diff options
author | Quincey Koziol <koziol@hdfgroup.org> | 2019-02-14 22:20:32 (GMT) |
---|---|---|
committer | Quincey Koziol <koziol@hdfgroup.org> | 2019-02-14 22:20:32 (GMT) |
commit | 320eaf91b9adb36bb0fed9264d460e4a808200b7 (patch) | |
tree | ea968fd3c2a7c84c68f1ea88143ba39bf3abce77 /src/H5Shyper.c | |
parent | 10cdff5ca45786832bf5e6c3e3408bc725464fd6 (diff) | |
download | hdf5-320eaf91b9adb36bb0fed9264d460e4a808200b7.zip hdf5-320eaf91b9adb36bb0fed9264d460e4a808200b7.tar.gz hdf5-320eaf91b9adb36bb0fed9264d460e4a808200b7.tar.bz2 |
More changes to align with incoming selection improvements.
Diffstat (limited to 'src/H5Shyper.c')
-rw-r--r-- | src/H5Shyper.c | 3788 |
1 files changed, 1330 insertions, 2458 deletions
diff --git a/src/H5Shyper.c b/src/H5Shyper.c index e9354ca..c9fab38 100644 --- a/src/H5Shyper.c +++ b/src/H5Shyper.c @@ -80,9 +80,6 @@ static herr_t H5S__hyper_generate_spans(H5S_t *space); static herr_t H5S__generate_hyperslab(H5S_t *space, H5S_seloper_t op, const hsize_t start[], const hsize_t stride[], const hsize_t count[], const hsize_t block[]); -#ifdef NEW_HYPERSLAB_API -static herr_t H5S_select_select (H5S_t *space1, H5S_seloper_t op, H5S_t *space2); -#endif /*NEW_HYPERSLAB_API*/ static void H5S__hyper_get_clip_diminfo(hsize_t start, hsize_t stride, hsize_t *count, hsize_t *block, hsize_t clip_size); static hsize_t H5S__hyper_get_clip_extent_real(const H5S_t *clip_space, @@ -1082,6 +1079,1332 @@ H5S__hyper_iter_next_block(H5S_sel_iter_t *iter) /*-------------------------------------------------------------------------- NAME + H5S__hyper_get_seq_list_gen + PURPOSE + Create a list of offsets & lengths for a selection + USAGE + herr_t H5S_select_hyper_get_file_list_gen(space,iter,maxseq,maxelem,nseq,nelem,off,len) + H5S_t *space; IN: Dataspace containing selection to use. + H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last + position of interest in selection. + size_t maxseq; IN: Maximum number of sequences to generate + size_t maxelem; IN: Maximum number of elements to include in the + generated sequences + size_t *nseq; OUT: Actual number of sequences generated + size_t *nelem; OUT: Actual number of elements in sequences generated + hsize_t *off; OUT: Array of offsets + size_t *len; OUT: Array of lengths + RETURNS + Non-negative on success/Negative on failure. + DESCRIPTION + Use the selection in the dataspace to generate a list of byte offsets and + lengths for the region(s) selected. Start/Restart from the position in the + ITER parameter. The number of sequences generated is limited by the MAXSEQ + parameter and the number of sequences actually generated is stored in the + NSEQ parameter. + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +static herr_t +H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, + size_t maxseq, size_t maxelem, size_t *nseq, size_t *nelem, + hsize_t *off, size_t *len) +{ + H5S_hyper_span_t *curr_span; /* Current hyperslab span node */ + H5S_hyper_span_t **ispan; /* Iterator's hyperslab span nodes */ + hsize_t slab[H5S_MAX_RANK]; /* Cumulative size of each dimension in bytes */ + hsize_t acc; /* Accumulator for computing cumulative sizes */ + hsize_t loc_off; /* Element offset in the dataspace */ + hsize_t last_span_end = 0; /* The offset of the end of the last span */ + hsize_t *abs_arr; /* Absolute hyperslab span position */ + const hssize_t *off_arr; /* Offset within the dataspace extent */ + size_t span_size = 0; /* Number of bytes in current span to actually process */ + size_t io_left; /* Number of elements left to process */ + size_t io_bytes_left; /* Number of bytes left to process */ + size_t io_used; /* Number of elements processed */ + size_t curr_seq = 0; /* Number of sequence/offsets stored in the arrays */ + size_t elem_size; /* Size of each element iterating over */ + unsigned ndims; /* Number of dimensions of dataset */ + unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ + int curr_dim; /* Current dimension being operated on */ + unsigned u; /* Index variable */ + int i; /* Index variable */ + + FUNC_ENTER_STATIC_NOERR + + /* Check args */ + HDassert(space); + HDassert(iter); + HDassert(maxseq > 0); + HDassert(maxelem > 0); + HDassert(nseq); + HDassert(nelem); + HDassert(off); + HDassert(len); + + /* Set the rank of the fastest changing dimension */ + ndims = space->extent.rank; + fast_dim = (ndims - 1); + + /* Get the pointers to the current span info and span nodes */ + curr_span = iter->u.hyp.span[fast_dim]; + abs_arr = iter->u.hyp.off; + off_arr = space->select.offset; + ispan = iter->u.hyp.span; + elem_size = iter->elmt_size; + + /* Set the amount of elements to perform I/O on, etc. */ + H5_CHECK_OVERFLOW(iter->elmt_left, hsize_t, size_t); + io_left = MIN(maxelem, (size_t)iter->elmt_left); + io_bytes_left = io_left * elem_size; + + /* Compute the cumulative size of dataspace dimensions */ + for(i = (int)fast_dim, acc = elem_size; i >= 0; i--) { + slab[i] = acc; + acc *= space->extent.size[i]; + } /* end for */ + + /* Set the offset of the first element iterated on */ + for(u = 0, loc_off = 0; u < ndims; u++) + /* Compute the sequential element offset */ + loc_off += ((hsize_t)((hssize_t)abs_arr[u] + off_arr[u])) * slab[u]; + + /* Range check against number of elements left in selection */ + HDassert(io_bytes_left <= (iter->elmt_left * elem_size)); + + /* Take care of any partial spans leftover from previous I/Os */ + if(abs_arr[fast_dim] != curr_span->low) { + /* Finish the span in the fastest changing dimension */ + + /* Compute the number of bytes to attempt in this span */ + H5_CHECKED_ASSIGN(span_size, size_t, ((curr_span->high - abs_arr[fast_dim])+1)*elem_size, hsize_t); + + /* Check number of bytes against upper bounds allowed */ + if(span_size > io_bytes_left) + span_size = io_bytes_left; + + /* Add the partial span to the list of sequences */ + off[curr_seq] = loc_off; + len[curr_seq] = span_size; + + /* Increment sequence count */ + curr_seq++; + + /* Set the location of the last span's end */ + last_span_end = loc_off + span_size; + + /* Decrement I/O left to perform */ + io_bytes_left -= span_size; + + /* Check if we are done */ + if(io_bytes_left > 0) { + /* Move to next span in fastest changing dimension */ + curr_span = curr_span->next; + + if(NULL != curr_span) { + /* Move location offset of destination */ + loc_off += (curr_span->low - abs_arr[fast_dim]) * elem_size; + + /* Move iterator for fastest changing dimension */ + abs_arr[fast_dim] = curr_span->low; + } /* end if */ + } /* end if */ + else { + /* Advance the hyperslab iterator */ + abs_arr[fast_dim] += span_size / elem_size; + + /* Check if we are still within the span */ + if(abs_arr[fast_dim] <= curr_span->high) { + iter->u.hyp.span[fast_dim] = curr_span; + } /* end if */ + /* If we walked off that span, advance to the next span */ + else { + /* Advance span in this dimension */ + curr_span = curr_span->next; + + /* Check if we have a valid span in this dimension still */ + if(NULL != curr_span) { + /* Reset absolute position */ + abs_arr[fast_dim] = curr_span->low; + iter->u.hyp.span[fast_dim] = curr_span; + } /* end if */ + } /* end else */ + } /* end else */ + + /* Adjust iterator pointers */ + + if(NULL == curr_span) { +/* Same as code in main loop */ + /* Start at the next fastest dim */ + curr_dim = (int)(fast_dim - 1); + + /* Work back up through the dimensions */ + while(curr_dim >= 0) { + /* Reset the current span */ + curr_span = iter->u.hyp.span[curr_dim]; + + /* Increment absolute position */ + abs_arr[curr_dim]++; + + /* Check if we are still within the span */ + if(abs_arr[curr_dim] <= curr_span->high) { + break; + } /* end if */ + /* If we walked off that span, advance to the next span */ + else { + /* Advance span in this dimension */ + curr_span = curr_span->next; + + /* Check if we have a valid span in this dimension still */ + if(NULL != curr_span) { + /* Reset the span in the current dimension */ + ispan[curr_dim] = curr_span; + + /* Reset absolute position */ + abs_arr[curr_dim] = curr_span->low; + + break; + } /* end if */ + else + /* If we finished the span list in this dimension, decrement the dimension worked on and loop again */ + curr_dim--; + } /* end else */ + } /* end while */ + + /* Check if we have more spans in the tree */ + if(curr_dim >= 0) { + /* Walk back down the iterator positions, resetting them */ + while((unsigned)curr_dim < fast_dim) { + HDassert(curr_span); + HDassert(curr_span->down); + HDassert(curr_span->down->head); + + /* Increment current dimension */ + curr_dim++; + + /* Set the new span_info & span for this dimension */ + iter->u.hyp.span[curr_dim] = curr_span->down->head; + + /* Advance span down the tree */ + curr_span = curr_span->down->head; + + /* Reset the absolute offset for the dim */ + abs_arr[curr_dim] = curr_span->low; + } /* end while */ + + /* Verify that the curr_span points to the fastest dim */ + HDassert(curr_span == iter->u.hyp.span[fast_dim]); + + /* Reset the buffer offset */ + for(u = 0, loc_off = 0; u < ndims; u++) + loc_off += ((hsize_t)((hssize_t)abs_arr[u] + off_arr[u])) * slab[u]; + } /* end else */ + else + /* We had better be done with I/O or bad things are going to happen... */ + HDassert(io_bytes_left == 0); + } /* end if */ + } /* end if */ + + /* Perform the I/O on the elements, based on the position of the iterator */ + while(io_bytes_left > 0 && curr_seq < maxseq) { + /* Sanity check */ + HDassert(curr_span); + + /* Adjust location offset of destination to compensate for initial increment below */ + loc_off -= curr_span->pstride; + + /* Loop over all the spans in the fastest changing dimension */ + while(curr_span != NULL) { + /* Move location offset of destination */ + loc_off += curr_span->pstride; + + /* Compute the number of elements to attempt in this span */ + H5_CHECKED_ASSIGN(span_size, size_t, curr_span->nelem, hsize_t); + + /* Check number of elements against upper bounds allowed */ + if(span_size >= io_bytes_left) { + /* Trim the number of bytes to output */ + span_size = io_bytes_left; + io_bytes_left = 0; + +/* COMMON */ + /* Store the I/O information for the span */ + + /* Check if this is appending onto previous sequence */ + if(curr_seq > 0 && last_span_end == loc_off) + len[curr_seq - 1] += span_size; + else { + off[curr_seq] = loc_off; + len[curr_seq] = span_size; + + /* Increment the number of sequences in arrays */ + curr_seq++; + } /* end else */ + + /* Set the location of the last span's end */ + last_span_end = loc_off + span_size; +/* end COMMON */ + + /* Break out now, we are finished with I/O */ + break; + } /* end if */ + else { + /* Decrement I/O left to perform */ + io_bytes_left -= span_size; + +/* COMMON */ + /* Store the I/O information for the span */ + + /* Check if this is appending onto previous sequence */ + if(curr_seq > 0 && last_span_end == loc_off) + len[curr_seq - 1] += span_size; + else { + off[curr_seq] = loc_off; + len[curr_seq] = span_size; + + /* Increment the number of sequences in arrays */ + curr_seq++; + } /* end else */ + + /* Set the location of the last span's end */ + last_span_end = loc_off + span_size; +/* end COMMON */ + + /* If the sequence & offset arrays are full, do what? */ + if(curr_seq >= maxseq) + /* Break out now, we are finished with sequences */ + break; + } /* end else */ + + /* Move to next span in fastest changing dimension */ + curr_span = curr_span->next; + } /* end while */ + + /* Check if we are done */ + if(io_bytes_left == 0 || curr_seq >= maxseq) { + HDassert(curr_span); + abs_arr[fast_dim] = curr_span->low + (span_size / elem_size); + + /* Check if we are still within the span */ + if(abs_arr[fast_dim] <= curr_span->high) { + iter->u.hyp.span[fast_dim]=curr_span; + break; + } /* end if */ + /* If we walked off that span, advance to the next span */ + else { + /* Advance span in this dimension */ + curr_span = curr_span->next; + + /* Check if we have a valid span in this dimension still */ + if(curr_span != NULL) { + /* Reset absolute position */ + abs_arr[fast_dim] = curr_span->low; + iter->u.hyp.span[fast_dim] = curr_span; + break; + } /* end if */ + } /* end else */ + } /* end if */ + + /* Adjust iterator pointers */ + + /* Start at the next fastest dim */ + curr_dim = (int)(fast_dim - 1); + + /* Work back up through the dimensions */ + while(curr_dim >= 0) { + /* Reset the current span */ + curr_span=iter->u.hyp.span[curr_dim]; + + /* Increment absolute position */ + abs_arr[curr_dim]++; + + /* Check if we are still within the span */ + if(abs_arr[curr_dim]<=curr_span->high) { + break; + } /* end if */ + /* If we walked off that span, advance to the next span */ + else { + /* Advance span in this dimension */ + curr_span = curr_span->next; + + /* Check if we have a valid span in this dimension still */ + if(curr_span != NULL) { + /* Reset the span in the current dimension */ + ispan[curr_dim] = curr_span; + + /* Reset absolute position */ + abs_arr[curr_dim] = curr_span->low; + + break; + } /* end if */ + else + /* If we finished the span list in this dimension, decrement the dimension worked on and loop again */ + curr_dim--; + } /* end else */ + } /* end while */ + + /* Check if we are finished with the spans in the tree */ + if(curr_dim < 0) { + /* We had better be done with I/O or bad things are going to happen... */ + HDassert(io_bytes_left == 0); + break; + } /* end if */ + else { + /* Walk back down the iterator positions, resetting them */ + while((unsigned)curr_dim < fast_dim) { + HDassert(curr_span); + HDassert(curr_span->down); + HDassert(curr_span->down->head); + + /* Increment current dimension to the next dimension down */ + curr_dim++; + + /* Set the new span for the next dimension down */ + iter->u.hyp.span[curr_dim] = curr_span->down->head; + + /* Advance span down the tree */ + curr_span = curr_span->down->head; + + /* Reset the absolute offset for the dim */ + abs_arr[curr_dim] = curr_span->low; + } /* end while */ + + /* Verify that the curr_span points to the fastest dim */ + HDassert(curr_span == iter->u.hyp.span[fast_dim]); + } /* end else */ + + /* Reset the buffer offset */ + for(u = 0, loc_off = 0; u < ndims; u++) + loc_off += ((hsize_t)((hssize_t)abs_arr[u] + off_arr[u])) * slab[u]; + } /* end while */ + + /* Decrement number of elements left in iterator */ + io_used = (io_left - (io_bytes_left / elem_size)); + iter->elmt_left -= io_used; + + /* Set the number of sequences generated */ + *nseq = curr_seq; + + /* Set the number of elements used */ + *nelem = io_used; + + FUNC_LEAVE_NOAPI(SUCCEED) +} /* end H5S__hyper_get_seq_list_gen() */ + + +/*-------------------------------------------------------------------------- + NAME + H5S__hyper_get_seq_list_opt + PURPOSE + Create a list of offsets & lengths for a selection + USAGE + herr_t H5S_select_hyper_get_file_list_opt(space,iter,maxseq,maxelem,nseq,nelem,off,len) + H5S_t *space; IN: Dataspace containing selection to use. + H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last + position of interest in selection. + size_t maxseq; IN: Maximum number of sequences to generate + size_t maxelem; IN: Maximum number of elements to include in the + generated sequences + size_t *nseq; OUT: Actual number of sequences generated + size_t *nelem; OUT: Actual number of elements in sequences generated + hsize_t *off; OUT: Array of offsets + size_t *len; OUT: Array of lengths + RETURNS + Non-negative on success/Negative on failure. + DESCRIPTION + Use the selection in the dataspace to generate a list of byte offsets and + lengths for the region(s) selected. Start/Restart from the position in the + ITER parameter. The number of sequences generated is limited by the MAXSEQ + parameter and the number of sequences actually generated is stored in the + NSEQ parameter. + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +static herr_t +H5S__hyper_get_seq_list_opt(const H5S_t *space, H5S_sel_iter_t *iter, + size_t maxseq, size_t maxelem, size_t *nseq, size_t *nelem, + hsize_t *off, size_t *len) +{ + hsize_t *mem_size; /* Size of the source buffer */ + hsize_t slab[H5S_MAX_RANK]; /* Hyperslab size */ + const hssize_t *sel_off; /* Selection offset in dataspace */ + hsize_t offset[H5S_MAX_RANK]; /* Coordinate offset in dataspace */ + hsize_t tmp_count[H5S_MAX_RANK]; /* Temporary block count */ + hsize_t tmp_block[H5S_MAX_RANK]; /* Temporary block offset */ + hsize_t wrap[H5S_MAX_RANK]; /* Bytes to wrap around at the end of a row */ + hsize_t skip[H5S_MAX_RANK]; /* Bytes to skip between blocks */ + const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */ + hsize_t fast_dim_start, /* Local copies of fastest changing dimension info */ + fast_dim_stride, + fast_dim_block, + fast_dim_offset; + size_t fast_dim_buf_off; /* Local copy of amount to move fastest dimension buffer offset */ + size_t fast_dim_count; /* Number of blocks left in fastest changing dimension */ + size_t tot_blk_count; /* Total number of blocks left to output */ + size_t act_blk_count; /* Actual number of blocks to output */ + size_t total_rows; /* Total number of entire rows to output */ + size_t curr_rows; /* Current number of entire rows to output */ + unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ + unsigned ndims; /* Number of dimensions of dataset */ + int temp_dim; /* Temporary rank holder */ + hsize_t acc; /* Accumulator */ + hsize_t loc; /* Coordinate offset */ + size_t curr_seq = 0; /* Current sequence being operated on */ + size_t actual_elem; /* The actual number of elements to count */ + size_t actual_bytes;/* The actual number of bytes to copy */ + size_t io_left; /* The number of elements left in I/O operation */ + size_t start_io_left; /* The initial number of elements left in I/O operation */ + size_t elem_size; /* Size of each element iterating over */ + unsigned u; /* Local index variable */ + int i; /* Local index variable */ + + FUNC_ENTER_STATIC_NOERR + + /* Check args */ + HDassert(space); + HDassert(iter); + HDassert(maxseq > 0); + HDassert(maxelem > 0); + HDassert(nseq); + HDassert(nelem); + HDassert(off); + HDassert(len); + + /* Set the local copy of the diminfo pointer */ + tdiminfo = iter->u.hyp.diminfo; + + /* Check if this is a "flattened" regular hyperslab selection */ + if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < space->extent.rank) { + /* Set the aliases for a few important dimension ranks */ + ndims = iter->u.hyp.iter_rank; + fast_dim = ndims - 1; + + /* Set the local copy of the selection offset */ + sel_off = iter->u.hyp.sel_off; + + /* Set up the pointer to the size of the memory space */ + mem_size = iter->u.hyp.size; + } /* end if */ + else { + /* Set the aliases for a few important dimension ranks */ + ndims = space->extent.rank; + fast_dim = ndims - 1; + + /* Set the local copy of the selection offset */ + sel_off = space->select.offset; + + /* Set up the pointer to the size of the memory space */ + mem_size = space->extent.size; + } /* end else */ + + /* initialize row sizes for each dimension */ + elem_size = iter->elmt_size; + for(i = (int)fast_dim, acc = elem_size; i >= 0; i--) { + slab[i] = acc; + acc *= mem_size[i]; + } /* end for */ + + /* Calculate the number of elements to sequence through */ + H5_CHECK_OVERFLOW(iter->elmt_left, hsize_t, size_t); + io_left = MIN((size_t)iter->elmt_left, maxelem); + + /* Sanity check that there aren't any "remainder" sequences in process */ + HDassert(!((iter->u.hyp.off[fast_dim] - tdiminfo[fast_dim].start) % tdiminfo[fast_dim].stride != 0 || + ((iter->u.hyp.off[fast_dim] != tdiminfo[fast_dim].start) && tdiminfo[fast_dim].count == 1))); + + /* We've cleared the "remainder" of the previous fastest dimension + * sequence before calling this routine, so we must be at the beginning of + * a sequence. Use the fancy algorithm to compute the offsets and run + * through as many as possible, until the buffer fills up. + */ + + /* Keep the number of elements we started with */ + start_io_left = io_left; + + /* Compute the arrays to perform I/O on */ + + /* Copy the location of the point to get */ + /* (Add in the selection offset) */ + for(u = 0; u < ndims; u++) + offset[u] = (hsize_t)((hssize_t)iter->u.hyp.off[u] + sel_off[u]); + + /* Compute the current "counts" for this location */ + for(u = 0; u < ndims; u++) { + if(tdiminfo[u].count == 1) { + tmp_count[u] = 0; + tmp_block[u] = iter->u.hyp.off[u] - tdiminfo[u].start; + } /* end if */ + else { + tmp_count[u] = (iter->u.hyp.off[u] - tdiminfo[u].start) / tdiminfo[u].stride; + tmp_block[u] = (iter->u.hyp.off[u] - tdiminfo[u].start) % tdiminfo[u].stride; + } /* end else */ + } /* end for */ + + /* Compute the initial buffer offset */ + for(u = 0, loc = 0; u < ndims; u++) + loc += offset[u] * slab[u]; + + /* Set the number of elements to write each time */ + H5_CHECKED_ASSIGN(actual_elem, size_t, tdiminfo[fast_dim].block, hsize_t); + + /* Set the number of actual bytes */ + actual_bytes = actual_elem * elem_size; + + /* Set local copies of information for the fastest changing dimension */ + fast_dim_start = tdiminfo[fast_dim].start; + fast_dim_stride = tdiminfo[fast_dim].stride; + fast_dim_block = tdiminfo[fast_dim].block; + H5_CHECKED_ASSIGN(fast_dim_buf_off, size_t, slab[fast_dim] * fast_dim_stride, hsize_t); + fast_dim_offset = (hsize_t)((hssize_t)fast_dim_start + sel_off[fast_dim]); + + /* Compute the number of blocks which would fit into the buffer */ + H5_CHECK_OVERFLOW(io_left / fast_dim_block, hsize_t, size_t); + tot_blk_count = (size_t)(io_left / fast_dim_block); + + /* Don't go over the maximum number of sequences allowed */ + tot_blk_count = MIN(tot_blk_count, (maxseq - curr_seq)); + + /* Compute the amount to wrap at the end of each row */ + for(u = 0; u < ndims; u++) + wrap[u] = (mem_size[u] - (tdiminfo[u].stride * tdiminfo[u].count)) * slab[u]; + + /* Compute the amount to skip between blocks */ + for(u = 0; u < ndims; u++) + skip[u] = (tdiminfo[u].stride - tdiminfo[u].block) * slab[u]; + + /* Check if there is a partial row left (with full blocks) */ + if(tmp_count[fast_dim] > 0) { + /* Get number of blocks in fastest dimension */ + H5_CHECKED_ASSIGN(fast_dim_count, size_t, tdiminfo[fast_dim].count - tmp_count[fast_dim], hsize_t); + + /* Make certain this entire row will fit into buffer */ + fast_dim_count = MIN(fast_dim_count, tot_blk_count); + + /* Number of blocks to sequence over */ + act_blk_count = fast_dim_count; + + /* Loop over all the blocks in the fastest changing dimension */ + while(fast_dim_count > 0) { + /* Store the sequence information */ + off[curr_seq] = loc; + len[curr_seq] = actual_bytes; + + /* Increment sequence count */ + curr_seq++; + + /* Increment information to reflect block just processed */ + loc += fast_dim_buf_off; + + /* Decrement number of blocks */ + fast_dim_count--; + } /* end while */ + + /* Decrement number of elements left */ + io_left -= actual_elem * act_blk_count; + + /* Decrement number of blocks left */ + tot_blk_count -= act_blk_count; + + /* Increment information to reflect block just processed */ + tmp_count[fast_dim] += act_blk_count; + + /* Check if we finished the entire row of blocks */ + if(tmp_count[fast_dim] >= tdiminfo[fast_dim].count) { + /* Increment offset in destination buffer */ + loc += wrap[fast_dim]; + + /* Increment information to reflect block just processed */ + offset[fast_dim] = fast_dim_offset; /* reset the offset in the fastest dimension */ + tmp_count[fast_dim] = 0; + + /* Increment the offset and count for the other dimensions */ + temp_dim = (int)fast_dim - 1; + while(temp_dim >= 0) { + /* Move to the next row in the curent dimension */ + offset[temp_dim]++; + tmp_block[temp_dim]++; + + /* If this block is still in the range of blocks to output for the dimension, break out of loop */ + if(tmp_block[temp_dim] < tdiminfo[temp_dim].block) + break; + else { + /* Move to the next block in the current dimension */ + offset[temp_dim] += (tdiminfo[temp_dim].stride - tdiminfo[temp_dim].block); + loc += skip[temp_dim]; + tmp_block[temp_dim] = 0; + tmp_count[temp_dim]++; + + /* If this block is still in the range of blocks to output for the dimension, break out of loop */ + if(tmp_count[temp_dim] < tdiminfo[temp_dim].count) + break; + else { + offset[temp_dim] = (hsize_t)((hssize_t)tdiminfo[temp_dim].start + sel_off[temp_dim]); + loc += wrap[temp_dim]; + tmp_count[temp_dim] = 0; /* reset back to the beginning of the line */ + tmp_block[temp_dim] = 0; + } /* end else */ + } /* end else */ + + /* Decrement dimension count */ + temp_dim--; + } /* end while */ + } /* end if */ + else { + /* Update the offset in the fastest dimension */ + offset[fast_dim] += (fast_dim_stride * act_blk_count); + } /* end else */ + } /* end if */ + + /* Compute the number of entire rows to read in */ + H5_CHECK_OVERFLOW(tot_blk_count / tdiminfo[fast_dim].count, hsize_t, size_t); + curr_rows = total_rows = (size_t)(tot_blk_count / tdiminfo[fast_dim].count); + + /* Reset copy of number of blocks in fastest dimension */ + H5_CHECKED_ASSIGN(fast_dim_count, size_t, tdiminfo[fast_dim].count, hsize_t); + + /* Read in data until an entire sequence can't be written out any longer */ + while(curr_rows > 0) { + +#define DUFF_GUTS \ +/* Store the sequence information */ \ +off[curr_seq] = loc; \ +len[curr_seq] = actual_bytes; \ + \ +/* Increment sequence count */ \ +curr_seq++; \ + \ +/* Increment information to reflect block just processed */ \ +loc += fast_dim_buf_off; + +#ifdef NO_DUFFS_DEVICE + /* Loop over all the blocks in the fastest changing dimension */ + while(fast_dim_count > 0) { + DUFF_GUTS + + /* Decrement number of blocks */ + fast_dim_count--; + } /* end while */ +#else /* NO_DUFFS_DEVICE */ + { + size_t duffs_index; /* Counting index for Duff's device */ + + duffs_index = (fast_dim_count + 7) / 8; + switch (fast_dim_count % 8) { + default: + HDassert(0 && "This Should never be executed!"); + break; + case 0: + do + { + DUFF_GUTS + case 7: + DUFF_GUTS + case 6: + DUFF_GUTS + case 5: + DUFF_GUTS + case 4: + DUFF_GUTS + case 3: + DUFF_GUTS + case 2: + DUFF_GUTS + case 1: + DUFF_GUTS + } while (--duffs_index > 0); + } /* end switch */ + } +#endif /* NO_DUFFS_DEVICE */ +#undef DUFF_GUTS + + /* Increment offset in destination buffer */ + loc += wrap[fast_dim]; + + /* Increment the offset and count for the other dimensions */ + temp_dim = (int)fast_dim - 1; + while(temp_dim >= 0) { + /* Move to the next row in the curent dimension */ + offset[temp_dim]++; + tmp_block[temp_dim]++; + + /* If this block is still in the range of blocks to output for the dimension, break out of loop */ + if(tmp_block[temp_dim] < tdiminfo[temp_dim].block) + break; + else { + /* Move to the next block in the current dimension */ + offset[temp_dim] += (tdiminfo[temp_dim].stride - tdiminfo[temp_dim].block); + loc += skip[temp_dim]; + tmp_block[temp_dim] = 0; + tmp_count[temp_dim]++; + + /* If this block is still in the range of blocks to output for the dimension, break out of loop */ + if(tmp_count[temp_dim] < tdiminfo[temp_dim].count) + break; + else { + offset[temp_dim] = (hsize_t)((hssize_t)tdiminfo[temp_dim].start + sel_off[temp_dim]); + loc += wrap[temp_dim]; + tmp_count[temp_dim] = 0; /* reset back to the beginning of the line */ + tmp_block[temp_dim] = 0; + } /* end else */ + } /* end else */ + + /* Decrement dimension count */ + temp_dim--; + } /* end while */ + + /* Decrement the number of rows left */ + curr_rows--; + } /* end while */ + + /* Adjust the number of blocks & elements left to transfer */ + + /* Decrement number of elements left */ + H5_CHECK_OVERFLOW(actual_elem * (total_rows * tdiminfo[fast_dim].count), hsize_t, size_t); + io_left -= (size_t)(actual_elem * (total_rows * tdiminfo[fast_dim].count)); + + /* Decrement number of blocks left */ + H5_CHECK_OVERFLOW((total_rows * tdiminfo[fast_dim].count), hsize_t, size_t); + tot_blk_count -= (size_t)(total_rows * tdiminfo[fast_dim].count); + + /* Read in partial row of blocks */ + if(io_left > 0 && curr_seq < maxseq) { + /* Get remaining number of blocks left to output */ + fast_dim_count = tot_blk_count; + + /* Loop over all the blocks in the fastest changing dimension */ + while(fast_dim_count > 0) { + /* Store the sequence information */ + off[curr_seq] = loc; + len[curr_seq] = actual_bytes; + + /* Increment sequence count */ + curr_seq++; + + /* Increment information to reflect block just processed */ + loc += fast_dim_buf_off; + + /* Decrement number of blocks */ + fast_dim_count--; + } /* end while */ + + /* Decrement number of elements left */ + io_left -= actual_elem * tot_blk_count; + + /* Increment information to reflect block just processed */ + offset[fast_dim] += (fast_dim_stride * tot_blk_count); /* move the offset in the fastest dimension */ + + /* Handle any leftover, partial blocks in this row */ + if(io_left > 0 && curr_seq < maxseq) { + actual_elem = io_left; + actual_bytes = actual_elem * elem_size; + + /* Store the sequence information */ + off[curr_seq] = loc; + len[curr_seq] = actual_bytes; + + /* Increment sequence count */ + curr_seq++; + + /* Decrement the number of elements left */ + io_left -= actual_elem; + + /* Increment buffer correctly */ + offset[fast_dim] += actual_elem; + } /* end if */ + + /* don't bother checking slower dimensions */ + HDassert(io_left == 0 || curr_seq == maxseq); + } /* end if */ + + /* Update the iterator */ + + /* Update the iterator with the location we stopped */ + /* (Subtract out the selection offset) */ + for(u = 0; u < ndims; u++) + iter->u.hyp.off[u] = (hsize_t)((hssize_t)offset[u] - sel_off[u]); + + /* Decrement the number of elements left in selection */ + iter->elmt_left -= (start_io_left - io_left); + + /* Increment the number of sequences generated */ + *nseq += curr_seq; + + /* Increment the number of elements used */ + *nelem += start_io_left - io_left; + + FUNC_LEAVE_NOAPI(SUCCEED) +} /* end H5S__hyper_get_seq_list_opt() */ + + +/*-------------------------------------------------------------------------- + NAME + H5S__hyper_get_seq_list_single + PURPOSE + Create a list of offsets & lengths for a selection + USAGE + herr_t H5S__hyper_get_seq_list_single(space, flags, iter, maxseq, maxelem, nseq, nelem, off, len) + H5S_t *space; IN: Dataspace containing selection to use. + unsigned flags; IN: Flags for extra information about operation + H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last + position of interest in selection. + size_t maxseq; IN: Maximum number of sequences to generate + size_t maxelem; IN: Maximum number of elements to include in the + generated sequences + size_t *nseq; OUT: Actual number of sequences generated + size_t *nelem; OUT: Actual number of elements in sequences generated + hsize_t *off; OUT: Array of offsets + size_t *len; OUT: Array of lengths + RETURNS + Non-negative on success/Negative on failure. + DESCRIPTION + Use the selection in the dataspace to generate a list of byte offsets and + lengths for the region(s) selected. Start/Restart from the position in the + ITER parameter. The number of sequences generated is limited by the MAXSEQ + parameter and the number of sequences actually generated is stored in the + NSEQ parameter. + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +static herr_t +H5S__hyper_get_seq_list_single(const H5S_t *space, H5S_sel_iter_t *iter, + size_t maxseq, size_t maxelem, size_t *nseq, size_t *nelem, + hsize_t *off, size_t *len) +{ + const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */ + const hssize_t *sel_off; /* Selection offset in dataspace */ + hsize_t *mem_size; /* Size of the source buffer */ + hsize_t base_offset[H5S_MAX_RANK]; /* Base coordinate offset in dataspace */ + hsize_t offset[H5S_MAX_RANK]; /* Coordinate offset in dataspace */ + hsize_t slab[H5S_MAX_RANK]; /* Hyperslab size */ + hsize_t fast_dim_block; /* Local copies of fastest changing dimension info */ + hsize_t acc; /* Accumulator */ + hsize_t loc; /* Coordinate offset */ + size_t tot_blk_count; /* Total number of blocks left to output */ + size_t elem_size; /* Size of each element iterating over */ + size_t io_left; /* The number of elements left in I/O operation */ + size_t actual_elem; /* The actual number of elements to count */ + unsigned ndims; /* Number of dimensions of dataset */ + unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ + unsigned skip_dim; /* Rank of the dimension to skip along */ + unsigned u; /* Local index variable */ + int i; /* Local index variable */ + + FUNC_ENTER_STATIC_NOERR + + /* Check args */ + HDassert(space); + HDassert(iter); + HDassert(maxseq > 0); + HDassert(maxelem > 0); + HDassert(nseq); + HDassert(nelem); + HDassert(off); + HDassert(len); + + /* Set a local copy of the diminfo pointer */ + tdiminfo = iter->u.hyp.diminfo; + + /* Check if this is a "flattened" regular hyperslab selection */ + if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < space->extent.rank) { + /* Set the aliases for a few important dimension ranks */ + ndims = iter->u.hyp.iter_rank; + + /* Set the local copy of the selection offset */ + sel_off = iter->u.hyp.sel_off; + + /* Set up the pointer to the size of the memory space */ + mem_size = iter->u.hyp.size; + } /* end if */ + else { + /* Set the aliases for a few important dimension ranks */ + ndims = space->extent.rank; + + /* Set the local copy of the selection offset */ + sel_off = space->select.offset; + + /* Set up the pointer to the size of the memory space */ + mem_size = space->extent.size; + } /* end else */ + fast_dim = ndims - 1; + + /* initialize row sizes for each dimension */ + elem_size = iter->elmt_size; + for(i = (int)fast_dim, acc = elem_size; i >= 0; i--) { + slab[i] = acc; + acc *= mem_size[i]; + } /* end for */ + + /* Copy the base location of the block */ + /* (Add in the selection offset) */ + for(u = 0; u < ndims; u++) + base_offset[u] = (hsize_t)((hssize_t)tdiminfo[u].start + sel_off[u]); + + /* Copy the location of the point to get */ + /* (Add in the selection offset) */ + for(u = 0; u < ndims; u++) + offset[u] = (hsize_t)((hssize_t)iter->u.hyp.off[u] + sel_off[u]); + + /* Compute the initial buffer offset */ + for(u = 0, loc = 0; u < ndims; u++) + loc += offset[u] * slab[u]; + + /* Set local copies of information for the fastest changing dimension */ + fast_dim_block = tdiminfo[fast_dim].block; + + /* Calculate the number of elements to sequence through */ + H5_CHECK_OVERFLOW(iter->elmt_left, hsize_t, size_t); + io_left = MIN((size_t)iter->elmt_left, maxelem); + + /* Compute the number of blocks which would fit into the buffer */ + H5_CHECK_OVERFLOW(io_left / fast_dim_block, hsize_t, size_t); + tot_blk_count = (size_t)(io_left / fast_dim_block); + + /* Don't go over the maximum number of sequences allowed */ + tot_blk_count = MIN(tot_blk_count, maxseq); + + /* Set the number of elements to write each time */ + H5_CHECKED_ASSIGN(actual_elem, size_t, fast_dim_block, hsize_t); + + /* Check for blocks to operate on */ + if(tot_blk_count > 0) { + size_t actual_bytes; /* The actual number of bytes to copy */ + + /* Set the number of actual bytes */ + actual_bytes = actual_elem * elem_size; + + /* Check for 1-dim selection */ + if(0 == fast_dim) { + /* Sanity checks */ + HDassert(1 == tot_blk_count); + HDassert(io_left == actual_elem); + + /* Store the sequence information */ + *off++ = loc; + *len++ = actual_bytes; + } /* end if */ + else { + hsize_t skip_slab; /* Temporary copy of slab[fast_dim - 1] */ + size_t blk_count; /* Total number of blocks left to output */ + + /* Find first dimension w/block >1 */ + skip_dim = fast_dim; + for(i = (int)(fast_dim - 1); i >= 0; i--) + if(tdiminfo[i].block > 1) { + skip_dim = (unsigned)i; + break; + } /* end if */ + skip_slab = slab[skip_dim]; + + /* Check for being able to use fast algorithm for 1-D */ + if(0 == skip_dim) { + /* Create sequences until an entire row can't be used */ + blk_count = tot_blk_count; + while(blk_count > 0) { + /* Store the sequence information */ + *off++ = loc; + *len++ = actual_bytes; + + /* Increment offset in destination buffer */ + loc += skip_slab; + + /* Decrement block count */ + blk_count--; + } /* end while */ + + /* Move to the next location */ + offset[skip_dim] += tot_blk_count; + } /* end if */ + else { + hsize_t tmp_block[H5S_MAX_RANK]; /* Temporary block offset */ + hsize_t skip[H5S_MAX_RANK]; /* Bytes to skip between blocks */ + int temp_dim; /* Temporary rank holder */ + + /* Set the starting block location */ + for(u = 0; u < ndims; u++) + tmp_block[u] = iter->u.hyp.off[u] - tdiminfo[u].start; + + /* Compute the amount to skip between sequences */ + for(u = 0; u < ndims; u++) + skip[u] = (mem_size[u] - tdiminfo[u].block) * slab[u]; + + /* Create sequences until an entire row can't be used */ + blk_count = tot_blk_count; + while(blk_count > 0) { + /* Store the sequence information */ + *off++ = loc; + *len++ = actual_bytes; + + /* Set temporary dimension for advancing offsets */ + temp_dim = (int)skip_dim; + + /* Increment offset in destination buffer */ + loc += skip_slab; + + /* Increment the offset and count for the other dimensions */ + while(temp_dim >= 0) { + /* Move to the next row in the curent dimension */ + offset[temp_dim]++; + tmp_block[temp_dim]++; + + /* If this block is still in the range of blocks to output for the dimension, break out of loop */ + if(tmp_block[temp_dim] < tdiminfo[temp_dim].block) + break; + else { + offset[temp_dim] = base_offset[temp_dim]; + loc += skip[temp_dim]; + tmp_block[temp_dim] = 0; + } /* end else */ + + /* Decrement dimension count */ + temp_dim--; + } /* end while */ + + /* Decrement block count */ + blk_count--; + } /* end while */ + } /* end else */ + } /* end else */ + + /* Update the iterator, if there were any blocks used */ + + /* Decrement the number of elements left in selection */ + iter->elmt_left -= tot_blk_count * actual_elem; + + /* Check if there are elements left in iterator */ + if(iter->elmt_left > 0) { + /* Update the iterator with the location we stopped */ + /* (Subtract out the selection offset) */ + for(u = 0; u < ndims; u++) + iter->u.hyp.off[u] = (hsize_t)((hssize_t)offset[u] - sel_off[u]); + } /* end if */ + + /* Increment the number of sequences generated */ + *nseq += tot_blk_count; + + /* Increment the number of elements used */ + *nelem += tot_blk_count * actual_elem; + } /* end if */ + + /* Check for partial block, with room for another sequence */ + if(io_left > (tot_blk_count * actual_elem) && tot_blk_count < maxseq) { + size_t elmt_remainder; /* Elements remaining */ + + /* Compute elements left */ + elmt_remainder = io_left - (tot_blk_count * actual_elem); + HDassert(elmt_remainder < fast_dim_block); + HDassert(elmt_remainder > 0); + + /* Store the sequence information */ + *off++ = loc; + *len++ = elmt_remainder * elem_size; + + /* Update the iterator with the location we stopped */ + iter->u.hyp.off[fast_dim] += (hsize_t)elmt_remainder; + + /* Decrement the number of elements left in selection */ + iter->elmt_left -= elmt_remainder; + + /* Increment the number of sequences generated */ + (*nseq)++; + + /* Increment the number of elements used */ + *nelem += elmt_remainder; + } /* end if */ + + /* Sanity check */ + HDassert(*nseq > 0); + HDassert(*nelem > 0); + + FUNC_LEAVE_NOAPI(SUCCEED) +} /* end H5S__hyper_get_seq_list_single() */ + + +/*-------------------------------------------------------------------------- + NAME + H5S__hyper_get_seq_list + PURPOSE + Create a list of offsets & lengths for a selection + USAGE + herr_t H5S__hyper_get_seq_list(space,flags,iter,maxseq,maxelem,nseq,nelem,off,len) + H5S_t *space; IN: Dataspace containing selection to use. + unsigned flags; IN: Flags for extra information about operation + H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last + position of interest in selection. + size_t maxseq; IN: Maximum number of sequences to generate + size_t maxelem; IN: Maximum number of elements to include in the + generated sequences + size_t *nseq; OUT: Actual number of sequences generated + size_t *nelem; OUT: Actual number of elements in sequences generated + hsize_t *off; OUT: Array of offsets (in bytes) + size_t *len; OUT: Array of lengths (in bytes) + RETURNS + Non-negative on success/Negative on failure. + DESCRIPTION + Use the selection in the dataspace to generate a list of byte offsets and + lengths for the region(s) selected. Start/Restart from the position in the + ITER parameter. The number of sequences generated is limited by the MAXSEQ + parameter and the number of sequences actually generated is stored in the + NSEQ parameter. + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +static herr_t +H5S__hyper_get_seq_list(const H5S_t *space, unsigned H5_ATTR_UNUSED flags, H5S_sel_iter_t *iter, + size_t maxseq, size_t maxelem, size_t *nseq, size_t *nelem, + hsize_t *off, size_t *len) +{ + herr_t ret_value = FAIL; /* return value */ + + FUNC_ENTER_STATIC_NOERR + + /* Check args */ + HDassert(space); + HDassert(iter); + HDassert(iter->elmt_left > 0); + HDassert(maxseq > 0); + HDassert(maxelem > 0); + HDassert(nseq); + HDassert(nelem); + HDassert(off); + HDassert(len); + HDassert(space->select.sel_info.hslab->unlim_dim < 0); + + /* Check for the special case of just one H5Sselect_hyperslab call made */ + if(space->select.sel_info.hslab->diminfo_valid) { + const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */ + const hssize_t *sel_off; /* Selection offset in dataspace */ + hsize_t *mem_size; /* Size of the source buffer */ + unsigned ndims; /* Number of dimensions of dataset */ + unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ + hbool_t single_block; /* Whether the selection is a single block */ + unsigned u; /* Local index variable */ + + /* Set a local copy of the diminfo pointer */ + tdiminfo = iter->u.hyp.diminfo; + + /* Check if this is a "flattened" regular hyperslab selection */ + if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < space->extent.rank) { + /* Set the aliases for a few important dimension ranks */ + ndims = iter->u.hyp.iter_rank; + + /* Set the local copy of the selection offset */ + sel_off = iter->u.hyp.sel_off; + + /* Set up the pointer to the size of the memory space */ + mem_size = iter->u.hyp.size; + } /* end if */ + else { + /* Set the aliases for a few important dimension ranks */ + ndims = space->extent.rank; + + /* Set the local copy of the selection offset */ + sel_off = space->select.offset; + + /* Set up the pointer to the size of the memory space */ + mem_size = space->extent.size; + } /* end else */ + fast_dim = ndims - 1; + + /* Check if we stopped in the middle of a sequence of elements */ + if((iter->u.hyp.off[fast_dim] - tdiminfo[fast_dim].start) % tdiminfo[fast_dim].stride != 0 || + ((iter->u.hyp.off[fast_dim] != tdiminfo[fast_dim].start) && tdiminfo[fast_dim].count == 1)) { + hsize_t slab[H5S_MAX_RANK]; /* Hyperslab size */ + hsize_t loc; /* Coordinate offset */ + hsize_t acc; /* Accumulator */ + size_t leftover; /* The number of elements left over from the last sequence */ + size_t actual_elem; /* The actual number of elements to count */ + size_t elem_size; /* Size of each element iterating over */ + int i; /* Local index variable */ + + + /* Calculate the number of elements left in the sequence */ + if(tdiminfo[fast_dim].count == 1) { + H5_CHECKED_ASSIGN(leftover, size_t, tdiminfo[fast_dim].block - (iter->u.hyp.off[fast_dim] - tdiminfo[fast_dim].start), hsize_t); + } /* end if */ + else { + H5_CHECKED_ASSIGN(leftover, size_t, tdiminfo[fast_dim].block - ((iter->u.hyp.off[fast_dim] - tdiminfo[fast_dim].start) % tdiminfo[fast_dim].stride), hsize_t); + } /* end else */ + + /* Make certain that we don't write too many */ + actual_elem = MIN3(leftover, (size_t)iter->elmt_left, maxelem); + + /* Initialize row sizes for each dimension */ + elem_size = iter->elmt_size; + for(i = (int)fast_dim, acc = elem_size; i >= 0; i--) { + slab[i] = acc; + acc *= mem_size[i]; + } /* end for */ + + /* Compute the initial buffer offset */ + for(u = 0, loc = 0; u < ndims; u++) + loc += ((hsize_t)((hssize_t)iter->u.hyp.off[u] + sel_off[u])) * slab[u]; + + /* Add a new sequence */ + off[0] = loc; + H5_CHECKED_ASSIGN(len[0], size_t, actual_elem * elem_size, hsize_t); + + /* Increment sequence array locations */ + off++; + len++; + + /* Advance the hyperslab iterator */ + H5S__hyper_iter_next(iter, actual_elem); + + /* Decrement the number of elements left in selection */ + iter->elmt_left -= actual_elem; + + /* Decrement element/sequence limits */ + maxelem -= actual_elem; + maxseq--; + + /* Set the number of sequences generated and elements used */ + *nseq = 1; + *nelem = actual_elem; + + /* Check for using up all the sequences/elements */ + if(0 == iter->elmt_left || 0 == maxelem || 0 == maxseq) + return(SUCCEED); + } /* end if */ + else { + /* Reset the number of sequences generated and elements used */ + *nseq = 0; + *nelem = 0; + } /* end else */ + + /* Check for a single block selected */ + single_block = TRUE; + for(u = 0; u < ndims; u++) + if(1 != tdiminfo[u].count) { + single_block = FALSE; + break; + } /* end if */ + + /* Check for single block selection */ + if(single_block) + /* Use single-block optimized call to generate sequence list */ + ret_value = H5S__hyper_get_seq_list_single(space, iter, maxseq, maxelem, nseq, nelem, off, len); + else + /* Use optimized call to generate sequence list */ + ret_value = H5S__hyper_get_seq_list_opt(space, iter, maxseq, maxelem, nseq, nelem, off, len); + } /* end if */ + else + /* Call the general sequence generator routine */ + ret_value = H5S__hyper_get_seq_list_gen(space, iter, maxseq, maxelem, nseq, nelem, off, len); + + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S__hyper_get_seq_list() */ + + +/*-------------------------------------------------------------------------- + NAME H5S__hyper_iter_release PURPOSE Release hyperslab selection iterator information for a dataspace @@ -1105,8 +2428,7 @@ H5S__hyper_iter_release(H5S_sel_iter_t *iter) /* Check args */ HDassert(iter); -/* Release the information needed for non-regular hyperslab I/O */ - /* Free the copy of the selections span tree */ + /* Free the copy of the hyperslab selection span tree */ if(iter->u.hyp.spans != NULL) H5S__hyper_free_span_info(iter->u.hyp.spans); @@ -1125,7 +2447,7 @@ H5S__hyper_iter_release(H5S_sel_iter_t *iter) H5S_hyper_span_info_t *down; IN: Down span tree for new node H5S_hyper_span_t *next; IN: Next span for new node RETURNS - Pointer to next span node on success, NULL on failure + Pointer to new span node on success, NULL on failure DESCRIPTION Allocate and initialize a new hyperslab span node, filling in the low & high bounds, the down span and next span pointers also. Increment the @@ -1136,7 +2458,8 @@ H5S__hyper_iter_release(H5S_sel_iter_t *iter) REVISION LOG --------------------------------------------------------------------------*/ static H5S_hyper_span_t * -H5S__hyper_new_span(hsize_t low, hsize_t high, H5S_hyper_span_info_t *down, H5S_hyper_span_t *next) +H5S__hyper_new_span(hsize_t low, hsize_t high, H5S_hyper_span_info_t *down, + H5S_hyper_span_t *next) { H5S_hyper_span_t *ret_value = NULL; /* Return value */ @@ -3905,125 +5228,6 @@ done: FUNC_LEAVE_NOAPI(ret_value) } /* end H5S_hyper_convert() */ -#ifdef LATER - -/*-------------------------------------------------------------------------- - NAME - H5S_hyper_intersect_helper - PURPOSE - Helper routine to detect intersections in span trees - USAGE - htri_t H5S_hyper_intersect_helper(spans1, spans2) - H5S_hyper_span_info_t *spans1; IN: First span tree to operate with - H5S_hyper_span_info_t *spans2; IN: Second span tree to operate with - RETURNS - Non-negative on success, negative on failure - DESCRIPTION - Quickly detect intersections between two span trees - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -static htri_t -H5S_hyper_intersect_helper (H5S_hyper_span_info_t *spans1, H5S_hyper_span_info_t *spans2) -{ - H5S_hyper_span_t *curr1; /* Pointer to current span in 1st span tree */ - H5S_hyper_span_t *curr2; /* Pointer to current span in 2nd span tree */ - htri_t status; /* Status from recursive call */ - htri_t ret_value=FALSE; /* Return value */ - - FUNC_ENTER_NOAPI_NOINIT - - /* Sanity check */ - HDassert((spans1 && spans2) || (spans1 == NULL && spans2 == NULL)); - - /* "NULL" span trees compare as overlapping */ - if(spans1==NULL && spans2==NULL) - HGOTO_DONE(TRUE); - - /* Get the span lists for each span in this tree */ - curr1=spans1->head; - curr2=spans2->head; - - /* Iterate over the spans in each tree */ - while(curr1!=NULL && curr2!=NULL) { - /* Check for 1st span entirely before 2nd span */ - if(curr1->high<curr2->low) - curr1=curr1->next; - /* Check for 2nd span entirely before 1st span */ - else if(curr2->high<curr1->low) - curr2=curr2->next; - /* Spans must overlap */ - else { - /* Recursively check spans in next dimension down */ - if((status=H5S_hyper_intersect_helper(curr1->down,curr2->down))<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab intersection check") - - /* If there is a span intersection in the down dimensions, the span trees overlap */ - if(status==TRUE) - HGOTO_DONE(TRUE); - - /* No intersection in down dimensions, advance to next span */ - if(curr1->high<curr2->high) - curr1=curr1->next; - else - curr2=curr2->next; - } /* end else */ - } /* end while */ - -done: - FUNC_LEAVE_NOAPI(ret_value) -} /* H5S_hyper_intersect_helper() */ - - -/*-------------------------------------------------------------------------- - NAME - H5S_hyper_intersect - PURPOSE - Detect intersections in span trees - USAGE - htri_t H5S_hyper_intersect(space1, space2) - H5S_t *space1; IN: First dataspace to operate on span tree - H5S_t *space2; IN: Second dataspace to operate on span tree - RETURNS - Non-negative on success, negative on failure - DESCRIPTION - Quickly detect intersections between two span trees - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -htri_t -H5S_hyper_intersect (H5S_t *space1, H5S_t *space2) -{ - htri_t ret_value=FAIL; /* Return value */ - - FUNC_ENTER_NOAPI_NOINIT - - /* Sanity check */ - HDassert(space1); - HDassert(space2); - - /* Check that the space selections both have span trees */ - if(space1->select.sel_info.hslab->span_lst==NULL || - space2->select.sel_info.hslab->span_lst==NULL) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree") - - /* Check that the dataspaces are both the same rank */ - if(space1->extent.rank!