summaryrefslogtreecommitdiffstats
path: root/googletest/docs/advanced.md
blob: 146c6e8a092d4294267acc1efb9dac7c1e49ccf1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
# Advanced googletest Topics

<!-- GOOGLETEST_CM0016 DO NOT DELETE -->

## Introduction

Now that you have read the [googletest Primer](primer.md) and learned how to
write tests using googletest, it's time to learn some new tricks. This document
will show you more assertions as well as how to construct complex failure
messages, propagate fatal failures, reuse and speed up your test fixtures, and
use various flags with your tests.

## More Assertions

This section covers some less frequently used, but still significant,
assertions.

### Explicit Success and Failure

These three assertions do not actually test a value or expression. Instead, they
generate a success or failure directly. Like the macros that actually perform a
test, you may stream a custom failure message into them.

```c++
SUCCEED();
```

Generates a success. This does **NOT** make the overall test succeed. A test is
considered successful only if none of its assertions fail during its execution.

NOTE: `SUCCEED()` is purely documentary and currently doesn't generate any
user-visible output. However, we may add `SUCCEED()` messages to googletest's
output in the future.

```c++
FAIL();
ADD_FAILURE();
ADD_FAILURE_AT("file_path", line_number);
```

`FAIL()` generates a fatal failure, while `ADD_FAILURE()` and `ADD_FAILURE_AT()`
generate a nonfatal failure. These are useful when control flow, rather than a
Boolean expression, determines the test's success or failure. For example, you
might want to write something like:

```c++
switch(expression) {
  case 1:
     ... some checks ...
  case 2:
     ... some other checks ...
  default:
     FAIL() << "We shouldn't get here.";
}
```

NOTE: you can only use `FAIL()` in functions that return `void`. See the
[Assertion Placement section](#assertion-placement) for more information.

### Exception Assertions

These are for verifying that a piece of code throws (or does not throw) an
exception of the given type:

Fatal assertion                            | Nonfatal assertion                         | Verifies
------------------------------------------ | ------------------------------------------ | --------
`ASSERT_THROW(statement, exception_type);` | `EXPECT_THROW(statement, exception_type);` | `statement` throws an exception of the given type
`ASSERT_ANY_THROW(statement);`             | `EXPECT_ANY_THROW(statement);`             | `statement` throws an exception of any type
`ASSERT_NO_THROW(statement);`              | `EXPECT_NO_THROW(statement);`              | `statement` doesn't throw any exception

Examples:

```c++
ASSERT_THROW(Foo(5), bar_exception);

EXPECT_NO_THROW({
  int n = 5;
  Bar(&n);
});
```

**Availability**: requires exceptions to be enabled in the build environment

### Predicate Assertions for Better Error Messages

Even though googletest has a rich set of assertions, they can never be complete,
as it's impossible (nor a good idea) to anticipate all scenarios a user might
run into. Therefore, sometimes a user has to use `EXPECT_TRUE()` to check a
complex expression, for lack of a better macro. This has the problem of not
showing you the values of the parts of the expression, making it hard to
understand what went wrong. As a workaround, some users choose to construct the
failure message by themselves, streaming it into `EXPECT_TRUE()`. However, this
is awkward especially when the expression has side-effects or is expensive to
evaluate.

googletest gives you three different options to solve this problem:

#### Using an Existing Boolean Function

If you already have a function or functor that returns `bool` (or a type that
can be implicitly converted to `bool`), you can use it in a *predicate
assertion* to get the function arguments printed for free:

| Fatal assertion      | Nonfatal assertion   | Verifies                    |
| -------------------- | -------------------- | --------------------------- |
| `ASSERT_PRED1(pred1, | `EXPECT_PRED1(pred1, | `pred1(val1)` is true       |
: val1);`              : val1);`              :                             :
| `ASSERT_PRED2(pred2, | `EXPECT_PRED2(pred2, | `pred2(val1, val2)` is true |
: val1, val2);`        : val1, val2);`        :                             :
| `...`                | `...`                | ...                         |

In the above, `predn` is an `n`-ary predicate function or functor, where `val1`,
`val2`, ..., and `valn` are its arguments. The assertion succeeds if the
predicate returns `true` when applied to the given arguments, and fails
otherwise. When the assertion fails, it prints the value of each argument. In
either case, the arguments are evaluated exactly once.

Here's an example. Given

```c++
// Returns true if m and n have no common divisors except 1.
bool MutuallyPrime(int m, int n) { ... }

const int a = 3;
const int b = 4;
const int c = 10;
```

the assertion

```c++
  EXPECT_PRED2(MutuallyPrime, a, b);
```

will succeed, while the assertion

```c++
  EXPECT_PRED2(MutuallyPrime, b, c);
```

will fail with the message

```none
MutuallyPrime(b, c) is false, where
b is 4
c is 10
```

> NOTE:
>
> 1.  If you see a compiler error "no matching function to call" when using
>     `ASSERT_PRED*` or `EXPECT_PRED*`, please see
>     [this](faq.md#the-compiler-complains-no-matching-function-to-call-when-i-use-assert-pred-how-do-i-fix-it)
>     for how to resolve it.

#### Using a Function That Returns an AssertionResult

While `EXPECT_PRED*()` and friends are handy for a quick job, the syntax is not
satisfactory: you have to use different macros for different arities, and it
feels more like Lisp than C++. The `::testing::AssertionResult` class solves
this problem.

An `AssertionResult` object represents the result of an assertion (whether it's
a success or a failure, and an associated message). You can create an
`AssertionResult` using one of these factory functions:

```c++
namespace testing {

// Returns an AssertionResult object to indicate that an assertion has
// succeeded.
AssertionResult AssertionSuccess();

// Returns an AssertionResult object to indicate that an assertion has
// failed.
AssertionResult AssertionFailure();

}
```

You can then use the `<<` operator to stream messages to the `AssertionResult`
object.

To provide more readable messages in Boolean assertions (e.g. `EXPECT_TRUE()`),
write a predicate function that returns `AssertionResult` instead of `bool`. For
example, if you define `IsEven()` as:

```c++
::testing::AssertionResult IsEven(int n) {
  if ((n % 2) == 0)
     return ::testing::AssertionSuccess();
  else
     return ::testing::AssertionFailure() << n << " is odd";
}
```

instead of:

```c++
bool IsEven(int n) {
  return (n % 2) == 0;
}
```

the failed assertion `EXPECT_TRUE(IsEven(Fib(4)))` will print:

```none
Value of: IsEven(Fib(4))
  Actual: false (3 is odd)
Expected: true
```

instead of a more opaque

```none
Value of: IsEven(Fib(4))
  Actual: false
Expected: true
```

If you want informative messages in `EXPECT_FALSE` and `ASSERT_FALSE` as well
(one third of Boolean assertions in the Google code base are negative ones), and
are fine with making the predicate slower in the success case, you can supply a
success message:

```c++
::testing::AssertionResult IsEven(int n) {
  if ((n % 2) == 0)
     return ::testing::AssertionSuccess() << n << " is even";
  else
     return ::testing::AssertionFailure() << n << " is odd";
}
```

Then the statement `EXPECT_FALSE(IsEven(Fib(6)))` will print

```none
  Value of: IsEven(Fib(6))
     Actual: true (8 is even)
  Expected: false
```

#### Using a Predicate-Formatter

If you find the default message generated by `(ASSERT|EXPECT)_PRED*` and
`(ASSERT|EXPECT)_(TRUE|FALSE)` unsatisfactory, or some arguments to your
predicate do not support streaming to `ostream`, you can instead use the
following *predicate-formatter assertions* to *fully* customize how the message
is formatted:

Fatal assertion                                  | Nonfatal assertion                               | Verifies
------------------------------------------------ | ------------------------------------------------ | --------
`ASSERT_PRED_FORMAT1(pred_format1, val1);`       | `EXPECT_PRED_FORMAT1(pred_format1, val1);`       | `pred_format1(val1)` is successful
`ASSERT_PRED_FORMAT2(pred_format2, val1, val2);` | `EXPECT_PRED_FORMAT2(pred_format2, val1, val2);` | `pred_format2(val1, val2)` is successful
`...`                                            | `...`                                            | ...

The difference between this and the previous group of macros is that instead of
a predicate, `(ASSERT|EXPECT)_PRED_FORMAT*` take a *predicate-formatter*
(`pred_formatn`), which is a function or functor with the signature:

```c++
::testing::AssertionResult PredicateFormattern(const char* expr1,
                                               const char* expr2,
                                               ...
                                               const char* exprn,
                                               T1 val1,
                                               T2 val2,
                                               ...
                                               Tn valn);
```

where `val1`, `val2`, ..., and `valn` are the values of the predicate arguments,
and `expr1`, `expr2`, ..., and `exprn` are the corresponding expressions as they
appear in the source code. The types `T1`, `T2`, ..., and `Tn` can be either
value types or reference types. For example, if an argument has type `Foo`, you
can declare it as either `Foo` or `const Foo&`, whichever is appropriate.

As an example, let's improve the failure message in `MutuallyPrime()`, which was
used with `EXPECT_PRED2()`:

```c++
// Returns the smallest prime common divisor of m and n,
// or 1 when m and n are mutually prime.
int SmallestPrimeCommonDivisor(int m, int n) { ... }

// A predicate-formatter for asserting that two integers are mutually prime.
::testing::AssertionResult AssertMutuallyPrime(const char* m_expr,
                                               const char* n_expr,
                                               int m,
                                               int n) {
  if (MutuallyPrime(m, n)) return ::testing::AssertionSuccess();

  return ::testing::AssertionFailure() << m_expr << " and " << n_expr
      << " (" << m << " and " << n << ") are not mutually prime, "
      << "as they have a common divisor " << SmallestPrimeCommonDivisor(m, n);
}
```

With this predicate-formatter, we can use

```c++
  EXPECT_PRED_FORMAT2(AssertMutuallyPrime, b, c);
```

to generate the message

```none
b and c (4 and 10) are not mutually prime, as they have a common divisor 2.
```

As you may have realized, many of the built-in assertions we introduced earlier
are special cases of `(EXPECT|ASSERT)_PRED_FORMAT*`. In fact, most of them are
indeed defined using `(EXPECT|ASSERT)_PRED_FORMAT*`.

### Floating-Point Comparison

Comparing floating-point numbers is tricky. Due to round-off errors, it is very
unlikely that two floating-points will match exactly. Therefore, `ASSERT_EQ` 's
naive comparison usually doesn't work. And since floating-points can have a wide
value range, no single fixed error bound works. It's better to compare by a
fixed relative error bound, except for values close to 0 due to the loss of
precision there.

In general, for floating-point comparison to make sense, the user needs to
carefully choose the error bound. If they don't want or care to, comparing in
terms of Units in the Last Place (ULPs) is a good default, and googletest
provides assertions to do this. Full details about ULPs are quite long; if you
want to learn more, see
[here](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).

