summaryrefslogtreecommitdiffstats
path: root/testpar/t_dset.c
diff options
context:
space:
mode:
authorAlbert Cheng <acheng@hdfgroup.org>1998-07-01 21:33:35 (GMT)
committerAlbert Cheng <acheng@hdfgroup.org>1998-07-01 21:33:35 (GMT)
commita9b794a0127c5b523ca7adb571961da36a9ecf3f (patch)
tree7db51940c1eb221f53b4547ba24e2446130bf173 /testpar/t_dset.c
parent0b5e6ee7a13dca7e315ad73886b569af1a7c3554 (diff)
downloadhdf5-a9b794a0127c5b523ca7adb571961da36a9ecf3f.zip
hdf5-a9b794a0127c5b523ca7adb571961da36a9ecf3f.tar.gz
hdf5-a9b794a0127c5b523ca7adb571961da36a9ecf3f.tar.bz2
[svn-r439] Changed the PHDF test programs substantially. Used to be just one
big testphdf5.c file. Broke it into modules of related routines. testphdf5.c -- main routine and global variables initialization plus some ulitility routines. t_file.c -- tests of file operations using parallel I/O. t_dset.c -- tests of datasets operations.
Diffstat (limited to 'testpar/t_dset.c')
-rw-r--r--testpar/t_dset.c1009
1 files changed, 1009 insertions, 0 deletions
diff --git a/testpar/t_dset.c b/testpar/t_dset.c
new file mode 100644
index 0000000..1c027ec
--- /dev/null
+++ b/testpar/t_dset.c
@@ -0,0 +1,1009 @@
+/* $Id$ */
+
+/*
+ * Parallel tests for file operations
+ */
+
+/*
+ * Example of using the parallel HDF5 library to access datasets.
+ *
+ * This program contains two parts. In the first part, the mpi processes
+ * collectively create a new parallel HDF5 file and create two fixed
+ * dimension datasets in it. Then each process writes a hyperslab into
+ * each dataset in an independent mode. All processes collectively
+ * close the datasets and the file.
+ * In the second part, the processes collectively open the created file
+ * and the two datasets in it. Then each process reads a hyperslab from
+ * each dataset in an independent mode and prints them out.
+ * All processes collectively close the datasets and the file.
+ */
+
+#include <testphdf5.h>
+
+/*
+ * Setup the dimensions of the hyperslab.
+ * Two modes--by rows or by columns.
+ * Assume dimension rank is 2.
+ */
+void
+slab_set(int mpi_rank, int mpi_size, hssize_t start[], hsize_t count[],
+ hsize_t stride[], int mode)
+{
+ switch (mode){
+ case BYROW:
+ /* Each process takes a slabs of rows. */
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = DIM1/mpi_size;
+ count[1] = DIM2;
+ start[0] = mpi_rank*count[0];
+ start[1] = 0;
+if (verbose) printf("slab_set BYROW\n");
+ break;
+ case BYCOL:
+ /* Each process takes a block of columns. */
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = DIM1;
+ count[1] = DIM2/mpi_size;
+ start[0] = 0;
+ start[1] = mpi_rank*count[1];
+#ifdef DISABLED
+ /* change the above macro to #ifndef if you want to test */
+ /* zero elements access. */
+ printf("set to size 0\n");
+ if (!(mpi_rank % 3))
+ count[1]=0;
+#endif
+if (verbose) printf("slab_set BYCOL\n");
+ break;
+ default:
+ /* Unknown mode. Set it to cover the whole dataset. */
+ printf("unknown slab_set mode (%d)\n", mode);
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = DIM1;
+ count[1] = DIM2;
+ start[0] = 0;
+ start[1] = 0;
+if (verbose) printf("slab_set wholeset\n");
+ break;
+ }
+if (verbose){
+ printf("start[]=(%d,%d), count[]=(%d,%d), total datapoints=%d\n",
+ start[0], start[1], count[0], count[1], count[0]*count[1]);
+ }
+}
+
+
+/*
+ * Fill the dataset with trivial data for testing.
+ * Assume dimension rank is 2 and data is stored contiguous.
