summaryrefslogtreecommitdiffstats
path: root/samples/sample3_unittest.cc
blob: a3d26da286fbafcc1472c5e8ea81c5686cedc88b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// A sample program demonstrating using Google C++ testing framework.
//
// Author: wan@google.com (Zhanyong Wan)


// In this example, we use a more advanced feature of Google Test called
// test fixture.
//
// A test fixture is a place to hold objects and functions shared by
// all tests in a test case.  Using a test fixture avoids duplicating
// the test code necessary to initialize and cleanup those common
// objects for each test.  It is also useful for defining sub-routines
// that your tests need to invoke a lot.
//
// <TechnicalDetails>
//
// The tests share the test fixture in the sense of code sharing, not
// data sharing.  Each test is given its own fresh copy of the
// fixture.  You cannot expect the data modified by one test to be
// passed on to another test, which is a bad idea.
//
// The reason for this design is that tests should be independent and
// repeatable.  In particular, a test should not fail as the result of
// another test's failure.  If one test depends on info produced by
// another test, then the two tests should really be one big test.
//
// The macros for indicating the success/failure of a test
// (EXPECT_TRUE, FAIL, etc) need to know what the current test is
// (when Google Test prints the test result, it tells you which test
// each failure belongs to).  Technically, these macros invoke a
// member function of the Test class.  Therefore, you cannot use them
// in a global function.  That's why you should put test sub-routines
// in a test fixture.
//
// </TechnicalDetails>

#include "sample3-inl.h"
#include <gtest/gtest.h>

// To use a test fixture, derive a class from testing::Test.
class QueueTest : public testing::Test {
 protected:  // You should make the members protected s.t. they can be
             // accessed from sub-classes.

  // virtual void SetUp() will be called before each test is run.  You
  // should define it if you need to initialize the varaibles.
  // Otherwise, this can be skipped.
  virtual void SetUp() {
    q1_.Enqueue(1);
    q2_.Enqueue(2);
    q2_.Enqueue(3);
  }

  // virtual void TearDown() will be called after each test is run.
  // You should define it if there is cleanup work to do.  Otherwise,
  // you don't have to provide it.
  //
  // virtual void TearDown() {
  // }

  // A helper function that some test uses.
  static int Double(int n) {
    return 2*n;
  }

  // A helper function for testing Queue::Map().
  void MapTester(const Queue<int> * q) {
    // Creates a new queue, where each element is twice as big as the
    // corresponding one in q.
    const Queue<int> * const new_q = q->Map(Double);

    // Verifies that the new queue has the same size as q.
    ASSERT_EQ(q->Size(), new_q->Size());

    // Verifies the relationship between the elements of the two queues.
    for ( const QueueNode<int> * n1 = q->Head(), * n2 = new_q->Head();
          n1 != NULL; n1 = n1->next(), n2 = n2->next() ) {
      EXPECT_EQ(2 * n1->element(), n2->element());
    }

    delete new_q;
  }

  // Declares the variables your tests want to use.
  Queue<int> q0_;
  Queue<int> q1_;
  Queue<int> q2_;
};

// When you have a test fixture, you define a test using TEST_F
// instead of TEST.

// Tests the default c'tor.
TEST_F(QueueTest, DefaultConstructor) {
  // You can access data in the test fixture here.
  EXPECT_EQ(0, q0_.Size());
}

// Tests Dequeue().
TEST_F(QueueTest, Dequeue) {
  int * n = q0_.Dequeue();
  EXPECT_TRUE(n == NULL);

  n = q1_.Dequeue();
  ASSERT_TRUE(n != NULL);
  EXPECT_EQ(1, *n);
  EXPECT_EQ(0, q1_.Size());
  delete n;

  n = q2_.Dequeue();
  ASSERT_TRUE(n != NULL);
  EXPECT_EQ(2, *n);
  EXPECT_EQ(1, q2_.Size());
  delete n;
}

// Tests the Queue::Map() function.
TEST_F(QueueTest, Map) {
  MapTester(&q0_);
  MapTester(&q1_);
  MapTester(&q2_);
}