diff options
author | Dana Robinson <derobins@hdfgroup.org> | 2022-04-13 21:17:29 (GMT) |
---|---|---|
committer | Dana Robinson <derobins@hdfgroup.org> | 2022-04-13 21:17:29 (GMT) |
commit | cabc39c3e197e2591449d2604bfee26465fb60e1 (patch) | |
tree | d5f39f5f5965584bf9bf49646a2af617adfd3e4e /testpar | |
parent | 7355f4c505092a7a85474b47f18d5206028e2c95 (diff) | |
parent | ab69f5df770ee3cc6cd6c81d905a5317b894a002 (diff) | |
download | hdf5-feature/coding_standards.zip hdf5-feature/coding_standards.tar.gz hdf5-feature/coding_standards.tar.bz2 |
Merge branch 'develop' into feature/coding_standardsfeature/coding_standards
Diffstat (limited to 'testpar')
35 files changed, 27005 insertions, 17879 deletions
diff --git a/testpar/CMakeLists.txt b/testpar/CMakeLists.txt index 51c3420..32f4a0f 100644 --- a/testpar/CMakeLists.txt +++ b/testpar/CMakeLists.txt @@ -1,4 +1,4 @@ -cmake_minimum_required (VERSION 3.10) +cmake_minimum_required (VERSION 3.12) project (HDF5_TEST_PAR C) #----------------------------------------------------------------------------- @@ -22,8 +22,9 @@ set (testphdf5_SOURCES #-- Adding test for testhdf5 add_executable (testphdf5 ${testphdf5_SOURCES}) +target_compile_options(testphdf5 PRIVATE "${HDF5_CMAKE_C_FLAGS}") target_include_directories (testphdf5 - PRIVATE "${HDF5_SRC_DIR};${HDF5_BINARY_DIR};$<$<BOOL:${HDF5_ENABLE_PARALLEL}>:${MPI_C_INCLUDE_DIRS}>" + PRIVATE "${HDF5_SRC_DIR};${HDF5_SRC_BINARY_DIR};$<$<BOOL:${HDF5_ENABLE_PARALLEL}>:${MPI_C_INCLUDE_DIRS}>" ) if (NOT BUILD_SHARED_LIBS) TARGET_C_PROPERTIES (testphdf5 STATIC) @@ -38,10 +39,18 @@ else () endif () set_target_properties (testphdf5 PROPERTIES FOLDER test/par) -MACRO (ADD_H5P_EXE file) +#----------------------------------------------------------------------------- +# Add Target to clang-format +#----------------------------------------------------------------------------- +if (HDF5_ENABLE_FORMATTERS) + clang_format (HDF5_TEST_PAR_testphdf5_FORMAT testphdf5) +endif () + +macro (ADD_H5P_EXE file) add_executable (${file} ${HDF5_TEST_PAR_SOURCE_DIR}/${file}.c) + target_compile_options(${file} PRIVATE "${HDF5_CMAKE_C_FLAGS}") target_include_directories (${file} - PRIVATE "${HDF5_SRC_DIR};${HDF5_BINARY_DIR};$<$<BOOL:${HDF5_ENABLE_PARALLEL}>:${MPI_C_INCLUDE_DIRS}>" + PRIVATE "${HDF5_SRC_DIR};${HDF5_SRC_BINARY_DIR};$<$<BOOL:${HDF5_ENABLE_PARALLEL}>:${MPI_C_INCLUDE_DIRS}>" ) if (NOT BUILD_SHARED_LIBS) TARGET_C_PROPERTIES (${file} STATIC) @@ -57,7 +66,14 @@ MACRO (ADD_H5P_EXE file) ) endif () set_target_properties (${file} PROPERTIES FOLDER test/par) -ENDMACRO (ADD_H5P_EXE file) + + #----------------------------------------------------------------------------- + # Add Target to clang-format + #----------------------------------------------------------------------------- + if (HDF5_ENABLE_FORMATTERS) + clang_format (HDF5_TEST_PAR_${file}_FORMAT ${file}) + endif () +endmacro (ADD_H5P_EXE file) set (H5P_TESTS t_mpi @@ -72,10 +88,14 @@ set (H5P_TESTS t_init_term t_shapesame t_filters_parallel + t_2Gio + t_vfd ) foreach (h5_testp ${H5P_TESTS}) ADD_H5P_EXE(${h5_testp}) endforeach () -include (CMakeTests.cmake) +if (HDF5_TEST_PARALLEL) + include (CMakeTests.cmake) +endif () diff --git a/testpar/CMakeTests.cmake b/testpar/CMakeTests.cmake index 5848c60..ee69881 100644 --- a/testpar/CMakeTests.cmake +++ b/testpar/CMakeTests.cmake @@ -5,7 +5,7 @@ # This file is part of HDF5. The full HDF5 copyright notice, including # terms governing use, modification, and redistribution, is contained in # the COPYING file, which can be found at the root of the source code -# distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. +# distribution tree, or in https://www.hdfgroup.org/licenses. # If you do not have access to either file, you may request a copy from # help@hdfgroup.org. # diff --git a/testpar/CMakeVFDTests.cmake b/testpar/CMakeVFDTests.cmake index 8d131db..d6a4025 100644 --- a/testpar/CMakeVFDTests.cmake +++ b/testpar/CMakeVFDTests.cmake @@ -5,7 +5,7 @@ # This file is part of HDF5. The full HDF5 copyright notice, including # terms governing use, modification, and redistribution, is contained in # the COPYING file, which can be found at the root of the source code -# distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. +# distribution tree, or in https://www.hdfgroup.org/licenses. # If you do not have access to either file, you may request a copy from # help@hdfgroup.org. # @@ -15,29 +15,13 @@ ### T E S T I N G ### ############################################################################## ############################################################################## -set (VFD_LIST - sec2 - stdio - core - core_paged - split - multi - family -) +H5_CREATE_VFD_DIR() set (H5P_VFD_TESTS t_pflush1 t_pflush2 ) -if (DIRECT_VFD) - set (VFD_LIST ${VFD_LIST} direct) -endif () - -foreach (vfdtest ${VFD_LIST}) - file (MAKE_DIRECTORY "${PROJECT_BINARY_DIR}/${vfdtest}") -endforeach () - macro (ADD_VFD_TEST vfdname resultcode) if (NOT HDF5_ENABLE_USING_MEMCHECKER) foreach (h5_test ${H5P_VFD_TESTS}) @@ -58,6 +42,9 @@ macro (ADD_VFD_TEST vfdname resultcode) WORKING_DIRECTORY ${HDF5_TEST_PAR_BINARY_DIR}/${vfdname} ) endforeach () + set_tests_properties (MPI_TEST_VFD-${vfdname}-t_pflush1 PROPERTIES WILL_FAIL "true") + #set_property (TEST MPI_TEST_t_pflush1 PROPERTY PASS_REGULAR_EXPRESSION "PASSED") + set_tests_properties (MPI_TEST_VFD-${vfdname}-t_pflush2 PROPERTIES DEPENDS MPI_TEST_VFD-${vfdname}-t_pflush1) endif () endmacro () diff --git a/testpar/COPYING b/testpar/COPYING deleted file mode 100644 index 6497ace..0000000 --- a/testpar/COPYING +++ /dev/null @@ -1,13 +0,0 @@ - - Copyright by The HDF Group and - The Board of Trustees of the University of Illinois. - All rights reserved. - - The files and subdirectories in this directory are part of HDF5. - The full HDF5 copyright notice, including terms governing use, - modification, and redistribution, is contained in the COPYING file - which can be found at the root of the source code distribution tree - or in https://support.hdfgroup.org/ftp/HDF5/releases. If you do - not have access to either file, you may request a copy from - help@hdfgroup.org. - diff --git a/testpar/Makefile.am b/testpar/Makefile.am index 0e7898e..cbde0c1 100644 --- a/testpar/Makefile.am +++ b/testpar/Makefile.am @@ -6,7 +6,7 @@ # This file is part of HDF5. The full HDF5 copyright notice, including # terms governing use, modification, and redistribution, is contained in # the COPYING file, which can be found at the root of the source code -# distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. +# distribution tree, or in https://www.hdfgroup.org/licenses. # If you do not have access to either file, you may request a copy from # help@hdfgroup.org. ## @@ -24,13 +24,13 @@ AM_CPPFLAGS+=-I$(top_srcdir)/src -I$(top_srcdir)/test # Test scripts-- # testpflush.sh: TEST_SCRIPT_PARA = testpflush.sh -SCRIPT_DEPEND = t_pflush1$(EXEEXT) t_pflush2$(EXEEXT) +SCRIPT_DEPEND = t_pflush1$(EXEEXT) t_pflush2$(EXEEXT) check_SCRIPTS = $(TEST_SCRIPT_PARA) # Test programs. These are our main targets. # -TEST_PROG_PARA=t_mpi t_bigio testphdf5 t_cache t_cache_image t_pread t_pshutdown t_prestart t_init_term t_shapesame t_filters_parallel +TEST_PROG_PARA=t_mpi t_bigio testphdf5 t_cache t_cache_image t_pread t_pshutdown t_prestart t_init_term t_shapesame t_filters_parallel t_2Gio t_vfd # t_pflush1 and t_pflush2 are used by testpflush.sh check_PROGRAMS = $(TEST_PROG_PARA) t_pflush1 t_pflush2 @@ -42,11 +42,6 @@ testphdf5_SOURCES=testphdf5.c t_dset.c t_file.c t_file_image.c t_mdset.c \ # The tests all depend on the hdf5 library and the test library LDADD = $(LIBH5TEST) $(LIBHDF5) -# Test with just the native connector, with a single pass-through connector -# and with a doubly-stacked pass-through. -VOL_LIST = native "pass_through under_vol=0;under_info={}" \ - "pass_through under_vol=505;under_info={under_vol=0;under_info={}}" - # Temporary files # MPItest.h5 is from t_mpi # Para*.h5 are from testphdf diff --git a/testpar/t_2Gio.c b/testpar/t_2Gio.c new file mode 100644 index 0000000..79241c6 --- /dev/null +++ b/testpar/t_2Gio.c @@ -0,0 +1,4674 @@ +/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + * Copyright by The HDF Group. * + * Copyright by the Board of Trustees of the University of Illinois. * + * All rights reserved. * + * * + * This file is part of HDF5. The full HDF5 copyright notice, including * + * terms governing use, modification, and redistribution, is contained in * + * the COPYING file, which can be found at the root of the source code * + * distribution tree, or in https://www.hdfgroup.org/licenses. * + * If you do not have access to either file, you may request a copy from * + * help@hdfgroup.org. * + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ + +/* + * Parallel tests for datasets + */ + +/* + * Example of using the parallel HDF5 library to access datasets. + * + * This program contains three major parts. Part 1 tests fixed dimension + * datasets, for both independent and collective transfer modes. + * Part 2 tests extendible datasets, for independent transfer mode + * only. + * Part 3 tests extendible datasets, for collective transfer mode + * only. + */ + +#include <stdio.h> +#include "hdf5.h" +#include "testphdf5.h" + +#include "mpi.h" + +/* For this test, we don't want to inherit the RANK definition + * from testphdf5.h. We'll define MAX_RANK to accommodate 3D arrays + * and use that definition rather than RANK. + */ +#ifndef MAX_RANK +#define MAX_RANK 2 +#endif + +/* As with RANK vs MAX_RANK, we use BIG_X_FACTOR vs ROW_FACTOR + * and BIG_Y_FACTOR vs COL_FACTOR. We introduce BIG_Z_FACTOR + * for the 3rd dimension. + */ + +#ifndef BIG_X_FACTOR +#define BIG_X_FACTOR 1048576 +#endif +#ifndef BIG_Y_FACTOR +#define BIG_Y_FACTOR 32 +#endif +#ifndef BIG_Z_FACTOR +#define BIG_Z_FACTOR 2048 +#endif + +#ifndef PATH_MAX +#define PATH_MAX 512 +#endif /* !PATH_MAX */ + +/* global variables */ +int dim0; +int dim1; +int dim2; +int chunkdim0; +int chunkdim1; +int nerrors = 0; /* errors count */ +int ndatasets = 300; /* number of datasets to create*/ +int ngroups = 512; /* number of groups to create in root + * group. */ +int facc_type = FACC_MPIO; /*Test file access type */ +int dxfer_coll_type = DXFER_COLLECTIVE_IO; + +H5E_auto2_t old_func; /* previous error handler */ +void * old_client_data; /* previous error handler arg.