summaryrefslogtreecommitdiffstats
path: root/googlemock/include/gmock/gmock-actions.h
blob: a2784f63ef0b1f18a928db3744e92e0b648fc16a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)

// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used actions.

#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_

#ifndef _WIN32_WCE
# include <errno.h>
#endif

#include <algorithm>
#include <string>

#include "gmock/internal/gmock-internal-utils.h"
#include "gmock/internal/gmock-port.h"

#if GTEST_LANG_CXX11  // Defined by gtest-port.h via gmock-port.h.
#include <functional>
#include <type_traits>
#endif  // GTEST_LANG_CXX11

namespace testing {

// To implement an action Foo, define:
//   1. a class FooAction that implements the ActionInterface interface, and
//   2. a factory function that creates an Action object from a
//      const FooAction*.
//
// The two-level delegation design follows that of Matcher, providing
// consistency for extension developers.  It also eases ownership
// management as Action objects can now be copied like plain values.

namespace internal {

template <typename F1, typename F2>
class ActionAdaptor;

// BuiltInDefaultValueGetter<T, true>::Get() returns a
// default-constructed T value.  BuiltInDefaultValueGetter<T,
// false>::Get() crashes with an error.
//
// This primary template is used when kDefaultConstructible is true.
template <typename T, bool kDefaultConstructible>
struct BuiltInDefaultValueGetter {
  static T Get() { return T(); }
};
template <typename T>
struct BuiltInDefaultValueGetter<T, false> {
  static T Get() {
    Assert(false, __FILE__, __LINE__,
           "Default action undefined for the function return type.");
    return internal::Invalid<T>();
    // The above statement will never be reached, but is required in
    // order for this function to compile.
  }
};

// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
// for type T, which is NULL when T is a raw pointer type, 0 when T is
// a numeric type, false when T is bool, or "" when T is string or
// std::string.  In addition, in C++11 and above, it turns a
// default-constructed T value if T is default constructible.  For any
// other type T, the built-in default T value is undefined, and the
// function will abort the process.
template <typename T>
class BuiltInDefaultValue {
 public:
#if GTEST_LANG_CXX11
  // This function returns true iff type T has a built-in default value.
  static bool Exists() {
    return ::std::is_default_constructible<T>::value;
  }

  static T Get() {
    return BuiltInDefaultValueGetter<
        T, ::std::is_default_constructible<T>::value>::Get();
  }

#else  // GTEST_LANG_CXX11
  // This function returns true iff type T has a built-in default value.
  static bool Exists() {
    return false;
  }

  static T Get() {
    return BuiltInDefaultValueGetter<T, false>::Get();
  }

#endif  // GTEST_LANG_CXX11
};

// This partial specialization says that we use the same built-in
// default value for T and const T.
template <typename T>
class BuiltInDefaultValue<const T> {
 public:
  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
  static T Get() { return BuiltInDefaultValue<T>::Get(); }
};

// This partial specialization defines the default values for pointer
// types.
template <typename T>
class BuiltInDefaultValue<T*> {
 public:
  static bool Exists() { return true; }
  static T* Get() { return NULL; }
};

// The following specializations define the default values for
// specific types we care about.
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
  template <> \
  class BuiltInDefaultValue<type> { \
   public: \
    static bool Exists() { return true; } \
    static type Get() { return value; } \
  }

GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
#if GTEST_HAS_GLOBAL_STRING
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
#endif  // GTEST_HAS_GLOBAL_STRING
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');

// There's no need for a default action for signed wchar_t, as that
// type is the same as wchar_t for gcc, and invalid for MSVC.
//
// There's also no need for a default action for unsigned wchar_t, as
// that type is the same as unsigned int for gcc, and invalid for
// MSVC.
#if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
#endif

GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);

#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_

}  // namespace internal

// When an unexpected function call is encountered, Google Mock will
// let it return a default value if the user has specified one for its
// return type, or if the return type has a built-in default value;
// otherwise Google Mock won't know what value to return and will have
// to abort the process.
//
// The DefaultValue<T> class allows a user to specify the
// default value for a type T that is both copyable and publicly
// destructible (i.e. anything that can be used as a function return
// type).  The usage is:
//
//   // Sets the default value for type T to be foo.
//   DefaultValue<T>::Set(foo);
template <typename T>
class DefaultValue {
 public:
  // Sets the default value for type T; requires T to be
  // copy-constructable and have a public destructor.
  static void Set(T x) {
    delete producer_;
    producer_ = new FixedValueProducer(x);
  }

