// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) #include "gtest/gtest.h" #include #include #include #include #include #include #include #include #include // NOLINT #include #include #include #include #include #include #include #include #include #include #include #include #include // NOLINT #include #include #include #include #include #include "gtest/gtest-assertion-result.h" #include "gtest/gtest-spi.h" #include "gtest/internal/custom/gtest.h" #include "gtest/internal/gtest-port.h" #ifdef GTEST_OS_LINUX #include // NOLINT #include // NOLINT #include // NOLINT // Declares vsnprintf(). This header is not available on Windows. #include // NOLINT #include // NOLINT #include // NOLINT #include // NOLINT #include #elif defined(GTEST_OS_ZOS) #include // NOLINT // On z/OS we additionally need strings.h for strcasecmp. #include // NOLINT #elif defined(GTEST_OS_WINDOWS_MOBILE) // We are on Windows CE. #include // NOLINT #undef min #elif defined(GTEST_OS_WINDOWS) // We are on Windows proper. #include // NOLINT #undef min #ifdef _MSC_VER #include // NOLINT #endif #include // NOLINT #include // NOLINT #include // NOLINT #include // NOLINT #ifdef GTEST_OS_WINDOWS_MINGW #include // NOLINT #endif // GTEST_OS_WINDOWS_MINGW #else // cpplint thinks that the header is already included, so we want to // silence it. #include // NOLINT #include // NOLINT #endif // GTEST_OS_LINUX #if GTEST_HAS_EXCEPTIONS #include #endif #if GTEST_CAN_STREAM_RESULTS_ #include // NOLINT #include // NOLINT #include // NOLINT #include // NOLINT #endif #include "src/gtest-internal-inl.h" #ifdef GTEST_OS_WINDOWS #define vsnprintf _vsnprintf #endif // GTEST_OS_WINDOWS #ifdef GTEST_OS_MAC #ifndef GTEST_OS_IOS #include #endif #endif #ifdef GTEST_HAS_ABSL #include "absl/container/flat_hash_set.h" #include "absl/debugging/failure_signal_handler.h" #include "absl/debugging/stacktrace.h" #include "absl/debugging/symbolize.h" #include "absl/flags/parse.h" #include "absl/flags/usage.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #endif // GTEST_HAS_ABSL // Checks builtin compiler feature |x| while avoiding an extra layer of #ifdefs // at the callsite. #if defined(__has_builtin) #define GTEST_HAS_BUILTIN(x) __has_builtin(x) #else #define GTEST_HAS_BUILTIN(x) 0 #endif // defined(__has_builtin) namespace testing { using internal::CountIf; using internal::ForEach; using internal::GetElementOr; using internal::Shuffle; // Constants. // A test whose test suite name or test name matches this filter is // disabled and not run. static const char kDisableTestFilter[] = "DISABLED_*:*/DISABLED_*"; // A test suite whose name matches this filter is considered a death // test suite and will be run before test suites whose name doesn't // match this filter. static const char kDeathTestSuiteFilter[] = "*DeathTest:*DeathTest/*"; // A test filter that matches everything. static const char kUniversalFilter[] = "*"; // The default output format. static const char kDefaultOutputFormat[] = "xml"; // The default output file. static const char kDefaultOutputFile[] = "test_detail"; // The environment variable name for the test shard index. static const char kTestShardIndex[] = "GTEST_SHARD_INDEX"; // The environment variable name for the total number of test shards. static const char kTestTotalShards[] = "GTEST_TOTAL_SHARDS"; // The environment variable name for the test shard status file. static const char kTestShardStatusFile[] = "GTEST_SHARD_STATUS_FILE"; namespace internal { // The text used in failure messages to indicate the start of the // stack trace. const char kStackTraceMarker[] = "\nStack trace:\n"; // g_help_flag is true if and only if the --help flag or an equivalent form // is specified on the command line. bool g_help_flag = false; #if GTEST_HAS_FILE_SYSTEM // Utility function to Open File for Writing static FILE* OpenFileForWriting(const std::string& output_file) { FILE* fileout = nullptr; FilePath output_file_path(output_file); FilePath output_dir(output_file_path.RemoveFileName()); if (output_dir.CreateDirectoriesRecursively()) { fileout = posix::FOpen(output_file.c_str(), "w"); } if (fileout == nullptr) { GTEST_LOG_(FATAL) << "Unable to open file \"" << output_file << "\""; } return fileout; } #endif // GTEST_HAS_FILE_SYSTEM } // namespace internal // Bazel passes in the argument to '--test_filter' via the TESTBRIDGE_TEST_ONLY // environment variable. static const char* GetDefaultFilter() { const char* const testbridge_test_only = internal::posix::GetEnv("TESTBRIDGE_TEST_ONLY"); if (testbridge_test_only != nullptr) { return testbridge_test_only; } return kUniversalFilter; } // Bazel passes in the argument to '--test_runner_fail_fast' via the // TESTBRIDGE_TEST_RUNNER_FAIL_FAST environment variable. static bool GetDefaultFailFast() { const char* const testbridge_test_runner_fail_fast = internal::posix::GetEnv("TESTBRIDGE_TEST_RUNNER_FAIL_FAST"); if (testbridge_test_runner_fail_fast != nullptr) { return strcmp(testbridge_test_runner_fail_fast, "1") == 0; } return false; } } // namespace testing GTEST_DEFINE_bool_( fail_fast, testing::internal::BoolFromGTestEnv("fail_fast", testing::GetDefaultFailFast()), "True if and only if a test failure should stop further test execution."); GTEST_DEFINE_bool_( also_run_disabled_tests, testing::internal::BoolFromGTestEnv("also_run_disabled_tests", false), "Run disabled tests too, in addition to the tests normally being run."); GTEST_DEFINE_bool_( break_on_failure, testing::internal::BoolFromGTestEnv("break_on_failure", false), "True if and only if a failed assertion should be a debugger " "break-point."); GTEST_DEFINE_bool_(catch_exceptions, testing::internal::BoolFromGTestEnv("catch_exceptions", true), "True if and only if " GTEST_NAME_ " should catch exceptions and treat them as test failures."); GTEST_DEFINE_string_( color, testing::internal::StringFromGTestEnv("color", "auto"), "Whether to use colors in the output. Valid values: yes, no, " "and auto. 'auto' means to use colors if the output is " "being sent to a terminal and the TERM environment variable " "is set to a terminal type that supports colors."); GTEST_DEFINE_string_( filter, testing::internal::StringFromGTestEnv("filter", testing::GetDefaultFilter()), "A colon-separated list of glob (not regex) patterns " "for filtering the tests to run, optionally followed by a " "'-' and a : separated list of negative patterns (tests to " "exclude). A test is run if it matches one of the positive " "patterns and does not match any of the negative patterns."); GTEST_DEFINE_bool_( install_failure_signal_handler, testing::internal::BoolFromGTestEnv("install_failure_signal_handler", false), "If true and supported on the current platform, " GTEST_NAME_ " should " "install a signal handler that dumps debugging information when fatal " "signals are raised."); GTEST_DEFINE_bool_(list_tests, false, "List all tests without running them."); // The net priority order after flag processing is thus: // --gtest_output command line flag // GTEST_OUTPUT environment variable // XML_OUTPUT_FILE environment variable // '' GTEST_DEFINE_string_( output, testing::internal::StringFromGTestEnv( "output", testing::internal::OutputFlagAlsoCheckEnvVar().c_str()), "A format (defaults to \"xml\" but can be specified to be \"json\"), " "optionally followed by a colon and an output file name or directory. " "A directory is indicated by a trailing pathname separator. " "Examples: \"xml:filename.xml\", \"xml::directoryname/\". " "If a directory is specified, output files will be created " "within that directory, with file-names based on the test " "executable's name and, if necessary, made unique by adding " "digits."); GTEST_DEFINE_bool_( brief, testing::internal::BoolFromGTestEnv("brief", false), "True if only test failures should be displayed in text output."); GTEST_DEFINE_bool_(print_time, testing::internal::BoolFromGTestEnv("print_time", true), "True if and only if " GTEST_NAME_ " should display elapsed time in text output."); GTEST_DEFINE_bool_(print_utf8, testing::internal::BoolFromGTestEnv("print_utf8", true), "True if and only if " GTEST_NAME_ " prints UTF8 characters as text."); GTEST_DEFINE_int32_( random_seed, testing::internal::Int32FromGTestEnv("random_seed", 0), "Random number seed to use when shuffling test orders. Must be in range " "[1, 99999], or 0 to use a seed based on the current time."); GTEST_DEFINE_int32_( repeat, testing::internal::Int32FromGTestEnv("repeat", 1), "How many times to repeat each test. Specify a negative number " "for repeating forever. Useful for shaking out flaky tests."); GTEST_DEFINE_bool_( recreate_environments_when_repeating, testing::internal::BoolFromGTestEnv("recreate_environments_when_repeating", false), "Controls whether global test environments are recreated for each repeat " "of the tests. If set to false the global test environments are only set " "up once, for the first iteration, and only torn down once, for the last. " "Useful for shaking out flaky tests with stable, expensive test " "environments. If --gtest_repeat is set to a negative number, meaning " "there is no last run, the environments will always be recreated to avoid " "leaks."); GTEST_DEFINE_bool_(show_internal_stack_frames, false, "True if and only if " GTEST_NAME_ " should include internal stack frames when " "printing test failure stack traces."); GTEST_DEFINE_bool_(shuffle, testing::internal::BoolFromGTestEnv("shuffle", false), "True if and only if " GTEST_NAME_ " should randomize tests' order on every run."); GTEST_DEFINE_int32_( stack_trace_depth, testing::internal::Int32FromGTestEnv("stack_trace_depth", testing::kMaxStackTraceDepth), "The maximum number of stack frames to print when an " "assertion fails. The valid range is 0 through 100, inclusive."); GTEST_DEFINE_string_( stream_result_to, testing::internal::StringFromGTestEnv("stream_result_to", ""), "This flag specifies the host name and the port number on which to stream " "test results. Example: \"localhost:555\". The flag is effective only on " "Linux."); GTEST_DEFINE_bool_( throw_on_failure, testing::internal::BoolFromGTestEnv("throw_on_failure", false), "When this flag is specified, a failed assertion will throw an exception " "if exceptions are enabled or exit the program with a non-zero code " "otherwise. For use with an external test framework."); #if GTEST_USE_OWN_FLAGFILE_FLAG_ GTEST_DEFINE_string_( flagfile, testing::internal::StringFromGTestEnv("flagfile", ""), "This flag specifies the flagfile to read command-line flags from."); #endif // GTEST_USE_OWN_FLAGFILE_FLAG_ namespace testing { namespace internal { const uint32_t Random::kMaxRange; // Generates a random number from [0, range), using a Linear // Congruential Generator (LCG). Crashes if 'range' is 0 or greater // than kMaxRange. uint32_t Random::Generate(uint32_t range) { // These constants are the same as are used in glibc's rand(3). // Use wider types than necessary to prevent unsigned overflow diagnostics. state_ = static_cast(1103515245ULL * state_ + 12345U) % kMaxRange; GTEST_CHECK_(range > 0) << "Cannot generate a number in the range [0, 0)."; GTEST_CHECK_(range <= kMaxRange) << "Generation of a number in [0, " << range << ") was requested, " << "but this can only generate numbers in [0, " << kMaxRange << ")."; // Converting via modulus introduces a bit of downward bias, but // it's simple, and a linear congruential generator isn't too good // to begin with. return state_ % range; } // GTestIsInitialized() returns true if and only if the user has initialized // Google Test. Useful for catching the user mistake of not initializing // Google Test before calling RUN_ALL_TESTS(). static bool GTestIsInitialized() { return !GetArgvs().empty(); } // Iterates over a vector of TestSuites, keeping a running sum of the // results of calling a given int-returning method on each. // Returns the sum. static int SumOverTestSuiteList(const std::vector& case_list, int (TestSuite::*method)() const) { int sum = 0; for (size_t i = 0; i < case_list.size(); i++) { sum += (case_list[i]->*method)(); } return sum; } // Returns true if and only if the test suite passed. static bool TestSuitePassed(const TestSuite* test_suite) { return test_suite->should_run() && test_suite->Passed(); } // Returns true if and only if the test suite failed. static bool TestSuiteFailed(const TestSuite* test_suite) { return test_suite->should_run() && test_suite->Failed(); } // Returns true if and only if test_suite contains at least one test that // should run. static bool ShouldRunTestSuite(const TestSuite* test_suite) { return test_suite->should_run(); } // AssertHelper constructor. AssertHelper::AssertHelper(TestPartResult::Type type, const char* file, int line, const char* message) : data_(new AssertHelperData(type, file, line, message)) {} AssertHelper::~AssertHelper() { delete data_; } // Message assignment, for assertion streaming support. void AssertHelper::operator=(const Message& message) const { UnitTest::GetInstance()->AddTestPartResult( data_->type, data_->file, data_->line, AppendUserMessage(data_->message, message), UnitTest::GetInstance()->impl()->CurrentOsStackTraceExceptTop(1) // Skips the stack frame for this function itself. ); // NOLINT } namespace { // When TEST_P is found without a matching INSTANTIATE_TEST_SUITE_P // to creates test cases for it, a synthetic test case is // inserted to report ether an error or a log message. // // This configuration bit will likely be removed at some point. constexpr bool kErrorOnUninstantiatedParameterizedTest = true; constexpr bool kErrorOnUninstantiatedTypeParameterizedTest = true; // A test that fails at a given file/line location with a given message. class FailureTest : public Test { public: explicit FailureTest(const CodeLocation& loc, std::string error_message, bool as_error) : loc_(loc), error_message_(std::move(error_message)), as_error_(as_error) {} void TestBody() override { if (as_error_) { AssertHelper(TestPartResult::kNonFatalFailure, loc_.file.c_str(), loc_.line, "") = Message() << error_message_; } else { std::cout << error_message_ << std::endl; } } private: const CodeLocation loc_; const std::string error_message_; const bool as_error_; }; } // namespace std::set* GetIgnoredParameterizedTestSuites() { return UnitTest::GetInstance()->impl()->ignored_parameterized_test_suites(); } // Add a given test_suit to the list of them allow to go un-instantiated. MarkAsIgnored::MarkAsIgnored(const char* test_suite) { GetIgnoredParameterizedTestSuites()->insert(test_suite); } // If this parameterized test suite has no instantiations (and that // has not been marked as okay), emit a test case reporting that. void InsertSyntheticTestCase(const std::string& name, CodeLocation location, bool has_test_p) { const auto& ignored = *GetIgnoredParameterizedTestSuites(); if (ignored.find(name) != ignored.end()) return; const char kMissingInstantiation[] = // " is defined via TEST_P, but never instantiated. None of the test cases " "will run. Either no INSTANTIATE_TEST_SUITE_P is provided or the only " "ones provided expand to nothing." "\n\n" "Ideally, TEST_P definitions should only ever be included as part of " "binaries that intend to use them. (As opposed to, for example, being " "placed in a library that may be linked in to get other utilities.)"; const char kMissingTestCase[] = // " is instantiated via INSTANTIATE_TEST_SUITE_P, but no tests are " "defined via TEST_P . No test cases will run." "\n\n" "Ideally, INSTANTIATE_TEST_SUITE_P should only ever be invoked from " "code that always depend on code that provides TEST_P. Failing to do " "so is often an indication of dead code, e.g. the last TEST_P was " "removed but the rest got left behind."; std::string message = "Parameterized test suite " + name + (has_test_p ? kMissingInstantiation : kMissingTestCase) + "\n\n" "To suppress this error for this test suite, insert the following line " "(in a non-header) in the namespace it is defined in:" "\n\n" "GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(" + name + ");"; std::string full_name = "UninstantiatedParameterizedTestSuite<" + name + ">"; RegisterTest( // "GoogleTestVerification", full_name.c_str(), nullptr, // No type parameter. nullptr, // No value parameter. location.file.c_str(), location.line, [message, location] { return new FailureTest(location, message, kErrorOnUninstantiatedParameterizedTest); }); } void RegisterTypeParameterizedTestSuite(const char* test_suite_name, CodeLocation code_location) { GetUnitTestImpl()->type_parameterized_test_registry().RegisterTestSuite( test_suite_name, code_location); } void RegisterTypeParameterizedTestSuiteInstantiation(const char* case_name) { GetUnitTestImpl()->type_parameterized_test_registry().RegisterInstantiation( case_name); } void TypeParameterizedTestSuiteRegistry::RegisterTestSuite( const char* test_suite_name, CodeLocation code_location) { suites_.emplace(std::string(test_suite_name), TypeParameterizedTestSuiteInfo(code_location)); } void TypeParameterizedTestSuiteRegistry::RegisterInstantiation( const char* test_suite_name) { auto it = suites_.find(std::string(test_suite_name)); if (it != suites_.end()) { it->second.instantiated = true; } else { GTEST_LOG_(ERROR) << "Unknown type parameterized test suit '" << test_suite_name << "'"; } } void TypeParameterizedTestSuiteRegistry::CheckForInstantiations() { const auto& ignored = *GetIgnoredParameterizedTestSuites(); for (const auto& testcase : suites_) { if (testcase.second.instantiated) continue; if (ignored.find(testcase.first) != ignored.end()) continue; std::string message = "Type parameterized test suite " + testcase.first + " is defined via REGISTER_TYPED_TEST_SUITE_P, but never instantiated " "via INSTANTIATE_TYPED_TEST_SUITE_P. None of the test cases will run." "\n\n" "Ideally, TYPED_TEST_P definitions should only ever be included as " "part of binaries that intend to use them. (As opposed to, for " "example, being placed in a library that may be linked in to get other " "utilities.)" "\n\n" "To suppress this error for this test suite, insert the following line " "(in a non-header) in the namespace it is defined in:" "\n\n" "GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(" + testcase.first + ");"; std::string full_name = "UninstantiatedTypeParameterizedTestSuite<" + testcase.first + ">"; RegisterTest( // "GoogleTestVerification", full_name.c_str(), nullptr, // No type parameter. nullptr, // No value parameter. testcase.second.code_location.file.c_str(), testcase.second.code_location.line, [message, testcase] { return new FailureTest(testcase.second.code_location, message, kErrorOnUninstantiatedTypeParameterizedTest); }); } } // A copy of all command line arguments. Set by InitGoogleTest(). static ::std::vector g_argvs; ::std::vector GetArgvs() { #if defined(GTEST_CUSTOM_GET_ARGVS_) // GTEST_CUSTOM_GET_ARGVS_() may return a container of std::string or // ::string. This code converts it to the appropriate type. const auto& custom = GTEST_CUSTOM_GET_ARGVS_(); return ::std::vector(custom.begin(), custom.end()); #else // defined(GTEST_CUSTOM_GET_ARGVS_) return g_argvs; #endif // defined(GTEST_CUSTOM_GET_ARGVS_) } #if GTEST_HAS_FILE_SYSTEM // Returns the current application's name, removing directory path if that // is present. FilePath GetCurrentExecutableName() { FilePath result; #if defined(GTEST_OS_WINDOWS) || defined(GTEST_OS_OS2) result.Set(FilePath(GetArgvs()[0]).RemoveExtension("exe")); #else result.Set(FilePath(GetArgvs()[0])); #endif // GTEST_OS_WINDOWS return result.RemoveDirectoryName(); } #endif // GTEST_HAS_FILE_SYSTEM // Functions for processing the gtest_output flag. // Returns the output format, or "" for normal printed output. std::string UnitTestOptions::GetOutputFormat() { std::string s = GTEST_FLAG_GET(output); const char* const gtest_output_flag = s.c_str(); const char* const colon = strchr(gtest_output_flag, ':'); return (colon == nullptr) ? std::string(gtest_output_flag) : std::string(gtest_output_flag, static_cast(colon - gtest_output_flag)); } #if GTEST_HAS_FILE_SYSTEM // Returns the name of the requested output file, or the default if none // was explicitly specified. std::string UnitTestOptions::GetAbsolutePathToOutputFile() { std::string s = GTEST_FLAG_GET(output); const char* const gtest_output_flag = s.c_str(); std::string format = GetOutputFormat(); if (format.empty()) format = std::string(kDefaultOutputFormat); const char* const colon = strchr(gtest_output_flag, ':'); if (colon == nullptr) return internal::FilePath::MakeFileName( internal::FilePath( UnitTest::GetInstance()->original_working_dir()), internal::FilePath(kDefaultOutputFile), 0, format.c_str()) .string(); internal::FilePath output_name(colon + 1); if (!output_name.IsAbsolutePath()) output_name = internal::FilePath::ConcatPaths( internal::FilePath(UnitTest::GetInstance()->original_working_dir()), internal::FilePath(colon + 1)); if (!output_name.IsDirectory()) return output_name.string(); internal::FilePath result(internal::FilePath::GenerateUniqueFileName( output_name, internal::GetCurrentExecutableName(), GetOutputFormat().c_str())); return result.string(); } #endif // GTEST_HAS_FILE_SYSTEM // Returns true if and only if the wildcard pattern matches the string. Each // pattern consists of regular characters, single-character wildcards (?), and // multi-character wildcards (*). // // This function implements a linear-time string globbing algorithm based on // https://research.swtch.com/glob. static bool PatternMatchesString(const std::string& name_str, const char* pattern, const char* pattern_end) { const char* name = name_str.c_str(); const char* const name_begin = name; const char* const name_end = name + name_str.size(); const char* pattern_next = pattern; const char* name_next = name; while (pattern < pattern_end || name < name_end) { if (pattern < pattern_end) { switch (*pattern) { default: // Match an ordinary character. if (name < name_end && *name == *pattern) { ++pattern; ++name; continue; } break; case '?': // Match any single character. if (name < name_end) { ++pattern; ++name; continue; } break; case '*': // Match zero or more characters. Start by skipping over the wildcard // and matching zero characters from name. If that fails, restart and // match one more character than the last attempt. pattern_next = pattern; name_next = name + 1; ++pattern; continue; } } // Failed to match a character. Restart if possible. if (name_begin < name_next && name_next <= name_end) { pattern = pattern_next; name = name_next; continue; } return false; } return true; } namespace { bool IsGlobPattern(const std::string& pattern) { return std::any_of(pattern.begin(), pattern.end(), [](const char c) { return c == '?' || c == '*'; }); } class UnitTestFilter { public: UnitTestFilter() = default; // Constructs a filter from a string of patterns separated by `:`. explicit UnitTestFilter(const std::string& filter) { // By design "" filter matches "" string. std::vector all_patterns; SplitString(filter, ':', &all_patterns); const auto exact_match_patterns_begin = std::partition( all_patterns.begin(), all_patterns.end(), &IsGlobPattern); glob_patterns_.reserve(static_cast( std::distance(all_patterns.begin(), exact_match_patterns_begin))); std::move(all_patterns.begin(), exact_match_patterns_begin, std::inserter(glob_patterns_, glob_patterns_.begin())); std::move( exact_match_patterns_begin, all_patterns.end(), std::inserter(exact_match_patterns_, exact_match_patterns_.begin())); } // Returns true if and only if name matches at least one of the patterns in // the filter. bool MatchesName(const std::string& name) const { return exact_match_patterns_.count(name) > 0 || std::any_of(glob_patterns_.begin(), glob_patterns_.end(), [&name](const std::string& pattern) { return PatternMatchesString( name, pattern.c_str(), pattern.c_str() + pattern.size()); }); } private: std::vector glob_patterns_; std::unordered_set exact_match_patterns_; }; class PositiveAndNegativeUnitTestFilter { public: // Constructs a positive and a negative filter from a string. The string // contains a positive filter optionally followed by a '-' character and a // negative filter. In case only a negative filter is provided the positive // filter will be assumed "*". // A filter is a list of patterns separated by ':'. explicit PositiveAndNegativeUnitTestFilter(const std::string& filter) { std::vector positive_and_negative_filters; // NOTE: `SplitString` always returns a non-empty container. SplitString(filter, '-', &positive_and_negative_filters); const auto& positive_filter = positive_and_negative_filters.front(); if (positive_and_negative_filters.size() > 1) { positive_filter_ = UnitTestFilter( positive_filter.empty() ? kUniversalFilter : positive_filter); // TODO(b/214626361): Fail on multiple '-' characters // For the moment to preserve old behavior we concatenate the rest of the // string parts with `-` as separator to generate the negative filter. auto negative_filter_string = positive_and_negative_filters[1]; for (std::size_t i = 2; i < positive_and_negative_filters.size(); i++) negative_filter_string = negative_filter_string + '-' + positive_and_negative_filters[i]; negative_filter_ = UnitTestFilter(negative_filter_string); } else { // In case we don't have a negative filter and positive filter is "" // we do not use kUniversalFilter by design as opposed to when we have a // negative filter. positive_filter_ = UnitTestFilter(positive_filter); } } // Returns true if and only if test name (this is generated by appending test // suit name and test name via a '.' character) matches the positive filter // and does not match the negative filter. bool MatchesTest(const std::string& test_suite_name, const std::string& test_name) const { return MatchesName(test_suite_name + "." + test_name); } // Returns true if and only if name matches the positive filter and does not // match the negative filter. bool MatchesName(const std::string& name) const { return positive_filter_.MatchesName(name) && !negative_filter_.MatchesName(name); } private: UnitTestFilter positive_filter_; UnitTestFilter negative_filter_; }; } // namespace bool UnitTestOptions::MatchesFilter(const std::string& name_str, const char* filter) { return UnitTestFilter(filter).MatchesName(name_str); } // Returns true if and only if the user-specified filter matches the test // suite name and the test name. bool UnitTestOptions::FilterMatchesTest(const std::string& test_suite_name, const std::string& test_name) { // Split --gtest_filter at '-', if there is one, to separate into // positive filter and negative filter portions return PositiveAndNegativeUnitTestFilter(GTEST_FLAG_GET(filter)) .MatchesTest(test_suite_name, test_name); } #if GTEST_HAS_SEH static std::string FormatSehExceptionMessage(DWORD exception_code, const char* location) { Message message; message << "SEH exception with code 0x" << std::setbase(16) << exception_code << std::setbase(10) << " thrown in " << location << "."; return message.GetString(); } int UnitTestOptions::GTestProcessSEH(DWORD seh_code, const char* location) { // Google Test should handle a SEH exception if: // 1. the user wants it to, AND // 2. this is not a breakpoint exception or stack overflow, AND // 3. this is not a C++ exception (VC++ implements them via SEH, // apparently). // // SEH exception code for C++ exceptions. // (see https://support.microsoft.com/kb/185294 for more information). const DWORD kCxxExceptionCode = 0xe06d7363; if (!GTEST_FLAG_GET(catch_exceptions) || seh_code == kCxxExceptionCode || seh_code == EXCEPTION_BREAKPOINT || seh_code == EXCEPTION_STACK_OVERFLOW) { return EXCEPTION_CONTINUE_SEARCH; // Don't handle these exceptions } internal::ReportFailureInUnknownLocation( TestPartResult::kFatalFailure, FormatSehExceptionMessage(seh_code, location) + "\n" "Stack trace:\n" + ::testing::internal::GetCurrentOsStackTraceExceptTop(1)); return EXCEPTION_EXECUTE_HANDLER; } #endif // GTEST_HAS_SEH } // namespace internal // The c'tor sets this object as the test part result reporter used by // Google Test. The 'result' parameter specifies where to report the // results. Intercepts only failures from the current thread. ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( TestPartResultArray* result) : intercept_mode_(INTERCEPT_ONLY_CURRENT_THREAD), result_(result) { Init(); } // The c'tor sets this object as the test part result reporter used by // Google Test. The 'result' parameter specifies where to report the // results. ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( InterceptMode intercept_mode, TestPartResultArray* result) : intercept_mode_(intercept_mode), result_(result) { Init(); } void ScopedFakeTestPartResultReporter::Init() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); if (intercept_mode_ == INTERCEPT_ALL_THREADS) { old_reporter_ = impl->GetGlobalTestPartResultReporter(); impl->SetGlobalTestPartResultReporter(this); } else { old_reporter_ = impl->GetTestPartResultReporterForCurrentThread(); impl->SetTestPartResultReporterForCurrentThread(this); } } // The d'tor restores the test part result reporter used by Google Test // before. ScopedFakeTestPartResultReporter::~ScopedFakeTestPartResultReporter() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); if (intercept_mode_ == INTERCEPT_ALL_THREADS) { impl->SetGlobalTestPartResultReporter(old_reporter_); } else { impl->SetTestPartResultReporterForCurrentThread(old_reporter_); } } // Increments the test part result count and remembers the result. // This method is from the TestPartResultReporterInterface interface. void ScopedFakeTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { result_->Append(result); } namespace internal { // Returns the type ID of ::testing::Test. We should always call this // instead of GetTypeId< ::testing::Test>() to get the type ID of // testing::Test. This is to work around a suspected linker bug when // using Google Test as a framework on Mac OS X. The bug causes // GetTypeId< ::testing::Test>() to return different values depending // on whether the call is from the Google Test framework itself or // from user test code. GetTestTypeId() is guaranteed to always // return the same value, as it always calls GetTypeId<>() from the // gtest.cc, which is within the Google Test framework. TypeId GetTestTypeId() { return GetTypeId(); } // The value of GetTestTypeId() as seen from within the Google Test // library. This is solely for testing GetTestTypeId(). extern const TypeId kTestTypeIdInGoogleTest = GetTestTypeId(); // This predicate-formatter checks that 'results' contains a test part // failure of the given type and that the failure message contains the // given substring. static AssertionResult HasOneFailure(const char* /* results_expr */, const char* /* type_expr */, const char* /* substr_expr */, const TestPartResultArray& results, TestPartResult::Type type, const std::string& substr) { const std::string expected(type == TestPartResult::kFatalFailure ? "1 fatal failure" : "1 non-fatal failure"); Message msg; if (results.size() != 1) { msg << "Expected: " << expected << "\n" << " Actual: " << results.size() << " failures"; for (int i = 0; i < results.size(); i++) { msg << "\n" << results.GetTestPartResult(i); } return AssertionFailure() << msg; } const TestPartResult& r = results.GetTestPartResult(0); if (r.type() != type) { return AssertionFailure() << "Expected: " << expected << "\n" << " Actual:\n" << r; } if (strstr(r.message(), substr.c_str()) == nullptr) { return AssertionFailure() << "Expected: " << expected << " containing \"" << substr << "\"\n" << " Actual:\n" << r; } return AssertionSuccess(); } // The constructor of SingleFailureChecker remembers where to look up // test part results, what type of failure we expect, and what // substring the failure message should contain. SingleFailureChecker::SingleFailureChecker(const TestPartResultArray* results, TestPartResult::Type type, const std::string& substr) : results_(results), type_(type), substr_(substr) {} // The destructor of SingleFailureChecker verifies that the given // TestPartResultArray contains exactly one failure that has the given // type and contains the given substring. If that's not the case, a // non-fatal failure will be generated. SingleFailureChecker::~SingleFailureChecker() { EXPECT_PRED_FORMAT3(HasOneFailure, *results_, type_, substr_); } DefaultGlobalTestPartResultReporter::DefaultGlobalTestPartResultReporter( UnitTestImpl* unit_test) : unit_test_(unit_test) {} void DefaultGlobalTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { unit_test_->current_test_result()->AddTestPartResult(result); unit_test_->listeners()->repeater()->OnTestPartResult(result); } DefaultPerThreadTestPartResultReporter::DefaultPerThreadTestPartResultReporter( UnitTestImpl* unit_test) : unit_test_(unit_test) {} void DefaultPerThreadTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { unit_test_->GetGlobalTestPartResultReporter()->ReportTestPartResult(result); } // Returns the global test part result reporter. TestPartResultReporterInterface* UnitTestImpl::GetGlobalTestPartResultReporter() { internal::MutexLock lock(&global_test_part_result_reporter_mutex_); return global_test_part_result_reporter_; } // Sets the global test part result reporter. void UnitTestImpl::SetGlobalTestPartResultReporter( TestPartResultReporterInterface* reporter) { internal::MutexLock lock(&global_test_part_result_reporter_mutex_); global_test_part_result_reporter_ = reporter; } // Returns the test part result reporter for the current thread. TestPartResultReporterInterface* UnitTestImpl::GetTestPartResultReporterForCurrentThread() { return per_thread_test_part_result_reporter_.get(); } // Sets the test part result reporter for the current thread. void UnitTestImpl::SetTestPartResultReporterForCurrentThread( TestPartResultReporterInterface* reporter) { per_thread_test_part_result_reporter_.set(reporter); } // Gets the number of successful test suites. int UnitTestImpl::successful_test_suite_count() const { return CountIf(test_suites_, TestSuitePassed); } // Gets the number of failed test suites. int UnitTestImpl::failed_test_suite_count() const { return CountIf(test_suites_, TestSuiteFailed); } // Gets the number of all test suites. int UnitTestImpl::total_test_suite_count() const { return static_cast(test_suites_.size()); } // Gets the number of all test suites that contain at least one test // that should run. int UnitTestImpl::test_suite_to_run_count() const { return CountIf(test_suites_, ShouldRunTestSuite); } // Gets the number of successful tests. int UnitTestImpl::successful_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::successful_test_count); } // Gets the number of skipped tests. int UnitTestImpl::skipped_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::skipped_test_count); } // Gets the number of failed tests. int UnitTestImpl::failed_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::failed_test_count); } // Gets the number of disabled tests that will be reported in the XML report. int UnitTestImpl::reportable_disabled_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::reportable_disabled_test_count); } // Gets the number of disabled tests. int UnitTestImpl::disabled_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::disabled_test_count); } // Gets the number of tests to be printed in the XML report. int UnitTestImpl::reportable_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::reportable_test_count); } // Gets the number of all tests. int UnitTestImpl::total_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::total_test_count); } // Gets the number of tests that should run. int UnitTestImpl::test_to_run_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::test_to_run_count); } // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // CurrentOsStackTraceExceptTop(1), Foo() will be included in the // trace but Bar() and CurrentOsStackTraceExceptTop() won't. std::string UnitTestImpl::CurrentOsStackTraceExceptTop(int skip_count) { return os_stack_trace_getter()->CurrentStackTrace( static_cast(GTEST_FLAG_GET(stack_trace_depth)), skip_count + 1 // Skips the user-specified number of frames plus this function // itself. ); // NOLINT } // A helper class for measuring elapsed times. class Timer { public: Timer() : start_(clock::now()) {} // Return time elapsed in milliseconds since the timer was created. TimeInMillis Elapsed() { return std::chrono::duration_cast(clock::now() - start_) .count(); } private: // Fall back to the system_clock when building with newlib on a system // without a monotonic clock. #if defined(_NEWLIB_VERSION) && !defined(CLOCK_MONOTONIC) using clock = std::chrono::system_clock; #else using clock = std::chrono::steady_clock; #endif clock::time_point start_; }; // Returns a timestamp as milliseconds since the epoch. Note this time may jump // around subject to adjustments by the system, to measure elapsed time use // Timer instead. TimeInMillis GetTimeInMillis() { return std::chrono::duration_cast( std::chrono::system_clock::now() - std::chrono::system_clock::from_time_t(0)) .count(); } // Utilities // class String. #ifdef GTEST_OS_WINDOWS_MOBILE // Creates a UTF-16 wide string from the given ANSI string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the wide string, or NULL if the // input is NULL. LPCWSTR String::AnsiToUtf16(const char* ansi) { if (!ansi) return nullptr; const int length = strlen(ansi); const int unicode_length = MultiByteToWideChar(CP_ACP, 0, ansi, length, nullptr, 0); WCHAR* unicode = new WCHAR[unicode_length + 1]; MultiByteToWideChar(CP_ACP, 0, ansi, length, unicode, unicode_length); unicode[unicode_length] = 0; return unicode; } // Creates an ANSI string from the given wide string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the ANSI string, or NULL if the // input is NULL. const char* String::Utf16ToAnsi(LPCWSTR utf16_str) { if (!utf16_str) return nullptr; const int ansi_length = WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, nullptr, 0, nullptr, nullptr); char* ansi = new char[ansi_length + 1]; WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, ansi, ansi_length, nullptr, nullptr); ansi[ansi_length] = 0; return ansi; } #endif // GTEST_OS_WINDOWS_MOBILE // Compares two C strings. Returns true if and only if they have the same // content. // // Unlike strcmp(), this function can handle NULL argument(s). A NULL // C string is considered different to any non-NULL C string, // including the empty string. bool String::CStringEquals(const char* lhs, const char* rhs) { if (lhs == nullptr) return rhs == nullptr; if (rhs == nullptr) return false; return strcmp(lhs, rhs) == 0; } #if GTEST_HAS_STD_WSTRING // Converts an array of wide chars to a narrow string using the UTF-8 // encoding, and streams the result to the given Message object. static void StreamWideCharsToMessage(const wchar_t* wstr, size_t length, Message* msg) { for (size_t i = 0; i != length;) { // NOLINT if (wstr[i] != L'\0') { *msg << WideStringToUtf8(wstr + i, static_cast(length - i)); while (i != length && wstr[i] != L'\0') i++; } else { *msg << '\0'; i++; } } } #endif // GTEST_HAS_STD_WSTRING void SplitString(const ::std::string& str, char delimiter, ::std::vector< ::std::string>* dest) { ::std::vector< ::std::string> parsed; ::std::string::size_type pos = 0; while (::testing::internal::AlwaysTrue()) { const ::std::string::size_type colon = str.find(delimiter, pos); if (colon == ::std::string::npos) { parsed.push_back(str.substr(pos)); break; } else { parsed.push_back(str.substr(pos, colon - pos)); pos = colon + 1; } } dest->swap(parsed); } } // namespace internal // Constructs an empty Message. // We allocate the stringstream separately because otherwise each use of // ASSERT/EXPECT in a procedure adds over 200 bytes to the procedure's // stack frame leading to huge stack frames in some cases; gcc does not reuse // the stack space. Message::Message() : ss_(new ::std::stringstream) { // By default, we want there to be enough precision when printing // a double to a Message. *ss_ << std::setprecision(std::numeric_limits::digits10 + 2); } // These two overloads allow streaming a wide C string to a Message // using the UTF-8 encoding. Message& Message::operator<<(const wchar_t* wide_c_str) { return *this << internal::String::ShowWideCString(wide_c_str); } Message& Message::operator<<(wchar_t* wide_c_str) { return *this << internal::String::ShowWideCString(wide_c_str); } #if GTEST_HAS_STD_WSTRING // Converts the given wide string to a narrow string using the UTF-8 // encoding, and streams the result to this Message object. Message& Message::operator<<(const ::std::wstring& wstr) { internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this); return *this; } #endif // GTEST_HAS_STD_WSTRING // Gets the text streamed to this object so far as an std::string. // Each '\0' character in the buffer is replaced with "\\0". std::string Message::GetString() const { return internal::StringStreamToString(ss_.get()); } namespace internal { namespace edit_distance { std::vector CalculateOptimalEdits(const std::vector& left, const std::vector& right) { std::vector > costs( left.size() + 1, std::vector(right.size() + 1)); std::vector > best_move( left.size() + 1, std::vector(right.size() + 1)); // Populate for empty right. for (size_t l_i = 0; l_i < costs.size(); ++l_i) { costs[l_i][0] = static_cast(l_i); best_move[l_i][0] = kRemove; } // Populate for empty left. for (size_t r_i = 1; r_i < costs[0].size(); ++r_i) { costs[0][r_i] = static_cast(r_i); best_move[0][r_i] = kAdd; } for (size_t l_i = 0; l_i < left.size(); ++l_i) { for (size_t r_i = 0; r_i < right.size(); ++r_i) { if (left[l_i] == right[r_i]) { // Found a match. Consume it. costs[l_i + 1][r_i + 1] = costs[l_i][r_i]; best_move[l_i + 1][r_i + 1] = kMatch; continue; } const double add = costs[l_i + 1][r_i]; const double remove = costs[l_i][r_i + 1]; const double replace = costs[l_i][r_i]; if (add < remove && add < replace) { costs[l_i + 1][r_i + 1] = add + 1; best_move[l_i + 1][r_i + 1] = kAdd; } else if (remove < add && remove < replace) { costs[l_i + 1][r_i + 1] = remove + 1; best_move[l_i + 1][r_i + 1] = kRemove; } else { // We make replace a little more expensive than add/remove to lower // their priority. costs[l_i + 1][r_i + 1] = replace + 1.00001; best_move[l_i + 1][r_i + 1] = kReplace; } } } // Reconstruct the best path. We do it in reverse order. std::vector best_path; for (size_t l_i = left.size(), r_i = right.size(); l_i > 0 || r_i > 0;) { EditType move = best_move[l_i][r_i]; best_path.push_back(move); l_i -= move != kAdd; r_i -= move != kRemove; } std::reverse(best_path.begin(), best_path.end()); return best_path; } namespace { // Helper class to convert string into ids with deduplication. class InternalStrings { public: size_t GetId(const std::string& str) { IdMap::iterator it = ids_.find(str); if (it != ids_.end()) return it->second; size_t id = ids_.size(); return ids_[str] = id; } private: typedef std::map IdMap; IdMap ids_; }; } // namespace std::vector CalculateOptimalEdits( const std::vector& left, const std::vector& right) { std::vector left_ids, right_ids; { InternalStrings intern_table; for (size_t i = 0; i < left.size(); ++i) { left_ids.push_back(intern_table.GetId(left[i])); } for (size_t i = 0; i < right.size(); ++i) { right_ids.push_back(intern_table.GetId(right[i])); } } return CalculateOptimalEdits(left_ids, right_ids); } namespace { // Helper class that holds the state for one hunk and prints it out to the // stream. // It reorders adds/removes when possible to group all removes before all // adds. It also adds the hunk header before printint into the stream. class Hunk { public: Hunk(size_t left_start, size_t right_start) : left_start_(left_start), right_start_(right_start), adds_(), removes_(), common_() {} void PushLine(char edit, const char* line) { switch (edit) { case ' ': ++common_; FlushEdits(); hunk_.push_back(std::make_pair(' ', line)); break; case '-': ++removes_; hunk_removes_.push_back(std::make_pair('-', line)); break; case '+': ++adds_; hunk_adds_.push_back(std::make_pair('+', line)); break; } } void PrintTo(std::ostream* os) { PrintHeader(os); FlushEdits(); for (std::list >::const_iterator it = hunk_.begin(); it != hunk_.end(); ++it) { *os << it->first << it->second << "\n"; } } bool has_edits() const { return adds_ || removes_; } private: void FlushEdits() { hunk_.splice(hunk_.end(), hunk_removes_); hunk_.splice(hunk_.end(), hunk_adds_); } // Print a unified diff header for one hunk. // The format is // "@@ -, +, @@" // where the left/right parts are omitted if unnecessary. void PrintHeader(std::ostream* ss) const { *ss << "@@ "; if (removes_) { *ss << "-" << left_start_ << "," << (removes_ + common_); } if (removes_ && adds_) { *ss << " "; } if (adds_) { *ss << "+" << right_start_ << "," << (adds_ + common_); } *ss << " @@\n"; } size_t left_start_, right_start_; size_t adds_, removes_, common_; std::list > hunk_, hunk_adds_, hunk_removes_; }; } // namespace // Create a list of diff hunks in Unified diff format. // Each hunk has a header generated by PrintHeader above plus a body with // lines prefixed with ' ' for no change, '-' for deletion and '+' for // addition. // 'context' represents the desired unchanged prefix/suffix around the diff. // If two hunks are close enough that their contexts overlap, then they are // joined into one hunk. std::string CreateUnifiedDiff(const std::vector& left, const std::vector& right, size_t context) { const std::vector edits = CalculateOptimalEdits(left, right); size_t l_i = 0, r_i = 0, edit_i = 0; std::stringstream ss; while (edit_i < edits.size()) { // Find first edit. while (edit_i < edits.size() && edits[edit_i] == kMatch) { ++l_i; ++r_i; ++edit_i; } // Find the first line to include in the hunk. const size_t prefix_context = std::min(l_i, context); Hunk hunk(l_i - prefix_context + 1, r_i - prefix_context + 1); for (size_t i = prefix_context; i > 0; --i) { hunk.PushLine(' ', left[l_i - i].c_str()); } // Iterate the edits until we found enough suffix for the hunk or the input // is over. size_t n_suffix = 0; for (; edit_i < edits.size(); ++edit_i) { if (n_suffix >= context) { // Continue only if the next hunk is very close. auto it = edits.begin() + static_cast(edit_i); while (it != edits.end() && *it == kMatch) ++it; if (it == edits.end() || static_cast(it - edits.begin()) - edit_i >= context) { // There is no next edit or it is too far away. break; } } EditType edit = edits[edit_i]; // Reset count when a non match is found. n_suffix = edit == kMatch ? n_suffix + 1 : 0; if (edit == kMatch || edit == kRemove || edit == kReplace) { hunk.PushLine(edit == kMatch ? ' ' : '-', left[l_i].c_str()); } if (edit == kAdd || edit == kReplace) { hunk.PushLine('+', right[r_i].c_str()); } // Advance indices, depending on edit type. l_i += edit != kAdd; r_i += edit != kRemove; } if (!hunk.has_edits()) { // We are done. We don't want this hunk. break; } hunk.PrintTo(&ss); } return ss.str(); } } // namespace edit_distance namespace { // The string representation of the values received in EqFailure() are already // escaped. Split them on escaped '\n' boundaries. Leave all other escaped // characters the same. std::vector SplitEscapedString(const std::string& str) { std::vector lines; size_t start = 0, end = str.size(); if (end > 2 && str[0] == '"' && str[end - 1] == '"') { ++start; --end; } bool escaped = false; for (size_t i = start; i + 1 < end; ++i) { if (escaped) { escaped = false; if (str[i] == 'n') { lines.push_back(str.substr(start, i - start - 1)); start = i + 1; } } else { escaped = str[i] == '\\'; } } lines.push_back(str.substr(start, end - start)); return lines; } } // namespace // Constructs and returns the message for an equality assertion // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. // // The first four parameters are the expressions used in the assertion // and their values, as strings. For example, for ASSERT_EQ(foo, bar) // where foo is 5 and bar is 6, we have: // // lhs_expression: "foo" // rhs_expression: "bar" // lhs_value: "5" // rhs_value: "6" // // The ignoring_case parameter is true if and only if the assertion is a // *_STRCASEEQ*. When it's true, the string "Ignoring case" will // be inserted into the message. AssertionResult EqFailure(const char* lhs_expression, const char* rhs_expression, const std::string& lhs_value, const std::string& rhs_value, bool ignoring_case) { Message msg; msg << "Expected equality of these values:"; msg << "\n " << lhs_expression; if (lhs_value != lhs_expression) { msg << "\n Which is: " << lhs_value; } msg << "\n " << rhs_expression; if (rhs_value != rhs_expression) { msg << "\n Which is: " << rhs_value; } if (ignoring_case) { msg << "\nIgnoring case"; } if (!lhs_value.empty() && !rhs_value.empty()) { const std::vector lhs_lines = SplitEscapedString(lhs_value); const std::vector rhs_lines = SplitEscapedString(rhs_value); if (lhs_lines.size() > 1 || rhs_lines.size() > 1) { msg << "\nWith diff:\n" << edit_distance::CreateUnifiedDiff(lhs_lines, rhs_lines); } } return AssertionFailure() << msg; } // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. std::string GetBoolAssertionFailureMessage( const AssertionResult& assertion_result, const char* expression_text, const char* actual_predicate_value, const char* expected_predicate_value) { const char* actual_message = assertion_result.message(); Message msg; msg << "Value of: " << expression_text << "\n Actual: " << actual_predicate_value; if (actual_message[0] != '\0') msg << " (" << actual_message << ")"; msg << "\nExpected: " << expected_predicate_value; return msg.GetString(); } // Helper function for implementing ASSERT_NEAR. AssertionResult DoubleNearPredFormat(const char* expr1, const char* expr2, const char* abs_error_expr, double val1, double val2, double abs_error) { const double diff = fabs(val1 - val2); if (diff <= abs_error) return AssertionSuccess(); // Find the value which is closest to zero. const double min_abs = std::min(fabs(val1), fabs(val2)); // Find the distance to the next double from that value. const double epsilon = nextafter(min_abs, std::numeric_limits::infinity()) - min_abs; // Detect the case where abs_error is so small that EXPECT_NEAR is // effectively the same as EXPECT_EQUAL, and give an informative error // message so that the situation can be more easily understood without // requiring exotic floating-point knowledge. // Don't do an epsilon check if abs_error is zero because that implies // that an equality check was actually intended. if (!(std::isnan)(val1) && !(std::isnan)(val2) && abs_error > 0 && abs_error < epsilon) { return AssertionFailure() << "The difference between " << expr1 << " and " << expr2 << " is " << diff << ", where\n" << expr1 << " evaluates to " << val1 << ",\n" << expr2 << " evaluates to " << val2 << ".\nThe abs_error parameter " << abs_error_expr << " evaluates to " << abs_error << " which is smaller than the minimum distance between doubles for " "numbers of this magnitude which is " << epsilon << ", thus making this EXPECT_NEAR check equivalent to " "EXPECT_EQUAL. Consider using EXPECT_DOUBLE_EQ instead."; } return AssertionFailure() << "The difference between " << expr1 << " and " << expr2 << " is " << diff << ", which exceeds " << abs_error_expr << ", where\n" << expr1 << " evaluates to " << val1 << ",\n" << expr2 << " evaluates to " << val2 << ", and\n" << abs_error_expr << " evaluates to " << abs_error << "."; } // Helper template for implementing FloatLE() and DoubleLE(). template AssertionResult FloatingPointLE(const char* expr1, const char* expr2, RawType val1, RawType val2) { // Returns success if val1 is less than val2, if (val1 < val2) { return AssertionSuccess(); } // or if val1 is almost equal to val2. const FloatingPoint lhs(val1), rhs(val2); if (lhs.AlmostEquals(rhs)) { return AssertionSuccess(); } // Note that the above two checks will both fail if either val1 or // val2 is NaN, as the IEEE floating-point standard requires that // any predicate involving a NaN must return false. ::std::stringstream val1_ss; val1_ss << std::setprecision(std::numeric_limits::digits10 + 2) << val1; ::std::stringstream val2_ss; val2_ss << std::setprecision(std::numeric_limits::digits10 + 2) << val2; return AssertionFailure() << "Expected: (" << expr1 << ") <= (" << expr2 << ")\n" << " Actual: " << StringStreamToString(&val1_ss) << " vs " << StringStreamToString(&val2_ss); } } // namespace internal // Asserts that val1 is less than, or almost equal to, val2. Fails // otherwise. In particular, it fails if either val1 or val2 is NaN. AssertionResult FloatLE(const char* expr1, const char* expr2, float val1, float val2) { return internal::FloatingPointLE(expr1, expr2, val1, val2); } // Asserts that val1 is less than, or almost equal to, val2. Fails // otherwise. In particular, it fails if either val1 or val2 is NaN. AssertionResult DoubleLE(const char* expr1, const char* expr2, double val1, double val2) { return internal::FloatingPointLE(expr1, expr2, val1, val2); } namespace internal { // The helper function for {ASSERT|EXPECT}_STREQ. AssertionResult CmpHelperSTREQ(const char* lhs_expression, const char* rhs_expression, const char* lhs, const char* rhs) { if (String::CStringEquals(lhs, rhs)) { return AssertionSuccess(); } return EqFailure(lhs_expression, rhs_expression, PrintToString(lhs), PrintToString(rhs), false); } // The helper function for {ASSERT|EXPECT}_STRCASEEQ. AssertionResult CmpHelperSTRCASEEQ(const char* lhs_expression, const char* rhs_expression, const char* lhs, const char* rhs) { if (String::CaseInsensitiveCStringEquals(lhs, rhs)) { return AssertionSuccess(); } return EqFailure(lhs_expression, rhs_expression, PrintToString(lhs), PrintToString(rhs), true); } // The helper function for {ASSERT|EXPECT}_STRNE. AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2) { if (!String::CStringEquals(s1, s2)) { return AssertionSuccess(); } else { return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << "), actual: \"" << s1 << "\" vs \"" << s2 << "\""; } } // The helper function for {ASSERT|EXPECT}_STRCASENE. AssertionResult CmpHelperSTRCASENE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2) { if (!String::CaseInsensitiveCStringEquals(s1, s2)) { return AssertionSuccess(); } else { return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << ") (ignoring case), actual: \"" << s1 << "\" vs \"" << s2 << "\""; } } } // namespace internal namespace { // Helper functions for implementing IsSubString() and IsNotSubstring(). // This group of overloaded functions return true if and only if needle // is a substring of haystack. NULL is considered a substring of // itself only. bool IsSubstringPred(const char* needle, const char* haystack) { if (needle == nullptr || haystack == nullptr) return needle == haystack; return strstr(haystack, needle) != nullptr; } bool IsSubstringPred(const wchar_t* needle, const wchar_t* haystack) { if (needle == nullptr || haystack == nullptr) return needle == haystack; return wcsstr(haystack, needle) != nullptr; } // StringType here can be either ::std::string or ::std::wstring. template bool IsSubstringPred(const StringType& needle, const StringType& haystack) { return haystack.find(needle) != StringType::npos; } // This function implements either IsSubstring() or IsNotSubstring(), // depending on the value of the expected_to_be_substring parameter. // StringType here can be const char*, const wchar_t*, ::std::string, // or ::std::wstring. template AssertionResult IsSubstringImpl(bool expected_to_be_substring, const char* needle_expr, const char* haystack_expr, const StringType& needle, const StringType& haystack) { if (IsSubstringPred(needle, haystack) == expected_to_be_substring) return AssertionSuccess(); const bool is_wide_string = sizeof(needle[0]) > 1; const char* const begin_string_quote = is_wide_string ? "L\"" : "\""; return AssertionFailure() << "Value of: " << needle_expr << "\n" << " Actual: " << begin_string_quote << needle << "\"\n" << "Expected: " << (expected_to_be_substring ? "" : "not ") << "a substring of " << haystack_expr << "\n" << "Which is: " << begin_string_quote << haystack << "\""; } } // namespace // IsSubstring() and IsNotSubstring() check whether needle is a // substring of haystack (NULL is considered a substring of itself // only), and return an appropriate error message when they fail. AssertionResult IsSubstring(const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsSubstring(const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring(const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring(const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsSubstring(const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring(const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } #if GTEST_HAS_STD_WSTRING AssertionResult IsSubstring(const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring(const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } #endif // GTEST_HAS_STD_WSTRING namespace internal { #ifdef GTEST_OS_WINDOWS namespace { // Helper function for IsHRESULT{SuccessFailure} predicates AssertionResult HRESULTFailureHelper(const char* expr, const char* expected, long hr) { // NOLINT #if defined(GTEST_OS_WINDOWS_MOBILE) || defined(GTEST_OS_WINDOWS_TV_TITLE) // Windows CE doesn't support FormatMessage. const char error_text[] = ""; #else // Looks up the human-readable system message for the HRESULT code // and since we're not passing any params to FormatMessage, we don't // want inserts expanded. const DWORD kFlags = FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS; const DWORD kBufSize = 4096; // Gets the system's human readable message string for this HRESULT. char error_text[kBufSize] = {'\0'}; DWORD message_length = ::FormatMessageA(kFlags, 0, // no source, we're asking system static_cast(hr), // the error 0, // no line width restrictions error_text, // output buffer kBufSize, // buf size nullptr); // no arguments for inserts // Trims tailing white space (FormatMessage leaves a trailing CR-LF) for (; message_length && IsSpace(error_text[message_length - 1]); --message_length) { error_text[message_length - 1] = '\0'; } #endif // GTEST_OS_WINDOWS_MOBILE const std::string error_hex("0x" + String::FormatHexInt(hr)); return ::testing::AssertionFailure() << "Expected: " << expr << " " << expected << ".