*/ + +#define NFILENAME 3 +#define PARATESTFILE filenames[0] +const char *FILENAME[NFILENAME] = {"ParaTest", "Hugefile", NULL}; +char filenames[NFILENAME][PATH_MAX]; +hid_t fapl; /* file access property list */ +MPI_Comm test_comm = MPI_COMM_WORLD; + +// static int enable_error_stack = 0; /* enable error stack; disable=0 enable=1 */ +// static const char *TestProgName = NULL; +// static void (*TestPrivateUsage)(void) = NULL; +// static int (*TestPrivateParser)(int ac, char *av[]) = NULL; + +/* + * The following are various utility routines used by the tests. + */ + +/* + * Show command usage + */ +static void +usage(void) +{ + HDprintf(" [-r] [-w] [-m<n_datasets>] [-n<n_groups>] " + "[-o] [-f <prefix>] [-d <dim0> <dim1>]\n"); + HDprintf("\t-m<n_datasets>" + "\tset number of datasets for the multiple dataset test\n"); + HDprintf("\t-n<n_groups>" + "\tset number of groups for the multiple group test\n"); + HDprintf("\t-f <prefix>\tfilename prefix\n"); + HDprintf("\t-2\t\tuse Split-file together with MPIO\n"); + HDprintf("\t-d <factor0> <factor1>\tdataset dimensions factors. Defaults (%d,%d)\n", BIG_X_FACTOR, + BIG_Y_FACTOR); + HDprintf("\t-c <dim0> <dim1>\tdataset chunk dimensions. Defaults (dim0/10,dim1/10)\n"); + HDprintf("\n"); +} + +/* + * parse the command line options + */ +static int +parse_options(int argc, char **argv) +{ + int mpi_size, mpi_rank; /* mpi variables */ + + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + /* setup default chunk-size. Make sure sizes are > 0 */ + + chunkdim0 = (dim0 + 9) / 10; + chunkdim1 = (dim1 + 9) / 10; + + while (--argc) { + if (**(++argv) != '-') { + break; + } + else { + switch (*(*argv + 1)) { + case 'm': + ndatasets = atoi((*argv + 1) + 1); + if (ndatasets < 0) { + nerrors++; + return (1); + } + break; + case 'n': + ngroups = atoi((*argv + 1) + 1); + if (ngroups < 0) { + nerrors++; + return (1); + } + break; + case 'f': + if (--argc < 1) { + nerrors++; + return (1); + } + if (**(++argv) == '-') { + nerrors++; + return (1); + } + paraprefix = *argv; + break; + case 'i': /* Collective MPI-IO access with independent IO */ + dxfer_coll_type = DXFER_INDEPENDENT_IO; + break; + case '2': /* Use the split-file driver with MPIO access */ + /* Can use $HDF5_METAPREFIX to define the */ + /* meta-file-prefix. */ + facc_type = FACC_MPIO | FACC_SPLIT; + break; + case 'd': /* dimensizes */ + if (--argc < 2) { + nerrors++; + return (1); + } + dim0 = atoi(*(++argv)) * mpi_size; + argc--; + dim1 = atoi(*(++argv)) * mpi_size; + /* set default chunkdim sizes too */ + chunkdim0 = (dim0 + 9) / 10; + chunkdim1 = (dim1 + 9) / 10; + break; + case 'c': /* chunk dimensions */ + if (--argc < 2) { + nerrors++; + return (1); + } + chunkdim0 = atoi(*(++argv)); + argc--; + chunkdim1 = atoi(*(++argv)); + break; + case 'h': /* print help message--return with nerrors set */ + return (1); + default: + HDprintf("Illegal option(%s)\n", *argv); + nerrors++; + return (1); + } + } + } /*while*/ + + /* check validity of dimension and chunk sizes */ + if (dim0 <= 0 || dim1 <= 0) { + HDprintf("Illegal dim sizes (%d, %d)\n", dim0, dim1); + nerrors++; + return (1); + } + if (chunkdim0 <= 0 || chunkdim1 <= 0) { + HDprintf("Illegal chunkdim sizes (%d, %d)\n", chunkdim0, chunkdim1); + nerrors++; + return (1); + } + + /* Make sure datasets can be divided into equal portions by the processes */ + if ((dim0 % mpi_size) || (dim1 % mpi_size)) { + if (MAINPROCESS) + HDprintf("dim0(%d) and dim1(%d) must be multiples of processes(%d)\n", dim0, dim1, mpi_size); + nerrors++; + return (1); + } + + /* compose the test filenames */ + { + int i, n; + + n = sizeof(FILENAME) / sizeof(FILENAME[0]) - 1; /* exclude the NULL */ + + for (i = 0; i < n; i++) + if (h5_fixname(FILENAME[i], fapl, filenames[i], sizeof(filenames[i])) == NULL) { + HDprintf("h5_fixname failed\n"); + nerrors++; + return (1); + } + + if (MAINPROCESS) { + HDprintf("Test filenames are:\n"); + for (i = 0; i < n; i++) + HDprintf(" %s\n", filenames[i]); + } + } + + return (0); +} + +/* + * Create the appropriate File access property list + */ +hid_t +create_faccess_plist(MPI_Comm comm, MPI_Info info, int l_facc_type) +{ + hid_t ret_pl = -1; + herr_t ret; /* generic return value */ + int mpi_rank; /* mpi variables */ + + /* need the rank for error checking macros */ + MPI_Comm_rank(test_comm, &mpi_rank); + + ret_pl = H5Pcreate(H5P_FILE_ACCESS); + VRFY((ret_pl >= 0), "H5P_FILE_ACCESS"); + + if (l_facc_type == FACC_DEFAULT) + return (ret_pl); + + if (l_facc_type == FACC_MPIO) { + /* set Parallel access with communicator */ + ret = H5Pset_fapl_mpio(ret_pl, comm, info); + VRFY((ret >= 0), ""); + ret = H5Pset_all_coll_metadata_ops(ret_pl, TRUE); + VRFY((ret >= 0), ""); + ret = H5Pset_coll_metadata_write(ret_pl, TRUE); + VRFY((ret >= 0), ""); + return (ret_pl); + } + + if (l_facc_type == (FACC_MPIO | FACC_SPLIT)) { + hid_t mpio_pl; + + mpio_pl = H5Pcreate(H5P_FILE_ACCESS); + VRFY((mpio_pl >= 0), ""); + /* set Parallel access with communicator */ + ret = H5Pset_fapl_mpio(mpio_pl, comm, info); + VRFY((ret >= 0), ""); + + /* setup file access template */ + ret_pl = H5Pcreate(H5P_FILE_ACCESS); + VRFY((ret_pl >= 0), ""); + /* set Parallel access with communicator */ + ret = H5Pset_fapl_split(ret_pl, ".meta", mpio_pl, ".raw", mpio_pl); + VRFY((ret >= 0), "H5Pset_fapl_split succeeded"); + H5Pclose(mpio_pl); + return (ret_pl); + } + + /* unknown file access types */ + return (ret_pl); +} + +/* + * Setup the dimensions of the hyperslab. + * Two modes--by rows or by columns. + * Assume dimension rank is 2. + * BYROW divide into slabs of rows + * BYCOL divide into blocks of columns + * ZROW same as BYROW except process 0 gets 0 rows + * ZCOL same as BYCOL except process 0 gets 0 columns + */ +static void +slab_set(int mpi_rank, int mpi_size, hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], + int mode) +{ + switch (mode) { + case BYROW: + /* Each process takes a slabs of rows. */ + block[0] = (hsize_t)dim0 / (hsize_t)mpi_size; + block[1] = (hsize_t)dim1; + stride[0] = block[0]; + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = (hsize_t)mpi_rank * block[0]; + start[1] = 0; + if (VERBOSE_MED) + HDprintf("slab_set BYROW\n"); + break; + case BYCOL: + /* Each process takes a block of columns. */ + block[0] = (hsize_t)dim0; + block[1] = (hsize_t)dim1 / (hsize_t)mpi_size; + stride[0] = block[0]; + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = (hsize_t)mpi_rank * block[1]; + if (VERBOSE_MED) + HDprintf("slab_set BYCOL\n"); + break; + case ZROW: + /* Similar to BYROW except process 0 gets 0 row */ + block[0] = (hsize_t)(mpi_rank ? dim0 / mpi_size : 0); + block[1] = (hsize_t)dim1; + stride[0] = (mpi_rank ? block[0] : 1); /* avoid setting stride to 0 */ + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = (hsize_t)(mpi_rank ? (hsize_t)mpi_rank * block[0] : 0); + start[1] = 0; + if (VERBOSE_MED) + HDprintf("slab_set ZROW\n"); + break; + case ZCOL: + /* Similar to BYCOL except process 0 gets 0 column */ + block[0] = (hsize_t)dim0; + block[1] = (hsize_t)(mpi_rank ? dim1 / mpi_size : 0); + stride[0] = block[0]; + stride[1] = (mpi_rank ? block[1] : 1); /* avoid setting stride to 0 */ + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = (hsize_t)(mpi_rank ? (hsize_t)mpi_rank * block[1] : 0); + if (VERBOSE_MED) + HDprintf("slab_set ZCOL\n"); + break; + default: + /* Unknown mode. Set it to cover the whole dataset. */ + HDprintf("unknown slab_set mode (%d)\n", mode); + block[0] = (hsize_t)dim0; + block[1] = (hsize_t)dim1; + stride[0] = block[0]; + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = 0; + if (VERBOSE_MED) + HDprintf("slab_set wholeset\n"); + break; + } + if (VERBOSE_MED) { + HDprintf("start[]=(%lu,%lu), count[]=(%lu,%lu), stride[]=(%lu,%lu), block[]=(%lu,%lu), total " + "datapoints=%lu\n", + (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], + (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1], + (unsigned long)block[0], (unsigned long)block[1], + (unsigned long)(block[0] * block[1] * count[0] * count[1])); + } +} + +/* + * Setup the coordinates for point selection. + */ +void +point_set(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], size_t num_points, + hsize_t coords[], int order) +{ + hsize_t i, j, k = 0, m, n, s1, s2; + + // HDcompile_assert(MAX_RANK == 3); + HDcompile_assert(MAX_RANK == 2); + + if (OUT_OF_ORDER == order) + k = (num_points * MAX_RANK) - 1; + else if (IN_ORDER == order) + k = 0; + + s1 = start[0]; + s2 = start[1]; + + for (i = 0; i < count[0]; i++) + for (j = 0; j < count[1]; j++) + for (m = 0; m < block[0]; m++) + for (n = 0; n < block[1]; n++) + if (OUT_OF_ORDER == order) { + coords[k--] = s2 + (stride[1] * j) + n; + coords[k--] = s1 + (stride[0] * i) + m; + } + else if (IN_ORDER == order) { + coords[k++] = s1 + stride[0] * i + m; + coords[k++] = s2 + stride[1] * j + n; + } + + if (VERBOSE_MED) { + HDprintf("start[]=(%lu, %lu), count[]=(%lu, %lu), stride[]=(%lu, %lu), block[]=(%lu, %lu), total " + "datapoints=%lu\n", + (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], + (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1], + (unsigned long)block[0], (unsigned long)block[1], + (unsigned long)(block[0] * block[1] * count[0] * count[1])); + k = 0; + for (i = 0; i < num_points; i++) { + HDprintf("(%d, %d)\n", (int)coords[k], (int)coords[k + 1]); + k += 2; + } + } +} + +/* + * Fill the dataset with trivial data for testing. + * Assume dimension rank is 2 and data is stored contiguous. + */ +static void +dataset_fill(hsize_t start[], hsize_t block[], DATATYPE *dataset) +{ + DATATYPE *dataptr = dataset; + hsize_t i, j; + + /* put some trivial data in the data_array */ + for (i = 0; i < block[0]; i++) { + for (j = 0; j < block[1]; j++) { + *dataptr = (DATATYPE)((i + start[0]) * 100 + (j + start[1] + 1)); + dataptr++; + } + } +} + +/* + * Print the content of the dataset. + */ +static void +dataset_print(hsize_t start[], hsize_t block[], DATATYPE *dataset) +{ + DATATYPE *dataptr = dataset; + hsize_t i, j; + + /* print the column heading */ + HDprintf("%-8s", "Cols:"); + for (j = 0; j < block[1]; j++) { + HDprintf("%3lu ", (unsigned long)(start[1] + j)); + } + HDprintf("\n"); + + /* print the slab data */ + for (i = 0; i < block[0]; i++) { + HDprintf("Row %2lu: ", (unsigned long)(i + start[0])); + for (j = 0; j < block[1]; j++) { + HDprintf("%03d ", *dataptr++); + } + HDprintf("\n"); + } +} + +/* + * Print the content of the dataset. + */ +int +dataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], DATATYPE *dataset, + DATATYPE *original) +{ + hsize_t i, j; + int vrfyerrs; + + /* print it if VERBOSE_MED */ + if (VERBOSE_MED) { + HDprintf("dataset_vrfy dumping:::\n"); + HDprintf("start(%lu, %lu), count(%lu, %lu), stride(%lu, %lu), block(%lu, %lu)\n", + (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], + (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1], + (unsigned long)block[0], (unsigned long)block[1]); + HDprintf("original values:\n"); + dataset_print(start, block, original); + HDprintf("compared values:\n"); + dataset_print(start, block, dataset); + } + + vrfyerrs = 0; + for (i = 0; i < block[0]; i++) { + for (j = 0; j < block[1]; j++) { + if (*dataset != *original) { + if (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED) { + HDprintf("Dataset Verify failed at [%lu][%lu](row %lu, col %lu): expect %d, got %d\n", + (unsigned long)i, (unsigned long)j, (unsigned long)(i + start[0]), + (unsigned long)(j + start[1]), *(original), *(dataset)); + } + dataset++; + original++; + } + } + } + if (vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED) + HDprintf("[more errors ...]\n"); + if (vrfyerrs) + HDprintf("%d errors found in dataset_vrfy\n", vrfyerrs); + return (vrfyerrs); +} + +/* NOTE: This is a memory intensive test and is only run + * with 2 MPI ranks and with $HDF5TestExpress == 0 + * i.e. Exhaustive test run is allowed. Otherwise + * the test is skipped. + * + * Thanks to l.ferraro@cineca.it for the following test:: + * + * This is a simple test case to reproduce a problem + * occurring on LUSTRE filesystem with the creation + * of a 4GB dataset using chunking with parallel HDF5. + * The test works correctly if disabling chunking or + * when the bytes assigned to each process is less + * that 4GB. if equal or more, either hangs or results + * in a PMPI_Waitall error. + * + * $> mpirun -genv I_MPI_EXTRA_FILESYSTEM on + * -genv I_MPI_EXTRA_FILESYSTEM_LIST gpfs + * -n 1 ./h5_mpi_big_dataset.x 1024 1024 1024 + */ + +#define H5FILE_NAME "hugefile.h5" +#define DATASETNAME "dataset" + +static int +MpioTest2G(MPI_Comm comm) +{ + /* + * HDF5 APIs definitions + */ + herr_t status; + hid_t file_id, dset_id; /* file and dataset identifiers */ + hid_t plist_id; /* property list identifier */ + hid_t filespace; /* file and memory dataspace identifiers */ + int * data; /* pointer to data buffer to write */ + size_t tot_size_bytes; + hid_t dcpl_id; + hid_t memorydataspace; + hid_t filedataspace; + size_t slice_per_process; + size_t data_size; + size_t data_size_bytes; + + hsize_t chunk[3]; + hsize_t h5_counts[3]; + hsize_t h5_offsets[3]; + hsize_t shape[3] = {1024, 1024, 1152}; + + /* + * MPI variables + */ + int mpi_size, mpi_rank; + MPI_Info info = MPI_INFO_NULL; + + MPI_Comm_size(comm, &mpi_size); + MPI_Comm_rank(comm, &mpi_rank); + + if (mpi_rank == 0) { + HDprintf("Using %d process on dataset shape " + "[%" PRIuHSIZE ", %" PRIuHSIZE ", %" PRIuHSIZE "]\n", + mpi_size, shape[0], shape[1], shape[2]); + } + + /* + * Set up file access property list with parallel I/O access + */ + plist_id = H5Pcreate(H5P_FILE_ACCESS); + VRFY((plist_id >= 0), "H5Pcreate file_access succeeded"); + status = H5Pset_fapl_mpio(plist_id, comm, info); + VRFY((status >= 0), "H5Pset_dxpl_mpio succeeded"); + + /* + * Create a new file collectively and release property list identifier. + */ + file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id); + VRFY((file_id >= 0), "H5Fcreate succeeded"); + + H5Pclose(plist_id); + + /* + * Create the dataspace for the