  // Provides a factory function to be called to generate the default value.
  // This method can be used even if T is only move-constructible, but it is not
  // limited to that case.
  typedef T (*FactoryFunction)();
  static void SetFactory(FactoryFunction factory) {
    delete producer_;
    producer_ = new FactoryValueProducer(factory);
  }

  // Unsets the default value for type T.
  static void Clear() {
    delete producer_;
    producer_ = NULL;
  }

  // Returns true iff the user has set the default value for type T.
  static bool IsSet() { return producer_ != NULL; }

  // Returns true if T has a default return value set by the user or there
  // exists a built-in default value.
  static bool Exists() {
    return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
  }

  // Returns the default value for type T if the user has set one;
  // otherwise returns the built-in default value. Requires that Exists()
  // is true, which ensures that the return value is well-defined.
  static T Get() {
    return producer_ == NULL ?
        internal::BuiltInDefaultValue<T>::Get() : producer_->Produce();
  }

 private:
  class ValueProducer {
   public:
    virtual ~ValueProducer() {}
    virtual T Produce() = 0;
  };

  class FixedValueProducer : public ValueProducer {
   public:
    explicit FixedValueProducer(T value) : value_(value) {}
    virtual T Produce() { return value_; }

   private:
    const T value_;
    GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
  };

  class FactoryValueProducer : public ValueProducer {
   public:
    explicit FactoryValueProducer(FactoryFunction factory)
        : factory_(factory) {}
    virtual T Produce() { return factory_(); }

   private:
    const FactoryFunction factory_;
    GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
  };

  static ValueProducer* producer_;
};

// This partial specialization allows a user to set default values for
// reference types.
template <typename T>
class DefaultValue<T&> {
 public:
  // Sets the default value for type T&.
  static void Set(T& x) {  // NOLINT
    address_ = &x;
  }

  // Unsets the default value for type T&.
  static void Clear() {
    address_ = NULL;
  }

  // Returns true iff the user has set the default value for type T&.
  static bool IsSet() { return address_ != NULL; }

  // Returns true if T has a default return value set by the user or there
  // exists a built-in default value.
  static bool Exists() {
    return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
  }

  // Returns the default value for type T& if the user has set one;
  // otherwise returns the built-in default value if there is one;
  // otherwise aborts the process.
  static T& Get() {
    return address_ == NULL ?
        internal::BuiltInDefaultValue<T&>::Get() : *address_;
  }

 private:
  static T* address_;
};

// This specialization allows DefaultValue<void>::Get() to
// compile.
template <>
class DefaultValue<void> {
 public:
  static bool Exists() { return true; }
  static void Get() {}
};

// Points to the user-set default value for type T.
template <typename T>
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = NULL;

// Points to the user-set default value for type T&.
template <typename T>
T* DefaultValue<T&>::address_ = NULL;

// Implement this interface to define an action for function type F.
template <typename F>
class ActionInterface {
 public:
  typedef typename internal::Function<F>::Result Result;
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

  ActionInterface() {}
  virtual ~ActionInterface() {}

  // Performs the action.  This method is not const, as in general an
  // action can have side effects and be stateful.  For example, a
  // get-the-next-element-from-the-collection action will need to
  // remember the current element.
  virtual Result Perform(const ArgumentTuple& args) = 0;

 private:
  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
};

// An Action<F> is a copyable and IMMUTABLE (except by assignment)
// object that represents an action to be taken when a mock function
// of type F is called.  The implementation of Action<T> is just a
// linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
// Don't inherit from Action!
//
// You can view an object implementing ActionInterface<F> as a
// concrete action (including its current state), and an Action<F>
// object as a handle to it.
template <typename F>
class Action {
 public:
  typedef typename internal::Function<F>::Result Result;
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

  // Constructs a null Action.  Needed for storing Action objects in
  // STL containers.
  Action() {}