+ */
+void
+dataset_fill(hssize_t start[], hsize_t count[], hsize_t stride[], DATATYPE * dataset)
+{
+ DATATYPE *dataptr = dataset;
+ int i, j;
+
+ /* put some trivial data in the data_array */
+ for (i=0; i < count[0]; i++){
+ for (j=0; j < count[1]; j++){
+ *dataptr = (i*stride[0]+start[0])*100 + (j*stride[1]+start[1]+1);
+ dataptr++;
+ }
+ }
+}
+
+
+/*
+ * Print the content of the dataset.
+ */
+void dataset_print(hssize_t start[], hsize_t count[], hsize_t stride[], DATATYPE * dataset)
+{
+ DATATYPE *dataptr = dataset;
+ int i, j;
+
+ /* print the column heading */
+ printf("%-8s", "Cols:");
+ for (j=0; j < count[1]; j++){
+ printf("%3d ", start[1]+j);
+ }
+ printf("\n");
+
+ /* print the slab data */
+ for (i=0; i < count[0]; i++){
+ printf("Row %2d: ", (int)(i*stride[0]+start[0]));
+ for (j=0; j < count[1]; j++){
+ printf("%03d ", *dataptr++);
+ }
+ printf("\n");
+ }
+}
+
+
+/*
+ * Print the content of the dataset.
+ */
+int dataset_vrfy(hssize_t start[], hsize_t count[], hsize_t stride[], DATATYPE *dataset, DATATYPE *original)
+{
+#define MAX_ERR_REPORT 10 /* Maximum number of errors reported */
+ DATATYPE *dataptr = dataset;
+ DATATYPE *originptr = original;
+
+ int i, j, vrfyerrs;
+
+ /* print it if verbose */
+ if (verbose)
+ dataset_print(start, count, stride, dataset);
+
+ vrfyerrs = 0;
+ for (i=0; i < count[0]; i++){
+ for (j=0; j < count[1]; j++){
+ if (*dataset != *original){
+ if (vrfyerrs++ < MAX_ERR_REPORT || verbose){
+ printf("Dataset Verify failed at [%d][%d](row %d, col %d): expect %d, got %d\n",
+ i, j,
+ (int)(i*stride[0]+start[0]), (int)(j*stride[1]+start[1]),
+ *(original), *(dataset));
+ }
+ dataset++;
+ original++;
+ }
+ }
+ }
+ if (vrfyerrs > MAX_ERR_REPORT && !verbose)
+ printf("[more errors ...]\n");
+ if (vrfyerrs)
+ printf("%d errors found in dataset_vrfy\n", vrfyerrs);
+ return(vrfyerrs);
+}
+
+
+/*
+ * Example of using the parallel HDF5 library to create two datasets
+ * in one HDF5 files with parallel MPIO access support.
+ * The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
+ * Each process controls only a slab of size DIM1 x DIM2 within each
+ * dataset.
+ */
+
+void
+dataset_writeInd(char *filename)
+{
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t sid; /* Dataspace ID */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset1, dataset2; /* Dataset ID */
+ hsize_t dims[RANK] = {DIM1,DIM2}; /* dataset dim sizes */
+ hsize_t dimslocal1[RANK] = {DIM1,DIM2}; /* local dataset dim sizes */
+ DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
+
+ hssize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
+
+ herr_t ret; /* Generic return value */
+ int i, j;
+ int mpi_size, mpi_rank;
+ char *fname;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ if (verbose)
+ printf("Independent write test on file %s\n", filename);
+
+ /* set up MPI parameters */
+ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
+
+ /* -------------------
+ * START AN HDF5 FILE
+ * -------------------*/
+ /* setup file access template with parallel IO access. */
+ acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
+ VRFY((acc_tpl != FAIL), "H5Pcreate access succeed");
+ /* set Parallel access with communicator */
+ ret = H5Pset_mpi(acc_tpl, comm, info);
+ VRFY((ret != FAIL), "H5Pset_mpi succeed");
+
+ /* create the file collectively */
+ fid=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl);
+ VRFY((fid != FAIL), "H5Fcreate succeed");
+
+ /* Release file-access template */
+ ret=H5Pclose(acc_tpl);
+ VRFY((ret != FAIL), "");
+
+
+ /* --------------------------
+ * Define the dimensions of the overall datasets
+ * and the slabs local to the MPI process.
