summaryrefslogtreecommitdiffstats
path: root/testpar/API/t_bigio.c
diff options
context:
space:
mode:
authorjhendersonHDF <jhenderson@hdfgroup.org>2023-05-02 19:52:39 (GMT)
committerGitHub <noreply@github.com>2023-05-02 19:52:39 (GMT)
commitf8a1b3ceec485829ccdd3034ef2be68029f1a66e (patch)
tree5563ca3059b8cbda43f7f1e0ffedf7985f71a4bc /testpar/API/t_bigio.c
parent41fd8e66a9f837a1adf36a0253e29440d82ff522 (diff)
downloadhdf5-f8a1b3ceec485829ccdd3034ef2be68029f1a66e.zip
hdf5-f8a1b3ceec485829ccdd3034ef2be68029f1a66e.tar.gz
hdf5-f8a1b3ceec485829ccdd3034ef2be68029f1a66e.tar.bz2
Add initial version of HDF5 API tests (#2877)
Diffstat (limited to 'testpar/API/t_bigio.c')
-rw-r--r--testpar/API/t_bigio.c1942
1 files changed, 1942 insertions, 0 deletions
diff --git a/testpar/API/t_bigio.c b/testpar/API/t_bigio.c
new file mode 100644
index 0000000..3e18c8f
--- /dev/null
+++ b/testpar/API/t_bigio.c
@@ -0,0 +1,1942 @@
+
+#include "hdf5.h"
+#include "testphdf5.h"
+
+#if 0
+#include "H5Dprivate.h" /* For Chunk tests */
+#endif
+
+/* FILENAME and filenames must have the same number of names */
+const char *FILENAME[3] = {"bigio_test.h5", "single_rank_independent_io.h5", NULL};
+
+/* Constants definitions */
+#define MAX_ERR_REPORT 10 /* Maximum number of errors reported */
+
+/* Define some handy debugging shorthands, routines, ... */
+/* debugging tools */
+
+#define MAIN_PROCESS (mpi_rank_g == 0) /* define process 0 as main process */
+
+/* Constants definitions */
+#define RANK 2
+
+#define IN_ORDER 1
+#define OUT_OF_ORDER 2
+
+#define DATASET1 "DSET1"
+#define DATASET2 "DSET2"
+#define DATASET3 "DSET3"
+#define DATASET4 "DSET4"
+#define DXFER_COLLECTIVE_IO 0x1 /* Collective IO*/
+#define DXFER_INDEPENDENT_IO 0x2 /* Independent IO collectively */
+#define DXFER_BIGCOUNT (1 << 29)
+
+#define HYPER 1
+#define POINT 2
+#define ALL 3
+
+/* Dataset data type. Int's can be easily octo dumped. */
+typedef hsize_t B_DATATYPE;
+
+int facc_type = FACC_MPIO; /*Test file access type */
+int dxfer_coll_type = DXFER_COLLECTIVE_IO;
+size_t bigcount = (size_t) /* DXFER_BIGCOUNT */ 1310720;
+int nerrors = 0;
+static int mpi_size_g, mpi_rank_g;
+
+hsize_t space_dim1 = SPACE_DIM1 * 256; // 4096
+hsize_t space_dim2 = SPACE_DIM2;
+
+static void coll_chunktest(const char *filename, int chunk_factor, int select_factor, int api_option,
+ int file_selection, int mem_selection, int mode);
+
+/*
+ * Setup the coordinates for point selection.
+ */
+static void
+set_coords(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], size_t num_points,
+ hsize_t coords[], int order)
+{
+ hsize_t i, j, k = 0, m, n, s1, s2;
+
+ if (OUT_OF_ORDER == order)
+ k = (num_points * RANK) - 1;
+ else if (IN_ORDER == order)
+ k = 0;
+
+ s1 = start[0];
+ s2 = start[1];
+
+ for (i = 0; i < count[0]; i++)
+ for (j = 0; j < count[1]; j++)
+ for (m = 0; m < block[0]; m++)
+ for (n = 0; n < block[1]; n++)
+ if (OUT_OF_ORDER == order) {
+ coords[k--] = s2 + (stride[1] * j) + n;
+ coords[k--] = s1 + (stride[0] * i) + m;
+ }
+ else if (IN_ORDER == order) {
+ coords[k++] = s1 + stride[0] * i + m;
+ coords[k++] = s2 + stride[1] * j + n;
+ }
+}
+
+/*
+ * Fill the dataset with trivial data for testing.
+ * Assume dimension rank is 2 and data is stored contiguous.
+ */
+static void
+fill_datasets(hsize_t start[], hsize_t block[], B_DATATYPE *dataset)
+{
+ B_DATATYPE *dataptr = dataset;
+ hsize_t i, j;
+
+ /* put some trivial data in the data_array */
+ for (i = 0; i < block[0]; i++) {
+ for (j = 0; j < block[1]; j++) {
+ *dataptr = (B_DATATYPE)((i + start[0]) * 100 + (j + start[1] + 1));
+ dataptr++;
+ }
+ }
+}
+
+/*
+ * Setup the coordinates for point selection.
+ */
+void
+point_set(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], size_t num_points,
+ hsize_t coords[], int order)
+{
+ hsize_t i, j, k = 0, m, n, s1, s2;
+
+ HDcompile_assert(RANK == 2);
+
+ if (OUT_OF_ORDER == order)
+ k = (num_points * RANK) - 1;
+ else if (IN_ORDER == order)
+ k = 0;
+
+ s1 = start[0];
+ s2 = start[1];
+
+ for (i = 0; i < count[0]; i++)
+ for (j = 0; j < count[1]; j++)
+ for (m = 0; m < block[0]; m++)
+ for (n = 0; n < block[1]; n++)
+ if (OUT_OF_ORDER == order) {
+ coords[k--] = s2 + (stride[1] * j) + n;
+ coords[k--] = s1 + (stride[0] * i) + m;
+ }
+ else if (IN_ORDER == order) {
+ coords[k++] = s1 + stride[0] * i + m;
+ coords[k++] = s2 + stride[1] * j + n;
+ }
+
+ if (VERBOSE_MED) {
+ HDprintf("start[]=(%" PRIuHSIZE ", %" PRIuHSIZE "), "
+ "count[]=(%" PRIuHSIZE ", %" PRIuHSIZE "), "
+ "stride[]=(%" PRIuHSIZE ", %" PRIuHSIZE "), "
+ "block[]=(%" PRIuHSIZE ", %" PRIuHSIZE "), "
+ "total datapoints=%" PRIuHSIZE "\n",
+ start[0], start[1], count[0], count[1], stride[0], stride[1], block[0], block[1],
+ block[0] * block[1] * count[0] * count[1]);
+ k = 0;
+ for (i = 0; i < num_points; i++) {
+ HDprintf("(%d, %d)\n", (int)coords[k], (int)coords[k + 1]);
+ k += 2;
+ }
+ }
+}
+
+/*
+ * Print the content of the dataset.
+ */
+static void
+dataset_print(hsize_t start[], hsize_t block[], B_DATATYPE *dataset)
+{
+ B_DATATYPE *dataptr = dataset;
+ hsize_t i, j;
+
+ /* print the column heading */
+ HDprintf("%-8s", "Cols:");
+ for (j = 0; j < block[1]; j++) {
+ HDprintf("%3" PRIuHSIZE " ", start[1] + j);
+ }
+ HDprintf("\n");
+
+ /* print the slab data */
+ for (i = 0; i < block[0]; i++) {
+ HDprintf("Row %2" PRIuHSIZE ": ", i + start[0]);
+ for (j = 0; j < block[1]; j++) {
+ HDprintf("%" PRIuHSIZE " ", *dataptr++);
+ }
+ HDprintf("\n");
+ }
+}
+
+/*
+ * Print the content of the dataset.
