// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Tests for Google Test itself. This verifies that the basic constructs of // Google Test work. #include "gtest/gtest.h" // Verifies that the command line flag variables can be accessed in // code once "gtest.h" has been #included. // Do not move it after other gtest #includes. TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) { bool dummy = GTEST_FLAG_GET(also_run_disabled_tests) || GTEST_FLAG_GET(break_on_failure) || GTEST_FLAG_GET(catch_exceptions) || GTEST_FLAG_GET(color) != "unknown" || GTEST_FLAG_GET(fail_fast) || GTEST_FLAG_GET(filter) != "unknown" || GTEST_FLAG_GET(list_tests) || GTEST_FLAG_GET(output) != "unknown" || GTEST_FLAG_GET(brief) || GTEST_FLAG_GET(print_time) || GTEST_FLAG_GET(random_seed) || GTEST_FLAG_GET(repeat) > 0 || GTEST_FLAG_GET(recreate_environments_when_repeating) || GTEST_FLAG_GET(show_internal_stack_frames) || GTEST_FLAG_GET(shuffle) || GTEST_FLAG_GET(stack_trace_depth) > 0 || GTEST_FLAG_GET(stream_result_to) != "unknown" || GTEST_FLAG_GET(throw_on_failure); EXPECT_TRUE(dummy || !dummy); // Suppresses warning that dummy is unused. } #include // For INT_MAX. #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gtest/gtest-spi.h" #include "src/gtest-internal-inl.h" namespace testing { namespace internal { #if GTEST_CAN_STREAM_RESULTS_ class StreamingListenerTest : public Test { public: class FakeSocketWriter : public StreamingListener::AbstractSocketWriter { public: // Sends a string to the socket. void Send(const std::string& message) override { output_ += message; } std::string output_; }; StreamingListenerTest() : fake_sock_writer_(new FakeSocketWriter), streamer_(fake_sock_writer_), test_info_obj_("FooTest", "Bar", nullptr, nullptr, CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {} protected: std::string* output() { return &(fake_sock_writer_->output_); } FakeSocketWriter* const fake_sock_writer_; StreamingListener streamer_; UnitTest unit_test_; TestInfo test_info_obj_; // The name test_info_ was taken by testing::Test. }; TEST_F(StreamingListenerTest, OnTestProgramEnd) { *output() = ""; streamer_.OnTestProgramEnd(unit_test_); EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output()); } TEST_F(StreamingListenerTest, OnTestIterationEnd) { *output() = ""; streamer_.OnTestIterationEnd(unit_test_, 42); EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output()); } TEST_F(StreamingListenerTest, OnTestSuiteStart) { *output() = ""; streamer_.OnTestSuiteStart(TestSuite("FooTest", "Bar", nullptr, nullptr)); EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output()); } TEST_F(StreamingListenerTest, OnTestSuiteEnd) { *output() = ""; streamer_.OnTestSuiteEnd(TestSuite("FooTest", "Bar", nullptr, nullptr)); EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output()); } TEST_F(StreamingListenerTest, OnTestStart) { *output() = ""; streamer_.OnTestStart(test_info_obj_); EXPECT_EQ("event=TestStart&name=Bar\n", *output()); } TEST_F(StreamingListenerTest, OnTestEnd) { *output() = ""; streamer_.OnTestEnd(test_info_obj_); EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output()); } TEST_F(StreamingListenerTest, OnTestPartResult) { *output() = ""; streamer_.OnTestPartResult(TestPartResult(TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%")); // Meta characters in the failure message should be properly escaped. EXPECT_EQ( "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n", *output()); } #endif // GTEST_CAN_STREAM_RESULTS_ // Provides access to otherwise private parts of the TestEventListeners class // that are needed to test it. class TestEventListenersAccessor { public: static TestEventListener* GetRepeater(TestEventListeners* listeners) { return listeners->repeater(); } static void SetDefaultResultPrinter(TestEventListeners* listeners, TestEventListener* listener) { listeners->SetDefaultResultPrinter(listener); } static void SetDefaultXmlGenerator(TestEventListeners* listeners, TestEventListener* listener) { listeners->SetDefaultXmlGenerator(listener); } static bool EventForwardingEnabled(const TestEventListeners& listeners) { return listeners.EventForwardingEnabled(); } static void SuppressEventForwarding(TestEventListeners* listeners) { listeners->SuppressEventForwarding(); } }; class UnitTestRecordPropertyTestHelper : public Test { protected: UnitTestRecordPropertyTestHelper() {} // Forwards to UnitTest::RecordProperty() to bypass access controls. void UnitTestRecordProperty(const char* key, const std::string& value) { unit_test_.RecordProperty(key, value); } UnitTest unit_test_; }; } // namespace internal } // namespace testing using testing::AssertionFailure; using testing::AssertionResult; using testing::AssertionSuccess; using testing::DoubleLE; using testing::EmptyTestEventListener; using testing::Environment; using testing::FloatLE; using testing::IsNotSubstring; using testing::IsSubstring; using testing::kMaxStackTraceDepth; using testing::Message; using testing::ScopedFakeTestPartResultReporter; using testing::StaticAssertTypeEq; using testing::Test; using testing::TestEventListeners; using testing::TestInfo; using testing::TestPartResult; using testing::TestPartResultArray; using testing::TestProperty; using testing::TestResult; using testing::TimeInMillis; using testing::UnitTest; using testing::internal::AlwaysFalse; using testing::internal::AlwaysTrue; using testing::internal::AppendUserMessage; using testing::internal::ArrayAwareFind; using testing::internal::ArrayEq; using testing::internal::CodePointToUtf8; using testing::internal::CopyArray; using testing::internal::CountIf; using testing::internal::EqFailure; using testing::internal::FloatingPoint; using testing::internal::ForEach; using testing::internal::FormatEpochTimeInMillisAsIso8601; using testing::internal::FormatTimeInMillisAsSeconds; using testing::internal::GetElementOr; using testing::internal::GetNextRandomSeed; using testing::internal::GetRandomSeedFromFlag; using testing::internal::GetTestTypeId; using testing::internal::GetTimeInMillis; using testing::internal::GetTypeId; using testing::internal::GetUnitTestImpl; using testing::internal::GTestFlagSaver; using testing::internal::HasDebugStringAndShortDebugString; using testing::internal::Int32FromEnvOrDie; using testing::internal::IsContainer; using testing::internal::IsContainerTest; using testing::internal::IsNotContainer; using testing::internal::kMaxRandomSeed; using testing::internal::kTestTypeIdInGoogleTest; using testing::internal::NativeArray; using testing::internal::ParseFlag; using testing::internal::RelationToSourceCopy; using testing::internal::RelationToSourceReference; using testing::internal::ShouldRunTestOnShard; using testing::internal::ShouldShard; using testing::internal::ShouldUseColor; using testing::internal::Shuffle; using testing::internal::ShuffleRange; using testing::internal::SkipPrefix; using testing::internal::StreamableToString; using testing::internal::String; using testing::internal::TestEventListenersAccessor; using testing::internal::TestResultAccessor; using testing::internal::WideStringToUtf8; using testing::internal::edit_distance::CalculateOptimalEdits; using testing::internal::edit_distance::CreateUnifiedDiff; using testing::internal::edit_distance::EditType; #if GTEST_HAS_STREAM_REDIRECTION using testing::internal::CaptureStdout; using testing::internal::GetCapturedStdout; #endif #ifdef GTEST_IS_THREADSAFE using testing::internal::ThreadWithParam; #endif class TestingVector : public std::vector {}; ::std::ostream& operator<<(::std::ostream& os, const TestingVector& vector) { os << "{ "; for (size_t i = 0; i < vector.size(); i++) { os << vector[i] << " "; } os << "}"; return os; } // This line tests that we can define tests in an unnamed namespace. namespace { TEST(GetRandomSeedFromFlagTest, HandlesZero) { const int seed = GetRandomSeedFromFlag(0); EXPECT_LE(1, seed); EXPECT_LE(seed, static_cast(kMaxRandomSeed)); } TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) { EXPECT_EQ(1, GetRandomSeedFromFlag(1)); EXPECT_EQ(2, GetRandomSeedFromFlag(2)); EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1)); EXPECT_EQ(static_cast(kMaxRandomSeed), GetRandomSeedFromFlag(kMaxRandomSeed)); } TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) { const int seed1 = GetRandomSeedFromFlag(-1); EXPECT_LE(1, seed1); EXPECT_LE(seed1, static_cast(kMaxRandomSeed)); const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1); EXPECT_LE(1, seed2); EXPECT_LE(seed2, static_cast(kMaxRandomSeed)); } TEST(GetNextRandomSeedTest, WorksForValidInput) { EXPECT_EQ(2, GetNextRandomSeed(1)); EXPECT_EQ(3, GetNextRandomSeed(2)); EXPECT_EQ(static_cast(kMaxRandomSeed), GetNextRandomSeed(kMaxRandomSeed - 1)); EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed)); // We deliberately don't test GetNextRandomSeed() with invalid // inputs, as that requires death tests, which are expensive. This // is fine as GetNextRandomSeed() is internal and has a // straightforward definition. } static void ClearCurrentTestPartResults() { TestResultAccessor::ClearTestPartResults( GetUnitTestImpl()->current_test_result()); } // Tests GetTypeId. TEST(GetTypeIdTest, ReturnsSameValueForSameType) { EXPECT_EQ(GetTypeId(), GetTypeId()); EXPECT_EQ(GetTypeId(), GetTypeId()); } class SubClassOfTest : public Test {}; class AnotherSubClassOfTest : public Test {}; TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) { EXPECT_NE(GetTypeId(), GetTypeId()); EXPECT_NE(GetTypeId(), GetTypeId()); EXPECT_NE(GetTypeId(), GetTestTypeId()); EXPECT_NE(GetTypeId(), GetTestTypeId()); EXPECT_NE(GetTypeId(), GetTestTypeId()); EXPECT_NE(GetTypeId(), GetTypeId()); } // Verifies that GetTestTypeId() returns the same value, no matter it // is called from inside Google Test or outside of it. TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) { EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId()); } // Tests CanonicalizeForStdLibVersioning. using ::testing::internal::CanonicalizeForStdLibVersioning; TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) { EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind")); EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_")); EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo")); EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x")); EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x")); EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x")); } TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) { EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind")); EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_")); EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind")); EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_")); EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__google::bind")); EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_")); } // Tests FormatTimeInMillisAsSeconds(). TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) { EXPECT_EQ("0.", FormatTimeInMillisAsSeconds(0)); } TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) { EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3)); EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10)); EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200)); EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200)); EXPECT_EQ("3.", FormatTimeInMillisAsSeconds(3000)); EXPECT_EQ("10.", FormatTimeInMillisAsSeconds(10000)); EXPECT_EQ("100.", FormatTimeInMillisAsSeconds(100000)); EXPECT_EQ("123.456", FormatTimeInMillisAsSeconds(123456)); EXPECT_EQ("1234567.89", FormatTimeInMillisAsSeconds(1234567890)); } TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) { EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3)); EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10)); EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200)); EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200)); EXPECT_EQ("-3.", FormatTimeInMillisAsSeconds(-3000)); EXPECT_EQ("-10.", FormatTimeInMillisAsSeconds(-10000)); EXPECT_EQ("-100.", FormatTimeInMillisAsSeconds(-100000)); EXPECT_EQ("-123.456", FormatTimeInMillisAsSeconds(-123456)); EXPECT_EQ("-1234567.89", FormatTimeInMillisAsSeconds(-1234567890)); } // Tests FormatEpochTimeInMillisAsIso8601(). The correctness of conversion // for particular dates below was verified in Python using // datetime.datetime.fromutctimestamp(/1000). // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we // have to set up a particular timezone to obtain predictable results. class FormatEpochTimeInMillisAsIso8601Test : public Test { public: // On Cygwin, GCC doesn't allow unqualified integer literals to exceed // 32 bits, even when 64-bit integer types are available. We have to // force the constants to have a 64-bit type here. static const TimeInMillis kMillisPerSec = 1000; private: void SetUp() override { saved_tz_.reset(); GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv: deprecated */) if (const char* tz = getenv("TZ")) { saved_tz_ = std::make_unique(tz); } GTEST_DISABLE_MSC_DEPRECATED_POP_() // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use. We // cannot use the local time zone because the function's output depends // on the time zone. SetTimeZone("UTC+00"); } void TearDown() override { SetTimeZone(saved_tz_ != nullptr ? saved_tz_->c_str() : nullptr); saved_tz_.reset(); } static void SetTimeZone(const char* time_zone) { // tzset() distinguishes between the TZ variable being present and empty // and not being present, so we have to consider the case of time_zone // being NULL. #if defined(_MSC_VER) || defined(GTEST_OS_WINDOWS_MINGW) // ...Unless it's MSVC, whose standard library's _putenv doesn't // distinguish between an empty and a missing variable. const std::string env_var = std::string("TZ=") + (time_zone ? time_zone : ""); _putenv(env_var.c_str()); GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */) tzset(); GTEST_DISABLE_MSC_WARNINGS_POP_() #else #if defined(GTEST_OS_LINUX_ANDROID) && __ANDROID_API__ < 21 // Work around KitKat bug in tzset by setting "UTC" before setting "UTC+00". // See https://github.com/android/ndk/issues/1604. setenv("TZ", "UTC", 1); tzset(); #endif if (time_zone) { setenv(("TZ"), time_zone, 1); } else { unsetenv("TZ"); } tzset(); #endif } std::unique_ptr saved_tz_; // Empty and null are different here }; const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec; TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) { EXPECT_EQ("2011-10-31T18:52:42.000", FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec)); } TEST_F(FormatEpochTimeInMillisAsIso8601Test, IncludesMillisecondsAfterDot) { EXPECT_EQ("2011-10-31T18:52:42.234", FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234)); } TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) { EXPECT_EQ("2011-09-03T05:07:02.000", FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec)); } TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) { EXPECT_EQ("2011-09-28T17:08:22.000", FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec)); } TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) { EXPECT_EQ("1970-01-01T00:00:00.000", FormatEpochTimeInMillisAsIso8601(0)); } #ifdef __BORLANDC__ // Silences warnings: "Condition is always true", "Unreachable code" #pragma option push -w-ccc -w-rch #endif // Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal // when the RHS is a pointer type. TEST(NullLiteralTest, LHSAllowsNullLiterals) { EXPECT_EQ(0, static_cast(nullptr)); // NOLINT ASSERT_EQ(0, static_cast(nullptr)); // NOLINT EXPECT_EQ(NULL, static_cast(nullptr)); // NOLINT ASSERT_EQ(NULL, static_cast(nullptr)); // NOLINT EXPECT_EQ(nullptr, static_cast(nullptr)); ASSERT_EQ(nullptr, static_cast(nullptr)); const int* const p = nullptr; EXPECT_EQ(0, p); // NOLINT ASSERT_EQ(0, p); // NOLINT EXPECT_EQ(NULL, p); // NOLINT ASSERT_EQ(NULL, p); // NOLINT EXPECT_EQ(nullptr, p); ASSERT_EQ(nullptr, p); } struct ConvertToAll { template operator T() const { // NOLINT return T(); } }; struct ConvertToPointer { template operator T*() const { // NOLINT return nullptr; } }; struct ConvertToAllButNoPointers { template ::value, int>::type = 0> operator T() const { // NOLINT return T(); } }; struct MyType {}; inline bool operator==(MyType const&, MyType const&) { return true; } TEST(NullLiteralTest, ImplicitConversion) { EXPECT_EQ(ConvertToPointer{}, static_cast(nullptr)); #if !defined(__GNUC__) || defined(__clang__) // Disabled due to GCC bug gcc.gnu.org/PR89580 EXPECT_EQ(ConvertToAll{}, static_cast(nullptr)); #endif EXPECT_EQ(ConvertToAll{}, MyType{}); EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{}); } #ifdef __clang__ #pragma clang diagnostic push #if __has_warning("-Wzero-as-null-pointer-constant") #pragma clang diagnostic error "-Wzero-as-null-pointer-constant" #endif #endif TEST(NullLiteralTest, NoConversionNoWarning) { // Test that gtests detection and handling of null pointer constants // doesn't trigger a warning when '0' isn't actually used as null. EXPECT_EQ(0, 0); ASSERT_EQ(0, 0); } #ifdef __clang__ #pragma clang diagnostic pop #endif #ifdef __BORLANDC__ // Restores warnings after previous "#pragma option push" suppressed them. #pragma option pop #endif // // Tests CodePointToUtf8(). // Tests that the NUL character L'\0' is encoded correctly. TEST(CodePointToUtf8Test, CanEncodeNul) { EXPECT_EQ("", CodePointToUtf8(L'\0')); } // Tests that ASCII characters are encoded correctly. TEST(CodePointToUtf8Test, CanEncodeAscii) { EXPECT_EQ("a", CodePointToUtf8(L'a')); EXPECT_EQ("Z", CodePointToUtf8(L'Z')); EXPECT_EQ("&", CodePointToUtf8(L'&')); EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F')); } // Tests that Unicode code-points that have 8 to 11 bits are encoded // as 110xxxxx 10xxxxxx. TEST(CodePointToUtf8Test, CanEncode8To11Bits) { // 000 1101 0011 => 110-00011 10-010011 EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3')); // 101 0111 0110 => 110-10101 10-110110 // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints // in wide strings and wide chars. In order to accommodate them, we have to // introduce such character constants as integers. EXPECT_EQ("\xD5\xB6", CodePointToUtf8(static_cast(0x576))); } // Tests that Unicode code-points that have 12 to 16 bits are encoded // as 1110xxxx 10xxxxxx 10xxxxxx. TEST(CodePointToUtf8Test, CanEncode12To16Bits) { // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011 EXPECT_EQ("\xE0\xA3\x93", CodePointToUtf8(static_cast(0x8D3))); // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101 EXPECT_EQ("\xEC\x9D\x8D", CodePointToUtf8(static_cast(0xC74D))); } #if !GTEST_WIDE_STRING_USES_UTF16_ // Tests in this group require a wchar_t to hold > 16 bits, and thus // are skipped on Windows, and Cygwin, where a wchar_t is // 16-bit wide. This code may not compile on those systems. // Tests that Unicode code-points that have 17 to 21 bits are encoded // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. TEST(CodePointToUtf8Test, CanEncode17To21Bits) { // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011 EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3')); // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000 EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400')); // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100 EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634')); } // Tests that encoding an invalid code-point generates the expected result. TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) { EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD')); } #endif // !GTEST_WIDE_STRING_USES_UTF16_ // Tests WideStringToUtf8(). // Tests that the NUL character L'\0' is encoded correctly. TEST(WideStringToUtf8Test, CanEncodeNul) { EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str()); EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str()); } // Tests that ASCII strings are encoded correctly. TEST(WideStringToUtf8Test, CanEncodeAscii) { EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str()); EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str()); EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str()); EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str()); } // Tests that Unicode code-points that have 8 to 11 bits are encoded // as 110xxxxx 10xxxxxx. TEST(WideStringToUtf8Test, CanEncode8To11Bits) { // 000 1101 0011 => 110-00011 10-010011 EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str()); EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str()); // 101 0111 0110 => 110-10101 10-110110 const wchar_t s[] = {0x576, '\0'}; EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str()); EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str()); } // Tests that Unicode code-points that have 12 to 16 bits are encoded // as 1110xxxx 10xxxxxx 10xxxxxx. TEST(WideStringToUtf8Test, CanEncode12To16Bits) { // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011 const wchar_t s1[] = {0x8D3, '\0'}; EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str()); EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str()); // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101 const wchar_t s2[] = {0xC74D, '\0'}; EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str()); EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str()); } // Tests that the conversion stops when the function encounters \0 character. TEST(WideStringToUtf8Test, StopsOnNulCharacter) { EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str()); } // Tests that the conversion stops when the function reaches the limit // specified by the 'length' parameter. TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) { EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str()); } #if !GTEST_WIDE_STRING_USES_UTF16_ // Tests that Unicode code-points that have 17 to 21 bits are encoded // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile // on the systems using UTF-16 encoding. TEST(WideStringToUtf8Test, CanEncode17To21Bits) { // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011 EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str()); EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str()); // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100 EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str()); EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str()); } // Tests that encoding an invalid code-point generates the expected result. TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) { EXPECT_STREQ("(Invalid Unicode 0xABCDFF)", WideStringToUtf8(L"\xABCDFF", -1).c_str()); } #else // !GTEST_WIDE_STRING_USES_UTF16_ // Tests that surrogate pairs are encoded correctly on the systems using // UTF-16 encoding in the wide strings. TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) { const wchar_t s[] = {0xD801, 0xDC00, '\0'}; EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str()); } // Tests that encoding an invalid UTF-16 surrogate pair // generates the expected result. TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) { // Leading surrogate is at the end of the string. const wchar_t s1[] = {0xD800, '\0'}; EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str()); // Leading surrogate is not followed by the trailing surrogate. const wchar_t s2[] = {0xD800, 'M', '\0'}; EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str()); // Trailing surrogate appearas without a leading surrogate. const wchar_t s3[] = {0xDC00, 'P', 'Q', 'R', '\0'}; EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str()); } #endif // !GTEST_WIDE_STRING_USES_UTF16_ // Tests that codepoint concatenation works correctly. #if !GTEST_WIDE_STRING_USES_UTF16_ TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) { const wchar_t s[] = {0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'}; EXPECT_STREQ( "\xF4\x88\x98\xB4" "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93" "\xF4\x88\x98\xB4", WideStringToUtf8(s, -1).c_str()); } #else TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) { const wchar_t s[] = {0xC74D, '\n', 0x576, 0x8D3, '\0'}; EXPECT_STREQ( "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93", WideStringToUtf8(s, -1).c_str()); } #endif // !GTEST_WIDE_STRING_USES_UTF16_ // Tests the Random class. TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) { testing::internal::Random random(42); EXPECT_DEATH_IF_SUPPORTED(random.Generate(0), "Cannot generate a number in the range \\[0, 0\\)"); EXPECT_DEATH_IF_SUPPORTED( random.Generate(testing::internal::Random::kMaxRange + 1), "Generation of a number in \\[0, 2147483649\\) was requested, " "but this can only generate numbers in \\[0, 2147483648\\)"); } TEST(RandomTest, GeneratesNumbersWithinRange) { constexpr uint32_t kRange = 10000; testing::internal::Random random(12345); for (int i = 0; i < 10; i++) { EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i; } testing::internal::Random random2(testing::internal::Random::kMaxRange); for (int i = 0; i < 10; i++) { EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i; } } TEST(RandomTest, RepeatsWhenReseeded) { constexpr int kSeed = 123; constexpr int kArraySize = 10; constexpr uint32_t kRange = 10000; uint32_t values[kArraySize]; testing::internal::Random random(kSeed); for (int i = 0; i < kArraySize; i++) { values[i] = random.Generate(kRange); } random.Reseed(kSeed); for (int i = 0; i < kArraySize; i++) { EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i; } } // Tests STL container utilities. // Tests CountIf(). static bool IsPositive(int n) { return n > 0; } TEST(ContainerUtilityTest, CountIf) { std::vector v; EXPECT_EQ(0, CountIf(v, IsPositive)); // Works for an empty container. v.push_back(-1); v.push_back(0); EXPECT_EQ(0, CountIf(v, IsPositive)); // Works when no value satisfies. v.push_back(2); v.push_back(-10); v.push_back(10); EXPECT_EQ(2, CountIf(v, IsPositive)); } // Tests ForEach(). static int g_sum = 0; static void Accumulate(int n) { g_sum += n; } TEST(ContainerUtilityTest, ForEach) { std::vector v; g_sum = 0; ForEach(v, Accumulate); EXPECT_EQ(0, g_sum); // Works for an empty container; g_sum = 0; v.push_back(1); ForEach(v, Accumulate); EXPECT_EQ(1, g_sum); // Works for a container with one element. g_sum = 0; v.push_back(20); v.push_back(300); ForEach(v, Accumulate); EXPECT_EQ(321, g_sum); } // Tests GetElementOr(). TEST(ContainerUtilityTest, GetElementOr) { std::vector a; EXPECT_EQ('x', GetElementOr(a, 0, 'x')); a.push_back('a'); a.push_back('b'); EXPECT_EQ('a', GetElementOr(a, 0, 'x')); EXPECT_EQ('b', GetElementOr(a, 1, 'x')); EXPECT_EQ('x', GetElementOr(a, -2, 'x')); EXPECT_EQ('x', GetElementOr(a, 2, 'x')); } TEST(ContainerUtilityDeathTest, ShuffleRange) { std::vector a; a.push_back(0); a.push_back(1); a.push_back(2); testing::internal::Random random(1); EXPECT_DEATH_IF_SUPPORTED( ShuffleRange(&random, -1, 1, &a), "Invalid shuffle range start -1: must be in range \\[0, 3\\]"); EXPECT_DEATH_IF_SUPPORTED( ShuffleRange(&random, 4, 4, &a), "Invalid shuffle range start 4: must be in range \\[0, 3\\]"); EXPECT_DEATH_IF_SUPPORTED( ShuffleRange(&random, 3, 2, &a), "Invalid shuffle range finish 2: must be in range \\[3, 3\\]"); EXPECT_DEATH_IF_SUPPORTED( ShuffleRange(&random, 3, 4, &a), "Invalid shuffle range finish 4: must be in range \\[3, 3\\]"); } class VectorShuffleTest : public Test { protected: static const size_t kVectorSize = 20; VectorShuffleTest() : random_(1) { for (int i = 0; i < static_cast(kVectorSize); i++) { vector_.push_back(i); } } static bool VectorIsCorrupt(const TestingVector& vector) { if (kVectorSize != vector.size()) { return true; } bool found_in_vector[kVectorSize] = {false}; for (size_t i = 0; i < vector.size(); i++) { const int e = vector[i]; if (e < 0 || e >= static_cast(kVectorSize) || found_in_vector[e]) { return true; } found_in_vector[e] = true; } // Vector size is correct, elements' range is correct, no // duplicate elements. Therefore no corruption has occurred. return false; } static bool VectorIsNotCorrupt(const TestingVector& vector) { return !VectorIsCorrupt(vector); } static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) { for (int i = begin; i < end; i++) { if (i != vector[static_cast(i)]) { return true; } } return false; } static bool RangeIsUnshuffled(const TestingVector& vector, int begin, int end) { return !RangeIsShuffled(vector, begin, end); } static bool VectorIsShuffled(const TestingVector& vector) { return RangeIsShuffled(vector, 0, static_cast(vector.size())); } static bool VectorIsUnshuffled(const TestingVector& vector) { return !VectorIsShuffled(vector); } testing::internal::Random random_; TestingVector vector_; }; // class VectorShuffleTest const size_t VectorShuffleTest::kVectorSize; TEST_F(VectorShuffleTest, HandlesEmptyRange) { // Tests an empty range at the beginning... ShuffleRange(&random_, 0, 0, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); // ...in the middle... ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); // ...at the end... ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); // ...and past the end. ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); } TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) { // Tests a size one range at the beginning... ShuffleRange(&random_, 0, 1, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); // ...in the middle... ShuffleRange(&random_, kVectorSize / 2, kVectorSize / 2 + 1, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); // ...and at the end. ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); } // Because we use our own random number generator and a fixed seed, // we can guarantee that the following "random" tests will succeed. TEST_F(VectorShuffleTest, ShufflesEntireVector) { Shuffle(&random_, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_; // Tests the first and last elements in particular to ensure that // there are no off-by-one problems in our shuffle algorithm. EXPECT_NE(0, vector_[0]); EXPECT_NE(static_cast(kVectorSize - 1), vector_[kVectorSize - 1]); } TEST_F(VectorShuffleTest, ShufflesStartOfVector) { const int kRangeSize = kVectorSize / 2; ShuffleRange(&random_, 0, kRangeSize, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize); EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, static_cast(kVectorSize)); } TEST_F(VectorShuffleTest, ShufflesEndOfVector) { const int kRangeSize = kVectorSize / 2; ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize); EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, static_cast(kVectorSize)); } TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) { const int kRangeSize = static_cast(kVectorSize) / 3; ShuffleRange(&random_, kRangeSize, 2 * kRangeSize, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize); EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2 * kRangeSize); EXPECT_PRED3(RangeIsUnshuffled, vector_, 2 * kRangeSize, static_cast(kVectorSize)); } TEST_F(VectorShuffleTest, ShufflesRepeatably) { TestingVector vector2; for (size_t i = 0; i < kVectorSize; i++) { vector2.push_back(static_cast(i)); } random_.Reseed(1234); Shuffle(&random_, &vector_); random_.Reseed(1234); Shuffle(&random_, &vector2); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector2); for (size_t i = 0; i < kVectorSize; i++) { EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i; } } // Tests the size of the AssertHelper class. TEST(AssertHelperTest, AssertHelperIsSmall) { // To avoid breaking clients that use lots of assertions in one // function, we cannot grow the size of AssertHelper. EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*)); } // Tests String::EndsWithCaseInsensitive(). TEST(StringTest, EndsWithCaseInsensitive) { EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR")); EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar")); EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "")); EXPECT_TRUE(String::EndsWithCaseInsensitive("", "")); EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo")); EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo")); EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo")); } // C++Builder's preprocessor is buggy; it fails to expand macros that // appear in macro parameters after wide char literals. Provide an alias // for NULL as a workaround. static const wchar_t* const kNull = nullptr; // Tests String::CaseInsensitiveWideCStringEquals TEST(StringTest, CaseInsensitiveWideCStringEquals) { EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr)); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"")); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull)); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar")); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull)); EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar")); EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR")); EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar")); } #ifdef GTEST_OS_WINDOWS // Tests String::ShowWideCString(). TEST(StringTest, ShowWideCString) { EXPECT_STREQ("(null)", String::ShowWideCString(NULL).c_str()); EXPECT_STREQ("", String::ShowWideCString(L"").c_str()); EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str()); } #ifdef GTEST_OS_WINDOWS_MOBILE TEST(StringTest, AnsiAndUtf16Null) { EXPECT_EQ(NULL, String::AnsiToUtf16(NULL)); EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL)); } TEST(StringTest, AnsiAndUtf16ConvertBasic) { const char* ansi = String::Utf16ToAnsi(L"str"); EXPECT_STREQ("str", ansi); delete[] ansi; const WCHAR* utf16 = String::AnsiToUtf16("str"); EXPECT_EQ(0, wcsncmp(L"str", utf16, 3)); delete[] utf16; } TEST(StringTest, AnsiAndUtf16ConvertPathChars) { const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?"); EXPECT_STREQ(".:\\ \"*?", ansi); delete[] ansi; const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?"); EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3)); delete[] utf16; } #endif // GTEST_OS_WINDOWS_MOBILE #endif // GTEST_OS_WINDOWS // Tests TestProperty construction. TEST(TestPropertyTest, StringValue) { TestProperty property("key", "1"); EXPECT_STREQ("key", property.key()); EXPECT_STREQ("1", property.value()); } // Tests TestProperty replacing a value. TEST(TestPropertyTest, ReplaceStringValue) { TestProperty property("key", "1"); EXPECT_STREQ("1", property.value()); property.SetValue("2"); EXPECT_STREQ("2", property.value()); } // AddFatalFailure() and AddNonfatalFailure() must be stand-alone // functions (i.e. their definitions cannot be inlined at the call // sites), or C++Builder won't compile the code. static void AddFatalFailure() { FAIL() << "Expected fatal failure."; } static void AddNonfatalFailure() { ADD_FAILURE() << "Expected non-fatal failure."; } class ScopedFakeTestPartResultReporterTest : public Test { public: // Must be public and not protected due to a bug in g++ 3.4.2. enum FailureMode { FATAL_FAILURE, NONFATAL_FAILURE }; static void AddFailure(FailureMode failure) { if (failure == FATAL_FAILURE) { AddFatalFailure(); } else { AddNonfatalFailure(); } } }; // Tests that ScopedFakeTestPartResultReporter intercepts test // failures. TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) { TestPartResultArray results; { ScopedFakeTestPartResultReporter reporter( ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD, &results); AddFailure(NONFATAL_FAILURE); AddFailure(FATAL_FAILURE); } EXPECT_EQ(2, results.size()); EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed()); EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed()); } TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) { TestPartResultArray results; { // Tests, that the deprecated constructor still works. ScopedFakeTestPartResultReporter reporter(&results); AddFailure(NONFATAL_FAILURE); } EXPECT_EQ(1, results.size()); } #ifdef GTEST_IS_THREADSAFE class ScopedFakeTestPartResultReporterWithThreadsTest : public ScopedFakeTestPartResultReporterTest { protected: static void AddFailureInOtherThread(FailureMode failure) { ThreadWithParam thread(&AddFailure, failure, nullptr); thread.Join(); } }; TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest, InterceptsTestFailuresInAllThreads) { TestPartResultArray results; { ScopedFakeTestPartResultReporter reporter( ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results); AddFailure(NONFATAL_FAILURE); AddFailure(FATAL_FAILURE); AddFailureInOtherThread(NONFATAL_FAILURE); AddFailureInOtherThread(FATAL_FAILURE); } EXPECT_EQ(4, results.size()); EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed()); EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed()); EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed()); EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed()); } #endif // GTEST_IS_THREADSAFE // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}. Makes sure that they // work even if the failure is generated in a called function rather than // the current context. typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest; TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) { EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure."); } TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) { EXPECT_FATAL_FAILURE(AddFatalFailure(), ::std::string("Expected fatal failure.")); } TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) { // We have another test below to verify that the macro catches fatal // failures generated on another thread. EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(), "Expected fatal failure."); } #ifdef __BORLANDC__ // Silences warnings: "Condition is always true" #pragma option push -w-ccc #endif // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void // function even when the statement in it contains ASSERT_*. int NonVoidFunction() { EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), ""); EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), ""); return 0; } TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) { NonVoidFunction(); } // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the // current function even though 'statement' generates a fatal failure. void DoesNotAbortHelper(bool* aborted) { EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), ""); EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), ""); *aborted = false; } #ifdef __BORLANDC__ // Restores warnings after previous "#pragma option push" suppressed them. #pragma option pop #endif TEST_F(ExpectFatalFailureTest, DoesNotAbort) { bool aborted = true; DoesNotAbortHelper(&aborted); EXPECT_FALSE(aborted); } // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a // statement that contains a macro which expands to code containing an // unprotected comma. static int global_var = 0; #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++ TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) { #ifndef __BORLANDC__ // ICE's in C++Builder. EXPECT_FATAL_FAILURE( { GTEST_USE_UNPROTECTED_COMMA_; AddFatalFailure(); }, ""); #endif EXPECT_FATAL_FAILURE_ON_ALL_THREADS( { GTEST_USE_UNPROTECTED_COMMA_; AddFatalFailure(); }, ""); } // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}. typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest; TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) { EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), "Expected non-fatal failure."); } TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) { EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), ::std::string("Expected non-fatal failure.")); } TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) { // We have another test below to verify that the macro catches // non-fatal failures generated on another thread. EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(), "Expected non-fatal failure."); } // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a // statement that contains a macro which expands to code containing an // unprotected comma. TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) { EXPECT_NONFATAL_FAILURE( { GTEST_USE_UNPROTECTED_COMMA_; AddNonfatalFailure(); }, ""); EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS( { GTEST_USE_UNPROTECTED_COMMA_; AddNonfatalFailure(); }, ""); } #ifdef GTEST_IS_THREADSAFE typedef ScopedFakeTestPartResultReporterWithThreadsTest ExpectFailureWithThreadsTest; TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) { EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE), "Expected fatal failure."); } TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) { EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS( AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure."); } #endif // GTEST_IS_THREADSAFE // Tests the TestProperty class. TEST(TestPropertyTest, ConstructorWorks) { const TestProperty property("key", "value"); EXPECT_STREQ("key", property.key()); EXPECT_STREQ("value", property.value()); } TEST(TestPropertyTest, SetValue) { TestProperty property("key", "value_1"); EXPECT_STREQ("key", property.key()); property.SetValue("value_2"); EXPECT_STREQ("key", property.key()); EXPECT_STREQ("value_2", property.value()); } // Tests the TestResult class // The test fixture for testing TestResult. class TestResultTest : public Test { protected: typedef std::vector TPRVector; // We make use of 2 TestPartResult objects, TestPartResult *pr1, *pr2; // ... and 3 TestResult objects. TestResult *r0, *r1, *r2; void SetUp() override { // pr1 is for success. pr1 = new TestPartResult(TestPartResult::kSuccess, "foo/bar.cc", 10, "Success!"); // pr2 is for fatal failure. pr2 = new TestPartResult(TestPartResult::kFatalFailure, "foo/bar.cc", -1, // This line number means "unknown" "Failure!"); // Creates the TestResult objects. r0 = new TestResult(); r1 = new TestResult(); r2 = new TestResult(); // In order to test TestResult, we need to modify its internal // state, in particular the TestPartResult vector it holds. // test_part_results() returns a const reference to this vector. // We cast it to a non-const object s.t. it can be modified TPRVector* results1 = const_cast(&TestResultAccessor::test_part_results(*r1)); TPRVector* results2 = const_cast(&TestResultAccessor::test_part_results(*r2)); // r0 is an empty TestResult. // r1 contains a single SUCCESS TestPartResult. results1->push_back(*pr1); // r2 contains a SUCCESS, and a FAILURE. results2->push_back(*pr1); results2->push_back(*pr2); } void TearDown() override { delete pr1; delete pr2; delete r0; delete r1; delete r2; } // Helper that compares two TestPartResults. static void CompareTestPartResult(const TestPartResult& expected, const TestPartResult& actual) { EXPECT_EQ(expected.type(), actual.type()); EXPECT_STREQ(expected.file_name(), actual.file_name()); EXPECT_EQ(expected.line_number(), actual.line_number()); EXPECT_STREQ(expected.summary(), actual.summary()); EXPECT_STREQ(expected.message(), actual.message()); EXPECT_EQ(expected.passed(), actual.passed()); EXPECT_EQ(expected.failed(), actual.failed()); EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed()); EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed()); } }; // Tests TestResult::total_part_count(). TEST_F(TestResultTest, total_part_count) { ASSERT_EQ(0, r0->total_part_count()); ASSERT_EQ(1, r1->total_part_count()); ASSERT_EQ(2, r2->total_part_count()); } // Tests TestResult::Passed(). TEST_F(TestResultTest, Passed) { ASSERT_TRUE(r0->Passed()); ASSERT_TRUE(r1->Passed()); ASSERT_FALSE(r2->Passed()); } // Tests TestResult::Failed(). TEST_F(TestResultTest, Failed) { ASSERT_FALSE(r0->Failed()); ASSERT_FALSE(r1->Failed()); ASSERT_TRUE(r2->Failed()); } // Tests TestResult::GetTestPartResult(). typedef TestResultTest TestResultDeathTest; TEST_F(TestResultDeathTest, GetTestPartResult) { CompareTestPartResult(*pr1, r2->GetTestPartResult(0)); CompareTestPartResult(*pr2, r2->GetTestPartResult(1)); EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), ""); EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), ""); } // Tests TestResult has no properties when none are added. TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) { TestResult test_result; ASSERT_EQ(0, test_result.test_property_count()); } // Tests TestResult has the expected property when added. TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) { TestResult test_result; TestProperty property("key_1", "1"); TestResultAccessor::RecordProperty(&test_result, "testcase", property); ASSERT_EQ(1, test_result.test_property_count()); const TestProperty& actual_property = test_result.GetTestProperty(0); EXPECT_STREQ("key_1", actual_property.key()); EXPECT_STREQ("1", actual_property.value()); } // Tests TestResult has multiple properties when added. TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) { TestResult test_result; TestProperty property_1("key_1", "1"); TestProperty property_2("key_2", "2"); TestResultAccessor::RecordProperty(&test_result, "testcase", property_1); TestResultAccessor::RecordProperty(&test_result, "testcase", property_2); ASSERT_EQ(2, test_result.test_property_count()); const TestProperty& actual_property_1 = test_result.GetTestProperty(0); EXPECT_STREQ("key_1", actual_property_1.key()); EXPECT_STREQ("1", actual_property_1.value()); const TestProperty& actual_property_2 = test_result.GetTestProperty(1); EXPECT_STREQ("key_2", actual_property_2.key()); EXPECT_STREQ("2", actual_property_2.value()); } // Tests TestResult::RecordProperty() overrides values for duplicate keys. TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) { TestResult test_result; TestProperty property_1_1("key_1", "1"); TestProperty property_2_1("key_2", "2"); TestProperty property_1_2("key_1", "12"); TestProperty property_2_2("key_2", "22"); TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1); TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1); TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2); TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2); ASSERT_EQ(2, test_result.test_property_count()); const TestProperty& actual_property_1 = test_result.GetTestProperty(0); EXPECT_STREQ("key_1", actual_property_1.key()); EXPECT_STREQ("12", actual_property_1.value()); const TestProperty& actual_property_2 = test_result.GetTestProperty(1); EXPECT_STREQ("key_2", actual_property_2.key()); EXPECT_STREQ("22", actual_property_2.value()); } // Tests TestResult::GetTestProperty(). TEST(TestResultPropertyTest, GetTestProperty) { TestResult test_result; TestProperty property_1("key_1", "1"); TestProperty property_2("key_2", "2"); TestProperty property_3("key_3", "3"); TestResultAccessor::RecordProperty(&test_result, "testcase", property_1); TestResultAccessor::RecordProperty(&test_result, "testcase", property_2); TestResultAccessor::RecordProperty(&test_result, "testcase", property_3); const TestProperty& fetched_property_1 = test_result.GetTestProperty(0); const TestProperty& fetched_property_2 = test_result.GetTestProperty(1); const TestProperty& fetched_property_3 = test_result.GetTestProperty(2); EXPECT_STREQ("key_1", fetched_property_1.key()); EXPECT_STREQ("1", fetched_property_1.value()); EXPECT_STREQ("key_2", fetched_property_2.key()); EXPECT_STREQ("2", fetched_property_2.value()); EXPECT_STREQ("key_3", fetched_property_3.key()); EXPECT_STREQ("3", fetched_property_3.value()); EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), ""); EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), ""); } // Tests the Test class. // // It's difficult to test every public method of this class (we are // already stretching the limit of Google Test by using it to test itself!). // Fortunately, we don't have to do that, as we are already testing // the functionalities of the Test class extensively by using Google Test // alone. // // Therefore, this section only contains one test. // Tests that GTestFlagSaver works on Windows and Mac. class GTestFlagSaverTest : public Test { protected: // Saves the Google Test flags such that we can restore them later, and // then sets them to their default values. This will be called // before the first test in this test case is run. static void SetUpTestSuite() { saver_ = new GTestFlagSaver; GTEST_FLAG_SET(also_run_disabled_tests, false); GTEST_FLAG_SET(break_on_failure, false); GTEST_FLAG_SET(catch_exceptions, false); GTEST_FLAG_SET(death_test_use_fork, false); GTEST_FLAG_SET(color, "auto"); GTEST_FLAG_SET(fail_fast, false); GTEST_FLAG_SET(filter, ""); GTEST_FLAG_SET(list_tests, false); GTEST_FLAG_SET(output, ""); GTEST_FLAG_SET(brief, false); GTEST_FLAG_SET(print_time, true); GTEST_FLAG_SET(random_seed, 0); GTEST_FLAG_SET(repeat, 1); GTEST_FLAG_SET(recreate_environments_when_repeating, true); GTEST_FLAG_SET(shuffle, false); GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth); GTEST_FLAG_SET(stream_result_to, ""); GTEST_FLAG_SET(throw_on_failure, false); } // Restores the Google Test flags that the tests have modified. This will // be called after the last test in this test case is run. static void TearDownTestSuite() { delete saver_; saver_ = nullptr; } // Verifies that the Google Test flags have their default values, and then // modifies each of them. void VerifyAndModifyFlags() { EXPECT_FALSE(GTEST_FLAG_GET(also_run_disabled_tests)); EXPECT_FALSE(GTEST_FLAG_GET(break_on_failure)); EXPECT_FALSE(GTEST_FLAG_GET(catch_exceptions)); EXPECT_STREQ("auto", GTEST_FLAG_GET(color).c_str()); EXPECT_FALSE(GTEST_FLAG_GET(death_test_use_fork)); EXPECT_FALSE(GTEST_FLAG_GET(fail_fast)); EXPECT_STREQ("", GTEST_FLAG_GET(filter).c_str()); EXPECT_FALSE(GTEST_FLAG_GET(list_tests)); EXPECT_STREQ("", GTEST_FLAG_GET(output).c_str()); EXPECT_FALSE(GTEST_FLAG_GET(brief)); EXPECT_TRUE(GTEST_FLAG_GET(print_time)); EXPECT_EQ(0, GTEST_FLAG_GET(random_seed)); EXPECT_EQ(1, GTEST_FLAG_GET(repeat)); EXPECT_TRUE(GTEST_FLAG_GET(recreate_environments_when_repeating)); EXPECT_FALSE(GTEST_FLAG_GET(shuffle)); EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG_GET(stack_trace_depth)); EXPECT_STREQ("", GTEST_FLAG_GET(stream_result_to).c_str()); EXPECT_FALSE(GTEST_FLAG_GET(throw_on_failure)); GTEST_FLAG_SET(also_run_disabled_tests, true); GTEST_FLAG_SET(break_on_failure, true); GTEST_FLAG_SET(catch_exceptions, true); GTEST_FLAG_SET(color, "no"); GTEST_FLAG_SET(death_test_use_fork, true); GTEST_FLAG_SET(fail_fast, true); GTEST_FLAG_SET(filter, "abc"); GTEST_FLAG_SET(list_tests, true); GTEST_FLAG_SET(output, "xml:foo.xml"); GTEST_FLAG_SET(brief, true); GTEST_FLAG_SET(print_time, false); GTEST_FLAG_SET(random_seed, 1); GTEST_FLAG_SET(repeat, 100); GTEST_FLAG_SET(recreate_environments_when_repeating, false); GTEST_FLAG_SET(shuffle, true); GTEST_FLAG_SET(stack_trace_depth, 1); GTEST_FLAG_SET(stream_result_to, "localhost:1234"); GTEST_FLAG_SET(throw_on_failure, true); } private: // For saving Google Test flags during this test case. static GTestFlagSaver* saver_; }; GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr; // Google Test doesn't guarantee the order of tests. The following two // tests are designed to work regardless of their order. // Modifies the Google Test flags in the test body. TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { VerifyAndModifyFlags(); } // Verifies that the Google Test flags in the body of the previous test were // restored to their original values. TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { VerifyAndModifyFlags(); } // Sets an environment variable with the given name to the given // value. If the value argument is "", unsets the environment // variable. The caller must ensure that both arguments are not NULL. static void SetEnv(const char* name, const char* value) { #ifdef GTEST_OS_WINDOWS_MOBILE // Environment variables are not supported on Windows CE. return; #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9) // C++Builder's putenv only stores a pointer to its parameter; we have to // ensure that the string remains valid as long as it might be needed. // We use an std::map to do so. static std::map added_env; // Because putenv stores a pointer to the string buffer, we can't delete the // previous string (if present) until after it's replaced. std::string* prev_env = NULL; if (added_env.find(name) != added_env.end()) { prev_env = added_env[name]; } added_env[name] = new std::string((Message() << name << "=" << value).GetString()); // The standard signature of putenv accepts a 'char*' argument. Other // implementations, like C++Builder's, accept a 'const char*'. // We cast away the 'const' since that would work for both variants. putenv(const_cast(added_env[name]->c_str())); delete prev_env; #elif defined(GTEST_OS_WINDOWS) // If we are on Windows proper. _putenv((Message() << name << "=" << value).GetString().c_str()); #else if (*value == '\0') { unsetenv(name); } else { setenv(name, value, 1); } #endif // GTEST_OS_WINDOWS_MOBILE } #ifndef GTEST_OS_WINDOWS_MOBILE // Environment variables are not supported on Windows CE. using testing::internal::Int32FromGTestEnv; // Tests Int32FromGTestEnv(). // Tests that Int32FromGTestEnv() returns the default value when the // environment variable is not set. TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) { SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", ""); EXPECT_EQ(10, Int32FromGTestEnv("temp", 10)); } #if !defined(GTEST_GET_INT32_FROM_ENV_) // Tests that Int32FromGTestEnv() returns the default value when the // environment variable overflows as an Int32. TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) { printf("(expecting 2 warnings)\n"); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321"); EXPECT_EQ(20, Int32FromGTestEnv("temp", 20)); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321"); EXPECT_EQ(30, Int32FromGTestEnv("temp", 30)); } // Tests that Int32FromGTestEnv() returns the default value when the // environment variable does not represent a valid decimal integer. TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) { printf("(expecting 2 warnings)\n"); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1"); EXPECT_EQ(40, Int32FromGTestEnv("temp", 40)); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X"); EXPECT_EQ(50, Int32FromGTestEnv("temp", 50)); } #endif // !defined(GTEST_GET_INT32_FROM_ENV_) // Tests that Int32FromGTestEnv() parses and returns the value of the // environment variable when it represents a valid decimal integer in // the range of an Int32. TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) { SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123"); EXPECT_EQ(123, Int32FromGTestEnv("temp", 0)); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321"); EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0)); } #endif // !GTEST_OS_WINDOWS_MOBILE // Tests ParseFlag(). // Tests that ParseInt32Flag() returns false and doesn't change the // output value when the flag has wrong format TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) { int32_t value = 123; EXPECT_FALSE(ParseFlag("--a=100", "b", &value)); EXPECT_EQ(123, value); EXPECT_FALSE(ParseFlag("a=100", "a", &value)); EXPECT_EQ(123, value); } // Tests that ParseFlag() returns false and doesn't change the // output value when the flag overflows as an Int32. TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) { printf("(expecting 2 warnings)\n"); int32_t value = 123; EXPECT_FALSE(ParseFlag("--abc=12345678987654321", "abc", &value)); EXPECT_EQ(123, value); EXPECT_FALSE(ParseFlag("--abc=-12345678987654321", "abc", &value)); EXPECT_EQ(123, value); } // Tests that ParseInt32Flag() returns false and doesn't change the // output value when the flag does not represent a valid decimal // integer. TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) { printf("(expecting 2 warnings)\n"); int32_t value = 123; EXPECT_FALSE(ParseFlag("--abc=A1", "abc", &value)); EXPECT_EQ(123, value); EXPECT_FALSE(ParseFlag("--abc=12X", "abc", &value)); EXPECT_EQ(123, value); } // Tests that ParseInt32Flag() parses the value of the flag and // returns true when the flag represents a valid decimal integer in // the range of an Int32. TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) { int32_t value = 123; EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value)); EXPECT_EQ(456, value); EXPECT_TRUE(ParseFlag("--" GTEST_FLAG_PREFIX_ "abc=-789", "abc", &value)); EXPECT_EQ(-789, value); } // Tests that Int32FromEnvOrDie() parses the value of the var or // returns the correct default. // Environment variables are not supported on Windows CE. #ifndef GTEST_OS_WINDOWS_MOBILE TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) { EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123"); EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123"); EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); } #endif // !GTEST_OS_WINDOWS_MOBILE // Tests that Int32FromEnvOrDie() aborts with an error message // if the variable is not an int32_t. TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) { SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx"); EXPECT_DEATH_IF_SUPPORTED( Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*"); } // Tests that Int32FromEnvOrDie() aborts with an error message // if the variable cannot be represented by an int32_t. TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) { SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234"); EXPECT_DEATH_IF_SUPPORTED( Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*"); } // Tests that ShouldRunTestOnShard() selects all tests // where there is 1 shard. TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) { EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0)); EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1)); EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2)); EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3)); EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4)); } class ShouldShardTest : public testing::Test { protected: void SetUp() override { index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX"; total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL"; } void TearDown() override { SetEnv(index_var_, ""); SetEnv(total_var_, ""); } const char* index_var_; const char* total_var_; }; // Tests that sharding is disabled if neither of the environment variables // are set. TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) { SetEnv(index_var_, ""); SetEnv(total_var_, ""); EXPECT_FALSE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); } // Tests that sharding is not enabled if total_shards == 1. TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) { SetEnv(index_var_, "0"); SetEnv(total_var_, "1"); EXPECT_FALSE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); } // Tests that sharding is enabled if total_shards > 1 and // we are not in a death test subprocess. // Environment variables are not supported on Windows CE. #ifndef GTEST_OS_WINDOWS_MOBILE TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) { SetEnv(index_var_, "4"); SetEnv(total_var_, "22"); EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); SetEnv(index_var_, "8"); SetEnv(total_var_, "9"); EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); SetEnv(index_var_, "0"); SetEnv(total_var_, "9"); EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); } #endif // !GTEST_OS_WINDOWS_MOBILE // Tests that we exit in error if the sharding values are not valid. typedef ShouldShardTest ShouldShardDeathTest; TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) { SetEnv(index_var_, "4"); SetEnv(total_var_, "4"); EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); SetEnv(index_var_, "4"); SetEnv(total_var_, "-2"); EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); SetEnv(index_var_, "5"); SetEnv(total_var_, ""); EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); SetEnv(index_var_, ""); SetEnv(total_var_, "5"); EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); } // Tests that ShouldRunTestOnShard is a partition when 5 // shards are used. TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) { // Choose an arbitrary number of tests and shards. const int num_tests = 17; const int num_shards = 5; // Check partitioning: each test should be on exactly 1 shard. for (int test_id = 0; test_id < num_tests; test_id++) { int prev_selected_shard_index = -1; for (int shard_index = 0; shard_index < num_shards; shard_index++) { if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) { if (prev_selected_shard_index < 0) { prev_selected_shard_index = shard_index; } else { ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and " << shard_index << " are both selected to run test " << test_id; } } } } // Check balance: This is not required by the sharding protocol, but is a // desirable property for performance. for (int shard_index = 0; shard_index < num_shards; shard_index++) { int num_tests_on_shard = 0; for (int test_id = 0; test_id < num_tests; test_id++) { num_tests_on_shard += ShouldRunTestOnShard(num_shards, shard_index, test_id); } EXPECT_GE(num_tests_on_shard, num_tests / num_shards); } } // For the same reason we are not explicitly testing everything in the // Test class, there are no separate tests for the following classes // (except for some trivial cases): // // TestSuite, UnitTest, UnitTestResultPrinter. // // Similarly, there are no separate tests for the following macros: // // TEST, TEST_F, RUN_ALL_TESTS TEST(UnitTestTest, CanGetOriginalWorkingDir) { ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr); EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), ""); } TEST(UnitTestTest, ReturnsPlausibleTimestamp) { EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp()); EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis()); } // When a property using a reserved key is supplied to this function, it // tests that a non-fatal failure is added, a fatal failure is not added, // and that the property is not recorded. void ExpectNonFatalFailureRecordingPropertyWithReservedKey( const TestResult& test_result, const char* key) { EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key"); ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key << "' recorded unexpectedly."; } void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest( const char* key) { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); ASSERT_TRUE(test_info != nullptr); ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(), key); } void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( const char* key) { const testing::TestSuite* test_suite = UnitTest::GetInstance()->current_test_suite(); ASSERT_TRUE(test_suite != nullptr); ExpectNonFatalFailureRecordingPropertyWithReservedKey( test_suite->ad_hoc_test_result(), key); } void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( const char* key) { ExpectNonFatalFailureRecordingPropertyWithReservedKey( UnitTest::GetInstance()->ad_hoc_test_result(), key); } // Tests that property recording functions in UnitTest outside of tests // functions correctly. Creating a separate instance of UnitTest ensures it // is in a state similar to the UnitTest's singleton's between tests. class UnitTestRecordPropertyTest : public testing::internal::UnitTestRecordPropertyTestHelper { public: static void SetUpTestSuite() { ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( "disabled"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( "errors"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( "failures"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( "name"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( "tests"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( "time"); Test::RecordProperty("test_case_key_1", "1"); const testing::TestSuite* test_suite = UnitTest::GetInstance()->current_test_suite(); ASSERT_TRUE(test_suite != nullptr); ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count()); EXPECT_STREQ("test_case_key_1", test_suite->ad_hoc_test_result().GetTestProperty(0).key()); EXPECT_STREQ("1", test_suite->ad_hoc_test_result().GetTestProperty(0).value()); } }; // Tests TestResult has the expected property when added. TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) { UnitTestRecordProperty("key_1", "1"); ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count()); EXPECT_STREQ("key_1", unit_test_.ad_hoc_test_result().GetTestProperty(0).key()); EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value()); } // Tests TestResult has multiple properties when added. TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) { UnitTestRecordProperty("key_1", "1"); UnitTestRecordProperty("key_2", "2"); ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count()); EXPECT_STREQ("key_1", unit_test_.ad_hoc_test_result().GetTestProperty(0).key()); EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value()); EXPECT_STREQ("key_2", unit_test_.ad_hoc_test_result().GetTestProperty(1).key()); EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value()); } // Tests TestResult::RecordProperty() overrides values for duplicate keys. TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) { UnitTestRecordProperty("key_1", "1"); UnitTestRecordProperty("key_2", "2"); UnitTestRecordProperty("key_1", "12"); UnitTestRecordProperty("key_2", "22"); ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count()); EXPECT_STREQ("key_1", unit_test_.ad_hoc_test_result().GetTestProperty(0).key()); EXPECT_STREQ("12", unit_test_.ad_hoc_test_result().GetTestProperty(0).value()); EXPECT_STREQ("key_2", unit_test_.ad_hoc_test_result().GetTestProperty(1).key()); EXPECT_STREQ("22", unit_test_.ad_hoc_test_result().GetTestProperty(1).value()); } TEST_F(UnitTestRecordPropertyTest, AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) { ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("name"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest( "value_param"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest( "type_param"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("status"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest("time"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest( "classname"); } TEST_F(UnitTestRecordPropertyTest, AddRecordWithReservedKeysGeneratesCorrectPropertyList) { EXPECT_NONFATAL_FAILURE( Test::RecordProperty("name", "1"), "'classname', 'name', 'status', 'time', 'type_param', 'value_param'," " 'file', and 'line' are reserved"); } class UnitTestRecordPropertyTestEnvironment : public Environment { public: void TearDown() override { ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "tests"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "failures"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "disabled"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "errors"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "name"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "timestamp"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "time"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "random_seed"); } }; // This will test property recording outside of any test or test case. static Environment* record_property_env GTEST_ATTRIBUTE_UNUSED_ = AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment); // This group of tests is for predicate assertions (ASSERT_PRED*, etc) // of various arities. They do not attempt to be exhaustive. Rather, // view them as smoke tests that can be easily reviewed and verified. // A more complete set of tests for predicate assertions can be found // in gtest_pred_impl_unittest.cc. // First, some predicates and predicate-formatters needed by the tests. // Returns true if and only if the argument is an even number. bool IsEven(int n) { return (n % 2) == 0; } // A functor that returns true if and only if the argument is an even number. struct IsEvenFunctor { bool operator()(int n) { return IsEven(n); } }; // A predicate-formatter function that asserts the argument is an even // number. AssertionResult AssertIsEven(const char* expr, int n) { if (IsEven(n)) { return AssertionSuccess(); } Message msg; msg << expr << " evaluates to " << n << ", which is not even."; return AssertionFailure(msg); } // A predicate function that returns AssertionResult for use in // EXPECT/ASSERT_TRUE/FALSE. AssertionResult ResultIsEven(int n) { if (IsEven(n)) return AssertionSuccess() << n << " is even"; else return AssertionFailure() << n << " is odd"; } // A predicate function that returns AssertionResult but gives no // explanation why it succeeds. Needed for testing that // EXPECT/ASSERT_FALSE handles such functions correctly. AssertionResult ResultIsEvenNoExplanation(int n) { if (IsEven(n)) return AssertionSuccess(); else return AssertionFailure() << n << " is odd"; } // A predicate-formatter functor that asserts the argument is an even // number. struct AssertIsEvenFunctor { AssertionResult operator()(const char* expr, int n) { return AssertIsEven(expr, n); } }; // Returns true if and only if the sum of the arguments is an even number. bool SumIsEven2(int n1, int n2) { return IsEven(n1 + n2); } // A functor that returns true if and only if the sum of the arguments is an // even number. struct SumIsEven3Functor { bool operator()(int n1, int n2, int n3) { return IsEven(n1 + n2 + n3); } }; // A predicate-formatter function that asserts the sum of the // arguments is an even number. AssertionResult AssertSumIsEven4(const char* e1, const char* e2, const char* e3, const char* e4, int n1, int n2, int n3, int n4) { const int sum = n1 + n2 + n3 + n4; if (IsEven(sum)) { return AssertionSuccess(); } Message msg; msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << ") evaluates to " << sum << ", which is not even."; return AssertionFailure(msg); } // A predicate-formatter functor that asserts the sum of the arguments // is an even number. struct AssertSumIsEven5Functor { AssertionResult operator()(const char* e1, const char* e2, const char* e3, const char* e4, const char* e5, int n1, int n2, int n3, int n4, int n5) { const int sum = n1 + n2 + n3 + n4 + n5; if (IsEven(sum)) { return AssertionSuccess(); } Message msg; msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5 << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5 << ") evaluates to " << sum << ", which is not even."; return AssertionFailure(msg); } }; // Tests unary predicate assertions. // Tests unary predicate assertions that don't use a custom formatter. TEST(Pred1Test, WithoutFormat) { // Success cases. EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!"; ASSERT_PRED1(IsEven, 4); // Failure cases. EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_PRED1(IsEven, 5) << "This failure is expected."; }, "This failure is expected."); EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), "evaluates to false"); } // Tests unary predicate assertions that use a custom formatter. TEST(Pred1Test, WithFormat) { // Success cases. EXPECT_PRED_FORMAT1(AssertIsEven, 2); ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4) << "This failure is UNEXPECTED!"; // Failure cases. const int n = 5; EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n), "n evaluates to 5, which is not even."); EXPECT_FATAL_FAILURE( { // NOLINT ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected."; }, "This failure is expected."); } // Tests that unary predicate assertions evaluates their arguments // exactly once. TEST(Pred1Test, SingleEvaluationOnFailure) { // A success case. static int n = 0; EXPECT_PRED1(IsEven, n++); EXPECT_EQ(1, n) << "The argument is not evaluated exactly once."; // A failure case. EXPECT_FATAL_FAILURE( { // NOLINT ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++) << "This failure is expected."; }, "This failure is expected."); EXPECT_EQ(2, n) << "The argument is not evaluated exactly once."; } // Tests predicate assertions whose arity is >= 2. // Tests predicate assertions that don't use a custom formatter. TEST(PredTest, WithoutFormat) { // Success cases. ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!"; EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8); // Failure cases. const int n1 = 1; const int n2 = 2; EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected."; }, "This failure is expected."); EXPECT_FATAL_FAILURE( { // NOLINT ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4); }, "evaluates to false"); } // Tests predicate assertions that use a custom formatter. TEST(PredTest, WithFormat) { // Success cases. ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) << "This failure is UNEXPECTED!"; EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10); // Failure cases. const int n1 = 1; const int n2 = 2; const int n3 = 4; const int n4 = 6; EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4); }, "evaluates to 13, which is not even."); EXPECT_FATAL_FAILURE( { // NOLINT ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8) << "This failure is expected."; }, "This failure is expected."); } // Tests that predicate assertions evaluates their arguments // exactly once. TEST(PredTest, SingleEvaluationOnFailure) { // A success case. int n1 = 0; int n2 = 0; EXPECT_PRED2(SumIsEven2, n1++, n2++); EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; // Another success case. n1 = n2 = 0; int n3 = 0; int n4 = 0; int n5 = 0; ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), n1++, n2++, n3++, n4++, n5++) << "This failure is UNEXPECTED!"; EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once."; EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once."; // A failure case. n1 = n2 = n3 = 0; EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++) << "This failure is expected."; }, "This failure is expected."); EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; // Another failure case. n1 = n2 = n3 = n4 = 0; EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++); }, "evaluates to 1, which is not even."); EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once."; } // Test predicate assertions for sets TEST(PredTest, ExpectPredEvalFailure) { std::set set_a = {2, 1, 3, 4, 5}; std::set set_b = {0, 4, 8}; const auto compare_sets = [](std::set, std::set) { return false; }; EXPECT_NONFATAL_FAILURE( EXPECT_PRED2(compare_sets, set_a, set_b), "compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates " "to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }"); } // Some helper functions for testing using overloaded/template // functions with ASSERT_PREDn and EXPECT_PREDn. bool IsPositive(double x) { return x > 0; } template bool IsNegative(T x) { return x < 0; } template bool GreaterThan(T1 x1, T2 x2) { return x1 > x2; } // Tests that overloaded functions can be used in *_PRED* as long as // their types are explicitly specified. TEST(PredicateAssertionTest, AcceptsOverloadedFunction) { // C++Builder requires C-style casts rather than static_cast. EXPECT_PRED1((bool (*)(int))(IsPositive), 5); // NOLINT ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0); // NOLINT } // Tests that template functions can be used in *_PRED* as long as // their types are explicitly specified. TEST(PredicateAssertionTest, AcceptsTemplateFunction) { EXPECT_PRED1(IsNegative, -5); // Makes sure that we can handle templates with more than one // parameter. ASSERT_PRED2((GreaterThan), 5, 0); } // Some helper functions for testing using overloaded/template // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn. AssertionResult IsPositiveFormat(const char* /* expr */, int n) { return n > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); } AssertionResult IsPositiveFormat(const char* /* expr */, double x) { return x > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); } template AssertionResult IsNegativeFormat(const char* /* expr */, T x) { return x < 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); } template AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */, const T1& x1, const T2& x2) { return x1 == x2 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); } // Tests that overloaded functions can be used in *_PRED_FORMAT* // without explicitly specifying their types. TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) { EXPECT_PRED_FORMAT1(IsPositiveFormat, 5); ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0); } // Tests that template functions can be used in *_PRED_FORMAT* without // explicitly specifying their types. TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) { EXPECT_PRED_FORMAT1(IsNegativeFormat, -5); ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3); } // Tests string assertions. // Tests ASSERT_STREQ with non-NULL arguments. TEST(StringAssertionTest, ASSERT_STREQ) { const char* const p1 = "good"; ASSERT_STREQ(p1, p1); // Let p2 have the same content as p1, but be at a different address. const char p2[] = "good"; ASSERT_STREQ(p1, p2); EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), " \"bad\"\n \"good\""); } // Tests ASSERT_STREQ with NULL arguments. TEST(StringAssertionTest, ASSERT_STREQ_Null) { ASSERT_STREQ(static_cast(nullptr), nullptr); EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null"); } // Tests ASSERT_STREQ with NULL arguments. TEST(StringAssertionTest, ASSERT_STREQ_Null2) { EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null"); } // Tests ASSERT_STRNE. TEST(StringAssertionTest, ASSERT_STRNE) { ASSERT_STRNE("hi", "Hi"); ASSERT_STRNE("Hi", nullptr); ASSERT_STRNE(nullptr, "Hi"); ASSERT_STRNE("", nullptr); ASSERT_STRNE(nullptr, ""); ASSERT_STRNE("", "Hi"); ASSERT_STRNE("Hi", ""); EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), "\"Hi\" vs \"Hi\""); } // Tests ASSERT_STRCASEEQ. TEST(StringAssertionTest, ASSERT_STRCASEEQ) { ASSERT_STRCASEEQ("hi", "Hi"); ASSERT_STRCASEEQ(static_cast(nullptr), nullptr); ASSERT_STRCASEEQ("", ""); EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), "Ignoring case"); } // Tests ASSERT_STRCASENE. TEST(StringAssertionTest, ASSERT_STRCASENE) { ASSERT_STRCASENE("hi1", "Hi2"); ASSERT_STRCASENE("Hi", nullptr); ASSERT_STRCASENE(nullptr, "Hi"); ASSERT_STRCASENE("", nullptr); ASSERT_STRCASENE(nullptr, ""); ASSERT_STRCASENE("", "Hi"); ASSERT_STRCASENE("Hi", ""); EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), "(ignoring case)"); } // Tests *_STREQ on wide strings. TEST(StringAssertionTest, STREQ_Wide) { // NULL strings. ASSERT_STREQ(static_cast(nullptr), nullptr); // Empty strings. ASSERT_STREQ(L"", L""); // Non-null vs NULL. EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null"); // Equal strings. EXPECT_STREQ(L"Hi", L"Hi"); // Unequal strings. EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), "Abc"); // Strings containing wide characters. EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), "abc"); // The streaming variation. EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure"; }, "Expected failure"); } // Tests *_STRNE on wide strings. TEST(StringAssertionTest, STRNE_Wide) { // NULL strings. EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_STRNE(static_cast(nullptr), nullptr); }, ""); // Empty strings. EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), "L\"\""); // Non-null vs NULL. ASSERT_STRNE(L"non-null", nullptr); // Equal strings. EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), "L\"Hi\""); // Unequal strings. EXPECT_STRNE(L"abc", L"Abc"); // Strings containing wide characters. EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), "abc"); // The streaming variation. ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen"; } // Tests for ::testing::IsSubstring(). // Tests that IsSubstring() returns the correct result when the input // argument type is const char*. TEST(IsSubstringTest, ReturnsCorrectResultForCString) { EXPECT_FALSE(IsSubstring("", "", nullptr, "a")); EXPECT_FALSE(IsSubstring("", "", "b", nullptr)); EXPECT_FALSE(IsSubstring("", "", "needle", "haystack")); EXPECT_TRUE(IsSubstring("", "", static_cast(nullptr), nullptr)); EXPECT_TRUE(IsSubstring("", "", "needle", "two needles")); } // Tests that IsSubstring() returns the correct result when the input // argument type is const wchar_t*. TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) { EXPECT_FALSE(IsSubstring("", "", kNull, L"a")); EXPECT_FALSE(IsSubstring("", "", L"b", kNull)); EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack")); EXPECT_TRUE( IsSubstring("", "", static_cast(nullptr), nullptr)); EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles")); } // Tests that IsSubstring() generates the correct message when the input // argument type is const char*. TEST(IsSubstringTest, GeneratesCorrectMessageForCString) { EXPECT_STREQ( "Value of: needle_expr\n" " Actual: \"needle\"\n" "Expected: a substring of haystack_expr\n" "Which is: \"haystack\"", IsSubstring("needle_expr", "haystack_expr", "needle", "haystack") .failure_message()); } // Tests that IsSubstring returns the correct result when the input // argument type is ::std::string. TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) { EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob")); EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world"))); } #if GTEST_HAS_STD_WSTRING // Tests that IsSubstring returns the correct result when the input // argument type is ::std::wstring. TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) { EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles")); EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack"))); } // Tests that IsSubstring() generates the correct message when the input // argument type is ::std::wstring. TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) { EXPECT_STREQ( "Value of: needle_expr\n" " Actual: L\"needle\"\n" "Expected: a substring of haystack_expr\n" "Which is: L\"haystack\"", IsSubstring("needle_expr", "haystack_expr", ::std::wstring(L"needle"), L"haystack") .failure_message()); } #endif // GTEST_HAS_STD_WSTRING // Tests for ::testing::IsNotSubstring(). // Tests that IsNotSubstring() returns the correct result when the input // argument type is const char*. TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) { EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack")); EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles")); } // Tests that IsNotSubstring() returns the correct result when the input // argument type is const wchar_t*. TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) { EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack")); EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles")); } // Tests that IsNotSubstring() generates the correct message when the input // argument type is const wchar_t*. TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) { EXPECT_STREQ( "Value of: needle_expr\n" " Actual: L\"needle\"\n" "Expected: not a substring of haystack_expr\n" "Which is: L\"two needles\"", IsNotSubstring("needle_expr", "haystack_expr", L"needle", L"two needles") .failure_message()); } // Tests that IsNotSubstring returns the correct result when the input // argument type is ::std::string. TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) { EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob")); EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world"))); } // Tests that IsNotSubstring() generates the correct message when the input // argument type is ::std::string. TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) { EXPECT_STREQ( "Value of: needle_expr\n" " Actual: \"needle\"\n" "Expected: not a substring of haystack_expr\n" "Which is: \"two needles\"", IsNotSubstring("needle_expr", "haystack_expr", ::std::string("needle"), "two needles") .failure_message()); } #if GTEST_HAS_STD_WSTRING // Tests that IsNotSubstring returns the correct result when the input // argument type is ::std::wstring. TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) { EXPECT_FALSE( IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles")); EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack"))); } #endif // GTEST_HAS_STD_WSTRING // Tests floating-point assertions. template class FloatingPointTest : public Test { protected: // Pre-calculated numbers to be used by the tests. struct TestValues { RawType close_to_positive_zero; RawType close_to_negative_zero; RawType further_from_negative_zero; RawType close_to_one; RawType further_from_one; RawType infinity; RawType close_to_infinity; RawType further_from_infinity; RawType nan1; RawType nan2; }; typedef typename testing::internal::FloatingPoint Floating; typedef typename Floating::Bits Bits; void SetUp() override { const uint32_t max_ulps = Floating::kMaxUlps; // The bits that represent 0.0. const Bits zero_bits = Floating(0).bits(); // Makes some numbers close to 0.0. values_.close_to_positive_zero = Floating::ReinterpretBits(zero_bits + max_ulps / 2); values_.close_to_negative_zero = -Floating::ReinterpretBits(zero_bits + max_ulps - max_ulps / 2); values_.further_from_negative_zero = -Floating::ReinterpretBits(zero_bits + max_ulps + 1 - max_ulps / 2); // The bits that represent 1.0. const Bits one_bits = Floating(1).bits(); // Makes some numbers close to 1.0. values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps); values_.further_from_one = Floating::ReinterpretBits(one_bits + max_ulps + 1); // +infinity. values_.infinity = Floating::Infinity(); // The bits that represent +infinity. const Bits infinity_bits = Floating(values_.infinity).bits(); // Makes some numbers close to infinity. values_.close_to_infinity = Floating::ReinterpretBits(infinity_bits - max_ulps); values_.further_from_infinity = Floating::ReinterpretBits(infinity_bits - max_ulps - 1); // Makes some NAN's. Sets the most significant bit of the fraction so that // our NaN's are quiet; trying to process a signaling NaN would raise an // exception if our environment enables floating point exceptions. values_.nan1 = Floating::ReinterpretBits( Floating::kExponentBitMask | (static_cast(1) << (Floating::kFractionBitCount - 1)) | 1); values_.nan2 = Floating::ReinterpretBits( Floating::kExponentBitMask | (static_cast(1) << (Floating::kFractionBitCount - 1)) | 200); } void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); } static TestValues values_; }; template typename FloatingPointTest::TestValues FloatingPointTest::values_; // Instantiates FloatingPointTest for testing *_FLOAT_EQ. typedef FloatingPointTest FloatTest; // Tests that the size of Float::Bits matches the size of float. TEST_F(FloatTest, Size) { TestSize(); } // Tests comparing with +0 and -0. TEST_F(FloatTest, Zeros) { EXPECT_FLOAT_EQ(0.0, -0.0); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), "1.0"); EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), "1.5"); } // Tests comparing numbers close to 0. // // This ensures that *_FLOAT_EQ handles the sign correctly and no // overflow occurs when comparing numbers whose absolute value is very // small. TEST_F(FloatTest, AlmostZeros) { // In C++Builder, names within local classes (such as used by // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the // scoping class. Use a static local alias as a workaround. // We use the assignment syntax since some compilers, like Sun Studio, // don't allow initializing references using construction syntax // (parentheses). static const FloatTest::TestValues& v = this->values_; EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero); EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero); EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero); EXPECT_FATAL_FAILURE( { // NOLINT ASSERT_FLOAT_EQ(v.close_to_positive_zero, v.further_from_negative_zero); }, "v.further_from_negative_zero"); } // Tests comparing numbers close to each other. TEST_F(FloatTest, SmallDiff) { EXPECT_FLOAT_EQ(1.0, values_.close_to_one); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one), "values_.further_from_one"); } // Tests comparing numbers far apart. TEST_F(FloatTest, LargeDiff) { EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), "3.0"); } // Tests comparing with infinity. // // This ensures that no overflow occurs when comparing numbers whose // absolute value is very large. TEST_F(FloatTest, Infinity) { EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity); EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity), "-values_.infinity"); // This is interesting as the representations of infinity and nan1 // are only 1 DLP apart. EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1), "values_.nan1"); } // Tests that comparing with NAN always returns false. TEST_F(FloatTest, NaN) { // In C++Builder, names within local classes (such as used by // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the // scoping class. Use a static local alias as a workaround. // We use the assignment syntax since some compilers, like Sun Studio, // don't allow initializing references using construction syntax // (parentheses). static const FloatTest::TestValues& v = this->values_; EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1), "v.nan1"); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2), "v.nan2"); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1), "v.nan1"); EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity), "v.infinity"); } // Tests that *_FLOAT_EQ are reflexive. TEST_F(FloatTest, Reflexive) { EXPECT_FLOAT_EQ(0.0, 0.0); EXPECT_FLOAT_EQ(1.0, 1.0); ASSERT_FLOAT_EQ(values_.infinity, values_.infinity); } // Tests that *_FLOAT_EQ are commutative. TEST_F(FloatTest, Commutative) { // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one). EXPECT_FLOAT_EQ(values_.close_to_one, 1.0); // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one). EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0), "1.0"); } // Tests EXPECT_NEAR. TEST_F(FloatTest, EXPECT_NEAR) { EXPECT_NEAR(-1.0f, -1.1f, 0.2f); EXPECT_NEAR(2.0f, 3.0f, 1.0f); EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f, 1.5f, 0.25f), // NOLINT "The difference between 1.0f and 1.5f is 0.5, " "which exceeds 0.25f"); } // Tests ASSERT_NEAR. TEST_F(FloatTest, ASSERT_NEAR) { ASSERT_NEAR(-1.0f, -1.1f, 0.2f); ASSERT_NEAR(2.0f, 3.0f, 1.0f); EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f, 1.5f, 0.25f), // NOLINT "The difference between 1.0f and 1.5f is 0.5, " "which exceeds 0.25f"); } // Tests the cases where FloatLE() should succeed. TEST_F(FloatTest, FloatLESucceeds) { EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2, ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2, // or when val1 is greater than, but almost equals to, val2. EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f); } // Tests the cases where FloatLE() should fail. TEST_F(FloatTest, FloatLEFails) { // When val1 is greater than val2 by a large margin, EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f), "(2.0f) <= (1.0f)"); // or by a small yet non-negligible margin, EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f); }, "(values_.further_from_one) <= (1.0f)"); EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity); }, "(values_.nan1) <= (values_.infinity)"); EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1); }, "(-values_.infinity) <= (values_.nan1)"); EXPECT_FATAL_FAILURE( { // NOLINT ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1); }, "(values_.nan1) <= (values_.nan1)"); } // Instantiates FloatingPointTest for testing *_DOUBLE_EQ. typedef FloatingPointTest DoubleTest; // Tests that the size of Double::Bits matches the size of double. TEST_F(DoubleTest, Size) { TestSize(); } // Tests comparing with +0 and -0. TEST_F(DoubleTest, Zeros) { EXPECT_DOUBLE_EQ(0.0, -0.0); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), "1.0"); EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), "1.0"); } // Tests comparing numbers close to 0. // // This ensures that *_DOUBLE_EQ handles the sign correctly and no // overflow occurs when comparing numbers whose absolute value is very // small. TEST_F(DoubleTest, AlmostZeros) { // In C++Builder, names within local classes (such as used by // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the // scoping class. Use a static local alias as a workaround. // We use the assignment syntax since some compilers, like Sun Studio, // don't allow initializing references using construction syntax // (parentheses). static const DoubleTest::TestValues& v = this->values_; EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero); EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero); EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero); EXPECT_FATAL_FAILURE( { // NOLINT ASSERT_DOUBLE_EQ(v.close_to_positive_zero, v.further_from_negative_zero); }, "v.further_from_negative_zero"); } // Tests comparing numbers close to each other. TEST_F(DoubleTest, SmallDiff) { EXPECT_DOUBLE_EQ(1.0, values_.close_to_one); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one), "values_.further_from_one"); } // Tests comparing numbers far apart. TEST_F(DoubleTest, LargeDiff) { EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), "3.0"); } // Tests comparing with infinity. // // This ensures that no overflow occurs when comparing numbers whose // absolute value is very large. TEST_F(DoubleTest, Infinity) { EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity); EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity), "-values_.infinity"); // This is interesting as the representations of infinity_ and nan1_ // are only 1 DLP apart. EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1), "values_.nan1"); } // Tests that comparing with NAN always returns false. TEST_F(DoubleTest, NaN) { static const DoubleTest::TestValues& v = this->values_; // Nokia's STLport crashes if we try to output infinity or NaN. EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1), "v.nan1"); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2"); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1"); EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity), "v.infinity"); } // Tests that *_DOUBLE_EQ are reflexive. TEST_F(DoubleTest, Reflexive) { EXPECT_DOUBLE_EQ(0.0, 0.0); EXPECT_DOUBLE_EQ(1.0, 1.0); ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity); } // Tests that *_DOUBLE_EQ are commutative. TEST_F(DoubleTest, Commutative) { // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one). EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0); // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one). EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0), "1.0"); } // Tests EXPECT_NEAR. TEST_F(DoubleTest, EXPECT_NEAR) { EXPECT_NEAR(-1.0, -1.1, 0.2); EXPECT_NEAR(2.0, 3.0, 1.0); EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25), // NOLINT "The difference between 1.0 and 1.5 is 0.5, " "which exceeds 0.25"); // At this magnitude adjacent doubles are 512.0 apart, so this triggers a // slightly different failure reporting path. EXPECT_NONFATAL_FAILURE( EXPECT_NEAR(4.2934311416234112e+18, 4.2934311416234107e+18, 1.0), "The abs_error parameter 1.0 evaluates to 1 which is smaller than the " "minimum distance between doubles for numbers of this magnitude which is " "512"); } // Tests ASSERT_NEAR. TEST_F(DoubleTest, ASSERT_NEAR) { ASSERT_NEAR(-1.0, -1.1, 0.2); ASSERT_NEAR(2.0, 3.0, 1.0); EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25), // NOLINT "The difference between 1.0 and 1.5 is 0.5, " "which exceeds 0.25"); } // Tests the cases where DoubleLE() should succeed. TEST_F(DoubleTest, DoubleLESucceeds) { EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2, ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2, // or when val1 is greater than, but almost equals to, val2. EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0); } // Tests the cases where DoubleLE() should fail. TEST_F(DoubleTest, DoubleLEFails) { // When val1 is greater than val2 by a large margin, EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0), "(2.0) <= (1.0)"); // or by a small yet non-negligible margin, EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0); }, "(values_.further_from_one) <= (1.0)"); EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity); }, "(values_.nan1) <= (values_.infinity)"); EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1); }, " (-values_.infinity) <= (values_.nan1)"); EXPECT_FATAL_FAILURE( { // NOLINT ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1); }, "(values_.nan1) <= (values_.nan1)"); } // Verifies that a test or test case whose name starts with DISABLED_ is // not run. // A test whose name starts with DISABLED_. // Should not run. TEST(DisabledTest, DISABLED_TestShouldNotRun) { FAIL() << "Unexpected failure: Disabled test should not be run."; } // A test whose name does not start with DISABLED_. // Should run. TEST(DisabledTest, NotDISABLED_TestShouldRun) { EXPECT_EQ(1, 1); } // A test case whose name starts with DISABLED_. // Should not run. TEST(DISABLED_TestSuite, TestShouldNotRun) { FAIL() << "Unexpected failure: Test in disabled test case should not be run."; } // A test case and test whose names start with DISABLED_. // Should not run. TEST(DISABLED_TestSuite, DISABLED_TestShouldNotRun) { FAIL() << "Unexpected failure: Test in disabled test case should not be run."; } // Check that when all tests in a test case are disabled, SetUpTestSuite() and // TearDownTestSuite() are not called. class DisabledTestsTest : public Test { protected: static void SetUpTestSuite() { FAIL() << "Unexpected failure: All tests disabled in test case. " "SetUpTestSuite() should not be called."; } static void TearDownTestSuite() { FAIL() << "Unexpected failure: All tests disabled in test case. " "TearDownTestSuite() should not be called."; } }; TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) { FAIL() << "Unexpected failure: Disabled test should not be run."; } TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) { FAIL() << "Unexpected failure: Disabled test should not be run."; } // Tests that disabled typed tests aren't run. template class TypedTest : public Test {}; typedef testing::Types NumericTypes; TYPED_TEST_SUITE(TypedTest, NumericTypes); TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) { FAIL() << "Unexpected failure: Disabled typed test should not run."; } template class DISABLED_TypedTest : public Test {}; TYPED_TEST_SUITE(DISABLED_TypedTest, NumericTypes); TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) { FAIL() << "Unexpected failure: Disabled typed test should not run."; } // Tests that disabled type-parameterized tests aren't run. template class TypedTestP : public Test {}; TYPED_TEST_SUITE_P(TypedTestP); TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) { FAIL() << "Unexpected failure: " << "Disabled type-parameterized test should not run."; } REGISTER_TYPED_TEST_SUITE_P(TypedTestP, DISABLED_ShouldNotRun); INSTANTIATE_TYPED_TEST_SUITE_P(My, TypedTestP, NumericTypes); template class DISABLED_TypedTestP : public Test {}; TYPED_TEST_SUITE_P(DISABLED_TypedTestP); TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) { FAIL() << "Unexpected failure: " << "Disabled type-parameterized test should not run."; } REGISTER_TYPED_TEST_SUITE_P(DISABLED_TypedTestP, ShouldNotRun); INSTANTIATE_TYPED_TEST_SUITE_P(My, DISABLED_TypedTestP, NumericTypes); // Tests that assertion macros evaluate their arguments exactly once. class SingleEvaluationTest : public Test { public: // Must be public and not protected due to a bug in g++ 3.4.2. // This helper function is needed by the FailedASSERT_STREQ test // below. It's public to work around C++Builder's bug with scoping local // classes. static void CompareAndIncrementCharPtrs() { ASSERT_STREQ(p1_++, p2_++); } // This helper function is needed by the FailedASSERT_NE test below. It's // public to work around C++Builder's bug with scoping local classes. static void CompareAndIncrementInts() { ASSERT_NE(a_++, b_++); } protected: SingleEvaluationTest() { p1_ = s1_; p2_ = s2_; a_ = 0; b_ = 0; } static const char* const s1_; static const char* const s2_; static const char* p1_; static const char* p2_; static int a_; static int b_; }; const char* const SingleEvaluationTest::s1_ = "01234"; const char* const SingleEvaluationTest::s2_ = "abcde"; const char* SingleEvaluationTest::p1_; const char* SingleEvaluationTest::p2_; int SingleEvaluationTest::a_; int SingleEvaluationTest::b_; // Tests that when ASSERT_STREQ fails, it evaluates its arguments // exactly once. TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) { EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(), "p2_++"); EXPECT_EQ(s1_ + 1, p1_); EXPECT_EQ(s2_ + 1, p2_); } // Tests that string assertion arguments are evaluated exactly once. TEST_F(SingleEvaluationTest, ASSERT_STR) { // successful EXPECT_STRNE EXPECT_STRNE(p1_++, p2_++); EXPECT_EQ(s1_ + 1, p1_); EXPECT_EQ(s2_ + 1, p2_); // failed EXPECT_STRCASEEQ EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), "Ignoring case"); EXPECT_EQ(s1_ + 2, p1_); EXPECT_EQ(s2_ + 2, p2_); } // Tests that when ASSERT_NE fails, it evaluates its arguments exactly // once. TEST_F(SingleEvaluationTest, FailedASSERT_NE) { EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(), "(a_++) != (b_++)"); EXPECT_EQ(1, a_); EXPECT_EQ(1, b_); } // Tests that assertion arguments are evaluated exactly once. TEST_F(SingleEvaluationTest, OtherCases) { // successful EXPECT_TRUE EXPECT_TRUE(0 == a_++); // NOLINT EXPECT_EQ(1, a_); // failed EXPECT_TRUE EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++"); EXPECT_EQ(2, a_); // successful EXPECT_GT EXPECT_GT(a_++, b_++); EXPECT_EQ(3, a_); EXPECT_EQ(1, b_); // failed EXPECT_LT EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)"); EXPECT_EQ(4, a_); EXPECT_EQ(2, b_); // successful ASSERT_TRUE ASSERT_TRUE(0 < a_++); // NOLINT EXPECT_EQ(5, a_); // successful ASSERT_GT ASSERT_GT(a_++, b_++); EXPECT_EQ(6, a_); EXPECT_EQ(3, b_); } #if GTEST_HAS_EXCEPTIONS #if GTEST_HAS_RTTI #ifdef _MSC_VER #define ERROR_DESC "class std::runtime_error" #else #define ERROR_DESC "std::runtime_error" #endif #else // GTEST_HAS_RTTI #define ERROR_DESC "an std::exception-derived error" #endif // GTEST_HAS_RTTI void ThrowAnInteger() { throw 1; } void ThrowRuntimeError(const char* what) { throw std::runtime_error(what); } // Tests that assertion arguments are evaluated exactly once. TEST_F(SingleEvaluationTest, ExceptionTests) { // successful EXPECT_THROW EXPECT_THROW( { // NOLINT a_++; ThrowAnInteger(); }, int); EXPECT_EQ(1, a_); // failed EXPECT_THROW, throws different EXPECT_NONFATAL_FAILURE(EXPECT_THROW( { // NOLINT a_++; ThrowAnInteger(); }, bool), "throws a different type"); EXPECT_EQ(2, a_); // failed EXPECT_THROW, throws runtime error EXPECT_NONFATAL_FAILURE(EXPECT_THROW( { // NOLINT a_++; ThrowRuntimeError("A description"); }, bool), "throws " ERROR_DESC " with description \"A description\""); EXPECT_EQ(3, a_); // failed EXPECT_THROW, throws nothing EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing"); EXPECT_EQ(4, a_); // successful EXPECT_NO_THROW EXPECT_NO_THROW(a_++); EXPECT_EQ(5, a_); // failed EXPECT_NO_THROW EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({ // NOLINT a_++; ThrowAnInteger(); }), "it throws"); EXPECT_EQ(6, a_); // successful EXPECT_ANY_THROW EXPECT_ANY_THROW({ // NOLINT a_++; ThrowAnInteger(); }); EXPECT_EQ(7, a_); // failed EXPECT_ANY_THROW EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't"); EXPECT_EQ(8, a_); } #endif // GTEST_HAS_EXCEPTIONS // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE. class NoFatalFailureTest : public Test { protected: void Succeeds() {} void FailsNonFatal() { ADD_FAILURE() << "some non-fatal failure"; } void Fails() { FAIL() << "some fatal failure"; } void DoAssertNoFatalFailureOnFails() { ASSERT_NO_FATAL_FAILURE(Fails()); ADD_FAILURE() << "should not reach here."; } void DoExpectNoFatalFailureOnFails() { EXPECT_NO_FATAL_FAILURE(Fails()); ADD_FAILURE() << "other failure"; } }; TEST_F(NoFatalFailureTest, NoFailure) { EXPECT_NO_FATAL_FAILURE(Succeeds()); ASSERT_NO_FATAL_FAILURE(Succeeds()); } TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) { EXPECT_NONFATAL_FAILURE(EXPECT_NO_FATAL_FAILURE(FailsNonFatal()), "some non-fatal failure"); EXPECT_NONFATAL_FAILURE(ASSERT_NO_FATAL_FAILURE(FailsNonFatal()), "some non-fatal failure"); } TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) { TestPartResultArray gtest_failures; { ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); DoAssertNoFatalFailureOnFails(); } ASSERT_EQ(2, gtest_failures.size()); EXPECT_EQ(TestPartResult::kFatalFailure, gtest_failures.GetTestPartResult(0).type()); EXPECT_EQ(TestPartResult::kFatalFailure, gtest_failures.GetTestPartResult(1).type()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure", gtest_failures.GetTestPartResult(0).message()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does", gtest_failures.GetTestPartResult(1).message()); } TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) { TestPartResultArray gtest_failures; { ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); DoExpectNoFatalFailureOnFails(); } ASSERT_EQ(3, gtest_failures.size()); EXPECT_EQ(TestPartResult::kFatalFailure, gtest_failures.GetTestPartResult(0).type()); EXPECT_EQ(TestPartResult::kNonFatalFailure, gtest_failures.GetTestPartResult(1).type()); EXPECT_EQ(TestPartResult::kNonFatalFailure, gtest_failures.GetTestPartResult(2).type()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure", gtest_failures.GetTestPartResult(0).message()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does", gtest_failures.GetTestPartResult(1).message()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure", gtest_failures.GetTestPartResult(2).message()); } TEST_F(NoFatalFailureTest, MessageIsStreamable) { TestPartResultArray gtest_failures; { ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); EXPECT_NO_FATAL_FAILURE([] { FAIL() << "foo"; }()) << "my message"; } ASSERT_EQ(2, gtest_failures.size()); EXPECT_EQ(TestPartResult::kFatalFailure, gtest_failures.GetTestPartResult(0).type()); EXPECT_EQ(TestPartResult::kNonFatalFailure, gtest_failures.GetTestPartResult(1).type()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo", gtest_failures.GetTestPartResult(0).message()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message", gtest_failures.GetTestPartResult(1).message()); } // Tests non-string assertions. std::string EditsToString(const std::vector& edits) { std::string out; for (size_t i = 0; i < edits.size(); ++i) { static const char kEdits[] = " +-/"; out.append(1, kEdits[edits[i]]); } return out; } std::vector CharsToIndices(const std::string& str) { std::vector out; for (size_t i = 0; i < str.size(); ++i) { out.push_back(static_cast(str[i])); } return out; } std::vector CharsToLines(const std::string& str) { std::vector out; for (size_t i = 0; i < str.size(); ++i) { out.push_back(str.substr(i, 1)); } return out; } TEST(EditDistance, TestSuites) { struct Case { int line; const char* left; const char* right; const char* expected_edits; const char* expected_diff; }; static const Case kCases[] = { // No change. {__LINE__, "A", "A", " ", ""}, {__LINE__, "ABCDE", "ABCDE", " ", ""}, // Simple adds. {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"}, {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"}, // Simple removes. {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"}, {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"}, // Simple replaces. {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"}, {__LINE__, "ABCD", "abcd", "////", "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"}, // Path finding. {__LINE__, "ABCDEFGH", "ABXEGH1", " -/ - +", "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"}, {__LINE__, "AAAABCCCC", "ABABCDCDC", "- / + / ", "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"}, {__LINE__, "ABCDE", "BCDCD", "- +/", "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"}, {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++ -- ++", "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n" "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"}, {}}; for (const Case* c = kCases; c->left; ++c) { EXPECT_TRUE(c->expected_edits == EditsToString(CalculateOptimalEdits(CharsToIndices(c->left), CharsToIndices(c->right)))) << "Left <" << c->left << "> Right <" << c->right << "> Edits <" << EditsToString(CalculateOptimalEdits(CharsToIndices(c->left), CharsToIndices(c->right))) << ">"; EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))) << "Left <" << c->left << "> Right <" << c->right << "> Diff <" << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right)) << ">"; } } // Tests EqFailure(), used for implementing *EQ* assertions. TEST(AssertionTest, EqFailure) { const std::string foo_val("5"), bar_val("6"); const std::string msg1( EqFailure("foo", "bar", foo_val, bar_val, false).failure_message()); EXPECT_STREQ( "Expected equality of these values:\n" " foo\n" " Which is: 5\n" " bar\n" " Which is: 6", msg1.c_str()); const std::string msg2( EqFailure("foo", "6", foo_val, bar_val, false).failure_message()); EXPECT_STREQ( "Expected equality of these values:\n" " foo\n" " Which is: 5\n" " 6", msg2.c_str()); const std::string msg3( EqFailure("5", "bar", foo_val, bar_val, false).failure_message()); EXPECT_STREQ( "Expected equality of these values:\n" " 5\n" " bar\n" " Which is: 6", msg3.c_str()); const std::string msg4( EqFailure("5", "6", foo_val, bar_val, false).failure_message()); EXPECT_STREQ( "Expected equality of these values:\n" " 5\n" " 6", msg4.c_str()); const std::string msg5( EqFailure("foo", "bar", std::string("\"x\""), std::string("\"y\""), true) .failure_message()); EXPECT_STREQ( "Expected equality of these values:\n" " foo\n" " Which is: \"x\"\n" " bar\n" " Which is: \"y\"\n" "Ignoring case", msg5.c_str()); } TEST(AssertionTest, EqFailureWithDiff) { const std::string left( "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15"); const std::string right( "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14"); const std::string msg1( EqFailure("left", "right", left, right, false).failure_message()); EXPECT_STREQ( "Expected equality of these values:\n" " left\n" " Which is: " "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n" " right\n" " Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n" "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n" "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n", msg1.c_str()); } // Tests AppendUserMessage(), used for implementing the *EQ* macros. TEST(AssertionTest, AppendUserMessage) { const std::string foo("foo"); Message msg; EXPECT_STREQ("foo", AppendUserMessage(foo, msg).c_str()); msg << "bar"; EXPECT_STREQ("foo\nbar", AppendUserMessage(foo, msg).c_str()); } #ifdef __BORLANDC__ // Silences warnings: "Condition is always true", "Unreachable code" #pragma option push -w-ccc -w-rch #endif // Tests ASSERT_TRUE. TEST(AssertionTest, ASSERT_TRUE) { ASSERT_TRUE(2 > 1); // NOLINT EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), "2 < 1"); } // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult. TEST(AssertionTest, AssertTrueWithAssertionResult) { ASSERT_TRUE(ResultIsEven(2)); #ifndef __BORLANDC__ // ICE's in C++Builder. EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)), "Value of: ResultIsEven(3)\n" " Actual: false (3 is odd)\n" "Expected: true"); #endif ASSERT_TRUE(ResultIsEvenNoExplanation(2)); EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)), "Value of: ResultIsEvenNoExplanation(3)\n" " Actual: false (3 is odd)\n" "Expected: true"); } // Tests ASSERT_FALSE. TEST(AssertionTest, ASSERT_FALSE) { ASSERT_FALSE(2 < 1); // NOLINT EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1), "Value of: 2 > 1\n" " Actual: true\n" "Expected: false"); } // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult. TEST(AssertionTest, AssertFalseWithAssertionResult) { ASSERT_FALSE(ResultIsEven(3)); #ifndef __BORLANDC__ // ICE's in C++Builder. EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)), "Value of: ResultIsEven(2)\n" " Actual: true (2 is even)\n" "Expected: false"); #endif ASSERT_FALSE(ResultIsEvenNoExplanation(3)); EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)), "Value of: ResultIsEvenNoExplanation(2)\n" " Actual: true\n" "Expected: false"); } #ifdef __BORLANDC__ // Restores warnings after previous "#pragma option push" suppressed them #pragma option pop #endif // Tests using ASSERT_EQ on double values. The purpose is to make // sure that the specialization we did for integer and anonymous enums // isn't used for double arguments. TEST(ExpectTest, ASSERT_EQ_Double) { // A success. ASSERT_EQ(5.6, 5.6); // A failure. EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), "5.1"); } // Tests ASSERT_EQ. TEST(AssertionTest, ASSERT_EQ) { ASSERT_EQ(5, 2 + 3); // clang-format off EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3), "Expected equality of these values:\n" " 5\n" " 2*3\n" " Which is: 6"); // clang-format on } // Tests ASSERT_EQ(NULL, pointer). TEST(AssertionTest, ASSERT_EQ_NULL) { // A success. const char* p = nullptr; ASSERT_EQ(nullptr, p); // A failure. static int n = 0; EXPECT_FATAL_FAILURE(ASSERT_EQ(nullptr, &n), " &n\n Which is:"); } // Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be // treated as a null pointer by the compiler, we need to make sure // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as // ASSERT_EQ(static_cast(NULL), non_pointer). TEST(ExpectTest, ASSERT_EQ_0) { int n = 0; // A success. ASSERT_EQ(0, n); // A failure. EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), " 0\n 5.6"); } // Tests ASSERT_NE. TEST(AssertionTest, ASSERT_NE) { ASSERT_NE(6, 7); EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'), "Expected: ('a') != ('a'), " "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)"); } // Tests ASSERT_LE. TEST(AssertionTest, ASSERT_LE) { ASSERT_LE(2, 3); ASSERT_LE(2, 2); EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0"); } // Tests ASSERT_LT. TEST(AssertionTest, ASSERT_LT) { ASSERT_LT(2, 3); EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2"); } // Tests ASSERT_GE. TEST(AssertionTest, ASSERT_GE) { ASSERT_GE(2, 1); ASSERT_GE(2, 2); EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3"); } // Tests ASSERT_GT. TEST(AssertionTest, ASSERT_GT) { ASSERT_GT(2, 1); EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2"); } #if GTEST_HAS_EXCEPTIONS void ThrowNothing() {} // Tests ASSERT_THROW. TEST(AssertionTest, ASSERT_THROW) { ASSERT_THROW(ThrowAnInteger(), int); #ifndef __BORLANDC__ // ICE's in C++Builder 2007 and 2009. EXPECT_FATAL_FAILURE( ASSERT_THROW(ThrowAnInteger(), bool), "Expected: ThrowAnInteger() throws an exception of type bool.