+ * ------------------------- */
+ /* setup dimensionality object */
+ sid = H5Screate_simple (RANK, dims, NULL);
+ VRFY((sid != FAIL), "H5Screate_simple succeed");
+
+
+ /* create a dataset collectively */
+ dataset1 = H5Dcreate(fid, DATASETNAME1, H5T_NATIVE_INT, sid,
+ H5P_DEFAULT);
+ VRFY((dataset1 != FAIL), "H5Dcreate succeed");
+
+ /* create another dataset collectively */
+ dataset2 = H5Dcreate(fid, DATASETNAME2, H5T_NATIVE_INT, sid,
+ H5P_DEFAULT);
+ VRFY((dataset2 != FAIL), "H5Dcreate succeed");
+
+
+
+ /* set up dimensions of the slab this process accesses */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
+
+ /* put some trivial data in the data_array */
+ dataset_fill(start, count, stride, &data_array1[0][0]);
+ MESG("data_array initialized");
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* write data independently */
+ ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "H5Dwrite succeed");
+
+ /* write data independently */
+ ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "H5Dwrite succeed");
+
+ /* release dataspace ID */
+ H5Sclose(file_dataspace);
+
+ /* close dataset collectively */
+ ret=H5Dclose(dataset1);
+ VRFY((ret != FAIL), "H5Dclose1 succeed");
+ ret=H5Dclose(dataset2);
+ VRFY((ret != FAIL), "H5Dclose2 succeed");
+
+ /* release all IDs created */
+ H5Sclose(sid);
+
+ /* close the file collectively */
+ H5Fclose(fid);
+}
+
+/* Example of using the parallel HDF5 library to read a dataset */
+void
+dataset_readInd(char *filename)
+{
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t sid; /* Dataspace ID */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset1, dataset2; /* Dataset ID */
+ hsize_t dims[] = {DIM1,DIM2}; /* dataset dim sizes */
+ DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
+ DATATYPE data_origin1[DIM1][DIM2]; /* expected data buffer */
+
+ hssize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
+
+ herr_t ret; /* Generic return value */
+ int i, j;
+ int mpi_size, mpi_rank;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ if (verbose)
+ printf("Independent read test on file %s\n", filename);
+
+ /* set up MPI parameters */
+ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
+
+
+ /* setup file access template */
+ acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
+ VRFY((acc_tpl != FAIL), "");
+ /* set Parallel access with communicator */
+ ret = H5Pset_mpi(acc_tpl, comm, info);
+ VRFY((ret != FAIL), "");
+
+
+ /* open the file collectively */
+ fid=H5Fopen(filename,H5F_ACC_RDWR,acc_tpl);
+ VRFY((fid != FAIL), "");
+
+ /* Release file-access template */
+ ret=H5Pclose(acc_tpl);
+ VRFY((ret != FAIL), "");
+
+ /* open the dataset1 collectively */
+ dataset1 = H5Dopen(fid, DATASETNAME1);
+ VRFY((dataset1 != FAIL), "");
+
+ /* open another dataset collectively */
+ dataset2 = H5Dopen(fid, DATASETNAME1);
+ VRFY((dataset2 != FAIL), "");
+
+
+ /* set up dimensions of the slab this process accesses */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* fill dataset with test data */
+ dataset_fill(start, count, stride, &data_origin1[0][0]);
+
+ /* read data independently */
+ ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "");
+
+ /* verify the read data with original expected data */
+ ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
+ if (ret) nerrors++;
+
+ /* read data independently */
+ ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "");
+
+ /* verify the read data with original expected data */
+ ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
+ if (ret) nerrors++;
+
+ /* close dataset collectively */
+ ret=H5Dclose(dataset1);
+ VRFY((ret != FAIL), "");
+ ret=H5Dclose(dataset2);
+ VRFY((ret != FAIL), "");
+
+ /* release all IDs created */
+ H5Sclose(file_dataspace);
+
+ /* close the file collectively */
+ H5Fclose(fid);
+}
+
+
+/*
+ * Example of using the parallel HDF5 library to create two datasets
+ * in one HDF5 file with collective parallel access support.