#if GTEST_LANG_CXX11
  // Construct an Action from a specified callable.
  // This cannot take std::function directly, because then Action would not be
  // directly constructible from lambda (it would require two conversions).
  template <typename G,
            typename = typename ::std::enable_if<
                ::std::is_constructible<::std::function<F>, G>::value>::type>
  Action(G&& fun) : fun_(::std::forward<G>(fun)) {}  // NOLINT
#endif

  // Constructs an Action from its implementation.
  explicit Action(ActionInterface<F>* impl) : impl_(impl) {}

  // This constructor allows us to turn an Action<Func> object into an
  // Action<F>, as long as F's arguments can be implicitly converted
  // to Func's and Func's return type can be implicitly converted to
  // F's.
  template <typename Func>
  explicit Action(const Action<Func>& action);

  // Returns true iff this is the DoDefault() action.
  bool IsDoDefault() const {
#if GTEST_LANG_CXX11
    return impl_ == nullptr && fun_ == nullptr;
#else
    return impl_ == NULL;
#endif
  }

  // Performs the action.  Note that this method is const even though
  // the corresponding method in ActionInterface is not.  The reason
  // is that a const Action<F> means that it cannot be re-bound to
  // another concrete action, not that the concrete action it binds to
  // cannot change state.  (Think of the difference between a const
  // pointer and a pointer to const.)
  Result Perform(ArgumentTuple args) const {
    if (IsDoDefault()) {
      internal::IllegalDoDefault(__FILE__, __LINE__);
    }
#if GTEST_LANG_CXX11
    if (fun_ != nullptr) {
      return internal::Apply(fun_, ::std::move(args));
    }
#endif
    return impl_->Perform(args);
  }

 private:
  template <typename F1, typename F2>
  friend class internal::ActionAdaptor;

  template <typename G>
  friend class Action;

  // In C++11, Action can be implemented either as a generic functor (through
  // std::function), or legacy ActionInterface. In C++98, only ActionInterface
  // is available. The invariants are as follows:
  // * in C++98, impl_ is null iff this is the default action
  // * in C++11, at most one of fun_ & impl_ may be nonnull; both are null iff
  //   this is the default action
#if GTEST_LANG_CXX11
  ::std::function<F> fun_;
#endif
  internal::linked_ptr<ActionInterface<F> > impl_;
};

// The PolymorphicAction class template makes it easy to implement a
// polymorphic action (i.e. an action that can be used in mock
// functions of than one type, e.g. Return()).
//
// To define a polymorphic action, a user first provides a COPYABLE
// implementation class that has a Perform() method template:
//
//   class FooAction {
//    public:
//     template <typename Result, typename ArgumentTuple>
//     Result Perform(const ArgumentTuple& args) const {
//       // Processes the arguments and returns a result, using
//       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
//     }
//     ...
//   };
//
// Then the user creates the polymorphic action using
// MakePolymorphicAction(object) where object has type FooAction.  See
// the definition of Return(void) and SetArgumentPointee<N>(value) for
// complete examples.
template <typename Impl>
class PolymorphicAction {
 public:
  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}

  template <typename F>
  operator Action<F>() const {
    return Action<F>(new MonomorphicImpl<F>(impl_));
  }

 private:
  template <typename F>
  class MonomorphicImpl : public ActionInterface<F> {
   public:
    typedef typename internal::Function<F>::Result Result;
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}

    virtual Result Perform(const ArgumentTuple& args) {
      return impl_.template Perform<Result>(args);
    }

   private:
    Impl impl_;

    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
  };

  Impl impl_;

  GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
};

// Creates an Action from its implementation and returns it.  The
// created Action object owns the implementation.
template <typename F>
Action<F> MakeAction(ActionInterface<F>* impl) {
  return Action<F>(impl);
}

// Creates a polymorphic action from its implementation.  This is
// easier to use than the PolymorphicAction<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
//   MakePolymorphicAction(foo);
// vs
//   PolymorphicAction<TypeOfFoo>(foo);
template <typename Impl>
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
  return PolymorphicAction<Impl>(impl);
}

namespace internal {

// Allows an Action<F2> object to pose as an Action<F1>, as long as F2
// and F1 are compatible.
template <typename F1, typename F2>
class ActionAdaptor : public ActionInterface<F1> {
 public:
  typedef typename internal::Function<F1>::Result Result;
  typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;

  explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}

  virtual Result Perform(const ArgumentTuple& args) {
    return impl_->Perform(args);
  }

 private:
  const internal::linked_ptr<ActionInterface<F2> > impl_;

  GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
};

// Helper struct to specialize ReturnAction to execute a move instead of a copy
// on return. Useful for move-only types, but could be used on any type.
template <typename T>
struct ByMoveWrapper {
  explicit ByMoveWrapper(T value) : payload(internal::move(value)) {}
  T payload;
};

// Implements the polymorphic Return(x) action, which can be used in
// any function that returns the type of x, regardless of the argument
// types.
//
// Note: The value passed into Return must be converted into
// Function<F>::Result when this action is cast to Action<F> rather than
// when that action is performed. This is important in scenarios like
//
// MOCK_METHOD1(Method, T(U));
// ...
// {
//   Foo foo;
//   X x(&foo);
//   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
// }
//
// In the example above the variable x holds reference to foo which leaves
// scope and gets destroyed.  If copying X just copies a reference to foo,
// that copy will be left with a hanging reference.  If conversion to T
// makes a copy of foo, the above code is safe. To support that scenario, we
// need to make sure that the type conversion happens inside the EXPECT_CALL
// statement, and conversion of the result of Return to Action<T(U)> is a
// good place for that.
//
// The real life example of the above scenario happens when an invocation
// of gtl::Container() is passed into Return.
//
template <typename R>
class ReturnAction {
 public:
  // Constructs a ReturnAction object from the value to be returned.
  // 'value' is passed by value instead of by const reference in order
  // to allow Return("string literal") to compile.
  explicit ReturnAction(R value) : value_(new R(internal::move(value))) {}

  // This template type conversion operator allows Return(x) to be
  // used in ANY function that returns x's type.
  template <typename F>
  operator Action<F>() const {
    // Assert statement belongs here because this is the best place to verify
    // conditions on F. It produces the clearest error messages
    // in most compilers.
    // Impl really belongs in this scope as a local class but can't
    // because MSVC produces duplicate symbols in different translation units
    // in this case. Until MS fixes that bug we put Impl into the class scope
    // and put the typedef both here (for use in assert statement) and
    // in the Impl class. But both definitions must be the same.
    typedef typename Function<F>::Result Result;
    GTEST_COMPILE_ASSERT_(
        !is_reference<Result>::value,
        use_ReturnRef_instead_of_Return_to_return_a_reference);
    return Action<F>(new Impl<R, F>(value_));
  }

 private:
  // Implements the Return(x) action for a particular function type F.
  template <typename R_, typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    // The implicit cast is necessary when Result has more than one
    // single-argument constructor (e.g. Result is std::vector<int>) and R
    // has a type conversion operator template.  In that case, value_(value)
    // won't compile as the compiler doesn't known which constructor of
    // Result to call.  ImplicitCast_ forces the compiler to convert R to
    // Result without considering explicit constructors, thus resolving the
    // ambiguity. value_ is then initialized using its copy constructor.
    explicit Impl(const linked_ptr<R>& value)
        : value_before_cast_(*value),
          value_(ImplicitCast_<Result>(value_before_cast_)) {}

    virtual Result Perform(const ArgumentTuple&) { return value_; }

   private:
    GTEST_COMPILE_ASSERT_(!is_reference<Result>::value,
                          Result_cannot_be_a_reference_type);
    // We save the value before casting just in case it is being cast to a
    // wrapper type.
    R value_before_cast_;
    Result value_;

    GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
  };

  // Partially specialize for ByMoveWrapper. This version of ReturnAction will
  // move its contents instead.
  template <typename R_, typename F>
  class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(const linked_ptr<R>& wrapper)
        : performed_(false), wrapper_(wrapper) {}

    virtual Result Perform(const ArgumentTuple&) {
      GTEST_CHECK_(!performed_)
          << "A ByMove() action should only be performed once.";
      performed_ = true;
      return internal::move(wrapper_->payload);
    }

   private:
    bool performed_;
    const linked_ptr<R> wrapper_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  const linked_ptr<R> value_;