+ */
+static int
+verify_data(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], B_DATATYPE *dataset,
+ B_DATATYPE *original)
+{
+ hsize_t i, j;
+ int vrfyerrs;
+
+ /* print it if VERBOSE_MED */
+ if (VERBOSE_MED) {
+ HDprintf("verify_data dumping:::\n");
+ HDprintf("start(%" PRIuHSIZE ", %" PRIuHSIZE "), "
+ "count(%" PRIuHSIZE ", %" PRIuHSIZE "), "
+ "stride(%" PRIuHSIZE ", %" PRIuHSIZE "), "
+ "block(%" PRIuHSIZE ", %" PRIuHSIZE ")\n",
+ start[0], start[1], count[0], count[1], stride[0], stride[1], block[0], block[1]);
+ HDprintf("original values:\n");
+ dataset_print(start, block, original);
+ HDprintf("compared values:\n");
+ dataset_print(start, block, dataset);
+ }
+
+ vrfyerrs = 0;
+ for (i = 0; i < block[0]; i++) {
+ for (j = 0; j < block[1]; j++) {
+ if (*dataset != *original) {
+ if (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED) {
+ HDprintf("Dataset Verify failed at [%" PRIuHSIZE "][%" PRIuHSIZE "]"
+ "(row %" PRIuHSIZE ", col %" PRIuHSIZE "): "
+ "expect %" PRIuHSIZE ", got %" PRIuHSIZE "\n",
+ i, j, i + start[0], j + start[1], *(original), *(dataset));
+ }
+ dataset++;
+ original++;
+ }
+ }
+ }
+ if (vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED)
+ HDprintf("[more errors ...]\n");
+ if (vrfyerrs)
+ HDprintf("%d errors found in verify_data\n", vrfyerrs);
+ return (vrfyerrs);
+}
+
+/* Set up the selection */
+static void
+ccslab_set(int mpi_rank, int mpi_size, hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[],
+ int mode)
+{
+
+ switch (mode) {
+
+ case BYROW_CONT:
+ /* Each process takes a slabs of rows. */
+ block[0] = 1;
+ block[1] = 1;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = space_dim1;
+ count[1] = space_dim2;
+ start[0] = (hsize_t)mpi_rank * count[0];
+ start[1] = 0;
+
+ break;
+
+ case BYROW_DISCONT:
+ /* Each process takes several disjoint blocks. */
+ block[0] = 1;
+ block[1] = 1;
+ stride[0] = 3;
+ stride[1] = 3;
+ count[0] = space_dim1 / (stride[0] * block[0]);
+ count[1] = (space_dim2) / (stride[1] * block[1]);
+ start[0] = space_dim1 * (hsize_t)mpi_rank;
+ start[1] = 0;
+
+ break;
+
+ case BYROW_SELECTNONE:
+ /* Each process takes a slabs of rows, there are
+ no selections for the last process. */
+ block[0] = 1;
+ block[1] = 1;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = ((mpi_rank >= MAX(1, (mpi_size - 2))) ? 0 : space_dim1);
+ count[1] = space_dim2;
+ start[0] = (hsize_t)mpi_rank * count[0];
+ start[1] = 0;
+
+ break;
+
+ case BYROW_SELECTUNBALANCE:
+ /* The first one-third of the number of processes only
+ select top half of the domain, The rest will select the bottom
+ half of the domain. */
+
+ block[0] = 1;
+ count[0] = 2;
+ stride[0] = (hsize_t)(space_dim1 * (hsize_t)mpi_size / 4 + 1);
+ block[1] = space_dim2;
+ count[1] = 1;
+ start[1] = 0;
+ stride[1] = 1;
+ if ((mpi_rank * 3) < (mpi_size * 2))
+ start[0] = (hsize_t)mpi_rank;
+ else
+ start[0] = 1 + space_dim1 * (hsize_t)mpi_size / 2 + (hsize_t)(mpi_rank - 2 * mpi_size / 3);
+ break;
+
+ case BYROW_SELECTINCHUNK:
+ /* Each process will only select one chunk */
+
+ block[0] = 1;
+ count[0] = 1;
+ start[0] = (hsize_t)mpi_rank * space_dim1;
+ stride[0] = 1;
+ block[1] = space_dim2;
+ count[1] = 1;
+ stride[1] = 1;
+ start[1] = 0;
+
+ break;
+
+ default:
+ /* Unknown mode. Set it to cover the whole dataset. */
+ block[0] = space_dim1 * (hsize_t)mpi_size;
+ block[1] = space_dim2;
+ stride[0] = block[0];
+ stride[1] = block[1];
+ count[0] = 1;
+ count[1] = 1;
+ start[0] = 0;
+ start[1] = 0;
+
+ break;
+ }
+ if (VERBOSE_MED) {
+ HDprintf("start[]=(%lu,%lu), count[]=(%lu,%lu), stride[]=(%lu,%lu), block[]=(%lu,%lu), total "
+ "datapoints=%lu\n",
+ (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0],
+ (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1],
+ (unsigned long)block[0], (unsigned long)block[1],
+ (unsigned long)(block[0] * block[1] * count[0] * count[1]));
+ }
+}
+
+/*
+ * Fill the dataset with trivial data for testing.
+ * Assume dimension rank is 2.
+ */
+static void
+ccdataset_fill(hsize_t start[], hsize_t stride[], hsize_t count[], hsize_t block[], DATATYPE *dataset,
+ int mem_selection)
+{
+ DATATYPE *dataptr = dataset;
+ DATATYPE *tmptr;
+ hsize_t i, j, k1, k2, k = 0;
+ /* put some trivial data in the data_array */
+ tmptr = dataptr;
+
+ /* assign the disjoint block (two-dimensional)data array value
+ through the pointer */
+
+ for (k1 = 0; k1 < count[0]; k1++) {
+ for (i = 0; i < block[0]; i++) {
+ for (k2 = 0; k2 < count[1]; k2++) {
+ for (j = 0; j < block[1]; j++) {
+
+ if (ALL != mem_selection) {
+ dataptr = tmptr + ((start[0] + k1 * stride[0] + i) * space_dim2 + start[1] +
+ k2 * stride[1] + j);
+ }
+ else {
+ dataptr = tmptr + k;
+ k++;
+ }
+
+ *dataptr = (DATATYPE)(k1 + k2 + i + j);
+ }
+ }
+ }
+ }
+}
+
+/*
+ * Print the first block of the content of the dataset.
+ */
+static void
+ccdataset_print(hsize_t start[], hsize_t block[], DATATYPE *dataset)
+
+{
+ DATATYPE *dataptr = dataset;
+ hsize_t i, j;
+
+ /* print the column heading */
+ HDprintf("Print only the first block of the dataset\n");
+ HDprintf("%-8s", "Cols:");
+ for (j = 0; j < block[1]; j++) {
+ HDprintf("%3lu ", (unsigned long)(start[1] + j));
+ }
+ HDprintf("\n");
+
+ /* print the slab data */
+ for (i = 0; i < block[0]; i++) {
+ HDprintf("Row %2lu: ", (unsigned long)(i + start[0]));
+ for (j = 0; j < block[1]; j++) {
+ HDprintf("%03d ", *dataptr++);
+ }
+ HDprintf("\n");
+ }
+}
+
+/*
+ * Print the content of the dataset.
+ */
+static int
+ccdataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], DATATYPE *dataset,
+ DATATYPE *original, int mem_selection)
+{
+ hsize_t i, j, k1, k2, k = 0;
+ int vrfyerrs;
+ DATATYPE *dataptr, *oriptr;
+
+ /* print it if VERBOSE_MED */
+ if (VERBOSE_MED) {
+ HDprintf("dataset_vrfy dumping:::\n");
+ HDprintf("start(%lu, %lu), count(%lu, %lu), stride(%lu, %lu), block(%lu, %lu)\n",
+ (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0],
+ (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1],
+ (unsigned long)block[0], (unsigned long)block[1]);
+ HDprintf("original values:\n");
+ ccdataset_print(start, block, original);
+ HDprintf("compared values:\n");
+ ccdataset_print(start, block, dataset);
+ }
+
+ vrfyerrs = 0;
+
+ for (k1 = 0; k1 < count[0]; k1++) {
+ for (i = 0; i < block[0]; i++) {
+ for (k2 = 0; k2 < count[1]; k2++) {
+ for (j = 0; j < block[1]; j++) {
+ if (ALL != mem_selection) {
+ dataptr = dataset + ((start[0] + k1 * stride[0] + i) * space_dim2 + start[1] +
+ k2 * stride[1] + j);
+ oriptr = original + ((start[0] + k1 * stride[0] + i) * space_dim2 + start[1] +
+ k2 * stride[1] + j);
+ }
+ else {
+ dataptr = dataset + k;
+ oriptr = original + k;
+ k++;
+ }
+ if (*dataptr != *oriptr) {
+ if (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED) {
+ HDprintf("Dataset Verify failed at [%lu][%lu]: expect %d, got %d\n",
+ (unsigned long)i, (unsigned long)j, *(oriptr), *(dataptr));
+ }
+ }
+ }
+ }
+ }
+ }
+ if (vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED)
+ HDprintf("[more errors ...]\n");
+ if (vrfyerrs)
+ HDprintf("%d errors found in ccdataset_vrfy\n", vrfyerrs);
+ return (vrfyerrs);
+}
+
+/*
+ * Example of using the parallel HDF5 library to create two datasets
+ * in one HDF5 file with collective parallel access support.
+ * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1.