#### Floating-Point Macros

| Fatal assertion         | Nonfatal assertion      | Verifies                |
| ----------------------- | ----------------------- | ----------------------- |
| `ASSERT_FLOAT_EQ(val1,  | `EXPECT_FLOAT_EQ(val1,  | the two `float` values  |
: val2);`                 : val2);`                 : are almost equal        :
| `ASSERT_DOUBLE_EQ(val1, | `EXPECT_DOUBLE_EQ(val1, | the two `double` values |
: val2);`                 : val2);`                 : are almost equal        :

By "almost equal" we mean the values are within 4 ULP's from each other.

The following assertions allow you to choose the acceptable error bound:

| Fatal assertion    | Nonfatal assertion       | Verifies                  |
| ------------------ | ------------------------ | ------------------------- |
| `ASSERT_NEAR(val1, | `EXPECT_NEAR(val1, val2, | the difference between    |
: val2, abs_error);` : abs_error);`             : `val1` and `val2` doesn't :
:                    :                          : exceed the given absolute :
:                    :                          : error                     :

#### Floating-Point Predicate-Format Functions

Some floating-point operations are useful, but not that often used. In order to
avoid an explosion of new macros, we provide them as predicate-format functions
that can be used in predicate assertion macros (e.g. `EXPECT_PRED_FORMAT2`,
etc).

```c++
EXPECT_PRED_FORMAT2(::testing::FloatLE, val1, val2);
EXPECT_PRED_FORMAT2(::testing::DoubleLE, val1, val2);
```

Verifies that `val1` is less than, or almost equal to, `val2`. You can replace
`EXPECT_PRED_FORMAT2` in the above table with `ASSERT_PRED_FORMAT2`.

### Asserting Using gMock Matchers

[gMock](../../googlemock) comes with a library of matchers for validating
arguments passed to mock objects. A gMock *matcher* is basically a predicate
that knows how to describe itself. It can be used in these assertion macros:

| Fatal assertion     | Nonfatal assertion             | Verifies              |
| ------------------- | ------------------------------ | --------------------- |
| `ASSERT_THAT(value, | `EXPECT_THAT(value, matcher);` | value matches matcher |
: matcher);`          :                                :                       :

For example, `StartsWith(prefix)` is a matcher that matches a string starting
with `prefix`, and you can write:

```c++
using ::testing::StartsWith;
...
    // Verifies that Foo() returns a string starting with "Hello".
    EXPECT_THAT(Foo(), StartsWith("Hello"));
```

Read this
[recipe](https://github.com/google/googletest/blob/master/googlemock/docs/cook_book.md#using-matchers-in-googletest-assertions)
in the gMock Cookbook for more details.

gMock has a rich set of matchers. You can do many things googletest cannot do
alone with them. For a list of matchers gMock provides, read
[this](../../googlemock/docs/cook_book.md##using-matchers). It's easy to write
your [own matchers](../../googlemock/docs/cook_book.md#NewMatchers) too.

gMock is bundled with googletest, so you don't need to add any build dependency
in order to take advantage of this. Just include `"testing/base/public/gmock.h"`
and you're ready to go.

### More String Assertions

(Please read the [previous](#AssertThat) section first if you haven't.)

You can use the gMock
[string matchers](../../googlemock/docs/cheat_sheet.md#string-matchers) with
`EXPECT_THAT()` or `ASSERT_THAT()` to do more string comparison tricks
(sub-string, prefix, suffix, regular expression, and etc). For example,

```c++
using ::testing::HasSubstr;
using ::testing::MatchesRegex;
...
  ASSERT_THAT(foo_string, HasSubstr("needle"));
  EXPECT_THAT(bar_string, MatchesRegex("\\w*\\d+"));
```

If the string contains a well-formed HTML or XML document, you can check whether
its DOM tree matches an
[XPath expression](http://www.w3.org/TR/xpath/#contents):

```c++
// Currently still in //template/prototemplate/testing:xpath_matcher
#include "template/prototemplate/testing/xpath_matcher.h"
using prototemplate::testing::MatchesXPath;
EXPECT_THAT(html_string, MatchesXPath("//a[text()='click here']"));
```

### Windows HRESULT assertions

These assertions test for `HRESULT` success or failure.

Fatal assertion                        | Nonfatal assertion                     | Verifies
-------------------------------------- | -------------------------------------- | --------
`ASSERT_HRESULT_SUCCEEDED(expression)` | `EXPECT_HRESULT_SUCCEEDED(expression)` | `expression` is a success `HRESULT`
`ASSERT_HRESULT_FAILED(expression)`    | `EXPECT_HRESULT_FAILED(expression)`    | `expression` is a failure `HRESULT`

The generated output contains the human-readable error message associated with
the `HRESULT` code returned by `expression`.

You might use them like this:

```c++
CComPtr<IShellDispatch2> shell;
ASSERT_HRESULT_SUCCEEDED(shell.CoCreateInstance(L"Shell.Application"));
CComVariant empty;
ASSERT_HRESULT_SUCCEEDED(shell->ShellExecute(CComBSTR(url), empty, empty, empty, empty));
```

### Type Assertions

You can call the function

```c++
::testing::StaticAssertTypeEq<T1, T2>();
```

to assert that types `T1` and `T2` are the same. The function does nothing if
the assertion is satisfied. If the types are different, the function call will
fail to compile, and the compiler error message will likely (depending on the
compiler) show you the actual values of `T1` and `T2`. This is mainly useful
inside template code.

**Caveat**: When used inside a member function of a class template or a function
template, `StaticAssertTypeEq<T1, T2>()` is effective only if the function is
instantiated. For example, given:

```c++
template <typename T> class Foo {
 public:
  void Bar() { ::testing::StaticAssertTypeEq<int, T>(); }
};
```

the code:

```c++
void Test1() { Foo<bool> foo; }
```

will not generate a compiler error, as `Foo<bool>::Bar()` is never actually
instantiated. Instead, you need:

```c++
void Test2() { Foo<bool> foo; foo.Bar(); }
```

to cause a compiler error.

### Assertion Placement

You can use assertions in any C++ function. In particular, it doesn't have to be
a method of the test fixture class. The one constraint is that assertions that
generate a fatal failure (`FAIL*` and `ASSERT_*`) can only be used in
void-returning functions. This is a consequence of Google's not using
exceptions. By placing it in a non-void function you'll get a confusing compile
error like `"error: void value not ignored as it ought to be"` or `"cannot
initialize return object of type 'bool' with an rvalue of type 'void'"` or
`"error: no viable conversion from 'void' to 'string'"`.

If you need to use fatal assertions in a function that returns non-void, one
option is to make the function return the value in an out parameter instead. For
example, you can rewrite `T2 Foo(T1 x)` to `void Foo(T1 x, T2* result)`. You
need to make sure that `*result` contains some sensible value even when the
function returns prematurely. As the function now returns `void`, you can use
any assertion inside of it.

If changing the function's type is not an option, you should just use assertions
that generate non-fatal failures, such as `ADD_FAILURE*` and `EXPECT_*`.

NOTE: Constructors and destructors are not considered void-returning functions,
according to the C++ language specification, and so you may not use fatal
assertions in them; you'll get a compilation error if you try. Instead, either
call `abort` and crash the entire test executable, or put the fatal assertion in
a `SetUp`/`TearDown` function; see
[constructor/destructor vs. `SetUp`/`TearDown`](faq.md#CtorVsSetUp)

WARNING: A fatal assertion in a helper function (private void-returning method)
called from a constructor or destructor does not does not terminate the current
test, as your intuition might suggest: it merely returns from the constructor or
destructor early, possibly leaving your object in a partially-constructed or
partially-destructed state! You almost certainly want to `abort` or use
`SetUp`/`TearDown` instead.

## Teaching googletest How to Print Your Values

When a test assertion such as `EXPECT_EQ` fails, googletest prints the argument
values to help you debug. It does this using a user-extensible value printer.

This printer knows how to print built-in C++ types, native arrays, STL
containers, and any type that supports the `<<` operator. For other types, it
prints the raw bytes in the value and hopes that you the user can figure it out.

As mentioned earlier, the printer is *extensible*. That means you can teach it
to do a better job at printing your particular type than to dump the bytes. To
do that, define `<<` for your type:

```c++
// Streams are allowed only for logging.  Don't include this for
// any other purpose.
#include <ostream>

namespace foo {

class Bar {  // We want googletest to be able to print instances of this.
...
  // Create a free inline friend function.
  friend std::ostream& operator<<(std::ostream& os, const Bar& bar) {
    return os << bar.DebugString();  // whatever needed to print bar to os
  }
};

// If you can't declare the function in the class it's important that the
// << operator is defined in the SAME namespace that defines Bar.  C++'s look-up
// rules rely on that.
std::ostream& operator<<(std::ostream& os, const Bar& bar) {
  return os << bar.DebugString();  // whatever needed to print bar to os
}

}  // namespace foo
```

Sometimes, this might not be an option: your team may consider it bad style to
have a `<<` operator for `Bar`, or `Bar` may already have a `<<` operator that
doesn't do what you want (and you cannot change it). If so, you can instead
define a `PrintTo()` function like this:

```c++
// Streams are allowed only for logging.  Don't include this for
// any other purpose.
#include <ostream>

namespace foo {

class Bar {
  ...
  friend void PrintTo(const Bar& bar, std::ostream* os) {
    *os << bar.DebugString();  // whatever needed to print bar to os
  }
};

// If you can't declare the function in the class it's important that PrintTo()
// is defined in the SAME namespace that defines Bar.  C++'s look-up rules rely
// on that.
void PrintTo(const Bar& bar, std::ostream* os) {
  *os << bar.DebugString();  // whatever needed to print bar to os
}

}  // namespace foo
```

If you have defined both `<<` and `PrintTo()`, the latter will be used when
googletest is concerned. This allows you to customize how the value appears in
googletest's output without affecting code that relies on the behavior of its
`<<` operator.

If you want to print a value `x` using googletest's value printer yourself, just
call `::testing::PrintToString(x)`, which returns an `std::string`:

```c++
vector<pair<Bar, int> > bar_ints = GetBarIntVector();

EXPECT_TRUE(IsCorrectBarIntVector(bar_ints))
    << "bar_ints = " << ::testing::PrintToString(bar_ints);
```

## Death Tests

In many applications, there are assertions that can cause application failure if
a condition is not met. These sanity checks, which ensure that the program is in
a known good state, are there to fail at the earliest possible time after some
program state is corrupted. If the assertion checks the wrong condition, then
the program may proceed in an erroneous state, which could lead to memory
corruption, security holes, or worse. Hence it is vitally important to test that
such assertion statements work as expected.

Since these precondition checks cause the processes to die, we call such tests
_death tests_. More generally, any test that checks that a program terminates
(except by throwing an exception) in an expected fashion is also a death test.