  GTEST_DISALLOW_ASSIGN_(ReturnAction);
};

// Implements the ReturnNull() action.
class ReturnNullAction {
 public:
  // Allows ReturnNull() to be used in any pointer-returning function. In C++11
  // this is enforced by returning nullptr, and in non-C++11 by asserting a
  // pointer type on compile time.
  template <typename Result, typename ArgumentTuple>
  static Result Perform(const ArgumentTuple&) {
#if GTEST_LANG_CXX11
    return nullptr;
#else
    GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
                          ReturnNull_can_be_used_to_return_a_pointer_only);
    return NULL;
#endif  // GTEST_LANG_CXX11
  }
};

// Implements the Return() action.
class ReturnVoidAction {
 public:
  // Allows Return() to be used in any void-returning function.
  template <typename Result, typename ArgumentTuple>
  static void Perform(const ArgumentTuple&) {
    CompileAssertTypesEqual<void, Result>();
  }
};

// Implements the polymorphic ReturnRef(x) action, which can be used
// in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefAction {
 public:
  // Constructs a ReturnRefAction object from the reference to be returned.
  explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT

  // This template type conversion operator allows ReturnRef(x) to be
  // used in ANY function that returns a reference to x's type.
  template <typename F>
  operator Action<F>() const {
    typedef typename Function<F>::Result Result;
    // Asserts that the function return type is a reference.  This
    // catches the user error of using ReturnRef(x) when Return(x)
    // should be used, and generates some helpful error message.
    GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
                          use_Return_instead_of_ReturnRef_to_return_a_value);
    return Action<F>(new Impl<F>(ref_));
  }

 private:
  // Implements the ReturnRef(x) action for a particular function type F.
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(T& ref) : ref_(ref) {}  // NOLINT

    virtual Result Perform(const ArgumentTuple&) {
      return ref_;
    }

   private:
    T& ref_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  T& ref_;

  GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
};

// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
// used in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefOfCopyAction {
 public:
  // Constructs a ReturnRefOfCopyAction object from the reference to
  // be returned.
  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT

  // This template type conversion operator allows ReturnRefOfCopy(x) to be
  // used in ANY function that returns a reference to x's type.
  template <typename F>
  operator Action<F>() const {
    typedef typename Function<F>::Result Result;
    // Asserts that the function return type is a reference.  This
    // catches the user error of using ReturnRefOfCopy(x) when Return(x)
    // should be used, and generates some helpful error message.
    GTEST_COMPILE_ASSERT_(
        internal::is_reference<Result>::value,
        use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
    return Action<F>(new Impl<F>(value_));
  }

 private:
  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(const T& value) : value_(value) {}  // NOLINT

    virtual Result Perform(const ArgumentTuple&) {
      return value_;
    }

   private:
    T value_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  const T value_;

  GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
};

// Implements the polymorphic DoDefault() action.
class DoDefaultAction {
 public:
  // This template type conversion operator allows DoDefault() to be
  // used in any function.
  template <typename F>
  operator Action<F>() const { return Action<F>(); }  // NOLINT
};

// Implements the Assign action to set a given pointer referent to a
// particular value.
template <typename T1, typename T2>
class AssignAction {
 public:
  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}

  template <typename Result, typename ArgumentTuple>
  void Perform(const ArgumentTuple& /* args */) const {
    *ptr_ = value_;
  }

 private:
  T1* const ptr_;
  const T2 value_;

  GTEST_DISALLOW_ASSIGN_(AssignAction);
};

#if !GTEST_OS_WINDOWS_MOBILE

// Implements the SetErrnoAndReturn action to simulate return from
// various system calls and libc functions.
template <typename T>
class SetErrnoAndReturnAction {
 public:
  SetErrnoAndReturnAction(int errno_value, T result)
      : errno_(errno_value),
        result_(result) {}
  template <typename Result, typename ArgumentTuple>
  Result Perform(const ArgumentTuple& /* args */) const {
    errno = errno_;
    return result_;
  }

 private:
  const int errno_;
  const T result_;

  GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
};