+ * Each process controls only a slab of size dim0 x dim1 within each
+ * dataset. [Note: not so yet. Datasets are of sizes dim0xdim1 and
+ * each process controls a hyperslab within.]
+ */
+
+static void
+dataset_big_write(void)
+{
+
+ hid_t xfer_plist; /* Dataset transfer properties list */
+ hid_t sid; /* Dataspace ID */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset;
+ hsize_t dims[RANK]; /* dataset dim sizes */
+ hsize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
+ hsize_t block[RANK]; /* for hyperslab setting */
+ hsize_t *coords = NULL;
+ herr_t ret; /* Generic return value */
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ size_t num_points;
+ B_DATATYPE *wdata;
+
+ /* allocate memory for data buffer */
+ wdata = (B_DATATYPE *)HDmalloc(bigcount * sizeof(B_DATATYPE));
+ VRFY_G((wdata != NULL), "wdata malloc succeeded");
+
+ /* setup file access template */
+ acc_tpl = H5Pcreate(H5P_FILE_ACCESS);
+ VRFY_G((acc_tpl >= 0), "H5P_FILE_ACCESS");
+ H5Pset_fapl_mpio(acc_tpl, MPI_COMM_WORLD, MPI_INFO_NULL);
+
+ /* create the file collectively */
+ fid = H5Fcreate(FILENAME[0], H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
+ VRFY_G((fid >= 0), "H5Fcreate succeeded");
+
+ /* Release file-access template */
+ ret = H5Pclose(acc_tpl);
+ VRFY_G((ret >= 0), "");
+
+ /* Each process takes a slabs of rows. */
+ if (mpi_rank_g == 0)
+ HDprintf("\nTesting Dataset1 write by ROW\n");
+ /* Create a large dataset */
+ dims[0] = bigcount;
+ dims[1] = (hsize_t)mpi_size_g;
+
+ sid = H5Screate_simple(RANK, dims, NULL);
+ VRFY_G((sid >= 0), "H5Screate_simple succeeded");
+ dataset = H5Dcreate2(fid, DATASET1, H5T_NATIVE_LLONG, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ VRFY_G((dataset >= 0), "H5Dcreate2 succeeded");
+ H5Sclose(sid);
+
+ block[0] = dims[0] / (hsize_t)mpi_size_g;
+ block[1] = dims[1];
+ stride[0] = block[0];
+ stride[1] = block[1];
+ count[0] = 1;
+ count[1] = 1;
+ start[0] = (hsize_t)mpi_rank_g * block[0];
+ start[1] = 0;
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space(dataset);
+ VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
+ ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
+ VRFY_G((ret >= 0), "H5Sset_hyperslab succeeded");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple(RANK, block, NULL);
+ VRFY_G((mem_dataspace >= 0), "");
+
+ /* fill the local slab with some trivial data */
+ fill_datasets(start, block, wdata);
+ MESG("data_array initialized");
+ if (VERBOSE_MED) {
+ MESG("data_array created");
+ dataset_print(start, block, wdata);
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY_G((xfer_plist >= 0), "H5Pcreate xfer succeeded");
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY_G((ret >= 0), "H5Pset_dxpl_mpio succeeded");
+ if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
+ ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY_G((ret >= 0), "set independent IO collectively succeeded");
+ }
+
+ ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, wdata);
+ VRFY_G((ret >= 0), "H5Dwrite dataset1 succeeded");
+
+ /* release all temporary handles. */
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+
+ ret = H5Dclose(dataset);
+ VRFY_G((ret >= 0), "H5Dclose1 succeeded");
+
+ /* Each process takes a slabs of cols. */
+ if (mpi_rank_g == 0)
+ HDprintf("\nTesting Dataset2 write by COL\n");
+ /* Create a large dataset */
+ dims[0] = bigcount;
+ dims[1] = (hsize_t)mpi_size_g;
+
+ sid = H5Screate_simple(RANK, dims, NULL);
+ VRFY_G((sid >= 0), "H5Screate_simple succeeded");
+ dataset = H5Dcreate2(fid, DATASET2, H5T_NATIVE_LLONG, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ VRFY_G((dataset >= 0), "H5Dcreate2 succeeded");
+ H5Sclose(sid);
+
+ block[0] = dims[0];
+ block[1] = dims[1] / (hsize_t)mpi_size_g;
+ stride[0] = block[0];
+ stride[1] = block[1];
+ count[0] = 1;
+ count[1] = 1;
+ start[0] = 0;
+ start[1] = (hsize_t)mpi_rank_g * block[1];
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space(dataset);
+ VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
+ ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
+ VRFY_G((ret >= 0), "H5Sset_hyperslab succeeded");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple(RANK, block, NULL);
+ VRFY_G((mem_dataspace >= 0), "");
+
+ /* fill the local slab with some trivial data */
+ fill_datasets(start, block, wdata);
+ MESG("data_array initialized");
+ if (VERBOSE_MED) {
+ MESG("data_array created");
+ dataset_print(start, block, wdata);
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY_G((xfer_plist >= 0), "H5Pcreate xfer succeeded");
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY_G((ret >= 0), "H5Pset_dxpl_mpio succeeded");
+ if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
+ ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY_G((ret >= 0), "set independent IO collectively succeeded");
+ }
+
+ ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, wdata);
+ VRFY_G((ret >= 0), "H5Dwrite dataset1 succeeded");
+
+ /* release all temporary handles. */
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+
+ ret = H5Dclose(dataset);
+ VRFY_G((ret >= 0), "H5Dclose1 succeeded");
+
+ /* ALL selection */
+ if (mpi_rank_g == 0)
+ HDprintf("\nTesting Dataset3 write select ALL proc 0, NONE others\n");
+ /* Create a large dataset */
+ dims[0] = bigcount;
+ dims[1] = 1;
+
+ sid = H5Screate_simple(RANK, dims, NULL);
+ VRFY_G((sid >= 0), "H5Screate_simple succeeded");
+ dataset = H5Dcreate2(fid, DATASET3, H5T_NATIVE_LLONG, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ VRFY_G((dataset >= 0), "H5Dcreate2 succeeded");
+ H5Sclose(sid);
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space(dataset);
+ VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
+ if (mpi_rank_g == 0) {
+ ret = H5Sselect_all(file_dataspace);
+ VRFY_G((ret >= 0), "H5Sset_all succeeded");
+ }
+ else {
+ ret = H5Sselect_none(file_dataspace);
+ VRFY_G((ret >= 0), "H5Sset_none succeeded");
+ }
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple(RANK, dims, NULL);
+ VRFY_G((mem_dataspace >= 0), "");
+ if (mpi_rank_g != 0) {
+ ret = H5Sselect_none(mem_dataspace);
+ VRFY_G((ret >= 0), "H5Sset_none succeeded");
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY_G((xfer_plist >= 0), "H5Pcreate xfer succeeded");
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY_G((ret >= 0), "H5Pset_dxpl_mpio succeeded");
+ if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
+ ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY_G((ret >= 0), "set independent IO collectively succeeded");
+ }
+
+ /* fill the local slab with some trivial data */
+ fill_datasets(start, dims, wdata);
+ MESG("data_array initialized");
+ if (VERBOSE_MED) {
+ MESG("data_array created");
+ }
+
+ ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, wdata);
+ VRFY_G((ret >= 0), "H5Dwrite dataset1 succeeded");
+
+ /* release all temporary handles. */
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+
+ ret = H5Dclose(dataset);
+ VRFY_G((ret >= 0), "H5Dclose1 succeeded");
+
+ /* Point selection */
+ if (mpi_rank_g == 0)
+ HDprintf("\nTesting Dataset4 write point selection\n");
+ /* Create a large dataset */
+ dims[0] = bigcount;
+ dims[1] = (hsize_t)(mpi_size_g * 4);
+
+ sid = H5Screate_simple(RANK, dims, NULL);
+ VRFY_G((sid >= 0), "H5Screate_simple succeeded");
+ dataset = H5Dcreate2(fid, DATASET4, H5T_NATIVE_LLONG, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ VRFY_G((dataset >= 0), "H5Dcreate2 succeeded");
+ H5Sclose(sid);
+
+ block[0] = dims[0] / 2;
+ block[1] = 2;
+ stride[0] = dims[0] / 2;
+ stride[1] = 2;
+ count[0] = 1;
+ count[1] = 1;
+ start[0] = 0;
+ start[1] = dims[1] / (hsize_t)mpi_size_g * (hsize_t)mpi_rank_g;
+
+ num_points = bigcount;
+
+ coords = (hsize_t *)HDmalloc(num_points * RANK * sizeof(hsize_t));
+ VRFY_G((coords != NULL), "coords malloc succeeded");
+
+ set_coords(start, count, stride, block, num_points, coords, IN_ORDER);
+ /* create a file dataspace */
+ file_dataspace = H5Dget_space(dataset);
+ VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
+ ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords);
+ VRFY_G((ret >= 0), "H5Sselect_elements succeeded");
+
+ if (coords)
+ free(coords);
+
+ fill_datasets(start, block, wdata);
+ MESG("data_array initialized");
+ if (VERBOSE_MED) {
+ MESG("data_array created");
+ dataset_print(start, block, wdata);
+ }
+
+ /* create a memory dataspace */
+ /* Warning: H5Screate_simple requires an array of hsize_t elements
+ * even if we only pass only a single value. Attempting anything else
+ * appears to cause problems with 32 bit compilers.