=space2->extent.rank) - HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "dataspace ranks don't match") - - /* Perform the span-by-span intersection check */ - if((ret_value=H5S_hyper_intersect_helper(space1->select.sel_info.hslab->span_lst,space2->select.sel_info.hslab->span_lst))<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab intersection check") - -done: - FUNC_LEAVE_NOAPI(ret_value) -} /* H5S_hyper_intersect() */ -#endif /* LATER */ - /*-------------------------------------------------------------------------- NAME @@ -6257,7 +7461,6 @@ done: FUNC_LEAVE_NOAPI(ret_value) } /* end H5S__hyper_generate_spans() */ -#ifndef NEW_HYPERSLAB_API /*------------------------------------------------------------------------- * Function: H5S__generate_hyperlab @@ -6906,2337 +8109,6 @@ H5Sselect_hyperslab(hid_t space_id, H5S_seloper_t op, const hsize_t start[], done: FUNC_LEAVE_API(ret_value) } /* end H5Sselect_hyperslab() */ -#else /* NEW_HYPERSLAB_API */ /* Works */ - -/*------------------------------------------------------------------------- - * Function: H5S_operate_hyperslab - * - * Purpose: Combines two hyperslabs with an operation, putting the - * result into a third hyperslab selection - * - * Return: non-negative on success/NULL on failure - * - * Programmer: Quincey Koziol - * Tuesday, October 30, 2001 - * - * Modifications: - * - *------------------------------------------------------------------------- - */ -static herr_t -H5S_operate_hyperslab (H5S_t *result, H5S_hyper_span_info_t *spans1, H5S_seloper_t op, H5S_hyper_span_info_t *spans2, - hbool_t can_own_span2, hbool_t *span2_owned) -{ - H5S_hyper_span_info_t *a_not_b=NULL; /* Span tree for hyperslab spans in old span tree and not in new span tree */ - H5S_hyper_span_info_t *a_and_b=NULL; /* Span tree for hyperslab spans in both old and new span trees */ - H5S_hyper_span_info_t *b_not_a=NULL; /* Span tree for hyperslab spans in new span tree and not in old span tree */ - herr_t ret_value=SUCCEED; /* Return value */ - - FUNC_ENTER_NOAPI_NOINIT - - /* Check args */ - HDassert(result); - HDassert(spans2); - HDassert(op > H5S_SELECT_NOOP && op < H5S_SELECT_INVALID); - - /* Just copy the selection from spans2 if we are setting the selection */ - /* ('space1' to 'result' aliasing happens at the next layer up) */ - if(op==H5S_SELECT_SET) { - if(H5S__hyper_merge_spans(result,spans2,can_own_span2)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") - - /* Update the number of elements in current selection */ - result->select.num_elem = H5S__hyper_spans_nelem(spans2); - - /* Indicate that we took ownership of span2, if allowed */ - if(can_own_span2) - *span2_owned=TRUE; - } /* end if */ - else { - hbool_t updated_spans = FALSE; /* Whether the spans in the selection were modified */ - - HDassert(spans1); - - /* Generate lists of spans which overlap and don't overlap */ - if(H5S__hyper_clip_spans(spans1,spans2,&a_not_b,&a_and_b,&b_not_a)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information") - - /* Switch on the operation */ - switch(op) { - case H5S_SELECT_OR: - /* Copy spans from spans1 to current selection */ - if(spans1!=NULL) { - if(H5S__hyper_merge_spans(result,spans1,FALSE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") - - /* Update the number of elements in current selection */ - result->select.num_elem = H5S__hyper_spans_nelem(spans1); - } /* end if */ - - /* Add any new spans from spans2 to current selection */ - if(b_not_a!=NULL) { - if(H5S__hyper_merge_spans(result,b_not_a,FALSE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") - - /* Update the number of elements in current selection */ - result->select.num_elem += H5S__hyper_spans_nelem(b_not_a); - - /* Indicate that the spans were updated */ - updated_spans = TRUE; - } /* end if */ - break; - - case H5S_SELECT_AND: - /* Check if there are any overlapped selections */ - if(a_and_b!=NULL) { - if(H5S__hyper_merge_spans(result,a_and_b,TRUE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") - - /* Update the number of elements in current selection */ - result->select.num_elem = H5S__hyper_spans_nelem(a_and_b); - - /* Indicate that the result owns the a_and_b spans */ - a_and_b=NULL; - - /* Indicate that the spans were updated */ - updated_spans = TRUE; - } /* end if */ - break; - - case H5S_SELECT_XOR: - /* Check if there are any non-overlapped selections */ - if(a_not_b!=NULL) { - if(H5S__hyper_merge_spans(result,a_not_b,FALSE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") - - /* Update the number of elements in current selection */ - result->select.num_elem = H5S__hyper_spans_nelem(a_not_b); - - /* Indicate that the spans were updated */ - updated_spans = TRUE; - } /* end if */ - if(b_not_a!=NULL) { - if(H5S__hyper_merge_spans(result,b_not_a,FALSE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") - - /* Update the number of elements in current selection */ - result->select.num_elem += H5S__hyper_spans_nelem(b_not_a); - - /* Indicate that the spans were updated */ - updated_spans = TRUE; - } /* end if */ - break; - - case H5S_SELECT_NOTB: - /* Check if there are any non-overlapped selections */ - if(a_not_b!=NULL) { - if(H5S__hyper_merge_spans(result,a_not_b,TRUE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") - - /* Update the number of elements in current selection */ - result->select.num_elem = H5S__hyper_spans_nelem(a_not_b); - - /* Indicate that the result owns the a_not_b spans */ - a_not_b=NULL; - - /* Indicate that the spans were updated */ - updated_spans = TRUE; - } /* end if */ - break; - - case H5S_SELECT_NOTA: - /* Check if there are any non-overlapped selections */ - if(b_not_a!=NULL) { - if(H5S__hyper_merge_spans(result,b_not_a,TRUE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") - - /* Update the number of elements in current selection */ - result->select.num_elem = H5S__hyper_spans_nelem(b_not_a); - - /* Indicate that the result owns the b_not_a spans */ - b_not_a=NULL; - - /* Indicate that the spans were updated */ - updated_spans = TRUE; - } /* end if */ - break; - - default: - HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") - } /* end switch */ - - /* Free the hyperslab trees generated from the clipping algorithm */ - if(a_not_b) - H5S__hyper_free_span_info(a_not_b); - if(a_and_b) - H5S__hyper_free_span_info(a_and_b); - if(b_not_a) - H5S__hyper_free_span_info(b_not_a); - - /* Check if the resulting hyperslab span tree is empty */ - if(result->select.sel_info.hslab->span_lst==NULL) { - H5S_hyper_span_info_t *spans; /* Empty hyperslab span tree */ - - /* Sanity check */ - HDassert(result->select.num_elem == 0); - - /* Allocate a span info node */ - if((spans = H5FL_MALLOC(H5S_hyper_span_info_t))==NULL) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span") - - /* Set the reference count */ - spans->count=1; - - /* Reset the scratch pad space */ - spans->scratch=0; - - /* Set to empty tree */ - spans->head=NULL; - - /* Set pointer to empty span tree */ - result->select.sel_info.hslab->span_lst=spans; - } /* end if */ - else { - /* Check if we updated the spans */ - if(updated_spans) { - /* Attempt to rebuild "optimized" start/stride/count/block information. - * from resulting hyperslab span tree - */ - H5S__hyper_rebuild(result); - } /* end if */ - } /* end else */ - } /* end else */ - -done: - FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S_operate_hyperslab() */ - - -/*------------------------------------------------------------------------- - * Function: H5S_generate_hyperlab - * - * Purpose: Generate hyperslab information from H5S_select_hyperslab() - * - * Return: Non-negative on success/Negative on failure - * - * Programmer: Quincey Koziol (split from HS_select_hyperslab()). - * Tuesday, September 12, 2000 - * - * Modifications: - * - *------------------------------------------------------------------------- - */ -static herr_t -H5S__generate_hyperslab(H5S_t *space, H5S_seloper_t op, const hsize_t start[], - const hsize_t stride[], const hsize_t count[], const hsize_t block[]) -{ - H5S_hyper_span_info_t *new_spans=NULL; /* Span tree for new hyperslab */ - H5S_hyper_span_info_t *tmp_spans=NULL; /* Temporary copy of selection */ - hbool_t span2_owned=FALSE; /* Flag to indicate that span2 was used in H5S_operate_hyperslab() */ - herr_t ret_value=SUCCEED; /* Return value */ - - FUNC_ENTER_NOAPI_NOINIT - - /* Check args */ - HDassert(space); - HDassert(op > H5S_SELECT_NOOP && op < H5S_SELECT_INVALID); - HDassert(start); - HDassert(stride); - HDassert(count); - HDassert(block); - - /* Generate span tree for new hyperslab information */ - if(NULL == (new_spans = H5S__hyper_make_spans(space->extent.rank, start, stride, count, block))) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't create hyperslab information") - - /* Copy the original dataspace */ - if(space->select.sel_info.hslab->span_lst!=NULL) { - /* Take ownership of the dataspace's hyperslab spans */ - /* (These are freed later) */ - tmp_spans=space->select.sel_info.hslab->span_lst; - space->select.sel_info.hslab->span_lst=NULL; - - /* Reset the other dataspace selection information */ - if(H5S_SELECT_RELEASE(space)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection") - - /* Allocate space for the hyperslab selection information */ - if((space->select.sel_info.hslab=H5FL_MALLOC(H5S_hyper_sel_t))==NULL) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info") - - /* Set unlim_dim */ - space->select.sel_info.hslab->unlim_dim = -1; - } /* end if */ - - /* Combine tmp_space (really space) & new_space, with the result in space */ - if(H5S_operate_hyperslab(space,tmp_spans,op,new_spans,TRUE,&span2_owned)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information") - -done: - /* Free temporary data structures */ - if(tmp_spans!=NULL) - if(H5S__hyper_free_span_info(tmp_spans)<0) - HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release temporary hyperslab spans") - if(new_spans!=NULL && span2_owned==FALSE) - if(H5S__hyper_free_span_info(new_spans)<0) - HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release temporary hyperslab spans") - - FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S__generate_hyperslab() */ - - -/*------------------------------------------------------------------------- - * Function: H5S_select_hyperslab - * - * Purpose: Internal version of H5Sselect_hyperslab(). - * - * Return: Non-negative on success/Negative on failure - * - * Programmer: Quincey Koziol - * Wednesday, January 10, 2001 - * - * Modifications: - * - *------------------------------------------------------------------------- - */ -herr_t -H5S_select_hyperslab (H5S_t *space, H5S_seloper_t op, - const hsize_t start[], - const hsize_t *stride, - const hsize_t count[], - const hsize_t *block) -{ - hsize_t int_stride[H5S_MAX_RANK]; /* Internal storage for stride information */ - hsize_t int_count[H5S_MAX_RANK]; /* Internal storage for count information */ - hsize_t int_block[H5S_MAX_RANK]; /* Internal storage for block information */ - const hsize_t *opt_stride; /* Optimized stride information */ - const hsize_t *opt_count; /* Optimized count information */ - const hsize_t *opt_block; /* Optimized block information */ - unsigned u; /* Counters */ - int unlim_dim = -1; /* Unlimited dimension in selection, of -1 if none */ - herr_t ret_value=SUCCEED; /* Return value */ - - FUNC_ENTER_NOAPI(FAIL) - - /* Check args */ - HDassert(space); - HDassert(start); - HDassert(count); - HDassert(op > H5S_SELECT_NOOP && op < H5S_SELECT_INVALID); - - /* Point to the correct stride values */ - if(stride == NULL) - stride = H5S_hyper_ones_g; - - /* Point to the correct block values */ - if(block == NULL) - block = H5S_hyper_ones_g; - - /* Check for unlimited dimension */ - for(u = 0; u<space->extent.rank; u++) - if((count[u] == H5S_UNLIMITED) || (block[u] == H5S_UNLIMITED)) { - if(unlim_dim >= 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "cannot have more than one unlimited dimension in selection") - else { - if(count[u] == block[u] /* == H5S_UNLIMITED */) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "count and block cannot both be unlimited") - unlim_dim = (int)u; - } /* end else */ - } /* end if */ - - /* - * Check new selection. - */ - for(u=0; u<space->extent.rank; u++) { - /* Check for overlapping hyperslab blocks in new selection. */ - if(count[u] > 1 && stride[u] < block[u]) - HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "hyperslab blocks overlap") - - /* Detect zero-sized hyperslabs in new selection */ - if(count[u] == 0 || block[u] == 0) { - switch(op) { - case H5S_SELECT_SET: /* Select "set" operation */ - case H5S_SELECT_AND: /* Binary "and" operation for hyperslabs */ - case H5S_SELECT_NOTA: /* Binary "B not A" operation for hyperslabs */ - /* Convert to "none" selection */ - if(H5S_select_none(space)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't convert selection") - HGOTO_DONE(SUCCEED); - - case H5S_SELECT_OR: /* Binary "or" operation for hyperslabs */ - case H5S_SELECT_XOR: /* Binary "xor" operation for hyperslabs */ - case H5S_SELECT_NOTB: /* Binary "A not B" operation for hyperslabs */ - HGOTO_DONE(SUCCEED); /* Selection stays same */ - - default: - HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") - } /* end switch */ - } /* end if */ - } /* end for */ - - /* Optimize hyperslab parameters to merge contiguous blocks, etc. */ - if(stride == H5S_hyper_ones_g && block == H5S_hyper_ones_g) { - /* Point to existing arrays */ - opt_stride = H5S_hyper_ones_g; - opt_count = H5S_hyper_ones_g; - opt_block = count; - } /* end if */ - else { - /* Point to local arrays */ - opt_stride = int_stride; - opt_count = int_count; - opt_block = int_block; - for(u=0; u<space->extent.rank; u++) { - /* contiguous hyperslabs have the block size equal to the stride */ - if((stride[u] == block[u]) && (count[u] != H5S_UNLIMITED)) { - int_count[u]=1; - int_stride[u]=1; - if(block[u]==1) - int_block[u]=count[u]; - else - int_block[u]=block[u]*count[u]; - } /* end if */ - else { - if(count[u]==1) - int_stride[u]=1; - else { - HDassert((stride[u] > block[u]) || ((stride[u] == block[u]) - && (count[u] == H5S_UNLIMITED))); - int_stride[u]=stride[u]; - } /* end else */ - int_count[u]=count[u]; - int_block[u]=block[u]; - } /* end else */ - } /* end for */ - } /* end else */ - - /* Check for operating on unlimited selection */ - if((H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS) - && (space->select.sel_info.hslab->unlim_dim >= 0) - && (op != H5S_SELECT_SET)) - { - /* Check for invalid operation */ - if(unlim_dim >= 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "cannot modify unlimited selection with another unlimited selection") - if(!