\n" " Actual: it throws a different type."); EXPECT_FATAL_FAILURE( ASSERT_THROW(ThrowRuntimeError("A description"), std::logic_error), "Expected: ThrowRuntimeError(\"A description\") " "throws an exception of type std::logic_error.\n " "Actual: it throws " ERROR_DESC " " "with description \"A description\"."); #endif EXPECT_FATAL_FAILURE( ASSERT_THROW(ThrowNothing(), bool), "Expected: ThrowNothing() throws an exception of type bool.\n" " Actual: it throws nothing."); } // Tests ASSERT_NO_THROW. TEST(AssertionTest, ASSERT_NO_THROW) { ASSERT_NO_THROW(ThrowNothing()); EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()), "Expected: ThrowAnInteger() doesn't throw an exception." "\n Actual: it throws."); EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowRuntimeError("A description")), "Expected: ThrowRuntimeError(\"A description\") " "doesn't throw an exception.\n " "Actual: it throws " ERROR_DESC " " "with description \"A description\"."); } // Tests ASSERT_ANY_THROW. TEST(AssertionTest, ASSERT_ANY_THROW) { ASSERT_ANY_THROW(ThrowAnInteger()); EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()), "Expected: ThrowNothing() throws an exception.\n" " Actual: it doesn't."); } #endif // GTEST_HAS_EXCEPTIONS // Makes sure we deal with the precedence of <<. This test should // compile. TEST(AssertionTest, AssertPrecedence) { ASSERT_EQ(1 < 2, true); bool false_value = false; ASSERT_EQ(true && false_value, false); } // A subroutine used by the following test. void TestEq1(int x) { ASSERT_EQ(1, x); } // Tests calling a test subroutine that's not part of a fixture. TEST(AssertionTest, NonFixtureSubroutine) { EXPECT_FATAL_FAILURE(TestEq1(2), " x\n Which is: 2"); } // An uncopyable class. class Uncopyable { public: explicit Uncopyable(int a_value) : value_(a_value) {} int value() const { return value_; } bool operator==(const Uncopyable& rhs) const { return value() == rhs.value(); } private: // This constructor deliberately has no implementation, as we don't // want this class to be copyable. Uncopyable(const Uncopyable&); // NOLINT int value_; }; ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) { return os << value.value(); } bool IsPositiveUncopyable(const Uncopyable& x) { return x.value() > 0; } // A subroutine used by the following test. void TestAssertNonPositive() { Uncopyable y(-1); ASSERT_PRED1(IsPositiveUncopyable, y); } // A subroutine used by the following test. void TestAssertEqualsUncopyable() { Uncopyable x(5); Uncopyable y(-1); ASSERT_EQ(x, y); } // Tests that uncopyable objects can be used in assertions. TEST(AssertionTest, AssertWorksWithUncopyableObject) { Uncopyable x(5); ASSERT_PRED1(IsPositiveUncopyable, x); ASSERT_EQ(x, x); EXPECT_FATAL_FAILURE( TestAssertNonPositive(), "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1"); EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(), "Expected equality of these values:\n" " x\n Which is: 5\n y\n Which is: -1"); } // Tests that uncopyable objects can be used in expects. TEST(AssertionTest, ExpectWorksWithUncopyableObject) { Uncopyable x(5); EXPECT_PRED1(IsPositiveUncopyable, x); Uncopyable y(-1); EXPECT_NONFATAL_FAILURE( EXPECT_PRED1(IsPositiveUncopyable, y), "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1"); EXPECT_EQ(x, x); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "Expected equality of these values:\n" " x\n Which is: 5\n y\n Which is: -1"); } enum NamedEnum { kE1 = 0, kE2 = 1 }; TEST(AssertionTest, NamedEnum) { EXPECT_EQ(kE1, kE1); EXPECT_LT(kE1, kE2); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1"); } // Sun Studio and HP aCC2reject this code. #if !defined(__SUNPRO_CC) && !defined(__HP_aCC) // Tests using assertions with anonymous enums. enum { kCaseA = -1, #ifdef GTEST_OS_LINUX // We want to test the case where the size of the anonymous enum is // larger than sizeof(int), to make sure our implementation of the // assertions doesn't truncate the enums. However, MSVC // (incorrectly) doesn't allow an enum value to exceed the range of // an int, so this has to be conditionally compiled. // // On Linux, kCaseB and kCaseA have the same value when truncated to // int size. We want to test whether this will confuse the // assertions. kCaseB = testing::internal::kMaxBiggestInt, #else kCaseB = INT_MAX, #endif // GTEST_OS_LINUX kCaseC = 42 }; TEST(AssertionTest, AnonymousEnum) { #ifdef GTEST_OS_LINUX EXPECT_EQ(static_cast(kCaseA), static_cast(kCaseB)); #endif // GTEST_OS_LINUX EXPECT_EQ(kCaseA, kCaseA); EXPECT_NE(kCaseA, kCaseB); EXPECT_LT(kCaseA, kCaseB); EXPECT_LE(kCaseA, kCaseB); EXPECT_GT(kCaseB, kCaseA); EXPECT_GE(kCaseA, kCaseA); EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB), "(kCaseA) >= (kCaseB)"); EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC), "-1 vs 42"); ASSERT_EQ(kCaseA, kCaseA); ASSERT_NE(kCaseA, kCaseB); ASSERT_LT(kCaseA, kCaseB); ASSERT_LE(kCaseA, kCaseB); ASSERT_GT(kCaseB, kCaseA); ASSERT_GE(kCaseA, kCaseA); #ifndef __BORLANDC__ // ICE's in C++Builder. EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB), " kCaseB\n Which is: "); EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n Which is: 42"); #endif EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n Which is: -1"); } #endif // !GTEST_OS_MAC && !defined(__SUNPRO_CC) #ifdef GTEST_OS_WINDOWS static HRESULT UnexpectedHRESULTFailure() { return E_UNEXPECTED; } static HRESULT OkHRESULTSuccess() { return S_OK; } static HRESULT FalseHRESULTSuccess() { return S_FALSE; } // HRESULT assertion tests test both zero and non-zero // success codes as well as failure message for each. // // Windows CE doesn't support message texts. TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) { EXPECT_HRESULT_SUCCEEDED(S_OK); EXPECT_HRESULT_SUCCEEDED(S_FALSE); EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()), "Expected: (UnexpectedHRESULTFailure()) succeeds.\n" " Actual: 0x8000FFFF"); } TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) { ASSERT_HRESULT_SUCCEEDED(S_OK); ASSERT_HRESULT_SUCCEEDED(S_FALSE); EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()), "Expected: (UnexpectedHRESULTFailure()) succeeds.\n" " Actual: 0x8000FFFF"); } TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) { EXPECT_HRESULT_FAILED(E_UNEXPECTED); EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()), "Expected: (OkHRESULTSuccess()) fails.\n" " Actual: 0x0"); EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()), "Expected: (FalseHRESULTSuccess()) fails.\n" " Actual: 0x1"); } TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) { ASSERT_HRESULT_FAILED(E_UNEXPECTED); #ifndef __BORLANDC__ // ICE's in C++Builder 2007 and 2009. EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()), "Expected: (OkHRESULTSuccess()) fails.\n" " Actual: 0x0"); #endif EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()), "Expected: (FalseHRESULTSuccess()) fails.\n" " Actual: 0x1"); } // Tests that streaming to the HRESULT macros works. TEST(HRESULTAssertionTest, Streaming) { EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure"; ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure"; EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure"; ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure", "expected failure"); #ifndef __BORLANDC__ // ICE's in C++Builder 2007 and 2009. EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure", "expected failure"); #endif EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(S_OK) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(S_OK) << "expected failure", "expected failure"); } #endif // GTEST_OS_WINDOWS // The following code intentionally tests a suboptimal syntax. #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdangling-else" #pragma GCC diagnostic ignored "-Wempty-body" #pragma GCC diagnostic ignored "-Wpragmas" #endif // Tests that the assertion macros behave like single statements. TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) { if (AlwaysFalse()) ASSERT_TRUE(false) << "This should never be executed; " "It's a compilation test only."; if (AlwaysTrue()) EXPECT_FALSE(false); else ; // NOLINT if (AlwaysFalse()) ASSERT_LT(1, 3); if (AlwaysFalse()) ; // NOLINT else EXPECT_GT(3, 2) << ""; } #ifdef __GNUC__ #pragma GCC diagnostic pop #endif #if GTEST_HAS_EXCEPTIONS // Tests that the compiler will not complain about unreachable code in the // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros. TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) { int n = 0; EXPECT_THROW(throw 1, int); EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), ""); EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), ""); EXPECT_NO_THROW(n++); EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), ""); EXPECT_ANY_THROW(throw 1); EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), ""); } TEST(ExpectThrowTest, DoesNotGenerateDuplicateCatchClauseWarning) { EXPECT_THROW(throw std::exception(), std::exception); } // The following code intentionally tests a suboptimal syntax. #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdangling-else" #pragma GCC diagnostic ignored "-Wempty-body" #pragma GCC diagnostic ignored "-Wpragmas" #endif TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) { if (AlwaysFalse()) EXPECT_THROW(ThrowNothing(), bool); if (AlwaysTrue()) EXPECT_THROW(ThrowAnInteger(), int); else ; // NOLINT if (AlwaysFalse()) EXPECT_NO_THROW(ThrowAnInteger()); if (AlwaysTrue()) EXPECT_NO_THROW(ThrowNothing()); else ; // NOLINT if (AlwaysFalse()) EXPECT_ANY_THROW(ThrowNothing()); if (AlwaysTrue()) EXPECT_ANY_THROW(ThrowAnInteger()); else ; // NOLINT } #ifdef __GNUC__ #pragma GCC diagnostic pop #endif #endif // GTEST_HAS_EXCEPTIONS // The following code intentionally tests a suboptimal syntax. #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdangling-else" #pragma GCC diagnostic ignored "-Wempty-body" #pragma GCC diagnostic ignored "-Wpragmas" #endif TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) { if (AlwaysFalse()) EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. " << "It's a compilation test only."; else ; // NOLINT if (AlwaysFalse()) ASSERT_NO_FATAL_FAILURE(FAIL()) << ""; else ; // NOLINT if (AlwaysTrue()) EXPECT_NO_FATAL_FAILURE(SUCCEED()); else ; // NOLINT if (AlwaysFalse()) ; // NOLINT else ASSERT_NO_FATAL_FAILURE(SUCCEED()); } #ifdef __GNUC__ #pragma GCC diagnostic pop #endif // Tests that the assertion macros work well with switch statements. TEST(AssertionSyntaxTest, WorksWithSwitch) { switch (0) { case 1: break; default: ASSERT_TRUE(true); } switch (0) case 0: EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case"; // Binary assertions are implemented using a different code path // than the Boolean assertions. Hence we test them separately. switch (0) { case 1: default: ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler"; } switch (0) case 0: EXPECT_NE(1, 2); } #if GTEST_HAS_EXCEPTIONS void ThrowAString() { throw "std::string"; } // Test that the exception assertion macros compile and work with const // type qualifier. TEST(AssertionSyntaxTest, WorksWithConst) { ASSERT_THROW(ThrowAString(), const char*); EXPECT_THROW(ThrowAString(), const char*); } #endif // GTEST_HAS_EXCEPTIONS } // namespace namespace testing { // Tests that Google Test tracks SUCCEED*. TEST(SuccessfulAssertionTest, SUCCEED) { SUCCEED(); SUCCEED() << "OK"; EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count()); } // Tests that Google Test doesn't track successful EXPECT_*. TEST(SuccessfulAssertionTest, EXPECT) { EXPECT_TRUE(true); EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); } // Tests that Google Test doesn't track successful EXPECT_STR*. TEST(SuccessfulAssertionTest, EXPECT_STR) { EXPECT_STREQ("", ""); EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); } // Tests that Google Test doesn't track successful ASSERT_*. TEST(SuccessfulAssertionTest, ASSERT) { ASSERT_TRUE(true); EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); } // Tests that Google Test doesn't track successful ASSERT_STR*. TEST(SuccessfulAssertionTest, ASSERT_STR) { ASSERT_STREQ("", ""); EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); } } // namespace testing namespace { // Tests the message streaming variation of assertions. TEST(AssertionWithMessageTest, EXPECT) { EXPECT_EQ(1, 1) << "This should succeed."; EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.", "Expected failure #1"); EXPECT_LE(1, 2) << "This should succeed."; EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.", "Expected failure #2."); EXPECT_GE(1, 0) << "This should succeed."; EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.", "Expected failure #3."); EXPECT_STREQ("1", "1") << "This should succeed."; EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.", "Expected failure #4."); EXPECT_STRCASEEQ("a", "A") << "This should succeed."; EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.", "Expected failure #5."); EXPECT_FLOAT_EQ(1, 1) << "This should succeed."; EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.", "Expected failure #6."); EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed."; } TEST(AssertionWithMessageTest, ASSERT) { ASSERT_EQ(1, 1) << "This should succeed."; ASSERT_NE(1, 2) << "This should succeed."; ASSERT_LE(1, 2) << "This should succeed."; ASSERT_LT(1, 2) << "This should succeed."; ASSERT_GE(1, 0) << "This should succeed."; EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.", "Expected failure."); } TEST(AssertionWithMessageTest, ASSERT_STR) { ASSERT_STREQ("1", "1") << "This should succeed."; ASSERT_STRNE("1", "2") << "This should succeed."; ASSERT_STRCASEEQ("a", "A") << "This should succeed."; EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.", "Expected failure."); } TEST(AssertionWithMessageTest, ASSERT_FLOATING) { ASSERT_FLOAT_EQ(1, 1) << "This should succeed."; ASSERT_DOUBLE_EQ(1, 1) << "This should succeed."; EXPECT_FATAL_FAILURE(ASSERT_NEAR(1, 1.2, 0.1) << "Expect failure.", // NOLINT "Expect failure."); } // Tests using ASSERT_FALSE with a streamed message. TEST(AssertionWithMessageTest, ASSERT_FALSE) { ASSERT_FALSE(false) << "This shouldn't fail."; EXPECT_FATAL_FAILURE( { // NOLINT ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1 << " evaluates to " << true; }, "Expected failure"); } // Tests using FAIL with a streamed message. TEST(AssertionWithMessageTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL() << 0, "0"); } // Tests using SUCCEED with a streamed message. TEST(AssertionWithMessageTest, SUCCEED) { SUCCEED() << "Success == " << 1; } // Tests using ASSERT_TRUE with a streamed message. TEST(AssertionWithMessageTest, ASSERT_TRUE) { ASSERT_TRUE(true) << "This should succeed."; ASSERT_TRUE(true) << true; EXPECT_FATAL_FAILURE( { // NOLINT ASSERT_TRUE(false) << static_cast(nullptr) << static_cast(nullptr); }, "(null)(null)"); } #ifdef GTEST_OS_WINDOWS // Tests using wide strings in assertion messages. TEST(AssertionWithMessageTest, WideStringMessage) { EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_TRUE(false) << L"This failure is expected.\x8119"; }, "This failure is expected."); EXPECT_FATAL_FAILURE( { // NOLINT ASSERT_EQ(1, 2) << "This failure is " << L"expected too.\x8120"; }, "This failure is expected too."); } #endif // GTEST_OS_WINDOWS // Tests EXPECT_TRUE. TEST(ExpectTest, EXPECT_TRUE) { EXPECT_TRUE(true) << "Intentional success"; EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.", "Intentional failure #1."); EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.", "Intentional failure #2."); EXPECT_TRUE(2 > 1); // NOLINT EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1), "Value of: 2 < 1\n" " Actual: false\n" "Expected: true"); EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), "2 > 3"); } // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult. TEST(ExpectTest, ExpectTrueWithAssertionResult) { EXPECT_TRUE(ResultIsEven(2)); EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)), "Value of: ResultIsEven(3)\n" " Actual: false (3 is odd)\n" "Expected: true"); EXPECT_TRUE(ResultIsEvenNoExplanation(2)); EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)), "Value of: ResultIsEvenNoExplanation(3)\n" " Actual: false (3 is odd)\n" "Expected: true"); } // Tests EXPECT_FALSE with a streamed message. TEST(ExpectTest, EXPECT_FALSE) { EXPECT_FALSE(2 < 1); // NOLINT EXPECT_FALSE(false) << "Intentional success"; EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.", "Intentional failure #1."); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.", "Intentional failure #2."); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1), "Value of: 2 > 1\n" " Actual: true\n" "Expected: false"); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), "2 < 3"); } // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult. TEST(ExpectTest, ExpectFalseWithAssertionResult) { EXPECT_FALSE(ResultIsEven(3)); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)), "Value of: ResultIsEven(2)\n" " Actual: true (2 is even)\n" "Expected: false"); EXPECT_FALSE(ResultIsEvenNoExplanation(3)); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)), "Value of: ResultIsEvenNoExplanation(2)\n" " Actual: true\n" "Expected: false"); } #ifdef __BORLANDC__ // Restores warnings after previous "#pragma option push" suppressed them #pragma option pop #endif // Tests EXPECT_EQ. TEST(ExpectTest, EXPECT_EQ) { EXPECT_EQ(5, 2 + 3); // clang-format off EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3), "Expected equality of these values:\n" " 5\n" " 2*3\n" " Which is: 6"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), "2 - 3"); // clang-format on } // Tests using EXPECT_EQ on double values. The purpose is to make // sure that the specialization we did for integer and anonymous enums // isn't used for double arguments. TEST(ExpectTest, EXPECT_EQ_Double) { // A success. EXPECT_EQ(5.6, 5.6); // A failure. EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), "5.1"); } // Tests EXPECT_EQ(NULL, pointer). TEST(ExpectTest, EXPECT_EQ_NULL) { // A success. const char* p = nullptr; EXPECT_EQ(nullptr, p); // A failure. int n = 0; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(nullptr, &n), " &n\n Which is:"); } // Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be // treated as a null pointer by the compiler, we need to make sure // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as // EXPECT_EQ(static_cast(NULL), non_pointer). TEST(ExpectTest, EXPECT_EQ_0) { int n = 0; // A success. EXPECT_EQ(0, n); // A failure. EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), " 0\n 5.6"); } // Tests EXPECT_NE. TEST(ExpectTest, EXPECT_NE) { EXPECT_NE(6, 7); EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'), "Expected: ('a') != ('a'), " "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)"); EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), "2"); char* const p0 = nullptr; EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), "p0"); // Only way to get the Nokia compiler to compile the cast // is to have a separate void* variable first. Putting // the two casts on the same line doesn't work, neither does // a direct C-style to char*. void* pv1 = (void*)0x1234; // NOLINT char* const p1 = reinterpret_cast(pv1); EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), "p1"); } // Tests EXPECT_LE. TEST(ExpectTest, EXPECT_LE) { EXPECT_LE(2, 3); EXPECT_LE(2, 2); EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0"); EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), "(1.1) <= (0.9)"); } // Tests EXPECT_LT. TEST(ExpectTest, EXPECT_LT) { EXPECT_LT(2, 3); EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2"); EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), "(2) < (1)"); } // Tests EXPECT_GE. TEST(ExpectTest, EXPECT_GE) { EXPECT_GE(2, 1); EXPECT_GE(2, 2); EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3"); EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), "(0.9) >= (1.1)"); } // Tests EXPECT_GT. TEST(ExpectTest, EXPECT_GT) { EXPECT_GT(2, 1); EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2"); EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), "(2) > (3)"); } #if GTEST_HAS_EXCEPTIONS // Tests EXPECT_THROW. TEST(ExpectTest, EXPECT_THROW) { EXPECT_THROW(ThrowAnInteger(), int); EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool), "Expected: ThrowAnInteger() throws an exception of " "type bool.\n Actual: it throws a different type."); EXPECT_NONFATAL_FAILURE( EXPECT_THROW(ThrowRuntimeError("A description"), std::logic_error), "Expected: ThrowRuntimeError(\"A description\") " "throws an exception of type std::logic_error.\n " "Actual: it throws " ERROR_DESC " " "with description \"A description\"."); EXPECT_NONFATAL_FAILURE( EXPECT_THROW(ThrowNothing(), bool), "Expected: ThrowNothing() throws an exception of type bool.\n" " Actual: it throws nothing."); } // Tests EXPECT_NO_THROW. TEST(ExpectTest, EXPECT_NO_THROW) { EXPECT_NO_THROW(ThrowNothing()); EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()), "Expected: ThrowAnInteger() doesn't throw an " "exception.\n Actual: it throws."); EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowRuntimeError("A description")), "Expected: ThrowRuntimeError(\"A description\") " "doesn't throw an exception.\n " "Actual: it throws " ERROR_DESC " " "with description \"A description\"."); } // Tests EXPECT_ANY_THROW. TEST(ExpectTest, EXPECT_ANY_THROW) { EXPECT_ANY_THROW(ThrowAnInteger()); EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()), "Expected: ThrowNothing() throws an exception.\n" " Actual: it doesn't."); } #endif // GTEST_HAS_EXCEPTIONS // Make sure we deal with the precedence of <<. TEST(ExpectTest, ExpectPrecedence) { EXPECT_EQ(1 < 2, true); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false), " true && false\n Which is: false"); } // Tests the StreamableToString() function. // Tests using StreamableToString() on a scalar. TEST(StreamableToStringTest, Scalar) { EXPECT_STREQ("5", StreamableToString(5).c_str()); } // Tests using StreamableToString() on a non-char pointer. TEST(StreamableToStringTest, Pointer) { int n = 0; int* p = &n; EXPECT_STRNE("(null)", StreamableToString(p).c_str()); } // Tests using StreamableToString() on a NULL non-char pointer. TEST(StreamableToStringTest, NullPointer) { int* p = nullptr; EXPECT_STREQ("(null)", StreamableToString(p).c_str()); } // Tests using StreamableToString() on a C string. TEST(StreamableToStringTest, CString) { EXPECT_STREQ("Foo", StreamableToString("Foo").c_str()); } // Tests using StreamableToString() on a NULL C string. TEST(StreamableToStringTest, NullCString) { char* p = nullptr; EXPECT_STREQ("(null)", StreamableToString(p).c_str()); } // Tests using streamable values as assertion messages. // Tests using std::string as an assertion message. TEST(StreamableTest, string) { static const std::string str( "This failure message is a std::string, and is expected."); EXPECT_FATAL_FAILURE(FAIL() << str, str.c_str()); } // Tests that we can output strings containing embedded NULs. // Limited to Linux because we can only do this with std::string's. TEST(StreamableTest, stringWithEmbeddedNUL) { static const char char_array_with_nul[] = "Here's a NUL\0 and some more string"; static const std::string string_with_nul( char_array_with_nul, sizeof(char_array_with_nul) - 1); // drops the trailing NUL EXPECT_FATAL_FAILURE(FAIL() << string_with_nul, "Here's a NUL\\0 and some more string"); } // Tests that we can output a NUL char. TEST(StreamableTest, NULChar) { EXPECT_FATAL_FAILURE( { // NOLINT FAIL() << "A NUL" << '\0' << " and some more string"; }, "A NUL\\0 and some more string"); } // Tests using int as an assertion message. TEST(StreamableTest, int) { EXPECT_FATAL_FAILURE(FAIL() << 900913, "900913"); } // Tests using NULL char pointer as an assertion message. // // In MSVC, streaming a NULL char * causes access violation. Google Test // implemented a workaround (substituting "(null)" for NULL). This // tests whether the workaround works. TEST(StreamableTest, NullCharPtr) { EXPECT_FATAL_FAILURE(FAIL() << static_cast(nullptr), "(null)"); } // Tests that basic IO manipulators (endl, ends, and flush) can be // streamed to testing::Message. TEST(StreamableTest, BasicIoManip) { EXPECT_FATAL_FAILURE( { // NOLINT FAIL() << "Line 1." << std::endl << "A NUL char " << std::ends << std::flush << " in line 2."; }, "Line 1.