+ */
+ mem_dataspace = H5Screate_simple(1, dims, NULL);
+ VRFY_G((mem_dataspace >= 0), "");
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY_G((xfer_plist >= 0), "H5Pcreate xfer succeeded");
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY_G((ret >= 0), "H5Pset_dxpl_mpio succeeded");
+ if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
+ ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY_G((ret >= 0), "set independent IO collectively succeeded");
+ }
+
+ ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, wdata);
+ VRFY_G((ret >= 0), "H5Dwrite dataset1 succeeded");
+
+ /* release all temporary handles. */
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+
+ ret = H5Dclose(dataset);
+ VRFY_G((ret >= 0), "H5Dclose1 succeeded");
+
+ HDfree(wdata);
+ H5Fclose(fid);
+}
+
+/*
+ * Example of using the parallel HDF5 library to read two datasets
+ * in one HDF5 file with collective parallel access support.
+ * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1.
+ * Each process controls only a slab of size dim0 x dim1 within each
+ * dataset. [Note: not so yet. Datasets are of sizes dim0xdim1 and
+ * each process controls a hyperslab within.]
+ */
+
+static void
+dataset_big_read(void)
+{
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t xfer_plist; /* Dataset transfer properties list */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset;
+ B_DATATYPE *rdata = NULL; /* data buffer */
+ B_DATATYPE *wdata = NULL; /* expected data buffer */
+ hsize_t dims[RANK]; /* dataset dim sizes */
+ hsize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
+ hsize_t block[RANK]; /* for hyperslab setting */
+ size_t num_points;
+ hsize_t *coords = NULL;
+ herr_t ret; /* Generic return value */
+
+ /* allocate memory for data buffer */
+ rdata = (B_DATATYPE *)HDmalloc(bigcount * sizeof(B_DATATYPE));
+ VRFY_G((rdata != NULL), "rdata malloc succeeded");
+ wdata = (B_DATATYPE *)HDmalloc(bigcount * sizeof(B_DATATYPE));
+ VRFY_G((wdata != NULL), "wdata malloc succeeded");
+
+ HDmemset(rdata, 0, bigcount * sizeof(B_DATATYPE));
+
+ /* setup file access template */
+ acc_tpl = H5Pcreate(H5P_FILE_ACCESS);
+ VRFY_G((acc_tpl >= 0), "H5P_FILE_ACCESS");
+ H5Pset_fapl_mpio(acc_tpl, MPI_COMM_WORLD, MPI_INFO_NULL);
+
+ /* open the file collectively */
+ fid = H5Fopen(FILENAME[0], H5F_ACC_RDONLY, acc_tpl);
+ VRFY_G((fid >= 0), "H5Fopen succeeded");
+
+ /* Release file-access template */
+ ret = H5Pclose(acc_tpl);
+ VRFY_G((ret >= 0), "");
+
+ if (mpi_rank_g == 0)
+ HDprintf("\nRead Testing Dataset1 by COL\n");
+
+ dataset = H5Dopen2(fid, DATASET1, H5P_DEFAULT);
+ VRFY_G((dataset >= 0), "H5Dopen2 succeeded");
+
+ dims[0] = bigcount;
+ dims[1] = (hsize_t)mpi_size_g;
+ /* Each process takes a slabs of cols. */
+ block[0] = dims[0];
+ block[1] = dims[1] / (hsize_t)mpi_size_g;
+ stride[0] = block[0];
+ stride[1] = block[1];
+ count[0] = 1;
+ count[1] = 1;
+ start[0] = 0;
+ start[1] = (hsize_t)mpi_rank_g * block[1];
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space(dataset);
+ VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
+ ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
+ VRFY_G((ret >= 0), "H5Sset_hyperslab succeeded");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple(RANK, block, NULL);
+ VRFY_G((mem_dataspace >= 0), "");
+
+ /* fill dataset with test data */
+ fill_datasets(start, block, wdata);
+ MESG("data_array initialized");
+ if (VERBOSE_MED) {
+ MESG("data_array created");
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY_G((xfer_plist >= 0), "");
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY_G((ret >= 0), "H5Pcreate xfer succeeded");
+ if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
+ ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY_G((ret >= 0), "set independent IO collectively succeeded");
+ }
+
+ /* read data collectively */
+ ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, rdata);
+ VRFY_G((ret >= 0), "H5Dread dataset1 succeeded");
+
+ /* verify the read data with original expected data */
+ ret = verify_data(start, count, stride, block, rdata, wdata);
+ if (ret) {
+ HDfprintf(stderr, "verify failed\n");
+ exit(1);
+ }
+
+ /* release all temporary handles. */
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+ ret = H5Dclose(dataset);
+ VRFY_G((ret >= 0), "H5Dclose1 succeeded");
+
+ if (mpi_rank_g == 0)
+ HDprintf("\nRead Testing Dataset2 by ROW\n");
+ HDmemset(rdata, 0, bigcount * sizeof(B_DATATYPE));
+ dataset = H5Dopen2(fid, DATASET2, H5P_DEFAULT);
+ VRFY_G((dataset >= 0), "H5Dopen2 succeeded");
+
+ dims[0] = bigcount;
+ dims[1] = (hsize_t)mpi_size_g;
+ /* Each process takes a slabs of rows. */
+ block[0] = dims[0] / (hsize_t)mpi_size_g;
+ block[1] = dims[1];
+ stride[0] = block[0];
+ stride[1] = block[1];
+ count[0] = 1;
+ count[1] = 1;
+ start[0] = (hsize_t)mpi_rank_g * block[0];
+ start[1] = 0;
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space(dataset);
+ VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
+ ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
+ VRFY_G((ret >= 0), "H5Sset_hyperslab succeeded");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple(RANK, block, NULL);
+ VRFY_G((mem_dataspace >= 0), "");
+
+ /* fill dataset with test data */
+ fill_datasets(start, block, wdata);
+ MESG("data_array initialized");
+ if (VERBOSE_MED) {
+ MESG("data_array created");
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY_G((xfer_plist >= 0), "");
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY_G((ret >= 0), "H5Pcreate xfer succeeded");
+ if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
+ ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY_G((ret >= 0), "set independent IO collectively succeeded");
+ }
+
+ /* read data collectively */
+ ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, rdata);
+ VRFY_G((ret >= 0), "H5Dread dataset2 succeeded");
+
+ /* verify the read data with original expected data */
+ ret = verify_data(start, count, stride, block, rdata, wdata);
+ if (ret) {
+ HDfprintf(stderr, "verify failed\n");
+ exit(1);
+ }
+
+ /* release all temporary handles. */
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+ ret = H5Dclose(dataset);
+ VRFY_G((ret >= 0), "H5Dclose1 succeeded");
+
+ if (mpi_rank_g == 0)
+ HDprintf("\nRead Testing Dataset3 read select ALL proc 0, NONE others\n");
+ HDmemset(rdata, 0, bigcount * sizeof(B_DATATYPE));
+ dataset = H5Dopen2(fid, DATASET3, H5P_DEFAULT);
+ VRFY_G((dataset >= 0), "H5Dopen2 succeeded");
+
+ dims[0] = bigcount;
+ dims[1] = 1;
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space(dataset);
+ VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
+ if (mpi_rank_g == 0) {
+ ret = H5Sselect_all(file_dataspace);
+ VRFY_G((ret >= 0), "H5Sset_all succeeded");
+ }
+ else {
+ ret = H5Sselect_none(file_dataspace);
+ VRFY_G((ret >= 0), "H5Sset_none succeeded");
+ }
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple(RANK, dims, NULL);
+ VRFY_G((mem_dataspace >= 0), "");
+ if (mpi_rank_g != 0) {
+ ret = H5Sselect_none(mem_dataspace);
+ VRFY_G((ret >= 0), "H5Sset_none succeeded");
+ }
+
+ /* fill dataset with test data */
+ fill_datasets(start, dims, wdata);
+ MESG("data_array initialized");
+ if (VERBOSE_MED) {
+ MESG("data_array created");
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY_G((xfer_plist >= 0), "");
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY_G((ret >= 0), "H5Pcreate xfer succeeded");
