diff options
author | Quincey Koziol <koziol@hdfgroup.org> | 2003-01-09 17:20:03 (GMT) |
---|---|---|
committer | Quincey Koziol <koziol@hdfgroup.org> | 2003-01-09 17:20:03 (GMT) |
commit | 9a433b99a56dc575f1c0b11f95b744de61859dbb (patch) | |
tree | d8c766537cb9adc364c902bd45477d97f67a4a9f /src/H5Spoint.c | |
parent | 7fd449cb7987772a2881a5ced2ae7ad5231f1fa3 (diff) | |
download | hdf5-9a433b99a56dc575f1c0b11f95b744de61859dbb.zip hdf5-9a433b99a56dc575f1c0b11f95b744de61859dbb.tar.gz hdf5-9a433b99a56dc575f1c0b11f95b744de61859dbb.tar.bz2 |
[svn-r6252] Purpose:
Lots of performance improvements & a couple new internal API interfaces.
Description:
Performance Improvements:
- Cached file offset & length sizes in shared file struct, to avoid
constantly looking them up in the FCPL.
- Generic property improvements:
- Added "revision" number to generic property classes to speed
up comparisons.
- Changed method of storing properties from using a hash-table
to the TBBT routines in the library.
- Share the propery names between classes and the lists derived
from them.
- Removed redundant 'def_value' buffer from each property.
- Switching code to use a "copy on write" strategy for
properties in each list, where the properties in each list
are shared with the properties in the class, until a
property's value is changed in a list.
- Fixed error in layout code which was allocating too many buffers.
- Redefined public macros of the form (H5open()/H5check, <variable>)
internally to only be (<variable>), avoiding innumerable useless
calls to H5open() and H5check_version().
- Reuse already zeroed buffers in H5F_contig_fill instead of
constantly re-zeroing them.
- Don't write fill values if writing entire dataset.
- Use gettimeofday() system call instead of time() system when
checking the modification time of a dataset.
- Added reference counted string API and use it for tracking the
names of objects opening in a file (for the ID->name code).
- Removed redundant H5P_get() calls in B-tree routines.
- Redefine H5T datatype macros internally to the library, to avoid
calling H5check redundantly.
- Keep dataspace information for dataset locally instead of reading
from disk each time. Added new module to track open objects
in a file, to allow this (which will be useful eventually for
some FPH5 metadata caching issues).
- Remove H5AC_find macro which was inlining metadata cache lookups,
and call function instead.
- Remove redundant memset() calls from H5G_namei() routine.
- Remove redundant checking of object type when locating objects
in metadata cache and rely on the address only.
- Create default dataset object to use when default dataset creation
property list is used to create datasets, bypassing querying
for all the property list values.
- Use default I/O vector size when performing raw data with the
default dataset transfer property list, instead of querying for
I/O vector size.
- Remove H5P_DEFAULT internally to the library, replacing it with
more specific default property list based on the type of
property list needed.
- Remove redundant memset() calls in object header message (H5O*)
routines.
- Remove redunant memset() calls in data I/O routines.
- Split free-list allocation routines into malloc() and calloc()-
like routines, instead of one combined routine.
- Remove lots of indirection in H5O*() routines.
- Simplify metadata cache entry comparison routine (used when
flushing entire cache out).
- Only enable metadata cache statistics when H5AC_DEBUG is turned
on, instead of always tracking them.
- Simplify address comparison macro (H5F_addr_eq).
- Remove redundant metadata cache entry protections during dataset
creation by protecting the object header once and making all
the modifications necessary for the dataset creation before
unprotecting it.
- Reduce # of "number of element in extent" computations performed
by computing and storing the value during dataspace creation.
- Simplify checking for group location's file information, when file
has not been involving in file-mounting operations.
- Use binary encoding for modification time, instead of ASCII.
- Hoist H5HL_peek calls (to get information in a local heap)
out of loops in many group routine.
- Use static variable for iterators of selections, instead of
dynamically allocation them each time.
- Lookup & insert new entries in one step, avoiding traversing
group's B-tree twice.
- Fixed memory leak in H5Gget_objname_idx() routine (tangential to
performance improvements, but fixed along the way).
- Use free-list for reference counted strings.
- Don't bother copying object names into cached group entries,
since they are re-created when an object is opened.
The benchmark I used to measure these results created several thousand
small (2K) datasets in a file and wrote out the data for them. This is
Elena's "regular.c" benchmark.
These changes resulted in approximately ~4.3x speedup of the
development branch when compared to the previous code in the
development branch and ~1.4x speedup compared to the release
branch.
Additionally, these changes reduce the total memory used (code and
data) by the development branch by ~800KB, bringing the development
branch back into the same ballpark as the release branch.
I'll send out a more detailed description of the benchmark results
as a followup note.
New internal API routines:
Added "reference counted strings" API for tracking strings that get
used by multiple owners without duplicating the strings.
Added "ternary search tree" API for text->object mappings.
Platforms tested:
Tested h5committest {arabica (fortran), eirene (fortran, C++)
modi4 (parallel, fortran)}
Other platforms/configurations tested?
FreeBSD 4.7 (sleipnir) serial & parallel
Solaris 2.6 (baldric) serial
Diffstat (limited to 'src/H5Spoint.c')
-rw-r--r-- | src/H5Spoint.c | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/src/H5Spoint.c b/src/H5Spoint.c index 14d30d4..0072c15 100644 --- a/src/H5Spoint.c +++ b/src/H5Spoint.c @@ -167,7 +167,7 @@ H5S_point_add (H5S_t *space, H5S_seloper_t op, size_t num_elem, const hssize_t * top=curr=NULL; for(i=0; i<num_elem; i++) { /* Allocate space for the new node */ - if((new_node = H5FL_ALLOC(H5S_pnt_node_t,0))==NULL) + if((new_node = H5FL_MALLOC(H5S_pnt_node_t))==NULL) HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate point node"); if((new_node->pnt = H5MM_malloc(space->extent.u.simple.rank*sizeof(hssize_t)))==NULL) @@ -350,7 +350,7 @@ H5S_select_elements (H5S_t *space, H5S_seloper_t op, size_t num_elem, /* Allocate space for the point selection information if necessary */ if(space->select.type!=H5S_SEL_POINTS || space->select.sel_info.pnt_lst==NULL) { - if((space->select.sel_info.pnt_lst = H5FL_ALLOC(H5S_pnt_list_t,1))==NULL) + if((space->select.sel_info.pnt_lst = H5FL_CALLOC(H5S_pnt_list_t))==NULL) HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate element information"); } /* end if */ @@ -412,14 +412,14 @@ H5S_point_copy (H5S_t *dst, const H5S_t *src) assert(dst); /* Allocate room for the head of the point list */ - if((dst->select.sel_info.pnt_lst=H5FL_ALLOC(H5S_pnt_list_t,0))==NULL) + if((dst->select.sel_info.pnt_lst=H5FL_MALLOC(H5S_pnt_list_t))==NULL) HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate point node"); curr=src->select.sel_info.pnt_lst->head; new_head=NULL; while(curr!=NULL) { /* Create each point */ - if((new_node=H5FL_ALLOC(H5S_pnt_node_t,0))==NULL) + if((new_node=H5FL_MALLOC(H5S_pnt_node_t))==NULL) HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate point node"); if((new_node->pnt = H5MM_malloc(src->extent.u.simple.rank*sizeof(hssize_t)))==NULL) HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate coordinate information"); |