\nA NUL char \\0 in line 2."); } // Tests the macros that haven't been covered so far. void AddFailureHelper(bool* aborted) { *aborted = true; ADD_FAILURE() << "Intentional failure."; *aborted = false; } // Tests ADD_FAILURE. TEST(MacroTest, ADD_FAILURE) { bool aborted = true; EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), "Intentional failure."); EXPECT_FALSE(aborted); } // Tests ADD_FAILURE_AT. TEST(MacroTest, ADD_FAILURE_AT) { // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and // the failure message contains the user-streamed part. EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!"); // Verifies that the user-streamed part is optional. EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed"); // Unfortunately, we cannot verify that the failure message contains // the right file path and line number the same way, as // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and // line number. Instead, we do that in googletest-output-test_.cc. } // Tests FAIL. TEST(MacroTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL(), "Failed"); EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.", "Intentional failure."); } // Tests GTEST_FAIL_AT. TEST(MacroTest, GTEST_FAIL_AT) { // Verifies that GTEST_FAIL_AT does generate a fatal failure and // the failure message contains the user-streamed part. EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42) << "Wrong!", "Wrong!"); // Verifies that the user-streamed part is optional. EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42), "Failed"); // See the ADD_FAIL_AT test above to see how we test that the failure message // contains the right filename and line number -- the same applies here. } // Tests SUCCEED TEST(MacroTest, SUCCEED) { SUCCEED(); SUCCEED() << "Explicit success."; } // Tests for EXPECT_EQ() and ASSERT_EQ(). // // These tests fail *intentionally*, s.t. the failure messages can be // generated and tested. // // We have different tests for different argument types. // Tests using bool values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, Bool) { EXPECT_EQ(true, true); EXPECT_FATAL_FAILURE( { bool false_value = false; ASSERT_EQ(false_value, true); }, " false_value\n Which is: false\n true"); } // Tests using int values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, Int) { ASSERT_EQ(32, 32); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), " 32\n 33"); } // Tests using time_t values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, Time_T) { EXPECT_EQ(static_cast(0), static_cast(0)); EXPECT_FATAL_FAILURE( ASSERT_EQ(static_cast(0), static_cast(1234)), "1234"); } // Tests using char values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, Char) { ASSERT_EQ('z', 'z'); const char ch = 'b'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), " ch\n Which is: 'b'"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), " ch\n Which is: 'b'"); } // Tests using wchar_t values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, WideChar) { EXPECT_EQ(L'b', L'b'); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'), "Expected equality of these values:\n" " L'\0'\n" " Which is: L'\0' (0, 0x0)\n" " L'x'\n" " Which is: L'x' (120, 0x78)"); static wchar_t wchar; wchar = L'b'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), "wchar"); wchar = 0x8119; EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast(0x8120), wchar), " wchar\n Which is: L'"); } // Tests using ::std::string values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, StdString) { // Compares a const char* to an std::string that has identical // content. ASSERT_EQ("Test", ::std::string("Test")); // Compares two identical std::strings. static const ::std::string str1("A * in the middle"); static const ::std::string str2(str1); EXPECT_EQ(str1, str2); // Compares a const char* to an std::string that has different // content EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), "\"test\""); // Compares an std::string to a char* that has different content. char* const p1 = const_cast("foo"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), "p1"); // Compares two std::strings that have different contents, one of // which having a NUL character in the middle. This should fail. static ::std::string str3(str1); str3.at(2) = '\0'; EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3), " str3\n Which is: \"A \\0 in the middle\""); } #if GTEST_HAS_STD_WSTRING // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, StdWideString) { // Compares two identical std::wstrings. const ::std::wstring wstr1(L"A * in the middle"); const ::std::wstring wstr2(wstr1); ASSERT_EQ(wstr1, wstr2); // Compares an std::wstring to a const wchar_t* that has identical // content. const wchar_t kTestX8119[] = {'T', 'e', 's', 't', 0x8119, '\0'}; EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119); // Compares an std::wstring to a const wchar_t* that has different // content. const wchar_t kTestX8120[] = {'T', 'e', 's', 't', 0x8120, '\0'}; EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120); }, "kTestX8120"); // Compares two std::wstrings that have different contents, one of // which having a NUL character in the middle. ::std::wstring wstr3(wstr1); wstr3.at(2) = L'\0'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), "wstr3"); // Compares a wchar_t* to an std::wstring that has different // content. EXPECT_FATAL_FAILURE( { // NOLINT ASSERT_EQ(const_cast(L"foo"), ::std::wstring(L"bar")); }, ""); } #endif // GTEST_HAS_STD_WSTRING // Tests using char pointers in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, CharPointer) { char* const p0 = nullptr; // Only way to get the Nokia compiler to compile the cast // is to have a separate void* variable first. Putting // the two casts on the same line doesn't work, neither does // a direct C-style to char*. void* pv1 = (void*)0x1234; // NOLINT void* pv2 = (void*)0xABC0; // NOLINT char* const p1 = reinterpret_cast(pv1); char* const p2 = reinterpret_cast(pv2); ASSERT_EQ(p1, p1); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), " p2\n Which is:"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), " p2\n Which is:"); EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast(0x1234), reinterpret_cast(0xABC0)), "ABC0"); } // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, WideCharPointer) { wchar_t* const p0 = nullptr; // Only way to get the Nokia compiler to compile the cast // is to have a separate void* variable first. Putting // the two casts on the same line doesn't work, neither does // a direct C-style to char*. void* pv1 = (void*)0x1234; // NOLINT void* pv2 = (void*)0xABC0; // NOLINT wchar_t* const p1 = reinterpret_cast(pv1); wchar_t* const p2 = reinterpret_cast(pv2); EXPECT_EQ(p0, p0); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), " p2\n Which is:"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), " p2\n Which is:"); void* pv3 = (void*)0x1234; // NOLINT void* pv4 = (void*)0xABC0; // NOLINT const wchar_t* p3 = reinterpret_cast(pv3); const wchar_t* p4 = reinterpret_cast(pv4); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), "p4"); } // Tests using other types of pointers in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, OtherPointer) { ASSERT_EQ(static_cast(nullptr), static_cast(nullptr)); EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast(nullptr), reinterpret_cast(0x1234)), "0x1234"); } // A class that supports binary comparison operators but not streaming. class UnprintableChar { public: explicit UnprintableChar(char ch) : char_(ch) {} bool operator==(const UnprintableChar& rhs) const { return char_ == rhs.char_; } bool operator!=(const UnprintableChar& rhs) const { return char_ != rhs.char_; } bool operator<(const UnprintableChar& rhs) const { return char_ < rhs.char_; } bool operator<=(const UnprintableChar& rhs) const { return char_ <= rhs.char_; } bool operator>(const UnprintableChar& rhs) const { return char_ > rhs.char_; } bool operator>=(const UnprintableChar& rhs) const { return char_ >= rhs.char_; } private: char char_; }; // Tests that ASSERT_EQ() and friends don't require the arguments to // be printable. TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) { const UnprintableChar x('x'), y('y'); ASSERT_EQ(x, x); EXPECT_NE(x, y); ASSERT_LT(x, y); EXPECT_LE(x, y); ASSERT_GT(y, x); EXPECT_GE(x, x); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>"); EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>"); EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>"); EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>"); // Code tested by EXPECT_FATAL_FAILURE cannot reference local // variables, so we have to write UnprintableChar('x') instead of x. #ifndef __BORLANDC__ // ICE's in C++Builder. EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')), "1-byte object <78>"); EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')), "1-byte object <78>"); #endif EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')), "1-byte object <79>"); EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')), "1-byte object <78>"); EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')), "1-byte object <79>"); } // Tests the FRIEND_TEST macro. // This class has a private member we want to test. We will test it // both in a TEST and in a TEST_F. class Foo { public: Foo() = default; private: int Bar() const { return 1; } // Declares the friend tests that can access the private member // Bar(). FRIEND_TEST(FRIEND_TEST_Test, TEST); FRIEND_TEST(FRIEND_TEST_Test2, TEST_F); }; // Tests that the FRIEND_TEST declaration allows a TEST to access a // class's private members. This should compile. TEST(FRIEND_TEST_Test, TEST) { ASSERT_EQ(1, Foo().Bar()); } // The fixture needed to test using FRIEND_TEST with TEST_F. class FRIEND_TEST_Test2 : public Test { protected: Foo foo; }; // Tests that the FRIEND_TEST declaration allows a TEST_F to access a // class's private members. This should compile. TEST_F(FRIEND_TEST_Test2, TEST_F) { ASSERT_EQ(1, foo.Bar()); } // Tests the life cycle of Test objects. // The test fixture for testing the life cycle of Test objects. // // This class counts the number of live test objects that uses this // fixture. class TestLifeCycleTest : public Test { protected: // Constructor. Increments the number of test objects that uses // this fixture. TestLifeCycleTest() { count_++; } // Destructor. Decrements the number of test objects that uses this // fixture. ~TestLifeCycleTest() override { count_--; } // Returns the number of live test objects that uses this fixture. int count() const { return count_; } private: static int count_; }; int TestLifeCycleTest::count_ = 0; // Tests the life cycle of test objects. TEST_F(TestLifeCycleTest, Test1) { // There should be only one test object in this test case that's // currently alive. ASSERT_EQ(1, count()); } // Tests the life cycle of test objects. TEST_F(TestLifeCycleTest, Test2) { // After Test1 is done and Test2 is started, there should still be // only one live test object, as the object for Test1 should've been // deleted. ASSERT_EQ(1, count()); } } // namespace // Tests that the copy constructor works when it is NOT optimized away by // the compiler. TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) { // Checks that the copy constructor doesn't try to dereference NULL pointers // in the source object. AssertionResult r1 = AssertionSuccess(); AssertionResult r2 = r1; // The following line is added to prevent the compiler from optimizing // away the constructor call. r1 << "abc"; AssertionResult r3 = r1; EXPECT_EQ(static_cast(r3), static_cast(r1)); EXPECT_STREQ("abc", r1.message()); } // Tests that AssertionSuccess and AssertionFailure construct // AssertionResult objects as expected. TEST(AssertionResultTest, ConstructionWorks) { AssertionResult r1 = AssertionSuccess(); EXPECT_TRUE(r1); EXPECT_STREQ("", r1.message()); AssertionResult r2 = AssertionSuccess() << "abc"; EXPECT_TRUE(r2); EXPECT_STREQ("abc", r2.message()); AssertionResult r3 = AssertionFailure(); EXPECT_FALSE(r3); EXPECT_STREQ("", r3.message()); AssertionResult r4 = AssertionFailure() << "def"; EXPECT_FALSE(r4); EXPECT_STREQ("def", r4.message()); AssertionResult r5 = AssertionFailure(Message() << "ghi"); EXPECT_FALSE(r5); EXPECT_STREQ("ghi", r5.message()); } // Tests that the negation flips the predicate result but keeps the message. TEST(AssertionResultTest, NegationWorks) { AssertionResult r1 = AssertionSuccess() << "abc"; EXPECT_FALSE(!r1); EXPECT_STREQ("abc", (!r1).message()); AssertionResult r2 = AssertionFailure() << "def"; EXPECT_TRUE(!r2); EXPECT_STREQ("def", (!r2).message()); } TEST(AssertionResultTest, StreamingWorks) { AssertionResult r = AssertionSuccess(); r << "abc" << 'd' << 0 << true; EXPECT_STREQ("abcd0true", r.message()); } TEST(AssertionResultTest, CanStreamOstreamManipulators) { AssertionResult r = AssertionSuccess(); r << "Data" << std::endl << std::flush << std::ends << "Will be visible"; EXPECT_STREQ("Data\n\\0Will be visible", r.message()); } // The next test uses explicit conversion operators TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) { struct ExplicitlyConvertibleToBool { explicit operator bool() const { return value; } bool value; }; ExplicitlyConvertibleToBool v1 = {false}; ExplicitlyConvertibleToBool v2 = {true}; EXPECT_FALSE(v1); EXPECT_TRUE(v2); } struct ConvertibleToAssertionResult { operator AssertionResult() const { return AssertionResult(true); } }; TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) { ConvertibleToAssertionResult obj; EXPECT_TRUE(obj); } // Tests streaming a user type whose definition and operator << are // both in the global namespace. class Base { public: explicit Base(int an_x) : x_(an_x) {} int x() const { return x_; } private: int x_; }; std::ostream& operator<<(std::ostream& os, const Base& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const Base* pointer) { return os << "(" << pointer->x() << ")"; } TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) { Message msg; Base a(1); msg << a << &a; // Uses ::operator<<. EXPECT_STREQ("1(1)", msg.GetString().c_str()); } // Tests streaming a user type whose definition and operator<< are // both in an unnamed namespace. namespace { class MyTypeInUnnamedNameSpace : public Base { public: explicit MyTypeInUnnamedNameSpace(int an_x) : Base(an_x) {} }; std::ostream& operator<<(std::ostream& os, const MyTypeInUnnamedNameSpace& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const MyTypeInUnnamedNameSpace* pointer) { return os << "(" << pointer->x() << ")"; } } // namespace TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) { Message msg; MyTypeInUnnamedNameSpace a(1); msg << a << &a; // Uses ::operator<<. EXPECT_STREQ("1(1)", msg.GetString().c_str()); } // Tests streaming a user type whose definition and operator<< are // both in a user namespace. namespace namespace1 { class MyTypeInNameSpace1 : public Base { public: explicit MyTypeInNameSpace1(int an_x) : Base(an_x) {} }; std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1* pointer) { return os << "(" << pointer->x() << ")"; } } // namespace namespace1 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) { Message msg; namespace1::MyTypeInNameSpace1 a(1); msg << a << &a; // Uses namespace1::operator<<. EXPECT_STREQ("1(1)", msg.GetString().c_str()); } // Tests streaming a user type whose definition is in a user namespace // but whose operator<< is in the global namespace. namespace namespace2 { class MyTypeInNameSpace2 : public ::Base { public: explicit MyTypeInNameSpace2(int an_x) : Base(an_x) {} }; } // namespace namespace2 std::ostream& operator<<(std::ostream& os, const namespace2::MyTypeInNameSpace2& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const namespace2::MyTypeInNameSpace2* pointer) { return os << "(" << pointer->x() << ")"; } TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) { Message msg; namespace2::MyTypeInNameSpace2 a(1); msg << a << &a; // Uses ::operator<<. EXPECT_STREQ("1(1)", msg.GetString().c_str()); } // Tests streaming NULL pointers to testing::Message. TEST(MessageTest, NullPointers) { Message msg; char* const p1 = nullptr; unsigned char* const p2 = nullptr; int* p3 = nullptr; double* p4 = nullptr; bool* p5 = nullptr; Message* p6 = nullptr; msg << p1 << p2 << p3 << p4 << p5 << p6; ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", msg.GetString().c_str()); } // Tests streaming wide strings to testing::Message. TEST(MessageTest, WideStrings) { // Streams a NULL of type const wchar_t*. const wchar_t* const_wstr = nullptr; EXPECT_STREQ("(null)", (Message() << const_wstr).GetString().c_str()); // Streams a NULL of type wchar_t*. wchar_t* wstr = nullptr; EXPECT_STREQ("(null)", (Message() << wstr).GetString().c_str()); // Streams a non-NULL of type const wchar_t*. const_wstr = L"abc\x8119"; EXPECT_STREQ("abc\xe8\x84\x99", (Message() << const_wstr).GetString().c_str()); // Streams a non-NULL of type wchar_t*. wstr = const_cast(const_wstr); EXPECT_STREQ("abc\xe8\x84\x99", (Message() << wstr).GetString().c_str()); } // This line tests that we can define tests in the testing namespace. namespace testing { // Tests the TestInfo class. class TestInfoTest : public Test { protected: static const TestInfo* GetTestInfo(const char* test_name) { const TestSuite* const test_suite = GetUnitTestImpl()->GetTestSuite("TestInfoTest", "", nullptr, nullptr); for (int i = 0; i < test_suite->total_test_count(); ++i) { const TestInfo* const test_info = test_suite->GetTestInfo(i); if (strcmp(test_name, test_info->name()) == 0) return test_info; } return nullptr; } static const TestResult* GetTestResult(const TestInfo* test_info) { return test_info->result(); } }; // Tests TestInfo::test_case_name() and TestInfo::name(). TEST_F(TestInfoTest, Names) { const TestInfo* const test_info = GetTestInfo("Names"); ASSERT_STREQ("TestInfoTest", test_info->test_suite_name()); ASSERT_STREQ("Names", test_info->name()); } // Tests TestInfo::result(). TEST_F(TestInfoTest, result) { const TestInfo* const test_info = GetTestInfo("result"); // Initially, there is no TestPartResult for this test. ASSERT_EQ(0, GetTestResult(test_info)->total_part_count()); // After the previous assertion, there is still none. ASSERT_EQ(0, GetTestResult(test_info)->total_part_count()); } #define VERIFY_CODE_LOCATION \ const int expected_line = __LINE__ - 1; \ const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \ ASSERT_TRUE(test_info); \ EXPECT_STREQ(__FILE__, test_info->file()); \ EXPECT_EQ(expected_line, test_info->line()) // clang-format off TEST(CodeLocationForTEST, Verify) { VERIFY_CODE_LOCATION; } class CodeLocationForTESTF : public Test {}; TEST_F(CodeLocationForTESTF, Verify) { VERIFY_CODE_LOCATION; } class CodeLocationForTESTP : public TestWithParam {}; TEST_P(CodeLocationForTESTP, Verify) { VERIFY_CODE_LOCATION; } INSTANTIATE_TEST_SUITE_P(, CodeLocationForTESTP, Values(0)); template class CodeLocationForTYPEDTEST : public Test {}; TYPED_TEST_SUITE(CodeLocationForTYPEDTEST, int); TYPED_TEST(CodeLocationForTYPEDTEST, Verify) { VERIFY_CODE_LOCATION; } template class CodeLocationForTYPEDTESTP : public Test {}; TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP); TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) { VERIFY_CODE_LOCATION; } REGISTER_TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP, Verify); INSTANTIATE_TYPED_TEST_SUITE_P(My, CodeLocationForTYPEDTESTP, int); #undef VERIFY_CODE_LOCATION // clang-format on // Tests setting up and tearing down a test case. // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ class SetUpTestCaseTest : public Test { protected: // This will be called once before the first test in this test case // is run. static void SetUpTestCase() { printf("Setting up the test case . . .\n"); // Initializes some shared resource. In this simple example, we // just create a C string. More complex stuff can be done if // desired. shared_resource_ = "123"; // Increments the number of test cases that have been set up. counter_++; // SetUpTestCase() should be called only once. EXPECT_EQ(1, counter_); } // This will be called once after the last test in this test case is // run. static void TearDownTestCase() { printf("Tearing down the test case . . .\n"); // Decrements the number of test cases that have been set up. counter_--; // TearDownTestCase() should be called only once. EXPECT_EQ(0, counter_); // Cleans up the shared resource. shared_resource_ = nullptr; } // This will be called before each test in this test case. void SetUp() override { // SetUpTestCase() should be called only once, so counter_ should // always be 1. EXPECT_EQ(1, counter_); } // Number of test cases that have been set up. static int counter_; // Some resource to be shared by all tests in this test case. static const char* shared_resource_; }; int SetUpTestCaseTest::counter_ = 0; const char* SetUpTestCaseTest::shared_resource_ = nullptr; // A test that uses the shared resource. TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(nullptr, shared_resource_); } // Another test that uses the shared resource. TEST_F(SetUpTestCaseTest, Test2) { EXPECT_STREQ("123", shared_resource_); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Tests SetupTestSuite/TearDown TestSuite class SetUpTestSuiteTest : public Test { protected: // This will be called once before the first test in this test case // is run. static void SetUpTestSuite() { printf("Setting up the test suite . . .\n"); // Initializes some shared resource. In this simple example, we // just create a C string. More complex stuff can be done if // desired. shared_resource_ = "123"; // Increments the number of test cases that have been set up. counter_++; // SetUpTestSuite() should be called only once. EXPECT_EQ(1, counter_); } // This will be called once after the last test in this test case is // run. static void TearDownTestSuite() { printf("Tearing down the test suite . . .\n"); // Decrements the number of test suites that have been set up. counter_--; // TearDownTestSuite() should be called only once. EXPECT_EQ(0, counter_); // Cleans up the shared resource. shared_resource_ = nullptr; } // This will be called before each test in this test case. void SetUp() override { // SetUpTestSuite() should be called only once, so counter_ should // always be 1. EXPECT_EQ(1, counter_); } // Number of test suites that have been set up. static int counter_; // Some resource to be shared by all tests in this test case. static const char* shared_resource_; }; int SetUpTestSuiteTest::counter_ = 0; const char* SetUpTestSuiteTest::shared_resource_ = nullptr; // A test that uses the shared resource. TEST_F(SetUpTestSuiteTest, TestSetupTestSuite1) { EXPECT_STRNE(nullptr, shared_resource_); } // Another test that uses the shared resource. TEST_F(SetUpTestSuiteTest, TestSetupTestSuite2) { EXPECT_STREQ("123", shared_resource_); } // The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly. // The Flags struct stores a copy of all Google Test flags. struct Flags { // Constructs a Flags struct where each flag has its default value. Flags() : also_run_disabled_tests(false), break_on_failure(false), catch_exceptions(false), death_test_use_fork(false), fail_fast(false), filter(""), list_tests(false), output(""), brief(false), print_time(true), random_seed(0), repeat(1), recreate_environments_when_repeating(true), shuffle(false), stack_trace_depth(kMaxStackTraceDepth), stream_result_to(""), throw_on_failure(false) {} // Factory methods. // Creates a Flags struct where the gtest_also_run_disabled_tests flag has // the given value. static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) { Flags flags; flags.also_run_disabled_tests = also_run_disabled_tests; return flags; } // Creates a Flags struct where the gtest_break_on_failure flag has // the given value. static Flags BreakOnFailure(bool break_on_failure) { Flags flags; flags.break_on_failure = break_on_failure; return flags; } // Creates a Flags struct where the gtest_catch_exceptions flag has // the given value. static Flags CatchExceptions(bool catch_exceptions) { Flags flags; flags.catch_exceptions = catch_exceptions; return flags; } // Creates a Flags struct where the gtest_death_test_use_fork flag has // the given value. static Flags DeathTestUseFork(bool death_test_use_fork) { Flags flags; flags.death_test_use_fork = death_test_use_fork; return flags; } // Creates a Flags struct where the gtest_fail_fast flag has // the given value. static Flags FailFast(bool fail_fast) { Flags flags; flags.fail_fast = fail_fast; return flags; } // Creates a Flags struct where the gtest_filter flag has the given // value. static Flags Filter(const char* filter) { Flags flags; flags.filter = filter; return flags; } // Creates a Flags struct where the gtest_list_tests flag has the // given value. static Flags ListTests(bool list_tests) { Flags flags; flags.list_tests = list_tests; return flags; } // Creates a Flags struct where the gtest_output flag has the given // value. static Flags Output(const char* output) { Flags flags; flags.output = output; return flags; } // Creates a Flags struct where the gtest_brief flag has the given // value. static Flags Brief(bool brief) { Flags flags; flags.brief = brief; return flags; } // Creates a Flags struct where the gtest_print_time flag has the given // value. static Flags PrintTime(bool print_time) { Flags flags; flags.print_time = print_time; return flags; } // Creates a Flags struct where the gtest_random_seed flag has the given // value. static Flags RandomSeed(int32_t random_seed) { Flags flags; flags.random_seed = random_seed; return flags; } // Creates a Flags struct where the gtest_repeat flag has the given // value. static Flags Repeat(int32_t repeat) { Flags flags; flags.repeat = repeat; return flags; } // Creates a Flags struct where the gtest_recreate_environments_when_repeating // flag has the given value. static Flags RecreateEnvironmentsWhenRepeating( bool recreate_environments_when_repeating) { Flags flags; flags.recreate_environments_when_repeating = recreate_environments_when_repeating; return flags; } // Creates a Flags struct where the gtest_shuffle flag has the given // value. static Flags Shuffle(bool shuffle) { Flags flags; flags.shuffle = shuffle; return flags; } // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has // the given value. static Flags StackTraceDepth(int32_t stack_trace_depth) { Flags flags; flags.stack_trace_depth = stack_trace_depth; return flags; } // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has // the given value. static Flags StreamResultTo(const char* stream_result_to) { Flags flags; flags.stream_result_to = stream_result_to; return flags; } // Creates a Flags struct where the gtest_throw_on_failure flag has // the given value. static Flags ThrowOnFailure(bool throw_on_failure) { Flags flags; flags.throw_on_failure = throw_on_failure; return flags; } // These fields store the flag values. bool also_run_disabled_tests; bool break_on_failure; bool catch_exceptions; bool death_test_use_fork; bool fail_fast; const char* filter; bool list_tests; const char* output; bool brief; bool print_time; int32_t random_seed; int32_t repeat; bool recreate_environments_when_repeating; bool shuffle; int32_t stack_trace_depth; const char* stream_result_to; bool throw_on_failure; }; // Fixture for testing ParseGoogleTestFlagsOnly(). class ParseFlagsTest : public Test { protected: // Clears the flags before each test. void SetUp() override { GTEST_FLAG_SET(also_run_disabled_tests, false); GTEST_FLAG_SET(break_on_failure, false); GTEST_FLAG_SET(catch_exceptions, false); GTEST_FLAG_SET(death_test_use_fork, false); GTEST_FLAG_SET(fail_fast, false); GTEST_FLAG_SET(filter, ""); GTEST_FLAG_SET(list_tests, false); GTEST_FLAG_SET(output, ""); GTEST_FLAG_SET(brief, false); GTEST_FLAG_SET(print_time, true); GTEST_FLAG_SET(random_seed, 0); GTEST_FLAG_SET(repeat, 1); GTEST_FLAG_SET(recreate_environments_when_repeating, true); GTEST_FLAG_SET(shuffle, false); GTEST_FLAG_SET(stack_trace_depth, kMaxStackTraceDepth); GTEST_FLAG_SET(stream_result_to, ""); GTEST_FLAG_SET(throw_on_failure, false); } // Asserts that two narrow or wide string arrays are equal. template static void AssertStringArrayEq(int size1, CharType** array1, int size2, CharType** array2) { ASSERT_EQ(size1, size2) << " Array sizes different."; for (int i = 0; i != size1; i++) { ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i; } } // Verifies that the flag values match the expected values. static void CheckFlags(const Flags& expected) { EXPECT_EQ(expected.also_run_disabled_tests, GTEST_FLAG_GET(also_run_disabled_tests)); EXPECT_EQ(expected.break_on_failure, GTEST_FLAG_GET(break_on_failure)); EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG_GET(catch_exceptions)); EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG_GET(death_test_use_fork)); EXPECT_EQ(expected.fail_fast, GTEST_FLAG_GET(fail_fast)); EXPECT_STREQ(expected.filter, GTEST_FLAG_GET(filter).c_str()); EXPECT_EQ(expected.list_tests, GTEST_FLAG_GET(list_tests)); EXPECT_STREQ(expected.output, GTEST_FLAG_GET(output).c_str()); EXPECT_EQ(expected.brief, GTEST_FLAG_GET(brief)); EXPECT_EQ(expected.print_time, GTEST_FLAG_GET(print_time)); EXPECT_EQ(expected.random_seed, GTEST_FLAG_GET(random_seed)); EXPECT_EQ(expected.repeat, GTEST_FLAG_GET(repeat)); EXPECT_EQ(expected.recreate_environments_when_repeating, GTEST_FLAG_GET(recreate_environments_when_repeating)); EXPECT_EQ(expected.shuffle, GTEST_FLAG_GET(shuffle)); EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG_GET(stack_trace_depth)); EXPECT_STREQ(expected.stream_result_to, GTEST_FLAG_GET(stream_result_to).c_str()); EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG_GET(throw_on_failure)); } // Parses a command line (specified by argc1 and argv1), then // verifies that the flag values are expected and that the // recognized flags are removed from the command line. template static void TestParsingFlags(int argc1, const CharType** argv1, int argc2, const CharType** argv2, const Flags& expected, bool should_print_help) { const bool saved_help_flag = ::testing::internal::g_help_flag; ::testing::internal::g_help_flag = false; #if GTEST_HAS_STREAM_REDIRECTION CaptureStdout(); #endif // Parses the command line. internal::ParseGoogleTestFlagsOnly(&argc1, const_cast(argv1)); #if GTEST_HAS_STREAM_REDIRECTION