Note that if a piece of code throws an exception, we don't consider it "death"
for the purpose of death tests, as the caller of the code could catch the
exception and avoid the crash. If you want to verify exceptions thrown by your
code, see [Exception Assertions](#ExceptionAssertions).

If you want to test `EXPECT_*()/ASSERT_*()` failures in your test code, see
Catching Failures

### How to Write a Death Test

googletest has the following macros to support death tests:

Fatal assertion                                  | Nonfatal assertion                               | Verifies
------------------------------------------------ | ------------------------------------------------ | --------
`ASSERT_DEATH(statement, matcher);`              | `EXPECT_DEATH(statement, matcher);`              | `statement` crashes with the given error
`ASSERT_DEATH_IF_SUPPORTED(statement, matcher);` | `EXPECT_DEATH_IF_SUPPORTED(statement, matcher);` | if death tests are supported, verifies that `statement` crashes with the given error; otherwise verifies nothing
`ASSERT_EXIT(statement, predicate, matcher);`    | `EXPECT_EXIT(statement, predicate, matcher);`    | `statement` exits with the given error, and its exit code matches `predicate`

where `statement` is a statement that is expected to cause the process to die,
`predicate` is a function or function object that evaluates an integer exit
status, and `matcher` is either a GMock matcher matching a `const std::string&`
or a (Perl) regular expression - either of which is matched against the stderr
output of `statement`. For legacy reasons, a bare string (i.e. with no matcher)
is interpreted as `ContainsRegex(str)`, **not** `Eq(str)`. Note that `statement`
can be *any valid statement* (including *compound statement*) and doesn't have
to be an expression.

As usual, the `ASSERT` variants abort the current test function, while the
`EXPECT` variants do not.

> NOTE: We use the word "crash" here to mean that the process terminates with a
> *non-zero* exit status code. There are two possibilities: either the process
> has called `exit()` or `_exit()` with a non-zero value, or it may be killed by
> a signal.
>
> This means that if `*statement*` terminates the process with a 0 exit code, it
> is *not* considered a crash by `EXPECT_DEATH`. Use `EXPECT_EXIT` instead if
> this is the case, or if you want to restrict the exit code more precisely.

A predicate here must accept an `int` and return a `bool`. The death test
succeeds only if the predicate returns `true`. googletest defines a few
predicates that handle the most common cases:

```c++
::testing::ExitedWithCode(exit_code)
```

This expression is `true` if the program exited normally with the given exit
code.

```c++
::testing::KilledBySignal(signal_number)  // Not available on Windows.
```

This expression is `true` if the program was killed by the given signal.

The `*_DEATH` macros are convenient wrappers for `*_EXIT` that use a predicate
that verifies the process' exit code is non-zero.

Note that a death test only cares about three things:

1.  does `statement` abort or exit the process?
2.  (in the case of `ASSERT_EXIT` and `EXPECT_EXIT`) does the exit status
    satisfy `predicate`? Or (in the case of `ASSERT_DEATH` and `EXPECT_DEATH`)
    is the exit status non-zero? And
3.  does the stderr output match `regex`?

In particular, if `statement` generates an `ASSERT_*` or `EXPECT_*` failure, it
will **not** cause the death test to fail, as googletest assertions don't abort
the process.

To write a death test, simply use one of the above macros inside your test
function. For example,

```c++
TEST(MyDeathTest, Foo) {
  // This death test uses a compound statement.
  ASSERT_DEATH({
    int n = 5;
    Foo(&n);
  }, "Error on line .* of Foo()");
}

TEST(MyDeathTest, NormalExit) {
  EXPECT_EXIT(NormalExit(), ::testing::ExitedWithCode(0), "Success");
}

TEST(MyDeathTest, KillMyself) {
  EXPECT_EXIT(KillMyself(), ::testing::KilledBySignal(SIGKILL),
              "Sending myself unblockable signal");
}
```

verifies that:

*   calling `Foo(5)` causes the process to die with the given error message,
*   calling `NormalExit()` causes the process to print `"Success"` to stderr and
    exit with exit code 0, and
*   calling `KillMyself()` kills the process with signal `SIGKILL`.

The test function body may contain other assertions and statements as well, if
necessary.

### Death Test Naming

IMPORTANT: We strongly recommend you to follow the convention of naming your
**test suite** (not test) `*DeathTest` when it contains a death test, as
demonstrated in the above example. The
[Death Tests And Threads](#death-tests-and-threads) section below explains why.

If a test fixture class is shared by normal tests and death tests, you can use
`using` or `typedef` to introduce an alias for the fixture class and avoid
duplicating its code:

```c++
class FooTest : public ::testing::Test { ... };

using FooDeathTest = FooTest;

TEST_F(FooTest, DoesThis) {
  // normal test
}

TEST_F(FooDeathTest, DoesThat) {
  // death test
}
```

### Regular Expression Syntax

On POSIX systems (e.g. Linux, Cygwin, and Mac), googletest uses the
[POSIX extended regular expression](http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html#tag_09_04)
syntax. To learn about this syntax, you may want to read this
[Wikipedia entry](http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions).

On Windows, googletest uses its own simple regular expression implementation. It
lacks many features. For example, we don't support union (`"x|y"`), grouping
(`"(xy)"`), brackets (`"[xy]"`), and repetition count (`"x{5,7}"`), among
others. Below is what we do support (`A` denotes a literal character, period
(`.`), or a single `\\ ` escape sequence; `x` and `y` denote regular
expressions.):

Expression | Meaning
---------- | --------------------------------------------------------------
`c`        | matches any literal character `c`
`\\d`      | matches any decimal digit
`\\D`      | matches any character that's not a decimal digit
`\\f`      | matches `\f`
`\\n`      | matches `\n`
`\\r`      | matches `\r`
`\\s`      | matches any ASCII whitespace, including `\n`
`\\S`      | matches any character that's not a whitespace
`\\t`      | matches `\t`
`\\v`      | matches `\v`
`\\w`      | matches any letter, `_`, or decimal digit
`\\W`      | matches any character that `\\w` doesn't match
`\\c`      | matches any literal character `c`, which must be a punctuation
`.`        | matches any single character except `\n`
`A?`       | matches 0 or 1 occurrences of `A`
`A*`       | matches 0 or many occurrences of `A`
`A+`       | matches 1 or many occurrences of `A`
`^`        | matches the beginning of a string (not that of each line)
`$`        | matches the end of a string (not that of each line)
`xy`       | matches `x` followed by `y`

To help you determine which capability is available on your system, googletest
defines macros to govern which regular expression it is using. The macros are:
`GTEST_USES_SIMPLE_RE=1` or `GTEST_USES_POSIX_RE=1`. If you want your death
tests to work in all cases, you can either `#if` on these macros or use the more
limited syntax only.

### How It Works

Under the hood, `ASSERT_EXIT()` spawns a new process and executes the death test
statement in that process. The details of how precisely that happens depend on
the platform and the variable ::testing::GTEST_FLAG(death_test_style) (which is
initialized from the command-line flag `--gtest_death_test_style`).

*   On POSIX systems, `fork()` (or `clone()` on Linux) is used to spawn the
    child, after which:
    *   If the variable's value is `"fast"`, the death test statement is
        immediately executed.
    *   If the variable's value is `"threadsafe"`, the child process re-executes
        the unit test binary just as it was originally invoked, but with some
        extra flags to cause just the single death test under consideration to
        be run.
*   On Windows, the child is spawned using the `CreateProcess()` API, and
    re-executes the binary to cause just the single death test under
    consideration to be run - much like the `threadsafe` mode on POSIX.

Other values for the variable are illegal and will cause the death test to fail.
Currently, the flag's default value is **"fast"**

1.  the child's exit status satisfies the predicate, and
2.  the child's stderr matches the regular expression.

If the death test statement runs to completion without dying, the child process
will nonetheless terminate, and the assertion fails.

### Death Tests And Threads

The reason for the two death test styles has to do with thread safety. Due to
well-known problems with forking in the presence of threads, death tests should
be run in a single-threaded context. Sometimes, however, it isn't feasible to
arrange that kind of environment. For example, statically-initialized modules
may start threads before main is ever reached. Once threads have been created,
it may be difficult or impossible to clean them up.

googletest has three features intended to raise awareness of threading issues.

1.  A warning is emitted if multiple threads are running when a death test is
    encountered.
2.  Test suites with a name ending in "DeathTest" are run before all other
    tests.
3.  It uses `clone()` instead of `fork()` to spawn the child process on Linux
    (`clone()` is not available on Cygwin and Mac), as `fork()` is more likely
    to cause the child to hang when the parent process has multiple threads.

It's perfectly fine to create threads inside a death test statement; they are
executed in a separate process and cannot affect the parent.

### Death Test Styles

The "threadsafe" death test style was introduced in order to help mitigate the
risks of testing in a possibly multithreaded environment. It trades increased
test execution time (potentially dramatically so) for improved thread safety.

The automated testing framework does not set the style flag. You can choose a
particular style of death tests by setting the flag programmatically:

```c++
testing::FLAGS_gtest_death_test_style="threadsafe"
```

You can do this in `main()` to set the style for all death tests in the binary,
or in individual tests. Recall that flags are saved before running each test and
restored afterwards, so you need not do that yourself. For example:

```c++
int main(int argc, char** argv) {
  InitGoogle(argv[0], &argc, &argv, true);
  ::testing::FLAGS_gtest_death_test_style = "fast";
  return RUN_ALL_TESTS();
}

TEST(MyDeathTest, TestOne) {
  ::testing::FLAGS_gtest_death_test_style = "threadsafe";
  // This test is run in the "threadsafe" style:
  ASSERT_DEATH(ThisShouldDie(), "");
}

TEST(MyDeathTest, TestTwo) {
  // This test is run in the "fast" style:
  ASSERT_DEATH(ThisShouldDie(), "");
}
```

### Caveats

The `statement` argument of `ASSERT_EXIT()` can be any valid C++ statement. If
it leaves the current function via a `return` statement or by throwing an
exception, the death test is considered to have failed. Some googletest macros
may return from the current function (e.g. `ASSERT_TRUE()`), so be sure to avoid
them in `statement`.

Since `statement` runs in the child process, any in-memory side effect (e.g.
modifying a variable, releasing memory, etc) it causes will *not* be observable
in the parent process. In particular, if you release memory in a death test,
your program will fail the heap check as the parent process will never see the
memory reclaimed. To solve this problem, you can

1.  try not to free memory in a death test;
2.  free the memory again in the parent process; or
3.  do not use the heap checker in your program.

Due to an implementation detail, you cannot place multiple death test assertions
on the same line; otherwise, compilation will fail with an unobvious error
message.

Despite the improved thread safety afforded by the "threadsafe" style of death
test, thread problems such as deadlock are still possible in the presence of
handlers registered with `pthread_atfork(3)`.