+ if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
+ ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY_G((ret >= 0), "set independent IO collectively succeeded");
+ }
+
+ /* read data collectively */
+ ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, rdata);
+ VRFY_G((ret >= 0), "H5Dread dataset3 succeeded");
+
+ if (mpi_rank_g == 0) {
+ /* verify the read data with original expected data */
+ ret = verify_data(start, count, stride, block, rdata, wdata);
+ if (ret) {
+ HDfprintf(stderr, "verify failed\n");
+ exit(1);
+ }
+ }
+
+ /* release all temporary handles. */
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+ ret = H5Dclose(dataset);
+ VRFY_G((ret >= 0), "H5Dclose1 succeeded");
+
+ if (mpi_rank_g == 0)
+ HDprintf("\nRead Testing Dataset4 with Point selection\n");
+ dataset = H5Dopen2(fid, DATASET4, H5P_DEFAULT);
+ VRFY_G((dataset >= 0), "H5Dopen2 succeeded");
+
+ dims[0] = bigcount;
+ dims[1] = (hsize_t)(mpi_size_g * 4);
+
+ block[0] = dims[0] / 2;
+ block[1] = 2;
+ stride[0] = dims[0] / 2;
+ stride[1] = 2;
+ count[0] = 1;
+ count[1] = 1;
+ start[0] = 0;
+ start[1] = dims[1] / (hsize_t)mpi_size_g * (hsize_t)mpi_rank_g;
+
+ fill_datasets(start, block, wdata);
+ MESG("data_array initialized");
+ if (VERBOSE_MED) {
+ MESG("data_array created");
+ dataset_print(start, block, wdata);
+ }
+
+ num_points = bigcount;
+
+ coords = (hsize_t *)HDmalloc(num_points * RANK * sizeof(hsize_t));
+ VRFY_G((coords != NULL), "coords malloc succeeded");
+
+ set_coords(start, count, stride, block, num_points, coords, IN_ORDER);
+ /* create a file dataspace */
+ file_dataspace = H5Dget_space(dataset);
+ VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
+ ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords);
+ VRFY_G((ret >= 0), "H5Sselect_elements succeeded");
+
+ if (coords)
+ HDfree(coords);
+
+ /* create a memory dataspace */
+ /* Warning: H5Screate_simple requires an array of hsize_t elements
+ * even if we only pass only a single value. Attempting anything else
+ * appears to cause problems with 32 bit compilers.
+ */
+ mem_dataspace = H5Screate_simple(1, dims, NULL);
+ VRFY_G((mem_dataspace >= 0), "");
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY_G((xfer_plist >= 0), "");
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY_G((ret >= 0), "H5Pcreate xfer succeeded");
+ if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
+ ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY_G((ret >= 0), "set independent IO collectively succeeded");
+ }
+
+ /* read data collectively */
+ ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, rdata);
+ VRFY_G((ret >= 0), "H5Dread dataset1 succeeded");
+
+ ret = verify_data(start, count, stride, block, rdata, wdata);
+ if (ret) {
+ HDfprintf(stderr, "verify failed\n");
+ exit(1);
+ }
+
+ /* release all temporary handles. */
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+ ret = H5Dclose(dataset);
+ VRFY_G((ret >= 0), "H5Dclose1 succeeded");
+
+ HDfree(wdata);
+ HDfree(rdata);
+
+ wdata = NULL;
+ rdata = NULL;
+ /* We never wrote Dataset5 in the write section, so we can't
+ * expect to read it...
+ */
+ file_dataspace = -1;
+ mem_dataspace = -1;
+ xfer_plist = -1;
+ dataset = -1;
+
+ /* release all temporary handles. */
+ if (file_dataspace != -1)
+ H5Sclose(file_dataspace);
+ if (mem_dataspace != -1)
+ H5Sclose(mem_dataspace);
+ if (xfer_plist != -1)
+ H5Pclose(xfer_plist);
+ if (dataset != -1) {
+ ret = H5Dclose(dataset);
+ VRFY_G((ret >= 0), "H5Dclose1 succeeded");
+ }
+ H5Fclose(fid);
+
+ /* release data buffers */
+ if (rdata)
+ HDfree(rdata);
+ if (wdata)
+ HDfree(wdata);
+
+} /* dataset_large_readAll */
+
+static void
+single_rank_independent_io(void)
+{
+ if (mpi_rank_g == 0)
+ HDprintf("single_rank_independent_io\n");
+
+ if (MAIN_PROCESS) {
+ hsize_t dims[1];
+ hid_t file_id = -1;
+ hid_t fapl_id = -1;
+ hid_t dset_id = -1;
+ hid_t fspace_id = -1;
+ herr_t ret;
+ int *data = NULL;
+ uint64_t i;
+
+ fapl_id = H5Pcreate(H5P_FILE_ACCESS);
+ VRFY_G((fapl_id >= 0), "H5P_FILE_ACCESS");
+
+ H5Pset_fapl_mpio(fapl_id, MPI_COMM_SELF, MPI_INFO_NULL);
+ file_id = H5Fcreate(FILENAME[1], H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
+ VRFY_G((file_id >= 0), "H5Dcreate2 succeeded");
+
+ /*
+ * Calculate the number of elements needed to exceed
+ * MPI's INT_MAX limitation
+ */
+ dims[0] = (INT_MAX / sizeof(int)) + 10;
+
+ fspace_id = H5Screate_simple(1, dims, NULL);
+ VRFY_G((fspace_id >= 0), "H5Screate_simple fspace_id succeeded");
+
+ /*
+ * Create and write to a >2GB dataset from a single rank.
+ */
+ dset_id = H5Dcreate2(file_id, "test_dset", H5T_NATIVE_INT, fspace_id, H5P_DEFAULT, H5P_DEFAULT,
+ H5P_DEFAULT);
+
+ VRFY_G((dset_id >= 0), "H5Dcreate2 succeeded");
+
+ data = malloc(dims[0] * sizeof(int));
+
+ /* Initialize data */
+ for (i = 0; i < dims[0]; i++)
+ data[i] = (int)(i % (uint64_t)DXFER_BIGCOUNT);
+
+ /* Write data */
+ ret = H5Dwrite(dset_id, H5T_NATIVE_INT, H5S_BLOCK, fspace_id, H5P_DEFAULT, data);
+ VRFY_G((ret >= 0), "H5Dwrite succeeded");
+
+ /* Wipe buffer */
+ HDmemset(data, 0, dims[0] * sizeof(int));
+
+ /* Read data back */
+ ret = H5Dread(dset_id, H5T_NATIVE_INT, H5S_BLOCK, fspace_id, H5P_DEFAULT, data);
+ VRFY_G((ret >= 0), "H5Dread succeeded");
+
+ /* Verify data */
+ for (i = 0; i < dims[0]; i++)
+ if (data[i] != (int)(i % (uint64_t)DXFER_BIGCOUNT)) {
+ HDfprintf(stderr, "verify failed\n");
+ exit(1);
+ }
+
+ free(data);
+ H5Sclose(fspace_id);
+ H5Dclose(dset_id);
+ H5Fclose(file_id);
+
+ H5Fdelete(FILENAME[1], fapl_id);
+
+ H5Pclose(fapl_id);
+ }
+ MPI_Barrier(MPI_COMM_WORLD);
+}
+
+/*
+ * Create the appropriate File access property list
+ */
+hid_t
+create_faccess_plist(MPI_Comm comm, MPI_Info info, int l_facc_type)
+{
+ hid_t ret_pl = -1;
+ herr_t ret; /* generic return value */
+ int mpi_rank; /* mpi variables */
+
+ /* need the rank for error checking macros */
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ ret_pl = H5Pcreate(H5P_FILE_ACCESS);
+ VRFY_G((ret_pl >= 0), "H5P_FILE_ACCESS");
+
+ if (l_facc_type == FACC_DEFAULT)
+ return (ret_pl);
+
+ if (l_facc_type == FACC_MPIO) {
+ /* set Parallel access with communicator */
+ ret = H5Pset_fapl_mpio(ret_pl, comm, info);
+ VRFY_G((ret >= 0), "");
+ ret = H5Pset_all_coll_metadata_ops(ret_pl, TRUE);
+ VRFY_G((ret >= 0), "");
+ ret = H5Pset_coll_metadata_write(ret_pl, TRUE);
+ VRFY_G((ret >= 0), "");
+ return (ret_pl);
+ }
+
+ if (l_facc_type == (FACC_MPIO | FACC_SPLIT)) {
+ hid_t mpio_pl;
+
+ mpio_pl = H5Pcreate(H5P_FILE_ACCESS);
+ VRFY_G((mpio_pl >= 0), "");
+ /* set Parallel access with communicator */
+ ret = H5Pset_fapl_mpio(mpio_pl, comm, info);
+ VRFY_G((ret >= 0), "");
+
+ /* setup file access template */
+ ret_pl = H5Pcreate(H5P_FILE_ACCESS);
+ VRFY_G((ret_pl >= 0), "");
+ /* set Parallel access with communicator */
+ ret = H5Pset_fapl_split(ret_pl, ".meta", mpio_pl, ".raw", mpio_pl);
+ VRFY_G((ret >= 0), "H5Pset_fapl_split succeeded");
+ H5Pclose(mpio_pl);
+ return (ret_pl);
+ }
+
+ /* unknown file access types */
+ return (ret_pl);
+}
+
+/*-------------------------------------------------------------------------
+ * Function: coll_chunk1
+ *
+ * Purpose: Wrapper to test the collective chunk IO for regular JOINT
+ selection with a single chunk
+ *
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * July 12th, 2004
+ *