const std::string captured_stdout = GetCapturedStdout(); #endif // Verifies the flag values. CheckFlags(expected); // Verifies that the recognized flags are removed from the command // line. AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2); // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the // help message for the flags it recognizes. EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag); #if GTEST_HAS_STREAM_REDIRECTION const char* const expected_help_fragment = "This program contains tests written using"; if (should_print_help) { EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout); } else { EXPECT_PRED_FORMAT2(IsNotSubstring, expected_help_fragment, captured_stdout); } #endif // GTEST_HAS_STREAM_REDIRECTION ::testing::internal::g_help_flag = saved_help_flag; } // This macro wraps TestParsingFlags s.t. the user doesn't need // to specify the array sizes. #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \ TestParsingFlags(sizeof(argv1) / sizeof(*argv1) - 1, argv1, \ sizeof(argv2) / sizeof(*argv2) - 1, argv2, expected, \ should_print_help) }; // Tests parsing an empty command line. TEST_F(ParseFlagsTest, Empty) { const char* argv[] = {nullptr}; const char* argv2[] = {nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false); } // Tests parsing a command line that has no flag. TEST_F(ParseFlagsTest, NoFlag) { const char* argv[] = {"foo.exe", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false); } // Tests parsing --gtest_fail_fast. TEST_F(ParseFlagsTest, FailFast) { const char* argv[] = {"foo.exe", "--gtest_fail_fast", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::FailFast(true), false); } // Tests parsing an empty --gtest_filter flag. TEST_F(ParseFlagsTest, FilterEmpty) { const char* argv[] = {"foo.exe", "--gtest_filter=", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false); } // Tests parsing a non-empty --gtest_filter flag. TEST_F(ParseFlagsTest, FilterNonEmpty) { const char* argv[] = {"foo.exe", "--gtest_filter=abc", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false); } // Tests parsing --gtest_break_on_failure. TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) { const char* argv[] = {"foo.exe", "--gtest_break_on_failure", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false); } // Tests parsing --gtest_break_on_failure=0. TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) { const char* argv[] = {"foo.exe", "--gtest_break_on_failure=0", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); } // Tests parsing --gtest_break_on_failure=f. TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) { const char* argv[] = {"foo.exe", "--gtest_break_on_failure=f", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); } // Tests parsing --gtest_break_on_failure=F. TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) { const char* argv[] = {"foo.exe", "--gtest_break_on_failure=F", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); } // Tests parsing a --gtest_break_on_failure flag that has a "true" // definition. TEST_F(ParseFlagsTest, BreakOnFailureTrue) { const char* argv[] = {"foo.exe", "--gtest_break_on_failure=1", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false); } // Tests parsing --gtest_catch_exceptions. TEST_F(ParseFlagsTest, CatchExceptions) { const char* argv[] = {"foo.exe", "--gtest_catch_exceptions", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false); } // Tests parsing --gtest_death_test_use_fork. TEST_F(ParseFlagsTest, DeathTestUseFork) { const char* argv[] = {"foo.exe", "--gtest_death_test_use_fork", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false); } // Tests having the same flag twice with different values. The // expected behavior is that the one coming last takes precedence. TEST_F(ParseFlagsTest, DuplicatedFlags) { const char* argv[] = {"foo.exe", "--gtest_filter=a", "--gtest_filter=b", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false); } // Tests having an unrecognized flag on the command line. TEST_F(ParseFlagsTest, UnrecognizedFlag) { const char* argv[] = {"foo.exe", "--gtest_break_on_failure", "bar", // Unrecognized by Google Test. "--gtest_filter=b", nullptr}; const char* argv2[] = {"foo.exe", "bar", nullptr}; Flags flags; flags.break_on_failure = true; flags.filter = "b"; GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false); } // Tests having a --gtest_list_tests flag TEST_F(ParseFlagsTest, ListTestsFlag) { const char* argv[] = {"foo.exe", "--gtest_list_tests", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false); } // Tests having a --gtest_list_tests flag with a "true" value TEST_F(ParseFlagsTest, ListTestsTrue) { const char* argv[] = {"foo.exe", "--gtest_list_tests=1", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false); } // Tests having a --gtest_list_tests flag with a "false" value TEST_F(ParseFlagsTest, ListTestsFalse) { const char* argv[] = {"foo.exe", "--gtest_list_tests=0", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); } // Tests parsing --gtest_list_tests=f. TEST_F(ParseFlagsTest, ListTestsFalse_f) { const char* argv[] = {"foo.exe", "--gtest_list_tests=f", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); } // Tests parsing --gtest_list_tests=F. TEST_F(ParseFlagsTest, ListTestsFalse_F) { const char* argv[] = {"foo.exe", "--gtest_list_tests=F", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); } // Tests parsing --gtest_output=xml TEST_F(ParseFlagsTest, OutputXml) { const char* argv[] = {"foo.exe", "--gtest_output=xml", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false); } // Tests parsing --gtest_output=xml:file TEST_F(ParseFlagsTest, OutputXmlFile) { const char* argv[] = {"foo.exe", "--gtest_output=xml:file", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false); } // Tests parsing --gtest_output=xml:directory/path/ TEST_F(ParseFlagsTest, OutputXmlDirectory) { const char* argv[] = {"foo.exe", "--gtest_output=xml:directory/path/", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:directory/path/"), false); } // Tests having a --gtest_brief flag TEST_F(ParseFlagsTest, BriefFlag) { const char* argv[] = {"foo.exe", "--gtest_brief", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false); } // Tests having a --gtest_brief flag with a "true" value TEST_F(ParseFlagsTest, BriefFlagTrue) { const char* argv[] = {"foo.exe", "--gtest_brief=1", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(true), false); } // Tests having a --gtest_brief flag with a "false" value TEST_F(ParseFlagsTest, BriefFlagFalse) { const char* argv[] = {"foo.exe", "--gtest_brief=0", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Brief(false), false); } // Tests having a --gtest_print_time flag TEST_F(ParseFlagsTest, PrintTimeFlag) { const char* argv[] = {"foo.exe", "--gtest_print_time", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false); } // Tests having a --gtest_print_time flag with a "true" value TEST_F(ParseFlagsTest, PrintTimeTrue) { const char* argv[] = {"foo.exe", "--gtest_print_time=1", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false); } // Tests having a --gtest_print_time flag with a "false" value TEST_F(ParseFlagsTest, PrintTimeFalse) { const char* argv[] = {"foo.exe", "--gtest_print_time=0", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); } // Tests parsing --gtest_print_time=f. TEST_F(ParseFlagsTest, PrintTimeFalse_f) { const char* argv[] = {"foo.exe", "--gtest_print_time=f", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); } // Tests parsing --gtest_print_time=F. TEST_F(ParseFlagsTest, PrintTimeFalse_F) { const char* argv[] = {"foo.exe", "--gtest_print_time=F", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); } // Tests parsing --gtest_random_seed=number TEST_F(ParseFlagsTest, RandomSeed) { const char* argv[] = {"foo.exe", "--gtest_random_seed=1000", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false); } // Tests parsing --gtest_repeat=number TEST_F(ParseFlagsTest, Repeat) { const char* argv[] = {"foo.exe", "--gtest_repeat=1000", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false); } // Tests parsing --gtest_recreate_environments_when_repeating TEST_F(ParseFlagsTest, RecreateEnvironmentsWhenRepeating) { const char* argv[] = { "foo.exe", "--gtest_recreate_environments_when_repeating=0", nullptr, }; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_( argv, argv2, Flags::RecreateEnvironmentsWhenRepeating(false), false); } // Tests having a --gtest_also_run_disabled_tests flag TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) { const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true), false); } // Tests having a --gtest_also_run_disabled_tests flag with a "true" value TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) { const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=1", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true), false); } // Tests having a --gtest_also_run_disabled_tests flag with a "false" value TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) { const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=0", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false), false); } // Tests parsing --gtest_shuffle. TEST_F(ParseFlagsTest, ShuffleWithoutValue) { const char* argv[] = {"foo.exe", "--gtest_shuffle", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false); } // Tests parsing --gtest_shuffle=0. TEST_F(ParseFlagsTest, ShuffleFalse_0) { const char* argv[] = {"foo.exe", "--gtest_shuffle=0", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false); } // Tests parsing a --gtest_shuffle flag that has a "true" definition. TEST_F(ParseFlagsTest, ShuffleTrue) { const char* argv[] = {"foo.exe", "--gtest_shuffle=1", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false); } // Tests parsing --gtest_stack_trace_depth=number. TEST_F(ParseFlagsTest, StackTraceDepth) { const char* argv[] = {"foo.exe", "--gtest_stack_trace_depth=5", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false); } TEST_F(ParseFlagsTest, StreamResultTo) { const char* argv[] = {"foo.exe", "--gtest_stream_result_to=localhost:1234", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StreamResultTo("localhost:1234"), false); } // Tests parsing --gtest_throw_on_failure. TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) { const char* argv[] = {"foo.exe", "--gtest_throw_on_failure", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false); } // Tests parsing --gtest_throw_on_failure=0. TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) { const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=0", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false); } // Tests parsing a --gtest_throw_on_failure flag that has a "true" // definition. TEST_F(ParseFlagsTest, ThrowOnFailureTrue) { const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false); } // Tests parsing a bad --gtest_filter flag. TEST_F(ParseFlagsTest, FilterBad) { const char* argv[] = {"foo.exe", "--gtest_filter", nullptr}; const char* argv2[] = {"foo.exe", "--gtest_filter", nullptr}; #if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST) // Invalid flag arguments are a fatal error when using the Abseil Flags. EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true), testing::ExitedWithCode(1), "ERROR: Missing the value for the flag 'gtest_filter'"); #elif !defined(GTEST_HAS_ABSL) GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true); #else static_cast(argv); static_cast(argv2); #endif } // Tests parsing --gtest_output (invalid). TEST_F(ParseFlagsTest, OutputEmpty) { const char* argv[] = {"foo.exe", "--gtest_output", nullptr}; const char* argv2[] = {"foo.exe", "--gtest_output", nullptr}; #if defined(GTEST_HAS_ABSL) && defined(GTEST_HAS_DEATH_TEST) // Invalid flag arguments are a fatal error when using the Abseil Flags. EXPECT_EXIT(GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true), testing::ExitedWithCode(1), "ERROR: Missing the value for the flag 'gtest_output'"); #elif !defined(GTEST_HAS_ABSL) GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true); #else static_cast(argv); static_cast(argv2); #endif } #ifdef GTEST_HAS_ABSL TEST_F(ParseFlagsTest, AbseilPositionalFlags) { const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", "--", "--other_flag", nullptr}; // When using Abseil flags, it should be possible to pass flags not recognized // using "--" to delimit positional arguments. These flags should be returned // though argv. const char* argv2[] = {"foo.exe", "--other_flag", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false); } #endif #ifdef GTEST_OS_WINDOWS // Tests parsing wide strings. TEST_F(ParseFlagsTest, WideStrings) { const wchar_t* argv[] = {L"foo.exe", L"--gtest_filter=Foo*", L"--gtest_list_tests=1", L"--gtest_break_on_failure", L"--non_gtest_flag", NULL}; const wchar_t* argv2[] = {L"foo.exe", L"--non_gtest_flag", NULL}; Flags expected_flags; expected_flags.break_on_failure = true; expected_flags.filter = "Foo*"; expected_flags.list_tests = true; GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false); } #endif // GTEST_OS_WINDOWS #if GTEST_USE_OWN_FLAGFILE_FLAG_ class FlagfileTest : public ParseFlagsTest { public: void SetUp() override { ParseFlagsTest::SetUp(); testdata_path_.Set(internal::FilePath( testing::TempDir() + internal::GetCurrentExecutableName().string() + "_flagfile_test")); testing::internal::posix::RmDir(testdata_path_.c_str()); EXPECT_TRUE(testdata_path_.CreateFolder()); } void TearDown() override { testing::internal::posix::RmDir(testdata_path_.c_str()); ParseFlagsTest::TearDown(); } internal::FilePath CreateFlagfile(const char* contents) { internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName( testdata_path_, internal::FilePath("unique"), "txt")); FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w"); fprintf(f, "%s", contents); fclose(f); return file_path; } private: internal::FilePath testdata_path_; }; // Tests an empty flagfile. TEST_F(FlagfileTest, Empty) { internal::FilePath flagfile_path(CreateFlagfile("")); std::string flagfile_flag = std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str(); const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false); } // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile. TEST_F(FlagfileTest, FilterNonEmpty) { internal::FilePath flagfile_path( CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc")); std::string flagfile_flag = std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str(); const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false); } // Tests passing several flags via --gtest_flagfile. TEST_F(FlagfileTest, SeveralFlags) { internal::FilePath flagfile_path( CreateFlagfile("--" GTEST_FLAG_PREFIX_ "filter=abc\n" "--" GTEST_FLAG_PREFIX_ "break_on_failure\n" "--" GTEST_FLAG_PREFIX_ "list_tests")); std::string flagfile_flag = std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str(); const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr}; const char* argv2[] = {"foo.exe", nullptr}; Flags expected_flags; expected_flags.break_on_failure = true; expected_flags.filter = "abc"; expected_flags.list_tests = true; GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false); } #endif // GTEST_USE_OWN_FLAGFILE_FLAG_ // Tests current_test_info() in UnitTest. class CurrentTestInfoTest : public Test { protected: // Tests that current_test_info() returns NULL before the first test in // the test case is run. static void SetUpTestSuite() { // There should be no tests running at this point. const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); EXPECT_TRUE(test_info == nullptr) << "There should be no tests running at this point."; } // Tests that current_test_info() returns NULL after the last test in // the test case has run. static void TearDownTestSuite() { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); EXPECT_TRUE(test_info == nullptr) << "There should be no tests running at this point."; } }; // Tests that current_test_info() returns TestInfo for currently running // test by checking the expected test name against the actual one. TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestSuite) { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); ASSERT_TRUE(nullptr != test_info) << "There is a test running so we should have a valid TestInfo."; EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name()) << "Expected the name of the currently running test suite."; EXPECT_STREQ("WorksForFirstTestInATestSuite", test_info->name()) << "Expected the name of the currently running test."; } // Tests that current_test_info() returns TestInfo for currently running // test by checking the expected test name against the actual one. We // use this test to see that the TestInfo object actually changed from // the previous invocation. TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestSuite) { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); ASSERT_TRUE(nullptr != test_info) << "There is a test running so we should have a valid TestInfo."; EXPECT_STREQ("CurrentTestInfoTest", test_info->test_suite_name()) << "Expected the name of the currently running test suite."; EXPECT_STREQ("WorksForSecondTestInATestSuite", test_info->name()) << "Expected the name of the currently running test."; } } // namespace testing // These two lines test that we can define tests in a namespace that // has the name "testing" and is nested in another namespace. namespace my_namespace { namespace testing { // Makes sure that TEST knows to use ::testing::Test instead of // ::my_namespace::testing::Test. class Test {}; // Makes sure that an assertion knows to use ::testing::Message instead of // ::my_namespace::testing::Message. class Message {}; // Makes sure that an assertion knows to use // ::testing::AssertionResult instead of // ::my_namespace::testing::AssertionResult. class AssertionResult {}; // Tests that an assertion that should succeed works as expected. TEST(NestedTestingNamespaceTest, Success) { EXPECT_EQ(1, 1) << "This shouldn't fail."; } // Tests that an assertion that should fail works as expected. TEST(NestedTestingNamespaceTest, Failure) { EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.", "This failure is expected."); } } // namespace testing } // namespace my_namespace // Tests that one can call superclass SetUp and TearDown methods-- // that is, that they are not private. // No tests are based on this fixture; the test "passes" if it compiles // successfully. class ProtectedFixtureMethodsTest : public Test { protected: void SetUp() override { Test::SetUp(); } void TearDown() override { Test::TearDown(); } }; // StreamingAssertionsTest tests the streaming versions of a representative // sample of assertions. TEST(StreamingAssertionsTest, Unconditional) { SUCCEED() << "expected success"; EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(FAIL() << "expected failure", "expected failure"); } #ifdef __BORLANDC__ // Silences warnings: "Condition is always true", "Unreachable code" #pragma option push -w-ccc -w-rch #endif TEST(StreamingAssertionsTest, Truth) { EXPECT_TRUE(true) << "unexpected failure"; ASSERT_TRUE(true) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, Truth2) { EXPECT_FALSE(false) << "unexpected failure"; ASSERT_FALSE(false) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure", "expected failure"); } #ifdef __BORLANDC__ // Restores warnings after previous "#pragma option push" suppressed them #pragma option pop #endif TEST(StreamingAssertionsTest, IntegerEquals) { EXPECT_EQ(1, 1) << "unexpected failure"; ASSERT_EQ(1, 1) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, IntegerLessThan) { EXPECT_LT(1, 2) << "unexpected failure"; ASSERT_LT(1, 2) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, StringsEqual) { EXPECT_STREQ("foo", "foo") << "unexpected failure"; ASSERT_STREQ("foo", "foo") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, StringsNotEqual) { EXPECT_STRNE("foo", "bar") << "unexpected failure"; ASSERT_STRNE("foo", "bar") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) { EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure"; ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) { EXPECT_STRCASENE("foo", "bar") << "unexpected failure"; ASSERT_STRCASENE("foo", "bar") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, FloatingPointEquals) { EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure"; ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure", "expected failure"); } #if GTEST_HAS_EXCEPTIONS TEST(StreamingAssertionsTest, Throw) { EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure"; ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, NoThrow) { EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure"; ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, AnyThrow) { EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure"; ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) << "expected failure", "expected failure"); } #endif // GTEST_HAS_EXCEPTIONS // Tests that Google Test correctly decides whether to use colors in the output. TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) { GTEST_FLAG_SET(color, "yes"); SetEnv("TERM", "xterm"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. SetEnv("TERM", "dumb"); // TERM doesn't support colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. } TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) { SetEnv("TERM", "dumb"); // TERM doesn't support colors. GTEST_FLAG_SET(color, "True"); EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. GTEST_FLAG_SET(color, "t"); EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. GTEST_FLAG_SET(color, "1"); EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. } TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) { GTEST_FLAG_SET(color, "no"); SetEnv("TERM", "xterm"); // TERM supports colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY. SetEnv("TERM", "dumb"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY. } TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) { SetEnv("TERM", "xterm"); // TERM supports colors. GTEST_FLAG_SET(color, "F"); EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. GTEST_FLAG_SET(color, "0"); EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. GTEST_FLAG_SET(color, "unknown"); EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. } TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) { GTEST_FLAG_SET(color, "auto"); SetEnv("TERM", "xterm"); // TERM supports colors. EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. } TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) { GTEST_FLAG_SET(color, "auto"); #if defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_WINDOWS_MINGW) // On Windows, we ignore the TERM variable as it's usually not set. SetEnv("TERM", "dumb"); EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", ""); EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm"); EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. #else // On non-Windows platforms, we rely on TERM to determine if the // terminal supports colors. SetEnv("TERM", "dumb"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "emacs"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "vt100"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm-color"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm-kitty"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm-256color"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "screen"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "screen-256color"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "tmux"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "tmux-256color"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "rxvt-unicode"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "rxvt-unicode-256color"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "linux"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "cygwin"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. #endif // GTEST_OS_WINDOWS } // Verifies that StaticAssertTypeEq works in a namespace scope. static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq(); static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq(); // Verifies that StaticAssertTypeEq works in a class. template class StaticAssertTypeEqTestHelper { public: StaticAssertTypeEqTestHelper() { StaticAssertTypeEq(); } }; TEST(StaticAssertTypeEqTest, WorksInClass) { StaticAssertTypeEqTestHelper(); } // Verifies that StaticAssertTypeEq works inside a function. typedef int IntAlias; TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) { StaticAssertTypeEq(); StaticAssertTypeEq(); } TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) { EXPECT_FALSE(HasNonfatalFailure()); } static void FailFatally() { FAIL(); } TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) { FailFatally(); const bool has_nonfatal_failure = HasNonfatalFailure(); ClearCurrentTestPartResults(); EXPECT_FALSE(has_nonfatal_failure); } TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) { ADD_FAILURE(); const bool has_nonfatal_failure = HasNonfatalFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_nonfatal_failure); } TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) { FailFatally(); ADD_FAILURE(); const bool has_nonfatal_failure = HasNonfatalFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_nonfatal_failure); } // A wrapper for calling HasNonfatalFailure outside of a test body. static bool HasNonfatalFailureHelper() { return testing::Test::HasNonfatalFailure(); } TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) { EXPECT_FALSE(HasNonfatalFailureHelper()); } TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) { ADD_FAILURE(); const bool has_nonfatal_failure = HasNonfatalFailureHelper(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_nonfatal_failure); } TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) { EXPECT_FALSE(HasFailure()); } TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) { FailFatally(); const bool has_failure = HasFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_failure); } TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) { ADD_FAILURE(); const bool has_failure = HasFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_failure); } TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) { FailFatally(); ADD_FAILURE(); const bool has_failure = HasFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_failure); } // A wrapper for calling HasFailure outside of a test body. static bool HasFailureHelper() { return testing::Test::HasFailure(); } TEST(HasFailureTest, WorksOutsideOfTestBody) { EXPECT_FALSE(HasFailureHelper()); } TEST(HasFailureTest, WorksOutsideOfTestBody2) { ADD_FAILURE(); const bool has_failure = HasFailureHelper(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_failure); } class TestListener : public EmptyTestEventListener { public: TestListener() : on_start_counter_(nullptr), is_destroyed_(nullptr) {} TestListener(int* on_start_counter, bool* is_destroyed) : on_start_counter_(on_start_counter), is_destroyed_(is_destroyed) {} ~TestListener() override { if (is_destroyed_) *is_destroyed_ = true; } protected: void OnTestProgramStart(const UnitTest& /*unit_test*/) override { if (on_start_counter_ != nullptr) (*on_start_counter_)++; } private: int* on_start_counter_; bool* is_destroyed_; }; // Tests the constructor. TEST(TestEventListenersTest, ConstructionWorks) { TestEventListeners listeners; EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != nullptr); EXPECT_TRUE(listeners.default_result_printer() == nullptr); EXPECT_TRUE(listeners.default_xml_generator() == nullptr); } // Tests that the TestEventListeners destructor deletes all the listeners it // owns. TEST(TestEventListenersTest, DestructionWorks) { bool default_result_printer_is_destroyed = false; bool default_xml_printer_is_destroyed = false; bool extra_listener_is_destroyed = false; TestListener* default_result_printer = new TestListener(nullptr, &default_result_printer_is_destroyed); TestListener* default_xml_printer = new TestListener(nullptr, &default_xml_printer_is_destroyed); TestListener* extra_listener = new TestListener(nullptr, &extra_listener_is_destroyed); { TestEventListeners listeners; TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, default_result_printer); TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, default_xml_printer); listeners.Append(extra_listener); } EXPECT_TRUE(default_result_printer_is_destroyed); EXPECT_TRUE(default_xml_printer_is_destroyed); EXPECT_TRUE(extra_listener_is_destroyed); } // Tests that a listener Append'ed to a TestEventListeners list starts // receiving events. TEST(TestEventListenersTest, Append) { int on_start_counter = 0; bool is_destroyed = false; TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); { TestEventListeners listeners; listeners.Append(listener); TestEventListenersAccessor::GetRepeater(&listeners) ->OnTestProgramStart(*UnitTest::GetInstance()); EXPECT_EQ(1, on_start_counter); } EXPECT_TRUE(is_destroyed); } // Tests that listeners receive events in the order they were appended to // the list, except for *End requests, which must be received in the reverse // order. class SequenceTestingListener : public EmptyTestEventListener { public: SequenceTestingListener(std::vector* vector, const char* id) : vector_(vector), id_(id) {} protected: void OnTestProgramStart(const UnitTest& /*unit_test*/) override { vector_->push_back(GetEventDescription("OnTestProgramStart")); } void OnTestProgramEnd(const UnitTest& /*unit_test*/) override { vector_->push_back(GetEventDescription("OnTestProgramEnd")); } void OnTestIterationStart(const UnitTest& /*unit_test*/, int /*iteration*/) override { vector_->push_back(GetEventDescription("OnTestIterationStart")); } void OnTestIterationEnd(const UnitTest& /*unit_test*/, int /*iteration*/) override { vector_->push_back(GetEventDescription("OnTestIterationEnd")); } private: std::string GetEventDescription(const char* method) { Message message; message << id_ << "." << method; return message.GetString(); } std::vector* vector_; const char* const id_; SequenceTestingListener(const SequenceTestingListener&) = delete; SequenceTestingListener& operator=(const SequenceTestingListener&) = delete; }; TEST(EventListenerTest, AppendKeepsOrder) { std::vector vec; TestEventListeners listeners; listeners.Append(new SequenceTestingListener(&vec, "1st")); listeners.Append(new SequenceTestingListener(&vec, "2nd")); listeners.Append(new SequenceTestingListener(&vec, "3rd")); TestEventListenersAccessor::GetRepeater(&listeners) ->OnTestProgramStart(*UnitTest::GetInstance()); ASSERT_EQ(3U, vec.size()); EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str()); EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str()); EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str()); vec.clear(); TestEventListenersAccessor::GetRepeater(&listeners) ->OnTestProgramEnd(*UnitTest::GetInstance()); ASSERT_EQ(3U, vec.size()); EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str()); EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str()); EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str()); vec.clear(); TestEventListenersAccessor::GetRepeater(&listeners) ->OnTestIterationStart(*UnitTest::GetInstance(), 0); ASSERT_EQ(3U, vec.size()); EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str()); EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str()); EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str()); vec.clear(); TestEventListenersAccessor::GetRepeater(&listeners) ->OnTestIterationEnd(*UnitTest::GetInstance(), 0); ASSERT_EQ(3U, vec.size()); EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str()); EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str()); EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str()); } // Tests that a listener removed from a TestEventListeners list stops receiving // events and is not deleted when the list is destroyed. TEST(TestEventListenersTest, Release) { int on_start_counter = 0; bool is_destroyed = false; // Although Append passes the ownership of this object to the list, // the following calls release it, and we need to delete it before the // test ends. TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); { TestEventListeners listeners; listeners.Append(listener); EXPECT_EQ(listener, listeners.Release(listener)); TestEventListenersAccessor::GetRepeater(&listeners) ->OnTestProgramStart(*UnitTest::GetInstance()); EXPECT_TRUE(listeners.Release(listener) == nullptr); } EXPECT_EQ(0, on_start_counter); EXPECT_FALSE(is_destroyed); delete listener; } // Tests that no events are forwarded when event forwarding is disabled. TEST(EventListenerTest, SuppressEventForwarding) { int on_start_counter = 0; TestListener* listener = new TestListener(&on_start_counter, nullptr); TestEventListeners listeners; listeners.Append(listener); ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners)); TestEventListenersAccessor::SuppressEventForwarding(&listeners); ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners)); TestEventListenersAccessor::GetRepeater(&listeners) ->OnTestProgramStart(*UnitTest::GetInstance()); EXPECT_EQ(0, on_start_counter); } // Tests that events generated by Google Test are not forwarded in // death test subprocesses. TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprocesses) { EXPECT_DEATH_IF_SUPPORTED( { GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled( *GetUnitTestImpl()->listeners())) << "expected failure"; }, "expected failure"); } // Tests that a listener installed via SetDefaultResultPrinter() starts // receiving events and is returned via default_result_printer() and that // the previous default_result_printer is removed from the list and deleted. TEST(EventListenerTest, default_result_printer) { int on_start_counter = 0; bool is_destroyed = false; TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); TestEventListeners listeners; TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener); EXPECT_EQ(listener, listeners.default_result_printer()); TestEventListenersAccessor::GetRepeater(&listeners) ->OnTestProgramStart(*UnitTest::GetInstance()); EXPECT_EQ(1, on_start_counter); // Replacing default_result_printer with something else should remove it // from the list and destroy it. TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, nullptr); EXPECT_TRUE(listeners.default_result_printer() == nullptr); EXPECT_TRUE(is_destroyed); // After broadcasting an event the counter is still the same, indicating // the listener is not in the list anymore. TestEventListenersAccessor::GetRepeater(&listeners) ->OnTestProgramStart(*UnitTest::GetInstance()); EXPECT_EQ(1, on_start_counter); } // Tests that the default_result_printer listener stops receiving events // when removed via Release and that is not owned by the list anymore. TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) { int on_start_counter = 0; bool is_destroyed = false; // Although Append passes the ownership of this object to the list, // the following calls release it, and we need to delete it before the // test ends. TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); { TestEventListeners listeners; TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener); EXPECT_EQ(listener, listeners.Release(listener)); EXPECT_TRUE(listeners.default_result_printer() == nullptr); EXPECT_FALSE(is_destroyed); // Broadcasting events now should not affect default_result_printer. TestEventListenersAccessor::GetRepeater(&listeners) ->OnTestProgramStart(*UnitTest::GetInstance()); EXPECT_EQ(0, on_start_counter); } // Destroying the list should not affect the listener now, too. EXPECT_FALSE(is_destroyed); delete listener; } // Tests that a listener installed via SetDefaultXmlGenerator() starts // receiving events and is returned via default_xml_generator() and that // the previous default_xml_generator is removed from the list and deleted. TEST(EventListenerTest, default_xml_generator) { int on_start_counter = 0; bool is_destroyed = false; TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); TestEventListeners listeners; TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener); EXPECT_EQ(listener, listeners.default_xml_generator()); TestEventListenersAccessor::GetRepeater(&listeners) ->OnTestProgramStart(*UnitTest::GetInstance()); EXPECT_EQ(1, on_start_counter); // Replacing default_xml_generator with something else should remove it // from the list and destroy it. TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, nullptr); EXPECT_TRUE(listeners.default_xml_generator() == nullptr); EXPECT_TRUE(is_destroyed); // After broadcasting an event the counter is still the same, indicating // the listener is not in the list anymore. TestEventListenersAccessor::GetRepeater(&listeners) ->OnTestProgramStart(*UnitTest::GetInstance()); EXPECT_EQ(1, on_start_counter); } // Tests that the default_xml_generator listener stops receiving events // when removed via Release and that is not owned by the list anymore. TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) { int on_start_counter = 0; bool is_destroyed = false; // Although Append passes the ownership of this object to the list, // the following calls release it, and we need to delete it before the // test ends. TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); { TestEventListeners listeners; TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener); EXPECT_EQ(listener, listeners.Release(listener)); EXPECT_TRUE(listeners.default_xml_generator() == nullptr); EXPECT_FALSE(is_destroyed); // Broadcasting events now should not affect default_xml_generator. TestEventListenersAccessor::GetRepeater(&listeners) ->OnTestProgramStart(*UnitTest::GetInstance()); EXPECT_EQ(0, on_start_counter); } // Destroying the list should not affect the listener now, too. EXPECT_FALSE(is_destroyed); delete listener; } // Tests to ensure that the alternative, verbose spellings of // some of the macros work. We don't test them thoroughly as that // would be quite involved. Since their implementations are // straightforward, and they are rarely used, we'll just rely on the // users to tell us when they are broken. GTEST_TEST(AlternativeNameTest, Works) { // GTEST_TEST is the same as TEST. GTEST_SUCCEED() << "OK"; // GTEST_SUCCEED is the same as SUCCEED. // GTEST_FAIL is the same as FAIL. EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure", "An expected failure"); // GTEST_ASSERT_XY is the same as ASSERT_XY. GTEST_ASSERT_EQ(0, 0); EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure", "An expected failure"); EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure", "An expected failure"); GTEST_ASSERT_NE(0, 1); GTEST_ASSERT_NE(1, 0); EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure", "An expected failure"); GTEST_ASSERT_LE(0, 0); GTEST_ASSERT_LE(0, 1); EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure", "An expected failure"); GTEST_ASSERT_LT(0, 1); EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure", "An expected failure"); EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure", "An expected failure"); GTEST_ASSERT_GE(0, 0); GTEST_ASSERT_GE(1, 0); EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure", "An expected failure"); GTEST_ASSERT_GT(1, 0); EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure", "An expected failure"); EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure", "An expected failure"); } // Tests for internal utilities necessary for implementation of the universal // printing. class ConversionHelperBase {}; class ConversionHelperDerived : public ConversionHelperBase {}; struct HasDebugStringMethods { std::string DebugString() const { return ""; } std::string ShortDebugString() const { return ""; } }; struct InheritsDebugStringMethods : public HasDebugStringMethods {}; struct WrongTypeDebugStringMethod { std::string DebugString() const { return ""; } int ShortDebugString() const { return 1; } }; struct NotConstDebugStringMethod { std::string DebugString() { return ""; } std::string ShortDebugString() const { return ""; } }; struct MissingDebugStringMethod { std::string DebugString() { return ""; } }; struct IncompleteType; // Tests that HasDebugStringAndShortDebugString::value is a compile-time // constant. TEST(HasDebugStringAndShortDebugStringTest, ValueIsCompileTimeConstant) { static_assert(HasDebugStringAndShortDebugString::value, "const_true"); static_assert( HasDebugStringAndShortDebugString::value, "const_true"); static_assert(HasDebugStringAndShortDebugString< const InheritsDebugStringMethods>::value, "const_true"); static_assert( !HasDebugStringAndShortDebugString::value, "const_false"); static_assert( !HasDebugStringAndShortDebugString::value, "const_false"); static_assert( !HasDebugStringAndShortDebugString::value, "const_false"); static_assert(!HasDebugStringAndShortDebugString::value, "const_false"); static_assert(!HasDebugStringAndShortDebugString::value, "const_false"); } // Tests that HasDebugStringAndShortDebugString::value is true when T has // needed methods. TEST(HasDebugStringAndShortDebugStringTest, ValueIsTrueWhenTypeHasDebugStringAndShortDebugString) { EXPECT_TRUE( HasDebugStringAndShortDebugString::value); } // Tests that HasDebugStringAndShortDebugString::value is false when T // doesn't have needed methods. TEST(HasDebugStringAndShortDebugStringTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) { EXPECT_FALSE(HasDebugStringAndShortDebugString::value); EXPECT_FALSE( HasDebugStringAndShortDebugString::value); } // Tests GTEST_REMOVE_REFERENCE_AND_CONST_. template void TestGTestRemoveReferenceAndConst() { static_assert(std::is_same::value, "GTEST_REMOVE_REFERENCE_AND_CONST_ failed."); } TEST(RemoveReferenceToConstTest, Works) { TestGTestRemoveReferenceAndConst(); TestGTestRemoveReferenceAndConst(); TestGTestRemoveReferenceAndConst(); TestGTestRemoveReferenceAndConst(); TestGTestRemoveReferenceAndConst(); } // Tests GTEST_REFERENCE_TO_CONST_. template void TestGTestReferenceToConst() { static_assert(std::is_same::value, "GTEST_REFERENCE_TO_CONST_ failed."); } TEST(GTestReferenceToConstTest, Works) { TestGTestReferenceToConst(); TestGTestReferenceToConst(); TestGTestReferenceToConst(); TestGTestReferenceToConst(); } // Tests IsContainerTest. class NonContainer {}; TEST(IsContainerTestTest, WorksForNonContainer) { EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest(0))); EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest(0))); EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest(0))); } TEST(IsContainerTestTest, WorksForContainer) { EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest>(0))); EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest>(0))); } struct ConstOnlyContainerWithPointerIterator { using const_iterator = int*; const_iterator begin() const; const_iterator end() const; }; struct ConstOnlyContainerWithClassIterator { struct const_iterator { const int& operator*() const; const_iterator& operator++(/* pre-increment */); }; const_iterator begin() const; const_iterator end() const; }; TEST(IsContainerTestTest, ConstOnlyContainer) { EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest(0))); EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest(0))); } // Tests IsHashTable. struct AHashTable { typedef void hasher; }; struct NotReallyAHashTable { typedef void hasher; typedef void reverse_iterator; }; TEST(IsHashTable, Basic) { EXPECT_TRUE(testing::internal::IsHashTable::value); EXPECT_FALSE(testing::internal::IsHashTable::value); EXPECT_FALSE(testing::internal::IsHashTable>::value); EXPECT_TRUE(testing::internal::IsHashTable>::value); } // Tests ArrayEq(). TEST(ArrayEqTest, WorksForDegeneratedArrays) { EXPECT_TRUE(ArrayEq(5, 5L)); EXPECT_FALSE(ArrayEq('a', 0)); } TEST(ArrayEqTest, WorksForOneDimensionalArrays) { // Note that a and b are distinct but compatible types. const int a[] = {0, 1}; long b[] = {0, 1}; EXPECT_TRUE(ArrayEq(a, b)); EXPECT_TRUE(ArrayEq(a, 2, b)); b[0] = 2; EXPECT_FALSE(ArrayEq(a, b)); EXPECT_FALSE(ArrayEq(a, 1, b)); } TEST(ArrayEqTest, WorksForTwoDimensionalArrays) { const char a[][3] = {"hi", "lo"}; const char b[][3] = {"hi", "lo"}; const char c[][3] = {"hi", "li"}; EXPECT_TRUE(ArrayEq(a, b)); EXPECT_TRUE(ArrayEq(a, 2, b)); EXPECT_FALSE(ArrayEq(a, c)); EXPECT_FALSE(ArrayEq(a, 2, c)); } // Tests ArrayAwareFind(). TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) { const char a[] = "hello"; EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o')); EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x')); } TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) { int a[][2] = {{0, 1}, {2, 3}, {4, 5}}; const int b[2] = {2, 3}; EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b)); const int c[2] = {6, 7}; EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c)); } // Tests CopyArray(). TEST(CopyArrayTest, WorksForDegeneratedArrays) { int n = 0; CopyArray('a', &n); EXPECT_EQ('a', n); } TEST(CopyArrayTest, WorksForOneDimensionalArrays) { const char a[3] = "hi"; int b[3]; #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions. CopyArray(a, &b); EXPECT_TRUE(ArrayEq(a, b)); #endif int c[3]; CopyArray(a, 3, c); EXPECT_TRUE(ArrayEq(a, c)); } TEST(CopyArrayTest, WorksForTwoDimensionalArrays) { const int a[2][3] = {{0, 1, 2}, {3, 4, 5}}; int b[2][3]; #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions. CopyArray(a, &b); EXPECT_TRUE(ArrayEq(a, b)); #endif int c[2][3]; CopyArray(a, 2, c); EXPECT_TRUE(ArrayEq(a, c)); } // Tests NativeArray. TEST(NativeArrayTest, ConstructorFromArrayWorks) { const int a[3] = {0, 1, 2}; NativeArray na(a, 3, RelationToSourceReference()); EXPECT_EQ(3U, na.size()); EXPECT_EQ(a, na.begin()); } TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) { typedef int Array[2]; Array* a = new Array[1]; (*a)[0] = 0; (*a)[1] = 1; NativeArray na(*a, 2, RelationToSourceCopy()); EXPECT_NE(*a, na.begin()); delete[] a; EXPECT_EQ(0, na.begin()[0]); EXPECT_EQ(1, na.begin()[1]); // We rely on the heap checker to verify that na deletes the copy of // array. } TEST(NativeArrayTest, TypeMembersAreCorrect) { StaticAssertTypeEq::value_type>(); StaticAssertTypeEq::value_type>(); StaticAssertTypeEq::const_iterator>(); StaticAssertTypeEq::const_iterator>(); } TEST(NativeArrayTest, MethodsWork) { const int a[3] = {0, 1, 2}; NativeArray na(a, 3, RelationToSourceCopy()); ASSERT_EQ(3U, na.size()); EXPECT_EQ(3, na.end() - na.begin()); NativeArray::const_iterator it = na.begin(); EXPECT_EQ(0, *it); ++it; EXPECT_EQ(1, *it); it++; EXPECT_EQ(2, *it); ++it; EXPECT_EQ(na.end(), it); EXPECT_TRUE(na == na); NativeArray na2(a, 3, RelationToSourceReference()); EXPECT_TRUE(na == na2); const int b1[3] = {0, 1, 1}; const int b2[4] = {0, 1, 2, 3}; EXPECT_FALSE(na == NativeArray(b1, 3, RelationToSourceReference())); EXPECT_FALSE(na == NativeArray(b2, 4, RelationToSourceCopy())); } TEST(NativeArrayTest, WorksForTwoDimensionalArray) { const char a[2][3] = {"hi", "lo"}; NativeArray na(a, 2, RelationToSourceReference()); ASSERT_EQ(2U, na.size()); EXPECT_EQ(a, na.begin()); } // IndexSequence TEST(IndexSequence, MakeIndexSequence) { using testing::internal::IndexSequence; using testing::internal::MakeIndexSequence; EXPECT_TRUE( (std::is_same, MakeIndexSequence<0>::type>::value)); EXPECT_TRUE( (std::is_same, MakeIndexSequence<1>::type>::value)); EXPECT_TRUE( (std::is_same, MakeIndexSequence<2>::type>::value)); EXPECT_TRUE(( std::is_same, MakeIndexSequence<3>::type>::value)); EXPECT_TRUE( (std::is_base_of, MakeIndexSequence<3>>::value)); } // ElemFromList TEST(ElemFromList, Basic) { using testing::internal::ElemFromList; EXPECT_TRUE( (std::is_same::type>::value)); EXPECT_TRUE( (std::is_same::type>::value)); EXPECT_TRUE( (std::is_same::type>::value)); EXPECT_TRUE(( std::is_same::type>::value)); } // FlatTuple TEST(FlatTuple, Basic) { using testing::internal::FlatTuple; FlatTuple tuple = {}; EXPECT_EQ(0, tuple.Get<0>()); EXPECT_EQ(0.0, tuple.Get<1>()); EXPECT_EQ(nullptr, tuple.Get<2>()); tuple = FlatTuple( testing::internal::FlatTupleConstructTag{}, 7, 3.2, "Foo"); EXPECT_EQ(7, tuple.Get<0>()); EXPECT_EQ(3.2, tuple.Get<1>()); EXPECT_EQ(std::string("Foo"), tuple.Get<2>()); tuple.Get<1>() = 5.1; EXPECT_EQ(5.1, tuple.Get<1>()); } namespace { std::string AddIntToString(int i, const std::string& s) { return s + std::to_string(i); } } // namespace TEST(FlatTuple, Apply) { using testing::internal::FlatTuple; FlatTuple tuple{testing::internal::FlatTupleConstructTag{}, 5, "Hello"}; // Lambda. EXPECT_TRUE(tuple.Apply([](int i, const std::string& s) -> bool { return i == static_cast(s.size()); })); // Function. EXPECT_EQ(tuple.Apply(AddIntToString), "Hello5"); // Mutating operations. tuple.Apply([](int& i, std::string& s) { ++i; s += s; }); EXPECT_EQ(tuple.Get<0>(), 6); EXPECT_EQ(tuple.Get<1>(), "HelloHello"); } struct ConstructionCounting { ConstructionCounting() { ++default_ctor_calls; } ~ConstructionCounting() { ++dtor_calls; } ConstructionCounting(const ConstructionCounting&) { ++copy_ctor_calls; } ConstructionCounting(ConstructionCounting&&) noexcept { ++move_ctor_calls; } ConstructionCounting& operator=(const ConstructionCounting&) { ++copy_assignment_calls; return *this; } ConstructionCounting& operator=(ConstructionCounting&&) noexcept { ++move_assignment_calls; return *this; } static void Reset() { default_ctor_calls = 0; dtor_calls = 0; copy_ctor_calls = 0; move_ctor_calls = 0; copy_assignment_calls = 0; move_assignment_calls = 0; } static int default_ctor_calls; static int dtor_calls; static int copy_ctor_calls; static int move_ctor_calls; static int copy_assignment_calls; static int move_assignment_calls; }; int ConstructionCounting::default_ctor_calls = 0; int ConstructionCounting::dtor_calls = 0; int ConstructionCounting::copy_ctor_calls = 0; int ConstructionCounting::move_ctor_calls = 0; int ConstructionCounting::copy_assignment_calls = 0; int ConstructionCounting::move_assignment_calls = 0; TEST(FlatTuple, ConstructorCalls) { using testing::internal::FlatTuple; // Default construction. ConstructionCounting::Reset(); { FlatTuple tuple; } EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1); EXPECT_EQ(ConstructionCounting::dtor_calls, 1); EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0); EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0); EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0); EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0); // Copy construction. ConstructionCounting::Reset(); { ConstructionCounting elem; FlatTuple tuple{ testing::internal::FlatTupleConstructTag{}, elem}; } EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1); EXPECT_EQ(ConstructionCounting::dtor_calls, 2); EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 1); EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0); EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0); EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0); // Move construction. ConstructionCounting::Reset(); { FlatTuple tuple{ testing::internal::FlatTupleConstructTag{}, ConstructionCounting{}}; } EXPECT_EQ(ConstructionCounting::default_ctor_calls, 1); EXPECT_EQ(ConstructionCounting::dtor_calls, 2); EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0); EXPECT_EQ(ConstructionCounting::move_ctor_calls, 1); EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0); EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0); // Copy assignment. // TODO(ofats): it should be testing assignment operator of FlatTuple, not its // elements ConstructionCounting::Reset(); { FlatTuple tuple; ConstructionCounting elem; tuple.Get<0>() = elem; } EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2); EXPECT_EQ(ConstructionCounting::dtor_calls, 2); EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0); EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0); EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 1); EXPECT_EQ(ConstructionCounting::move_assignment_calls, 0); // Move assignment. // TODO(ofats): it should be testing assignment operator of FlatTuple, not its // elements ConstructionCounting::Reset(); { FlatTuple tuple; tuple.Get<0>() = ConstructionCounting{}; } EXPECT_EQ(ConstructionCounting::default_ctor_calls, 2); EXPECT_EQ(ConstructionCounting::dtor_calls, 2); EXPECT_EQ(ConstructionCounting::copy_ctor_calls, 0); EXPECT_EQ(ConstructionCounting::move_ctor_calls, 0); EXPECT_EQ(ConstructionCounting::copy_assignment_calls, 0); EXPECT_EQ(ConstructionCounting::move_assignment_calls, 1); ConstructionCounting::Reset(); } TEST(FlatTuple, ManyTypes) { using testing::internal::FlatTuple; // Instantiate FlatTuple with 257 ints. // Tests show that we can do it with thousands of elements, but very long // compile times makes it unusuitable for this test. #define GTEST_FLAT_TUPLE_INT8 int, int, int, int, int, int, int, int, #define GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT8 GTEST_FLAT_TUPLE_INT8 #define GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT16 #define GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT32 #define GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT64 #define GTEST_FLAT_TUPLE_INT256 GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT128 // Let's make sure that we can have a very long list of types without blowing // up the template instantiation depth. FlatTuple tuple; tuple.Get<0>() = 7; tuple.Get<99>() = 17; tuple.Get<256>() = 1000; EXPECT_EQ(7, tuple.Get<0>()); EXPECT_EQ(17, tuple.Get<99>()); EXPECT_EQ(1000, tuple.Get<256>()); } // Tests SkipPrefix(). TEST(SkipPrefixTest, SkipsWhenPrefixMatches) { const char* const str = "hello"; const char* p = str; EXPECT_TRUE(SkipPrefix("", &p)); EXPECT_EQ(str, p); p = str; EXPECT_TRUE(SkipPrefix("hell", &p)); EXPECT_EQ(str + 4, p); } TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) { const char* const str = "world"; const char* p = str; EXPECT_FALSE(SkipPrefix("W", &p)); EXPECT_EQ(str, p); p = str; EXPECT_FALSE(SkipPrefix("world!", &p)); EXPECT_EQ(str, p); } // Tests ad_hoc_test_result(). TEST(AdHocTestResultTest, AdHocTestResultForUnitTestDoesNotShowFailure) { const testing::TestResult& test_result = testing::UnitTest::GetInstance()->ad_hoc_test_result(); EXPECT_FALSE(test_result.Failed()); } class DynamicUnitTestFixture : public testing::Test {}; class DynamicTest : public DynamicUnitTestFixture { void TestBody() override { EXPECT_TRUE(true); } }; auto* dynamic_test = testing::RegisterTest( "DynamicUnitTestFixture", "DynamicTest", "TYPE", "VALUE", __FILE__, __LINE__, []() -> DynamicUnitTestFixture* { return new DynamicTest; }); TEST(RegisterTest, WasRegistered) { const auto& unittest = testing::UnitTest::GetInstance(); for (int i = 0; i < unittest->total_test_suite_count(); ++i) { auto* tests = unittest->GetTestSuite(i); if (tests->name() != std::string("DynamicUnitTestFixture")) continue; for (int j = 0; j < tests->total_test_count(); ++j) { if (tests->GetTestInfo(j)->name() != std::string("DynamicTest")) continue; // Found it. EXPECT_STREQ(tests->GetTestInfo(j)->value_param(), "VALUE"); EXPECT_STREQ(tests->GetTestInfo(j)->type_param(), "TYPE"); return; } } FAIL() << "Didn't find the test!"; } // Test that the pattern globbing algorithm is linear. If not, this test should // time out. TEST(PatternGlobbingTest, MatchesFilterLinearRuntime) { std::string name(100, 'a'); // Construct the string (a^100)b name.push_back('b'); std::string pattern; // Construct the string ((a*)^100)b for (int i = 0; i < 100; ++i) { pattern.append("a*"); } pattern.push_back('b'); EXPECT_TRUE( testing::internal::UnitTestOptions::MatchesFilter(name, pattern.c_str())); } TEST(PatternGlobbingTest, MatchesFilterWithMultiplePatterns) { const std::string name = "aaaa"; EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*")); EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "a*:")); EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab")); EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:")); EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter(name, "ab:a*")); } TEST(PatternGlobbingTest, MatchesFilterEdgeCases) { EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("", "*a")); EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", "*")); EXPECT_FALSE(testing::internal::UnitTestOptions::MatchesFilter("a", "")); EXPECT_TRUE(testing::internal::UnitTestOptions::MatchesFilter("", "")); }