#endif  // !GTEST_OS_WINDOWS_MOBILE

// Implements the SetArgumentPointee<N>(x) action for any function
// whose N-th argument (0-based) is a pointer to x's type.  The
// template parameter kIsProto is true iff type A is ProtocolMessage,
// proto2::Message, or a sub-class of those.
template <size_t N, typename A, bool kIsProto>
class SetArgumentPointeeAction {
 public:
  // Constructs an action that sets the variable pointed to by the
  // N-th function argument to 'value'.
  explicit SetArgumentPointeeAction(const A& value) : value_(value) {}

  template <typename Result, typename ArgumentTuple>
  void Perform(const ArgumentTuple& args) const {
    CompileAssertTypesEqual<void, Result>();
    *::testing::get<N>(args) = value_;
  }

 private:
  const A value_;

  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
};

template <size_t N, typename Proto>
class SetArgumentPointeeAction<N, Proto, true> {
 public:
  // Constructs an action that sets the variable pointed to by the
  // N-th function argument to 'proto'.  Both ProtocolMessage and
  // proto2::Message have the CopyFrom() method, so the same
  // implementation works for both.
  explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
    proto_->CopyFrom(proto);
  }

  template <typename Result, typename ArgumentTuple>
  void Perform(const ArgumentTuple& args) const {
    CompileAssertTypesEqual<void, Result>();
    ::testing::get<N>(args)->CopyFrom(*proto_);
  }

 private:
  const internal::linked_ptr<Proto> proto_;

  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
};

// Implements the InvokeWithoutArgs(f) action.  The template argument
// FunctionImpl is the implementation type of f, which can be either a
// function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
// Action<F> as long as f's type is compatible with F (i.e. f can be
// assigned to a tr1::function<F>).
template <typename FunctionImpl>
class InvokeWithoutArgsAction {
 public:
  // The c'tor makes a copy of function_impl (either a function
  // pointer or a functor).
  explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
      : function_impl_(function_impl) {}

  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
  // compatible with f.
  template <typename Result, typename ArgumentTuple>
  Result Perform(const ArgumentTuple&) { return function_impl_(); }

 private:
  FunctionImpl function_impl_;

  GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
};

// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
class InvokeMethodWithoutArgsAction {
 public:
  InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
      : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}

  template <typename Result, typename ArgumentTuple>
  Result Perform(const ArgumentTuple&) const {
    return (obj_ptr_->*method_ptr_)();
  }

 private:
  Class* const obj_ptr_;
  const MethodPtr method_ptr_;

  GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
};

// Implements the InvokeWithoutArgs(callback) action.
template <typename CallbackType>
class InvokeCallbackWithoutArgsAction {
 public:
  // The c'tor takes ownership of the callback.
  explicit InvokeCallbackWithoutArgsAction(CallbackType* callback)
      : callback_(callback) {
    callback->CheckIsRepeatable();  // Makes sure the callback is permanent.
  }

  // This type conversion operator template allows Invoke(callback) to
  // be used wherever the callback's return type can be implicitly
  // converted to that of the mock function.
  template <typename Result, typename ArgumentTuple>
  Result Perform(const ArgumentTuple&) const { return callback_->Run(); }

 private:
  const internal::linked_ptr<CallbackType> callback_;

  GTEST_DISALLOW_ASSIGN_(InvokeCallbackWithoutArgsAction);
};

// Implements the IgnoreResult(action) action.
template <typename A>
class IgnoreResultAction {
 public:
  explicit IgnoreResultAction(const A& action) : action_(action) {}

  template <typename F>
  operator Action<F>() const {
    // Assert statement belongs here because this is the best place to verify
    // conditions on F. It produces the clearest error messages
    // in most compilers.
    // Impl really belongs in this scope as a local class but can't
    // because MSVC produces duplicate symbols in different translation units
    // in this case. Until MS fixes that bug we put Impl into the class scope
    // and put the typedef both here (for use in assert statement) and
    // in the Impl class. But both definitions must be the same.
    typedef typename internal::Function<F>::Result Result;