dataset. + */ + tot_size_bytes = sizeof(int); + for (int i = 0; i < 3; i++) { + tot_size_bytes *= shape[i]; + } + if (mpi_rank == 0) { + HDprintf("Dataset of %zu bytes\n", tot_size_bytes); + } + filespace = H5Screate_simple(3, shape, NULL); + VRFY((filespace >= 0), "H5Screate_simple succeeded"); + + /* + * Select chunking + */ + dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dcpl_id >= 0), "H5P_DATASET_CREATE"); + chunk[0] = 4; + chunk[1] = shape[1]; + chunk[2] = shape[2]; + status = H5Pset_chunk(dcpl_id, 3, chunk); + VRFY((status >= 0), "H5Pset_chunk succeeded"); + + /* + * Create the dataset with default properties and close filespace. + */ + dset_id = H5Dcreate2(file_id, DATASETNAME, H5T_NATIVE_INT, filespace, H5P_DEFAULT, dcpl_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "H5Dcreate2 succeeded"); + H5Sclose(filespace); + + /* + * Create property list for collective dataset write. + */ + plist_id = H5Pcreate(H5P_DATASET_XFER); + VRFY((plist_id >= 0), "H5P_DATASET_XFER"); + status = H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE); + VRFY((status >= 0), ""); + + H5_CHECKED_ASSIGN(slice_per_process, size_t, (shape[0] + (hsize_t)mpi_size - 1) / (hsize_t)mpi_size, + hsize_t); + data_size = slice_per_process * shape[1] * shape[2]; + data_size_bytes = sizeof(int) * data_size; + data = HDmalloc(data_size_bytes); + VRFY((data != NULL), "data HDmalloc succeeded"); + + for (size_t i = 0; i < data_size; i++) { + data[i] = mpi_rank; + } + + h5_counts[0] = slice_per_process; + h5_counts[1] = shape[1]; + h5_counts[2] = shape[2]; + h5_offsets[0] = (size_t)mpi_rank * slice_per_process; + h5_offsets[1] = 0; + h5_offsets[2] = 0; + filedataspace = H5Screate_simple(3, shape, NULL); + VRFY((filedataspace >= 0), "H5Screate_simple succeeded"); + + // fix reminder along first dimension multiple of chunk[0] + if (h5_offsets[0] + h5_counts[0] > shape[0]) { + h5_counts[0] = shape[0] - h5_offsets[0]; + } + + status = H5Sselect_hyperslab(filedataspace, H5S_SELECT_SET, h5_offsets, NULL, h5_counts, NULL); + VRFY((status >= 0), "H5Sselect_hyperslab succeeded"); + + memorydataspace = H5Screate_simple(3, h5_counts, NULL); + VRFY((memorydataspace >= 0), "H5Screate_simple succeeded"); + + status = H5Dwrite(dset_id, H5T_NATIVE_INT, memorydataspace, filedataspace, plist_id, data); + VRFY((status >= 0), "H5Dwrite succeeded"); + H5Pclose(plist_id); + + /* + * Close/release resources. + */ + H5Sclose(filedataspace); + H5Sclose(memorydataspace); + H5Dclose(dset_id); + H5Fclose(file_id); + + free(data); + HDprintf("Proc %d - MpioTest2G test succeeded\n", mpi_rank); + + if (mpi_rank == 0) + HDremove(FILENAME[1]); + return 0; +} + +/* + * Part 1.a--Independent read/write for fixed dimension datasets. + */ + +/* + * Example of using the parallel HDF5 library to create two datasets + * in one HDF5 files with parallel MPIO access support. + * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. + * Each process controls only a slab of size dim0 x dim1 within each + * dataset. + */ + +void +dataset_writeInd(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + hsize_t dims[MAX_RANK] = { + 1, + }; /* dataset dim sizes */ + hsize_t data_size; + DATATYPE * data_array1 = NULL; /* data buffer */ + const char *filename; + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK]; + hsize_t stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if (VERBOSE_MED) + HDprintf("Independent write test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + /* allocate memory for data buffer */ + data_size = sizeof(DATATYPE); + data_size *= (hsize_t)dim0 * (hsize_t)dim1; + data_array1 = (DATATYPE *)HDmalloc(data_size); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + + /* ---------------------------------------- + * CREATE AN HDF5 FILE WITH PARALLEL ACCESS + * ---------------------------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* --------------------------------------------- + * Define the dimensions of the overall datasets + * and the slabs local to the MPI process. + * ------------------------------------------- */ + /* setup dimensionality object */ + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + sid = H5Screate_simple(MAX_RANK, dims, NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + /* create a dataset collectively */ + dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); + + /* create another dataset collectively */ + dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dcreate2 succeeded"); + + /* + * To test the independent orders of writes between processes, all + * even number processes write to dataset1 first, then dataset2. + * All odd number processes write to dataset2 first, then dataset1. + */ + + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* put some trivial data in the data_array */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* write data independently */ + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); + /* write data independently */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); + + /* setup dimensions again to write with zero rows for process 0 */ + if (VERBOSE_MED) + HDprintf("writeInd by some with zero row\n"); + slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + /* need to make mem_dataspace to match for process 0 */ + if (MAINPROCESS) { + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + } + MESG("writeInd by some with zero row"); + if ((mpi_rank / 2) * 2 != mpi_rank) { + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset1 by ZROW succeeded"); + } +#ifdef BARRIER_CHECKS + MPI_Barrier(test_comm); +#endif /* BARRIER_CHECKS */ + + /* release dataspace ID */ + H5Sclose(file_dataspace); + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose1 succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose2 succeeded"); + + /* release all IDs created */ + H5Sclose(sid); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if (data_array1) + HDfree(data_array1); +} + +/* Example of using the parallel HDF5 library to read a dataset */ +void +dataset_readInd(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + DATATYPE * data_array1 = NULL; /* data buffer */ + DATATYPE * data_origin1 = NULL; /* expected data buffer */ + const char *filename; + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK], stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if (VERBOSE_MED) + HDprintf("Independent read test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + data_origin1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_origin1 != NULL), "data_origin1 HDmalloc succeeded"); + + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* open the file collectively */ + fid = H5Fopen(filename, H5F_ACC_RDONLY, acc_tpl); + VRFY((fid >= 0), ""); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* open the dataset1 collectively */ + dataset1 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset1 >= 0), ""); + + /* open another dataset collectively */ + dataset2 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset2 >= 0), ""); + + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset1); + VRFY((file_dataspace >= 0), ""); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), ""); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + + /* read data independently */ + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); + VRFY((ret >= 0), ""); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if (ret) + nerrors++; + + /* read data independently */ + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); + VRFY((ret >= 0), ""); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if (ret) + nerrors++; + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), ""); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), ""); + + /* release all IDs created */ + H5Sclose(file_dataspace); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if (data_array1) + HDfree(data_array1); + if (data_origin1) + HDfree(data_origin1); +} + +/* + * Part 1.b--Collective read/write for fixed dimension datasets. + */ + +/* + * Example of using the parallel HDF5 library to create two datasets + * in one HDF5 file with collective parallel access support. + * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. + * Each process controls only a slab of size dim0 x dim1 within each + * dataset. [Note: not so yet. Datasets are of sizes dim0xdim1 and + * each process controls a hyperslab within.] + */ + +void +dataset_writeAll(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2, dataset3, dataset4; /* Dataset ID */ + hid_t dataset5, dataset6, dataset7; /* Dataset ID */ + hid_t datatype; /* Datatype ID */ + hsize_t dims[MAX_RANK] = { + 1, + }; /* dataset dim sizes */ + DATATYPE * data_array1 = NULL; /* data buffer */ + const char *filename; + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK]; + hsize_t stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + size_t num_points; /* for point selection */ + hsize_t *coords = NULL; /* for point selection */ + hsize_t current_dims; /* for point selection */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if (VERBOSE_MED) + HDprintf("Collective write test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + /* set up the coords array selection */ + num_points = (size_t)dim1; + coords = (hsize_t *)HDmalloc((size_t)dim1 * (size_t)MAX_RANK * sizeof(hsize_t)); + VRFY((coords != NULL), "coords malloc succeeded"); + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + + /* ------------------- + * START AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* -------------------------- + * Define the dimensions of the overall datasets + * and create the dataset + * ------------------------- */ + /* setup 2-D dimensionality object */ + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + sid = H5Screate_simple(MAX_RANK, dims, NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + /* create a dataset collectively */ + dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); + + /* create another dataset collectively */ + datatype = H5Tcopy(H5T_NATIVE_INT); + ret = H5Tset_order(datatype, H5T_ORDER_LE); + VRFY((ret >= 0), "H5Tset_order succeeded"); + + dataset2 = H5Dcreate2(fid, DATASETNAME2, datatype, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dcreate2 2 succeeded"); + + /* create a third dataset collectively */ + dataset3 = H5Dcreate2(fid, DATASETNAME3, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset3 >= 0), "H5Dcreate2 succeeded"); + + dataset5 = H5Dcreate2(fid, DATASETNAME7, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset5 >= 0), "H5Dcreate2 succeeded"); + dataset6 = H5Dcreate2(fid, DATASETNAME8, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset6 >= 0), "H5Dcreate2 succeeded"); + dataset7 = H5Dcreate2(fid, DATASETNAME9, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset7 >= 0), "H5Dcreate2 succeeded"); + + /* release 2-D space ID created */ + H5Sclose(sid); + + /* setup scalar dimensionality object */ + sid = H5Screate(H5S_SCALAR); + VRFY((sid >= 0), "H5Screate succeeded"); + + /* create a fourth dataset collectively */ + dataset4 = H5Dcreate2(fid, DATASETNAME4, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset4 >= 0), "H5Dcreate2 succeeded"); + + /* release scalar space ID created */ + H5Sclose(sid); + + /* + * Set up dimensions of the slab this process accesses. + */ + + /* Dataset1: each process takes a block of rows. */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill the local slab with some trivial data */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* write data collectively */ + MESG("writeAll by Row"); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); + + /* setup dimensions again to writeAll with zero rows for process 0 */ + if (VERBOSE_MED) + HDprintf("writeAll by some with zero row\n"); + slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + /* need to make mem_dataspace to match for process 0 */ + if (MAINPROCESS) { + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + } + MESG("writeAll by some with zero row"); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset1 by ZROW succeeded"); + + /* release all temporary handles. */ + /* Could have used them for dataset2 but it is cleaner */ + /* to create them again.