+ * The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
+ * Each process controls only a slab of size DIM1 x DIM2 within each
+ * dataset. [Note: not so yet. Datasets are of sizes DIM1xDIM2 and
+ * each process controls a hyperslab within.]
+ */
+
+void
+dataset_writeAll(char *filename)
+{
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t xfer_plist; /* Dataset transfer properties list */
+ hid_t sid; /* Dataspace ID */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset1, dataset2; /* Dataset ID */
+ hid_t datatype; /* Datatype ID */
+ hsize_t dims[RANK] = {DIM1,DIM2}; /* dataset dim sizes */
+ DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
+
+ hssize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
+
+ herr_t ret; /* Generic return value */
+ int mpi_size, mpi_rank;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ if (verbose)
+ printf("Collective write test on file %s\n", filename);
+
+ /* set up MPI parameters */
+ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
+
+ /* -------------------
+ * START AN HDF5 FILE
+ * -------------------*/
+ /* setup file access template with parallel IO access. */
+ acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
+ VRFY((acc_tpl != FAIL), "H5Pcreate access succeed");
+ /* set Parallel access with communicator */
+ ret = H5Pset_mpi(acc_tpl, comm, info);
+ VRFY((ret != FAIL), "H5Pset_mpi succeed");
+
+ /* create the file collectively */
+ fid=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl);
+ VRFY((fid != FAIL), "H5Fcreate succeed");
+
+ /* Release file-access template */
+ ret=H5Pclose(acc_tpl);
+ VRFY((ret != FAIL), "");
+
+
+ /* --------------------------
+ * Define the dimensions of the overall datasets
+ * and create the dataset
+ * ------------------------- */
+ /* setup dimensionality object */
+ sid = H5Screate_simple (RANK, dims, NULL);
+ VRFY((sid != FAIL), "H5Screate_simple succeed");
+
+
+ /* create a dataset collectively */
+ dataset1 = H5Dcreate(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT);
+ VRFY((dataset1 != FAIL), "H5Dcreate succeed");
+
+ /* create another dataset collectively */
+ datatype = H5Tcopy(H5T_NATIVE_INT);
+ ret = H5Tset_order(datatype, H5T_ORDER_LE);
+ VRFY((ret != FAIL), "H5Tset_order succeed");
+
+ dataset2 = H5Dcreate(fid, DATASETNAME2, datatype, sid, H5P_DEFAULT);
+ VRFY((dataset2 != FAIL), "H5Dcreate 2 succeed");
+
+ /*
+ * Set up dimensions of the slab this process accesses.
+ */
+
+ /* Dataset1: each process takes a block of rows. */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* fill the local slab with some trivial data */
+ dataset_fill(start, count, stride, &data_array1[0][0]);
+ MESG("data_array initialized");
+ if (verbose){
+ MESG("data_array created");
+ dataset_print(start, count, stride, &data_array1[0][0]);
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate (H5P_DATASET_XFER);
+ VRFY((xfer_plist != FAIL), "");
+ ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
+ VRFY((ret != FAIL), "H5Pcreate xfer succeed");
+
+ /* write data collectively */
+ ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ xfer_plist, data_array1);
+ VRFY((ret != FAIL), "H5Dwrite dataset1 succeed");
+
+ /* release all temporary handles. */
+ /* Could have used them for dataset2 but it is cleaner */
+ /* to create them again.*/
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+
+ /* Dataset2: each process takes a block of columns. */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYCOL);
+
+ /* put some trivial data in the data_array */
+ dataset_fill(start, count, stride, &data_array1[0][0]);
+ MESG("data_array initialized");
+ if (verbose){
+ MESG("data_array created");
+ dataset_print(start, count, stride, &data_array1[0][0]);
+ }
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* fill the local slab with some trivial data */
+ dataset_fill(start, count, stride, &data_array1[0][0]);
+ MESG("data_array initialized");
+ if (verbose){
+ MESG("data_array created");
+ dataset_print(start, count, stride, &data_array1[0][0]);
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate (H5P_DATASET_XFER);
+ VRFY((xfer_plist != FAIL), "");
+ ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
+ VRFY((ret != FAIL), "H5Pcreate xfer succeed");
+
+ /* write data independently */
+ ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ xfer_plist, data_array1);
+ VRFY((ret != FAIL), "H5Dwrite dataset2 succeed");
+
+ /* release all temporary handles. */
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+
+
+ /*
+ * All writes completed. Close datasets collectively
+ */
+ ret=H5Dclose(dataset1);
+ VRFY((ret != FAIL), "H5Dclose1 succeed");
+ ret=H5Dclose(dataset2);
+ VRFY((ret != FAIL), "H5Dclose2 succeed");
+
+ /* release all IDs created */
+ H5Sclose(sid);
+
+ /* close the file collectively */
+ H5Fclose(fid);
+}
+
+/*
+ * Example of using the parallel HDF5 library to read two datasets
+ * in one HDF5 file with collective parallel access support.