+ *-------------------------------------------------------------------------
+ */
+
+/* ------------------------------------------------------------------------
+ * Descriptions for the selection: One big singular selection inside one chunk
+ * Two dimensions,
+ *
+ * dim1 = space_dim1(5760)*mpi_size
+ * dim2 = space_dim2(3)
+ * chunk_dim1 = dim1
+ * chunk_dim2 = dim2
+ * block = 1 for all dimensions
+ * stride = 1 for all dimensions
+ * count0 = space_dim1(5760)
+ * count1 = space_dim2(3)
+ * start0 = mpi_rank*space_dim1
+ * start1 = 0
+ * ------------------------------------------------------------------------
+ */
+
+void
+coll_chunk1(void)
+{
+ const char *filename = FILENAME[0];
+ if (mpi_rank_g == 0)
+ HDprintf("coll_chunk1\n");
+
+ coll_chunktest(filename, 1, BYROW_CONT, API_NONE, HYPER, HYPER, OUT_OF_ORDER);
+ coll_chunktest(filename, 1, BYROW_CONT, API_NONE, HYPER, POINT, OUT_OF_ORDER);
+ coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, ALL, OUT_OF_ORDER);
+ coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, POINT, OUT_OF_ORDER);
+ coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, HYPER, OUT_OF_ORDER);
+
+ coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, ALL, IN_ORDER);
+ coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, POINT, IN_ORDER);
+ coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, HYPER, IN_ORDER);
+}
+
+/*-------------------------------------------------------------------------
+ * Function: coll_chunk2
+ *
+ * Purpose: Wrapper to test the collective chunk IO for regular DISJOINT
+ selection with a single chunk
+ *
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * July 12th, 2004
+ *
+ * Modifications:
+ *
+ *-------------------------------------------------------------------------
+ */
+
+/* ------------------------------------------------------------------------
+ * Descriptions for the selection: many disjoint selections inside one chunk
+ * Two dimensions,
+ *
+ * dim1 = space_dim1*mpi_size(5760)
+ * dim2 = space_dim2(3)
+ * chunk_dim1 = dim1
+ * chunk_dim2 = dim2
+ * block = 1 for all dimensions
+ * stride = 3 for all dimensions
+ * count0 = space_dim1/stride0(5760/3)
+ * count1 = space_dim2/stride(3/3 = 1)
+ * start0 = mpi_rank*space_dim1
+ * start1 = 0
+ *
+ * ------------------------------------------------------------------------
+ */
+void
+coll_chunk2(void)
+{
+ const char *filename = FILENAME[0];
+ if (mpi_rank_g == 0)
+ HDprintf("coll_chunk2\n");
+
+ coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, HYPER, HYPER, OUT_OF_ORDER);
+ coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, HYPER, POINT, OUT_OF_ORDER);
+ coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, ALL, OUT_OF_ORDER);
+ coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, POINT, OUT_OF_ORDER);
+ coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, HYPER, OUT_OF_ORDER);
+
+ coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, ALL, IN_ORDER);
+ coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, POINT, IN_ORDER);
+ coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, HYPER, IN_ORDER);
+}
+
+/*-------------------------------------------------------------------------
+ * Function: coll_chunk3
+ *
+ * Purpose: Wrapper to test the collective chunk IO for regular JOINT
+ selection with at least number of 2*mpi_size chunks
+ *
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * July 12th, 2004
+ *
+ *-------------------------------------------------------------------------
+ */
+
+/* ------------------------------------------------------------------------
+ * Descriptions for the selection: one singular selection across many chunks
+ * Two dimensions, Num of chunks = 2* mpi_size
+ *
+ * dim1 = space_dim1*mpi_size
+ * dim2 = space_dim2(3)
+ * chunk_dim1 = space_dim1
+ * chunk_dim2 = dim2/2
+ * block = 1 for all dimensions
+ * stride = 1 for all dimensions
+ * count0 = space_dim1
+ * count1 = space_dim2(3)
+ * start0 = mpi_rank*space_dim1
+ * start1 = 0
+ *
+ * ------------------------------------------------------------------------
+ */
+
+void
+coll_chunk3(void)
+{
+ const char *filename = FILENAME[0];
+ if (mpi_rank_g == 0)
+ HDprintf("coll_chunk3\n");
+
+ coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, HYPER, HYPER, OUT_OF_ORDER);
+ coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, HYPER, POINT, OUT_OF_ORDER);
+ coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, ALL, OUT_OF_ORDER);
+ coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, POINT, OUT_OF_ORDER);
+ coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, HYPER, OUT_OF_ORDER);
+
+ coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, ALL, IN_ORDER);
+ coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, POINT, IN_ORDER);
+ coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, HYPER, IN_ORDER);
+}
+
+//-------------------------------------------------------------------------
+// Borrowed/Modified (slightly) from t_coll_chunk.c
+/*-------------------------------------------------------------------------
+ * Function: coll_chunktest
+ *
+ * Purpose: The real testing routine for regular selection of collective
+ chunking storage
+ testing both write and read,
+ If anything fails, it may be read or write. There is no
+ separation test between read and write.
+ *
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * July 12th, 2004
+ *
+ *-------------------------------------------------------------------------
+ */
+
+static void
+coll_chunktest(const char *filename, int chunk_factor, int select_factor, int api_option, int file_selection,
+ int mem_selection, int mode)
+{
+ hid_t file, dataset, file_dataspace, mem_dataspace;
+ hid_t acc_plist, xfer_plist, crp_plist;
+
+ hsize_t dims[RANK], chunk_dims[RANK];
+ int *data_array1 = NULL;
+ int *data_origin1 = NULL;
+
+ hsize_t start[RANK], count[RANK], stride[RANK], block[RANK];
+
+#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
+ unsigned prop_value;
+#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
+
+ herr_t status;
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ size_t num_points; /* for point selection */
+ hsize_t *coords = NULL; /* for point selection */
+
+ /* Create the data space */
+
+ acc_plist = create_faccess_plist(comm, info, facc_type);
+ VRFY_G((acc_plist >= 0), "");
+
+ file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_plist);
+ VRFY_G((file >= 0), "H5Fcreate succeeded");
+
+ status = H5Pclose(acc_plist);
+ VRFY_G((status >= 0), "");
+
+ /* setup dimensionality object */
+ dims[0] = space_dim1 * (hsize_t)mpi_size_g;
+ dims[1] = space_dim2;
+
+ /* allocate memory for data buffer */
+ data_array1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int));
+ VRFY_G((data_array1 != NULL), "data_array1 malloc succeeded");
+
+ /* set up dimensions of the slab this process accesses */
+ ccslab_set(mpi_rank_g, mpi_size_g, start, count, stride, block, select_factor);
+
+ /* set up the coords array selection */
+ num_points = block[0] * block[1] * count[0] * count[1];
+ coords = (hsize_t *)HDmalloc(num_points * RANK * sizeof(hsize_t));
+ VRFY_G((coords != NULL), "coords malloc succeeded");
+ point_set(start, count, stride, block, num_points, coords, mode);
+
+ /* Warning: H5Screate_simple requires an array of hsize_t elements
+ * even if we only pass only a single value. Attempting anything else
+ * appears to cause problems with 32 bit compilers.