\n" << " Actual: " << error_hex << " " << error_text << "\n"; } } // namespace AssertionResult IsHRESULTSuccess(const char* expr, long hr) { // NOLINT if (SUCCEEDED(hr)) { return AssertionSuccess(); } return HRESULTFailureHelper(expr, "succeeds", hr); } AssertionResult IsHRESULTFailure(const char* expr, long hr) { // NOLINT if (FAILED(hr)) { return AssertionSuccess(); } return HRESULTFailureHelper(expr, "fails", hr); } #endif // GTEST_OS_WINDOWS // Utility functions for encoding Unicode text (wide strings) in // UTF-8. // A Unicode code-point can have up to 21 bits, and is encoded in UTF-8 // like this: // // Code-point length Encoding // 0 - 7 bits 0xxxxxxx // 8 - 11 bits 110xxxxx 10xxxxxx // 12 - 16 bits 1110xxxx 10xxxxxx 10xxxxxx // 17 - 21 bits 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx // The maximum code-point a one-byte UTF-8 sequence can represent. constexpr uint32_t kMaxCodePoint1 = (static_cast(1) << 7) - 1; // The maximum code-point a two-byte UTF-8 sequence can represent. constexpr uint32_t kMaxCodePoint2 = (static_cast(1) << (5 + 6)) - 1; // The maximum code-point a three-byte UTF-8 sequence can represent. constexpr uint32_t kMaxCodePoint3 = (static_cast(1) << (4 + 2 * 6)) - 1; // The maximum code-point a four-byte UTF-8 sequence can represent. constexpr uint32_t kMaxCodePoint4 = (static_cast(1) << (3 + 3 * 6)) - 1; // Chops off the n lowest bits from a bit pattern. Returns the n // lowest bits. As a side effect, the original bit pattern will be // shifted to the right by n bits. inline uint32_t ChopLowBits(uint32_t* bits, int n) { const uint32_t low_bits = *bits & ((static_cast(1) << n) - 1); *bits >>= n; return low_bits; } // Converts a Unicode code point to a narrow string in UTF-8 encoding. // code_point parameter is of type uint32_t because wchar_t may not be // wide enough to contain a code point. // If the code_point is not a valid Unicode code point // (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted // to "(Invalid Unicode 0xXXXXXXXX)". std::string CodePointToUtf8(uint32_t code_point) { if (code_point > kMaxCodePoint4) { return "(Invalid Unicode 0x" + String::FormatHexUInt32(code_point) + ")"; } char str[5]; // Big enough for the largest valid code point. if (code_point <= kMaxCodePoint1) { str[1] = '\0'; str[0] = static_cast(code_point); // 0xxxxxxx } else if (code_point <= kMaxCodePoint2) { str[2] = '\0'; str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xC0 | code_point); // 110xxxxx } else if (code_point <= kMaxCodePoint3) { str[3] = '\0'; str[2] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xE0 | code_point); // 1110xxxx } else { // code_point <= kMaxCodePoint4 str[4] = '\0'; str[3] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[2] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xF0 | code_point); // 11110xxx } return str; } // The following two functions only make sense if the system // uses UTF-16 for wide string encoding. All supported systems // with 16 bit wchar_t (Windows, Cygwin) do use UTF-16. // Determines if the arguments constitute UTF-16 surrogate pair // and thus should be combined into a single Unicode code point // using CreateCodePointFromUtf16SurrogatePair. inline bool IsUtf16SurrogatePair(wchar_t first, wchar_t second) { return sizeof(wchar_t) == 2 && (first & 0xFC00) == 0xD800 && (second & 0xFC00) == 0xDC00; } // Creates a Unicode code point from UTF16 surrogate pair. inline uint32_t CreateCodePointFromUtf16SurrogatePair(wchar_t first, wchar_t second) { const auto first_u = static_cast(first); const auto second_u = static_cast(second); const uint32_t mask = (1 << 10) - 1; return (sizeof(wchar_t) == 2) ? (((first_u & mask) << 10) | (second_u & mask)) + 0x10000 : // This function should not be called when the condition is // false, but we provide a sensible default in case it is. first_u; } // Converts a wide string to a narrow string in UTF-8 encoding. // The wide string is assumed to have the following encoding: // UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin) // UTF-32 if sizeof(wchar_t) == 4 (on Linux) // Parameter str points to a null-terminated wide string. // Parameter num_chars may additionally limit the number // of wchar_t characters processed. -1 is used when the entire string // should be processed. // If the string contains code points that are not valid Unicode code points // (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output // as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding // and contains invalid UTF-16 surrogate pairs, values in those pairs // will be encoded as individual Unicode characters from Basic Normal Plane. std::string WideStringToUtf8(const wchar_t* str, int num_chars) { if (num_chars == -1) num_chars = static_cast(wcslen(str)); ::std::stringstream stream; for (int i = 0; i < num_chars; ++i) { uint32_t unicode_code_point; if (str[i] == L'\0') { break; } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) { unicode_code_point = CreateCodePointFromUtf16SurrogatePair(str[i], str[i + 1]); i++; } else { unicode_code_point = static_cast(str[i]); } stream << CodePointToUtf8(unicode_code_point); } return StringStreamToString(&stream); } // Converts a wide C string to an std::string using the UTF-8 encoding. // NULL will be converted to "(null)". std::string String::ShowWideCString(const wchar_t* wide_c_str) { if (wide_c_str == nullptr) return "(null)"; return internal::WideStringToUtf8(wide_c_str, -1); } // Compares two wide C strings. Returns true if and only if they have the // same content. // // Unlike wcscmp(), this function can handle NULL argument(s). A NULL // C string is considered different to any non-NULL C string, // including the empty string. bool String::WideCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { if (lhs == nullptr) return rhs == nullptr; if (rhs == nullptr) return false; return wcscmp(lhs, rhs) == 0; } // Helper function for *_STREQ on wide strings. AssertionResult CmpHelperSTREQ(const char* lhs_expression, const char* rhs_expression, const wchar_t* lhs, const wchar_t* rhs) { if (String::WideCStringEquals(lhs, rhs)) { return AssertionSuccess(); } return EqFailure(lhs_expression, rhs_expression, PrintToString(lhs), PrintToString(rhs), false); } // Helper function for *_STRNE on wide strings. AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const wchar_t* s1, const wchar_t* s2) { if (!String::WideCStringEquals(s1, s2)) { return AssertionSuccess(); } return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << "), actual: " << PrintToString(s1) << " vs " << PrintToString(s2); } // Compares two C strings, ignoring case. Returns true if and only if they have // the same content. // // Unlike strcasecmp(), this function can handle NULL argument(s). A // NULL C string is considered different to any non-NULL C string, // including the empty string. bool String::CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { if (lhs == nullptr) return rhs == nullptr; if (rhs == nullptr) return false; return posix::StrCaseCmp(lhs, rhs) == 0; } // Compares two wide C strings, ignoring case. Returns true if and only if they // have the same content. // // Unlike wcscasecmp(), this function can handle NULL argument(s). // A NULL C string is considered different to any non-NULL wide C string, // including the empty string. // NB: The implementations on different platforms slightly differ. // On windows, this method uses _wcsicmp which compares according to LC_CTYPE // environment variable. On GNU platform this method uses wcscasecmp // which compares according to LC_CTYPE category of the current locale. // On MacOS X, it uses towlower, which also uses LC_CTYPE category of the // current locale. bool String::CaseInsensitiveWideCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { if (lhs == nullptr) return rhs == nullptr; if (rhs == nullptr) return false; #ifdef GTEST_OS_WINDOWS return _wcsicmp(lhs, rhs) == 0; #elif defined(GTEST_OS_LINUX) && !defined(GTEST_OS_LINUX_ANDROID) return wcscasecmp(lhs, rhs) == 0; #else // Android, Mac OS X and Cygwin don't define wcscasecmp. // Other unknown OSes may not define it either. wint_t left, right; do { left = towlower(static_cast(*lhs++)); right = towlower(static_cast(*rhs++)); } while (left && left == right); return left == right; #endif // OS selector } // Returns true if and only if str ends with the given suffix, ignoring case. // Any string is considered to end with an empty suffix. bool String::EndsWithCaseInsensitive(const std::string& str, const std::string& suffix) { const size_t str_len = str.length(); const size_t suffix_len = suffix.length(); return (str_len >= suffix_len) && CaseInsensitiveCStringEquals(str.c_str() + str_len - suffix_len, suffix.c_str()); } // Formats an int value as "%02d". std::string String::FormatIntWidth2(int value) { return FormatIntWidthN(value, 2); } // Formats an int value to given width with leading zeros. std::string String::FormatIntWidthN(int value, int width) { std::stringstream ss; ss << std::setfill('0') << std::setw(width) << value; return ss.str(); } // Formats an int value as "%X". std::string String::FormatHexUInt32(uint32_t value) { std::stringstream ss; ss << std::hex << std::uppercase << value; return ss.str(); } // Formats an int value as "%X". std::string String::FormatHexInt(int value) { return FormatHexUInt32(static_cast(value)); } // Formats a byte as "%02X". std::string String::FormatByte(unsigned char value) { std::stringstream ss; ss << std::setfill('0') << std::setw(2) << std::hex << std::uppercase << static_cast(value); return ss.str(); } // Converts the buffer in a stringstream to an std::string, converting NUL // bytes to "\\0" along the way. std::string StringStreamToString(::std::stringstream* ss) { const ::std::string& str = ss->str(); const char* const start = str.c_str(); const char* const end = start + str.length(); std::string result; result.reserve(static_cast(2 * (end - start))); for (const char* ch = start; ch != end; ++ch) { if (*ch == '\0') { result += "\\0"; // Replaces NUL with "\\0"; } else { result += *ch; } } return result; } // Appends the user-supplied message to the Google-Test-generated message. std::string AppendUserMessage(const std::string& gtest_msg, const Message& user_msg) { // Appends the user message if it's non-empty. const std::string user_msg_string = user_msg.GetString(); if (user_msg_string.empty()) { return gtest_msg; } if (gtest_msg.empty()) { return user_msg_string; } return gtest_msg + "\n" + user_msg_string; } } // namespace internal // class TestResult // Creates an empty TestResult. TestResult::TestResult() : death_test_count_(0), start_timestamp_(0), elapsed_time_(0) {} // D'tor. TestResult::~TestResult() = default; // Returns the i-th test part result among all the results. i can // range from 0 to total_part_count() - 1. If i is not in that range, // aborts the program. const TestPartResult& TestResult::GetTestPartResult(int i) const { if (i < 0 || i >= total_part_count()) internal::posix::Abort(); return test_part_results_.at(static_cast(i)); } // Returns the i-th test property. i can range from 0 to // test_property_count() - 1. If i is not in that range, aborts the // program. const TestProperty& TestResult::GetTestProperty(int i) const { if (i < 0 || i >= test_property_count()) internal::posix::Abort(); return test_properties_.at(static_cast(i)); } // Clears the test part results. void TestResult::ClearTestPartResults() { test_part_results_.clear(); } // Adds a test part result to the list. void TestResult::AddTestPartResult(const TestPartResult& test_part_result) { test_part_results_.push_back(test_part_result); } // Adds a test property to the list. If a property with the same key as the // supplied property is already represented, the value of this test_property // replaces the old value for that key. void TestResult::RecordProperty(const std::string& xml_element, const TestProperty& test_property) { if (!ValidateTestProperty(xml_element, test_property)) { return; } internal::MutexLock lock(&test_properties_mutex_); const std::vector::iterator property_with_matching_key = std::find_if(test_properties_.begin(), test_properties_.end(), internal::TestPropertyKeyIs(test_property.key())); if (property_with_matching_key == test_properties_.end()) { test_properties_.push_back(test_property); return; } property_with_matching_key->SetValue(test_property.value()); } // The list of reserved attributes used in the element of XML // output. static const char* const kReservedTestSuitesAttributes[] = { "disabled", "errors", "failures", "name", "random_seed", "tests", "time", "timestamp"}; // The list of reserved attributes used in the element of XML // output. static const char* const kReservedTestSuiteAttributes[] = { "disabled", "errors", "failures", "name", "tests", "time", "timestamp", "skipped"}; // The list of reserved attributes used in the element of XML output. static const char* const kReservedTestCaseAttributes[] = { "classname", "name", "status", "time", "type_param", "value_param", "file", "line"}; // Use a slightly different set for allowed output to ensure existing tests can // still RecordProperty("result") or "RecordProperty(timestamp") static const char* const kReservedOutputTestCaseAttributes[] = { "classname", "name", "status", "time", "type_param", "value_param", "file", "line", "result", "timestamp"}; template std::vector ArrayAsVector(const char* const (&array)[kSize]) { return std::vector(array, array + kSize); } static std::vector GetReservedAttributesForElement( const std::string& xml_element) { if (xml_element == "testsuites") { return ArrayAsVector(kReservedTestSuitesAttributes); } else if (xml_element == "testsuite") { return ArrayAsVector(kReservedTestSuiteAttributes); } else if (xml_element == "testcase") { return ArrayAsVector(kReservedTestCaseAttributes); } else { GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element; } // This code is unreachable but some compilers may not realizes that. return std::vector(); } #if GTEST_HAS_FILE_SYSTEM // TODO(jdesprez): Merge the two getReserved attributes once skip is improved // This function is only used when file systems are enabled. static std::vector GetReservedOutputAttributesForElement( const std::string& xml_element) { if (xml_element == "testsuites") { return ArrayAsVector(kReservedTestSuitesAttributes); } else if (xml_element == "testsuite") { return ArrayAsVector(kReservedTestSuiteAttributes); } else if (xml_element == "testcase") { return ArrayAsVector(kReservedOutputTestCaseAttributes); } else { GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element; } // This code is unreachable but some compilers may not realizes that. return std::vector(); } #endif static std::string FormatWordList(const std::vector& words) { Message word_list; for (size_t i = 0; i < words.size(); ++i) { if (i > 0 && words.size() > 2) { word_list << ", "; } if (i == words.size() - 1) { word_list << "and "; } word_list << "'" << words[i] << "'"; } return word_list.GetString(); } static bool ValidateTestPropertyName( const std::string& property_name, const std::vector& reserved_names) { if (std::find(reserved_names.begin(), reserved_names.end(), property_name) != reserved_names.end()) { ADD_FAILURE() << "Reserved key used in RecordProperty(): " << property_name << " (" << FormatWordList(reserved_names) << " are reserved by " << GTEST_NAME_ << ")"; return false; } return true; } // Adds a failure if the key is a reserved attribute of the element named // xml_element. Returns true if the property is valid. bool TestResult::ValidateTestProperty(const std::string& xml_element, const TestProperty& test_property) { return ValidateTestPropertyName(test_property.key(), GetReservedAttributesForElement(xml_element)); } // Clears the object. void TestResult::Clear() { test_part_results_.clear(); test_properties_.clear(); death_test_count_ = 0; elapsed_time_ = 0; } // Returns true off the test part was skipped. static bool TestPartSkipped(const TestPartResult& result) { return result.skipped(); } // Returns true if and only if the test was skipped. bool TestResult::Skipped() const { return !Failed() && CountIf(test_part_results_, TestPartSkipped) > 0; } // Returns true if and only if the test failed. bool TestResult::Failed() const { for (int i = 0; i < total_part_count(); ++i) { if (GetTestPartResult(i).failed()) return true; } return false; } // Returns true if and only if the test part fatally failed. static bool TestPartFatallyFailed(const TestPartResult& result) { return result.fatally_failed(); } // Returns true if and only if the test fatally failed. bool TestResult::HasFatalFailure() const { return CountIf(test_part_results_, TestPartFatallyFailed) > 0; } // Returns true if and only if the test part non-fatally failed. static bool TestPartNonfatallyFailed(const TestPartResult& result) { return result.nonfatally_failed(); } // Returns true if and only if the test has a non-fatal failure. bool TestResult::HasNonfatalFailure() const { return CountIf(test_part_results_, TestPartNonfatallyFailed) > 0; } // Gets the number of all test parts. This is the sum of the number // of successful test parts and the number of failed test parts. int TestResult::total_part_count() const { return static_cast(test_part_results_.size()); } // Returns the number of the test properties. int TestResult::test_property_count() const { return static_cast(test_properties_.size()); } // class Test // Creates a Test object. // The c'tor saves the states of all flags. Test::Test() : gtest_flag_saver_(new GTEST_FLAG_SAVER_) {} // The d'tor restores the states of all flags. The actual work is // done by the d'tor of the gtest_flag_saver_ field, and thus not // visible here. Test::~Test() = default; // Sets up the test fixture. // // A sub-class may override this. void Test::SetUp() {} // Tears down the test fixture. // // A sub-class may override this. void Test::TearDown() {} // Allows user supplied key value pairs to be recorded for later output. void Test::RecordProperty(const std::string& key, const std::string& value) { UnitTest::GetInstance()->RecordProperty(key, value); } namespace internal { void ReportFailureInUnknownLocation(TestPartResult::Type result_type, const std::string& message) { // This function is a friend of UnitTest and as such has access to // AddTestPartResult. UnitTest::GetInstance()->AddTestPartResult( result_type, nullptr, // No info about the source file where the exception occurred. -1, // We have no info on which line caused the exception. message, ""); // No stack trace, either. } } // namespace internal // Google Test requires all tests in the same test suite to use the same test // fixture class. This function checks if the current test has the // same fixture class as the first test in the current test suite. If // yes, it returns true; otherwise it generates a Google Test failure and // returns false. bool Test::HasSameFixtureClass() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); const TestSuite* const test_suite = impl->current_test_suite(); // Info about the first test in the current test suite. const TestInfo* const first_test_info = test_suite->test_info_list()[0]; const internal::TypeId first_fixture_id = first_test_info->fixture_class_id_; const char* const first_test_name = first_test_info->name(); // Info about the current test. const TestInfo* const this_test_info = impl->current_test_info(); const internal::TypeId this_fixture_id = this_test_info->fixture_class_id_; const char* const this_test_name = this_test_info->name(); if (this_fixture_id != first_fixture_id) { // Is the first test defined using TEST? const bool first_is_TEST = first_fixture_id == internal::GetTestTypeId(); // Is this test defined using TEST? const bool this_is_TEST = this_fixture_id == internal::GetTestTypeId(); if (first_is_TEST || this_is_TEST) { // Both TEST and TEST_F appear in same test suite, which is incorrect. // Tell the user how to fix this. // Gets the name of the TEST and the name of the TEST_F. Note // that first_is_TEST and this_is_TEST cannot both be true, as // the fixture IDs are different for the two tests. const char* const TEST_name = first_is_TEST ? first_test_name : this_test_name; const char* const TEST_F_name = first_is_TEST ? this_test_name : first_test_name; ADD_FAILURE() << "All tests in the same test suite must use the same test fixture\n" << "class, so mixing TEST_F and TEST in the same test suite is\n" << "illegal. In test suite " << this_test_info->test_suite_name() << ",\n" << "test " << TEST_F_name << " is defined using TEST_F but\n" << "test " << TEST_name << " is defined using TEST. You probably\n" << "want to change the TEST to TEST_F or move it to another test\n" << "case."; } else { // Two fixture classes with the same name appear in two different // namespaces, which is not allowed. Tell the user how to fix this. ADD_FAILURE() << "All tests in the same test suite must use the same test fixture\n" << "class. However, in test suite " << this_test_info->test_suite_name() << ",\n" << "you defined test " << first_test_name << " and test " << this_test_name << "\n" << "using two different test fixture classes. This can happen if\n" << "the two classes are from different namespaces or translation\n" << "units and have the same name. You should probably rename one\n" << "of the classes to put the tests into different test suites."; } return false; } return true; } namespace internal { #if GTEST_HAS_EXCEPTIONS // Adds an "exception thrown" fatal failure to the current test. static std::string FormatCxxExceptionMessage(const char* description, const char* location) { Message message; if (description != nullptr) { message << "C++ exception with description \"" << description << "\""; } else { message << "Unknown C++ exception"; } message << " thrown in " << location << "."; return message.GetString(); } static std::string PrintTestPartResultToString( const TestPartResult& test_part_result); GoogleTestFailureException::GoogleTestFailureException( const TestPartResult& failure) : ::std::runtime_error(PrintTestPartResultToString(failure).c_str()) {} #endif // GTEST_HAS_EXCEPTIONS // We put these helper functions in the internal namespace as IBM's xlC // compiler rejects the code if they were declared static. // Runs the given method and handles SEH exceptions it throws, when // SEH is supported; returns the 0-value for type Result in case of an // SEH exception. (Microsoft compilers cannot handle SEH and C++ // exceptions in the same function. Therefore, we provide a separate // wrapper function for handling SEH exceptions.) template Result HandleSehExceptionsInMethodIfSupported(T* object, Result (T::*method)(), const char* location) { #if GTEST_HAS_SEH __try { return (object->*method)(); } __except (internal::UnitTestOptions::GTestProcessSEH( // NOLINT GetExceptionCode(), location)) { return static_cast(0); } #else (void)location; return (object->*method)(); #endif // GTEST_HAS_SEH } // Runs the given method and catches and reports C++ and/or SEH-style // exceptions, if they are supported; returns the 0-value for type // Result in case of an SEH exception. template Result HandleExceptionsInMethodIfSupported(T* object, Result (T::*method)(), const char* location) { // NOTE: The user code can affect the way in which Google Test handles // exceptions by setting GTEST_FLAG(catch_exceptions), but only before // RUN_ALL_TESTS() starts. It is technically possible to check the flag // after the exception is caught and either report or re-throw the // exception based on the flag's value: // // try { // // Perform the test method. // } catch (...) { // if (GTEST_FLAG_GET(catch_exceptions)) // // Report the exception as failure. // else // throw; // Re-throws the original exception. // } // // However, the purpose of this flag is to allow the program to drop into // the debugger when the exception is thrown. On most platforms, once the // control enters the catch block, the exception origin information is // lost and the debugger will stop the program at the point of the // re-throw in this function -- instead of at the point of the original // throw statement in the code under test. For this reason, we perform // the check early, sacrificing the ability to affect Google Test's // exception handling in the method where the exception is thrown. if (internal::GetUnitTestImpl()->catch_exceptions()) { #if GTEST_HAS_EXCEPTIONS try { return HandleSehExceptionsInMethodIfSupported(object, method, location); } catch (const AssertionException&) { // NOLINT // This failure was reported already. } catch (const internal::GoogleTestFailureException&) { // NOLINT // This