*/ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* Dataset2: each process takes a block of columns. */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + /* put some trivial data in the data_array */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill the local slab with some trivial data */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* write data independently */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); + + /* setup dimensions again to writeAll with zero columns for process 0 */ + if (VERBOSE_MED) + HDprintf("writeAll by some with zero col\n"); + slab_set(mpi_rank, mpi_size, start, count, stride, block, ZCOL); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + /* need to make mem_dataspace to match for process 0 */ + if (MAINPROCESS) { + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + } + MESG("writeAll by some with zero col"); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset1 by ZCOL succeeded"); + + /* release all temporary handles. */ + /* Could have used them for dataset3 but it is cleaner */ + /* to create them again.*/ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* Dataset3: each process takes a block of rows, except process zero uses "none" selection. */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset3); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + if (MAINPROCESS) { + ret = H5Sselect_none(file_dataspace); + VRFY((ret >= 0), "H5Sselect_none file_dataspace succeeded"); + } /* end if */ + else { + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sselect_hyperslab succeeded"); + } /* end else */ + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + if (MAINPROCESS) { + ret = H5Sselect_none(mem_dataspace); + VRFY((ret >= 0), "H5Sselect_none mem_dataspace succeeded"); + } /* end if */ + + /* fill the local slab with some trivial data */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } /* end if */ + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* write data collectively */ + MESG("writeAll with none"); + ret = H5Dwrite(dataset3, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset3 succeeded"); + + /* write data collectively (with datatype conversion) */ + MESG("writeAll with none"); + ret = H5Dwrite(dataset3, H5T_NATIVE_UCHAR, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset3 succeeded"); + + /* release all temporary handles. */ + /* Could have used them for dataset4 but it is cleaner */ + /* to create them again.*/ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* Dataset4: each process writes no data, except process zero uses "all" selection. */ + /* Additionally, these are in a scalar dataspace */ + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset4); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + if (MAINPROCESS) { + ret = H5Sselect_none(file_dataspace); + VRFY((ret >= 0), "H5Sselect_all file_dataspace succeeded"); + } /* end if */ + else { + ret = H5Sselect_all(file_dataspace); + VRFY((ret >= 0), "H5Sselect_none succeeded"); + } /* end else */ + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate(H5S_SCALAR); + VRFY((mem_dataspace >= 0), ""); + if (MAINPROCESS) { + ret = H5Sselect_none(mem_dataspace); + VRFY((ret >= 0), "H5Sselect_all mem_dataspace succeeded"); + } /* end if */ + else { + ret = H5Sselect_all(mem_dataspace); + VRFY((ret >= 0), "H5Sselect_none succeeded"); + } /* end else */ + + /* fill the local slab with some trivial data */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } /* end if */ + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* write data collectively */ + MESG("writeAll with scalar dataspace"); + ret = H5Dwrite(dataset4, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset4 succeeded"); + + /* write data collectively (with datatype conversion) */ + MESG("writeAll with scalar dataspace"); + ret = H5Dwrite(dataset4, H5T_NATIVE_UCHAR, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset4 succeeded"); + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + if (data_array1) + free(data_array1); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); + + block[0] = 1; + block[1] = (hsize_t)dim1; + stride[0] = 1; + stride[1] = (hsize_t)dim1; + count[0] = 1; + count[1] = 1; + start[0] = (hsize_t)dim0 / (hsize_t)mpi_size * (hsize_t)mpi_rank; + start[1] = 0; + + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* Dataset5: point selection in File - Hyperslab selection in Memory*/ + /* create a file dataspace independently */ + point_set(start, count, stride, block, num_points, coords, OUT_OF_ORDER); + file_dataspace = H5Dget_space(dataset5); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + start[0] = 0; + start[1] = 0; + mem_dataspace = H5Dget_space(dataset5); + VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* write data collectively */ + ret = H5Dwrite(dataset5, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset5 succeeded"); + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* Dataset6: point selection in File - Point selection in Memory*/ + /* create a file dataspace independently */ + start[0] = (hsize_t)dim0 / (hsize_t)mpi_size * (hsize_t)mpi_rank; + start[1] = 0; + point_set(start, count, stride, block, num_points, coords, OUT_OF_ORDER); + file_dataspace = H5Dget_space(dataset6); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + start[0] = 0; + start[1] = 0; + point_set(start, count, stride, block, num_points, coords, IN_ORDER); + mem_dataspace = H5Dget_space(dataset6); + VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* write data collectively */ + ret = H5Dwrite(dataset6, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset6 succeeded"); + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* Dataset7: point selection in File - All selection in Memory*/ + /* create a file dataspace independently */ + start[0] = (hsize_t)dim0 / (hsize_t)mpi_size * (hsize_t)mpi_rank; + start[1] = 0; + point_set(start, count, stride, block, num_points, coords, IN_ORDER); + file_dataspace = H5Dget_space(dataset7); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + current_dims = num_points; + mem_dataspace = H5Screate_simple(1, ¤t_dims, NULL); + VRFY((mem_dataspace >= 0), "mem_dataspace create succeeded"); + + ret = H5Sselect_all(mem_dataspace); + VRFY((ret >= 0), "H5Sselect_all succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* write data collectively */ + ret = H5Dwrite(dataset7, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset7 succeeded"); + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* + * All writes completed. Close datasets collectively + */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose1 succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose2 succeeded"); + ret = H5Dclose(dataset3); + VRFY((ret >= 0), "H5Dclose3 succeeded"); + ret = H5Dclose(dataset4); + VRFY((ret >= 0), "H5Dclose4 succeeded"); + ret = H5Dclose(dataset5); + VRFY((ret >= 0), "H5Dclose5 succeeded"); + ret = H5Dclose(dataset6); + VRFY((ret >= 0), "H5Dclose6 succeeded"); + ret = H5Dclose(dataset7); + VRFY((ret >= 0), "H5Dclose7 succeeded"); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if (coords) + HDfree(coords); + if (data_array1) + HDfree(data_array1); +} + +/* + * Example of using the parallel HDF5 library to read two datasets + * in one HDF5 file with collective parallel access support. + * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. + * Each process controls only a slab of size dim0 x dim1 within each + * dataset. [Note: not so yet. Datasets are of sizes dim0xdim1 and + * each process controls a hyperslab within.] + */ + +void +dataset_readAll(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2, dataset5, dataset6, dataset7; /* Dataset ID */ + DATATYPE * data_array1 = NULL; /* data buffer */ + DATATYPE * data_origin1 = NULL; /* expected data buffer */ + const char *filename; + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK], stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + size_t num_points; /* for point selection */ + hsize_t *coords = NULL; /* for point selection */ + int i, j, k; + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if (VERBOSE_MED) + HDprintf("Collective read test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + /* set up the coords array selection */ + num_points = (size_t)dim1; + coords = (hsize_t *)HDmalloc((size_t)dim0 * (size_t)dim1 * MAX_RANK * sizeof(hsize_t)); + VRFY((coords != NULL), "coords malloc succeeded"); + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + data_origin1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_origin1 != NULL), "data_origin1 HDmalloc succeeded"); + + /* ------------------- + * OPEN AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* open the file collectively */ + fid = H5Fopen(filename, H5F_ACC_RDONLY, acc_tpl); + VRFY((fid >= 0), "H5Fopen succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* -------------------------- + * Open the datasets in it + * ------------------------- */ + /* open the dataset1 collectively */ + dataset1 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dopen2 succeeded"); + + /* open another dataset collectively */ + dataset2 = H5Dopen2(fid, DATASETNAME2, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dopen2 2 succeeded"); + + /* open another dataset collectively */ + dataset5 = H5Dopen2(fid, DATASETNAME7, H5P_DEFAULT); + VRFY((dataset5 >= 0), "H5Dopen2 5 succeeded"); + dataset6 = H5Dopen2(fid, DATASETNAME8, H5P_DEFAULT); + VRFY((dataset6 >= 0), "H5Dopen2 6 succeeded"); + dataset7 = H5Dopen2(fid, DATASETNAME9, H5P_DEFAULT); + VRFY((dataset7 >= 0), "H5Dopen2 7 succeeded"); + + /* + * Set up dimensions of the slab this process accesses. + */ + + /* Dataset1: each process takes a block of columns. */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_origin1); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* read data collectively */ + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset1 succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if (ret) + nerrors++; + + /* setup dimensions again to readAll with zero columns for process 0 */ + if (VERBOSE_MED) + HDprintf("readAll by some with zero col\n"); + slab_set(mpi_rank, mpi_size, start, count, stride, block, ZCOL); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + /* need to make mem_dataspace to match for process 0 */ + if (MAINPROCESS) { + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + } + MESG("readAll by some with zero col"); + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset1 by ZCOL succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if (ret) + nerrors++; + + /* release all temporary handles. */ + /* Could have used them for dataset2 but it is cleaner */ + /* to create them again.