    // Asserts at compile time that F returns void.
    CompileAssertTypesEqual<void, Result>();

    return Action<F>(new Impl<F>(action_));
  }

 private:
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename internal::Function<F>::Result Result;
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;

    explicit Impl(const A& action) : action_(action) {}

    virtual void Perform(const ArgumentTuple& args) {
      // Performs the action and ignores its result.
      action_.Perform(args);
    }

   private:
    // Type OriginalFunction is the same as F except that its return
    // type is IgnoredValue.
    typedef typename internal::Function<F>::MakeResultIgnoredValue
        OriginalFunction;

    const Action<OriginalFunction> action_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  const A action_;

  GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
};

// A ReferenceWrapper<T> object represents a reference to type T,
// which can be either const or not.  It can be explicitly converted
// from, and implicitly converted to, a T&.  Unlike a reference,
// ReferenceWrapper<T> can be copied and can survive template type
// inference.  This is used to support by-reference arguments in the
// InvokeArgument<N>(...) action.  The idea was from "reference
// wrappers" in tr1, which we don't have in our source tree yet.
template <typename T>
class ReferenceWrapper {
 public:
  // Constructs a ReferenceWrapper<T> object from a T&.
  explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT

  // Allows a ReferenceWrapper<T> object to be implicitly converted to
  // a T&.
  operator T&() const { return *pointer_; }
 private:
  T* pointer_;
};

// Allows the expression ByRef(x) to be printed as a reference to x.
template <typename T>
void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
  T& value = ref;
  UniversalPrinter<T&>::Print(value, os);
}

// Does two actions sequentially.  Used for implementing the DoAll(a1,
// a2, ...) action.
template <typename Action1, typename Action2>
class DoBothAction {
 public:
  DoBothAction(Action1 action1, Action2 action2)
      : action1_(action1), action2_(action2) {}

  // This template type conversion operator allows DoAll(a1, ..., a_n)
  // to be used in ANY function of compatible type.
  template <typename F>
  operator Action<F>() const {
    return Action<F>(new Impl<F>(action1_, action2_));
  }

 private:
  // Implements the DoAll(...) action for a particular function type F.
  template <typename F>
  class Impl : public ActionInterface<F> {
   public:
    typedef typename Function<F>::Result Result;
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    typedef typename Function<F>::MakeResultVoid VoidResult;

    Impl(const Action<VoidResult>& action1, const Action<F>& action2)
        : action1_(action1), action2_(action2) {}

    virtual Result Perform(const ArgumentTuple& args) {
      action1_.Perform(args);
      return action2_.Perform(args);
    }

   private:
    const Action<VoidResult> action1_;
    const Action<F> action2_;

    GTEST_DISALLOW_ASSIGN_(Impl);
  };

  Action1 action1_;
  Action2 action2_;

  GTEST_DISALLOW_ASSIGN_(DoBothAction);
};

}  // namespace internal

// An Unused object can be implicitly constructed from ANY value.
// This is handy when defining actions that ignore some or all of the
// mock function arguments.  For example, given
//
//   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
//   MOCK_METHOD3(Bar, double(int index, double x, double y));
//
// instead of
//
//   double DistanceToOriginWithLabel(const string& label, double x, double y) {
//     return sqrt(x*x + y*y);
//   }
//   double DistanceToOriginWithIndex(int index, double x, double y) {
//     return sqrt(x*x + y*y);
//   }
//   ...
//   EXPECT_CALL(mock, Foo("abc", _, _))
//       .WillOnce(Invoke(DistanceToOriginWithLabel));
//   EXPECT_CALL(mock, Bar(5, _, _))
//       .WillOnce(Invoke(DistanceToOriginWithIndex));
//
// you could write
//
//   // We can declare any uninteresting argument as Unused.
//   double DistanceToOrigin(Unused, double x, double y) {
//     return sqrt(x*x + y*y);
//   }
//   ...
//   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
//   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
typedef internal::IgnoredValue Unused;

// This constructor allows us to turn an Action<From> object into an
// Action<To>, as long as To's arguments can be implicitly converted
// to From's and From's return type cann be implicitly converted to
// To's.
template <typename To>
template <typename From>
Action<To>::Action(const Action<From>& from)
    :
#if GTEST_LANG_CXX11
      fun_(from.fun_),
#endif
      impl_(from.impl_ == NULL ? NULL
                               : new internal::ActionAdaptor<To, From>(from)) {
}