exception type can only be thrown by a failed Google // Test assertion with the intention of letting another testing // framework catch it. Therefore we just re-throw it. throw; } catch (const std::exception& e) { // NOLINT internal::ReportFailureInUnknownLocation( TestPartResult::kFatalFailure, FormatCxxExceptionMessage(e.what(), location)); } catch (...) { // NOLINT internal::ReportFailureInUnknownLocation( TestPartResult::kFatalFailure, FormatCxxExceptionMessage(nullptr, location)); } return static_cast(0); #else return HandleSehExceptionsInMethodIfSupported(object, method, location); #endif // GTEST_HAS_EXCEPTIONS } else { return (object->*method)(); } } } // namespace internal // Runs the test and updates the test result. void Test::Run() { if (!HasSameFixtureClass()) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported(this, &Test::SetUp, "SetUp()"); // We will run the test only if SetUp() was successful and didn't call // GTEST_SKIP(). if (!HasFatalFailure() && !IsSkipped()) { impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported(this, &Test::TestBody, "the test body"); } // However, we want to clean up as much as possible. Hence we will // always call TearDown(), even if SetUp() or the test body has // failed. impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported(this, &Test::TearDown, "TearDown()"); } // Returns true if and only if the current test has a fatal failure. bool Test::HasFatalFailure() { return internal::GetUnitTestImpl()->current_test_result()->HasFatalFailure(); } // Returns true if and only if the current test has a non-fatal failure. bool Test::HasNonfatalFailure() { return internal::GetUnitTestImpl() ->current_test_result() ->HasNonfatalFailure(); } // Returns true if and only if the current test was skipped. bool Test::IsSkipped() { return internal::GetUnitTestImpl()->current_test_result()->Skipped(); } // class TestInfo // Constructs a TestInfo object. It assumes ownership of the test factory // object. TestInfo::TestInfo(const std::string& a_test_suite_name, const std::string& a_name, const char* a_type_param, const char* a_value_param, internal::CodeLocation a_code_location, internal::TypeId fixture_class_id, internal::TestFactoryBase* factory) : test_suite_name_(a_test_suite_name), // begin()/end() is MSVC 17.3.3 ASAN crash workaround (GitHub issue #3997) name_(a_name.begin(), a_name.end()), type_param_(a_type_param ? new std::string(a_type_param) : nullptr), value_param_(a_value_param ? new std::string(a_value_param) : nullptr), location_(a_code_location), fixture_class_id_(fixture_class_id), should_run_(false), is_disabled_(false), matches_filter_(false), is_in_another_shard_(false), factory_(factory), result_() {} // Destructs a TestInfo object. TestInfo::~TestInfo() { delete factory_; } namespace internal { // Creates a new TestInfo object and registers it with Google Test; // returns the created object. // // Arguments: // // test_suite_name: name of the test suite // name: name of the test // type_param: the name of the test's type parameter, or NULL if // this is not a typed or a type-parameterized test. // value_param: text representation of the test's value parameter, // or NULL if this is not a value-parameterized test. // code_location: code location where the test is defined // fixture_class_id: ID of the test fixture class // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite // factory: pointer to the factory that creates a test object. // The newly created TestInfo instance will assume // ownership of the factory object. TestInfo* MakeAndRegisterTestInfo( const char* test_suite_name, const char* name, const char* type_param, const char* value_param, CodeLocation code_location, TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc, TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory) { TestInfo* const test_info = new TestInfo(test_suite_name, name, type_param, value_param, code_location, fixture_class_id, factory); GetUnitTestImpl()->AddTestInfo(set_up_tc, tear_down_tc, test_info); return test_info; } void ReportInvalidTestSuiteType(const char* test_suite_name, CodeLocation code_location) { Message errors; errors << "Attempted redefinition of test suite " << test_suite_name << ".\n" << "All tests in the same test suite must use the same test fixture\n" << "class. However, in test suite " << test_suite_name << ", you tried\n" << "to define a test using a fixture class different from the one\n" << "used earlier. This can happen if the two fixture classes are\n" << "from different namespaces and have the same name. You should\n" << "probably rename one of the classes to put the tests into different\n" << "test suites."; GTEST_LOG_(ERROR) << FormatFileLocation(code_location.file.c_str(), code_location.line) << " " << errors.GetString(); } // This method expands all parameterized tests registered with macros TEST_P // and INSTANTIATE_TEST_SUITE_P into regular tests and registers those. // This will be done just once during the program runtime. void UnitTestImpl::RegisterParameterizedTests() { if (!parameterized_tests_registered_) { parameterized_test_registry_.RegisterTests(); type_parameterized_test_registry_.CheckForInstantiations(); parameterized_tests_registered_ = true; } } } // namespace internal // Creates the test object, runs it, records its result, and then // deletes it. void TestInfo::Run() { TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); if (!should_run_) { if (is_disabled_ && matches_filter_) repeater->OnTestDisabled(*this); return; } // Tells UnitTest where to store test result. internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_info(this); // Notifies the unit test event listeners that a test is about to start. repeater->OnTestStart(*this); result_.set_start_timestamp(internal::GetTimeInMillis()); internal::Timer timer; impl->os_stack_trace_getter()->UponLeavingGTest(); // Creates the test object. Test* const test = internal::HandleExceptionsInMethodIfSupported( factory_, &internal::TestFactoryBase::CreateTest, "the test fixture's constructor"); // Runs the test if the constructor didn't generate a fatal failure or invoke // GTEST_SKIP(). // Note that the object will not be null if (!Test::HasFatalFailure() && !Test::IsSkipped()) { // This doesn't throw as all user code that can throw are wrapped into // exception handling code. test->Run(); } if (test != nullptr) { // Deletes the test object. impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( test, &Test::DeleteSelf_, "the test fixture's destructor"); } result_.set_elapsed_time(timer.Elapsed()); // Notifies the unit test event listener that a test has just finished. repeater->OnTestEnd(*this); // Tells UnitTest to stop associating assertion results to this // test. impl->set_current_test_info(nullptr); } // Skip and records a skipped test result for this object. void TestInfo::Skip() { if (!should_run_) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_info(this); TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); // Notifies the unit test event listeners that a test is about to start. repeater->OnTestStart(*this); const TestPartResult test_part_result = TestPartResult(TestPartResult::kSkip, this->file(), this->line(), ""); impl->GetTestPartResultReporterForCurrentThread()->ReportTestPartResult( test_part_result); // Notifies the unit test event listener that a test has just finished. repeater->OnTestEnd(*this); impl->set_current_test_info(nullptr); } // class TestSuite // Gets the number of successful tests in this test suite. int TestSuite::successful_test_count() const { return CountIf(test_info_list_, TestPassed); } // Gets the number of successful tests in this test suite. int TestSuite::skipped_test_count() const { return CountIf(test_info_list_, TestSkipped); } // Gets the number of failed tests in this test suite. int TestSuite::failed_test_count() const { return CountIf(test_info_list_, TestFailed); } // Gets the number of disabled tests that will be reported in the XML report. int TestSuite::reportable_disabled_test_count() const { return CountIf(test_info_list_, TestReportableDisabled); } // Gets the number of disabled tests in this test suite. int TestSuite::disabled_test_count() const { return CountIf(test_info_list_, TestDisabled); } // Gets the number of tests to be printed in the XML report. int TestSuite::reportable_test_count() const { return CountIf(test_info_list_, TestReportable); } // Get the number of tests in this test suite that should run. int TestSuite::test_to_run_count() const { return CountIf(test_info_list_, ShouldRunTest); } // Gets the number of all tests. int TestSuite::total_test_count() const { return static_cast(test_info_list_.size()); } // Creates a TestSuite with the given name. // // Arguments: // // a_name: name of the test suite // a_type_param: the name of the test suite's type parameter, or NULL if // this is not a typed or a type-parameterized test suite. // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite TestSuite::TestSuite(const char* a_name, const char* a_type_param, internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc) : name_(a_name), type_param_(a_type_param ? new std::string(a_type_param) : nullptr), set_up_tc_(set_up_tc), tear_down_tc_(tear_down_tc), should_run_(false), start_timestamp_(0), elapsed_time_(0) {} // Destructor of TestSuite. TestSuite::~TestSuite() { // Deletes every Test in the collection. ForEach(test_info_list_, internal::Delete); } // Returns the i-th test among all the tests. i can range from 0 to // total_test_count() - 1. If i is not in that range, returns NULL. const TestInfo* TestSuite::GetTestInfo(int i) const { const int index = GetElementOr(test_indices_, i, -1); return index < 0 ? nullptr : test_info_list_[static_cast(index)]; } // Returns the i-th test among all the tests. i can range from 0 to // total_test_count() - 1. If i is not in that range, returns NULL. TestInfo* TestSuite::GetMutableTestInfo(int i) { const int index = GetElementOr(test_indices_, i, -1); return index < 0 ? nullptr : test_info_list_[static_cast(index)]; } // Adds a test to this test suite. Will delete the test upon // destruction of the TestSuite object. void TestSuite::AddTestInfo(TestInfo* test_info) { test_info_list_.push_back(test_info); test_indices_.push_back(static_cast(test_indices_.size())); } // Runs every test in this TestSuite. void TestSuite::Run() { if (!should_run_) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_suite(this); TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); // Ensure our tests are in a deterministic order. // // We do this by sorting lexicographically on (file, line number), providing // an order matching what the user can see in the source code. // // In the common case the line number comparison shouldn't be necessary, // because the registrations made by the TEST macro are executed in order // within a translation unit. But this is not true of the manual registration // API, and in more exotic scenarios a single file may be part of multiple // translation units. std::stable_sort(test_info_list_.begin(), test_info_list_.end(), [](const TestInfo* const a, const TestInfo* const b) { if (const int result = std::strcmp(a->file(), b->file())) { return result < 0; } return a->line() < b->line(); }); // Call both legacy and the new API repeater->OnTestSuiteStart(*this); // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ repeater->OnTestCaseStart(*this); #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &TestSuite::RunSetUpTestSuite, "SetUpTestSuite()"); const bool skip_all = ad_hoc_test_result().Failed() || ad_hoc_test_result().Skipped(); start_timestamp_ = internal::GetTimeInMillis(); internal::Timer timer; for (int i = 0; i < total_test_count(); i++) { if (skip_all) { GetMutableTestInfo(i)->Skip(); } else { GetMutableTestInfo(i)->Run(); } if (GTEST_FLAG_GET(fail_fast) && GetMutableTestInfo(i)->result()->Failed()) { for (int j = i + 1; j < total_test_count(); j++) { GetMutableTestInfo(j)->Skip(); } break; } } elapsed_time_ = timer.Elapsed(); impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &TestSuite::RunTearDownTestSuite, "TearDownTestSuite()"); // Call both legacy and the new API repeater->OnTestSuiteEnd(*this); // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ repeater->OnTestCaseEnd(*this); #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ impl->set_current_test_suite(nullptr); } // Skips all tests under this TestSuite. void TestSuite::Skip() { if (!should_run_) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_suite(this); TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); // Call both legacy and the new API repeater->OnTestSuiteStart(*this); // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ repeater->OnTestCaseStart(*this); #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ for (int i = 0; i < total_test_count(); i++) { GetMutableTestInfo(i)->Skip(); } // Call both legacy and the new API repeater->OnTestSuiteEnd(*this); // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ repeater->OnTestCaseEnd(*this); #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ impl->set_current_test_suite(nullptr); } // Clears the results of all tests in this test suite. void TestSuite::ClearResult() { ad_hoc_test_result_.Clear(); ForEach(test_info_list_, TestInfo::ClearTestResult); } // Shuffles the tests in this test suite. void TestSuite::ShuffleTests(internal::Random* random) { Shuffle(random, &test_indices_); } // Restores the test order to before the first shuffle. void TestSuite::UnshuffleTests() { for (size_t i = 0; i < test_indices_.size(); i++) { test_indices_[i] = static_cast(i); } } // Formats a countable noun. Depending on its quantity, either the // singular form or the plural form is used. e.g. // // FormatCountableNoun(1, "formula", "formuli") returns "1 formula". // FormatCountableNoun(5, "book", "books") returns "5 books". static std::string FormatCountableNoun(int count, const char* singular_form, const char* plural_form) { return internal::StreamableToString(count) + " " + (count == 1 ? singular_form : plural_form); } // Formats the count of tests. static std::string FormatTestCount(int test_count) { return FormatCountableNoun(test_count, "test", "tests"); } // Formats the count of test suites. static std::string FormatTestSuiteCount(int test_suite_count) { return FormatCountableNoun(test_suite_count, "test suite", "test suites"); } // Converts a TestPartResult::Type enum to human-friendly string // representation. Both kNonFatalFailure and kFatalFailure are translated // to "Failure", as the user usually doesn't care about the difference // between the two when viewing the test result. static const char* TestPartResultTypeToString(TestPartResult::Type type) { switch (type) { case TestPartResult::kSkip: return "Skipped\n"; case TestPartResult::kSuccess: return "Success"; case TestPartResult::kNonFatalFailure: case TestPartResult::kFatalFailure: #ifdef _MSC_VER return "error: "; #else return "Failure\n"; #endif default: return "Unknown result type"; } } namespace internal { namespace { enum class GTestColor { kDefault, kRed, kGreen, kYellow }; } // namespace // Prints a TestPartResult to an std::string. static std::string PrintTestPartResultToString( const TestPartResult& test_part_result) { return (Message() << internal::FormatFileLocation( test_part_result.file_name(), test_part_result.line_number()) << " " << TestPartResultTypeToString(test_part_result.type()) << test_part_result.message()) .GetString(); } // Prints a TestPartResult. static void PrintTestPartResult(const TestPartResult& test_part_result) { const std::string& result = PrintTestPartResultToString(test_part_result); printf("%s\n", result.c_str()); fflush(stdout); // If the test program runs in Visual Studio or a debugger, the // following statements add the test part result message to the Output // window such that the user can double-click on it to jump to the // corresponding source code location; otherwise they do nothing. #if defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_WINDOWS_MOBILE) // We don't call OutputDebugString*() on Windows Mobile, as printing // to stdout is done by OutputDebugString() there already - we don't // want the same message printed twice. ::OutputDebugStringA(result.c_str()); ::OutputDebugStringA("\n"); #endif } // class PrettyUnitTestResultPrinter #if defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_WINDOWS_MOBILE) && \ !defined(GTEST_OS_WINDOWS_PHONE) && !defined(GTEST_OS_WINDOWS_RT) && \ !defined(GTEST_OS_WINDOWS_MINGW) // Returns the character attribute for the given color. static WORD GetColorAttribute(GTestColor color) { switch (color) { case GTestColor::kRed: return FOREGROUND_RED; case GTestColor::kGreen: return FOREGROUND_GREEN; case GTestColor::kYellow: return FOREGROUND_RED | FOREGROUND_GREEN; default: return 0; } } static int GetBitOffset(WORD color_mask) { if (color_mask == 0) return 0; int bitOffset = 0; while ((color_mask & 1) == 0) { color_mask >>= 1; ++bitOffset; } return bitOffset; } static WORD GetNewColor(GTestColor color, WORD old_color_attrs) { // Let's reuse the BG static const WORD background_mask = BACKGROUND_BLUE | BACKGROUND_GREEN | BACKGROUND_RED | BACKGROUND_INTENSITY; static const WORD foreground_mask = FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_INTENSITY; const WORD existing_bg = old_color_attrs & background_mask; WORD new_color = GetColorAttribute(color) | existing_bg | FOREGROUND_INTENSITY; static const int bg_bitOffset = GetBitOffset(background_mask); static const int fg_bitOffset = GetBitOffset(foreground_mask); if (((new_color & background_mask) >> bg_bitOffset) == ((new_color & foreground_mask) >> fg_bitOffset)) { new_color ^= FOREGROUND_INTENSITY; // invert intensity } return new_color; } #else // Returns the ANSI color code for the given color. GTestColor::kDefault is // an invalid input. static const char* GetAnsiColorCode(GTestColor color) { switch (color) { case GTestColor::kRed: return "1"; case GTestColor::kGreen: return "2"; case GTestColor::kYellow: return "3"; default: assert(false); return "9"; } } #endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE // Returns true if and only if Google Test should use colors in the output. bool ShouldUseColor(bool stdout_is_tty) { std::string c = GTEST_FLAG_GET(color); const char* const gtest_color = c.c_str(); if (String::CaseInsensitiveCStringEquals(gtest_color, "auto")) { #if defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_WINDOWS_MINGW) // On Windows the TERM variable is usually not set, but the // console there does support colors. return stdout_is_tty; #else // On non-Windows platforms, we rely on the TERM variable. const char* const term = posix::GetEnv("TERM"); const bool term_supports_color = term != nullptr && (String::CStringEquals(term, "xterm") || String::CStringEquals(term, "xterm-color") || String::CStringEquals(term, "xterm-kitty") || String::CStringEquals(term, "screen") || String::CStringEquals(term, "tmux") || String::CStringEquals(term, "rxvt-unicode") || String::CStringEquals(term, "linux") || String::CStringEquals(term, "cygwin") || String::EndsWithCaseInsensitive(term, "-256color")); return stdout_is_tty && term_supports_color; #endif // GTEST_OS_WINDOWS } return String::CaseInsensitiveCStringEquals(gtest_color, "yes") || String::CaseInsensitiveCStringEquals(gtest_color, "true") || String::CaseInsensitiveCStringEquals(gtest_color, "t") || String::CStringEquals(gtest_color, "1"); // We take "yes", "true", "t", and "1" as meaning "yes". If the // value is neither one of these nor "auto", we treat it as "no" to // be conservative. } // Helpers for printing colored strings to stdout. Note that on Windows, we // cannot simply emit special characters and have the terminal change colors. // This routine must actually emit the characters rather than return a string // that would be colored when printed, as can be done on Linux. GTEST_ATTRIBUTE_PRINTF_(2, 3) static void ColoredPrintf(GTestColor color, const char* fmt, ...) { va_list args; va_start(args, fmt); static const bool in_color_mode = #if GTEST_HAS_FILE_SYSTEM ShouldUseColor(posix::IsATTY(posix::FileNo(stdout)) != 0); #else false; #endif // GTEST_HAS_FILE_SYSTEM const bool use_color = in_color_mode && (color != GTestColor::kDefault); if (!use_color) { vprintf(fmt, args); va_end(args); return; } #if defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_WINDOWS_MOBILE) && \ !defined(GTEST_OS_WINDOWS_PHONE) && !defined(GTEST_OS_WINDOWS_RT) && \ !defined(GTEST_OS_WINDOWS_MINGW) const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE); // Gets the current text color. CONSOLE_SCREEN_BUFFER_INFO buffer_info; GetConsoleScreenBufferInfo(stdout_handle, &buffer_info); const WORD old_color_attrs = buffer_info.wAttributes; const WORD new_color = GetNewColor(color, old_color_attrs); // We need to flush the stream buffers into the console before each // SetConsoleTextAttribute call lest it affect the text that is already // printed but has not yet reached the console. fflush(stdout); SetConsoleTextAttribute(stdout_handle, new_color); vprintf(fmt, args); fflush(stdout); // Restores the text color. SetConsoleTextAttribute(stdout_handle, old_color_attrs); #else printf("\033[0;3%sm", GetAnsiColorCode(color)); vprintf(fmt, args); printf("\033[m"); // Resets the terminal to default. #endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE va_end(args); } // Text printed in Google Test's text output and --gtest_list_tests // output to label the type parameter and value parameter for a test. static const char kTypeParamLabel[] = "TypeParam"; static const char kValueParamLabel[] = "GetParam()"; static void PrintFullTestCommentIfPresent(const TestInfo& test_info) { const char* const type_param = test_info.type_param(); const char* const value_param = test_info.value_param(); if (type_param != nullptr || value_param != nullptr) { printf(", where "); if (type_param != nullptr) { printf("%s = %s", kTypeParamLabel, type_param); if (value_param != nullptr) printf(" and "); } if (value_param != nullptr) { printf("%s = %s", kValueParamLabel, value_param); } } } // This class implements the TestEventListener interface. // // Class PrettyUnitTestResultPrinter is copyable. class PrettyUnitTestResultPrinter : public TestEventListener { public: PrettyUnitTestResultPrinter() = default; static void PrintTestName(const char* test_suite, const char* test) { printf("%s.%s", test_suite, test); } // The following methods override what's in the TestEventListener class. void OnTestProgramStart(const UnitTest& /*unit_test*/) override {} void OnTestIterationStart(const UnitTest& unit_test, int iteration) override; void OnEnvironmentsSetUpStart(const UnitTest& unit_test) override; void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) override {} #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseStart(const TestCase& test_case) override; #else void OnTestSuiteStart(const TestSuite& test_suite) override; #endif // OnTestCaseStart void OnTestStart(const TestInfo& test_info) override; void OnTestDisabled(const TestInfo& test_info) override; void OnTestPartResult(const TestPartResult& result) override; void OnTestEnd(const TestInfo& test_info) override; #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseEnd(const TestCase& test_case) override; #else void OnTestSuiteEnd(const TestSuite& test_suite) override; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnEnvironmentsTearDownStart(const UnitTest& unit_test) override; void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) override {} void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {} private: static void PrintFailedTests(const UnitTest& unit_test); static void PrintFailedTestSuites(const UnitTest& unit_test); static void PrintSkippedTests(const UnitTest& unit_test); }; // Fired before each iteration of tests starts. void PrettyUnitTestResultPrinter::OnTestIterationStart( const UnitTest& unit_test, int iteration) { if (GTEST_FLAG_GET(repeat) != 1) printf("\nRepeating all tests (iteration %d) . . .\n\n", iteration + 1); std::string f = GTEST_FLAG_GET(filter); const char* const filter = f.c_str(); // Prints the filter if it's not *. This reminds the user that some // tests may be skipped. if (!String::CStringEquals(filter, kUniversalFilter)) { ColoredPrintf(GTestColor::kYellow, "Note: %s filter = %s\n", GTEST_NAME_, filter); } if (internal::ShouldShard(kTestTotalShards, kTestShardIndex, false)) { const int32_t shard_index = Int32FromEnvOrDie(kTestShardIndex, -1); ColoredPrintf(GTestColor::kYellow, "Note: This is test shard %d of %s.\n", static_cast(shard_index) + 1, internal::posix::GetEnv(kTestTotalShards)); } if (GTEST_FLAG_GET(shuffle)) { ColoredPrintf(GTestColor::kYellow, "Note: Randomizing tests' orders with a seed of %d .\n", unit_test.random_seed()); } ColoredPrintf(GTestColor::kGreen, "[==========] "); printf("Running %s from %s.\n", FormatTestCount(unit_test.test_to_run_count()).c_str(), FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str()); fflush(stdout); } void PrettyUnitTestResultPrinter::OnEnvironmentsSetUpStart( const UnitTest& /*unit_test*/) { ColoredPrintf(GTestColor::kGreen, "[----------] "); printf("Global test environment set-up.\n"); fflush(stdout); } #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void PrettyUnitTestResultPrinter::OnTestCaseStart(const TestCase& test_case) { const std::string counts = FormatCountableNoun(test_case.test_to_run_count(), "test", "tests"); ColoredPrintf(GTestColor::kGreen, "[----------] "); printf("%s from %s", counts.c_str(), test_case.name()); if (test_case.type_param() == nullptr) { printf("\n"); } else { printf(", where %s = %s\n", kTypeParamLabel, test_case.type_param()); } fflush(stdout); } #else void PrettyUnitTestResultPrinter::OnTestSuiteStart( const TestSuite& test_suite) { const std::string counts = FormatCountableNoun(test_suite.test_to_run_count(), "test", "tests"); ColoredPrintf(GTestColor::kGreen, "[----------] "); printf("%s from %s", counts.c_str(), test_suite.name()); if (test_suite.type_param() == nullptr) { printf("\n"); } else { printf(", where %s = %s\n", kTypeParamLabel, test_suite.type_param()); } fflush(stdout); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void PrettyUnitTestResultPrinter::OnTestStart(const TestInfo& test_info) { ColoredPrintf(GTestColor::kGreen, "[ RUN ] "); PrintTestName(test_info.test_suite_name(), test_info.name()); printf("\n"); fflush(stdout); } void PrettyUnitTestResultPrinter::OnTestDisabled(const TestInfo& test_info) { ColoredPrintf(GTestColor::kYellow, "[ DISABLED ] "); PrintTestName(test_info.test_suite_name(), test_info.name()); printf("\n"); fflush(stdout); } // Called after an assertion failure. void PrettyUnitTestResultPrinter::OnTestPartResult( const TestPartResult& result) { switch (result.type()) { // If the test part succeeded, we don't need to do anything. case TestPartResult::kSuccess: return; default: // Print failure message from the assertion // (e.g. expected this and got that). PrintTestPartResult(result); fflush(stdout); } } void PrettyUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) { if (test_info.result()->Passed()) { ColoredPrintf(GTestColor::kGreen, "[ OK ] "); } else if (test_info.result()->Skipped()) { ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] "); } else { ColoredPrintf(GTestColor::kRed, "[ FAILED ] "); } PrintTestName(test_info.test_suite_name(), test_info.name()); if (test_info.result()->Failed()) PrintFullTestCommentIfPresent(test_info); if (GTEST_FLAG_GET(print_time)) { printf(" (%s ms)\n", internal::StreamableToString(test_info.result()->elapsed_time()) .c_str()); } else { printf("\n"); } fflush(stdout); } #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void PrettyUnitTestResultPrinter::OnTestCaseEnd(const TestCase& test_case) { if (!GTEST_FLAG_GET(print_time)) return; const std::string counts = FormatCountableNoun(test_case.test_to_run_count(), "test", "tests"); ColoredPrintf(GTestColor::kGreen, "[----------] "); printf("%s from %s (%s ms total)\n\n", counts.c_str(), test_case.name(), internal::StreamableToString(test_case.elapsed_time()).c_str()); fflush(stdout); } #else void PrettyUnitTestResultPrinter::OnTestSuiteEnd(const TestSuite& test_suite) { if (!GTEST_FLAG_GET(print_time)) return; const std::string counts = FormatCountableNoun(test_suite.test_to_run_count(), "test", "tests"); ColoredPrintf(GTestColor::kGreen, "[----------] "); printf("%s from %s (%s ms total)\n\n", counts.c_str(), test_suite.name(), internal::StreamableToString(test_suite.elapsed_time()).c_str()); fflush(stdout); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void PrettyUnitTestResultPrinter::OnEnvironmentsTearDownStart( const UnitTest& /*unit_test*/) { ColoredPrintf(GTestColor::kGreen, "[----------] "); printf("Global test environment tear-down\n"); fflush(stdout); } // Internal helper for printing the list of failed tests. void PrettyUnitTestResultPrinter::PrintFailedTests(const UnitTest& unit_test) { const int failed_test_count = unit_test.failed_test_count(); ColoredPrintf(GTestColor::kRed, "[ FAILED ] "); printf("%s, listed below:\n", FormatTestCount(failed_test_count).c_str()); for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { const TestSuite& test_suite = *unit_test.GetTestSuite(i); if (!test_suite.should_run() || (test_suite.failed_test_count() == 0)) { continue; } for (int j = 0; j < test_suite.total_test_count(); ++j) { const TestInfo& test_info = *test_suite.GetTestInfo(j); if (!test_info.should_run() || !test_info.result()->Failed()) { continue; } ColoredPrintf(GTestColor::kRed, "[ FAILED ] "); printf("%s.