*/ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* Dataset2: each process takes a block of rows. */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_origin1); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* read data collectively */ + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset2 succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if (ret) + nerrors++; + + /* setup dimensions again to readAll with zero rows for process 0 */ + if (VERBOSE_MED) + HDprintf("readAll by some with zero row\n"); + slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + /* need to make mem_dataspace to match for process 0 */ + if (MAINPROCESS) { + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + } + MESG("readAll by some with zero row"); + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset1 by ZROW succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if (ret) + nerrors++; + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + if (data_array1) + free(data_array1); + if (data_origin1) + free(data_origin1); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); + data_origin1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_origin1 != NULL), "data_origin1 malloc succeeded"); + + block[0] = 1; + block[1] = (hsize_t)dim1; + stride[0] = 1; + stride[1] = (hsize_t)dim1; + count[0] = 1; + count[1] = 1; + start[0] = (hsize_t)dim0 / (hsize_t)mpi_size * (hsize_t)mpi_rank; + start[1] = 0; + + dataset_fill(start, block, data_origin1); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_origin1); + } + + /* Dataset5: point selection in memory - Hyperslab selection in file*/ + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset5); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + start[0] = 0; + start[1] = 0; + point_set(start, count, stride, block, num_points, coords, OUT_OF_ORDER); + mem_dataspace = H5Dget_space(dataset5); + VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* read data collectively */ + ret = H5Dread(dataset5, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset5 succeeded"); + + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if (ret) + nerrors++; + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + if (data_array1) + free(data_array1); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); + + /* Dataset6: point selection in File - Point selection in Memory*/ + /* create a file dataspace independently */ + start[0] = (hsize_t)dim0 / (hsize_t)mpi_size * (hsize_t)mpi_rank; + start[1] = 0; + point_set(start, count, stride, block, num_points, coords, IN_ORDER); + file_dataspace = H5Dget_space(dataset6); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + start[0] = 0; + start[1] = 0; + point_set(start, count, stride, block, num_points, coords, OUT_OF_ORDER); + mem_dataspace = H5Dget_space(dataset6); + VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* read data collectively */ + ret = H5Dread(dataset6, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset6 succeeded"); + + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if (ret) + nerrors++; + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + if (data_array1) + free(data_array1); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); + + /* Dataset7: point selection in memory - All selection in file*/ + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset7); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_all(file_dataspace); + VRFY((ret >= 0), "H5Sselect_all succeeded"); + + num_points = (size_t)dim0 * (size_t)dim1; + k = 0; + for (i = 0; i < dim0; i++) { + for (j = 0; j < dim1; j++) { + coords[k++] = (hsize_t)i; + coords[k++] = (hsize_t)j; + } + } + mem_dataspace = H5Dget_space(dataset7); + VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* read data collectively */ + ret = H5Dread(dataset7, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset7 succeeded"); + + start[0] = (hsize_t)dim0 / (hsize_t)mpi_size * (hsize_t)mpi_rank; + start[1] = 0; + ret = dataset_vrfy(start, count, stride, block, data_array1 + (dim0 / mpi_size * dim1 * mpi_rank), + data_origin1); + if (ret) + nerrors++; + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* + * All reads completed. Close datasets collectively + */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose1 succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose2 succeeded"); + ret = H5Dclose(dataset5); + VRFY((ret >= 0), "H5Dclose5 succeeded"); + ret = H5Dclose(dataset6); + VRFY((ret >= 0), "H5Dclose6 succeeded"); + ret = H5Dclose(dataset7); + VRFY((ret >= 0), "H5Dclose7 succeeded"); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if (coords) + HDfree(coords); + if (data_array1) + HDfree(data_array1); + if (data_origin1) + HDfree(data_origin1); +} + +/* + * Part 2--Independent read/write for extendible datasets. + */ + +/* + * Example of using the parallel HDF5 library to create two extendible + * datasets in one HDF5 file with independent parallel MPIO access support. + * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. + * Each process controls only a slab of size dim0 x dim1 within each + * dataset. + */ + +void +extend_writeInd(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + const char *filename; + hsize_t dims[MAX_RANK]; /* dataset dim sizes */ + hsize_t max_dims[MAX_RANK] = {H5S_UNLIMITED, H5S_UNLIMITED}; /* dataset maximum dim sizes */ + DATATYPE * data_array1 = NULL; /* data buffer */ + hsize_t chunk_dims[MAX_RANK]; /* chunk sizes */ + hid_t dataset_pl; /* dataset create prop. list */ + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK]; /* for hyperslab setting */ + hsize_t stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if (VERBOSE_MED) + HDprintf("Extend independent write test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + /* setup chunk-size. Make sure sizes are > 0 */ + chunk_dims[0] = (hsize_t)chunkdim0; + chunk_dims[1] = (hsize_t)chunkdim1; + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + + /* ------------------- + * START AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* Reduce the number of metadata cache slots, so that there are cache + * collisions during the raw data I/O on the chunked dataset. This stresses + * the metadata cache and tests for cache bugs. -QAK + */ + { + int mdc_nelmts; + size_t rdcc_nelmts; + size_t rdcc_nbytes; + double rdcc_w0; + + ret = H5Pget_cache(acc_tpl, &mdc_nelmts, &rdcc_nelmts, &rdcc_nbytes, &rdcc_w0); + VRFY((ret >= 0), "H5Pget_cache succeeded"); + mdc_nelmts = 4; + ret = H5Pset_cache(acc_tpl, mdc_nelmts, rdcc_nelmts, rdcc_nbytes, rdcc_w0); + VRFY((ret >= 0), "H5Pset_cache succeeded"); + } + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* -------------------------------------------------------------- + * Define the dimensions of the overall datasets and create them. + * ------------------------------------------------------------- */ + + /* set up dataset storage chunk sizes and creation property list */ + if (VERBOSE_MED) + HDprintf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]); + dataset_pl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dataset_pl >= 0), "H5Pcreate succeeded"); + ret = H5Pset_chunk(dataset_pl, MAX_RANK, chunk_dims); + VRFY((ret >= 0), "H5Pset_chunk succeeded"); + + /* setup dimensionality object */ + /* start out with no rows, extend it later. */ + dims[0] = dims[1] = 0; + sid = H5Screate_simple(MAX_RANK, dims, max_dims); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + /* create an extendible dataset collectively */ + dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); + + /* create another extendible dataset collectively */ + dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dcreate2 succeeded"); + + /* release resource */ + H5Sclose(sid); + H5Pclose(dataset_pl); + + /* ------------------------- + * Test writing to dataset1 + * -------------------------*/ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* put some trivial data in the data_array */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* Extend its current dim sizes before writing */ + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + ret = H5Dset_extent(dataset1, dims); + VRFY((ret >= 0), "H5Dset_extent succeeded"); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* write data independently */ + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* release resource */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + + /* ------------------------- + * Test writing to dataset2 + * -------------------------*/ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + /* put some trivial data in the data_array */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* Try write to dataset2 beyond its current dim sizes. Should fail. */ + /* Temporary turn off auto error reporting */ + H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data); + H5Eset_auto2(H5E_DEFAULT, NULL, NULL); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset2); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* write data independently. Should fail. */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); + VRFY((ret < 0), "H5Dwrite failed as expected"); + + /* restore auto error reporting */ + H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data); + H5Sclose(file_dataspace); + + /* Extend dataset2 and try again. Should succeed. */ + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + ret = H5Dset_extent(dataset2, dims); + VRFY((ret >= 0), "H5Dset_extent succeeded"); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset2); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* write data independently */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* release resource */ + ret = H5Sclose(file_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Sclose(mem_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose1 succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose2 succeeded"); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if (data_array1) + HDfree(data_array1); +} + +/* + * Example of using the parallel HDF5 library to create an extendable dataset + * and perform I/O on it in a way that verifies that the chunk cache is + * bypassed for parallel I/O. + */ + +void +extend_writeInd2(void) +{ + const char *filename; + hid_t fid; /* HDF5 file ID */ + hid_t fapl_id; /* File access templates */ + hid_t fs; /* File dataspace ID */ + hid_t ms; /* Memory dataspace ID */ + hid_t dataset; /* Dataset ID */ + hsize_t orig_size = 10; /* Original dataset dim size */ + hsize_t new_size = 20; /* Extended dataset dim size */ + hsize_t one = 1; + hsize_t max_size = H5S_UNLIMITED; /* dataset maximum dim size */ + hsize_t chunk_size = 16384; /* chunk size */ + hid_t dcpl; /* dataset create prop. list */ + int written[10], /* Data to write */ + retrieved[10]; /* Data read in */ + int mpi_size, mpi_rank; /* MPI settings */ + int i; /* Local index variable */ + herr_t ret; /* Generic return value */ + + filename = GetTestParameters(); + if (VERBOSE_MED) + HDprintf("Extend independent write test #2 on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + /* ------------------- + * START AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + fapl_id = create_faccess_plist(test_comm, MPI_INFO_NULL, facc_type); + VRFY((fapl_id >= 0), "create_faccess_plist succeeded"); + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(fapl_id); + VRFY((ret >= 0), "H5Pclose succeeded"); + + /* -------------------------------------------------------------- + * Define the dimensions of the overall datasets and create them. + * ------------------------------------------------------------- */ + + /* set up dataset storage chunk sizes and creation property list */ + dcpl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dcpl >= 0), "H5Pcreate succeeded"); + ret = H5Pset_chunk(dcpl, 1, &chunk_size); + VRFY((ret >= 0), "H5Pset_chunk succeeded"); + + /* setup dimensionality object */ + fs = H5Screate_simple(1, &orig_size, &max_size); + VRFY((fs >= 0), "H5Screate_simple succeeded"); + + /* create an extendible dataset collectively */ + dataset = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, fs, H5P_DEFAULT, dcpl, H5P_DEFAULT); + VRFY((dataset >= 0), "H5Dcreat2e succeeded"); + + /* release resource */ + ret = H5Pclose(dcpl); + VRFY((ret >= 0), "H5Pclose succeeded"); + + /* ------------------------- + * Test writing to dataset + * -------------------------*/ + /* create a memory dataspace independently */ + ms = H5Screate_simple(1, &orig_size, &max_size); + VRFY((ms >= 0), "H5Screate_simple succeeded"); + + /* put some trivial data in the data_array */ + for (i = 0; i < (int)orig_size; i++) + written[i] = i; + MESG("data array initialized"); + if (VERBOSE_MED) { + MESG("writing at offset zero: "); + for (i = 0; i < (int)orig_size; i++) + HDprintf("%s%d", i ? ", " : "", written[i]); + HDprintf("\n"); + } + ret = H5Dwrite(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, written); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* ------------------------- + * Read initial data from dataset. + * -------------------------*/ + ret = H5Dread(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, retrieved); + VRFY((ret >= 0), "H5Dread succeeded"); + for (i = 0; i < (int)orig_size; i++) + if (written[i] != retrieved[i]) { + HDprintf("Line #%d: written!