+ * The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
+ * Each process controls only a slab of size DIM1 x DIM2 within each
+ * dataset. [Note: not so yet. Datasets are of sizes DIM1xDIM2 and
+ * each process controls a hyperslab within.]
+ */
+
+void
+dataset_readAll(char *filename)
+{
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t xfer_plist; /* Dataset transfer properties list */
+ hid_t sid; /* Dataspace ID */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset1, dataset2; /* Dataset ID */
+ hsize_t dims[] = {DIM1,DIM2}; /* dataset dim sizes */
+ DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
+ DATATYPE data_origin1[DIM1][DIM2]; /* expected data buffer */
+
+ hssize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
+
+ herr_t ret; /* Generic return value */
+ int mpi_size, mpi_rank;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ if (verbose)
+ printf("Collective read test on file %s\n", filename);
+
+ /* set up MPI parameters */
+ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
+
+ /* -------------------
+ * OPEN AN HDF5 FILE
+ * -------------------*/
+ /* setup file access template with parallel IO access. */
+ acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
+ VRFY((acc_tpl != FAIL), "H5Pcreate access succeed");
+ /* set Parallel access with communicator */
+ ret = H5Pset_mpi(acc_tpl, comm, info);
+ VRFY((ret != FAIL), "H5Pset_mpi succeed");
+
+ /* open the file collectively */
+ fid=H5Fopen(filename,H5F_ACC_RDWR,acc_tpl);
+ VRFY((fid != FAIL), "H5Fopen succeed");
+
+ /* Release file-access template */
+ ret=H5Pclose(acc_tpl);
+ VRFY((ret != FAIL), "");
+
+
+ /* --------------------------
+ * Open the datasets in it
+ * ------------------------- */
+ /* open the dataset1 collectively */
+ dataset1 = H5Dopen(fid, DATASETNAME1);
+ VRFY((dataset1 != FAIL), "H5Dopen succeed");
+
+ /* open another dataset collectively */
+ dataset2 = H5Dopen(fid, DATASETNAME2);
+ VRFY((dataset2 != FAIL), "H5Dopen 2 succeed");
+
+ /*
+ * Set up dimensions of the slab this process accesses.