// Creates an action that returns 'value'.  'value' is passed by value
// instead of const reference - otherwise Return("string literal")
// will trigger a compiler error about using array as initializer.
template <typename R>
internal::ReturnAction<R> Return(R value) {
  return internal::ReturnAction<R>(internal::move(value));
}

// Creates an action that returns NULL.
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
  return MakePolymorphicAction(internal::ReturnNullAction());
}

// Creates an action that returns from a void function.
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
  return MakePolymorphicAction(internal::ReturnVoidAction());
}

// Creates an action that returns the reference to a variable.
template <typename R>
inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
  return internal::ReturnRefAction<R>(x);
}

// Creates an action that returns the reference to a copy of the
// argument.  The copy is created when the action is constructed and
// lives as long as the action.
template <typename R>
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
  return internal::ReturnRefOfCopyAction<R>(x);
}

// Modifies the parent action (a Return() action) to perform a move of the
// argument instead of a copy.
// Return(ByMove()) actions can only be executed once and will assert this
// invariant.
template <typename R>
internal::ByMoveWrapper<R> ByMove(R x) {
  return internal::ByMoveWrapper<R>(internal::move(x));
}

// Creates an action that does the default action for the give mock function.
inline internal::DoDefaultAction DoDefault() {
  return internal::DoDefaultAction();
}

// Creates an action that sets the variable pointed by the N-th
// (0-based) function argument to 'value'.
template <size_t N, typename T>
PolymorphicAction<
  internal::SetArgumentPointeeAction<
    N, T, internal::IsAProtocolMessage<T>::value> >
SetArgPointee(const T& x) {
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
      N, T, internal::IsAProtocolMessage<T>::value>(x));
}

#if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
// This overload allows SetArgPointee() to accept a string literal.
// GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
// this overload from the templated version and emit a compile error.
template <size_t N>
PolymorphicAction<
  internal::SetArgumentPointeeAction<N, const char*, false> >
SetArgPointee(const char* p) {
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
      N, const char*, false>(p));
}

template <size_t N>
PolymorphicAction<
  internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
SetArgPointee(const wchar_t* p) {
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
      N, const wchar_t*, false>(p));
}
#endif

// The following version is DEPRECATED.
template <size_t N, typename T>
PolymorphicAction<
  internal::SetArgumentPointeeAction<
    N, T, internal::IsAProtocolMessage<T>::value> >
SetArgumentPointee(const T& x) {
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
      N, T, internal::IsAProtocolMessage<T>::value>(x));
}

// Creates an action that sets a pointer referent to a given value.
template <typename T1, typename T2>
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
}

#if !GTEST_OS_WINDOWS_MOBILE

// Creates an action that sets errno and returns the appropriate error.
template <typename T>
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
SetErrnoAndReturn(int errval, T result) {
  return MakePolymorphicAction(
      internal::SetErrnoAndReturnAction<T>(errval, result));
}

#endif  // !GTEST_OS_WINDOWS_MOBILE

// Various overloads for InvokeWithoutArgs().

// Creates an action that invokes 'function_impl' with no argument.
template <typename FunctionImpl>
PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
InvokeWithoutArgs(FunctionImpl function_impl) {
  return MakePolymorphicAction(
      internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
}

// Creates an action that invokes the given method on the given object
// with no argument.
template <class Class, typename MethodPtr>
PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
  return MakePolymorphicAction(
      internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
          obj_ptr, method_ptr));
}

// Creates an action that performs an_action and throws away its
// result.  In other words, it changes the return type of an_action to
// void.  an_action MUST NOT return void, or the code won't compile.
template <typename A>
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
  return internal::IgnoreResultAction<A>(an_action);
}

// Creates a reference wrapper for the given L-value.  If necessary,
// you can explicitly specify the type of the reference.  For example,
// suppose 'derived' is an object of type Derived, ByRef(derived)
// would wrap a Derived&.  If you want to wrap a const Base& instead,
// where Base is a base class of Derived, just write:
//
//   ByRef<const Base>(derived)
template <typename T>
inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
  return internal::ReferenceWrapper<T>(l_value);
}

}  // namespace testing

#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_