparative_specialization_overview(
base_opcode_stats, base_total, head_opcode_stats, head_total
)
emit_comparative_call_stats(base_stats, head_stats)
emit_comparative_object_stats(base_stats, head_stats)
emit_comparative_gc_stats(base_stats, head_stats)
def output_stats(inputs, json_output=None):
if len(inputs) == 1:
stats = gather_stats(inputs[0])
if json_output is not None:
json.dump(stats, json_output)
output_single_stats(stats)
elif len(inputs) == 2:
if json_output is not None:
raise ValueError(
"Can not output to JSON when there are multiple inputs"
)
base_stats = gather_stats(inputs[0])
head_stats = gather_stats(inputs[1])
output_comparative_stats(base_stats, head_stats)
print("---")
print("Stats gathered on:", date.today())
def main():
parser = argparse.ArgumentParser(description="Summarize pystats results")
parser.add_argument(
"inputs",
nargs="*",
type=str,
default=[DEFAULT_DIR],
help=f"""
Input source(s).
For each entry, if a .json file, the output provided by --json-output from a previous run;
if a directory, a directory containing raw pystats .txt files.
If one source is provided, its stats are printed.
If two sources are provided, comparative stats are printed.
Default is {DEFAULT_DIR}.
"""
)
parser.add_argument(
"--json-output",
nargs="?",
type=argparse.FileType("w"),
help="Output complete raw results to the given JSON file."
)
args = parser.parse_args()
if len(args.inputs) > 2:
raise ValueError("0-2 arguments may be provided.")
output_stats(args.inputs, json_output=args.json_output)
if __name__ == "__main__":
main()
|