%s", test_suite.name(), test_info.name()); PrintFullTestCommentIfPresent(test_info); printf("\n"); } } printf("\n%2d FAILED %s\n", failed_test_count, failed_test_count == 1 ? "TEST" : "TESTS"); } // Internal helper for printing the list of test suite failures not covered by // PrintFailedTests. void PrettyUnitTestResultPrinter::PrintFailedTestSuites( const UnitTest& unit_test) { int suite_failure_count = 0; for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { const TestSuite& test_suite = *unit_test.GetTestSuite(i); if (!test_suite.should_run()) { continue; } if (test_suite.ad_hoc_test_result().Failed()) { ColoredPrintf(GTestColor::kRed, "[ FAILED ] "); printf("%s: SetUpTestSuite or TearDownTestSuite\n", test_suite.name()); ++suite_failure_count; } } if (suite_failure_count > 0) { printf("\n%2d FAILED TEST %s\n", suite_failure_count, suite_failure_count == 1 ? "SUITE" : "SUITES"); } } // Internal helper for printing the list of skipped tests. void PrettyUnitTestResultPrinter::PrintSkippedTests(const UnitTest& unit_test) { const int skipped_test_count = unit_test.skipped_test_count(); if (skipped_test_count == 0) { return; } for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { const TestSuite& test_suite = *unit_test.GetTestSuite(i); if (!test_suite.should_run() || (test_suite.skipped_test_count() == 0)) { continue; } for (int j = 0; j < test_suite.total_test_count(); ++j) { const TestInfo& test_info = *test_suite.GetTestInfo(j); if (!test_info.should_run() || !test_info.result()->Skipped()) { continue; } ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] "); printf("%s.%s", test_suite.name(), test_info.name()); printf("\n"); } } } void PrettyUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { ColoredPrintf(GTestColor::kGreen, "[==========] "); printf("%s from %s ran.", FormatTestCount(unit_test.test_to_run_count()).c_str(), FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str()); if (GTEST_FLAG_GET(print_time)) { printf(" (%s ms total)", internal::StreamableToString(unit_test.elapsed_time()).c_str()); } printf("\n"); ColoredPrintf(GTestColor::kGreen, "[ PASSED ] "); printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str()); const int skipped_test_count = unit_test.skipped_test_count(); if (skipped_test_count > 0) { ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] "); printf("%s, listed below:\n", FormatTestCount(skipped_test_count).c_str()); PrintSkippedTests(unit_test); } if (!unit_test.Passed()) { PrintFailedTests(unit_test); PrintFailedTestSuites(unit_test); } int num_disabled = unit_test.reportable_disabled_test_count(); if (num_disabled && !GTEST_FLAG_GET(also_run_disabled_tests)) { if (unit_test.Passed()) { printf("\n"); // Add a spacer if no FAILURE banner is displayed. } ColoredPrintf(GTestColor::kYellow, " YOU HAVE %d DISABLED %s\n\n", num_disabled, num_disabled == 1 ? "TEST" : "TESTS"); } // Ensure that Google Test output is printed before, e.g., heapchecker output. fflush(stdout); } // End PrettyUnitTestResultPrinter // This class implements the TestEventListener interface. // // Class BriefUnitTestResultPrinter is copyable. class BriefUnitTestResultPrinter : public TestEventListener { public: BriefUnitTestResultPrinter() = default; static void PrintTestName(const char* test_suite, const char* test) { printf("%s.%s", test_suite, test); } // The following methods override what's in the TestEventListener class. void OnTestProgramStart(const UnitTest& /*unit_test*/) override {} void OnTestIterationStart(const UnitTest& /*unit_test*/, int /*iteration*/) override {} void OnEnvironmentsSetUpStart(const UnitTest& /*unit_test*/) override {} void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) override {} #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseStart(const TestCase& /*test_case*/) override {} #else void OnTestSuiteStart(const TestSuite& /*test_suite*/) override {} #endif // OnTestCaseStart void OnTestStart(const TestInfo& /*test_info*/) override {} void OnTestDisabled(const TestInfo& /*test_info*/) override {} void OnTestPartResult(const TestPartResult& result) override; void OnTestEnd(const TestInfo& test_info) override; #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseEnd(const TestCase& /*test_case*/) override {} #else void OnTestSuiteEnd(const TestSuite& /*test_suite*/) override {} #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnEnvironmentsTearDownStart(const UnitTest& /*unit_test*/) override {} void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) override {} void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {} }; // Called after an assertion failure. void BriefUnitTestResultPrinter::OnTestPartResult( const TestPartResult& result) { switch (result.type()) { // If the test part succeeded, we don't need to do anything. case TestPartResult::kSuccess: return; default: // Print failure message from the assertion // (e.g. expected this and got that). PrintTestPartResult(result); fflush(stdout); } } void BriefUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) { if (test_info.result()->Failed()) { ColoredPrintf(GTestColor::kRed, "[ FAILED ] "); PrintTestName(test_info.test_suite_name(), test_info.name()); PrintFullTestCommentIfPresent(test_info); if (GTEST_FLAG_GET(print_time)) { printf(" (%s ms)\n", internal::StreamableToString(test_info.result()->elapsed_time()) .c_str()); } else { printf("\n"); } fflush(stdout); } } void BriefUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { ColoredPrintf(GTestColor::kGreen, "[==========] "); printf("%s from %s ran.", FormatTestCount(unit_test.test_to_run_count()).c_str(), FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str()); if (GTEST_FLAG_GET(print_time)) { printf(" (%s ms total)", internal::StreamableToString(unit_test.elapsed_time()).c_str()); } printf("\n"); ColoredPrintf(GTestColor::kGreen, "[ PASSED ] "); printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str()); const int skipped_test_count = unit_test.skipped_test_count(); if (skipped_test_count > 0) { ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] "); printf("%s.\n", FormatTestCount(skipped_test_count).c_str()); } int num_disabled = unit_test.reportable_disabled_test_count(); if (num_disabled && !GTEST_FLAG_GET(also_run_disabled_tests)) { if (unit_test.Passed()) { printf("\n"); // Add a spacer if no FAILURE banner is displayed. } ColoredPrintf(GTestColor::kYellow, " YOU HAVE %d DISABLED %s\n\n", num_disabled, num_disabled == 1 ? "TEST" : "TESTS"); } // Ensure that Google Test output is printed before, e.g., heapchecker output. fflush(stdout); } // End BriefUnitTestResultPrinter // class TestEventRepeater // // This class forwards events to other event listeners. class TestEventRepeater : public TestEventListener { public: TestEventRepeater() : forwarding_enabled_(true) {} ~TestEventRepeater() override; void Append(TestEventListener* listener); TestEventListener* Release(TestEventListener* listener); // Controls whether events will be forwarded to listeners_. Set to false // in death test child processes. bool forwarding_enabled() const { return forwarding_enabled_; } void set_forwarding_enabled(bool enable) { forwarding_enabled_ = enable; } void OnTestProgramStart(const UnitTest& parameter) override; void OnTestIterationStart(const UnitTest& unit_test, int iteration) override; void OnEnvironmentsSetUpStart(const UnitTest& parameter) override; void OnEnvironmentsSetUpEnd(const UnitTest& parameter) override; // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseStart(const TestSuite& parameter) override; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestSuiteStart(const TestSuite& parameter) override; void OnTestStart(const TestInfo& parameter) override; void OnTestDisabled(const TestInfo& parameter) override; void OnTestPartResult(const TestPartResult& parameter) override; void OnTestEnd(const TestInfo& parameter) override; // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseEnd(const TestCase& parameter) override; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestSuiteEnd(const TestSuite& parameter) override; void OnEnvironmentsTearDownStart(const UnitTest& parameter) override; void OnEnvironmentsTearDownEnd(const UnitTest& parameter) override; void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; void OnTestProgramEnd(const UnitTest& parameter) override; private: // Controls whether events will be forwarded to listeners_. Set to false // in death test child processes. bool forwarding_enabled_; // The list of listeners that receive events. std::vector listeners_; TestEventRepeater(const TestEventRepeater&) = delete; TestEventRepeater& operator=(const TestEventRepeater&) = delete; }; TestEventRepeater::~TestEventRepeater() { ForEach(listeners_, Delete); } void TestEventRepeater::Append(TestEventListener* listener) { listeners_.push_back(listener); } TestEventListener* TestEventRepeater::Release(TestEventListener* listener) { for (size_t i = 0; i < listeners_.size(); ++i) { if (listeners_[i] == listener) { listeners_.erase(listeners_.begin() + static_cast(i)); return listener; } } return nullptr; } // Since most methods are very similar, use macros to reduce boilerplate. // This defines a member that forwards the call to all listeners. #define GTEST_REPEATER_METHOD_(Name, Type) \ void TestEventRepeater::Name(const Type& parameter) { \ if (forwarding_enabled_) { \ for (size_t i = 0; i < listeners_.size(); i++) { \ listeners_[i]->Name(parameter); \ } \ } \ } // This defines a member that forwards the call to all listeners in reverse // order. #define GTEST_REVERSE_REPEATER_METHOD_(Name, Type) \ void TestEventRepeater::Name(const Type& parameter) { \ if (forwarding_enabled_) { \ for (size_t i = listeners_.size(); i != 0; i--) { \ listeners_[i - 1]->Name(parameter); \ } \ } \ } GTEST_REPEATER_METHOD_(OnTestProgramStart, UnitTest) GTEST_REPEATER_METHOD_(OnEnvironmentsSetUpStart, UnitTest) // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ GTEST_REPEATER_METHOD_(OnTestCaseStart, TestSuite) #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ GTEST_REPEATER_METHOD_(OnTestSuiteStart, TestSuite) GTEST_REPEATER_METHOD_(OnTestStart, TestInfo) GTEST_REPEATER_METHOD_(OnTestDisabled, TestInfo) GTEST_REPEATER_METHOD_(OnTestPartResult, TestPartResult) GTEST_REPEATER_METHOD_(OnEnvironmentsTearDownStart, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsSetUpEnd, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsTearDownEnd, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnTestEnd, TestInfo) // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ GTEST_REVERSE_REPEATER_METHOD_(OnTestCaseEnd, TestSuite) #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ GTEST_REVERSE_REPEATER_METHOD_(OnTestSuiteEnd, TestSuite) GTEST_REVERSE_REPEATER_METHOD_(OnTestProgramEnd, UnitTest) #undef GTEST_REPEATER_METHOD_ #undef GTEST_REVERSE_REPEATER_METHOD_ void TestEventRepeater::OnTestIterationStart(const UnitTest& unit_test, int iteration) { if (forwarding_enabled_) { for (size_t i = 0; i < listeners_.size(); i++) { listeners_[i]->OnTestIterationStart(unit_test, iteration); } } } void TestEventRepeater::OnTestIterationEnd(const UnitTest& unit_test, int iteration) { if (forwarding_enabled_) { for (size_t i = listeners_.size(); i > 0; i--) { listeners_[i - 1]->OnTestIterationEnd(unit_test, iteration); } } } // End TestEventRepeater #if GTEST_HAS_FILE_SYSTEM // This class generates an XML output file. class XmlUnitTestResultPrinter : public EmptyTestEventListener { public: explicit XmlUnitTestResultPrinter(const char* output_file); void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; void ListTestsMatchingFilter(const std::vector& test_suites); // Prints an XML summary of all unit tests. static void PrintXmlTestsList(std::ostream* stream, const std::vector& test_suites); private: // Is c a whitespace character that is normalized to a space character // when it appears in an XML attribute value? static bool IsNormalizableWhitespace(unsigned char c) { return c == '\t' || c == '\n' || c == '\r'; } // May c appear in a well-formed XML document? // https://www.w3.org/TR/REC-xml/#charsets static bool IsValidXmlCharacter(unsigned char c) { return IsNormalizableWhitespace(c) || c >= 0x20; } // Returns an XML-escaped copy of the input string str. If // is_attribute is true, the text is meant to appear as an attribute // value, and normalizable whitespace is preserved by replacing it // with character references. static std::string EscapeXml(const std::string& str, bool is_attribute); // Returns the given string with all characters invalid in XML removed. static std::string RemoveInvalidXmlCharacters(const std::string& str); // Convenience wrapper around EscapeXml when str is an attribute value. static std::string EscapeXmlAttribute(const std::string& str) { return EscapeXml(str, true); } // Convenience wrapper around EscapeXml when str is not an attribute value. static std::string EscapeXmlText(const char* str) { return EscapeXml(str, false); } // Verifies that the given attribute belongs to the given element and // streams the attribute as XML. static void OutputXmlAttribute(std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value); // Streams an XML CDATA section, escaping invalid CDATA sequences as needed. static void OutputXmlCDataSection(::std::ostream* stream, const char* data); // Streams a test suite XML stanza containing the given test result. // // Requires: result.Failed() static void OutputXmlTestSuiteForTestResult(::std::ostream* stream, const TestResult& result); // Streams an XML representation of a TestResult object. static void OutputXmlTestResult(::std::ostream* stream, const TestResult& result); // Streams an XML representation of a TestInfo object. static void OutputXmlTestInfo(::std::ostream* stream, const char* test_suite_name, const TestInfo& test_info); // Prints an XML representation of a TestSuite object static void PrintXmlTestSuite(::std::ostream* stream, const TestSuite& test_suite); // Prints an XML summary of unit_test to output stream out. static void PrintXmlUnitTest(::std::ostream* stream, const UnitTest& unit_test); // Produces a string representing the test properties in a result as space // delimited XML attributes based on the property key="value" pairs. // When the std::string is not empty, it includes a space at the beginning, // to delimit this attribute from prior attributes. static std::string TestPropertiesAsXmlAttributes(const TestResult& result); // Streams an XML representation of the test properties of a TestResult // object. static void OutputXmlTestProperties(std::ostream* stream, const TestResult& result); // The output file. const std::string output_file_; XmlUnitTestResultPrinter(const XmlUnitTestResultPrinter&) = delete; XmlUnitTestResultPrinter& operator=(const XmlUnitTestResultPrinter&) = delete; }; // Creates a new XmlUnitTestResultPrinter. XmlUnitTestResultPrinter::XmlUnitTestResultPrinter(const char* output_file) : output_file_(output_file) { if (output_file_.empty()) { GTEST_LOG_(FATAL) << "XML output file may not be null"; } } // Called after the unit test ends. void XmlUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { FILE* xmlout = OpenFileForWriting(output_file_); std::stringstream stream; PrintXmlUnitTest(&stream, unit_test); fprintf(xmlout, "%s", StringStreamToString(&stream).c_str()); fclose(xmlout); } void XmlUnitTestResultPrinter::ListTestsMatchingFilter( const std::vector& test_suites) { FILE* xmlout = OpenFileForWriting(output_file_); std::stringstream stream; PrintXmlTestsList(&stream, test_suites); fprintf(xmlout, "%s", StringStreamToString(&stream).c_str()); fclose(xmlout); } // Returns an XML-escaped copy of the input string str. If is_attribute // is true, the text is meant to appear as an attribute value, and // normalizable whitespace is preserved by replacing it with character // references. // // Invalid XML characters in str, if any, are stripped from the output. // It is expected that most, if not all, of the text processed by this // module will consist of ordinary English text. // If this module is ever modified to produce version 1.1 XML output, // most invalid characters can be retained using character references. std::string XmlUnitTestResultPrinter::EscapeXml(const std::string& str, bool is_attribute) { Message m; for (size_t i = 0; i < str.size(); ++i) { const char ch = str[i]; switch (ch) { case '<': m << "<"; break; case '>': m << ">"; break; case '&': m << "&"; break; case '\'': if (is_attribute) m << "'"; else m << '\''; break; case '"': if (is_attribute) m << """; else m << '"'; break; default: if (IsValidXmlCharacter(static_cast(ch))) { if (is_attribute && IsNormalizableWhitespace(static_cast(ch))) m << "&#x" << String::FormatByte(static_cast(ch)) << ";"; else m << ch; } break; } } return m.GetString(); } // Returns the given string with all characters invalid in XML removed. // Currently invalid characters are dropped from the string. An // alternative is to replace them with certain characters such as . or ?. std::string XmlUnitTestResultPrinter::RemoveInvalidXmlCharacters( const std::string& str) { std::string output; output.reserve(str.size()); for (std::string::const_iterator it = str.begin(); it != str.end(); ++it) if (IsValidXmlCharacter(static_cast(*it))) output.push_back(*it); return output; } // The following routines generate an XML representation of a UnitTest // object. // // This is how Google Test concepts map to the DTD: // // <-- corresponds to a UnitTest object // <-- corresponds to a TestSuite object // <-- corresponds to a TestInfo object // ... // ... // ... // <-- individual assertion failures // // // // Formats the given time in milliseconds as seconds. std::string FormatTimeInMillisAsSeconds(TimeInMillis ms) { ::std::stringstream ss; // For the exact N seconds, makes sure output has a trailing decimal point. // Sets precision so that we won't have many trailing zeros (e.g., 300 ms // will be just 0.3, 410 ms 0.41, and so on) ss << std::fixed << std::setprecision( ms % 1000 == 0 ? 0 : (ms % 100 == 0 ? 1 : (ms % 10 == 0 ? 2 : 3))) << std::showpoint; ss << (static_cast(ms) * 1e-3); return ss.str(); } static bool PortableLocaltime(time_t seconds, struct tm* out) { #if defined(_MSC_VER) return localtime_s(out, &seconds) == 0; #elif defined(__MINGW32__) || defined(__MINGW64__) // MINGW provides neither localtime_r nor localtime_s, but uses // Windows' localtime(), which has a thread-local tm buffer. struct tm* tm_ptr = localtime(&seconds); // NOLINT if (tm_ptr == nullptr) return false; *out = *tm_ptr; return true; #elif defined(__STDC_LIB_EXT1__) // Uses localtime_s when available as localtime_r is only available from // C23 standard. return localtime_s(&seconds, out) != nullptr; #else return localtime_r(&seconds, out) != nullptr; #endif } // Converts the given epoch time in milliseconds to a date string in the ISO // 8601 format, without the timezone information. std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms) { struct tm time_struct; if (!PortableLocaltime(static_cast(ms / 1000), &time_struct)) return ""; // YYYY-MM-DDThh:mm:ss.sss return StreamableToString(time_struct.tm_year + 1900) + "-" + String::FormatIntWidth2(time_struct.tm_mon + 1) + "-" + String::FormatIntWidth2(time_struct.tm_mday) + "T" + String::FormatIntWidth2(time_struct.tm_hour) + ":" + String::FormatIntWidth2(time_struct.tm_min) + ":" + String::FormatIntWidth2(time_struct.tm_sec) + "." + String::FormatIntWidthN(static_cast(ms % 1000), 3); } // Streams an XML CDATA section, escaping invalid CDATA sequences as needed. void XmlUnitTestResultPrinter::OutputXmlCDataSection(::std::ostream* stream, const char* data) { const char* segment = data; *stream << ""); if (next_segment != nullptr) { stream->write(segment, static_cast(next_segment - segment)); *stream << "]]>]]>"); } else { *stream << segment; break; } } *stream << "]]>"; } void XmlUnitTestResultPrinter::OutputXmlAttribute( std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value) { const std::vector& allowed_names = GetReservedOutputAttributesForElement(element_name); GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) != allowed_names.end()) << "Attribute " << name << " is not allowed for element <" << element_name << ">."; *stream << " " << name << "=\"" << EscapeXmlAttribute(value) << "\""; } // Streams a test suite XML stanza containing the given test result. void XmlUnitTestResultPrinter::OutputXmlTestSuiteForTestResult( ::std::ostream* stream, const TestResult& result) { // Output the boilerplate for a minimal test suite with one test. *stream << " "; // Output the boilerplate for a minimal test case with a single test. *stream << " \n"; } // Prints an XML representation of a TestInfo object. void XmlUnitTestResultPrinter::OutputXmlTestInfo(::std::ostream* stream, const char* test_suite_name, const TestInfo& test_info) { const TestResult& result = *test_info.result(); const std::string kTestsuite = "testcase"; if (test_info.is_in_another_shard()) { return; } *stream << " \n"; return; } OutputXmlAttribute(stream, kTestsuite, "status", test_info.should_run() ? "run" : "notrun"); OutputXmlAttribute(stream, kTestsuite, "result", test_info.should_run() ? (result.Skipped() ? "skipped" : "completed") : "suppressed"); OutputXmlAttribute(stream, kTestsuite, "time", FormatTimeInMillisAsSeconds(result.elapsed_time())); OutputXmlAttribute( stream, kTestsuite, "timestamp", FormatEpochTimeInMillisAsIso8601(result.start_timestamp())); OutputXmlAttribute(stream, kTestsuite, "classname", test_suite_name); OutputXmlTestResult(stream, result); } void XmlUnitTestResultPrinter::OutputXmlTestResult(::std::ostream* stream, const TestResult& result) { int failures = 0; int skips = 0; for (int i = 0; i < result.total_part_count(); ++i) { const TestPartResult& part = result.GetTestPartResult(i); if (part.failed()) { if (++failures == 1 && skips == 0) { *stream << ">\n"; } const std::string location = internal::FormatCompilerIndependentFileLocation(part.file_name(), part.line_number()); const std::string summary = location + "\n" + part.summary(); *stream << " "; const std::string detail = location + "\n" + part.message(); OutputXmlCDataSection(stream, RemoveInvalidXmlCharacters(detail).c_str()); *stream << "\n"; } else if (part.skipped()) { if (++skips == 1 && failures == 0) { *stream << ">\n"; } const std::string location = internal::FormatCompilerIndependentFileLocation(part.file_name(), part.line_number()); const std::string summary = location + "\n" + part.summary(); *stream << " "; const std::string detail = location + "\n" + part.message(); OutputXmlCDataSection(stream, RemoveInvalidXmlCharacters(detail).c_str()); *stream << "\n"; } } if (failures == 0 && skips == 0 && result.test_property_count() == 0) { *stream << " />\n"; } else { if (failures == 0 && skips == 0) { *stream << ">\n"; } OutputXmlTestProperties(stream, result); *stream << " \n"; } } // Prints an XML representation of a TestSuite object void XmlUnitTestResultPrinter::PrintXmlTestSuite(std::ostream* stream, const TestSuite& test_suite) { const std::string kTestsuite = "testsuite"; *stream << " <" << kTestsuite; OutputXmlAttribute(stream, kTestsuite, "name", test_suite.name()); OutputXmlAttribute(stream, kTestsuite, "tests", StreamableToString(test_suite.reportable_test_count())); if (!GTEST_FLAG_GET(list_tests)) { OutputXmlAttribute(stream, kTestsuite, "failures", StreamableToString(test_suite.failed_test_count())); OutputXmlAttribute( stream, kTestsuite, "disabled", StreamableToString(test_suite.reportable_disabled_test_count())); OutputXmlAttribute(stream, kTestsuite, "skipped", StreamableToString(test_suite.skipped_test_count())); OutputXmlAttribute(stream, kTestsuite, "errors", "0"); OutputXmlAttribute(stream, kTestsuite, "time", FormatTimeInMillisAsSeconds(test_suite.elapsed_time())); OutputXmlAttribute( stream, kTestsuite, "timestamp", FormatEpochTimeInMillisAsIso8601(test_suite.start_timestamp())); *stream << TestPropertiesAsXmlAttributes(test_suite.ad_hoc_test_result()); } *stream << ">\n"; for (int i = 0; i < test_suite.total_test_count(); ++i) { if (test_suite.GetTestInfo(i)->is_reportable()) OutputXmlTestInfo(stream, test_suite.name(), *test_suite.GetTestInfo(i)); } *stream << " \n"; } // Prints an XML summary of unit_test to output stream out. void XmlUnitTestResultPrinter::PrintXmlUnitTest(std::ostream* stream, const UnitTest& unit_test) { const std::string kTestsuites = "testsuites"; *stream << "\n"; *stream << "<" << kTestsuites; OutputXmlAttribute(stream, kTestsuites, "tests", StreamableToString(unit_test.reportable_test_count())); OutputXmlAttribute(stream, kTestsuites, "failures", StreamableToString(unit_test.failed_test_count())); OutputXmlAttribute( stream, kTestsuites, "disabled", StreamableToString(unit_test.reportable_disabled_test_count())); OutputXmlAttribute(stream, kTestsuites, "errors", "0"); OutputXmlAttribute(stream, kTestsuites, "time", FormatTimeInMillisAsSeconds(unit_test.elapsed_time())); OutputXmlAttribute( stream, kTestsuites, "timestamp", FormatEpochTimeInMillisAsIso8601(unit_test.start_timestamp())); if (GTEST_FLAG_GET(shuffle)) { OutputXmlAttribute(stream, kTestsuites, "random_seed", StreamableToString(unit_test.random_seed())); } *stream << TestPropertiesAsXmlAttributes(unit_test.ad_hoc_test_result()); OutputXmlAttribute(stream, kTestsuites, "name", "AllTests"); *stream << ">\n"; for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { if (unit_test.GetTestSuite(i)->reportable_test_count() > 0) PrintXmlTestSuite(stream, *unit_test.GetTestSuite(i)); } // If there was a test failure outside of one of the test suites (like in a // test