((op == H5S_SELECT_AND) || (op == H5S_SELECT_NOTA))) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unsupported operation on unlimited selection") - HDassert(space->select.sel_info.hslab->diminfo_valid); - - /* Clip unlimited selection to include new selection */ - if(H5S_hyper_clip_unlim(space, - start[space->select.sel_info.hslab->unlim_dim] - + ((opt_count[space->select.sel_info.hslab->unlim_dim] - - (hsize_t)1) - * opt_stride[space->select.sel_info.hslab->unlim_dim]) - + opt_block[space->select.sel_info.hslab->unlim_dim]) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "failed to clip unlimited selection") - - /* If an empty space was returned it must be "none" */ - HDassert((space->select.num_elem > (hsize_t)0) - || (space->select.type->type == H5S_SEL_NONE)); - } /* end if */ - - /* Fixup operation for non-hyperslab selections */ - switch(H5S_GET_SELECT_TYPE(space)) { - case H5S_SEL_NONE: /* No elements selected in dataspace */ - switch(op) { - case H5S_SELECT_SET: /* Select "set" operation */ - /* Change "none" selection to hyperslab selection */ - break; - - case H5S_SELECT_OR: /* Binary "or" operation for hyperslabs */ - case H5S_SELECT_XOR: /* Binary "xor" operation for hyperslabs */ - case H5S_SELECT_NOTA: /* Binary "B not A" operation for hyperslabs */ - op=H5S_SELECT_SET; /* Maps to "set" operation when applied to "none" selection */ - break; - - case H5S_SELECT_AND: /* Binary "and" operation for hyperslabs */ - case H5S_SELECT_NOTB: /* Binary "A not B" operation for hyperslabs */ - HGOTO_DONE(SUCCEED); /* Selection stays "none" */ - - default: - HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") - } /* end switch */ - break; - - case H5S_SEL_ALL: /* All elements selected in dataspace */ - switch(op) { - case H5S_SELECT_SET: /* Select "set" operation */ - /* Change "all" selection to hyperslab selection */ - break; - - case H5S_SELECT_OR: /* Binary "or" operation for hyperslabs */ - HGOTO_DONE(SUCCEED); /* Selection stays "all" */ - - case H5S_SELECT_AND: /* Binary "and" operation for hyperslabs */ - op=H5S_SELECT_SET; /* Maps to "set" operation when applied to "none" selection */ - break; - - case H5S_SELECT_XOR: /* Binary "xor" operation for hyperslabs */ - case H5S_SELECT_NOTB: /* Binary "A not B" operation for hyperslabs */ - /* Convert current "all" selection to "real" hyperslab selection */ - /* Then allow operation to proceed */ - { - hsize_t tmp_start[H5S_MAX_RANK]; /* Temporary start information */ - hsize_t tmp_stride[H5S_MAX_RANK]; /* Temporary stride information */ - hsize_t tmp_count[H5S_MAX_RANK]; /* Temporary count information */ - hsize_t tmp_block[H5S_MAX_RANK]; /* Temporary block information */ - - /* Fill in temporary information for the dimensions */ - for(u=0; u<space->extent.rank; u++) { - tmp_start[u]=0; - tmp_stride[u]=1; - tmp_count[u]=1; - tmp_block[u]=space->extent.size[u]; - } /* end for */ - - /* Convert to hyperslab selection */ - if(H5S_select_hyperslab(space,H5S_SELECT_SET,tmp_start,tmp_stride,tmp_count,tmp_block)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't convert selection") - } /* end case */ - break; - - case H5S_SELECT_NOTA: /* Binary "B not A" operation for hyperslabs */ - /* Convert to "none" selection */ - if(H5S_select_none(space)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't convert selection") - HGOTO_DONE(SUCCEED); - - default: - HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") - } /* end switch */ - break; - - case H5S_SEL_HYPERSLABS: - /* Hyperslab operation on hyperslab selection, OK */ - break; - - case H5S_SEL_POINTS: /* Can't combine hyperslab operations and point selections currently */ - if(op==H5S_SELECT_SET) /* Allow only "set" operation to proceed */ - break; - /* Else fall through to error */ - - default: - HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") - } /* end switch */ - - - if(op==H5S_SELECT_SET) { - /* If we are setting a new selection, remove current selection first */ - if(H5S_SELECT_RELEASE(space)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release hyperslab") - - /* Allocate space for the hyperslab selection information */ - if(NULL == (space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t))) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info") - - /* Save the diminfo */ - space->select.num_elem=1; - for(u=0; u<space->extent.rank; u++) { - space->select.sel_info.hslab->app_diminfo[u].start = start[u]; - space->select.sel_info.hslab->app_diminfo[u].stride = stride[u]; - space->select.sel_info.hslab->app_diminfo[u].count = count[u]; - space->select.sel_info.hslab->app_diminfo[u].block = block[u]; - - space->select.sel_info.hslab->opt_diminfo[u].start = start[u]; - space->select.sel_info.hslab->opt_diminfo[u].stride = opt_stride[u]; - space->select.sel_info.hslab->opt_diminfo[u].count = opt_count[u]; - space->select.sel_info.hslab->opt_diminfo[u].block = opt_block[u]; - - space->select.num_elem*=(opt_count[u]*opt_block[u]); - } /* end for */ - - /* Save unlim_dim */ - space->select.sel_info.hslab->unlim_dim = unlim_dim; - - /* Indicate that the dimension information is valid */ - space->select.sel_info.hslab->diminfo_valid = TRUE; - - /* Indicate that there's no slab information */ - space->select.sel_info.hslab->span_lst = NULL; - - /* Handle unlimited selections */ - if(unlim_dim >= 0) { - /* Calculate num_elem_non_unlim */ - space->select.sel_info.hslab->num_elem_non_unlim = (hsize_t)1; - for(u = 0; u < space->extent.rank; u++) - if((int)u != unlim_dim) - space->select.sel_info.hslab->num_elem_non_unlim *= (opt_count[u] * opt_block[u]); - - /* Set num_elem */ - if(space->select.num_elem != (hsize_t)0) - space->select.num_elem = H5S_UNLIMITED; - } /* end if */ - } /* end if */ - else if(op>=H5S_SELECT_OR && op<=H5S_SELECT_NOTA) { - /* Sanity check */ - HDassert(H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS); - - /* Handle unlimited selections */ - if(unlim_dim >= 0) { - hsize_t bounds_start[H5S_MAX_RANK]; - hsize_t bounds_end[H5S_MAX_RANK]; - hsize_t tmp_count = opt_count[unlim_dim]; - hsize_t tmp_block = opt_block[unlim_dim]; - - /* Check for invalid operation */ - if(space->select.sel_info.hslab->unlim_dim >= 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "cannot modify unlimited selection with another unlimited selection") - if(!((op == H5S_SELECT_AND) || (op == H5S_SELECT_NOTB))) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unsupported operation with unlimited selection") - - /* Get bounds of existing selection */ - if(H5S_hyper_bounds(space, bounds_start, bounds_end) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "can't get selection bounds") - - /* Patch count and block to remove unlimited and include the - * existing selection */ - H5S__hyper_get_clip_diminfo(start[unlim_dim], opt_stride[unlim_dim], &tmp_count, &tmp_block, bounds_end[unlim_dim] + (hsize_t)1); - HDassert((tmp_count == 1) || (opt_count != H5S_hyper_ones_g)); - HDassert((tmp_block == 1) || (opt_block != H5S_hyper_ones_g)); - if(opt_count != H5S_hyper_ones_g) { - HDassert(opt_count == int_count); - int_count[unlim_dim] = tmp_count; - } /* end if */ - if(opt_block != H5S_hyper_ones_g) { - HDassert(opt_block == int_block); - int_block[unlim_dim] = tmp_block; - } /* end if */ - } /* end if */ - - /* Check if there's no hyperslab span information currently */ - if(NULL == space->select.sel_info.hslab->span_lst) - if(H5S__hyper_generate_spans(space) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree") - - /* Indicate that the regular dimensions are no longer valid */ - space->select.sel_info.hslab->diminfo_valid = FALSE; - - /* Add in the new hyperslab information */ - if(H5S__generate_hyperslab (space, op, start, opt_stride, opt_count, opt_block)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs") - } /* end if */ - else - HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") - - /* Set selection type */ - space->select.type = H5S_sel_hyper; - -done: - FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S_select_hyperslab() */ - - -/*-------------------------------------------------------------------------- - NAME - H5Sselect_hyperslab - PURPOSE - Specify a hyperslab to combine with the current hyperslab selection - USAGE - herr_t H5Sselect_hyperslab(dsid, op, start, stride, count, block) - hid_t dsid; IN: Dataspace ID of selection to modify - H5S_seloper_t op; IN: Operation to perform on current selection - const hsize_t *start; IN: Offset of start of hyperslab - const hsize_t *stride; IN: Hyperslab stride - const hsize_t *count; IN: Number of blocks included in hyperslab - const hsize_t *block; IN: Size of block in hyperslab - RETURNS - Non-negative on success/Negative on failure - DESCRIPTION - Combines a hyperslab selection with the current selection for a dataspace. - If the current selection is not a hyperslab, it is freed and the hyperslab - parameters passed in are combined with the H5S_SEL_ALL hyperslab (ie. a - selection composing the entire current extent). If STRIDE or BLOCK is - NULL, they are assumed to be set to all '1'. - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -herr_t -H5Sselect_hyperslab(hid_t space_id, H5S_seloper_t op, const hsize_t start[], - const hsize_t stride[], const hsize_t count[], const hsize_t block[]) -{ - H5S_t *space = NULL; /* Dataspace to modify selection of */ - herr_t ret_value=SUCCEED; /* Return value */ - - FUNC_ENTER_API(FAIL) - H5TRACE6("e", "iSs*h*h*h*h", space_id, op, start, stride, count, block); - - /* Check args */ - if (NULL == (space = (H5S_t *)H5I_object_verify(space_id, H5I_DATASPACE))) - HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a dataspace") - if (H5S_SCALAR==H5S_GET_EXTENT_TYPE(space)) - HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "hyperslab doesn't support H5S_SCALAR space") - if (H5S_NULL==H5S_GET_EXTENT_TYPE(space)) - HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "hyperslab doesn't support H5S_NULL space") - if(start==NULL || count==NULL) - HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "hyperslab not specified") - if(!(op>H5S_SELECT_NOOP && op<H5S_SELECT_INVALID)) - HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") - if(stride!=NULL) { - unsigned u; /* Local index variable */ - - /* Check for 0-sized strides */ - for(u=0; u<space->extent.rank; u++) { - if(stride[u]==0) - HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "invalid stride==0 value") - } /* end for */ - } /* end if */ - - if (H5S_select_hyperslab(space, op, start, stride, count, block)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to set hyperslab selection") - -done: - FUNC_LEAVE_API(ret_value) -} /* end H5Sselect_hyperslab() */ - - -/*-------------------------------------------------------------------------- - NAME - H5Scombine_hyperslab - PURPOSE - Specify a hyperslab to combine with the current hyperslab selection and - return a new dataspace with the combined selection as the selection in the - new dataspace. - USAGE - hid_t H5Srefine_hyperslab(dsid, op, start, stride, count, block) - hid_t dsid; IN: Dataspace ID of selection to use - H5S_seloper_t op; IN: Operation to perform on current selection - const hsize_t *start; IN: Offset of start of hyperslab - const hsize_t *stride; IN: Hyperslab stride - const hsize_t *count; IN: Number of blocks included in hyperslab - const hsize_t *block; IN: Size of block in hyperslab - RETURNS - Dataspace ID on success/Negative on failure - DESCRIPTION - Combines a hyperslab selection with the current selection for a dataspace, - creating a new dataspace to return the generated selection. - If the current selection is not a hyperslab, it is freed and the hyperslab - parameters passed in are combined with the H5S_SEL_ALL hyperslab (ie. a - selection composing the entire current extent). If STRIDE or BLOCK is - NULL, they are assumed to be set to all '1'. - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -hid_t -H5Scombine_hyperslab(hid_t space_id, H5S_seloper_t op, const hsize_t start[], - const hsize_t stride[], const hsize_t count[], const hsize_t block[]) -{ - H5S_t *space; /* Dataspace to modify selection of */ - H5S_t *new_space = NULL; /* New dataspace created */ - hid_t ret_value; /* Return value */ - - FUNC_ENTER_API(FAIL) - H5TRACE6("i", "iSs*h*h*h*h", space_id, op, start, stride, count, block); - - /* Check args */ - if(NULL == (space = (H5S_t *)H5I_object_verify(space_id, H5I_DATASPACE))) - HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a dataspace") - if(start == NULL || count == NULL) - HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "hyperslab not specified") - if(!(op >= H5S_SELECT_SET && op <= H5S_SELECT_NOTA)) - HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") - - /* Copy the first dataspace */ - if (NULL == (new_space = H5S_copy (space, TRUE, TRUE))) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, NULL, "unable to copy dataspace") - - /* Go modify the selection in the new dataspace */ - if (H5S_select_hyperslab(new_space, op, start, stride, count, block)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to set hyperslab selection") - - /* Atomize */ - if((ret_value = H5I_register(H5I_DATASPACE, new_space, TRUE)) < 0) - HGOTO_ERROR(H5E_ATOM, H5E_CANTREGISTER, FAIL, "unable to register dataspace atom") - -done: - if(ret_value < 0 && new_space) - H5S_close(new_space); - - FUNC_LEAVE_API(ret_value) -} /* end H5Scombine_hyperslab() */ - - -/*------------------------------------------------------------------------- - * Function: H5S__combine_select - * - * Purpose: Internal version of H5Scombine_select(). - * - * Return: New dataspace on success/NULL on failure - * - * Programmer: Quincey Koziol - * Tuesday, October 30, 2001 - * - *------------------------------------------------------------------------- - */ -static H5S_t * -H5S__combine_select(H5S_t *space1, H5S_seloper_t op, H5S_t *space2) -{ - H5S_t *new_space = NULL; /* New dataspace generated */ - hbool_t span2_owned=FALSE; /* Flag to indicate that span2 was used in H5S_operate_hyperslab() */ - H5S_t *ret_value; /* return value */ - - FUNC_ENTER_STATIC - - /* Check args */ - HDassert(space1); - HDassert(space2); - HDassert(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA); - - /* Check that the space selections both have span trees */ - if(space1->select.sel_info.hslab->span_lst==NULL) - if(H5S__hyper_generate_spans(space1)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, NULL, "dataspace does not have span tree") - if(space2->select.sel_info.hslab->span_lst==NULL) - if(H5S__hyper_generate_spans(space2)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, NULL, "dataspace does not have span tree") - - /* Copy the first dataspace */ - if (NULL == (new_space = H5S_copy (space1, TRUE, TRUE))) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, NULL, "unable to copy dataspace") - - /* Free the current selection for the new dataspace */ - if(H5S_SELECT_RELEASE(new_space)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, NULL, "can't release selection") - - /* Allocate space for the hyperslab selection information */ - if((new_space->select.sel_info.hslab=H5FL_CALLOC(H5S_hyper_sel_t))==NULL) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab info") - - /* Set unlim_dim */ - new_space->select.sel_info.hslab->unlim_dim = -1; - - /* Combine space1 & space2, with the result in new_space */ - if(H5S_operate_hyperslab(new_space,space1->select.sel_info.hslab->span_lst,op,space2->select.sel_info.hslab->span_lst,FALSE,&span2_owned)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, NULL, "can't clip hyperslab information") - - /* Set return value */ - ret_value = new_space; - -done: - if(ret_value == NULL && new_space) - H5S_close(new_space); - - FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S__combine_select() */ - - -/*-------------------------------------------------------------------------- - NAME - H5Scombine_select - PURPOSE - Combine two hyperslab selections with an operation, returning a dataspace - with the resulting selection. - USAGE - hid_t H5Scombine_select(space1, op, space2) - hid_t space1; IN: First Dataspace ID - H5S_seloper_t op; IN: Selection operation - hid_t space2; IN: Second Dataspace ID - RETURNS - Dataspace ID on success/Negative on failure - DESCRIPTION - Combine two existing hyperslab selections with an operation, returning - a new dataspace with the resulting selection. The dataspace extent from - space1 is copied for the dataspace extent of the newly created dataspace. - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -hid_t -H5Scombine_select(hid_t space1_id, H5S_seloper_t op, hid_t space2_id) -{ - H5S_t *space1; /* First Dataspace */ - H5S_t *space2; /* Second Dataspace */ - H5S_t *new_space = NULL; /* New Dataspace */ - hid_t ret_value; /* Return value */ - - FUNC_ENTER_API(FAIL) - H5TRACE3("i", "iSsi", space1_id, op, space2_id); - - /* Check args */ - if(NULL == (space1 = (H5S_t *)H5I_object_verify(space1_id, H5I_DATASPACE))) - HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a dataspace") - if(NULL == (space2 = (H5S_t *)H5I_object_verify(space2_id, H5I_DATASPACE))) - HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a dataspace") - if(!