## Using Assertions in Sub-routines

### Adding Traces to Assertions

If a test sub-routine is called from several places, when an assertion inside it
fails, it can be hard to tell which invocation of the sub-routine the failure is
from. You can alleviate this problem using extra logging or custom failure
messages, but that usually clutters up your tests. A better solution is to use
the `SCOPED_TRACE` macro or the `ScopedTrace` utility:

```c++
SCOPED_TRACE(message);
ScopedTrace trace("file_path", line_number, message);
```

where `message` can be anything streamable to `std::ostream`. `SCOPED_TRACE`
macro will cause the current file name, line number, and the given message to be
added in every failure message. `ScopedTrace` accepts explicit file name and
line number in arguments, which is useful for writing test helpers. The effect
will be undone when the control leaves the current lexical scope.

For example,

```c++
10: void Sub1(int n) {
11:   EXPECT_EQ(Bar(n), 1);
12:   EXPECT_EQ(Bar(n + 1), 2);
13: }
14:
15: TEST(FooTest, Bar) {
16:   {
17:     SCOPED_TRACE("A");  // This trace point will be included in
18:                         // every failure in this scope.
19:     Sub1(1);
20:   }
21:   // Now it won't.
22:   Sub1(9);
23: }
```

could result in messages like these:

```none
path/to/foo_test.cc:11: Failure
Value of: Bar(n)
Expected: 1
  Actual: 2
   Trace:
path/to/foo_test.cc:17: A

path/to/foo_test.cc:12: Failure
Value of: Bar(n + 1)
Expected: 2
  Actual: 3
```

Without the trace, it would've been difficult to know which invocation of
`Sub1()` the two failures come from respectively. (You could add an extra
message to each assertion in `Sub1()` to indicate the value of `n`, but that's
tedious.)

Some tips on using `SCOPED_TRACE`:

1.  With a suitable message, it's often enough to use `SCOPED_TRACE` at the
    beginning of a sub-routine, instead of at each call site.
2.  When calling sub-routines inside a loop, make the loop iterator part of the
    message in `SCOPED_TRACE` such that you can know which iteration the failure
    is from.
3.  Sometimes the line number of the trace point is enough for identifying the
    particular invocation of a sub-routine. In this case, you don't have to
    choose a unique message for `SCOPED_TRACE`. You can simply use `""`.
4.  You can use `SCOPED_TRACE` in an inner scope when there is one in the outer
    scope. In this case, all active trace points will be included in the failure
    messages, in reverse order they are encountered.
5.  The trace dump is clickable in Emacs - hit `return` on a line number and
    you'll be taken to that line in the source file!

### Propagating Fatal Failures

A common pitfall when using `ASSERT_*` and `FAIL*` is not understanding that
when they fail they only abort the _current function_, not the entire test. For
example, the following test will segfault:

```c++
void Subroutine() {
  // Generates a fatal failure and aborts the current function.
  ASSERT_EQ(1, 2);

  // The following won't be executed.
  ...
}

TEST(FooTest, Bar) {
  Subroutine();  // The intended behavior is for the fatal failure
                 // in Subroutine() to abort the entire test.

  // The actual behavior: the function goes on after Subroutine() returns.
  int* p = NULL;
  *p = 3;  // Segfault!
}
```

To alleviate this, googletest provides three different solutions. You could use
either exceptions, the `(ASSERT|EXPECT)_NO_FATAL_FAILURE` assertions or the
`HasFatalFailure()` function. They are described in the following two
subsections.

#### Asserting on Subroutines with an exception

The following code can turn ASSERT-failure into an exception:

```c++
class ThrowListener : public testing::EmptyTestEventListener {
  void OnTestPartResult(const testing::TestPartResult& result) override {
    if (result.type() == testing::TestPartResult::kFatalFailure) {
      throw testing::AssertionException(result);
    }
  }
};
int main(int argc, char** argv) {
  ...
  testing::UnitTest::GetInstance()->listeners().Append(new ThrowListener);
  return RUN_ALL_TESTS();
}
```

This listener should be added after other listeners if you have any, otherwise
they won't see failed `OnTestPartResult`.

#### Asserting on Subroutines

As shown above, if your test calls a subroutine that has an `ASSERT_*` failure
in it, the test will continue after the subroutine returns. This may not be what
you want.

Often people want fatal failures to propagate like exceptions. For that
googletest offers the following macros:

Fatal assertion                       | Nonfatal assertion                    | Verifies
------------------------------------- | ------------------------------------- | --------
`ASSERT_NO_FATAL_FAILURE(statement);` | `EXPECT_NO_FATAL_FAILURE(statement);` | `statement` doesn't generate any new fatal failures in the current thread.

Only failures in the thread that executes the assertion are checked to determine
the result of this type of assertions. If `statement` creates new threads,
failures in these threads are ignored.

Examples:

```c++
ASSERT_NO_FATAL_FAILURE(Foo());

int i;
EXPECT_NO_FATAL_FAILURE({
  i = Bar();
});
```

Assertions from multiple threads are currently not supported on Windows.

#### Checking for Failures in the Current Test

`HasFatalFailure()` in the `::testing::Test` class returns `true` if an
assertion in the current test has suffered a fatal failure. This allows
functions to catch fatal failures in a sub-routine and return early.

```c++
class Test {
 public:
  ...
  static bool HasFatalFailure();
};
```

The typical usage, which basically simulates the behavior of a thrown exception,
is:

```c++
TEST(FooTest, Bar) {
  Subroutine();
  // Aborts if Subroutine() had a fatal failure.
  if (HasFatalFailure()) return;

  // The following won't be executed.
  ...
}
```

If `HasFatalFailure()` is used outside of `TEST()` , `TEST_F()` , or a test
fixture, you must add the `::testing::Test::` prefix, as in:

```c++
if (::testing::Test::HasFatalFailure()) return;
```

Similarly, `HasNonfatalFailure()` returns `true` if the current test has at
least one non-fatal failure, and `HasFailure()` returns `true` if the current
test has at least one failure of either kind.

## Logging Additional Information

In your test code, you can call `RecordProperty("key", value)` to log additional
information, where `value` can be either a string or an `int`. The *last* value
recorded for a key will be emitted to the
[XML output](#generating-an-xml-report) if you specify one. For example, the
test

```c++
TEST_F(WidgetUsageTest, MinAndMaxWidgets) {
  RecordProperty("MaximumWidgets", ComputeMaxUsage());
  RecordProperty("MinimumWidgets", ComputeMinUsage());
}
```

will output XML like this:

```xml
  ...
    <testcase name="MinAndMaxWidgets" status="run" time="0.006" classname="WidgetUsageTest" MaximumWidgets="12" MinimumWidgets="9" />
  ...
```

> NOTE:
>
> *   `RecordProperty()` is a static member of the `Test` class. Therefore it
>     needs to be prefixed with `::testing::Test::` if used outside of the
>     `TEST` body and the test fixture class.
> *   `*key*` must be a valid XML attribute name, and cannot conflict with the
>     ones already used by googletest (`name`, `status`, `time`, `classname`,
>     `type_param`, and `value_param`).
> *   Calling `RecordProperty()` outside of the lifespan of a test is allowed.
>     If it's called outside of a test but between a test suite's
>     `SetUpTestSuite()` and `TearDownTestSuite()` methods, it will be
>     attributed to the XML element for the test suite. If it's called outside
>     of all test suites (e.g. in a test environment), it will be attributed to
>     the top-level XML element.

## Sharing Resources Between Tests in the Same Test Suite

googletest creates a new test fixture object for each test in order to make
tests independent and easier to debug. However, sometimes tests use resources
that are expensive to set up, making the one-copy-per-test model prohibitively
expensive.

If the tests don't change the resource, there's no harm in their sharing a
single resource copy. So, in addition to per-test set-up/tear-down, googletest
also supports per-test-suite set-up/tear-down. To use it:

1.  In your test fixture class (say `FooTest` ), declare as `static` some member
    variables to hold the shared resources.
1.  Outside your test fixture class (typically just below it), define those
    member variables, optionally giving them initial values.
1.  In the same test fixture class, define a `static void SetUpTestSuite()`
    function (remember not to spell it as **`SetupTestSuite`** with a small
    `u`!) to set up the shared resources and a `static void TearDownTestSuite()`
    function to tear them down.

That's it! googletest automatically calls `SetUpTestSuite()` before running the
*first test* in the `FooTest` test suite (i.e. before creating the first
`FooTest` object), and calls `TearDownTestSuite()` after running the *last test*
in it (i.e. after deleting the last `FooTest` object). In between, the tests can
use the shared resources.

Remember that the test order is undefined, so your code can't depend on a test
preceding or following another. Also, the tests must either not modify the state
of any shared resource, or, if they do modify the state, they must restore the
state to its original value before passing control to the next test.

Here's an example of per-test-suite set-up and tear-down:

```c++
class FooTest : public ::testing::Test {
 protected:
  // Per-test-suite set-up.
  // Called before the first test in this test suite.
  // Can be omitted if not needed.
  static void SetUpTestSuite() {
    shared_resource_ = new ...;
  }

  // Per-test-suite tear-down.
  // Called after the last test in this test suite.
  // Can be omitted if not needed.
  static void TearDownTestSuite() {
    delete shared_resource_;
    shared_resource_ = NULL;
  }

  // You can define per-test set-up logic as usual.
  virtual void SetUp() { ... }

  // You can define per-test tear-down logic as usual.
  virtual void TearDown() { ... }

  // Some expensive resource shared by all tests.
  static T* shared_resource_;
};

T* FooTest::shared_resource_ = NULL;

TEST_F(FooTest, Test1) {
  ... you can refer to shared_resource_ here ...
}

TEST_F(FooTest, Test2) {
  ... you can refer to shared_resource_ here ...
}
```

NOTE: Though the above code declares `SetUpTestSuite()` protected, it may
sometimes be necessary to declare it public, such as when using it with
`TEST_P`.

## Global Set-Up and Tear-Down

Just as you can do set-up and tear-down at the test level and the test suite
level, you can also do it at the test program level. Here's how.

First, you subclass the `::testing::Environment` class to define a test
environment, which knows how to set-up and tear-down:

```c++
class Environment {
 public:
  virtual ~Environment() {}

  // Override this to define how to set up the environment.
  virtual void SetUp() {}

  // Override this to define how to tear down the environment.
  virtual void TearDown() {}
};
```

Then, you register an instance of your environment class with googletest by
calling the `::testing::AddGlobalTestEnvironment()` function:

```c++
Environment* AddGlobalTestEnvironment(Environment* env);
```

Now, when `RUN_ALL_TESTS()` is called, it first calls the `SetUp()` method of
each environment object, then runs the tests if none of the environments
reported fatal failures and `GTEST_SKIP()` was not called. `RUN_ALL_TESTS()`
always calls `TearDown()` with each environment object, regardless of whether or
not the tests were run.

It's OK to register multiple environment objects. In this suite, their `SetUp()`
will be called in the order they are registered, and their `TearDown()` will be
called in the reverse order.