+ */
+
+ /* Dataset1: each process takes a block of columns. */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYCOL);
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* fill dataset with test data */
+ dataset_fill(start, count, stride, &data_origin1[0][0]);
+ MESG("data_array initialized");
+ if (verbose){
+ MESG("data_array created");
+ dataset_print(start, count, stride, &data_origin1[0][0]);
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate (H5P_DATASET_XFER);
+ VRFY((xfer_plist != FAIL), "");
+ ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
+ VRFY((ret != FAIL), "H5Pcreate xfer succeed");
+
+ /* read data collectively */
+ ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ xfer_plist, data_array1);
+ VRFY((ret != FAIL), "H5Dread succeed");
+
+ /* verify the read data with original expected data */
+ ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
+ if (ret) nerrors++;
+
+ /* release all temporary handles. */
+ /* Could have used them for dataset2 but it is cleaner */
+ /* to create them again.*/
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+
+ /* Dataset2: each process takes a block of rows. */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* fill dataset with test data */
+ dataset_fill(start, count, stride, &data_origin1[0][0]);
+ MESG("data_array initialized");
+ if (verbose){
+ MESG("data_array created");
+ dataset_print(start, count, stride, &data_origin1[0][0]);
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate (H5P_DATASET_XFER);
+ VRFY((xfer_plist != FAIL), "");
+ ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
+ VRFY((ret != FAIL), "H5Pcreate xfer succeed");
+
+ /* read data independently */
+ ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ xfer_plist, data_array1);
+ VRFY((ret != FAIL), "H5Dread succeed");
+
+ /* verify the read data with original expected data */
+ ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
+ if (ret) nerrors++;
+
+ /* release all temporary handles. */
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+
+
+ /*
+ * All reads completed. Close datasets collectively
+ */
+ ret=H5Dclose(dataset1);
+ VRFY((ret != FAIL), "H5Dclose1 succeed");
+ ret=H5Dclose(dataset2);
+ VRFY((ret != FAIL), "H5Dclose2 succeed");
+
+ /* close the file collectively */
+ H5Fclose(fid);
+}
+
+
+/*
+ * Example of using the parallel HDF5 library to create two extendable
+ * datasets in one HDF5 file with parallel MPIO access support.
+ * The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
+ * Each process controls only a slab of size DIM1 x DIM2 within each
+ * dataset.
+ */
+
+void
+extend_writeInd(char *filename)
+{
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t sid; /* Dataspace ID */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset1, dataset2; /* Dataset ID */
+ hsize_t dims[RANK] = {DIM1,DIM2}; /* dataset initial dim sizes */
+ hsize_t max_dims[RANK] =
+ {DIM1, DIM2}; /* dataset maximum dim sizes */
+ hsize_t dimslocal1[RANK] = {DIM1,DIM2}; /* local dataset dim sizes */
+ DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
+ hsize_t chunk_dims[RANK]; /* chunk sizes */
+ hid_t dataset_pl; /* dataset create prop. list */
+
+ hssize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK]; /* for hyperslab setting */
+ hsize_t stride[RANK]; /* for hyperslab setting */
+
+ herr_t ret; /* Generic return value */
+ int i, j;
+ int mpi_size, mpi_rank;
+ char *fname;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ if (verbose)
+ printf("Extend independent write test on file %s\n", filename);
+
+ /* set up MPI parameters */
+ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
+
+ /* -------------------
+ * START AN HDF5 FILE
+ * -------------------*/
+ /* setup file access template with parallel IO access. */
+ acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
+ VRFY((acc_tpl != FAIL), "H5Pcreate access succeed");
+ /* set Parallel access with communicator */
+ ret = H5Pset_mpi(acc_tpl, comm, info);
+ VRFY((ret != FAIL), "H5Pset_mpi succeed");
+
+ /* create the file collectively */
+ fid=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl);
+ VRFY((fid != FAIL), "H5Fcreate succeed");
+
+ /* Release file-access template */
+ ret=H5Pclose(acc_tpl);
+ VRFY((ret != FAIL), "");
+
+
+ /* --------------------------
+ * Define the dimensions of the overall datasets
+ * and the slabs local to the MPI process.