environment) include that in the output. if (unit_test.ad_hoc_test_result().Failed()) { OutputXmlTestSuiteForTestResult(stream, unit_test.ad_hoc_test_result()); } *stream << "\n"; } void XmlUnitTestResultPrinter::PrintXmlTestsList( std::ostream* stream, const std::vector& test_suites) { const std::string kTestsuites = "testsuites"; *stream << "\n"; *stream << "<" << kTestsuites; int total_tests = 0; for (auto test_suite : test_suites) { total_tests += test_suite->total_test_count(); } OutputXmlAttribute(stream, kTestsuites, "tests", StreamableToString(total_tests)); OutputXmlAttribute(stream, kTestsuites, "name", "AllTests"); *stream << ">\n"; for (auto test_suite : test_suites) { PrintXmlTestSuite(stream, *test_suite); } *stream << "\n"; } // Produces a string representing the test properties in a result as space // delimited XML attributes based on the property key="value" pairs. std::string XmlUnitTestResultPrinter::TestPropertiesAsXmlAttributes( const TestResult& result) { Message attributes; for (int i = 0; i < result.test_property_count(); ++i) { const TestProperty& property = result.GetTestProperty(i); attributes << " " << property.key() << "=" << "\"" << EscapeXmlAttribute(property.value()) << "\""; } return attributes.GetString(); } void XmlUnitTestResultPrinter::OutputXmlTestProperties( std::ostream* stream, const TestResult& result) { const std::string kProperties = "properties"; const std::string kProperty = "property"; if (result.test_property_count() <= 0) { return; } *stream << " <" << kProperties << ">\n"; for (int i = 0; i < result.test_property_count(); ++i) { const TestProperty& property = result.GetTestProperty(i); *stream << " <" << kProperty; *stream << " name=\"" << EscapeXmlAttribute(property.key()) << "\""; *stream << " value=\"" << EscapeXmlAttribute(property.value()) << "\""; *stream << "/>\n"; } *stream << " \n"; } // End XmlUnitTestResultPrinter #endif // GTEST_HAS_FILE_SYSTEM #if GTEST_HAS_FILE_SYSTEM // This class generates an JSON output file. class JsonUnitTestResultPrinter : public EmptyTestEventListener { public: explicit JsonUnitTestResultPrinter(const char* output_file); void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; // Prints an JSON summary of all unit tests. static void PrintJsonTestList(::std::ostream* stream, const std::vector& test_suites); private: // Returns an JSON-escaped copy of the input string str. static std::string EscapeJson(const std::string& str); //// Verifies that the given attribute belongs to the given element and //// streams the attribute as JSON. static void OutputJsonKey(std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value, const std::string& indent, bool comma = true); static void OutputJsonKey(std::ostream* stream, const std::string& element_name, const std::string& name, int value, const std::string& indent, bool comma = true); // Streams a test suite JSON stanza containing the given test result. // // Requires: result.Failed() static void OutputJsonTestSuiteForTestResult(::std::ostream* stream, const TestResult& result); // Streams a JSON representation of a TestResult object. static void OutputJsonTestResult(::std::ostream* stream, const TestResult& result); // Streams a JSON representation of a TestInfo object. static void OutputJsonTestInfo(::std::ostream* stream, const char* test_suite_name, const TestInfo& test_info); // Prints a JSON representation of a TestSuite object static void PrintJsonTestSuite(::std::ostream* stream, const TestSuite& test_suite); // Prints a JSON summary of unit_test to output stream out. static void PrintJsonUnitTest(::std::ostream* stream, const UnitTest& unit_test); // Produces a string representing the test properties in a result as // a JSON dictionary. static std::string TestPropertiesAsJson(const TestResult& result, const std::string& indent); // The output file. const std::string output_file_; JsonUnitTestResultPrinter(const JsonUnitTestResultPrinter&) = delete; JsonUnitTestResultPrinter& operator=(const JsonUnitTestResultPrinter&) = delete; }; // Creates a new JsonUnitTestResultPrinter. JsonUnitTestResultPrinter::JsonUnitTestResultPrinter(const char* output_file) : output_file_(output_file) { if (output_file_.empty()) { GTEST_LOG_(FATAL) << "JSON output file may not be null"; } } void JsonUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { FILE* jsonout = OpenFileForWriting(output_file_); std::stringstream stream; PrintJsonUnitTest(&stream, unit_test); fprintf(jsonout, "%s", StringStreamToString(&stream).c_str()); fclose(jsonout); } // Returns an JSON-escaped copy of the input string str. std::string JsonUnitTestResultPrinter::EscapeJson(const std::string& str) { Message m; for (size_t i = 0; i < str.size(); ++i) { const char ch = str[i]; switch (ch) { case '\\': case '"': case '/': m << '\\' << ch; break; case '\b': m << "\\b"; break; case '\t': m << "\\t"; break; case '\n': m << "\\n"; break; case '\f': m << "\\f"; break; case '\r': m << "\\r"; break; default: if (ch < ' ') { m << "\\u00" << String::FormatByte(static_cast(ch)); } else { m << ch; } break; } } return m.GetString(); } // The following routines generate an JSON representation of a UnitTest // object. // Formats the given time in milliseconds as seconds. static std::string FormatTimeInMillisAsDuration(TimeInMillis ms) { ::std::stringstream ss; ss << (static_cast(ms) * 1e-3) << "s"; return ss.str(); } // Converts the given epoch time in milliseconds to a date string in the // RFC3339 format, without the timezone information. static std::string FormatEpochTimeInMillisAsRFC3339(TimeInMillis ms) { struct tm time_struct; if (!PortableLocaltime(static_cast(ms / 1000), &time_struct)) return ""; // YYYY-MM-DDThh:mm:ss return StreamableToString(time_struct.tm_year + 1900) + "-" + String::FormatIntWidth2(time_struct.tm_mon + 1) + "-" + String::FormatIntWidth2(time_struct.tm_mday) + "T" + String::FormatIntWidth2(time_struct.tm_hour) + ":" + String::FormatIntWidth2(time_struct.tm_min) + ":" + String::FormatIntWidth2(time_struct.tm_sec) + "Z"; } static inline std::string Indent(size_t width) { return std::string(width, ' '); } void JsonUnitTestResultPrinter::OutputJsonKey(std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value, const std::string& indent, bool comma) { const std::vector& allowed_names = GetReservedOutputAttributesForElement(element_name); GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) != allowed_names.end()) << "Key \"" << name << "\" is not allowed for value \"" << element_name << "\"."; *stream << indent << "\"" << name << "\": \"" << EscapeJson(value) << "\""; if (comma) *stream << ",\n"; } void JsonUnitTestResultPrinter::OutputJsonKey( std::ostream* stream, const std::string& element_name, const std::string& name, int value, const std::string& indent, bool comma) { const std::vector& allowed_names = GetReservedOutputAttributesForElement(element_name); GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) != allowed_names.end()) << "Key \"" << name << "\" is not allowed for value \"" << element_name << "\"."; *stream << indent << "\"" << name << "\": " << StreamableToString(value); if (comma) *stream << ",\n"; } // Streams a test suite JSON stanza containing the given test result. void JsonUnitTestResultPrinter::OutputJsonTestSuiteForTestResult( ::std::ostream* stream, const TestResult& result) { // Output the boilerplate for a new test suite. *stream << Indent(4) << "{\n"; OutputJsonKey(stream, "testsuite", "name", "NonTestSuiteFailure", Indent(6)); OutputJsonKey(stream, "testsuite", "tests", 1, Indent(6)); if (!GTEST_FLAG_GET(list_tests)) { OutputJsonKey(stream, "testsuite", "failures", 1, Indent(6)); OutputJsonKey(stream, "testsuite", "disabled", 0, Indent(6)); OutputJsonKey(stream, "testsuite", "skipped", 0, Indent(6)); OutputJsonKey(stream, "testsuite", "errors", 0, Indent(6)); OutputJsonKey(stream, "testsuite", "time", FormatTimeInMillisAsDuration(result.elapsed_time()), Indent(6)); OutputJsonKey(stream, "testsuite", "timestamp", FormatEpochTimeInMillisAsRFC3339(result.start_timestamp()), Indent(6)); } *stream << Indent(6) << "\"testsuite\": [\n"; // Output the boilerplate for a new test case. *stream << Indent(8) << "{\n"; OutputJsonKey(stream, "testcase", "name", "", Indent(10)); OutputJsonKey(stream, "testcase", "status", "RUN", Indent(10)); OutputJsonKey(stream, "testcase", "result", "COMPLETED", Indent(10)); OutputJsonKey(stream, "testcase", "timestamp", FormatEpochTimeInMillisAsRFC3339(result.start_timestamp()), Indent(10)); OutputJsonKey(stream, "testcase", "time", FormatTimeInMillisAsDuration(result.elapsed_time()), Indent(10)); OutputJsonKey(stream, "testcase", "classname", "", Indent(10), false); *stream << TestPropertiesAsJson(result, Indent(10)); // Output the actual test result. OutputJsonTestResult(stream, result); // Finish the test suite. *stream << "\n" << Indent(6) << "]\n" << Indent(4) << "}"; } // Prints a JSON representation of a TestInfo object. void JsonUnitTestResultPrinter::OutputJsonTestInfo(::std::ostream* stream, const char* test_suite_name, const TestInfo& test_info) { const TestResult& result = *test_info.result(); const std::string kTestsuite = "testcase"; const std::string kIndent = Indent(10); *stream << Indent(8) << "{\n"; OutputJsonKey(stream, kTestsuite, "name", test_info.name(), kIndent); if (test_info.value_param() != nullptr) { OutputJsonKey(stream, kTestsuite, "value_param", test_info.value_param(), kIndent); } if (test_info.type_param() != nullptr) { OutputJsonKey(stream, kTestsuite, "type_param", test_info.type_param(), kIndent); } OutputJsonKey(stream, kTestsuite, "file", test_info.file(), kIndent); OutputJsonKey(stream, kTestsuite, "line", test_info.line(), kIndent, false); if (GTEST_FLAG_GET(list_tests)) { *stream << "\n" << Indent(8) << "}"; return; } else { *stream << ",\n"; } OutputJsonKey(stream, kTestsuite, "status", test_info.should_run() ? "RUN" : "NOTRUN", kIndent); OutputJsonKey(stream, kTestsuite, "result", test_info.should_run() ? (result.Skipped() ? "SKIPPED" : "COMPLETED") : "SUPPRESSED", kIndent); OutputJsonKey(stream, kTestsuite, "timestamp", FormatEpochTimeInMillisAsRFC3339(result.start_timestamp()), kIndent); OutputJsonKey(stream, kTestsuite, "time", FormatTimeInMillisAsDuration(result.elapsed_time()), kIndent); OutputJsonKey(stream, kTestsuite, "classname", test_suite_name, kIndent, false); *stream << TestPropertiesAsJson(result, kIndent); OutputJsonTestResult(stream, result); } void JsonUnitTestResultPrinter::OutputJsonTestResult(::std::ostream* stream, const TestResult& result) { const std::string kIndent = Indent(10); int failures = 0; for (int i = 0; i < result.total_part_count(); ++i) { const TestPartResult& part = result.GetTestPartResult(i); if (part.failed()) { *stream << ",\n"; if (++failures == 1) { *stream << kIndent << "\"" << "failures" << "\": [\n"; } const std::string location = internal::FormatCompilerIndependentFileLocation(part.file_name(), part.line_number()); const std::string message = EscapeJson(location + "\n" + part.message()); *stream << kIndent << " {\n" << kIndent << " \"failure\": \"" << message << "\",\n" << kIndent << " \"type\": \"\"\n" << kIndent << " }"; } } if (failures > 0) *stream << "\n" << kIndent << "]"; *stream << "\n" << Indent(8) << "}"; } // Prints an JSON representation of a TestSuite object void JsonUnitTestResultPrinter::PrintJsonTestSuite( std::ostream* stream, const TestSuite& test_suite) { const std::string kTestsuite = "testsuite"; const std::string kIndent = Indent(6); *stream << Indent(4) << "{\n"; OutputJsonKey(stream, kTestsuite, "name", test_suite.name(), kIndent); OutputJsonKey(stream, kTestsuite, "tests", test_suite.reportable_test_count(), kIndent); if (!GTEST_FLAG_GET(list_tests)) { OutputJsonKey(stream, kTestsuite, "failures", test_suite.failed_test_count(), kIndent); OutputJsonKey(stream, kTestsuite, "disabled", test_suite.reportable_disabled_test_count(), kIndent); OutputJsonKey(stream, kTestsuite, "errors", 0, kIndent); OutputJsonKey( stream, kTestsuite, "timestamp", FormatEpochTimeInMillisAsRFC3339(test_suite.start_timestamp()), kIndent); OutputJsonKey(stream, kTestsuite, "time", FormatTimeInMillisAsDuration(test_suite.elapsed_time()), kIndent, false); *stream << TestPropertiesAsJson(test_suite.ad_hoc_test_result(), kIndent) << ",\n"; } *stream << kIndent << "\"" << kTestsuite << "\": [\n"; bool comma = false; for (int i = 0; i < test_suite.total_test_count(); ++i) { if (test_suite.GetTestInfo(i)->is_reportable()) { if (comma) { *stream << ",\n"; } else { comma = true; } OutputJsonTestInfo(stream, test_suite.name(), *test_suite.GetTestInfo(i)); } } *stream << "\n" << kIndent << "]\n" << Indent(4) << "}"; } // Prints a JSON summary of unit_test to output stream out. void JsonUnitTestResultPrinter::PrintJsonUnitTest(std::ostream* stream, const UnitTest& unit_test) { const std::string kTestsuites = "testsuites"; const std::string kIndent = Indent(2); *stream << "{\n"; OutputJsonKey(stream, kTestsuites, "tests", unit_test.reportable_test_count(), kIndent); OutputJsonKey(stream, kTestsuites, "failures", unit_test.failed_test_count(), kIndent); OutputJsonKey(stream, kTestsuites, "disabled", unit_test.reportable_disabled_test_count(), kIndent); OutputJsonKey(stream, kTestsuites, "errors", 0, kIndent); if (GTEST_FLAG_GET(shuffle)) { OutputJsonKey(stream, kTestsuites, "random_seed", unit_test.random_seed(), kIndent); } OutputJsonKey(stream, kTestsuites, "timestamp", FormatEpochTimeInMillisAsRFC3339(unit_test.start_timestamp()), kIndent); OutputJsonKey(stream, kTestsuites, "time", FormatTimeInMillisAsDuration(unit_test.elapsed_time()), kIndent, false); *stream << TestPropertiesAsJson(unit_test.ad_hoc_test_result(), kIndent) << ",\n"; OutputJsonKey(stream, kTestsuites, "name", "AllTests", kIndent); *stream << kIndent << "\"" << kTestsuites << "\": [\n"; bool comma = false; for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { if (unit_test.GetTestSuite(i)->reportable_test_count() > 0) { if (comma) { *stream << ",\n"; } else { comma = true; } PrintJsonTestSuite(stream, *unit_test.GetTestSuite(i)); } } // If there was a test failure outside of one of the test suites (like in a // test environment) include that in the output. if (unit_test.ad_hoc_test_result().Failed()) { if (comma) { *stream << ",\n"; } OutputJsonTestSuiteForTestResult(stream, unit_test.ad_hoc_test_result()); } *stream << "\n" << kIndent << "]\n" << "}\n"; } void JsonUnitTestResultPrinter::PrintJsonTestList( std::ostream* stream, const std::vector& test_suites) { const std::string kTestsuites = "testsuites"; const std::string kIndent = Indent(2); *stream << "{\n"; int total_tests = 0; for (auto test_suite : test_suites) { total_tests += test_suite->total_test_count(); } OutputJsonKey(stream, kTestsuites, "tests", total_tests, kIndent); OutputJsonKey(stream, kTestsuites, "name", "AllTests", kIndent); *stream << kIndent << "\"" << kTestsuites << "\": [\n"; for (size_t i = 0; i < test_suites.size(); ++i) { if (i != 0) { *stream << ",\n"; } PrintJsonTestSuite(stream, *test_suites[i]); } *stream << "\n" << kIndent << "]\n" << "}\n"; } // Produces a string representing the test properties in a result as // a JSON dictionary. std::string JsonUnitTestResultPrinter::TestPropertiesAsJson( const TestResult& result, const std::string& indent) { Message attributes; for (int i = 0; i < result.test_property_count(); ++i) { const TestProperty& property = result.GetTestProperty(i); attributes << ",\n" << indent << "\"" << property.key() << "\": " << "\"" << EscapeJson(property.value()) << "\""; } return attributes.GetString(); } // End JsonUnitTestResultPrinter #endif // GTEST_HAS_FILE_SYSTEM #if GTEST_CAN_STREAM_RESULTS_ // Checks if str contains '=', '&', '%' or '\n' characters. If yes, // replaces them by "%xx" where xx is their hexadecimal value. For // example, replaces "=" with "%3D". This algorithm is O(strlen(str)) // in both time and space -- important as the input str may contain an // arbitrarily long test failure message and stack trace. std::string StreamingListener::UrlEncode(const char* str) { std::string result; result.reserve(strlen(str) + 1); for (char ch = *str; ch != '\0'; ch = *++str) { switch (ch) { case '%': case '=': case '&': case '\n': result.push_back('%'); result.append(String::FormatByte(static_cast(ch))); break; default: result.push_back(ch); break; } } return result; } void StreamingListener::SocketWriter::MakeConnection() { GTEST_CHECK_(sockfd_ == -1) << "MakeConnection() can't be called when there is already a connection."; addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; // To allow both IPv4 and IPv6 addresses. hints.ai_socktype = SOCK_STREAM; addrinfo* servinfo = nullptr; // Use the getaddrinfo() to get a linked list of IP addresses for // the given host name. const int error_num = getaddrinfo(host_name_.c_str(), port_num_.c_str(), &hints, &servinfo); if (error_num != 0) { GTEST_LOG_(WARNING) << "stream_result_to: getaddrinfo() failed: " << gai_strerror(error_num); } // Loop through all the results and connect to the first we can. for (addrinfo* cur_addr = servinfo; sockfd_ == -1 && cur_addr != nullptr; cur_addr = cur_addr->ai_next) { sockfd_ = socket(cur_addr->ai_family, cur_addr->ai_socktype, cur_addr->ai_protocol); if (sockfd_ != -1) { // Connect the client socket to the server socket. if (connect(sockfd_, cur_addr->ai_addr, cur_addr->ai_addrlen) == -1) { close(sockfd_); sockfd_ = -1; } } } freeaddrinfo(servinfo); // all done with this structure if (sockfd_ == -1) { GTEST_LOG_(WARNING) << "stream_result_to: failed to connect to " << host_name_ << ":" << port_num_; } } // End of class Streaming Listener #endif // GTEST_CAN_STREAM_RESULTS__ // class OsStackTraceGetter const char* const OsStackTraceGetterInterface::kElidedFramesMarker = "... " GTEST_NAME_ " internal frames ..."; std::string OsStackTraceGetter::CurrentStackTrace(int max_depth, int skip_count) GTEST_LOCK_EXCLUDED_(mutex_) { #ifdef GTEST_HAS_ABSL std::string result; if (max_depth <= 0) { return result; } max_depth = std::min(max_depth, kMaxStackTraceDepth); std::vector raw_stack(max_depth); // Skips the frames requested by the caller, plus this function. const int raw_stack_size = absl::GetStackTrace(&raw_stack[0], max_depth, skip_count + 1); void* caller_frame = nullptr; { MutexLock lock(&mutex_); caller_frame = caller_frame_; } for (int i = 0; i < raw_stack_size; ++i) { if (raw_stack[i] == caller_frame && !GTEST_FLAG_GET(show_internal_stack_frames)) { // Add a marker to the trace and stop adding frames. absl::StrAppend(&result, kElidedFramesMarker, "\n"); break; } char tmp[1024]; const char* symbol = "(unknown)"; if (absl::Symbolize(raw_stack[i], tmp, sizeof(tmp))) { symbol = tmp; } char line[1024]; snprintf(line, sizeof(line), " %p: %s\n", raw_stack[i], symbol); result += line; } return result; #else // !GTEST_HAS_ABSL static_cast(max_depth); static_cast(skip_count); return ""; #endif // GTEST_HAS_ABSL } void OsStackTraceGetter::UponLeavingGTest() GTEST_LOCK_EXCLUDED_(mutex_) { #ifdef GTEST_HAS_ABSL void* caller_frame = nullptr; if (absl::GetStackTrace(&caller_frame, 1, 3) <= 0) { caller_frame = nullptr; } MutexLock lock(&mutex_); caller_frame_ = caller_frame; #endif // GTEST_HAS_ABSL } #ifdef GTEST_HAS_DEATH_TEST // A helper class that creates the premature-exit file in its // constructor and deletes the file in its destructor. class ScopedPrematureExitFile { public: explicit ScopedPrematureExitFile(const char* premature_exit_filepath) : premature_exit_filepath_( premature_exit_filepath ? premature_exit_filepath : "") { // If a path to the premature-exit file is specified... if (!premature_exit_filepath_.empty()) { // create the file with a single "0" character in it. I/O // errors are ignored as there's nothing better we can do and we // don't want to fail the test because of this. FILE* pfile = posix::FOpen(premature_exit_filepath_.c_str(), "w"); fwrite("0", 1, 1, pfile); fclose(pfile); } } ~ScopedPrematureExitFile() { #ifndef GTEST_OS_ESP8266 if (!premature_exit_filepath_.empty()) { int retval = remove(premature_exit_filepath_.c_str()); if (retval) { GTEST_LOG_(ERROR) << "Failed to remove premature exit filepath \"" << premature_exit_filepath_ << "\" with error " << retval; } } #endif } private: const std::string premature_exit_filepath_; ScopedPrematureExitFile(const ScopedPrematureExitFile&) = delete; ScopedPrematureExitFile& operator=(const ScopedPrematureExitFile&) = delete; }; #endif // GTEST_HAS_DEATH_TEST } // namespace internal // class TestEventListeners TestEventListeners::TestEventListeners() : repeater_(new internal::TestEventRepeater()), default_result_printer_(nullptr), default_xml_generator_(nullptr) {} TestEventListeners::~TestEventListeners() { delete repeater_; } // Returns the standard listener responsible for the default console // output. Can be removed from the listeners list to shut down default // console output. Note that removing this object from the listener list // with Release transfers its ownership to the user. void TestEventListeners::Append(TestEventListener* listener) { repeater_->Append(listener); } // Removes the given event listener from the list and returns it. It then // becomes the caller's responsibility to delete the listener. Returns // NULL if the listener is not found in the list. TestEventListener* TestEventListeners::Release(TestEventListener* listener) { if (listener == default_result_printer_) default_result_printer_ = nullptr; else if (listener == default_xml_generator_) default_xml_generator_ = nullptr; return repeater_->Release(listener); } // Returns repeater that broadcasts the TestEventListener events to all // subscribers. TestEventListener* TestEventListeners::repeater() { return repeater_; } // Sets the default_result_printer attribute to the provided listener. // The listener is also added to the listener list and previous // default_result_printer is removed from it and deleted. The listener can // also be NULL in which case it will not be added to the list. Does // nothing if the previous and the current listener objects are the same. void TestEventListeners::SetDefaultResultPrinter(TestEventListener* listener) { if (default_result_printer_ != listener) { // It is an error to pass this method a listener that is already in the // list. delete Release(default_result_printer_); default_result_printer_ = listener; if (listener != nullptr) Append(listener); } } // Sets the default_xml_generator attribute to the provided listener. The // listener is also added to the listener list and previous // default_xml_generator is removed from it and deleted. The listener can // also be NULL in which case it will not be added to the list. Does // nothing if the previous and the current listener objects are the same. void TestEventListeners::SetDefaultXmlGenerator(TestEventListener* listener) { if (default_xml_generator_ != listener) { // It is an error to pass this method a listener that is already in the // list. delete Release(default_xml_generator_); default_xml_generator_ = listener; if (listener != nullptr) Append(listener); } } // Controls whether events will be forwarded by the repeater to the // listeners in the list. bool TestEventListeners::EventForwardingEnabled() const { return repeater_->forwarding_enabled(); } void TestEventListeners::SuppressEventForwarding(bool suppress) { repeater_->set_forwarding_enabled(!suppress); } // class UnitTest // Gets the singleton UnitTest object. The first time this method is // called, a UnitTest object is constructed and returned. Consecutive // calls will return the same object. // // We don't protect this under mutex_ as a user is not supposed to // call this before main() starts, from which point on the return // value will never change. UnitTest* UnitTest::GetInstance() { // CodeGear C++Builder insists on a public destructor for the // default implementation. Use this implementation to keep good OO // design with private destructor. #if defined(__BORLANDC__) static UnitTest* const instance = new UnitTest; return instance; #else static UnitTest instance; return &instance; #endif // defined(__BORLANDC__) } // Gets the number of successful test suites. int UnitTest::successful_test_suite_count() const { return impl()->successful_test_suite_count(); } // Gets the number of failed test suites. int UnitTest::failed_test_suite_count() const { return impl()->failed_test_suite_count(); } // Gets the number of all test suites. int UnitTest::total_test_suite_count() const { return impl()->total_test_suite_count(); } // Gets the number of all test suites that contain at least one test // that should run. int UnitTest::test_suite_to_run_count() const { return impl()->test_suite_to_run_count(); } // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ int UnitTest::successful_test_case_count() const { return impl()->successful_test_suite_count(); } int UnitTest::failed_test_case_count() const { return impl()->failed_test_suite_count(); } int UnitTest::total_test_case_count() const { return impl()->total_test_suite_count(); } int UnitTest::test_case_to_run_count() const { return impl()->test_suite_to_run_count(); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Gets the number of successful tests. int UnitTest::successful_test_count() const { return impl()->successful_test_count(); } // Gets the number of skipped tests. int UnitTest::skipped_test_count() const { return impl()->skipped_test_count(); } // Gets the number of failed tests. int UnitTest::failed_test_count() const { return impl()->failed_test_count(); } // Gets the number of disabled tests that will be reported in the XML report. int UnitTest::reportable_disabled_test_count() const { return impl()->reportable_disabled_test_count(); } // Gets the number of disabled tests. int UnitTest::disabled_test_count() const { return impl()->disabled_test_count(); } // Gets the number of tests to be printed in the XML report. int UnitTest::reportable_test_count() const { return impl()->reportable_test_count(); } // Gets the number of all tests. int UnitTest::total_test_count() const { return impl()->total_test_count(); } // Gets the number of tests that should run. int UnitTest::test_to_run_count() const { return impl()->test_to_run_count(); } // Gets the time of the test program start, in ms from the start of the // UNIX epoch. internal::TimeInMillis UnitTest::start_timestamp() const { return impl()->start_timestamp(); } // Gets the elapsed time, in milliseconds. internal::TimeInMillis UnitTest::elapsed_time() const { return impl()->elapsed_time(); } // Returns true if and only if the unit test passed (i.e. all test suites // passed). bool UnitTest::Passed() const { return impl()->Passed(); } // Returns true if and only if the unit test failed (i.e. some test suite // failed or something outside of all tests failed). bool UnitTest::Failed() const { return impl()->Failed(); } // Gets the i-th test suite among all the test suites. i can range from 0 to // total_test_suite_count() - 1. If i is not in that range, returns NULL. const TestSuite* UnitTest::GetTestSuite(int i) const { return impl()->GetTestSuite(i); } // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ const TestCase* UnitTest::GetTestCase(int i) const { return impl()->GetTestCase(i); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Returns the TestResult containing information on test failures and // properties logged outside of individual test suites. const TestResult& UnitTest::ad_hoc_test_result() const { return *impl()->ad_hoc_test_result(); } // Gets the i-th test suite among all the test suites. i can range from 0 to // total_test_suite_count() - 1. If i is not in that range, returns