Note that googletest takes ownership of the registered environment objects.
Therefore **do not delete them** by yourself.

You should call `AddGlobalTestEnvironment()` before `RUN_ALL_TESTS()` is called,
probably in `main()`. If you use `gtest_main`, you need to call this before
`main()` starts for it to take effect. One way to do this is to define a global
variable like this:

```c++
::testing::Environment* const foo_env =
    ::testing::AddGlobalTestEnvironment(new FooEnvironment);
```

However, we strongly recommend you to write your own `main()` and call
`AddGlobalTestEnvironment()` there, as relying on initialization of global
variables makes the code harder to read and may cause problems when you register
multiple environments from different translation units and the environments have
dependencies among them (remember that the compiler doesn't guarantee the order
in which global variables from different translation units are initialized).

## Value-Parameterized Tests

*Value-parameterized tests* allow you to test your code with different
parameters without writing multiple copies of the same test. This is useful in a
number of situations, for example:

*   You have a piece of code whose behavior is affected by one or more
    command-line flags. You want to make sure your code performs correctly for
    various values of those flags.
*   You want to test different implementations of an OO interface.
*   You want to test your code over various inputs (a.k.a. data-driven testing).
    This feature is easy to abuse, so please exercise your good sense when doing
    it!

### How to Write Value-Parameterized Tests

To write value-parameterized tests, first you should define a fixture class. It
must be derived from both `testing::Test` and `testing::WithParamInterface<T>`
(the latter is a pure interface), where `T` is the type of your parameter
values. For convenience, you can just derive the fixture class from
`testing::TestWithParam<T>`, which itself is derived from both `testing::Test`
and `testing::WithParamInterface<T>`. `T` can be any copyable type. If it's a
raw pointer, you are responsible for managing the lifespan of the pointed
values.

NOTE: If your test fixture defines `SetUpTestSuite()` or `TearDownTestSuite()`
they must be declared **public** rather than **protected** in order to use
`TEST_P`.

```c++
class FooTest :
    public testing::TestWithParam<const char*> {
  // You can implement all the usual fixture class members here.
  // To access the test parameter, call GetParam() from class
  // TestWithParam<T>.
};

// Or, when you want to add parameters to a pre-existing fixture class:
class BaseTest : public testing::Test {
  ...
};
class BarTest : public BaseTest,
                public testing::WithParamInterface<const char*> {
  ...
};
```

Then, use the `TEST_P` macro to define as many test patterns using this fixture
as you want. The `_P` suffix is for "parameterized" or "pattern", whichever you
prefer to think.

```c++
TEST_P(FooTest, DoesBlah) {
  // Inside a test, access the test parameter with the GetParam() method
  // of the TestWithParam<T> class:
  EXPECT_TRUE(foo.Blah(GetParam()));
  ...
}

TEST_P(FooTest, HasBlahBlah) {
  ...
}
```

Finally, you can use `INSTANTIATE_TEST_SUITE_P` to instantiate the test suite
with any set of parameters you want. googletest defines a number of functions
for generating test parameters. They return what we call (surprise!) *parameter
generators*. Here is a summary of them, which are all in the `testing`
namespace:

| Parameter Generator          | Behavior                                    |
| ---------------------------- | ------------------------------------------- |
| `Range(begin, end [, step])` | Yields values `{begin, begin+step,          |
:                              : begin+step+step, ...}`. The values do not   :
:                              : include `end`. `step` defaults to 1.        :
| `Values(v1, v2, ..., vN)`    | Yields values `{v1, v2, ..., vN}`.          |
| `ValuesIn(container)` and    | Yields values from a C-style array, an      |
: `ValuesIn(begin,end)`        : STL-style container, or an iterator range   :
:                              : `[begin, end)`.                             :
| `Bool()`                     | Yields sequence `{false, true}`.            |
| `Combine(g1, g2, ..., gN)`   | Yields all combinations (Cartesian product) |
:                              : as std\:\:tuples of the values generated by :
:                              : the `N` generators.                         :

For more details, see the comments at the definitions of these functions.

The following statement will instantiate tests from the `FooTest` test suite
each with parameter values `"meeny"`, `"miny"`, and `"moe"`.

```c++
INSTANTIATE_TEST_SUITE_P(InstantiationName,
                         FooTest,
                         testing::Values("meeny", "miny", "moe"));
```

NOTE: The code above must be placed at global or namespace scope, not at
function scope.

NOTE: Don't forget this step! If you do your test will silently pass, but none
of its suites will ever run!

To distinguish different instances of the pattern (yes, you can instantiate it
more than once), the first argument to `INSTANTIATE_TEST_SUITE_P` is a prefix
that will be added to the actual test suite name. Remember to pick unique
prefixes for different instantiations. The tests from the instantiation above
will have these names:

*   `InstantiationName/FooTest.DoesBlah/0` for `"meeny"`
*   `InstantiationName/FooTest.DoesBlah/1` for `"miny"`
*   `InstantiationName/FooTest.DoesBlah/2` for `"moe"`
*   `InstantiationName/FooTest.HasBlahBlah/0` for `"meeny"`
*   `InstantiationName/FooTest.HasBlahBlah/1` for `"miny"`
*   `InstantiationName/FooTest.HasBlahBlah/2` for `"moe"`

You can use these names in [`--gtest_filter`](#running-a-subset-of-the-tests).

This statement will instantiate all tests from `FooTest` again, each with
parameter values `"cat"` and `"dog"`:

```c++
const char* pets[] = {"cat", "dog"};
INSTANTIATE_TEST_SUITE_P(AnotherInstantiationName, FooTest,
                         testing::ValuesIn(pets));
```

The tests from the instantiation above will have these names:

*   `AnotherInstantiationName/FooTest.DoesBlah/0` for `"cat"`
*   `AnotherInstantiationName/FooTest.DoesBlah/1` for `"dog"`
*   `AnotherInstantiationName/FooTest.HasBlahBlah/0` for `"cat"`
*   `AnotherInstantiationName/FooTest.HasBlahBlah/1` for `"dog"`

Please note that `INSTANTIATE_TEST_SUITE_P` will instantiate *all* tests in the
given test suite, whether their definitions come before or *after* the
`INSTANTIATE_TEST_SUITE_P` statement.

You can see sample7_unittest.cc and sample8_unittest.cc for more examples.

### Creating Value-Parameterized Abstract Tests

In the above, we define and instantiate `FooTest` in the *same* source file.
Sometimes you may want to define value-parameterized tests in a library and let
other people instantiate them later. This pattern is known as *abstract tests*.
As an example of its application, when you are designing an interface you can
write a standard suite of abstract tests (perhaps using a factory function as
the test parameter) that all implementations of the interface are expected to
pass. When someone implements the interface, they can instantiate your suite to
get all the interface-conformance tests for free.

To define abstract tests, you should organize your code like this:

1.  Put the definition of the parameterized test fixture class (e.g. `FooTest`)
    in a header file, say `foo_param_test.h`. Think of this as *declaring* your
    abstract tests.
1.  Put the `TEST_P` definitions in `foo_param_test.cc`, which includes
    `foo_param_test.h`. Think of this as *implementing* your abstract tests.

Once they are defined, you can instantiate them by including `foo_param_test.h`,
invoking `INSTANTIATE_TEST_SUITE_P()`, and depending on the library target that
contains `foo_param_test.cc`. You can instantiate the same abstract test suite
multiple times, possibly in different source files.

### Specifying Names for Value-Parameterized Test Parameters

The optional last argument to `INSTANTIATE_TEST_SUITE_P()` allows the user to
specify a function or functor that generates custom test name suffixes based on
the test parameters. The function should accept one argument of type
`testing::TestParamInfo<class ParamType>`, and return `std::string`.

`testing::PrintToStringParamName` is a builtin test suffix generator that
returns the value of `testing::PrintToString(GetParam())`. It does not work for
`std::string` or C strings.

NOTE: test names must be non-empty, unique, and may only contain ASCII
alphanumeric characters. In particular, they
[should not contain underscores](https://github.com/google/googletest/blob/master/googletest/docs/faq.md#why-should-test-suite-names-and-test-names-not-contain-underscore)

```c++
class MyTestSuite : public testing::TestWithParam<int> {};

TEST_P(MyTestSuite, MyTest)
{
  std::cout << "Example Test Param: " << GetParam() << std::endl;
}

INSTANTIATE_TEST_SUITE_P(MyGroup, MyTestSuite, testing::Range(0, 10),
                         testing::PrintToStringParamName());
```

Providing a custom functor allows for more control over test parameter name
generation, especially for types where the automatic conversion does not
generate helpful parameter names (e.g. strings as demonstrated above). The
following example illustrates this for multiple parameters, an enumeration type
and a string, and also demonstrates how to combine generators. It uses a lambda
for conciseness:

```c++
enum class MyType { MY_FOO = 0, MY_BAR = 1 };

class MyTestSuite : public testing::TestWithParam<std::tuple<MyType, string>> {
};

INSTANTIATE_TEST_SUITE_P(
    MyGroup, MyTestSuite,
    testing::Combine(
        testing::Values(MyType::VALUE_0, MyType::VALUE_1),
        testing::ValuesIn("", "")),
    [](const testing::TestParamInfo<MyTestSuite::ParamType>& info) {
      string name = absl::StrCat(
          std::get<0>(info.param) == MY_FOO ? "Foo" : "Bar", "_",
          std::get<1>(info.param));
      absl::c_replace_if(name, [](char c) { return !std::isalnum(c); }, '_');
      return name;
    });
```

## Typed Tests

Suppose you have multiple implementations of the same interface and want to make
sure that all of them satisfy some common requirements. Or, you may have defined
several types that are supposed to conform to the same "concept" and you want to
verify it. In both cases, you want the same test logic repeated for different
types.

While you can write one `TEST` or `TEST_F` for each type you want to test (and
you may even factor the test logic into a function template that you invoke from
the `TEST`), it's tedious and doesn't scale: if you want `m` tests over `n`
types, you'll end up writing `m*n` `TEST`s.

*Typed tests* allow you to repeat the same test logic over a list of types. You
only need to write the test logic once, although you must know the type list
when writing typed tests. Here's how you do it:

First, define a fixture class template. It should be parameterized by a type.
Remember to derive it from `::testing::Test`:

```c++
template <typename T>
class FooTest : public ::testing::Test {
 public:
  ...
  typedef std::list<T> List;
  static T shared_;
  T value_;
};
```

Next, associate a list of types with the test suite, which will be repeated for
each type in the list:

```c++
using MyTypes = ::testing::Types<char, int, unsigned int>;
TYPED_TEST_SUITE(FooTest, MyTypes);
```

The type alias (`using` or `typedef`) is necessary for the `TYPED_TEST_SUITE`
macro to parse correctly. Otherwise the compiler will think that each comma in
the type list introduces a new macro argument.