+ */
+ file_dataspace = H5Screate_simple(2, dims, NULL);
+ VRFY_G((file_dataspace >= 0), "file dataspace created succeeded");
+
+ if (ALL != mem_selection) {
+ mem_dataspace = H5Screate_simple(2, dims, NULL);
+ VRFY_G((mem_dataspace >= 0), "mem dataspace created succeeded");
+ }
+ else {
+ /* Putting the warning about H5Screate_simple (above) into practice... */
+ hsize_t dsdims[1] = {num_points};
+ mem_dataspace = H5Screate_simple(1, dsdims, NULL);
+ VRFY_G((mem_dataspace >= 0), "mem_dataspace create succeeded");
+ }
+
+ crp_plist = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY_G((crp_plist >= 0), "");
+
+ /* Set up chunk information. */
+ chunk_dims[0] = dims[0] / (hsize_t)chunk_factor;
+
+ /* to decrease the testing time, maintain bigger chunk size */
+ (chunk_factor == 1) ? (chunk_dims[1] = space_dim2) : (chunk_dims[1] = space_dim2 / 2);
+ status = H5Pset_chunk(crp_plist, 2, chunk_dims);
+ VRFY_G((status >= 0), "chunk creation property list succeeded");
+
+ dataset = H5Dcreate2(file, DSET_COLLECTIVE_CHUNK_NAME, H5T_NATIVE_INT, file_dataspace, H5P_DEFAULT,
+ crp_plist, H5P_DEFAULT);
+ VRFY_G((dataset >= 0), "dataset created succeeded");
+
+ status = H5Pclose(crp_plist);
+ VRFY_G((status >= 0), "");
+
+ /*put some trivial data in the data array */
+ ccdataset_fill(start, stride, count, block, data_array1, mem_selection);
+
+ MESG("data_array initialized");
+
+ switch (file_selection) {
+ case HYPER:
+ status = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
+ VRFY_G((status >= 0), "hyperslab selection succeeded");
+ break;
+
+ case POINT:
+ if (num_points) {
+ status = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords);
+ VRFY_G((status >= 0), "Element selection succeeded");
+ }
+ else {
+ status = H5Sselect_none(file_dataspace);
+ VRFY_G((status >= 0), "none selection succeeded");
+ }
+ break;
+
+ case ALL:
+ status = H5Sselect_all(file_dataspace);
+ VRFY_G((status >= 0), "H5Sselect_all succeeded");
+ break;
+ }
+
+ switch (mem_selection) {
+ case HYPER:
+ status = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block);
+ VRFY_G((status >= 0), "hyperslab selection succeeded");
+ break;
+
+ case POINT:
+ if (num_points) {
+ status = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords);
+ VRFY_G((status >= 0), "Element selection succeeded");
+ }
+ else {
+ status = H5Sselect_none(mem_dataspace);
+ VRFY_G((status >= 0), "none selection succeeded");
+ }
+ break;
+
+ case ALL:
+ status = H5Sselect_all(mem_dataspace);
+ VRFY_G((status >= 0), "H5Sselect_all succeeded");
+ break;
+ }
+
+ /* set up the collective transfer property list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY_G((xfer_plist >= 0), "");
+
+ status = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY_G((status >= 0), "MPIO collective transfer property succeeded");
+ if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
+ status = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY_G((status >= 0), "set independent IO collectively succeeded");
+ }
+
+ switch (api_option) {
+ case API_LINK_HARD:
+ status = H5Pset_dxpl_mpio_chunk_opt(xfer_plist, H5FD_MPIO_CHUNK_ONE_IO);
+ VRFY_G((status >= 0), "collective chunk optimization succeeded");
+ break;
+
+ case API_MULTI_HARD:
+ status = H5Pset_dxpl_mpio_chunk_opt(xfer_plist, H5FD_MPIO_CHUNK_MULTI_IO);
+ VRFY_G((status >= 0), "collective chunk optimization succeeded ");
+ break;
+
+ case API_LINK_TRUE:
+ status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 2);
+ VRFY_G((status >= 0), "collective chunk optimization set chunk number succeeded");
+ break;
+
+ case API_LINK_FALSE:
+ status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 6);
+ VRFY_G((status >= 0), "collective chunk optimization set chunk number succeeded");
+ break;
+
+ case API_MULTI_COLL:
+ status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 8); /* make sure it is using multi-chunk IO */
+ VRFY_G((status >= 0), "collective chunk optimization set chunk number succeeded");
+ status = H5Pset_dxpl_mpio_chunk_opt_ratio(xfer_plist, 50);
+ VRFY_G((status >= 0), "collective chunk optimization set chunk ratio succeeded");
+ break;
+
+ case API_MULTI_IND:
+ status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 8); /* make sure it is using multi-chunk IO */
+ VRFY_G((status >= 0), "collective chunk optimization set chunk number succeeded");
+ status = H5Pset_dxpl_mpio_chunk_opt_ratio(xfer_plist, 100);
+ VRFY_G((status >= 0), "collective chunk optimization set chunk ratio succeeded");
+ break;
+
+ default:;
+ }
+
+#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
+ if (facc_type == FACC_MPIO) {
+ switch (api_option) {
+ case API_LINK_HARD:
+ prop_value = H5D_XFER_COLL_CHUNK_DEF;
+ status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_HARD_NAME, H5D_XFER_COLL_CHUNK_SIZE,
+ &prop_value, NULL, NULL, NULL, NULL, NULL, NULL);
+ VRFY_G((status >= 0), "testing property list inserted succeeded");
+ break;
+
+ case API_MULTI_HARD:
+ prop_value = H5D_XFER_COLL_CHUNK_DEF;
+ status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_HARD_NAME, H5D_XFER_COLL_CHUNK_SIZE,
+ &prop_value, NULL, NULL, NULL, NULL, NULL, NULL);
+ VRFY_G((status >= 0), "testing property list inserted succeeded");
+ break;
+
+ case API_LINK_TRUE:
+ prop_value = H5D_XFER_COLL_CHUNK_DEF;
+ status =
+ H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_TRUE_NAME, H5D_XFER_COLL_CHUNK_SIZE,
+ &prop_value, NULL, NULL, NULL, NULL, NULL, NULL);
+ VRFY_G((status >= 0), "testing property list inserted succeeded");
+ break;
+
+ case API_LINK_FALSE:
+ prop_value = H5D_XFER_COLL_CHUNK_DEF;
+ status =
+ H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_FALSE_NAME, H5D_XFER_COLL_CHUNK_SIZE,
+ &prop_value, NULL, NULL, NULL, NULL, NULL, NULL);
+ VRFY_G((status >= 0), "testing property list inserted succeeded");
+ break;
+
+ case API_MULTI_COLL:
+ prop_value = H5D_XFER_COLL_CHUNK_DEF;
+ status =
+ H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_COLL_NAME,
+ H5D_XFER_COLL_CHUNK_SIZE, &prop_value, NULL, NULL, NULL, NULL, NULL, NULL);
+ VRFY_G((status >= 0), "testing property list inserted succeeded");
+ break;
+
+ case API_MULTI_IND:
+ prop_value = H5D_XFER_COLL_CHUNK_DEF;
+ status =
+ H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_IND_NAME, H5D_XFER_COLL_CHUNK_SIZE,
+ &prop_value, NULL, NULL, NULL, NULL, NULL, NULL);
+ VRFY_G((status >= 0), "testing property list inserted succeeded");
+ break;
+
+ default:;
+ }
+ }
+#endif
+
+ /* write data collectively */
+ status = H5Dwrite(dataset, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1);
+ VRFY_G((status >= 0), "dataset write succeeded");
+
+#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
+ if (facc_type == FACC_MPIO) {
+ switch (api_option) {
+ case API_LINK_HARD:
+ status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_HARD_NAME, &prop_value);
+ VRFY_G((status >= 0), "testing property list get succeeded");
+ VRFY_G((prop_value == 0), "API to set LINK COLLECTIVE IO directly succeeded");
+ break;
+
+ case API_MULTI_HARD:
+ status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_HARD_NAME, &prop_value);
+ VRFY_G((status >= 0), "testing property list get succeeded");
+ VRFY_G((prop_value == 0), "API to set MULTI-CHUNK COLLECTIVE IO optimization succeeded");
+ break;
+
+ case API_LINK_TRUE:
+ status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_TRUE_NAME, &prop_value);
+ VRFY_G((status >= 0), "testing property list get succeeded");
+ VRFY_G((prop_value == 0), "API to set LINK COLLECTIVE IO succeeded");
+ break;
+
+ case API_LINK_FALSE:
+ status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_FALSE_NAME, &prop_value);