(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA)) - HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") - - /* Check that both dataspaces have the same rank */ - if(space1->extent.rank != space2->extent.rank) - HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "dataspaces not same rank") - - /* Check that both dataspaces have hyperslab selections */ - if(H5S_GET_SELECT_TYPE(space1) != H5S_SEL_HYPERSLABS || H5S_GET_SELECT_TYPE(space2) != H5S_SEL_HYPERSLABS) - HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "dataspaces don't have hyperslab selections") - - /* Go combine the dataspaces */ - if(NULL == (new_space = H5S__combine_select(space1, op, space2))) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to create hyperslab selection") - - /* Atomize */ - if((ret_value = H5I_register(H5I_DATASPACE, new_space, TRUE)) < 0) - HGOTO_ERROR(H5E_ATOM, H5E_CANTREGISTER, FAIL, "unable to register dataspace atom") - -done: - if(ret_value < 0 && new_space) - H5S_close(new_space); - - FUNC_LEAVE_API(ret_value) -} /* end H5Scombine_select() */ - - -/*------------------------------------------------------------------------- - * Function: H5S_select_select - * - * Purpose: Internal version of H5Sselect_select(). - * - * Return: New dataspace on success/NULL on failure - * - * Programmer: Quincey Koziol - * Tuesday, October 30, 2001 - * - *------------------------------------------------------------------------- - */ -static herr_t -H5S_select_select (H5S_t *space1, H5S_seloper_t op, H5S_t *space2) -{ - H5S_hyper_span_info_t *tmp_spans=NULL; /* Temporary copy of selection */ - hbool_t span2_owned=FALSE; /* Flag to indicate that span2 was used in H5S_operate_hyperslab() */ - herr_t ret_value=SUCCEED; /* Return value */ - - FUNC_ENTER_NOAPI_NOINIT - - /* Check args */ - HDassert(space1); - HDassert(space2); - HDassert(op > H5S_SELECT_NOOP && op < H5S_SELECT_INVALID); - - /* Check that the space selections both have span trees */ - if(space1->select.sel_info.hslab->span_lst==NULL) - if(H5S__hyper_generate_spans(space1)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree") - if(space2->select.sel_info.hslab->span_lst==NULL) - if(H5S__hyper_generate_spans(space2)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree") - - /* Take ownership of the dataspace's hyperslab spans */ - /* (These are freed later) */ - tmp_spans=space1->select.sel_info.hslab->span_lst; - space1->select.sel_info.hslab->span_lst=NULL; - - /* Reset the other dataspace selection information */ - if(H5S_SELECT_RELEASE(space1)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection") - - /* Allocate space for the hyperslab selection information */ - if((space1->select.sel_info.hslab=H5FL_CALLOC(H5S_hyper_sel_t))==NULL) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info") - - /* Set unlim_dim */ - space1->select.sel_info.hslab->unlim_dim = -1; - - /* Combine tmp_spans (from space1) & spans from space2, with the result in space1 */ - if(H5S_operate_hyperslab(space1,tmp_spans,op,space2->select.sel_info.hslab->span_lst,FALSE,&span2_owned)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information") - -done: - if(tmp_spans!=NULL) - H5S__hyper_free_span_info(tmp_spans); - - FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S_select_select() */ - - -/*-------------------------------------------------------------------------- - NAME - H5Sselect_select - PURPOSE - Refine a hyperslab selection with an operation using a second hyperslab - to modify it. - USAGE - herr_t H5Sselect_select(space1, op, space2) - hid_t space1; IN/OUT: First Dataspace ID - H5S_seloper_t op; IN: Selection operation - hid_t space2; IN: Second Dataspace ID - RETURNS - Non-negative on success/Negative on failure - DESCRIPTION - Refine an existing hyperslab selection with an operation, using a second - hyperslab. The first selection is modified to contain the result of - space1 operated on by space2. - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -herr_t -H5Sselect_select(hid_t space1_id, H5S_seloper_t op, hid_t space2_id) -{ - H5S_t *space1; /* First Dataspace */ - H5S_t *space2; /* Second Dataspace */ - herr_t ret_value = SUCCEED; /* Return value */ - - FUNC_ENTER_API(FAIL) - H5TRACE3("e", "iSsi", space1_id, op, space2_id); - - /* Check args */ - if(NULL == (space1 = (H5S_t *)H5I_object_verify(space1_id, H5I_DATASPACE))) - HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a dataspace") - if(NULL == (space2 = (H5S_t *)H5I_object_verify(space2_id, H5I_DATASPACE))) - HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a dataspace") - if(!(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA)) - HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") - - /* Check that both dataspaces have the same rank */ - if(space1->extent.rank != space2->extent.rank) - HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "dataspaces not same rank") - - /* Check that both dataspaces have hyperslab selections */ - if(H5S_GET_SELECT_TYPE(space1) != H5S_SEL_HYPERSLABS || H5S_GET_SELECT_TYPE(space2) != H5S_SEL_HYPERSLABS) - HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "dataspaces don't have hyperslab selections") - - /* Go refine the first selection */ - if(H5S_select_select(space1, op, space2) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to modify hyperslab selection") - -done: - FUNC_LEAVE_API(ret_value) -} /* end H5Sselect_select() */ -#endif /* NEW_HYPERSLAB_API */ /* Works */ - - -/*-------------------------------------------------------------------------- - NAME - H5S__hyper_get_seq_list_gen - PURPOSE - Create a list of offsets & lengths for a selection - USAGE - herr_t H5S_select_hyper_get_file_list_gen(space,iter,maxseq,maxelem,nseq,nelem,off,len) - H5S_t *space; IN: Dataspace containing selection to use. - H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last - position of interest in selection. - size_t maxseq; IN: Maximum number of sequences to generate - size_t maxelem; IN: Maximum number of elements to include in the - generated sequences - size_t *nseq; OUT: Actual number of sequences generated - size_t *nelem; OUT: Actual number of elements in sequences generated - hsize_t *off; OUT: Array of offsets - size_t *len; OUT: Array of lengths - RETURNS - Non-negative on success/Negative on failure. - DESCRIPTION - Use the selection in the dataspace to generate a list of byte offsets and - lengths for the region(s) selected. Start/Restart from the position in the - ITER parameter. The number of sequences generated is limited by the MAXSEQ - parameter and the number of sequences actually generated is stored in the - NSEQ parameter. - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -static herr_t -H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, - size_t maxseq, size_t maxelem, size_t *nseq, size_t *nelem, - hsize_t *off, size_t *len) -{ - H5S_hyper_span_t *curr_span; /* Current hyperslab span node */ - H5S_hyper_span_t **ispan; /* Iterator's hyperslab span nodes */ - hsize_t slab[H5S_MAX_RANK]; /* Cumulative size of each dimension in bytes */ - hsize_t acc; /* Accumulator for computing cumulative sizes */ - hsize_t loc_off; /* Element offset in the dataspace */ - hsize_t last_span_end = 0; /* The offset of the end of the last span */ - hsize_t *abs_arr; /* Absolute hyperslab span position */ - const hssize_t *off_arr; /* Offset within the dataspace extent */ - size_t span_size = 0; /* Number of bytes in current span to actually process */ - size_t io_left; /* Number of elements left to process */ - size_t io_bytes_left; /* Number of bytes left to process */ - size_t io_used; /* Number of elements processed */ - size_t curr_seq = 0; /* Number of sequence/offsets stored in the arrays */ - size_t elem_size; /* Size of each element iterating over */ - unsigned ndims; /* Number of dimensions of dataset */ - unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ - int curr_dim; /* Current dimension being operated on */ - unsigned u; /* Index variable */ - int i; /* Index variable */ - - FUNC_ENTER_STATIC_NOERR - - /* Check args */ - HDassert(space); - HDassert(iter); - HDassert(maxseq > 0); - HDassert(maxelem > 0); - HDassert(nseq); - HDassert(nelem); - HDassert(off); - HDassert(len); - - /* Set the rank of the fastest changing dimension */ - ndims = space->extent.rank; - fast_dim = (ndims - 1); - - /* Get the pointers to the current span info and span nodes */ - curr_span = iter->u.hyp.span[fast_dim]; - abs_arr = iter->u.hyp.off; - off_arr = space->select.offset; - ispan = iter->u.hyp.span; - elem_size = iter->elmt_size; - - /* Set the amount of elements to perform I/O on, etc. */ - H5_CHECK_OVERFLOW(iter->elmt_left, hsize_t, size_t); - io_left = MIN(maxelem, (size_t)iter->elmt_left); - io_bytes_left = io_left * elem_size; - - /* Compute the cumulative size of dataspace dimensions */ - for(i = (int)fast_dim, acc = elem_size; i >= 0; i--) { - slab[i] = acc; - acc *= space->extent.size[i]; - } /* end for */ - - /* Set the offset of the first element iterated on */ - for(u = 0, loc_off = 0; u < ndims; u++) - /* Compute the sequential element offset */ - loc_off += ((hsize_t)((hssize_t)abs_arr[u] + off_arr[u])) * slab[u]; - - /* Range check against number of elements left in selection */ - HDassert(io_bytes_left <= (iter->elmt_left * elem_size)); - - /* Take care of any partial spans leftover from previous I/Os */ - if(abs_arr[fast_dim]!=curr_span->low) { - - /* Finish the span in the fastest changing dimension */ - - /* Compute the number of bytes to attempt in this span */ - H5_CHECKED_ASSIGN(span_size, size_t, ((curr_span->high-abs_arr[fast_dim])+1)*elem_size, hsize_t); - - /* Check number of bytes against upper bounds allowed */ - if(span_size>io_bytes_left) - span_size=io_bytes_left; - - /* Add the partial span to the list of sequences */ - off[curr_seq]=loc_off; - len[curr_seq]=span_size; - - /* Increment sequence count */ - curr_seq++; - - /* Set the location of the last span's end */ - last_span_end=loc_off+span_size; - - /* Decrement I/O left to perform */ - io_bytes_left-=span_size; - - /* Advance the hyperslab iterator */ - /* Check if we are done */ - if(io_bytes_left > 0) { - /* Move to next span in fastest changing dimension */ - curr_span = curr_span->next; - - if(NULL != curr_span) { - /* Move location offset of destination */ - loc_off += (curr_span->low - abs_arr[fast_dim]) * elem_size; - - /* Move iterator for fastest changing dimension */ - abs_arr[fast_dim] = curr_span->low; - } /* end if */ - } /* end if */ - else { - abs_arr[fast_dim] += span_size / elem_size; - - /* Check if we are still within the span */ - if(abs_arr[fast_dim] <= curr_span->high) { - iter->u.hyp.span[fast_dim] = curr_span; - } /* end if */ - /* If we walked off that span, advance to the next span */ - else { - /* Advance span in this dimension */ - curr_span = curr_span->next; - - /* Check if we have a valid span in this dimension still */ - if(NULL != curr_span) { - /* Reset absolute position */ - abs_arr[fast_dim] = curr_span->low; - iter->u.hyp.span[fast_dim] = curr_span; - } /* end if */ - } /* end else */ - } /* end else */ - - /* Adjust iterator pointers */ - - if(NULL == curr_span) { -/* Same as code in main loop */ - /* Start at the next fastest dim */ - curr_dim = (int)(fast_dim - 1); - - /* Work back up through the dimensions */ - while(curr_dim >= 0) { - /* Reset the current span */ - curr_span = iter->u.hyp.span[curr_dim]; - - /* Increment absolute position */ - abs_arr[curr_dim]++; - - /* Check if we are still within the span */ - if(abs_arr[curr_dim] <= curr_span->high) { - break; - } /* end if */ - /* If we walked off that span, advance to the next span */ - else { - /* Advance span in this dimension */ - curr_span = curr_span->next; - - /* Check if we have a valid span in this dimension still */ - if(NULL != curr_span) { - /* Reset the span in the current dimension */ - ispan[curr_dim] = curr_span; - - /* Reset absolute position */ - abs_arr[curr_dim] = curr_span->low; - - break; - } /* end if */ - else { - /* If we finished the span list in this dimension, decrement the dimension worked on and loop again */ - curr_dim--; - } /* end else */ - } /* end else */ - } /* end while */ - - /* Check if we have more spans in the tree */ - if(curr_dim >= 0) { - /* Walk back down the iterator positions, resetting them */ - while((unsigned)curr_dim < fast_dim) { - HDassert(curr_span); - HDassert(curr_span->down); - HDassert(curr_span->down->head); - - /* Increment current dimension */ - curr_dim++; - - /* Set the new span_info & span for this dimension */ - iter->u.hyp.span[curr_dim] = curr_span->down->head; - - /* Advance span down the tree */ - curr_span = curr_span->down->head; - - /* Reset the absolute offset for the dim */ - abs_arr[curr_dim] = curr_span->low; - } /* end while */ - - /* Verify that the curr_span points to the fastest dim */ - HDassert(curr_span == iter->u.hyp.span[fast_dim]); - - /* Reset the buffer offset */ - for(u = 0, loc_off = 0; u < ndims; u++) - loc_off += ((hsize_t)((hssize_t)abs_arr[u] + off_arr[u])) * slab[u]; - } /* end else */ - else - /* We had better be done with I/O or bad things are going to happen... */ - HDassert(io_bytes_left == 0); - } /* end if */ - } /* end if */ - - /* Perform the I/O on the elements, based on the position of the iterator */ - while(io_bytes_left > 0 && curr_seq < maxseq) { - /* Sanity check */ - HDassert(curr_span); - - /* Adjust location offset of destination to compensate for initial increment below */ - loc_off -= curr_span->pstride; - - /* Loop over all the spans in the fastest changing dimension */ - while(curr_span != NULL) { - /* Move location offset of destination */ - loc_off += curr_span->pstride; - - /* Compute the number of elements to attempt in this span */ - H5_CHECKED_ASSIGN(span_size, size_t, curr_span->nelem, hsize_t); - - /* Check number of elements against upper bounds allowed */ - if(span_size >= io_bytes_left) { - /* Trim the number of bytes to output */ - span_size = io_bytes_left; - io_bytes_left = 0; - -/* COMMON */ - /* Store the I/O information for the span */ - - /* Check if this is appending onto previous sequence */ - if(curr_seq > 0 && last_span_end == loc_off) - len[curr_seq - 1] += span_size; - else { - off[curr_seq] = loc_off; - len[curr_seq] = span_size; - - /* Increment the number of sequences in arrays */ - curr_seq++; - } /* end else */ - - /* Set the location of the last span's end */ - last_span_end = loc_off + span_size; -/* end COMMON */ - - /* Break out now, we are finished with I/O */ - break; - } /* end if */ - else { - /* Decrement I/O left to perform */ - io_bytes_left -= span_size; - -/* COMMON */ - /* Store the I/O information for the span */ - - /* Check if this is appending onto previous sequence */ - if(curr_seq > 0 && last_span_end == loc_off) - len[curr_seq-1]+=span_size; - else { - off[curr_seq] = loc_off; - len[curr_seq] = span_size; - - /* Increment the number of sequences in arrays */ - curr_seq++; - } /* end else */ - - /* Set the location of the last span's end */ - last_span_end = loc_off + span_size; -/* end COMMON */ - - /* If the sequence & offset arrays are full, do what? */ - if(curr_seq >= maxseq) { - /* Break out now, we are finished with sequences */ - break; - } /* end else */ - } /* end else */ - - /* Move to next span in fastest changing dimension */ - curr_span=curr_span->next; - } /* end while */ - - /* Check if we are done */ - if(io_bytes_left==0 || curr_seq>=maxseq) { - HDassert(curr_span); - abs_arr[fast_dim]=curr_span->low+(span_size/elem_size); - - /* Check if we are still within the span */ - if(abs_arr[fast_dim]<=curr_span->high) { - iter->u.hyp.span[fast_dim]=curr_span; - break; - } /* end if */ - /* If we walked off that span, advance to the next span */ - else { - /* Advance span in this dimension */ - curr_span=curr_span->next; - - /* Check if we have a valid span in this dimension still */ - if(curr_span!=NULL) { - /* Reset absolute position */ - abs_arr[fast_dim]=curr_span->low; - iter->u.hyp.span[fast_dim]=curr_span; - break; - } /* end if */ - } /* end else */ - } /* end if */ - - /* Adjust iterator pointers */ - - /* Start at the next fastest dim */ - curr_dim = (int)(fast_dim - 1); - - /* Work back up through the dimensions */ - while(curr_dim >= 0) { - /* Reset the current span */ - curr_span=iter->u.hyp.span[curr_dim]; - - /* Increment absolute position */ - abs_arr[curr_dim]++; - - /* Check if we are still within the span */ - if(abs_arr[curr_dim]<=curr_span->high) { - break; - } /* end if */ - /* If we walked off that span, advance to the next span */ - else { - /* Advance span in this dimension */ - curr_span=curr_span->next; - - /* Check if we have a valid span in this dimension still */ - if(curr_span!