Then, use `TYPED_TEST()` instead of `TEST_F()` to define a typed test for this
test suite. You can repeat this as many times as you want:

```c++
TYPED_TEST(FooTest, DoesBlah) {
  // Inside a test, refer to the special name TypeParam to get the type
  // parameter.  Since we are inside a derived class template, C++ requires
  // us to visit the members of FooTest via 'this'.
  TypeParam n = this->value_;

  // To visit static members of the fixture, add the 'TestFixture::'
  // prefix.
  n += TestFixture::shared_;

  // To refer to typedefs in the fixture, add the 'typename TestFixture::'
  // prefix.  The 'typename' is required to satisfy the compiler.
  typename TestFixture::List values;

  values.push_back(n);
  ...
}

TYPED_TEST(FooTest, HasPropertyA) { ... }
```

You can see sample6_unittest.cc

## Type-Parameterized Tests

*Type-parameterized tests* are like typed tests, except that they don't require
you to know the list of types ahead of time. Instead, you can define the test
logic first and instantiate it with different type lists later. You can even
instantiate it more than once in the same program.

If you are designing an interface or concept, you can define a suite of
type-parameterized tests to verify properties that any valid implementation of
the interface/concept should have. Then, the author of each implementation can
just instantiate the test suite with their type to verify that it conforms to
the requirements, without having to write similar tests repeatedly. Here's an
example:

First, define a fixture class template, as we did with typed tests:

```c++
template <typename T>
class FooTest : public ::testing::Test {
  ...
};
```

Next, declare that you will define a type-parameterized test suite:

```c++
TYPED_TEST_SUITE_P(FooTest);
```

Then, use `TYPED_TEST_P()` to define a type-parameterized test. You can repeat
this as many times as you want:

```c++
TYPED_TEST_P(FooTest, DoesBlah) {
  // Inside a test, refer to TypeParam to get the type parameter.
  TypeParam n = 0;
  ...
}

TYPED_TEST_P(FooTest, HasPropertyA) { ... }
```

Now the tricky part: you need to register all test patterns using the
`REGISTER_TYPED_TEST_SUITE_P` macro before you can instantiate them. The first
argument of the macro is the test suite name; the rest are the names of the
tests in this test suite:

```c++
REGISTER_TYPED_TEST_SUITE_P(FooTest,
                            DoesBlah, HasPropertyA);
```

Finally, you are free to instantiate the pattern with the types you want. If you
put the above code in a header file, you can `#include` it in multiple C++
source files and instantiate it multiple times.

```c++
typedef ::testing::Types<char, int, unsigned int> MyTypes;
INSTANTIATE_TYPED_TEST_SUITE_P(My, FooTest, MyTypes);
```

To distinguish different instances of the pattern, the first argument to the
`INSTANTIATE_TYPED_TEST_SUITE_P` macro is a prefix that will be added to the
actual test suite name. Remember to pick unique prefixes for different
instances.

In the special case where the type list contains only one type, you can write
that type directly without `::testing::Types<...>`, like this:

```c++
INSTANTIATE_TYPED_TEST_SUITE_P(My, FooTest, int);
```

You can see `sample6_unittest.cc` for a complete example.

## Testing Private Code

If you change your software's internal implementation, your tests should not
break as long as the change is not observable by users. Therefore, **per the
black-box testing principle, most of the time you should test your code through
its public interfaces.**

**If you still find yourself needing to test internal implementation code,
consider if there's a better design.** The desire to test internal
implementation is often a sign that the class is doing too much. Consider
extracting an implementation class, and testing it. Then use that implementation
class in the original class.

If you absolutely have to test non-public interface code though, you can. There
are two cases to consider:

*   Static functions ( *not* the same as static member functions!) or unnamed
    namespaces, and
*   Private or protected class members

To test them, we use the following special techniques:

*   Both static functions and definitions/declarations in an unnamed namespace
    are only visible within the same translation unit. To test them, you can
    `#include` the entire `.cc` file being tested in your `*_test.cc` file.
    (#including `.cc` files is not a good way to reuse code - you should not do
    this in production code!)

    However, a better approach is to move the private code into the
    `foo::internal` namespace, where `foo` is the namespace your project
    normally uses, and put the private declarations in a `*-internal.h` file.
    Your production `.cc` files and your tests are allowed to include this
    internal header, but your clients are not. This way, you can fully test your
    internal implementation without leaking it to your clients.

*   Private class members are only accessible from within the class or by
    friends. To access a class' private members, you can declare your test
    fixture as a friend to the class and define accessors in your fixture. Tests
    using the fixture can then access the private members of your production
    class via the accessors in the fixture. Note that even though your fixture
    is a friend to your production class, your tests are not automatically
    friends to it, as they are technically defined in sub-classes of the
    fixture.

    Another way to test private members is to refactor them into an
    implementation class, which is then declared in a `*-internal.h` file. Your
    clients aren't allowed to include this header but your tests can. Such is
    called the
    [Pimpl](https://www.gamedev.net/articles/programming/general-and-gameplay-programming/the-c-pimpl-r1794/)
    (Private Implementation) idiom.

    Or, you can declare an individual test as a friend of your class by adding
    this line in the class body:

    ```c++
        FRIEND_TEST(TestSuiteName, TestName);
    ```

    For example,

    ```c++
    // foo.h
    class Foo {
      ...
     private:
      FRIEND_TEST(FooTest, BarReturnsZeroOnNull);

      int Bar(void* x);
    };

    // foo_test.cc
    ...
    TEST(FooTest, BarReturnsZeroOnNull) {
      Foo foo;
      EXPECT_EQ(foo.Bar(NULL), 0);  // Uses Foo's private member Bar().
    }
    ```

    Pay special attention when your class is defined in a namespace, as you
    should define your test fixtures and tests in the same namespace if you want
    them to be friends of your class. For example, if the code to be tested
    looks like:

    ```c++
    namespace my_namespace {

    class Foo {
      friend class FooTest;
      FRIEND_TEST(FooTest, Bar);
      FRIEND_TEST(FooTest, Baz);
      ... definition of the class Foo ...
    };

    }  // namespace my_namespace
    ```

    Your test code should be something like:

    ```c++
    namespace my_namespace {

    class FooTest : public ::testing::Test {
     protected:
      ...
    };

    TEST_F(FooTest, Bar) { ... }
    TEST_F(FooTest, Baz) { ... }

    }  // namespace my_namespace
    ```

## "Catching" Failures

If you are building a testing utility on top of googletest, you'll want to test
your utility. What framework would you use to test it? googletest, of course.

The challenge is to verify that your testing utility reports failures correctly.
In frameworks that report a failure by throwing an exception, you could catch
the exception and assert on it. But googletest doesn't use exceptions, so how do
we test that a piece of code generates an expected failure?

gunit-spi.h contains some constructs to do this. After #including this header,
you can use

```c++
  EXPECT_FATAL_FAILURE(statement, substring);
```

to assert that `statement` generates a fatal (e.g. `ASSERT_*`) failure in the
current thread whose message contains the given `substring`, or use

```c++
  EXPECT_NONFATAL_FAILURE(statement, substring);
```

if you are expecting a non-fatal (e.g. `EXPECT_*`) failure.

Only failures in the current thread are checked to determine the result of this
type of expectations. If `statement` creates new threads, failures in these
threads are also ignored. If you want to catch failures in other threads as
well, use one of the following macros instead:

```c++
  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(statement, substring);
  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(statement, substring);
```

NOTE: Assertions from multiple threads are currently not supported on Windows.

For technical reasons, there are some caveats:

1.  You cannot stream a failure message to either macro.

1.  `statement` in `EXPECT_FATAL_FAILURE{_ON_ALL_THREADS}()` cannot reference
    local non-static variables or non-static members of `this` object.

1.  `statement` in `EXPECT_FATAL_FAILURE{_ON_ALL_THREADS}()` cannot return a
    value.

## Registering tests programmatically

The `TEST` macros handle the vast majority of all use cases, but there are few
were runtime registration logic is required. For those cases, the framework
provides the `::testing::RegisterTest` that allows callers to register arbitrary
tests dynamically.

This is an advanced API only to be used when the `TEST` macros are insufficient.
The macros should be preferred when possible, as they avoid most of the
complexity of calling this function.

It provides the following signature:

```c++
template <typename Factory>
TestInfo* RegisterTest(const char* test_suite_name, const char* test_name,
                       const char* type_param, const char* value_param,
                       const char* file, int line, Factory factory);
```

The `factory` argument is a factory callable (move-constructible) object or
function pointer that creates a new instance of the Test object. It handles
ownership to the caller. The signature of the callable is `Fixture*()`, where
`Fixture` is the test fixture class for the test. All tests registered with the
same `test_suite_name` must return the same fixture type. This is checked at
runtime.

The framework will infer the fixture class from the factory and will call the
`SetUpTestSuite` and `TearDownTestSuite` for it.

Must be called before `RUN_ALL_TESTS()` is invoked, otherwise behavior is
undefined.

Use case example:

```c++
class MyFixture : public ::testing::Test {
 public:
  // All of these optional, just like in regular macro usage.
  static void SetUpTestSuite() { ... }
  static void TearDownTestSuite() { ... }
  void SetUp() override { ... }
  void TearDown() override { ... }
};

class MyTest : public MyFixture {
 public:
  explicit MyTest(int data) : data_(data) {}
  void TestBody() override { ... }

 private:
  int data_;
};

void RegisterMyTests(const std::vector<int>& values) {
  for (int v : values) {
    ::testing::RegisterTest(
        "MyFixture", ("Test" + std::to_string(v)).c_str(), nullptr,
        std::to_string(v).c_str(),
        __FILE__, __LINE__,
        // Important to use the fixture type as the return type here.
        [=]() -> MyFixture* { return new MyTest(v); });
  }
}
...
int main(int argc, char** argv) {
  std::vector<int> values_to_test = LoadValuesFromConfig();
  RegisterMyTests(values_to_test);
  ...
  return RUN_ALL_TESTS();
}
```
## Getting the Current Test's Name

Sometimes a function may need to know the name of the currently running test.
For example, you may be using the `SetUp()` method of your test fixture to set
the golden file name based on which test is running. The `::testing::TestInfo`
class has this information:

```c++
namespace testing {

class TestInfo {
 public:
  // Returns the test suite name and the test name, respectively.
  //
  // Do NOT delete or free the return value - it's managed by the
  // TestInfo class.
  const char* test_suite_name() const;
  const char* name() const;
};

}
```

To obtain a `TestInfo` object for the currently running test, call
`current_test_info()` on the `UnitTest` singleton object:

```c++
  // Gets information about the currently running test.
  // Do NOT delete the returned object - it's managed by the UnitTest class.
  const ::testing::TestInfo* const test_info =
    ::testing::UnitTest::GetInstance()->current_test_info();



  printf("We are in test %s of test suite %s.\n",
         test_info->name(),
         test_info->test_suite_name());
```

`current_test_info()` returns a null pointer if no test is running. In
particular, you cannot find the test suite name in `TestSuiteSetUp()`,
`TestSuiteTearDown()` (where you know the test suite name implicitly), or
functions called from them.