+ VRFY_G((status >= 0), "testing property list get succeeded");
+ VRFY_G((prop_value == 0), "API to set LINK IO transferring to multi-chunk IO succeeded");
+ break;
+
+ case API_MULTI_COLL:
+ status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_COLL_NAME, &prop_value);
+ VRFY_G((status >= 0), "testing property list get succeeded");
+ VRFY_G((prop_value == 0), "API to set MULTI-CHUNK COLLECTIVE IO with optimization succeeded");
+ break;
+
+ case API_MULTI_IND:
+ status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_IND_NAME, &prop_value);
+ VRFY_G((status >= 0), "testing property list get succeeded");
+ VRFY_G((prop_value == 0),
+ "API to set MULTI-CHUNK IO transferring to independent IO succeeded");
+ break;
+
+ default:;
+ }
+ }
+#endif
+
+ status = H5Dclose(dataset);
+ VRFY_G((status >= 0), "");
+
+ status = H5Pclose(xfer_plist);
+ VRFY_G((status >= 0), "property list closed");
+
+ status = H5Sclose(file_dataspace);
+ VRFY_G((status >= 0), "");
+
+ status = H5Sclose(mem_dataspace);
+ VRFY_G((status >= 0), "");
+
+ status = H5Fclose(file);
+ VRFY_G((status >= 0), "");
+
+ if (data_array1)
+ HDfree(data_array1);
+
+ /* Use collective read to verify the correctness of collective write. */
+
+ /* allocate memory for data buffer */
+ data_array1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int));
+ VRFY_G((data_array1 != NULL), "data_array1 malloc succeeded");
+
+ /* allocate memory for data buffer */
+ data_origin1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int));
+ VRFY_G((data_origin1 != NULL), "data_origin1 malloc succeeded");
+
+ acc_plist = create_faccess_plist(comm, info, facc_type);
+ VRFY_G((acc_plist >= 0), "MPIO creation property list succeeded");
+
+ file = H5Fopen(FILENAME[0], H5F_ACC_RDONLY, acc_plist);
+ VRFY_G((file >= 0), "H5Fcreate succeeded");
+
+ status = H5Pclose(acc_plist);
+ VRFY_G((status >= 0), "");
+
+ /* open the collective dataset*/
+ dataset = H5Dopen2(file, DSET_COLLECTIVE_CHUNK_NAME, H5P_DEFAULT);
+ VRFY_G((dataset >= 0), "");
+
+ /* set up dimensions of the slab this process accesses */
+ ccslab_set(mpi_rank_g, mpi_size_g, start, count, stride, block, select_factor);
+
+ /* obtain the file and mem dataspace*/
+ file_dataspace = H5Dget_space(dataset);
+ VRFY_G((file_dataspace >= 0), "");
+
+ if (ALL != mem_selection) {
+ mem_dataspace = H5Dget_space(dataset);
+ VRFY_G((mem_dataspace >= 0), "");
+ }
+ else {
+ /* Warning: H5Screate_simple requires an array of hsize_t elements
+ * even if we only pass only a single value. Attempting anything else
+ * appears to cause problems with 32 bit compilers.
+ */
+ hsize_t dsdims[1] = {num_points};
+ mem_dataspace = H5Screate_simple(1, dsdims, NULL);
+ VRFY_G((mem_dataspace >= 0), "mem_dataspace create succeeded");
+ }
+
+ switch (file_selection) {
+ case HYPER:
+ status = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
+ VRFY_G((status >= 0), "hyperslab selection succeeded");
+ break;
+
+ case POINT:
+ if (num_points) {
+ status = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords);
+ VRFY_G((status >= 0), "Element selection succeeded");
+ }
+ else {
+ status = H5Sselect_none(file_dataspace);
+ VRFY_G((status >= 0), "none selection succeeded");
+ }
+ break;
+
+ case ALL:
+ status = H5Sselect_all(file_dataspace);
+ VRFY_G((status >= 0), "H5Sselect_all succeeded");
+ break;
+ }
+
+ switch (mem_selection) {
+ case HYPER:
+ status = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block);
+ VRFY_G((status >= 0), "hyperslab selection succeeded");
+ break;
+
+ case POINT:
+ if (num_points) {
+ status = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords);
+ VRFY_G((status >= 0), "Element selection succeeded");
+ }
+ else {
+ status = H5Sselect_none(mem_dataspace);
+ VRFY_G((status >= 0), "none selection succeeded");
+ }
+ break;
+
+ case ALL:
+ status = H5Sselect_all(mem_dataspace);
+ VRFY_G((status >= 0), "H5Sselect_all succeeded");
+ break;
+ }
+
+ /* fill dataset with test data */
+ ccdataset_fill(start, stride, count, block, data_origin1, mem_selection);
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY_G((xfer_plist >= 0), "");
+
+ status = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY_G((status >= 0), "MPIO collective transfer property succeeded");
+ if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
+ status = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY_G((status >= 0), "set independent IO collectively succeeded");
+ }
+
+ status = H5Dread(dataset, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1);
+ VRFY_G((status >= 0), "dataset read succeeded");
+
+ /* verify the read data with original expected data */
+ status = ccdataset_vrfy(start, count, stride, block, data_array1, data_origin1, mem_selection);
+ if (status)
+ nerrors++;
+
+ status = H5Pclose(xfer_plist);
+ VRFY_G((status >= 0), "property list closed");
+
+ /* close dataset collectively */
+ status = H5Dclose(dataset);
+ VRFY_G((status >= 0), "H5Dclose");
+
+ /* release all IDs created */
+ status = H5Sclose(file_dataspace);
+ VRFY_G((status >= 0), "H5Sclose");
+
+ status = H5Sclose(mem_dataspace);
+ VRFY_G((status >= 0), "H5Sclose");
+
+ /* close the file collectively */
+ status = H5Fclose(file);
+ VRFY_G((status >= 0), "H5Fclose");
+
+ /* release data buffers */
+ if (coords)
+ HDfree(coords);
+ if (data_array1)
+ HDfree(data_array1);
+ if (data_origin1)
+ HDfree(data_origin1);
+}
+
+int
+main(int argc, char **argv)
+{
+ hid_t acc_plist = H5I_INVALID_HID;
+
+ MPI_Init(&argc, &argv);
+ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size_g);
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank_g);
+
+ /* Attempt to turn off atexit post processing so that in case errors
+ * happen during the test and the process is aborted, it will not get
+ * hang in the atexit post processing in which it may try to make MPI
+ * calls. By then, MPI calls may not work.
+ */
+ if (H5dont_atexit() < 0)
+ HDprintf("Failed to turn off atexit processing. Continue.\n");
+
+ /* set alarm. */
+ /* TestAlarmOn(); */
+
+ acc_plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type);
+
+ /* Get the capability flag of the VOL connector being used */
+ if (H5Pget_vol_cap_flags(acc_plist, &vol_cap_flags_g) < 0) {
+ if (MAIN_PROCESS)
+ HDprintf("Failed to get the capability flag of the VOL connector being used\n");
+
+ MPI_Finalize();
+ return 0;
+ }
+
+ /* Make sure the connector supports the API functions being tested. This test only
+ * uses a few API functions, such as H5Fcreate/open/close/delete, H5Dcreate/write/read/close,
+ * and H5Dget_space. */
+ if (!(vol_cap_flags_g & H5VL_CAP_FLAG_FILE_BASIC) || !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_BASIC) ||
+ !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_MORE)) {
+ if (MAIN_PROCESS)
+ HDprintf(
+ "API functions for basic file, dataset basic or more aren't supported with this connector\n");
+
+ MPI_Finalize();
+ return 0;
+ }
+
+ dataset_big_write();
+ MPI_Barrier(MPI_COMM_WORLD);
+
+ dataset_big_read();
+ MPI_Barrier(MPI_COMM_WORLD);
+
+ coll_chunk1();
+ MPI_Barrier(MPI_COMM_WORLD);
+ coll_chunk2();
+ MPI_Barrier(MPI_COMM_WORLD);
+ coll_chunk3();
+ MPI_Barrier(MPI_COMM_WORLD);
+
+ single_rank_independent_io();
+
+ /* turn off alarm */
+ /* TestAlarmOff(); */
+
+ if (mpi_rank_g == 0) {
+ hid_t fapl_id = H5Pcreate(H5P_FILE_ACCESS);
+
+ H5Pset_fapl_mpio(fapl_id, MPI_COMM_SELF, MPI_INFO_NULL);
+
+ H5E_BEGIN_TRY
+ {
+ H5Fdelete(FILENAME[0], fapl_id);
+ H5Fdelete(FILENAME[1], fapl_id);
+ }
+ H5E_END_TRY;
+
+ H5Pclose(fapl_id);
+ }
+
+ H5Pclose(acc_plist);
+
+ /* close HDF5 library */
+ H5close();
+
+ MPI_Finalize();
+
+ return 0;
+}