NULL. TestSuite* UnitTest::GetMutableTestSuite(int i) { return impl()->GetMutableSuiteCase(i); } // Returns the list of event listeners that can be used to track events // inside Google Test. TestEventListeners& UnitTest::listeners() { return *impl()->listeners(); } // Registers and returns a global test environment. When a test // program is run, all global test environments will be set-up in the // order they were registered. After all tests in the program have // finished, all global test environments will be torn-down in the // *reverse* order they were registered. // // The UnitTest object takes ownership of the given environment. // // We don't protect this under mutex_, as we only support calling it // from the main thread. Environment* UnitTest::AddEnvironment(Environment* env) { if (env == nullptr) { return nullptr; } impl_->environments().push_back(env); return env; } // Adds a TestPartResult to the current TestResult object. All Google Test // assertion macros (e.g. ASSERT_TRUE, EXPECT_EQ, etc) eventually call // this to report their results. The user code should use the // assertion macros instead of calling this directly. void UnitTest::AddTestPartResult(TestPartResult::Type result_type, const char* file_name, int line_number, const std::string& message, const std::string& os_stack_trace) GTEST_LOCK_EXCLUDED_(mutex_) { Message msg; msg << message; internal::MutexLock lock(&mutex_); if (!impl_->gtest_trace_stack().empty()) { msg << "\n" << GTEST_NAME_ << " trace:"; for (size_t i = impl_->gtest_trace_stack().size(); i > 0; --i) { const internal::TraceInfo& trace = impl_->gtest_trace_stack()[i - 1]; msg << "\n" << internal::FormatFileLocation(trace.file, trace.line) << " " << trace.message; } } if (os_stack_trace.c_str() != nullptr && !os_stack_trace.empty()) { msg << internal::kStackTraceMarker << os_stack_trace; } else { msg << "\n"; } const TestPartResult result = TestPartResult( result_type, file_name, line_number, msg.GetString().c_str()); impl_->GetTestPartResultReporterForCurrentThread()->ReportTestPartResult( result); if (result_type != TestPartResult::kSuccess && result_type != TestPartResult::kSkip) { // gtest_break_on_failure takes precedence over // gtest_throw_on_failure. This allows a user to set the latter // in the code (perhaps in order to use Google Test assertions // with another testing framework) and specify the former on the // command line for debugging. if (GTEST_FLAG_GET(break_on_failure)) { #if defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_WINDOWS_PHONE) && \ !defined(GTEST_OS_WINDOWS_RT) // Using DebugBreak on Windows allows gtest to still break into a debugger // when a failure happens and both the --gtest_break_on_failure and // the --gtest_catch_exceptions flags are specified. DebugBreak(); #elif (!defined(__native_client__)) && \ ((defined(__clang__) || defined(__GNUC__)) && \ (defined(__x86_64__) || defined(__i386__))) // with clang/gcc we can achieve the same effect on x86 by invoking int3 asm("int3"); #elif GTEST_HAS_BUILTIN(__builtin_trap) __builtin_trap(); #elif defined(SIGTRAP) raise(SIGTRAP); #else // Dereference nullptr through a volatile pointer to prevent the compiler // from removing. We use this rather than abort() or __builtin_trap() for // portability: some debuggers don't correctly trap abort(). *static_cast(nullptr) = 1; #endif // GTEST_OS_WINDOWS } else if (GTEST_FLAG_GET(throw_on_failure)) { #if GTEST_HAS_EXCEPTIONS throw internal::GoogleTestFailureException(result); #else // We cannot call abort() as it generates a pop-up in debug mode // that cannot be suppressed in VC 7.1 or below. exit(1); #endif } } } // Adds a TestProperty to the current TestResult object when invoked from // inside a test, to current TestSuite's ad_hoc_test_result_ when invoked // from SetUpTestSuite or TearDownTestSuite, or to the global property set // when invoked elsewhere. If the result already contains a property with // the same key, the value will be updated. void UnitTest::RecordProperty(const std::string& key, const std::string& value) { impl_->RecordProperty(TestProperty(key, value)); } // Runs all tests in this UnitTest object and prints the result. // Returns 0 if successful, or 1 otherwise. // // We don't protect this under mutex_, as we only support calling it // from the main thread. int UnitTest::Run() { #ifdef GTEST_HAS_DEATH_TEST const bool in_death_test_child_process = !GTEST_FLAG_GET(internal_run_death_test).empty(); // Google Test implements this protocol for catching that a test // program exits before returning control to Google Test: // // 1. Upon start, Google Test creates a file whose absolute path // is specified by the environment variable // TEST_PREMATURE_EXIT_FILE. // 2. When Google Test has finished its work, it deletes the file. // // This allows a test runner to set TEST_PREMATURE_EXIT_FILE before // running a Google-Test-based test program and check the existence // of the file at the end of the test execution to see if it has // exited prematurely. // If we are in the child process of a death test, don't // create/delete the premature exit file, as doing so is unnecessary // and will confuse the parent process. Otherwise, create/delete // the file upon entering/leaving this function. If the program // somehow exits before this function has a chance to return, the // premature-exit file will be left undeleted, causing a test runner // that understands the premature-exit-file protocol to report the // test as having failed. const internal::ScopedPrematureExitFile premature_exit_file( in_death_test_child_process ? nullptr : internal::posix::GetEnv("TEST_PREMATURE_EXIT_FILE")); #else const bool in_death_test_child_process = false; #endif // GTEST_HAS_DEATH_TEST // Captures the value of GTEST_FLAG(catch_exceptions). This value will be // used for the duration of the program. impl()->set_catch_exceptions(GTEST_FLAG_GET(catch_exceptions)); #ifdef GTEST_OS_WINDOWS // Either the user wants Google Test to catch exceptions thrown by the // tests or this is executing in the context of death test child // process. In either case the user does not want to see pop-up dialogs // about crashes - they are expected. if (impl()->catch_exceptions() || in_death_test_child_process) { #if !defined(GTEST_OS_WINDOWS_MOBILE) && !defined(GTEST_OS_WINDOWS_PHONE) && \ !defined(GTEST_OS_WINDOWS_RT) // SetErrorMode doesn't exist on CE. SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOALIGNMENTFAULTEXCEPT | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX); #endif // !GTEST_OS_WINDOWS_MOBILE #if (defined(_MSC_VER) || defined(GTEST_OS_WINDOWS_MINGW)) && \ !defined(GTEST_OS_WINDOWS_MOBILE) // Death test children can be terminated with _abort(). On Windows, // _abort() can show a dialog with a warning message. This forces the // abort message to go to stderr instead. _set_error_mode(_OUT_TO_STDERR); #endif #if defined(_MSC_VER) && !defined(GTEST_OS_WINDOWS_MOBILE) // In the debug version, Visual Studio pops up a separate dialog // offering a choice to debug the aborted program. We need to suppress // this dialog or it will pop up for every EXPECT/ASSERT_DEATH statement // executed. Google Test will notify the user of any unexpected // failure via stderr. if (!GTEST_FLAG_GET(break_on_failure)) _set_abort_behavior( 0x0, // Clear the following flags: _WRITE_ABORT_MSG | _CALL_REPORTFAULT); // pop-up window, core dump. // In debug mode, the Windows CRT can crash with an assertion over invalid // input (e.g. passing an invalid file descriptor). The default handling // for these assertions is to pop up a dialog and wait for user input. // Instead ask the CRT to dump such assertions to stderr non-interactively. if (!IsDebuggerPresent()) { (void)_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE | _CRTDBG_MODE_DEBUG); (void)_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR); } #endif } #else (void)in_death_test_child_process; // Needed inside the #if block above #endif // GTEST_OS_WINDOWS return internal::HandleExceptionsInMethodIfSupported( impl(), &internal::UnitTestImpl::RunAllTests, "auxiliary test code (environments or event listeners)") ? 0 : 1; } #if GTEST_HAS_FILE_SYSTEM // Returns the working directory when the first TEST() or TEST_F() was // executed. const char* UnitTest::original_working_dir() const { return impl_->original_working_dir_.c_str(); } #endif // GTEST_HAS_FILE_SYSTEM // Returns the TestSuite object for the test that's currently running, // or NULL if no test is running. const TestSuite* UnitTest::current_test_suite() const GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); return impl_->current_test_suite(); } // Legacy API is still available but deprecated #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ const TestCase* UnitTest::current_test_case() const GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); return impl_->current_test_suite(); } #endif // Returns the TestInfo object for the test that's currently running, // or NULL if no test is running. const TestInfo* UnitTest::current_test_info() const GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); return impl_->current_test_info(); } // Returns the random seed used at the start of the current test run. int UnitTest::random_seed() const { return impl_->random_seed(); } // Returns ParameterizedTestSuiteRegistry object used to keep track of // value-parameterized tests and instantiate and register them. internal::ParameterizedTestSuiteRegistry& UnitTest::parameterized_test_registry() GTEST_LOCK_EXCLUDED_(mutex_) { return impl_->parameterized_test_registry(); } // Creates an empty UnitTest. UnitTest::UnitTest() { impl_ = new internal::UnitTestImpl(this); } // Destructor of UnitTest. UnitTest::~UnitTest() { delete impl_; } // Pushes a trace defined by SCOPED_TRACE() on to the per-thread // Google Test trace stack. void UnitTest::PushGTestTrace(const internal::TraceInfo& trace) GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); impl_->gtest_trace_stack().push_back(trace); } // Pops a trace from the per-thread Google Test trace stack. void UnitTest::PopGTestTrace() GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); impl_->gtest_trace_stack().pop_back(); } namespace internal { UnitTestImpl::UnitTestImpl(UnitTest* parent) : parent_(parent), GTEST_DISABLE_MSC_WARNINGS_PUSH_(4355 /* using this in initializer */) default_global_test_part_result_reporter_(this), default_per_thread_test_part_result_reporter_(this), GTEST_DISABLE_MSC_WARNINGS_POP_() global_test_part_result_reporter_( &default_global_test_part_result_reporter_), per_thread_test_part_result_reporter_( &default_per_thread_test_part_result_reporter_), parameterized_test_registry_(), parameterized_tests_registered_(false), last_death_test_suite_(-1), current_test_suite_(nullptr), current_test_info_(nullptr), ad_hoc_test_result_(), os_stack_trace_getter_(nullptr), post_flag_parse_init_performed_(false), random_seed_(0), // Will be overridden by the flag before first use. random_(0), // Will be reseeded before first use. start_timestamp_(0), elapsed_time_(0), #ifdef GTEST_HAS_DEATH_TEST death_test_factory_(new DefaultDeathTestFactory), #endif // Will be overridden by the flag before first use. catch_exceptions_(false) { listeners()->SetDefaultResultPrinter(new PrettyUnitTestResultPrinter); } UnitTestImpl::~UnitTestImpl() { // Deletes every TestSuite. ForEach(test_suites_, internal::Delete); // Deletes every Environment. ForEach(environments_, internal::Delete); delete os_stack_trace_getter_; } // Adds a TestProperty to the current TestResult object when invoked in a // context of a test, to current test suite's ad_hoc_test_result when invoke // from SetUpTestSuite/TearDownTestSuite, or to the global property set // otherwise. If the result already contains a property with the same key, // the value will be updated. void UnitTestImpl::RecordProperty(const TestProperty& test_property) { std::string xml_element; TestResult* test_result; // TestResult appropriate for property recording. if (current_test_info_ != nullptr) { xml_element = "testcase"; test_result = &(current_test_info_->result_); } else if (current_test_suite_ != nullptr) { xml_element = "testsuite"; test_result = &(current_test_suite_->ad_hoc_test_result_); } else { xml_element = "testsuites"; test_result = &ad_hoc_test_result_; } test_result->RecordProperty(xml_element, test_property); } #ifdef GTEST_HAS_DEATH_TEST // Disables event forwarding if the control is currently in a death test // subprocess. Must not be called before InitGoogleTest. void UnitTestImpl::SuppressTestEventsIfInSubprocess() { if (internal_run_death_test_flag_ != nullptr) listeners()->SuppressEventForwarding(true); } #endif // GTEST_HAS_DEATH_TEST // Initializes event listeners performing XML output as specified by // UnitTestOptions. Must not be called before InitGoogleTest. void UnitTestImpl::ConfigureXmlOutput() { const std::string& output_format = UnitTestOptions::GetOutputFormat(); #if GTEST_HAS_FILE_SYSTEM if (output_format == "xml") { listeners()->SetDefaultXmlGenerator(new XmlUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str())); } else if (output_format == "json") { listeners()->SetDefaultXmlGenerator(new JsonUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str())); } else if (!output_format.empty()) { GTEST_LOG_(WARNING) << "WARNING: unrecognized output format \"" << output_format << "\" ignored."; } #else if (!output_format.empty()) { GTEST_LOG_(ERROR) << "ERROR: alternative output formats require " << "GTEST_HAS_FILE_SYSTEM to be enabled"; } #endif // GTEST_HAS_FILE_SYSTEM } #if GTEST_CAN_STREAM_RESULTS_ // Initializes event listeners for streaming test results in string form. // Must not be called before InitGoogleTest. void UnitTestImpl::ConfigureStreamingOutput() { const std::string& target = GTEST_FLAG_GET(stream_result_to); if (!target.empty()) { const size_t pos = target.find(':'); if (pos != std::string::npos) { listeners()->Append( new StreamingListener(target.substr(0, pos), target.substr(pos + 1))); } else { GTEST_LOG_(WARNING) << "unrecognized streaming target \"" << target << "\" ignored."; } } } #endif // GTEST_CAN_STREAM_RESULTS_ // Performs initialization dependent upon flag values obtained in // ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to // ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest // this function is also called from RunAllTests. Since this function can be // called more than once, it has to be idempotent. void UnitTestImpl::PostFlagParsingInit() { // Ensures that this function does not execute more than once. if (!post_flag_parse_init_performed_) { post_flag_parse_init_performed_ = true; #if defined(GTEST_CUSTOM_TEST_EVENT_LISTENER_) // Register to send notifications about key process state changes. listeners()->Append(new GTEST_CUSTOM_TEST_EVENT_LISTENER_()); #endif // defined(GTEST_CUSTOM_TEST_EVENT_LISTENER_) #ifdef GTEST_HAS_DEATH_TEST InitDeathTestSubprocessControlInfo(); SuppressTestEventsIfInSubprocess(); #endif // GTEST_HAS_DEATH_TEST // Registers parameterized tests. This makes parameterized tests // available to the UnitTest reflection API without running // RUN_ALL_TESTS. RegisterParameterizedTests(); // Configures listeners for XML output. This makes it possible for users // to shut down the default XML output before invoking RUN_ALL_TESTS. ConfigureXmlOutput(); if (GTEST_FLAG_GET(brief)) { listeners()->SetDefaultResultPrinter(new BriefUnitTestResultPrinter); } #if GTEST_CAN_STREAM_RESULTS_ // Configures listeners for streaming test results to the specified server. ConfigureStreamingOutput(); #endif // GTEST_CAN_STREAM_RESULTS_ #ifdef GTEST_HAS_ABSL if (GTEST_FLAG_GET(install_failure_signal_handler)) { absl::FailureSignalHandlerOptions options; absl::InstallFailureSignalHandler(options); } #endif // GTEST_HAS_ABSL } } // A predicate that checks the name of a TestSuite against a known // value. // // This is used for implementation of the UnitTest class only. We put // it in the anonymous namespace to prevent polluting the outer // namespace. // // TestSuiteNameIs is copyable. class TestSuiteNameIs { public: // Constructor. explicit TestSuiteNameIs(const std::string& name) : name_(name) {} // Returns true if and only if the name of test_suite matches name_. bool operator()(const TestSuite* test_suite) const { return test_suite != nullptr && strcmp(test_suite->name(), name_.c_str()) == 0; } private: std::string name_; }; // Finds and returns a TestSuite with the given name. If one doesn't // exist, creates one and returns it. It's the CALLER'S // RESPONSIBILITY to ensure that this function is only called WHEN THE // TESTS ARE NOT SHUFFLED. // // Arguments: // // test_suite_name: name of the test suite // type_param: the name of the test suite's type parameter, or NULL if // this is not a typed or a type-parameterized test suite. // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite TestSuite* UnitTestImpl::GetTestSuite( const char* test_suite_name, const char* type_param, internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc) { // Can we find a TestSuite with the given name? const auto test_suite = std::find_if(test_suites_.rbegin(), test_suites_.rend(), TestSuiteNameIs(test_suite_name)); if (test_suite != test_suites_.rend()) return *test_suite; // No. Let's create one. auto* const new_test_suite = new TestSuite(test_suite_name, type_param, set_up_tc, tear_down_tc); const UnitTestFilter death_test_suite_filter(kDeathTestSuiteFilter); // Is this a death test suite? if (death_test_suite_filter.MatchesName(test_suite_name)) { // Yes. Inserts the test suite after the last death test suite // defined so far. This only works when the test suites haven't // been shuffled. Otherwise we may end up running a death test // after a non-death test. ++last_death_test_suite_; test_suites_.insert(test_suites_.begin() + last_death_test_suite_, new_test_suite); } else { // No. Appends to the end of the list. test_suites_.push_back(new_test_suite); } test_suite_indices_.push_back(static_cast(test_suite_indices_.size())); return new_test_suite; } // Helpers for setting up / tearing down the given environment. They // are for use in the ForEach() function. static void SetUpEnvironment(Environment* env) { env->SetUp(); } static void TearDownEnvironment(Environment* env) { env->TearDown(); } // Runs all tests in this UnitTest object, prints the result, and // returns true if all tests are successful. If any exception is // thrown during a test, the test is considered to be failed, but the // rest of the tests will still be run. // // When parameterized tests are enabled, it expands and registers // parameterized tests first in RegisterParameterizedTests(). // All other functions called from RunAllTests() may safely assume that // parameterized tests are ready to be counted and run. bool UnitTestImpl::RunAllTests() { // True if and only if Google Test is initialized before RUN_ALL_TESTS() is // called. const bool gtest_is_initialized_before_run_all_tests = GTestIsInitialized(); // Do not run any test if the --help flag was specified. if (g_help_flag) return true; // Repeats the call to the post-flag parsing initialization in case the // user didn't call InitGoogleTest. PostFlagParsingInit(); #if GTEST_HAS_FILE_SYSTEM // Even if sharding is not on, test runners may want to use the // GTEST_SHARD_STATUS_FILE to query whether the test supports the sharding // protocol. internal::WriteToShardStatusFileIfNeeded(); #endif // GTEST_HAS_FILE_SYSTEM // True if and only if we are in a subprocess for running a thread-safe-style // death test. bool in_subprocess_for_death_test = false; #ifdef GTEST_HAS_DEATH_TEST in_subprocess_for_death_test = (internal_run_death_test_flag_ != nullptr); #if defined(GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_) if (in_subprocess_for_death_test) { GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_(); } #endif // defined(GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_) #endif // GTEST_HAS_DEATH_TEST const bool should_shard = ShouldShard(kTestTotalShards, kTestShardIndex, in_subprocess_for_death_test); // Compares the full test names with the filter to decide which // tests to run. const bool has_tests_to_run = FilterTests(should_shard ? HONOR_SHARDING_PROTOCOL : IGNORE_SHARDING_PROTOCOL) > 0; // Lists the tests and exits if the --gtest_list_tests flag was specified. if (GTEST_FLAG_GET(list_tests)) { // This must be called *after* FilterTests() has been called. ListTestsMatchingFilter(); return true; } random_seed_ = GetRandomSeedFromFlag(GTEST_FLAG_GET(random_seed)); // True if and only if at least one test has failed. bool failed = false; TestEventListener* repeater = listeners()->repeater(); start_timestamp_ = GetTimeInMillis(); repeater->OnTestProgramStart(*parent_); // How many times to repeat the tests? We don't want to repeat them // when we are inside the subprocess of a death test. const int repeat = in_subprocess_for_death_test ? 1 : GTEST_FLAG_GET(repeat); // Repeats forever if the repeat count is negative. const bool gtest_repeat_forever = repeat < 0; // Should test environments be set up and torn down for each repeat, or only // set up on the first and torn down on the last iteration? If there is no // "last" iteration because the tests will repeat forever, always recreate the // environments to avoid leaks in case one of the environments is using // resources that are external to this process. Without this check there would // be no way to clean up those external resources automatically. const bool recreate_environments_when_repeating = GTEST_FLAG_GET(recreate_environments_when_repeating) || gtest_repeat_forever; for (int i = 0; gtest_repeat_forever || i != repeat; i++) { // We want to preserve failures generated by ad-hoc test // assertions executed before RUN_ALL_TESTS(). ClearNonAdHocTestResult(); Timer timer; // Shuffles test suites and tests if requested. if (has_tests_to_run && GTEST_FLAG_GET(shuffle)) { random()->Reseed(static_cast(random_seed_)); // This should be done before calling OnTestIterationStart(), // such that a test event listener can see the actual test order // in the event. ShuffleTests(); } // Tells the unit test event listeners that the tests are about to start. repeater->OnTestIterationStart(*parent_, i); // Runs each test suite if there is at least one test to run. if (has_tests_to_run) { // Sets up all environments beforehand. If test environments aren't // recreated for each iteration, only do so on the first iteration. if (i == 0 || recreate_environments_when_repeating) { repeater->OnEnvironmentsSetUpStart(*parent_); ForEach(environments_, SetUpEnvironment); repeater->OnEnvironmentsSetUpEnd(*parent_); } // Runs the tests only if there was no fatal failure or skip triggered // during global set-up. if (Test::IsSkipped()) { // Emit diagnostics when global set-up calls skip, as it will not be // emitted by default. TestResult& test_result = *internal::GetUnitTestImpl()->current_test_result(); for (int j = 0; j < test_result.total_part_count(); ++j) { const TestPartResult& test_part_result = test_result.GetTestPartResult(j); if (test_part_result.type() == TestPartResult::kSkip) { const std::string& result = test_part_result.message(); printf("%s\n", result.c_str()); } } fflush(stdout); } else if (!Test::HasFatalFailure()) { for (int test_index = 0; test_index < total_test_suite_count(); test_index++) { GetMutableSuiteCase(test_index)->Run(); if (GTEST_FLAG_GET(fail_fast) && GetMutableSuiteCase(test_index)->Failed()) { for (int j = test_index + 1; j < total_test_suite_count(); j++) { GetMutableSuiteCase(j)->Skip(); } break; } } } else if (Test::HasFatalFailure()) { // If there was a fatal failure during the global setup then we know we // aren't going to run any tests. Explicitly mark all of the tests as // skipped to make this obvious in the output. for (int test_index = 0; test_index < total_test_suite_count(); test_index++) { GetMutableSuiteCase(test_index)->Skip(); } } // Tears down all environments in reverse order afterwards. If test // environments aren't recreated for each iteration, only do so on the // last iteration. if (i == repeat - 1 || recreate_environments_when_repeating) { repeater->OnEnvironmentsTearDownStart(*parent_); std::for_each(environments_.rbegin(), environments_.rend(), TearDownEnvironment); repeater->OnEnvironmentsTearDownEnd(*parent_); } } elapsed_time_ = timer.Elapsed(); // Tells the unit test event listener that the tests have just finished. repeater->OnTestIterationEnd(*parent_, i); // Gets the result and clears it. if (!Passed()) { failed = true; } // Restores the original test order after the iteration. This // allows the user to quickly repro a failure that happens in the // N-th iteration without repeating the first (N - 1) iterations. // This is not enclosed in "if (GTEST_FLAG(shuffle)) { ... }", in // case the user somehow changes the value of the flag somewhere // (it's always safe to unshuffle the tests). UnshuffleTests(); if (GTEST_FLAG_GET(shuffle)) { // Picks a new random seed for each iteration. random_seed_ = GetNextRandomSeed(random_seed_); } } repeater->OnTestProgramEnd(*parent_); if (!gtest_is_initialized_before_run_all_tests) { ColoredPrintf( GTestColor::kRed, "\nIMPORTANT NOTICE - DO NOT IGNORE:\n" "This test program did NOT call " GTEST_INIT_GOOGLE_TEST_NAME_ "() before calling RUN_ALL_TESTS(). This is INVALID. Soon " GTEST_NAME_ " will start to enforce the valid usage. " "Please fix it ASAP, or IT WILL START TO FAIL.\n"); // NOLINT } return !failed; } #if GTEST_HAS_FILE_SYSTEM // Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file // if the variable is present. If a file already exists at this location, this // function will write over it. If the variable is present, but the file cannot // be created, prints an error and exits. void WriteToShardStatusFileIfNeeded() { const char* const test_shard_file = posix::GetEnv(kTestShardStatusFile); if (test_shard_file != nullptr) { FILE* const file = posix::FOpen(test_shard_file, "w"); if (file == nullptr) { ColoredPrintf(GTestColor::kRed, "Could not write to the test shard status file \"%s\" " "specified by the %s environment variable.\n", test_shard_file, kTestShardStatusFile); fflush(stdout); exit(EXIT_FAILURE); } fclose(file); } } #endif // GTEST_HAS_FILE_SYSTEM // Checks whether sharding is enabled by examining the relevant // environment variable values. If the variables are present, // but inconsistent (i.e., shard_index >= total_shards), prints // an error and exits. If in_subprocess_for_death_test, sharding is // disabled because it must only be applied to the original test // process. Otherwise, we could filter out death tests we intended to execute. bool ShouldShard(const char* total_shards_env, const char* shard_index_env, bool in_subprocess_for_death_test) { if (in_subprocess_for_death_test) { return false; } const int32_t total_shards = Int32FromEnvOrDie(total_shards_env, -1); const int32_t shard_index = Int32FromEnvOrDie(shard_index_env, -1); if (total_shards == -1 && shard_index == -1) { return false; } else if (total_shards == -1 && shard_index != -1) { const Message msg = Message() << "Invalid environment variables: you have " << kTestShardIndex << " = " << shard_index << ", but have left " << kTestTotalShards << " unset.\n"; ColoredPrintf(GTestColor::kRed, "%s", msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } else if (total_shards != -1 && shard_index == -1) { const Message msg = Message() << "Invalid environment variables: you have " << kTestTotalShards << " = " << total_shards << ", but have left " << kTestShardIndex << " unset.