## Extending googletest by Handling Test Events

googletest provides an **event listener API** to let you receive notifications
about the progress of a test program and test failures. The events you can
listen to include the start and end of the test program, a test suite, or a test
method, among others. You may use this API to augment or replace the standard
console output, replace the XML output, or provide a completely different form
of output, such as a GUI or a database. You can also use test events as
checkpoints to implement a resource leak checker, for example.

### Defining Event Listeners

To define a event listener, you subclass either testing::TestEventListener or
testing::EmptyTestEventListener The former is an (abstract) interface, where
*each pure virtual method can be overridden to handle a test event* (For
example, when a test starts, the `OnTestStart()` method will be called.). The
latter provides an empty implementation of all methods in the interface, such
that a subclass only needs to override the methods it cares about.

When an event is fired, its context is passed to the handler function as an
argument. The following argument types are used:

*   UnitTest reflects the state of the entire test program,
*   TestSuite has information about a test suite, which can contain one or more
    tests,
*   TestInfo contains the state of a test, and
*   TestPartResult represents the result of a test assertion.

An event handler function can examine the argument it receives to find out
interesting information about the event and the test program's state.

Here's an example:

```c++
  class MinimalistPrinter : public ::testing::EmptyTestEventListener {
    // Called before a test starts.
    virtual void OnTestStart(const ::testing::TestInfo& test_info) {
      printf("*** Test %s.%s starting.\n",
             test_info.test_suite_name(), test_info.name());
    }

    // Called after a failed assertion or a SUCCESS().
    virtual void OnTestPartResult(const ::testing::TestPartResult& test_part_result) {
      printf("%s in %s:%d\n%s\n",
             test_part_result.failed() ? "*** Failure" : "Success",
             test_part_result.file_name(),
             test_part_result.line_number(),
             test_part_result.summary());
    }

    // Called after a test ends.
    virtual void OnTestEnd(const ::testing::TestInfo& test_info) {
      printf("*** Test %s.%s ending.\n",
             test_info.test_suite_name(), test_info.name());
    }
  };
```

### Using Event Listeners

To use the event listener you have defined, add an instance of it to the
googletest event listener list (represented by class TestEventListeners - note
the "s" at the end of the name) in your `main()` function, before calling
`RUN_ALL_TESTS()`:

```c++
int main(int argc, char** argv) {
  ::testing::InitGoogleTest(&argc, argv);
  // Gets hold of the event listener list.
  ::testing::TestEventListeners& listeners =
        ::testing::UnitTest::GetInstance()->listeners();
  // Adds a listener to the end.  googletest takes the ownership.
  listeners.Append(new MinimalistPrinter);
  return RUN_ALL_TESTS();
}
```

There's only one problem: the default test result printer is still in effect, so
its output will mingle with the output from your minimalist printer. To suppress
the default printer, just release it from the event listener list and delete it.
You can do so by adding one line:

```c++
  ...
  delete listeners.Release(listeners.default_result_printer());
  listeners.Append(new MinimalistPrinter);
  return RUN_ALL_TESTS();
```

Now, sit back and enjoy a completely different output from your tests. For more
details, you can read this sample9_unittest.cc

You may append more than one listener to the list. When an `On*Start()` or
`OnTestPartResult()` event is fired, the listeners will receive it in the order
they appear in the list (since new listeners are added to the end of the list,
the default text printer and the default XML generator will receive the event
first). An `On*End()` event will be received by the listeners in the *reverse*
order. This allows output by listeners added later to be framed by output from
listeners added earlier.

### Generating Failures in Listeners

You may use failure-raising macros (`EXPECT_*()`, `ASSERT_*()`, `FAIL()`, etc)
when processing an event. There are some restrictions:

1.  You cannot generate any failure in `OnTestPartResult()` (otherwise it will
    cause `OnTestPartResult()` to be called recursively).
1.  A listener that handles `OnTestPartResult()` is not allowed to generate any
    failure.

When you add listeners to the listener list, you should put listeners that
handle `OnTestPartResult()` *before* listeners that can generate failures. This
ensures that failures generated by the latter are attributed to the right test
by the former.

We have a sample of failure-raising listener sample10_unittest.cc

## Running Test Programs: Advanced Options

googletest test programs are ordinary executables. Once built, you can run them
directly and affect their behavior via the following environment variables
and/or command line flags. For the flags to work, your programs must call
`::testing::InitGoogleTest()` before calling `RUN_ALL_TESTS()`.

To see a list of supported flags and their usage, please run your test program
with the `--help` flag. You can also use `-h`, `-?`, or `/?` for short.

If an option is specified both by an environment variable and by a flag, the
latter takes precedence.

### Selecting Tests

#### Listing Test Names

Sometimes it is necessary to list the available tests in a program before
running them so that a filter may be applied if needed. Including the flag
`--gtest_list_tests` overrides all other flags and lists tests in the following
format:

```none
TestSuite1.
  TestName1
  TestName2
TestSuite2.
  TestName
```

None of the tests listed are actually run if the flag is provided. There is no
corresponding environment variable for this flag.

#### Running a Subset of the Tests

By default, a googletest program runs all tests the user has defined. Sometimes,
you want to run only a subset of the tests (e.g. for debugging or quickly
verifying a change). If you set the `GTEST_FILTER` environment variable or the
`--gtest_filter` flag to a filter string, googletest will only run the tests
whose full names (in the form of `TestSuiteName.TestName`) match the filter.

The format of a filter is a '`:`'-separated list of wildcard patterns (called
the *positive patterns*) optionally followed by a '`-`' and another
'`:`'-separated pattern list (called the *negative patterns*). A test matches
the filter if and only if it matches any of the positive patterns but does not
match any of the negative patterns.

A pattern may contain `'*'` (matches any string) or `'?'` (matches any single
character). For convenience, the filter `'*-NegativePatterns'` can be also
written as `'-NegativePatterns'`.

For example:

*   `./foo_test` Has no flag, and thus runs all its tests.
*   `./foo_test --gtest_filter=*` Also runs everything, due to the single
    match-everything `*` value.
*   `./foo_test --gtest_filter=FooTest.*` Runs everything in test suite
    `FooTest` .
*   `./foo_test --gtest_filter=*Null*:*Constructor*` Runs any test whose full
    name contains either `"Null"` or `"Constructor"` .
*   `./foo_test --gtest_filter=-*DeathTest.*` Runs all non-death tests.
*   `./foo_test --gtest_filter=FooTest.*-FooTest.Bar` Runs everything in test
    suite `FooTest` except `FooTest.Bar`.
*   `./foo_test --gtest_filter=FooTest.*:BarTest.*-FooTest.Bar:BarTest.Foo` Runs
    everything in test suite `FooTest` except `FooTest.Bar` and everything in
    test suite `BarTest` except `BarTest.Foo`.

#### Temporarily Disabling Tests

If you have a broken test that you cannot fix right away, you can add the
`DISABLED_` prefix to its name. This will exclude it from execution. This is
better than commenting out the code or using `#if 0`, as disabled tests are
still compiled (and thus won't rot).

If you need to disable all tests in a test suite, you can either add `DISABLED_`
to the front of the name of each test, or alternatively add it to the front of
the test suite name.

For example, the following tests won't be run by googletest, even though they
will still be compiled:

```c++
// Tests that Foo does Abc.
TEST(FooTest, DISABLED_DoesAbc) { ... }

class DISABLED_BarTest : public ::testing::Test { ... };

// Tests that Bar does Xyz.
TEST_F(DISABLED_BarTest, DoesXyz) { ... }
```

NOTE: This feature should only be used for temporary pain-relief. You still have
to fix the disabled tests at a later date. As a reminder, googletest will print
a banner warning you if a test program contains any disabled tests.

TIP: You can easily count the number of disabled tests you have using `gsearch`
and/or `grep`. This number can be used as a metric for improving your test
quality.

#### Temporarily Enabling Disabled Tests

To include disabled tests in test execution, just invoke the test program with
the `--gtest_also_run_disabled_tests` flag or set the
`GTEST_ALSO_RUN_DISABLED_TESTS` environment variable to a value other than `0`.
You can combine this with the `--gtest_filter` flag to further select which
disabled tests to run.

### Repeating the Tests

Once in a while you'll run into a test whose result is hit-or-miss. Perhaps it
will fail only 1% of the time, making it rather hard to reproduce the bug under
a debugger. This can be a major source of frustration.

The `--gtest_repeat` flag allows you to repeat all (or selected) test methods in
a program many times. Hopefully, a flaky test will eventually fail and give you
a chance to debug. Here's how to use it:

```none
$ foo_test --gtest_repeat=1000
Repeat foo_test 1000 times and don't stop at failures.

$ foo_test --gtest_repeat=-1
A negative count means repeating forever.

$ foo_test --gtest_repeat=1000 --gtest_break_on_failure
Repeat foo_test 1000 times, stopping at the first failure.  This
is especially useful when running under a debugger: when the test
fails, it will drop into the debugger and you can then inspect
variables and stacks.

$ foo_test --gtest_repeat=1000 --gtest_filter=FooBar.*
Repeat the tests whose name matches the filter 1000 times.
```

If your test program contains
[global set-up/tear-down](#global-set-up-and-tear-down) code, it will be
repeated in each iteration as well, as the flakiness may be in it. You can also
specify the repeat count by setting the `GTEST_REPEAT` environment variable.

### Shuffling the Tests

You can specify the `--gtest_shuffle` flag (or set the `GTEST_SHUFFLE`
environment variable to `1`) to run the tests in a program in a random order.
This helps to reveal bad dependencies between tests.

By default, googletest uses a random seed calculated from the current time.
Therefore you'll get a different order every time. The console output includes
the random seed value, such that you can reproduce an order-related test failure
later. To specify the random seed explicitly, use the `--gtest_random_seed=SEED`
flag (or set the `GTEST_RANDOM_SEED` environment variable), where `SEED` is an
integer in the range [0, 99999]. The seed value 0 is special: it tells
googletest to do the default behavior of calculating the seed from the current
time.

If you combine this with `--gtest_repeat=N`, googletest will pick a different
random seed and re-shuffle the tests in each iteration.