=NULL) { - /* Reset the span in the current dimension */ - ispan[curr_dim]=curr_span; - - /* Reset absolute position */ - abs_arr[curr_dim]=curr_span->low; - - break; - } /* end if */ - else { - /* If we finished the span list in this dimension, decrement the dimension worked on and loop again */ - curr_dim--; - } /* end else */ - } /* end else */ - } /* end while */ - - /* Check if we are finished with the spans in the tree */ - if(curr_dim < 0) { - /* We had better be done with I/O or bad things are going to happen... */ - HDassert(io_bytes_left == 0); - break; - } /* end if */ - else { - /* Walk back down the iterator positions, resetting them */ - while((unsigned)curr_dim < fast_dim) { - HDassert(curr_span); - HDassert(curr_span->down); - HDassert(curr_span->down->head); - - /* Increment current dimension to the next dimension down */ - curr_dim++; - - /* Set the new span for the next dimension down */ - iter->u.hyp.span[curr_dim] = curr_span->down->head; - - /* Advance span down the tree */ - curr_span = curr_span->down->head; - - /* Reset the absolute offset for the dim */ - abs_arr[curr_dim] = curr_span->low; - } /* end while */ - - /* Verify that the curr_span points to the fastest dim */ - HDassert(curr_span == iter->u.hyp.span[fast_dim]); - } /* end else */ - - /* Reset the buffer offset */ - for(u = 0, loc_off = 0; u < ndims; u++) - loc_off += ((hsize_t)((hssize_t)abs_arr[u] + off_arr[u])) * slab[u]; - } /* end while */ - - /* Decrement number of elements left in iterator */ - io_used = (io_left - (io_bytes_left / elem_size)); - iter->elmt_left -= io_used; - - /* Set the number of sequences generated */ - *nseq = curr_seq; - - /* Set the number of elements used */ - *nelem = io_used; - - FUNC_LEAVE_NOAPI(SUCCEED) -} /* end H5S__hyper_get_seq_list_gen() */ - - -/*-------------------------------------------------------------------------- - NAME - H5S__hyper_get_seq_list_opt - PURPOSE - Create a list of offsets & lengths for a selection - USAGE - herr_t H5S_select_hyper_get_file_list_opt(space,iter,maxseq,maxelem,nseq,nelem,off,len) - H5S_t *space; IN: Dataspace containing selection to use. - H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last - position of interest in selection. - size_t maxseq; IN: Maximum number of sequences to generate - size_t maxelem; IN: Maximum number of elements to include in the - generated sequences - size_t *nseq; OUT: Actual number of sequences generated - size_t *nelem; OUT: Actual number of elements in sequences generated - hsize_t *off; OUT: Array of offsets - size_t *len; OUT: Array of lengths - RETURNS - Non-negative on success/Negative on failure. - DESCRIPTION - Use the selection in the dataspace to generate a list of byte offsets and - lengths for the region(s) selected. Start/Restart from the position in the - ITER parameter. The number of sequences generated is limited by the MAXSEQ - parameter and the number of sequences actually generated is stored in the - NSEQ parameter. - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -static herr_t -H5S__hyper_get_seq_list_opt(const H5S_t *space, H5S_sel_iter_t *iter, - size_t maxseq, size_t maxelem, size_t *nseq, size_t *nelem, - hsize_t *off, size_t *len) -{ - hsize_t *mem_size; /* Size of the source buffer */ - hsize_t slab[H5S_MAX_RANK]; /* Hyperslab size */ - const hssize_t *sel_off; /* Selection offset in dataspace */ - hsize_t offset[H5S_MAX_RANK]; /* Coordinate offset in dataspace */ - hsize_t tmp_count[H5S_MAX_RANK];/* Temporary block count */ - hsize_t tmp_block[H5S_MAX_RANK];/* Temporary block offset */ - hsize_t wrap[H5S_MAX_RANK]; /* Bytes to wrap around at the end of a row */ - hsize_t skip[H5S_MAX_RANK]; /* Bytes to skip between blocks */ - const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */ - hsize_t fast_dim_start, /* Local copies of fastest changing dimension info */ - fast_dim_stride, - fast_dim_block, - fast_dim_offset; - size_t fast_dim_buf_off; /* Local copy of amount to move fastest dimension buffer offset */ - size_t fast_dim_count; /* Number of blocks left in fastest changing dimension */ - size_t tot_blk_count; /* Total number of blocks left to output */ - size_t act_blk_count; /* Actual number of blocks to output */ - size_t total_rows; /* Total number of entire rows to output */ - size_t curr_rows; /* Current number of entire rows to output */ - unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ - unsigned ndims; /* Number of dimensions of dataset */ - int temp_dim; /* Temporary rank holder */ - hsize_t acc; /* Accumulator */ - hsize_t loc; /* Coordinate offset */ - size_t curr_seq = 0; /* Current sequence being operated on */ - size_t actual_elem; /* The actual number of elements to count */ - size_t actual_bytes;/* The actual number of bytes to copy */ - size_t io_left; /* The number of elements left in I/O operation */ - size_t start_io_left; /* The initial number of elements left in I/O operation */ - size_t elem_size; /* Size of each element iterating over */ - unsigned u; /* Local index variable */ - int i; /* Local index variable */ - - FUNC_ENTER_STATIC_NOERR - - /* Check args */ - HDassert(space); - HDassert(iter); - HDassert(maxseq > 0); - HDassert(maxelem > 0); - HDassert(nseq); - HDassert(nelem); - HDassert(off); - HDassert(len); - - /* Set the local copy of the diminfo pointer */ - tdiminfo = iter->u.hyp.diminfo; - - /* Check if this is a "flattened" regular hyperslab selection */ - if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < space->extent.rank) { - /* Set the aliases for a few important dimension ranks */ - ndims = iter->u.hyp.iter_rank; - fast_dim = ndims - 1; - - /* Set the local copy of the selection offset */ - sel_off = iter->u.hyp.sel_off; - - /* Set up the pointer to the size of the memory space */ - mem_size = iter->u.hyp.size; - } /* end if */ - else { - /* Set the aliases for a few important dimension ranks */ - ndims = space->extent.rank; - fast_dim = ndims - 1; - - /* Set the local copy of the selection offset */ - sel_off = space->select.offset; - - /* Set up the pointer to the size of the memory space */ - mem_size = space->extent.size; - } /* end else */ - - /* initialize row sizes for each dimension */ - elem_size = iter->elmt_size; - for(i = (int)fast_dim, acc = elem_size; i >= 0; i--) { - slab[i] = acc; - acc *= mem_size[i]; - } /* end for */ - - /* Calculate the number of elements to sequence through */ - H5_CHECK_OVERFLOW(iter->elmt_left, hsize_t, size_t); - io_left = MIN((size_t)iter->elmt_left, maxelem); - - /* Sanity check that there aren't any "remainder" sequences in process */ - HDassert(!((iter->u.hyp.off[fast_dim] - tdiminfo[fast_dim].start) % tdiminfo[fast_dim].stride != 0 || - ((iter->u.hyp.off[fast_dim] != tdiminfo[fast_dim].start) && tdiminfo[fast_dim].count == 1))); - - /* We've cleared the "remainder" of the previous fastest dimension - * sequence before calling this routine, so we must be at the beginning of - * a sequence. Use the fancy algorithm to compute the offsets and run - * through as many as possible, until the buffer fills up. - */ - - /* Keep the number of elements we started with */ - start_io_left = io_left; - - /* Compute the arrays to perform I/O on */ - - /* Copy the location of the point to get */ - /* (Add in the selection offset) */ - for(u = 0; u < ndims; u++) - offset[u] = (hsize_t)((hssize_t)iter->u.hyp.off[u] + sel_off[u]); - - /* Compute the current "counts" for this location */ - for(u = 0; u < ndims; u++) { - if(tdiminfo[u].count == 1) { - tmp_count[u] = 0; - tmp_block[u] = iter->u.hyp.off[u] - tdiminfo[u].start; - } /* end if */ - else { - tmp_count[u] = (iter->u.hyp.off[u] - tdiminfo[u].start) / tdiminfo[u].stride; - tmp_block[u] = (iter->u.hyp.off[u] - tdiminfo[u].start) % tdiminfo[u].stride; - } /* end else */ - } /* end for */ - - /* Compute the initial buffer offset */ - for(u = 0, loc = 0; u < ndims; u++) - loc += offset[u] * slab[u]; - - /* Set the number of elements to write each time */ - H5_CHECKED_ASSIGN(actual_elem, size_t, tdiminfo[fast_dim].block, hsize_t); - - /* Set the number of actual bytes */ - actual_bytes = actual_elem * elem_size; - - /* Set local copies of information for the fastest changing dimension */ - fast_dim_start = tdiminfo[fast_dim].start; - fast_dim_stride = tdiminfo[fast_dim].stride; - fast_dim_block = tdiminfo[fast_dim].block; - H5_CHECKED_ASSIGN(fast_dim_buf_off, size_t, slab[fast_dim] * fast_dim_stride, hsize_t); - fast_dim_offset = (hsize_t)((hssize_t)fast_dim_start + sel_off[fast_dim]); - - /* Compute the number of blocks which would fit into the buffer */ - H5_CHECK_OVERFLOW(io_left / fast_dim_block, hsize_t, size_t); - tot_blk_count = (size_t)(io_left / fast_dim_block); - - /* Don't go over the maximum number of sequences allowed */ - tot_blk_count = MIN(tot_blk_count, (maxseq - curr_seq)); - - /* Compute the amount to wrap at the end of each row */ - for(u = 0; u < ndims; u++) - wrap[u] = (mem_size[u] - (tdiminfo[u].stride * tdiminfo[u].count)) * slab[u]; - - /* Compute the amount to skip between blocks */ - for(u = 0; u < ndims; u++) - skip[u] = (tdiminfo[u].stride - tdiminfo[u].block) * slab[u]; - - /* Check if there is a partial row left (with full blocks) */ - if(tmp_count[fast_dim] > 0) { - /* Get number of blocks in fastest dimension */ - H5_CHECKED_ASSIGN(fast_dim_count, size_t, tdiminfo[fast_dim].count - tmp_count[fast_dim], hsize_t); - - /* Make certain this entire row will fit into buffer */ - fast_dim_count = MIN(fast_dim_count, tot_blk_count); - - /* Number of blocks to sequence over */ - act_blk_count = fast_dim_count; - - /* Loop over all the blocks in the fastest changing dimension */ - while(fast_dim_count > 0) { - /* Store the sequence information */ - off[curr_seq] = loc; - len[curr_seq] = actual_bytes; - - /* Increment sequence count */ - curr_seq++; - - /* Increment information to reflect block just processed */ - loc += fast_dim_buf_off; - - /* Decrement number of blocks */ - fast_dim_count--; - } /* end while */ - - /* Decrement number of elements left */ - io_left -= actual_elem * act_blk_count; - - /* Decrement number of blocks left */ - tot_blk_count -= act_blk_count; - - /* Increment information to reflect block just processed */ - tmp_count[fast_dim] += act_blk_count; - - /* Check if we finished the entire row of blocks */ - if(tmp_count[fast_dim] >= tdiminfo[fast_dim].count) { - /* Increment offset in destination buffer */ - loc += wrap[fast_dim]; - - /* Increment information to reflect block just processed */ - offset[fast_dim] = fast_dim_offset; /* reset the offset in the fastest dimension */ - tmp_count[fast_dim] = 0; - - /* Increment the offset and count for the other dimensions */ - temp_dim = (int)fast_dim - 1; - while(temp_dim >= 0) { - /* Move to the next row in the curent dimension */ - offset[temp_dim]++; - tmp_block[temp_dim]++; - - /* If this block is still in the range of blocks to output for the dimension, break out of loop */ - if(tmp_block[temp_dim] < tdiminfo[temp_dim].block) - break; - else { - /* Move to the next block in the current dimension */ - offset[temp_dim] += (tdiminfo[temp_dim].stride - tdiminfo[temp_dim].block); - loc += skip[temp_dim]; - tmp_block[temp_dim] = 0; - tmp_count[temp_dim]++; - - /* If this block is still in the range of blocks to output for the dimension, break out of loop */ - if(tmp_count[temp_dim] < tdiminfo[temp_dim].count) - break; - else { - offset[temp_dim] = (hsize_t)((hssize_t)tdiminfo[temp_dim].start + sel_off[temp_dim]); - loc += wrap[temp_dim]; - tmp_count[temp_dim] = 0; /* reset back to the beginning of the line */ - tmp_block[temp_dim] = 0; - } /* end else */ - } /* end else */ - - /* Decrement dimension count */ - temp_dim--; - } /* end while */ - } /* end if */ - else { - /* Update the offset in the fastest dimension */ - offset[fast_dim] += (fast_dim_stride * act_blk_count); - } /* end else */ - } /* end if */ - - /* Compute the number of entire rows to read in */ - H5_CHECK_OVERFLOW(tot_blk_count / tdiminfo[fast_dim].count, hsize_t, size_t); - curr_rows = total_rows = (size_t)(tot_blk_count / tdiminfo[fast_dim].count); - - /* Reset copy of number of blocks in fastest dimension */ - H5_CHECKED_ASSIGN(fast_dim_count, size_t, tdiminfo[fast_dim].count, hsize_t); - - /* Read in data until an entire sequence can't be written out any longer */ - while(curr_rows > 0) { - -#define DUFF_GUTS \ -/* Store the sequence information */ \ -off[curr_seq] = loc; \ -len[curr_seq] = actual_bytes; \ - \ -/* Increment sequence count */ \ -curr_seq++; \ - \ -/* Increment information to reflect block just processed */ \ -loc += fast_dim_buf_off; - -#ifdef NO_DUFFS_DEVICE - /* Loop over all the blocks in the fastest changing dimension */ - while(fast_dim_count > 0) { - DUFF_GUTS - - /* Decrement number of blocks */ - fast_dim_count--; - } /* end while */ -#else /* NO_DUFFS_DEVICE */ - { - size_t duffs_index; /* Counting index for Duff's device */ - - duffs_index = (fast_dim_count + 7) / 8; - switch (fast_dim_count % 8) { - default: - HDassert(0 && "This Should never be executed!"); - break; - case 0: - do - { - DUFF_GUTS - case 7: - DUFF_GUTS - case 6: - DUFF_GUTS - case 5: - DUFF_GUTS - case 4: - DUFF_GUTS - case 3: - DUFF_GUTS - case 2: - DUFF_GUTS - case 1: - DUFF_GUTS - } while (--duffs_index > 0); - } /* end switch */ - } -#endif /* NO_DUFFS_DEVICE */ -#undef DUFF_GUTS - - /* Increment offset in destination buffer */ - loc += wrap[fast_dim]; - - /* Increment the offset and count for the other dimensions */ - temp_dim = (int)fast_dim - 1; - while(temp_dim >= 0) { - /* Move to the next row in the curent dimension */ - offset[temp_dim]++; - tmp_block[temp_dim]++; - - /* If this block is still in the range of blocks to output for the dimension, break out of loop */ - if(tmp_block[temp_dim] < tdiminfo[temp_dim].block) - break; - else { - /* Move to the next block in the current dimension */ - offset[temp_dim] += (tdiminfo[temp_dim].stride - tdiminfo[temp_dim].block); - loc += skip[temp_dim]; - tmp_block[temp_dim] = 0; - tmp_count[temp_dim]++; - - /* If this block is still in the range of blocks to output for the dimension, break out of loop */ - if(tmp_count[temp_dim] < tdiminfo[temp_dim].count) - break; - else { - offset[temp_dim] = (hsize_t)((hssize_t)tdiminfo[temp_dim].start + sel_off[temp_dim]); - loc += wrap[temp_dim]; - tmp_count[temp_dim] = 0; /* reset back to the beginning of the line */ - tmp_block[temp_dim] = 0; - } /* end else */ - } /* end else */ - - /* Decrement dimension count */ - temp_dim--; - } /* end while */ - - /* Decrement the number of rows left */ - curr_rows--; - } /* end while */ - - /* Adjust the number of blocks & elements left to transfer */ - - /* Decrement number of elements left */ - H5_CHECK_OVERFLOW(actual_elem * (total_rows * tdiminfo[fast_dim].count), hsize_t, size_t); - io_left -= (size_t)(actual_elem * (total_rows * tdiminfo[fast_dim].count)); - - /* Decrement number of blocks left */ - H5_CHECK_OVERFLOW((total_rows * tdiminfo[fast_dim].count), hsize_t, size_t); - tot_blk_count -= (size_t)(total_rows * tdiminfo[fast_dim].count); - - /* Read in partial row of blocks */ - if(io_left > 0 && curr_seq < maxseq) { - /* Get remaining number of blocks left to output */ - fast_dim_count = tot_blk_count; - - /* Loop over all the blocks in the fastest changing dimension */ - while(fast_dim_count > 0) { - /* Store the sequence information */ - off[curr_seq] = loc; - len[curr_seq] = actual_bytes; - - /* Increment sequence count */ - curr_seq++; - - /* Increment information to reflect block just processed */ - loc += fast_dim_buf_off; - - /* Decrement number of blocks */ - fast_dim_count--; - } /* end while */ - - /* Decrement number of elements left */ - io_left -= actual_elem * tot_blk_count; - - /* Increment information to reflect block just processed */ - offset[fast_dim] += (fast_dim_stride * tot_blk_count); /* move the offset in the fastest dimension */ - - /* Handle any leftover, partial blocks in this row */ - if(io_left > 0 && curr_seq < maxseq) { - actual_elem = io_left; - actual_bytes = actual_elem * elem_size; - - /* Store the sequence information */ - off[curr_seq] = loc; - len[curr_seq] = actual_bytes; - - /* Increment sequence count */ - curr_seq++; - - /* Decrement the number of elements left */ - io_left -= actual_elem; - - /* Increment buffer correctly */ - offset[fast_dim] += actual_elem; - } /* end if */ - - /* don't bother checking slower dimensions */ - HDassert(io_left == 0 || curr_seq == maxseq); - } /* end if */ - - /* Update the iterator */ - - /* Update the iterator with the location we stopped */ - /* (Subtract out the selection offset) */ - for(u = 0; u < ndims; u++) - iter->u.hyp.off[u] = (hsize_t)((hssize_t)offset[u] - sel_off[u]); - - /* Decrement the number of elements left in selection */ - iter->elmt_left -= (start_io_left - io_left); - - /* Increment the number of sequences generated */ - *nseq += curr_seq; - - /* Increment the number of elements used */ - *nelem += start_io_left - io_left; - - FUNC_LEAVE_NOAPI(SUCCEED) -} /* end H5S__hyper_get_seq_list_opt() */ - - -/*-------------------------------------------------------------------------- - NAME - H5S__hyper_get_seq_list_single - PURPOSE - Create a list of offsets & lengths for a selection - USAGE - herr_t H5S__hyper_get_seq_list_single(space, flags, iter, maxseq, maxelem, nseq, nelem, off, len) - H5S_t *space; IN: Dataspace containing selection to use. - unsigned flags; IN: Flags for extra information about operation - H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last - position of interest in selection. - size_t maxseq; IN: Maximum number of sequences to generate - size_t maxelem; IN: Maximum number of elements to include in the - generated sequences - size_t *nseq; OUT: Actual number of sequences generated - size_t *nelem; OUT: Actual number of elements in sequences generated - hsize_t *off; OUT: Array of offsets - size_t *len; OUT: Array of lengths - RETURNS - Non-negative on success/Negative on failure. - DESCRIPTION - Use the selection in the dataspace to generate a list of byte offsets and - lengths for the region(s) selected. Start/Restart from the position in the - ITER parameter. The number of sequences generated is limited by the MAXSEQ - parameter and the number of sequences actually generated is stored in the - NSEQ parameter. - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -static herr_t -H5S__hyper_get_seq_list_single(const H5S_t *space, H5S_sel_iter_t *iter, - size_t maxseq, size_t maxelem, size_t *nseq, size_t *nelem, - hsize_t *off, size_t *len) -{ - const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */ - const hssize_t *sel_off; /* Selection offset in dataspace */ - hsize_t *mem_size; /* Size of the source buffer */ - hsize_t base_offset[H5S_MAX_RANK]; /* Base coordinate offset in dataspace */ - hsize_t offset[H5S_MAX_RANK]; /* Coordinate offset in dataspace */ - hsize_t slab[H5S_MAX_RANK]; /* Hyperslab size */ - hsize_t fast_dim_block; /* Local copies of fastest changing dimension info */ - hsize_t acc; /* Accumulator */ - hsize_t loc; /* Coordinate offset */ - size_t tot_blk_count; /* Total number of blocks left to output */ - size_t elem_size; /* Size of each element iterating over */ - size_t io_left; /* The number of elements left in I/O operation */ - size_t actual_elem; /* The actual number of elements to count */ - unsigned ndims; /* Number of dimensions of dataset */ - unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ - unsigned skip_dim; /* Rank of the dimension to skip along */ - unsigned u; /* Local index variable */ - int i; /* Local index variable */ - - FUNC_ENTER_STATIC_NOERR - - /* Check args */ - HDassert(space); - HDassert(iter); - HDassert(maxseq > 0); - HDassert(maxelem > 0); - HDassert(nseq); - HDassert(nelem); - HDassert(off); - HDassert(len); - - /* Set a local copy of the diminfo pointer */ - tdiminfo = iter->u.hyp.diminfo; - - /* Check if this is a "flattened" regular hyperslab selection */ - if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < space->extent.rank) { - /* Set the aliases for a few important dimension ranks */ - ndims = iter->u.hyp.iter_rank; - - /* Set the local copy of the selection offset */ - sel_off = iter->u.hyp.sel_off; - - /* Set up the pointer to the size of the memory space */ - mem_size = iter->u.hyp.size; - } /* end if */ - else { - /* Set the aliases for a few important dimension ranks */ - ndims = space->extent.rank; - - /* Set the local copy of the selection offset */ - sel_off = space->select.offset; - - /* Set up the pointer to the size of the memory space */ - mem_size = space->extent.size; - } /* end else */ - fast_dim = ndims - 1; - - /* initialize row sizes for each dimension */ - elem_size = iter->elmt_size; - for(i = (int)fast_dim, acc = elem_size; i >= 0; i--) { - slab[i] = acc; - acc *= mem_size[i]; - } /* end for */ - - /* Copy the base location of the block */ - /* (Add in the selection offset) */ - for(u = 0; u < ndims; u++) - base_offset[u] = (hsize_t)((hssize_t)tdiminfo[u].start + sel_off[u]); - - /* Copy the location of the point to get */ - /* (Add in the selection offset) */ - for(u = 0; u < ndims; u++) - offset[u] = (hsize_t)((hssize_t)iter->u.hyp.off[u] + sel_off[u]); - - /* Compute the initial buffer offset */ - for(u = 0, loc = 0; u < ndims; u++) - loc += offset[u] * slab[u]; - - /* Set local copies of information for the fastest changing dimension */ - fast_dim_block = tdiminfo[fast_dim].block; - - /* Calculate the number of elements to sequence through */ - H5_CHECK_OVERFLOW(iter->elmt_left, hsize_t, size_t); - io_left = MIN((size_t)iter->elmt_left, maxelem); - - /* Compute the number of blocks which would fit into the buffer */ - H5_CHECK_OVERFLOW(io_left / fast_dim_block, hsize_t, size_t); - tot_blk_count = (size_t)(io_left / fast_dim_block); - - /* Don't go over the maximum number of sequences allowed */ - tot_blk_count = MIN(tot_blk_count, maxseq); - - /* Set the number of elements to write each time */ - H5_CHECKED_ASSIGN(actual_elem, size_t, fast_dim_block, hsize_t); - - /* Check for blocks to operate on */ - if(tot_blk_count > 0) { - size_t actual_bytes; /* The actual number of bytes to copy */ - - /* Set the number of actual bytes */ - actual_bytes = actual_elem * elem_size; - - /* Check for 1-dim selection */ - if(0 == fast_dim) { - /* Sanity checks */ - HDassert(1 == tot_blk_count); - HDassert(io_left == actual_elem); - - /* Store the sequence information */ - *off++ = loc; - *len++ = actual_bytes; - } /* end if */ - else { - hsize_t skip_slab; /* Temporary copy of slab[fast_dim - 1] */ - size_t blk_count; /* Total number of blocks left to output */ - - /* Find first dimension w/block >1 */ - skip_dim = fast_dim; - for(i = (int)(fast_dim - 1); i >= 0; i--) - if(tdiminfo[i].block > 1) { - skip_dim = (unsigned)i; - break; - } /* end if */ - skip_slab = slab[skip_dim]; - - /* Check for being able to use fast algorithm for 1-D */ - if(0 == skip_dim) { - /* Create sequences until an entire row can't be used */ - blk_count = tot_blk_count; - while(blk_count > 0) { - /* Store the sequence information */ - *off++ = loc; - *len++ = actual_bytes; - - /* Increment offset in destination buffer */ - loc += skip_slab; - - /* Decrement block count */ - blk_count--; - } /* end while */ - - /* Move to the next location */ - offset[skip_dim] += tot_blk_count; - } /* end if */ - else { - hsize_t tmp_block[H5S_MAX_RANK];/* Temporary block offset */ - hsize_t skip[H5S_MAX_RANK]; /* Bytes to skip between blocks */ - int temp_dim; /* Temporary rank holder */ - - /* Set the starting block location */ - for(u = 0; u < ndims; u++) - tmp_block[u] = iter->u.hyp.off[u] - tdiminfo[u].start; - - /* Compute the amount to skip between sequences */ - for(u = 0; u < ndims; u++) - skip[u] = (mem_size[u] - tdiminfo[u].block) * slab[u]; - - /* Create sequences until an entire row can't be used */ - blk_count = tot_blk_count; - while(blk_count > 0) { - /* Store the sequence information */ - *off++ = loc; - *len++ = actual_bytes; - - /* Set temporary dimension for advancing offsets */ - temp_dim = (int)skip_dim; - - /* Increment offset in destination buffer */ - loc += skip_slab; - - /* Increment the offset and count for the other dimensions */ - while(temp_dim >= 0) { - /* Move to the next row in the curent dimension */ - offset[temp_dim]++; - tmp_block[temp_dim]++; - - /* If this block is still in the range of blocks to output for the dimension, break out of loop */ - if(tmp_block[temp_dim] < tdiminfo[temp_dim].block) - break; - else { - offset[temp_dim] = base_offset[temp_dim]; - loc += skip[temp_dim]; - tmp_block[temp_dim] = 0; - } /* end else */ - - /* Decrement dimension count */ - temp_dim--; - } /* end while */ - - /* Decrement block count */ - blk_count--; - } /* end while */ - } /* end else */ - } /* end else */ - - /* Update the iterator, if there were any blocks used */ - - /* Decrement the number of elements left in selection */ - iter->elmt_left -= tot_blk_count * actual_elem; - - /* Check if there are elements left in iterator */ - if(iter->elmt_left > 0) { - /* Update the iterator with the location we stopped */ - /* (Subtract out the selection offset) */ - for(u = 0; u < ndims; u++) - iter->u.hyp.off[u] = (hsize_t)((hssize_t)offset[u] - sel_off[u]); - } /* end if */ - - /* Increment the number of sequences generated */ - *nseq += tot_blk_count; - - /* Increment the number of elements used */ - *nelem += tot_blk_count * actual_elem; - } /* end if */ - - /* Check for partial block, with room for another sequence */ - if(io_left > (tot_blk_count * actual_elem) && tot_blk_count < maxseq) { - size_t elmt_remainder; /* Elements remaining */ - - /* Compute elements left */ - elmt_remainder = io_left - (tot_blk_count * actual_elem); - HDassert(elmt_remainder < fast_dim_block); - HDassert(elmt_remainder > 0); - - /* Store the sequence information */ - *off++ = loc; - *len++ = elmt_remainder * elem_size; - - /* Update the iterator with the location we stopped */ - iter->u.hyp.off[fast_dim] += (hsize_t)elmt_remainder; - - /* Decrement the number of elements left in selection */ - iter->elmt_left -= elmt_remainder; - - /* Increment the number of sequences generated */ - (*nseq)++; - - /* Increment the number of elements used */ - *nelem += elmt_remainder; - } /* end if */ - - /* Sanity check */ - HDassert(*nseq > 0); - HDassert(*nelem > 0); - - FUNC_LEAVE_NOAPI(SUCCEED) -} /* end H5S__hyper_get_seq_list_single() */ - - -/*-------------------------------------------------------------------------- - NAME - H5S__hyper_get_seq_list - PURPOSE - Create a list of offsets & lengths for a selection - USAGE - herr_t H5S__hyper_get_seq_list(space,flags,iter,maxseq,maxelem,nseq,nelem,off,len) - H5S_t *space; IN: Dataspace containing selection to use. - unsigned flags; IN: Flags for extra information about operation - H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last - position of interest in selection. - size_t maxseq; IN: Maximum number of sequences to generate - size_t maxelem; IN: Maximum number of elements to include in the - generated sequences - size_t *nseq; OUT: Actual number of sequences generated - size_t *nelem; OUT: Actual number of elements in sequences generated - hsize_t *off; OUT: Array of offsets - size_t *len; OUT: Array of lengths - RETURNS - Non-negative on success/Negative on failure. - DESCRIPTION - Use the selection in the dataspace to generate a list of byte offsets and - lengths for the region(s) selected. Start/Restart from the position in the - ITER parameter. The number of sequences generated is limited by the MAXSEQ - parameter and the number of sequences actually generated is stored in the - NSEQ parameter. - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -static herr_t -H5S__hyper_get_seq_list(const H5S_t *space, unsigned H5_ATTR_UNUSED flags, H5S_sel_iter_t *iter, - size_t maxseq, size_t maxelem, size_t *nseq, size_t *nelem, - hsize_t *off, size_t *len) -{ - herr_t ret_value = FAIL; /* return value */ - - FUNC_ENTER_STATIC_NOERR - - /* Check args */ - HDassert(space); - HDassert(iter); - HDassert(iter->elmt_left > 0); - HDassert(maxseq > 0); - HDassert(maxelem > 0); - HDassert(nseq); - HDassert(nelem); - HDassert(off); - HDassert(len); - HDassert(space->select.sel_info.hslab->unlim_dim < 0); - - /* Check for the special case of just one H5Sselect_hyperslab call made */ - if(space->select.sel_info.hslab->diminfo_valid) { - const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */ - const hssize_t *sel_off; /* Selection offset in dataspace */ - hsize_t *mem_size; /* Size of the source buffer */ - unsigned ndims; /* Number of dimensions of dataset */ - unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ - hbool_t single_block; /* Whether the selection is a single block */ - unsigned u; /* Local index variable */ - - /* Set a local copy of the diminfo pointer */ - tdiminfo = iter->u.hyp.diminfo; - - /* Check if this is a "flattened" regular hyperslab selection */ - if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < space->extent.rank) { - /* Set the aliases for a few important dimension ranks */ - ndims = iter->u.hyp.iter_rank; - - /* Set the local copy of the selection offset */ - sel_off = iter->u.hyp.sel_off; - - /* Set up the pointer to the size of the memory space */ - mem_size = iter->u.hyp.size; - } /* end if */ - else { - /* Set the aliases for a few important dimension ranks */ - ndims = space->extent.rank; - - /* Set the local copy of the selection offset */ - sel_off = space->select.offset; - - /* Set up the pointer to the size of the memory space */ - mem_size = space->extent.size; - } /* end else */ - fast_dim = ndims - 1; - - /* Check if we stopped in the middle of a sequence of elements */ - if((iter->u.hyp.off[fast_dim] - tdiminfo[fast_dim].start) % tdiminfo[fast_dim].stride != 0 || - ((iter->u.hyp.off[fast_dim] != tdiminfo[fast_dim].start) && tdiminfo[fast_dim].count == 1)) { - hsize_t slab[H5S_MAX_RANK]; /* Hyperslab size */ - hsize_t loc; /* Coordinate offset */ - hsize_t acc; /* Accumulator */ - size_t leftover; /* The number of elements left over from the last sequence */ - size_t actual_elem; /* The actual number of elements to count */ - size_t elem_size; /* Size of each element iterating over */ - int i; /* Local index variable */ - - - /* Calculate the number of elements left in the sequence */ - if(tdiminfo[fast_dim].count == 1) { - H5_CHECKED_ASSIGN(leftover, size_t, tdiminfo[fast_dim].block - (iter->u.hyp.off[fast_dim] - tdiminfo[fast_dim].start), hsize_t); - } /* end if */ - else { - H5_CHECKED_ASSIGN(leftover, size_t, tdiminfo[fast_dim].block - ((iter->u.hyp.off[fast_dim] - tdiminfo[fast_dim].start) % tdiminfo[fast_dim].stride), hsize_t); - } /* end else */ - - /* Make certain that we don't write too many */ - actual_elem = MIN3(leftover, (size_t)iter->elmt_left, maxelem); - - /* Initialize row sizes for each dimension */ - elem_size = iter->elmt_size; - for(i = (int)fast_dim, acc = elem_size; i >= 0; i--) { - slab[i] = acc; - acc *= mem_size[i]; - } /* end for */ - - /* Compute the initial buffer offset */ - for(u = 0, loc = 0; u < ndims; u++) - loc += ((hsize_t)((hssize_t)iter->u.hyp.off[u] + sel_off[u])) * slab[u]; - - /* Add a new sequence */ - off[0] = loc; - H5_CHECKED_ASSIGN(len[0], size_t, actual_elem * elem_size, hsize_t); - - /* Increment sequence array locations */ - off++; - len++; - - /* Advance the hyperslab iterator */ - H5S__hyper_iter_next(iter, actual_elem); - - /* Decrement the number of elements left in selection */ - iter->elmt_left -= actual_elem; - - /* Decrement element/sequence limits */ - maxelem -= actual_elem; - maxseq--; - - /* Set the number of sequences generated and elements used */ - *nseq = 1; - *nelem = actual_elem; - - /* Check for using up all the sequences/elements */ - if(0 == iter->elmt_left || 0 == maxelem || 0 == maxseq) - return(SUCCEED); - } /* end if */ - else { - /* Reset the number of sequences generated and elements used */ - *nseq = 0; - *nelem = 0; - } /* end else */ - - /* Check for a single block selected */ - single_block = TRUE; - for(u = 0; u < ndims; u++) - if(1 != tdiminfo[u].count) { - single_block = FALSE; - break; - } /* end if */ - - /* Check for single block selection */ - if(single_block) - /* Use single-block optimized call to generate sequence list */ - ret_value = H5S__hyper_get_seq_list_single(space, iter, maxseq, maxelem, nseq, nelem, off, len); - else - /* Use optimized call to generate sequence list */ - ret_value = H5S__hyper_get_seq_list_opt(space, iter, maxseq, maxelem, nseq, nelem, off, len); - } /* end if */ - else - /* Call the general sequence generator routine */ - ret_value = H5S__hyper_get_seq_list_gen(space, iter, maxseq, maxelem, nseq, nelem, off, len); - - FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S__hyper_get_seq_list() */ /*-------------------------------------------------------------------------- |