+ * ------------------------- */
+
+ /* set up dataset storage chunk sizes and creation property list */
+ chunk_dims[0] = 7;
+ chunk_dims[1] = 13;
+ if (verbose)
+ printf("chunks[]=%d,%d\n", chunk_dims[0], chunk_dims[1]);
+ dataset_pl = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((dataset_pl != FAIL), "H5Pcreate succeed");
+ ret = H5Pset_chunk(dataset_pl, RANK, chunk_dims);
+ VRFY((ret != FAIL), "H5Pset_chunk succeed");
+
+
+ /* setup dimensionality object */
+ sid = H5Screate_simple (RANK, dims, max_dims);
+ VRFY((sid != FAIL), "H5Screate_simple succeed");
+
+
+ /* create an extendable dataset collectively */
+ dataset1 = H5Dcreate(fid, DATASETNAME1, H5T_NATIVE_INT, sid,
+ dataset_pl);
+ VRFY((dataset1 != FAIL), "H5Dcreate succeed");
+
+ /* create another extendable dataset collectively */
+ dataset2 = H5Dcreate(fid, DATASETNAME2, H5T_NATIVE_INT, sid,
+ dataset_pl);
+ VRFY((dataset2 != FAIL), "H5Dcreate succeed");
+
+ /* extend both datasets */
+ ret = H5Dextend (dataset2, dims);
+ VRFY((ret != FAIL), "H5Dextend succeed");
+
+
+ /* set up dimensions of the slab this process accesses */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
+
+ /* put some trivial data in the data_array */
+ dataset_fill(start, count, stride, &data_array1[0][0]);
+ MESG("data_array initialized");
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* write data independently */
+ ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "H5Dwrite succeed");
+
+ /* set up dimensions of the slab this process accesses */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYCOL);
+
+ /* put some trivial data in the data_array */
+ dataset_fill(start, count, stride, &data_array1[0][0]);
+ MESG("data_array initialized");
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* write data independently */
+ ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "H5Dwrite succeed");
+
+ /* release dataspace ID */
+ H5Sclose(file_dataspace);
+#ifdef NO
+#endif /* NO */
+
+ /* close dataset collectively */
+ ret=H5Dclose(dataset1);
+ VRFY((ret != FAIL), "H5Dclose1 succeed");
+ ret=H5Dclose(dataset2);
+ VRFY((ret != FAIL), "H5Dclose2 succeed");
+
+ /* release all IDs created */
+ H5Sclose(sid);
+
+ /* close the file collectively */
+ H5Fclose(fid);
+}
+
+/* Example of using the parallel HDF5 library to read a dataset */
+void
+extend_readInd(char *filename)
+{
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t sid; /* Dataspace ID */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset1, dataset2; /* Dataset ID */
+ hsize_t dims[] = {DIM1,DIM2}; /* dataset dim sizes */
+ DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
+ DATATYPE data_origin1[DIM1][DIM2]; /* expected data buffer */
+
+ hssize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
+
+ herr_t ret; /* Generic return value */
+ int i, j;
+ int mpi_size, mpi_rank;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ if (verbose)
+ printf("Extend independent read test on file %s\n", filename);
+
+ /* set up MPI parameters */
+ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
+
+
+ /* setup file access template */
+ acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
+ VRFY((acc_tpl != FAIL), "");
+ /* set Parallel access with communicator */
+ ret = H5Pset_mpi(acc_tpl, comm, info);
+ VRFY((ret != FAIL), "");
+
+
+ /* open the file collectively */
+ fid=H5Fopen(filename,H5F_ACC_RDWR,acc_tpl);
+ VRFY((fid != FAIL), "");
+
+ /* Release file-access template */
+ ret=H5Pclose(acc_tpl);
+ VRFY((ret != FAIL), "");
+
+ /* open the dataset1 collectively */
+ dataset1 = H5Dopen(fid, DATASETNAME1);
+ VRFY((dataset1 != FAIL), "");
+
+ /* open another dataset collectively */
+ dataset2 = H5Dopen(fid, DATASETNAME1);
+ VRFY((dataset2 != FAIL), "");
+
+
+ /* set up dimensions of the slab this process accesses */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* fill dataset with test data */
+ dataset_fill(start, count, stride, &data_origin1[0][0]);
+
+ /* read data independently */
+ ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "");
+
+ /* verify the read data with original expected data */
+ ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
+ VRFY((ret == 0), "dataset1 read verified correct");
+ if (ret) nerrors++;
+
+ /* read data independently */
+ ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "");
+
+ /* verify the read data with original expected data */
+ ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
+ VRFY((ret == 0), "dataset2 read verified correct");
+ if (ret) nerrors++;
+
+ /* close dataset collectively */
+ ret=H5Dclose(dataset1);
+ VRFY((ret != FAIL), "");
+ ret=H5Dclose(dataset2);
+ VRFY((ret != FAIL), "");
+
+ /* release all IDs created */
+ H5Sclose(file_dataspace);
+
+ /* close the file collectively */
+ H5Fclose(fid);
+}