### Controlling Test Output

#### Colored Terminal Output

googletest can use colors in its terminal output to make it easier to spot the
important information:

<code>
...<br/>
  <font color="green">[----------]</font><font color="black"> 1 test from
  FooTest</font><br/>
  <font color="green">[ RUN &nbsp; &nbsp; &nbsp;]</font><font color="black">
  FooTest.DoesAbc</font><br/>
  <font color="green">[ &nbsp; &nbsp; &nbsp; OK ]</font><font color="black">
  FooTest.DoesAbc </font><br/>
  <font color="green">[----------]</font><font color="black">
  2 tests from BarTest</font><br/>
  <font color="green">[ RUN &nbsp; &nbsp; &nbsp;]</font><font color="black">
  BarTest.HasXyzProperty </font><br/>
  <font color="green">[ &nbsp; &nbsp; &nbsp; OK ]</font><font color="black">
  BarTest.HasXyzProperty</font><br/>
  <font color="green">[ RUN &nbsp; &nbsp; &nbsp;]</font><font color="black">
  BarTest.ReturnsTrueOnSuccess ... some error messages ...</font><br/>
  <font color="red">[ &nbsp; FAILED ]</font><font color="black">
  BarTest.ReturnsTrueOnSuccess ...</font><br/>
  <font color="green">[==========]</font><font color="black">
  30 tests from 14 test suites ran.</font><br/>
  <font color="green">[ &nbsp; PASSED ]</font><font color="black">
  28 tests.</font><br/>
  <font color="red">[ &nbsp; FAILED ]</font><font color="black">
  2 tests, listed below:</font><br/>
  <font color="red">[ &nbsp; FAILED ]</font><font color="black">
  BarTest.ReturnsTrueOnSuccess</font><br/>
  <font color="red">[ &nbsp; FAILED ]</font><font color="black">
  AnotherTest.DoesXyz<br/>
<br/>
  2 FAILED TESTS
  </font>
</code>

You can set the `GTEST_COLOR` environment variable or the `--gtest_color`
command line flag to `yes`, `no`, or `auto` (the default) to enable colors,
disable colors, or let googletest decide. When the value is `auto`, googletest
will use colors if and only if the output goes to a terminal and (on non-Windows
platforms) the `TERM` environment variable is set to `xterm` or `xterm-color`.

#### Suppressing the Elapsed Time

By default, googletest prints the time it takes to run each test. To disable
that, run the test program with the `--gtest_print_time=0` command line flag, or
set the GTEST_PRINT_TIME environment variable to `0`.

#### Suppressing UTF-8 Text Output

In case of assertion failures, googletest prints expected and actual values of
type `string` both as hex-encoded strings as well as in readable UTF-8 text if
they contain valid non-ASCII UTF-8 characters. If you want to suppress the UTF-8
text because, for example, you don't have an UTF-8 compatible output medium, run
the test program with `--gtest_print_utf8=0` or set the `GTEST_PRINT_UTF8`
environment variable to `0`.



#### Generating an XML Report

googletest can emit a detailed XML report to a file in addition to its normal
textual output. The report contains the duration of each test, and thus can help
you identify slow tests. The report is also used by the http://unittest
dashboard to show per-test-method error messages.

To generate the XML report, set the `GTEST_OUTPUT` environment variable or the
`--gtest_output` flag to the string `"xml:path_to_output_file"`, which will
create the file at the given location. You can also just use the string `"xml"`,
in which case the output can be found in the `test_detail.xml` file in the
current directory.

If you specify a directory (for example, `"xml:output/directory/"` on Linux or
`"xml:output\directory\"` on Windows), googletest will create the XML file in
that directory, named after the test executable (e.g. `foo_test.xml` for test
program `foo_test` or `foo_test.exe`). If the file already exists (perhaps left
over from a previous run), googletest will pick a different name (e.g.
`foo_test_1.xml`) to avoid overwriting it.

The report is based on the `junitreport` Ant task. Since that format was
originally intended for Java, a little interpretation is required to make it
apply to googletest tests, as shown here:

```xml
<testsuites name="AllTests" ...>
  <testsuite name="test_case_name" ...>
    <testcase    name="test_name" ...>
      <failure message="..."/>
      <failure message="..."/>
      <failure message="..."/>
    </testcase>
  </testsuite>
</testsuites>
```

*   The root `<testsuites>` element corresponds to the entire test program.
*   `<testsuite>` elements correspond to googletest test suites.
*   `<testcase>` elements correspond to googletest test functions.

For instance, the following program

```c++
TEST(MathTest, Addition) { ... }
TEST(MathTest, Subtraction) { ... }
TEST(LogicTest, NonContradiction) { ... }
```

could generate this report:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<testsuites tests="3" failures="1" errors="0" time="0.035" timestamp="2011-10-31T18:52:42" name="AllTests">
  <testsuite name="MathTest" tests="2" failures="1" errors="0" time="0.015">
    <testcase name="Addition" status="run" time="0.007" classname="">
      <failure message="Value of: add(1, 1)&#x0A;  Actual: 3&#x0A;Expected: 2" type="">...</failure>
      <failure message="Value of: add(1, -1)&#x0A;  Actual: 1&#x0A;Expected: 0" type="">...</failure>
    </testcase>
    <testcase name="Subtraction" status="run" time="0.005" classname="">
    </testcase>
  </testsuite>
  <testsuite name="LogicTest" tests="1" failures="0" errors="0" time="0.005">
    <testcase name="NonContradiction" status="run" time="0.005" classname="">
    </testcase>
  </testsuite>
</testsuites>
```

Things to note:

*   The `tests` attribute of a `<testsuites>` or `<testsuite>` element tells how
    many test functions the googletest program or test suite contains, while the
    `failures` attribute tells how many of them failed.

*   The `time` attribute expresses the duration of the test, test suite, or
    entire test program in seconds.

*   The `timestamp` attribute records the local date and time of the test
    execution.

*   Each `<failure>` element corresponds to a single failed googletest
    assertion.

#### Generating a JSON Report

googletest can also emit a JSON report as an alternative format to XML. To
generate the JSON report, set the `GTEST_OUTPUT` environment variable or the
`--gtest_output` flag to the string `"json:path_to_output_file"`, which will
create the file at the given location. You can also just use the string
`"json"`, in which case the output can be found in the `test_detail.json` file
in the current directory.

The report format conforms to the following JSON Schema:

```json
{
  "$schema": "http://json-schema.org/schema#",
  "type": "object",
  "definitions": {
    "TestCase": {
      "type": "object",
      "properties": {
        "name": { "type": "string" },
        "tests": { "type": "integer" },
        "failures": { "type": "integer" },
        "disabled": { "type": "integer" },
        "time": { "type": "string" },
        "testsuite": {
          "type": "array",
          "items": {
            "$ref": "#/definitions/TestInfo"
          }
        }
      }
    },
    "TestInfo": {
      "type": "object",
      "properties": {
        "name": { "type": "string" },
        "status": {
          "type": "string",
          "enum": ["RUN", "NOTRUN"]
        },
        "time": { "type": "string" },
        "classname": { "type": "string" },
        "failures": {
          "type": "array",
          "items": {
            "$ref": "#/definitions/Failure"
          }
        }
      }
    },
    "Failure": {
      "type": "object",
      "properties": {
        "failures": { "type": "string" },
        "type": { "type": "string" }
      }
    }
  },
  "properties": {
    "tests": { "type": "integer" },
    "failures": { "type": "integer" },
    "disabled": { "type": "integer" },
    "errors": { "type": "integer" },
    "timestamp": {
      "type": "string",
      "format": "date-time"
    },
    "time": { "type": "string" },
    "name": { "type": "string" },
    "testsuites": {
      "type": "array",
      "items": {
        "$ref": "#/definitions/TestCase"
      }
    }
  }
}
```

The report uses the format that conforms to the following Proto3 using the
[JSON encoding](https://developers.google.com/protocol-buffers/docs/proto3#json):

```proto
syntax = "proto3";

package googletest;

import "google/protobuf/timestamp.proto";
import "google/protobuf/duration.proto";

message UnitTest {
  int32 tests = 1;
  int32 failures = 2;
  int32 disabled = 3;
  int32 errors = 4;
  google.protobuf.Timestamp timestamp = 5;
  google.protobuf.Duration time = 6;
  string name = 7;
  repeated TestCase testsuites = 8;
}

message TestCase {
  string name = 1;
  int32 tests = 2;
  int32 failures = 3;
  int32 disabled = 4;
  int32 errors = 5;
  google.protobuf.Duration time = 6;
  repeated TestInfo testsuite = 7;
}

message TestInfo {
  string name = 1;
  enum Status {
    RUN = 0;
    NOTRUN = 1;
  }
  Status status = 2;
  google.protobuf.Duration time = 3;
  string classname = 4;
  message Failure {
    string failures = 1;
    string type = 2;
  }
  repeated Failure failures = 5;
}
```

For instance, the following program

```c++
TEST(MathTest, Addition) { ... }
TEST(MathTest, Subtraction) { ... }
TEST(LogicTest, NonContradiction) { ... }
```

could generate this report:

```json
{
  "tests": 3,
  "failures": 1,
  "errors": 0,
  "time": "0.035s",
  "timestamp": "2011-10-31T18:52:42Z",
  "name": "AllTests",
  "testsuites": [
    {
      "name": "MathTest",
      "tests": 2,
      "failures": 1,
      "errors": 0,
      "time": "0.015s",
      "testsuite": [
        {
          "name": "Addition",
          "status": "RUN",
          "time": "0.007s",
          "classname": "",
          "failures": [
            {
              "message": "Value of: add(1, 1)\n  Actual: 3\nExpected: 2",
              "type": ""
            },
            {
              "message": "Value of: add(1, -1)\n  Actual: 1\nExpected: 0",
              "type": ""
            }
          ]
        },
        {
          "name": "Subtraction",
          "status": "RUN",
          "time": "0.005s",
          "classname": ""
        }
      ]
    },
    {
      "name": "LogicTest",
      "tests": 1,
      "failures": 0,
      "errors": 0,
      "time": "0.005s",
      "testsuite": [
        {
          "name": "NonContradiction",
          "status": "RUN",
          "time": "0.005s",
          "classname": ""
        }
      ]
    }
  ]
}
```

IMPORTANT: The exact format of the JSON document is subject to change.

### Controlling How Failures Are Reported

#### Turning Assertion Failures into Break-Points

When running test programs under a debugger, it's very convenient if the
debugger can catch an assertion failure and automatically drop into interactive
mode. googletest's *break-on-failure* mode supports this behavior.

To enable it, set the `GTEST_BREAK_ON_FAILURE` environment variable to a value
other than `0`. Alternatively, you can use the `--gtest_break_on_failure`
command line flag.

#### Disabling Catching Test-Thrown Exceptions

googletest can be used either with or without exceptions enabled. If a test
throws a C++ exception or (on Windows) a structured exception (SEH), by default
googletest catches it, reports it as a test failure, and continues with the next
test method. This maximizes the coverage of a test run. Also, on Windows an
uncaught exception will cause a pop-up window, so catching the exceptions allows
you to run the tests automatically.

When debugging the test failures, however, you may instead want the exceptions
to be handled by the debugger, such that you can examine the call stack when an
exception is thrown. To achieve that, set the `GTEST_CATCH_EXCEPTIONS`
environment variable to `0`, or use the `--gtest_catch_exceptions=0` flag when
running the tests.