\n"; ColoredPrintf(GTestColor::kRed, "%s", msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } else if (shard_index < 0 || shard_index >= total_shards) { const Message msg = Message() << "Invalid environment variables: we require 0 <= " << kTestShardIndex << " < " << kTestTotalShards << ", but you have " << kTestShardIndex << "=" << shard_index << ", " << kTestTotalShards << "=" << total_shards << ".\n"; ColoredPrintf(GTestColor::kRed, "%s", msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } return total_shards > 1; } // Parses the environment variable var as an Int32. If it is unset, // returns default_val. If it is not an Int32, prints an error // and aborts. int32_t Int32FromEnvOrDie(const char* var, int32_t default_val) { const char* str_val = posix::GetEnv(var); if (str_val == nullptr) { return default_val; } int32_t result; if (!ParseInt32(Message() << "The value of environment variable " << var, str_val, &result)) { exit(EXIT_FAILURE); } return result; } // Given the total number of shards, the shard index, and the test id, // returns true if and only if the test should be run on this shard. The test id // is some arbitrary but unique non-negative integer assigned to each test // method. Assumes that 0 <= shard_index < total_shards. bool ShouldRunTestOnShard(int total_shards, int shard_index, int test_id) { return (test_id % total_shards) == shard_index; } // Compares the name of each test with the user-specified filter to // decide whether the test should be run, then records the result in // each TestSuite and TestInfo object. // If shard_tests == true, further filters tests based on sharding // variables in the environment - see // https://github.com/google/googletest/blob/main/docs/advanced.md // . Returns the number of tests that should run. int UnitTestImpl::FilterTests(ReactionToSharding shard_tests) { const int32_t total_shards = shard_tests == HONOR_SHARDING_PROTOCOL ? Int32FromEnvOrDie(kTestTotalShards, -1) : -1; const int32_t shard_index = shard_tests == HONOR_SHARDING_PROTOCOL ? Int32FromEnvOrDie(kTestShardIndex, -1) : -1; const PositiveAndNegativeUnitTestFilter gtest_flag_filter( GTEST_FLAG_GET(filter)); const UnitTestFilter disable_test_filter(kDisableTestFilter); // num_runnable_tests are the number of tests that will // run across all shards (i.e., match filter and are not disabled). // num_selected_tests are the number of tests to be run on // this shard. int num_runnable_tests = 0; int num_selected_tests = 0; for (auto* test_suite : test_suites_) { const std::string& test_suite_name = test_suite->name(); test_suite->set_should_run(false); for (size_t j = 0; j < test_suite->test_info_list().size(); j++) { TestInfo* const test_info = test_suite->test_info_list()[j]; const std::string test_name(test_info->name()); // A test is disabled if test suite name or test name matches // kDisableTestFilter. const bool is_disabled = disable_test_filter.MatchesName(test_suite_name) || disable_test_filter.MatchesName(test_name); test_info->is_disabled_ = is_disabled; const bool matches_filter = gtest_flag_filter.MatchesTest(test_suite_name, test_name); test_info->matches_filter_ = matches_filter; const bool is_runnable = (GTEST_FLAG_GET(also_run_disabled_tests) || !is_disabled) && matches_filter; const bool is_in_another_shard = shard_tests != IGNORE_SHARDING_PROTOCOL && !ShouldRunTestOnShard(total_shards, shard_index, num_runnable_tests); test_info->is_in_another_shard_ = is_in_another_shard; const bool is_selected = is_runnable && !is_in_another_shard; num_runnable_tests += is_runnable; num_selected_tests += is_selected; test_info->should_run_ = is_selected; test_suite->set_should_run(test_suite->should_run() || is_selected); } } return num_selected_tests; } // Prints the given C-string on a single line by replacing all '\n' // characters with string "\\n". If the output takes more than // max_length characters, only prints the first max_length characters // and "...". static void PrintOnOneLine(const char* str, int max_length) { if (str != nullptr) { for (int i = 0; *str != '\0'; ++str) { if (i >= max_length) { printf("..."); break; } if (*str == '\n') { printf("\\n"); i += 2; } else { printf("%c", *str); ++i; } } } } // Prints the names of the tests matching the user-specified filter flag. void UnitTestImpl::ListTestsMatchingFilter() { // Print at most this many characters for each type/value parameter. const int kMaxParamLength = 250; for (auto* test_suite : test_suites_) { bool printed_test_suite_name = false; for (size_t j = 0; j < test_suite->test_info_list().size(); j++) { const TestInfo* const test_info = test_suite->test_info_list()[j]; if (test_info->matches_filter_) { if (!printed_test_suite_name) { printed_test_suite_name = true; printf("%s.", test_suite->name()); if (test_suite->type_param() != nullptr) { printf(" # %s = ", kTypeParamLabel); // We print the type parameter on a single line to make // the output easy to parse by a program. PrintOnOneLine(test_suite->type_param(), kMaxParamLength); } printf("\n"); } printf(" %s", test_info->name()); if (test_info->value_param() != nullptr) { printf(" # %s = ", kValueParamLabel); // We print the value parameter on a single line to make the // output easy to parse by a program. PrintOnOneLine(test_info->value_param(), kMaxParamLength); } printf("\n"); } } } fflush(stdout); #if GTEST_HAS_FILE_SYSTEM const std::string& output_format = UnitTestOptions::GetOutputFormat(); if (output_format == "xml" || output_format == "json") { FILE* fileout = OpenFileForWriting( UnitTestOptions::GetAbsolutePathToOutputFile().c_str()); std::stringstream stream; if (output_format == "xml") { XmlUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str()) .PrintXmlTestsList(&stream, test_suites_); } else if (output_format == "json") { JsonUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str()) .PrintJsonTestList(&stream, test_suites_); } fprintf(fileout, "%s", StringStreamToString(&stream).c_str()); fclose(fileout); } #endif // GTEST_HAS_FILE_SYSTEM } // Sets the OS stack trace getter. // // Does nothing if the input and the current OS stack trace getter are // the same; otherwise, deletes the old getter and makes the input the // current getter. void UnitTestImpl::set_os_stack_trace_getter( OsStackTraceGetterInterface* getter) { if (os_stack_trace_getter_ != getter) { delete os_stack_trace_getter_; os_stack_trace_getter_ = getter; } } // Returns the current OS stack trace getter if it is not NULL; // otherwise, creates an OsStackTraceGetter, makes it the current // getter, and returns it. OsStackTraceGetterInterface* UnitTestImpl::os_stack_trace_getter() { if (os_stack_trace_getter_ == nullptr) { #ifdef GTEST_OS_STACK_TRACE_GETTER_ os_stack_trace_getter_ = new GTEST_OS_STACK_TRACE_GETTER_; #else os_stack_trace_getter_ = new OsStackTraceGetter; #endif // GTEST_OS_STACK_TRACE_GETTER_ } return os_stack_trace_getter_; } // Returns the most specific TestResult currently running. TestResult* UnitTestImpl::current_test_result() { if (current_test_info_ != nullptr) { return ¤t_test_info_->result_; } if (current_test_suite_ != nullptr) { return ¤t_test_suite_->ad_hoc_test_result_; } return &ad_hoc_test_result_; } // Shuffles all test suites, and the tests within each test suite, // making sure that death tests are still run first. void UnitTestImpl::ShuffleTests() { // Shuffles the death test suites. ShuffleRange(random(), 0, last_death_test_suite_ + 1, &test_suite_indices_); // Shuffles the non-death test suites. ShuffleRange(random(), last_death_test_suite_ + 1, static_cast(test_suites_.size()), &test_suite_indices_); // Shuffles the tests inside each test suite. for (auto& test_suite : test_suites_) { test_suite->ShuffleTests(random()); } } // Restores the test suites and tests to their order before the first shuffle. void UnitTestImpl::UnshuffleTests() { for (size_t i = 0; i < test_suites_.size(); i++) { // Unshuffles the tests in each test suite. test_suites_[i]->UnshuffleTests(); // Resets the index of each test suite. test_suite_indices_[i] = static_cast(i); } } // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. GTEST_NO_INLINE_ GTEST_NO_TAIL_CALL_ std::string GetCurrentOsStackTraceExceptTop(int skip_count) { // We pass skip_count + 1 to skip this wrapper function in addition // to what the user really wants to skip. return GetUnitTestImpl()->CurrentOsStackTraceExceptTop(skip_count + 1); } // Used by the GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_ macro to // suppress unreachable code warnings. namespace { class ClassUniqueToAlwaysTrue {}; } // namespace bool IsTrue(bool condition) { return condition; } bool AlwaysTrue() { #if GTEST_HAS_EXCEPTIONS // This condition is always false so AlwaysTrue() never actually throws, // but it makes the compiler think that it may throw. if (IsTrue(false)) throw ClassUniqueToAlwaysTrue(); #endif // GTEST_HAS_EXCEPTIONS return true; } // If *pstr starts with the given prefix, modifies *pstr to be right // past the prefix and returns true; otherwise leaves *pstr unchanged // and returns false. None of pstr, *pstr, and prefix can be NULL. bool SkipPrefix(const char* prefix, const char** pstr) { const size_t prefix_len = strlen(prefix); if (strncmp(*pstr, prefix, prefix_len) == 0) { *pstr += prefix_len; return true; } return false; } // Parses a string as a command line flag. The string should have // the format "--flag=value". When def_optional is true, the "=value" // part can be omitted. // // Returns the value of the flag, or NULL if the parsing failed. static const char* ParseFlagValue(const char* str, const char* flag_name, bool def_optional) { // str and flag must not be NULL. if (str == nullptr || flag_name == nullptr) return nullptr; // The flag must start with "--" followed by GTEST_FLAG_PREFIX_. const std::string flag_str = std::string("--") + GTEST_FLAG_PREFIX_ + flag_name; const size_t flag_len = flag_str.length(); if (strncmp(str, flag_str.c_str(), flag_len) != 0) return nullptr; // Skips the flag name. const char* flag_end = str + flag_len; // When def_optional is true, it's OK to not have a "=value" part. if (def_optional && (flag_end[0] == '\0')) { return flag_end; } // If def_optional is true and there are more characters after the // flag name, or if def_optional is false, there must be a '=' after // the flag name. if (flag_end[0] != '=') return nullptr; // Returns the string after "=". return flag_end + 1; } // Parses a string for a bool flag, in the form of either // "--flag=value" or "--flag". // // In the former case, the value is taken as true as long as it does // not start with '0', 'f', or 'F'. // // In the latter case, the value is taken as true. // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. static bool ParseFlag(const char* str, const char* flag_name, bool* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag_name, true); // Aborts if the parsing failed. if (value_str == nullptr) return false; // Converts the string value to a bool. *value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F'); return true; } // Parses a string for an int32_t flag, in the form of "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. bool ParseFlag(const char* str, const char* flag_name, int32_t* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag_name, false); // Aborts if the parsing failed. if (value_str == nullptr) return false; // Sets *value to the value of the flag. return ParseInt32(Message() << "The value of flag --" << flag_name, value_str, value); } // Parses a string for a string flag, in the form of "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. template static bool ParseFlag(const char* str, const char* flag_name, String* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag_name, false); // Aborts if the parsing failed. if (value_str == nullptr) return false; // Sets *value to the value of the flag. *value = value_str; return true; } // Determines whether a string has a prefix that Google Test uses for its // flags, i.e., starts with GTEST_FLAG_PREFIX_ or GTEST_FLAG_PREFIX_DASH_. // If Google Test detects that a command line flag has its prefix but is not // recognized, it will print its help message. Flags starting with // GTEST_INTERNAL_PREFIX_ followed by "internal_" are considered Google Test // internal flags and do not trigger the help message. static bool HasGoogleTestFlagPrefix(const char* str) { return (SkipPrefix("--", &str) || SkipPrefix("-", &str) || SkipPrefix("/", &str)) && !SkipPrefix(GTEST_FLAG_PREFIX_ "internal_", &str) && (SkipPrefix(GTEST_FLAG_PREFIX_, &str) || SkipPrefix(GTEST_FLAG_PREFIX_DASH_, &str)); } // Prints a string containing code-encoded text. The following escape // sequences can be used in the string to control the text color: // // @@ prints a single '@' character. // @R changes the color to red. // @G changes the color to green. // @Y changes the color to yellow. // @D changes to the default terminal text color. // static void PrintColorEncoded(const char* str) { GTestColor color = GTestColor::kDefault; // The current color. // Conceptually, we split the string into segments divided by escape // sequences. Then we print one segment at a time. At the end of // each iteration, the str pointer advances to the beginning of the // next segment. for (;;) { const char* p = strchr(str, '@'); if (p == nullptr) { ColoredPrintf(color, "%s", str); return; } ColoredPrintf(color, "%s", std::string(str, p).c_str()); const char ch = p[1]; str = p + 2; if (ch == '@') { ColoredPrintf(color, "@"); } else if (ch == 'D') { color = GTestColor::kDefault; } else if (ch == 'R') { color = GTestColor::kRed; } else if (ch == 'G') { color = GTestColor::kGreen; } else if (ch == 'Y') { color = GTestColor::kYellow; } else { --str; } } } static const char kColorEncodedHelpMessage[] = "This program contains tests written using " GTEST_NAME_ ". You can use the\n" "following command line flags to control its behavior:\n" "\n" "Test Selection:\n" " @G--" GTEST_FLAG_PREFIX_ "list_tests@D\n" " List the names of all tests instead of running them. The name of\n" " TEST(Foo, Bar) is \"Foo.Bar\".\n" " @G--" GTEST_FLAG_PREFIX_ "filter=@YPOSITIVE_PATTERNS" "[@G-@YNEGATIVE_PATTERNS]@D\n" " Run only the tests whose name matches one of the positive patterns " "but\n" " none of the negative patterns. '?' matches any single character; " "'*'\n" " matches any substring; ':' separates two patterns.\n" " @G--" GTEST_FLAG_PREFIX_ "also_run_disabled_tests@D\n" " Run all disabled tests too.\n" "\n" "Test Execution:\n" " @G--" GTEST_FLAG_PREFIX_ "repeat=@Y[COUNT]@D\n" " Run the tests repeatedly; use a negative count to repeat forever.\n" " @G--" GTEST_FLAG_PREFIX_ "shuffle@D\n" " Randomize tests' orders on every iteration.\n" " @G--" GTEST_FLAG_PREFIX_ "random_seed=@Y[NUMBER]@D\n" " Random number seed to use for shuffling test orders (between 1 and\n" " 99999, or 0 to use a seed based on the current time).\n" " @G--" GTEST_FLAG_PREFIX_ "recreate_environments_when_repeating@D\n" " Sets up and tears down the global test environment on each repeat\n" " of the test.\n" "\n" "Test Output:\n" " @G--" GTEST_FLAG_PREFIX_ "color=@Y(@Gyes@Y|@Gno@Y|@Gauto@Y)@D\n" " Enable/disable colored output. The default is @Gauto@D.\n" " @G--" GTEST_FLAG_PREFIX_ "brief=1@D\n" " Only print test failures.\n" " @G--" GTEST_FLAG_PREFIX_ "print_time=0@D\n" " Don't print the elapsed time of each test.\n" " @G--" GTEST_FLAG_PREFIX_ "output=@Y(@Gjson@Y|@Gxml@Y)[@G:@YDIRECTORY_PATH@G" GTEST_PATH_SEP_ "@Y|@G:@YFILE_PATH]@D\n" " Generate a JSON or XML report in the given directory or with the " "given\n" " file name. @YFILE_PATH@D defaults to @Gtest_detail.xml@D.\n" #if GTEST_CAN_STREAM_RESULTS_ " @G--" GTEST_FLAG_PREFIX_ "stream_result_to=@YHOST@G:@YPORT@D\n" " Stream test results to the given server.\n" #endif // GTEST_CAN_STREAM_RESULTS_ "\n" "Assertion Behavior:\n" #if defined(GTEST_HAS_DEATH_TEST) && !defined(GTEST_OS_WINDOWS) " @G--" GTEST_FLAG_PREFIX_ "death_test_style=@Y(@Gfast@Y|@Gthreadsafe@Y)@D\n" " Set the default death test style.\n" #endif // GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS " @G--" GTEST_FLAG_PREFIX_ "break_on_failure@D\n" " Turn assertion failures into debugger break-points.\n" " @G--" GTEST_FLAG_PREFIX_ "throw_on_failure@D\n" " Turn assertion failures into C++ exceptions for use by an external\n" " test framework.\n" " @G--" GTEST_FLAG_PREFIX_ "catch_exceptions=0@D\n" " Do not report exceptions as test failures. Instead, allow them\n" " to crash the program or throw a pop-up (on Windows).\n" "\n" "Except for @G--" GTEST_FLAG_PREFIX_ "list_tests@D, you can alternatively set " "the corresponding\n" "environment variable of a flag (all letters in upper-case). For example, " "to\n" "disable colored text output, you can either specify " "@G--" GTEST_FLAG_PREFIX_ "color=no@D or set\n" "the @G" GTEST_FLAG_PREFIX_UPPER_ "COLOR@D environment variable to @Gno@D.\n" "\n" "For more information, please read the " GTEST_NAME_ " documentation at\n" "@G" GTEST_PROJECT_URL_ "@D. If you find a bug in " GTEST_NAME_ "\n" "(not one in your own code or tests), please report it to\n" "@G<" GTEST_DEV_EMAIL_ ">@D.\n"; static bool ParseGoogleTestFlag(const char* const arg) { #define GTEST_INTERNAL_PARSE_FLAG(flag_name) \ do { \ auto value = GTEST_FLAG_GET(flag_name); \ if (ParseFlag(arg, #flag_name, &value)) { \ GTEST_FLAG_SET(flag_name, value); \ return true; \ } \ } while (false) GTEST_INTERNAL_PARSE_FLAG(also_run_disabled_tests); GTEST_INTERNAL_PARSE_FLAG(break_on_failure); GTEST_INTERNAL_PARSE_FLAG(catch_exceptions); GTEST_INTERNAL_PARSE_FLAG(color); GTEST_INTERNAL_PARSE_FLAG(death_test_style); GTEST_INTERNAL_PARSE_FLAG(death_test_use_fork); GTEST_INTERNAL_PARSE_FLAG(fail_fast); GTEST_INTERNAL_PARSE_FLAG(filter); GTEST_INTERNAL_PARSE_FLAG(internal_run_death_test); GTEST_INTERNAL_PARSE_FLAG(list_tests); GTEST_INTERNAL_PARSE_FLAG(output); GTEST_INTERNAL_PARSE_FLAG(brief); GTEST_INTERNAL_PARSE_FLAG(print_time); GTEST_INTERNAL_PARSE_FLAG(print_utf8); GTEST_INTERNAL_PARSE_FLAG(random_seed); GTEST_INTERNAL_PARSE_FLAG(repeat); GTEST_INTERNAL_PARSE_FLAG(recreate_environments_when_repeating); GTEST_INTERNAL_PARSE_FLAG(shuffle); GTEST_INTERNAL_PARSE_FLAG(stack_trace_depth); GTEST_INTERNAL_PARSE_FLAG(stream_result_to); GTEST_INTERNAL_PARSE_FLAG(throw_on_failure); return false; } #if GTEST_USE_OWN_FLAGFILE_FLAG_ && GTEST_HAS_FILE_SYSTEM static void LoadFlagsFromFile(const std::string& path) { FILE* flagfile = posix::FOpen(path.c_str(), "r"); if (!flagfile) { GTEST_LOG_(FATAL) << "Unable to open file \"" << GTEST_FLAG_GET(flagfile) << "\""; } std::string contents(ReadEntireFile(flagfile)); posix::FClose(flagfile); std::vector lines; SplitString(contents, '\n', &lines); for (size_t i = 0; i < lines.size(); ++i) { if (lines[i].empty()) continue; if (!ParseGoogleTestFlag(lines[i].c_str())) g_help_flag = true; } } #endif // GTEST_USE_OWN_FLAGFILE_FLAG_ && GTEST_HAS_FILE_SYSTEM // Parses the command line for Google Test flags, without initializing // other parts of Google Test. The type parameter CharType can be // instantiated to either char or wchar_t. template void ParseGoogleTestFlagsOnlyImpl(int* argc, CharType** argv) { std::string flagfile_value; for (int i = 1; i < *argc; i++) { const std::string arg_string = StreamableToString(argv[i]); const char* const arg = arg_string.c_str(); using internal::ParseFlag; bool remove_flag = false; if (ParseGoogleTestFlag(arg)) { remove_flag = true; #if GTEST_USE_OWN_FLAGFILE_FLAG_ && GTEST_HAS_FILE_SYSTEM } else if (ParseFlag(arg, "flagfile", &flagfile_value)) { GTEST_FLAG_SET(flagfile, flagfile_value); LoadFlagsFromFile(flagfile_value); remove_flag = true; #endif // GTEST_USE_OWN_FLAGFILE_FLAG_ && GTEST_HAS_FILE_SYSTEM } else if (arg_string == "--help" || HasGoogleTestFlagPrefix(arg)) { // Both help flag and unrecognized Google Test flags (excluding // internal ones) trigger help display. g_help_flag = true; } if (remove_flag) { // Shift the remainder of the argv list left by one. Note // that argv has (*argc + 1) elements, the last one always being // NULL. The following loop moves the trailing NULL element as // well. for (int j = i; j != *argc; j++) { argv[j] = argv[j + 1]; } // Decrements the argument count. (*argc)--; // We also need to decrement the iterator as we just removed // an element. i--; } } if (g_help_flag) { // We print the help here instead of in RUN_ALL_TESTS(), as the // latter may not be called at all if the user is using Google // Test with another testing framework. PrintColorEncoded(kColorEncodedHelpMessage); } } // Parses the command line for Google Test flags, without initializing // other parts of Google Test. This function updates argc and argv by removing // flags that are known to GoogleTest (including other user flags defined using // ABSL_FLAG if GoogleTest is built with GTEST_USE_ABSL). Other arguments // remain in place. Unrecognized flags are not reported and do not cause the // program to exit. void ParseGoogleTestFlagsOnly(int* argc, char** argv) { #ifdef GTEST_HAS_ABSL if (*argc <= 0) return; std::vector positional_args; std::vector unrecognized_flags; absl::ParseAbseilFlagsOnly(*argc, argv, positional_args, unrecognized_flags); absl::flat_hash_set unrecognized; for (const auto& flag : unrecognized_flags) { unrecognized.insert(flag.flag_name); } absl::flat_hash_set positional; for (const auto& arg : positional_args) { positional.insert(arg); } int out_pos = 1; int in_pos = 1; for (; in_pos < *argc; ++in_pos) { char* arg = argv[in_pos]; absl::string_view arg_str(arg); if (absl::ConsumePrefix(&arg_str, "--")) { // Flag-like argument. If the flag was unrecognized, keep it. // If it was a GoogleTest flag, remove it. if (unrecognized.contains(arg_str)) { argv[out_pos++] = argv[in_pos]; continue; } } if (arg_str.empty()) { ++in_pos; break; // '--' indicates that the rest of the arguments are positional } // Probably a positional argument. If it is in fact positional, keep it. // If it was a value for the flag argument, remove it. if (positional.contains(arg)) { argv[out_pos++] = arg; } } // The rest are positional args for sure. while (in_pos < *argc) { argv[out_pos++] = argv[in_pos++]; } *argc = out_pos; argv[out_pos] = nullptr; #else ParseGoogleTestFlagsOnlyImpl(argc, argv); #endif // Fix the value of *_NSGetArgc() on macOS, but if and only if // *_NSGetArgv() == argv // Only applicable to char** version of argv #ifdef GTEST_OS_MAC #ifndef GTEST_OS_IOS if (*_NSGetArgv() == argv) { *_NSGetArgc() = *argc; } #endif #endif } void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv) { ParseGoogleTestFlagsOnlyImpl(argc, argv); } // The internal implementation of InitGoogleTest(). // // The type parameter CharType can be instantiated to either char or // wchar_t. template void InitGoogleTestImpl(int* argc, CharType** argv) { // We don't want to run the initialization code twice. if (GTestIsInitialized()) return; if (*argc <= 0) return; g_argvs.clear(); for (int i = 0; i != *argc; i++) { g_argvs.push_back(StreamableToString(argv[i])); } #ifdef GTEST_HAS_ABSL absl::InitializeSymbolizer(g_argvs[0].c_str()); // When using the Abseil Flags library, set the program usage message to the // help message, but remove the color-encoding from the message first. absl::SetProgramUsageMessage(absl::StrReplaceAll( kColorEncodedHelpMessage, {{"@D", ""}, {"@R", ""}, {"@G", ""}, {"@Y", ""}, {"@@", "@"}})); #endif // GTEST_HAS_ABSL ParseGoogleTestFlagsOnly(argc, argv); GetUnitTestImpl()->PostFlagParsingInit(); } } // namespace internal // Initializes Google Test. This must be called before calling // RUN_ALL_TESTS(). In particular, it parses a command line for the // flags that Google Test recognizes. Whenever a Google Test flag is // seen, it is removed from argv, and *argc is decremented. // // No value is returned. Instead, the Google Test flag variables are // updated. // // Calling the function for the second time has no user-visible effect. void InitGoogleTest(int* argc, char** argv) { #if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(argc, argv); #else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) internal::InitGoogleTestImpl(argc, argv); #endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) } // This overloaded version can be used in Windows programs compiled in // UNICODE mode. void InitGoogleTest(int* argc, wchar_t** argv) { #if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(argc, argv); #else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) internal::InitGoogleTestImpl(argc, argv); #endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) } // This overloaded version can be used on Arduino/embedded platforms where // there is no argc/argv. void InitGoogleTest() { // Since Arduino doesn't have a command line, fake out the argc/argv arguments int argc = 1; const auto arg0 = "dummy"; char* argv0 = const_cast(arg0); char** argv = &argv0; #if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(&argc, argv); #else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) internal::InitGoogleTestImpl(&argc, argv); #endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) } #if !defined(GTEST_CUSTOM_TEMPDIR_FUNCTION_) || \ !defined(GTEST_CUSTOM_SRCDIR_FUNCTION_) // Returns the value of the first environment variable that is set and contains // a non-empty string. If there are none, returns the "fallback" string. Adds // the director-separator character as a suffix if not provided in the // environment variable value. static std::string GetDirFromEnv( std::initializer_list environment_variables, const char* fallback, char separator) { for (const char* variable_name : environment_variables) { const char* value = internal::posix::GetEnv(variable_name); if (value != nullptr && value[0] != '\0') { if (value[strlen(value) - 1] != separator) { return std::string(value).append(1, separator); } return value; } } return fallback; } #endif std::string TempDir() { #if defined(GTEST_CUSTOM_TEMPDIR_FUNCTION_) return GTEST_CUSTOM_TEMPDIR_FUNCTION_(); #elif defined(GTEST_OS_WINDOWS) || defined(GTEST_OS_WINDOWS_MOBILE) return GetDirFromEnv({"TEST_TMPDIR", "TEMP"}, "\\temp\\", '\\'); #elif defined(GTEST_OS_LINUX_ANDROID) return GetDirFromEnv({"TEST_TMPDIR", "TMPDIR"}, "/data/local/tmp/", '/'); #else return GetDirFromEnv({"TEST_TMPDIR", "TMPDIR"}, "/tmp/", '/'); #endif } #if GTEST_HAS_FILE_SYSTEM && !defined(GTEST_CUSTOM_SRCDIR_FUNCTION_) // Returns the directory path (including terminating separator) of the current // executable as derived from argv[0]. static std::string GetCurrentExecutableDirectory() { internal::FilePath argv_0(internal::GetArgvs()[0]); return argv_0.RemoveFileName().string(); } #endif #if GTEST_HAS_FILE_SYSTEM std::string SrcDir() { #if defined(GTEST_CUSTOM_SRCDIR_FUNCTION_) return GTEST_CUSTOM_SRCDIR_FUNCTION_(); #elif defined(GTEST_OS_WINDOWS) || defined(GTEST_OS_WINDOWS_MOBILE) return GetDirFromEnv({"TEST_SRCDIR"}, GetCurrentExecutableDirectory().c_str(), '\\'); #elif defined(GTEST_OS_LINUX_ANDROID) return GetDirFromEnv({"TEST_SRCDIR"}, GetCurrentExecutableDirectory().c_str(), '/'); #else return GetDirFromEnv({"TEST_SRCDIR"}, GetCurrentExecutableDirectory().c_str(), '/'); #endif } #endif // Class ScopedTrace // Pushes the given source file location and message onto a per-thread // trace stack maintained by Google Test. void ScopedTrace::PushTrace(const char* file, int line, std::string message) { internal::TraceInfo trace; trace.file = file; trace.line = line; trace.message.swap(message); UnitTest::GetInstance()->PushGTestTrace(trace); } // Pops the info pushed by the c'tor. ScopedTrace::~ScopedTrace() GTEST_LOCK_EXCLUDED_(&UnitTest::mutex_) { UnitTest::GetInstance()->PopGTestTrace(); } } // namespace testing