=retrieved: written[%d]=%d, retrieved[%d]=%d\n", __LINE__, i, + written[i], i, retrieved[i]); + nerrors++; + } + if (VERBOSE_MED) { + MESG("read at offset zero: "); + for (i = 0; i < (int)orig_size; i++) + HDprintf("%s%d", i ? ", " : "", retrieved[i]); + HDprintf("\n"); + } + + /* ------------------------- + * Extend the dataset & retrieve new dataspace + * -------------------------*/ + ret = H5Dset_extent(dataset, &new_size); + VRFY((ret >= 0), "H5Dset_extent succeeded"); + ret = H5Sclose(fs); + VRFY((ret >= 0), "H5Sclose succeeded"); + fs = H5Dget_space(dataset); + VRFY((fs >= 0), "H5Dget_space succeeded"); + + /* ------------------------- + * Write to the second half of the dataset + * -------------------------*/ + for (i = 0; i < (int)orig_size; i++) + H5_CHECKED_ASSIGN(written[i], int, orig_size + (hsize_t)i, hsize_t); + MESG("data array re-initialized"); + if (VERBOSE_MED) { + MESG("writing at offset 10: "); + for (i = 0; i < (int)orig_size; i++) + HDprintf("%s%d", i ? ", " : "", written[i]); + HDprintf("\n"); + } + ret = H5Sselect_hyperslab(fs, H5S_SELECT_SET, &orig_size, NULL, &one, &orig_size); + VRFY((ret >= 0), "H5Sselect_hyperslab succeeded"); + ret = H5Dwrite(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, written); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* ------------------------- + * Read the new data + * -------------------------*/ + ret = H5Dread(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, retrieved); + VRFY((ret >= 0), "H5Dread succeeded"); + for (i = 0; i < (int)orig_size; i++) + if (written[i] != retrieved[i]) { + HDprintf("Line #%d: written!=retrieved: written[%d]=%d, retrieved[%d]=%d\n", __LINE__, i, + written[i], i, retrieved[i]); + nerrors++; + } + if (VERBOSE_MED) { + MESG("read at offset 10: "); + for (i = 0; i < (int)orig_size; i++) + HDprintf("%s%d", i ? ", " : "", retrieved[i]); + HDprintf("\n"); + } + + /* Close dataset collectively */ + ret = H5Dclose(dataset); + VRFY((ret >= 0), "H5Dclose succeeded"); + + /* Close the file collectively */ + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); +} + +/* Example of using the parallel HDF5 library to read an extendible dataset */ +void +extend_readInd(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + hsize_t dims[MAX_RANK]; /* dataset dim sizes */ + DATATYPE * data_array1 = NULL; /* data buffer */ + DATATYPE * data_array2 = NULL; /* data buffer */ + DATATYPE * data_origin1 = NULL; /* expected data buffer */ + const char *filename; + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK], stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if (VERBOSE_MED) + HDprintf("Extend independent read test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + data_array2 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_array2 != NULL), "data_array2 HDmalloc succeeded"); + data_origin1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_origin1 != NULL), "data_origin1 HDmalloc succeeded"); + + /* ------------------- + * OPEN AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* open the file collectively */ + fid = H5Fopen(filename, H5F_ACC_RDONLY, acc_tpl); + VRFY((fid >= 0), ""); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* open the dataset1 collectively */ + dataset1 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset1 >= 0), ""); + + /* open another dataset collectively */ + dataset2 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset2 >= 0), ""); + + /* Try extend dataset1 which is open RDONLY. Should fail. */ + /* first turn off auto error reporting */ + H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data); + H5Eset_auto2(H5E_DEFAULT, NULL, NULL); + + file_dataspace = H5Dget_space(dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sget_simple_extent_dims(file_dataspace, dims, NULL); + VRFY((ret > 0), "H5Sget_simple_extent_dims succeeded"); + dims[0]++; + ret = H5Dset_extent(dataset1, dims); + VRFY((ret < 0), "H5Dset_extent failed as expected"); + + /* restore auto error reporting */ + H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data); + H5Sclose(file_dataspace); + + /* Read dataset1 using BYROW pattern */ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset1); + VRFY((file_dataspace >= 0), ""); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), ""); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* read data independently */ + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dread succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + VRFY((ret == 0), "dataset1 read verified correct"); + if (ret) + nerrors++; + + H5Sclose(mem_dataspace); + H5Sclose(file_dataspace); + + /* Read dataset2 using BYCOL pattern */ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset2); + VRFY((file_dataspace >= 0), ""); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), ""); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* read data independently */ + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dread succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + VRFY((ret == 0), "dataset2 read verified correct"); + if (ret) + nerrors++; + + H5Sclose(mem_dataspace); + H5Sclose(file_dataspace); + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), ""); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), ""); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if (data_array1) + HDfree(data_array1); + if (data_array2) + HDfree(data_array2); + if (data_origin1) + HDfree(data_origin1); +} + +/* + * Part 3--Collective read/write for extendible datasets. + */ + +/* + * Example of using the parallel HDF5 library to create two extendible + * datasets in one HDF5 file with collective parallel MPIO access support. + * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. + * Each process controls only a slab of size dim0 x dim1 within each + * dataset. + */ + +void +extend_writeAll(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + const char *filename; + hsize_t dims[MAX_RANK]; /* dataset dim sizes */ + hsize_t max_dims[MAX_RANK] = {H5S_UNLIMITED, H5S_UNLIMITED}; /* dataset maximum dim sizes */ + DATATYPE * data_array1 = NULL; /* data buffer */ + hsize_t chunk_dims[MAX_RANK]; /* chunk sizes */ + hid_t dataset_pl; /* dataset create prop. list */ + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK]; /* for hyperslab setting */ + hsize_t stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if (VERBOSE_MED) + HDprintf("Extend independent write test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + /* setup chunk-size. Make sure sizes are > 0 */ + chunk_dims[0] = (hsize_t)chunkdim0; + chunk_dims[1] = (hsize_t)chunkdim1; + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + + /* ------------------- + * START AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* Reduce the number of metadata cache slots, so that there are cache + * collisions during the raw data I/O on the chunked dataset. This stresses + * the metadata cache and tests for cache bugs. -QAK + */ + { + int mdc_nelmts; + size_t rdcc_nelmts; + size_t rdcc_nbytes; + double rdcc_w0; + + ret = H5Pget_cache(acc_tpl, &mdc_nelmts, &rdcc_nelmts, &rdcc_nbytes, &rdcc_w0); + VRFY((ret >= 0), "H5Pget_cache succeeded"); + mdc_nelmts = 4; + ret = H5Pset_cache(acc_tpl, mdc_nelmts, rdcc_nelmts, rdcc_nbytes, rdcc_w0); + VRFY((ret >= 0), "H5Pset_cache succeeded"); + } + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* -------------------------------------------------------------- + * Define the dimensions of the overall datasets and create them. + * ------------------------------------------------------------- */ + + /* set up dataset storage chunk sizes and creation property list */ + if (VERBOSE_MED) + HDprintf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]); + dataset_pl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dataset_pl >= 0), "H5Pcreate succeeded"); + ret = H5Pset_chunk(dataset_pl, MAX_RANK, chunk_dims); + VRFY((ret >= 0), "H5Pset_chunk succeeded"); + + /* setup dimensionality object */ + /* start out with no rows, extend it later. */ + dims[0] = dims[1] = 0; + sid = H5Screate_simple(MAX_RANK, dims, max_dims); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + /* create an extendible dataset collectively */ + dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); + + /* create another extendible dataset collectively */ + dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dcreate2 succeeded"); + + /* release resource */ + H5Sclose(sid); + H5Pclose(dataset_pl); + + /* ------------------------- + * Test writing to dataset1 + * -------------------------*/ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* put some trivial data in the data_array */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* Extend its current dim sizes before writing */ + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + ret = H5Dset_extent(dataset1, dims); + VRFY((ret >= 0), "H5Dset_extent succeeded"); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* write data collectively */ + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* release resource */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* ------------------------- + * Test writing to dataset2 + * -------------------------*/ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + /* put some trivial data in the data_array */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* Try write to dataset2 beyond its current dim sizes. Should fail. */ + /* Temporary turn off auto error reporting */ + H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data); + H5Eset_auto2(H5E_DEFAULT, NULL, NULL); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset2); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* write data independently. Should fail. */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret < 0), "H5Dwrite failed as expected"); + + /* restore auto error reporting */ + H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data); + H5Sclose(file_dataspace); + + /* Extend dataset2 and try again. Should succeed. */ + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + ret = H5Dset_extent(dataset2, dims); + VRFY((ret >= 0), "H5Dset_extent succeeded"); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset2); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* write data independently */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* release resource */ + ret = H5Sclose(file_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Sclose(mem_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Pclose(xfer_plist); + VRFY((ret >= 0), "H5Pclose succeeded"); + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose1 succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose2 succeeded"); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if (data_array1) + HDfree(data_array1); +} + +/* Example of using the parallel HDF5 library to read an extendible dataset */ +void +extend_readAll(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + const char *filename; + hsize_t dims[MAX_RANK]; /* dataset dim sizes */ + DATATYPE * data_array1 = NULL; /* data buffer */ + DATATYPE * data_array2 = NULL; /* data buffer */ + DATATYPE * data_origin1 = NULL; /* expected data buffer */ + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK], stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if (VERBOSE_MED) + HDprintf("Extend independent read test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + data_array2 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_array2 != NULL), "data_array2 HDmalloc succeeded"); + data_origin1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); + VRFY((data_origin1 != NULL), "data_origin1 HDmalloc succeeded"); + + /* ------------------- + * OPEN AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* open the file collectively */ + fid = H5Fopen(filename, H5F_ACC_RDONLY, acc_tpl); + VRFY((fid >= 0), ""); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* open the dataset1 collectively */ + dataset1 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset1 >= 0), ""); + + /* open another dataset collectively */ + dataset2 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset2 >= 0), ""); + + /* Try extend dataset1 which is open RDONLY. Should fail. */ + /* first turn off auto error reporting */ + H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data); + H5Eset_auto2(H5E_DEFAULT, NULL, NULL); + + file_dataspace = H5Dget_space(dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sget_simple_extent_dims(file_dataspace, dims, NULL); + VRFY((ret > 0), "H5Sget_simple_extent_dims succeeded"); + dims[0]++; + ret = H5Dset_extent(dataset1, dims); + VRFY((ret < 0), "H5Dset_extent failed as expected"); + + /* restore auto error reporting */ + H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data); + H5Sclose(file_dataspace); + + /* Read dataset1 using BYROW pattern */ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset1); + VRFY((file_dataspace >= 0), ""); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), ""); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* read data collectively */ + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + VRFY((ret == 0), "dataset1 read verified correct"); + if (ret) + nerrors++; + + H5Sclose(mem_dataspace); + H5Sclose(file_dataspace); + H5Pclose(xfer_plist); + + /* Read dataset2 using BYCOL pattern */ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset2); + VRFY((file_dataspace >= 0), ""); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), ""); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* read data collectively */ + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + VRFY((ret == 0), "dataset2 read verified correct"); + if (ret) + nerrors++; + + H5Sclose(mem_dataspace); + H5Sclose(file_dataspace); + H5Pclose(xfer_plist); + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), ""); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), ""); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if (data_array1) + HDfree(data_array1); + if (data_array2) + HDfree(data_array2); + if (data_origin1) + HDfree(data_origin1); +} + +/* + * Example of using the parallel HDF5 library to read a compressed + * dataset in an HDF5 file with collective parallel access support. + */ +#ifdef H5_HAVE_FILTER_DEFLATE +void +compress_readAll(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t dcpl; /* Dataset creation property list */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t dataspace; /* Dataspace ID */ + hid_t dataset; /* Dataset ID */ + int rank = 1; /* Dataspace rank */ + hsize_t dim = (hsize_t)dim0; /* Dataspace dimensions */ + unsigned u; /* Local index variable */ + unsigned chunk_opts; /* Chunk options */ + unsigned disable_partial_chunk_filters; /* Whether filters are disabled on partial chunks */ + DATATYPE * data_read = NULL; /* data buffer */ + DATATYPE * data_orig = NULL; /* expected data buffer */ + const char *filename; + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + int mpi_size, mpi_rank; + herr_t ret; /* Generic return value */ + + filename = GetTestParameters(); + if (VERBOSE_MED) + HDprintf("Collective chunked dataset read test on file %s\n", filename); + + /* Retrieve MPI parameters */ + MPI_Comm_size(comm, &mpi_size); + MPI_Comm_rank(comm, &mpi_rank); + + /* Allocate data buffer */ + data_orig = (DATATYPE *)HDmalloc((size_t)dim * sizeof(DATATYPE)); + VRFY((data_orig != NULL), "data_origin1 HDmalloc succeeded"); + data_read = (DATATYPE *)HDmalloc((size_t)dim * sizeof(DATATYPE)); + VRFY((data_read != NULL), "data_array1 HDmalloc succeeded"); + + /* Initialize data buffers */ + for (u = 0; u < dim; u++) + data_orig[u] = (DATATYPE)u; + + /* Run test both with and without filters disabled on partial chunks */ + for (disable_partial_chunk_filters = 0; disable_partial_chunk_filters <= 1; + disable_partial_chunk_filters++) { + /* Process zero creates the file with a compressed, chunked dataset */ + if (mpi_rank == 0) { + hsize_t chunk_dim; /* Chunk dimensions */ + + /* Create the file */ + fid = H5Fcreate(h5_rmprefix(filename), H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + VRFY((fid > 0), "H5Fcreate succeeded"); + + /* Create property list for chunking and compression */ + dcpl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dcpl > 0), "H5Pcreate succeeded"); + + ret = H5Pset_layout(dcpl, H5D_CHUNKED); + VRFY((ret >= 0), "H5Pset_layout succeeded"); + + /* Use eight chunks */ + chunk_dim = dim / 8; + ret = H5Pset_chunk(dcpl, rank, &chunk_dim); + VRFY((ret >= 0), "H5Pset_chunk succeeded"); + + /* Set chunk options appropriately */ + if (disable_partial_chunk_filters) { + ret = H5Pget_chunk_opts(dcpl, &chunk_opts); + VRFY((ret >= 0), "H5Pget_chunk_opts succeeded"); + + chunk_opts |= H5D_CHUNK_DONT_FILTER_PARTIAL_CHUNKS; + + ret = H5Pset_chunk_opts(dcpl, chunk_opts); + VRFY((ret >= 0), "H5Pset_chunk_opts succeeded"); + } /* end if */ + + ret = H5Pset_deflate(dcpl, 9); + VRFY((ret >= 0), "H5Pset_deflate succeeded"); + + /* Create dataspace */ + dataspace = H5Screate_simple(rank, &dim, NULL); + VRFY((dataspace > 0), "H5Screate_simple succeeded"); + + /* Create dataset */ + dataset = + H5Dcreate2(fid, "compressed_data", H5T_NATIVE_INT, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT); + VRFY((dataset > 0), "H5Dcreate2 succeeded"); + + /* Write compressed data */ + ret = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_orig); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* Close objects */ + ret = H5Pclose(dcpl); + VRFY((ret >= 0), "H5Pclose succeeded"); + ret = H5Sclose(dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Dclose(dataset); + VRFY((ret >= 0), "H5Dclose succeeded"); + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); + } + + /* Wait for file to be created */ + MPI_Barrier(comm); + + /* ------------------- + * OPEN AN HDF5 FILE + * -------------------*/ + + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* open the file collectively */ + fid = H5Fopen(filename, H5F_ACC_RDWR, acc_tpl); + VRFY((fid > 0), "H5Fopen succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), "H5Pclose succeeded"); + + /* Open dataset with compressed chunks */ + dataset = H5Dopen2(fid, "compressed_data", H5P_DEFAULT); + VRFY((dataset > 0), "H5Dopen2 succeeded"); + + /* Try reading & writing data */ + if (dataset > 0) { + /* Create dataset transfer property list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist > 0), "H5Pcreate succeeded"); + + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* Try reading the data */ + ret = H5Dread(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, xfer_plist, data_read); + VRFY((ret >= 0), "H5Dread succeeded"); + + /* Verify data read */ + for (u = 0; u < dim; u++) + if (data_orig[u] != data_read[u]) { + HDprintf("Line #%d: written!=retrieved: data_orig[%u]=%d, data_read[%u]=%d\n", __LINE__, + (unsigned)u, data_orig[u], (unsigned)u, data_read[u]); + nerrors++; + } + +#ifdef H5_HAVE_PARALLEL_FILTERED_WRITES + ret = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, xfer_plist, data_read); + VRFY((ret >= 0), "H5Dwrite succeeded"); +#endif + + ret = H5Pclose(xfer_plist); + VRFY((ret >= 0), "H5Pclose succeeded"); + ret = H5Dclose(dataset); + VRFY((ret >= 0), "H5Dclose succeeded"); + } /* end if */ + + /* Close file */ + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); + } /* end for */ + + /* release data buffers */ + if (data_read) + HDfree(data_read); + if (data_orig) + HDfree(data_orig); +} +#endif /* H5_HAVE_FILTER_DEFLATE */ + +/* + * Part 4--Non-selection for chunked dataset + */ + +/* + * Example of using the parallel HDF5 library to create chunked + * dataset in one HDF5 file with collective and independent parallel + * MPIO access support. The Datasets are of sizes dim0 x dim1. + * Each process controls only a slab of size dim0 x dim1 within the + * dataset with the exception that one processor selects no element. + */ + +void +none_selection_chunk(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + const char *filename; + hsize_t dims[MAX_RANK]; /* dataset dim sizes */ + DATATYPE * data_origin = NULL; /* data buffer */ + DATATYPE * data_array = NULL; /* data buffer */ + hsize_t chunk_dims[MAX_RANK]; /* chunk sizes */ + hid_t dataset_pl; /* dataset create prop. list */ + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK]; /* for hyperslab setting */ + hsize_t stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + hsize_t mstart[MAX_RANK]; /* for data buffer in memory */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if (VERBOSE_MED) + HDprintf("Extend independent write test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + /* setup chunk-size. Make sure sizes are > 0 */ + chunk_dims[0] = (hsize_t)chunkdim0; + chunk_dims[1] = (hsize_t)chunkdim1; + + /* ------------------- + * START AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* -------------------------------------------------------------- + * Define the dimensions of the overall datasets and create them. + * ------------------------------------------------------------- */ + + /* set up dataset storage chunk sizes and creation property list */ + if (VERBOSE_MED) + HDprintf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]); + dataset_pl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dataset_pl >= 0), "H5Pcreate succeeded"); + ret = H5Pset_chunk(dataset_pl, MAX_RANK, chunk_dims); + VRFY((ret >= 0), "H5Pset_chunk succeeded"); + + /* setup dimensionality object */ + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + sid = H5Screate_simple(MAX_RANK, dims, NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + /* create an extendible dataset collectively */ + dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); + + /* create another extendible dataset collectively */ + dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dcreate2 succeeded"); + + /* release resource */ + H5Sclose(sid); + H5Pclose(dataset_pl); + + /* ------------------------- + * Test collective writing to dataset1 + * -------------------------*/ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* allocate memory for data buffer. Only allocate enough buffer for + * each processor's data. */ + if (mpi_rank) { + data_origin = (DATATYPE *)HDmalloc(block[0] * block[1] * sizeof(DATATYPE)); + VRFY((data_origin != NULL), "data_origin HDmalloc succeeded"); + + data_array = (DATATYPE *)HDmalloc(block[0] * block[1] * sizeof(DATATYPE)); + VRFY((data_array != NULL), "data_array HDmalloc succeeded"); + + /* put some trivial data in the data_array */ + mstart[0] = mstart[1] = 0; + dataset_fill(mstart, block, data_origin); + MESG("data_array initialized"); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(mstart, block, data_origin); + } + } + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple(MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* Process 0 has no selection */ + if (!mpi_rank) { + ret = H5Sselect_none(mem_dataspace); + VRFY((ret >= 0), "H5Sselect_none succeeded"); + } + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space(dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* Process 0 has no selection */ + if (!mpi_rank) { + ret = H5Sselect_none(file_dataspace); + VRFY((ret >= 0), "H5Sselect_none succeeded"); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + /* write data collectively */ + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_origin); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* read data independently */ + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array); + VRFY((ret >= 0), ""); + + /* verify the read data with original expected data */ + if (mpi_rank) { + ret = dataset_vrfy(mstart, count, stride, block, data_array, data_origin); + if (ret) + nerrors++; + } + + /* ------------------------- + * Test independent writing to dataset2 + * -------------------------*/ + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_INDEPENDENT); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + /* write data collectively */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_origin); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* read data independently */ + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array); + VRFY((ret >= 0), ""); + + /* verify the read data with original expected data */ + if (mpi_rank) { + ret = dataset_vrfy(mstart, count, stride, block, data_array, data_origin); + if (ret) + nerrors++; + } + + /* release resource */ + ret = H5Sclose(file_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Sclose(mem_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Pclose(xfer_plist); + VRFY((ret >= 0), "H5Pclose succeeded"); + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose1 succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose2 succeeded"); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if (data_origin) + HDfree(data_origin); + if (data_array) + HDfree(data_array); +} + +/* Function: test_actual_io_mode + * + * Purpose: tests one specific case of collective I/O and checks that the + * actual_chunk_opt_mode property and the actual_io_mode + * properties in the DXPL have the correct values. + * + * Input: selection_mode: changes the way processes select data from the space, as well + * as some dxpl flags to get collective I/O to break in different ways. + * + * The relevant I/O function and expected response for each mode: + * TEST_ACTUAL_IO_MULTI_CHUNK_IND: + * H5D_mpi_chunk_collective_io, each process reports independent I/O + * + * TEST_ACTUAL_IO_MULTI_CHUNK_COL: + * H5D_mpi_chunk_collective_io, each process reports collective I/O + * + * TEST_ACTUAL_IO_MULTI_CHUNK_MIX: + * H5D_mpi_chunk_collective_io, each process reports mixed I/O + * + * TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE: + * H5D_mpi_chunk_collective_io, processes disagree. The root reports + * collective, the rest report independent I/O + * + * TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND: + * Same test TEST_ACTUAL_IO_MULTI_CHUNK_IND. + * Set directly go to multi-chunk-io without num threshold calc. + * TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL: + * Same test TEST_ACTUAL_IO_MULTI_CHUNK_COL. + * Set directly go to multi-chunk-io without num threshold calc. + * + * TEST_ACTUAL_IO_LINK_CHUNK: + * H5D_link_chunk_collective_io, processes report linked chunk I/O + * + * TEST_ACTUAL_IO_CONTIGUOUS: + * H5D__contig_collective_write or H5D__contig_collective_read + * each process reports contiguous collective I/O + * + * TEST_ACTUAL_IO_NO_COLLECTIVE: + * Simple independent I/O. This tests that the defaults are properly set. + * + * TEST_ACTUAL_IO_RESET: + * Performs collective and then independent I/O with hthe same dxpl to + * make sure the peroperty is correctly reset to the default on each use. + * Specifically, this test runs TEST_ACTUAL_IO_MULTI_CHUNK_NO_OPT_MIX_DISAGREE + * (The most complex case that works on all builds) and then performs + * an independent read and write with the same dxpls. + * + * Note: DIRECT_MULTI_CHUNK_MIX and DIRECT_MULTI_CHUNK_MIX_DISAGREE + * is not needed as they are covered by DIRECT_CHUNK_MIX and + * MULTI_CHUNK_MIX_DISAGREE cases. _DIRECT_ cases are only for testing + * path way to multi-chunk-io by H5FD_MPIO_CHUNK_MULTI_IO instead of num-threshold. + * + * Modification: + * - Refctore to remove multi-chunk-without-opimization test and update for + * testing direct to multi-chunk-io + * Programmer: Jonathan Kim + * Date: 2012-10-10 + * + * + * Programmer: Jacob Gruber + * Date: 2011-04-06 + */ +static void +test_actual_io_mode(int selection_mode) +{ + H5D_mpio_actual_chunk_opt_mode_t actual_chunk_opt_mode_write = H5D_MPIO_NO_CHUNK_OPTIMIZATION; + H5D_mpio_actual_chunk_opt_mode_t actual_chunk_opt_mode_read = H5D_MPIO_NO_CHUNK_OPTIMIZATION; + H5D_mpio_actual_chunk_opt_mode_t actual_chunk_opt_mode_expected = H5D_MPIO_NO_CHUNK_OPTIMIZATION; + H5D_mpio_actual_io_mode_t actual_io_mode_write = H5D_MPIO_NO_COLLECTIVE; + H5D_mpio_actual_io_mode_t actual_io_mode_read = H5D_MPIO_NO_COLLECTIVE; + H5D_mpio_actual_io_mode_t actual_io_mode_expected = H5D_MPIO_NO_COLLECTIVE; + const char * filename; + const char * test_name; + hbool_t direct_multi_chunk_io; + hbool_t multi_chunk_io; + hbool_t is_chunked; + hbool_t is_collective; + int mpi_size = -1; + int mpi_rank = -1; + int length; + int * buffer; + int i; + MPI_Comm mpi_comm = MPI_COMM_NULL; + MPI_Info mpi_info = MPI_INFO_NULL; + hid_t fid = -1; + hid_t sid = -1; + hid_t dataset = -1; + hid_t data_type = H5T_NATIVE_INT; + hid_t fapl_id = -1; + hid_t mem_space = -1; + hid_t file_space = -1; + hid_t dcpl = -1; + hid_t dxpl_write = -1; + hid_t dxpl_read = -1; + hsize_t dims[MAX_RANK]; + hsize_t chunk_dims[MAX_RANK]; + hsize_t start[MAX_RANK]; + hsize_t stride[MAX_RANK]; + hsize_t count[MAX_RANK]; + hsize_t block[MAX_RANK]; + char message[256]; + herr_t ret; + + /* Set up some flags to make some future if statements slightly more readable */ + direct_multi_chunk_io = (selection_mode == TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND || + selection_mode == TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL); + + /* Note: RESET performs the same tests as MULTI_CHUNK_MIX_DISAGREE and then + * tests independent I/O + */ + multi_chunk_io = + (selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_IND || + selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_COL || + selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_MIX || + selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE || selection_mode == TEST_ACTUAL_IO_RESET); + + is_chunked = + (selection_mode != TEST_ACTUAL_IO_CONTIGUOUS && selection_mode != TEST_ACTUAL_IO_NO_COLLECTIVE); + + is_collective = selection_mode != TEST_ACTUAL_IO_NO_COLLECTIVE; + + /* Set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + MPI_Barrier(test_comm); + + HDassert(mpi_size >= 1); + + mpi_comm = test_comm; + mpi_info = MPI_INFO_NULL; + + filename = (const char *)GetTestParameters(); + HDassert(filename != NULL); + + /* Setup the file access template */ + fapl_id = create_faccess_plist(mpi_comm, mpi_info, facc_type); + VRFY((fapl_id >= 0), "create_faccess_plist() succeeded"); + + /* Create the file */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Create the basic Space */ + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + sid = H5Screate_simple(MAX_RANK, dims, NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + /* Create the dataset creation plist */ + dcpl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dcpl >= 0), "dataset creation plist created successfully"); + + /* If we are not testing contiguous datasets */ + if (is_chunked) { + /* Set up chunk information. */ + chunk_dims[0] = dims[0] / (hsize_t)mpi_size; + chunk_dims[1] = dims[1]; + ret = H5Pset_chunk(dcpl, 2, chunk_dims); + VRFY((ret >= 0), "chunk creation property list succeeded"); + } + + /* Create the dataset */ + dataset = H5Dcreate2(fid, "actual_io", data_type, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); + VRFY((dataset >= 0), "H5Dcreate2() dataset succeeded"); + + /* Create the file dataspace */ + file_space = H5Dget_space(dataset); + VRFY((file_space >= 0), "H5Dget_space succeeded"); + + /* Choose a selection method based on the type of I/O we want to occur, + * and also set up some selection-dependeent test info. */ + switch (selection_mode) { + + /* Independent I/O with optimization */ + case TEST_ACTUAL_IO_MULTI_CHUNK_IND: + case TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND: + /* Since the dataset is chunked by row and each process selects a row, + * each process writes to a different chunk. This forces all I/O to be + * independent. + */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + test_name = "Multi Chunk - Independent"; + actual_chunk_opt_mode_expected = H5D_MPIO_MULTI_CHUNK; + actual_io_mode_expected = H5D_MPIO_CHUNK_INDEPENDENT; + break; + + /* Collective I/O with optimization */ + case TEST_ACTUAL_IO_MULTI_CHUNK_COL: + case TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL: + /* The dataset is chunked by rows, so each process takes a column which + * spans all chunks. Since the processes write non-overlapping regular + * selections to each chunk, the operation is purely collective. + */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + test_name = "Multi Chunk - Collective"; + actual_chunk_opt_mode_expected = H5D_MPIO_MULTI_CHUNK; + if (mpi_size > 1) + actual_io_mode_expected = H5D_MPIO_CHUNK_COLLECTIVE; + else + actual_io_mode_expected = H5D_MPIO_CHUNK_INDEPENDENT; + break; + + /* Mixed I/O with optimization */ + case TEST_ACTUAL_IO_MULTI_CHUNK_MIX: + /* A chunk will be assigned collective I/O only if it is selected by each + * process. To get mixed I/O, have the root select all chunks and each + * subsequent process select the first and nth chunk. The first chunk, + * accessed by all, will be assigned collective I/O while each other chunk + * will be accessed only by the root and the nth procecess and will be + * assigned independent I/O. Each process will access one chunk collectively + * and at least one chunk independently, reporting mixed I/O. + */ + + if (mpi_rank == 0) { + /* Select the first column */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + } + else { + /* Select the first and the nth chunk in the nth column */ + block[0] = (hsize_t)(dim0 / mpi_size); + block[1] = (hsize_t)(dim1 / mpi_size); + count[0] = 2; + count[1] = 1; + stride[0] = (hsize_t)mpi_rank * block[0]; + stride[1] = 1; + start[0] = 0; + start[1] = (hsize_t)mpi_rank * block[1]; + } + + test_name = "Multi Chunk - Mixed"; + actual_chunk_opt_mode_expected = H5D_MPIO_MULTI_CHUNK; + actual_io_mode_expected = H5D_MPIO_CHUNK_MIXED; + break; + + /* RESET tests that the properties are properly reset to defaults each time I/O is + * performed. To achieve this, we have RESET perform collective I/O (which would change + * the values from the defaults) followed by independent I/O (which should report the + * default values). RESET doesn't need to have a unique selection, so we reuse + * MULTI_CHUMK_MIX_DISAGREE, which was chosen because it is a complex case that works + * on all builds. The independent section of RESET can be found at the end of this function. + */ + case TEST_ACTUAL_IO_RESET: + + /* Mixed I/O with optimization and internal disagreement */ + case TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE: + /* A chunk will be assigned collective I/O only if it is selected by each + * process. To get mixed I/O with disagreement, assign process n to the + * first chunk and the nth chunk. The first chunk, selected by all, is + * assgigned collective I/O, while each other process gets independent I/O. + * Since the root process with only access the first chunk, it will report + * collective I/O. The subsequent processes will access the first chunk + * collectively, and their other chunk independently, reporting mixed I/O. + */ + + if (mpi_rank == 0) { + /* Select the first chunk in the first column */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + block[0] = block[0] / (hsize_t)mpi_size; + } + else { + /* Select the first and the nth chunk in the nth column */ + block[0] = (hsize_t)(dim0 / mpi_size); + block[1] = (hsize_t)(dim1 / mpi_size); + count[0] = 2; + count[1] = 1; + stride[0] = (hsize_t)mpi_rank * block[0]; + stride[1] = 1; + start[0] = 0; + start[1] = (hsize_t)mpi_rank * block[1]; + } + + /* If the testname was not already set by the RESET case */ + if (selection_mode == TEST_ACTUAL_IO_RESET) + test_name = "RESET"; + else + test_name = "Multi Chunk - Mixed (Disagreement)"; + + actual_chunk_opt_mode_expected = H5D_MPIO_MULTI_CHUNK; + if (mpi_size > 1) { + if (mpi_rank == 0) + actual_io_mode_expected = H5D_MPIO_CHUNK_COLLECTIVE; + else + actual_io_mode_expected = H5D_MPIO_CHUNK_MIXED; + } + else + actual_io_mode_expected = H5D_MPIO_CHUNK_INDEPENDENT; + + break; + + /* Linked Chunk I/O */ + case TEST_ACTUAL_IO_LINK_CHUNK: + /* Nothing special; link chunk I/O is forced in the dxpl settings. */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + test_name = "Link Chunk"; + actual_chunk_opt_mode_expected = H5D_MPIO_LINK_CHUNK; + actual_io_mode_expected = H5D_MPIO_CHUNK_COLLECTIVE; + break; + + /* Contiguous Dataset */ + case TEST_ACTUAL_IO_CONTIGUOUS: + /* A non overlapping, regular selection in a contiguous dataset leads to + * collective I/O */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + test_name = "Contiguous"; + actual_chunk_opt_mode_expected = H5D_MPIO_NO_CHUNK_OPTIMIZATION; + actual_io_mode_expected = H5D_MPIO_CONTIGUOUS_COLLECTIVE; + break; + + case TEST_ACTUAL_IO_NO_COLLECTIVE: + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + test_name = "Independent"; + actual_chunk_opt_mode_expected = H5D_MPIO_NO_CHUNK_OPTIMIZATION; + actual_io_mode_expected = H5D_MPIO_NO_COLLECTIVE; + break; + + default: + test_name = "Undefined Selection Mode"; + actual_chunk_opt_mode_expected = H5D_MPIO_NO_CHUNK_OPTIMIZATION; + actual_io_mode_expected = H5D_MPIO_NO_COLLECTIVE; + break; + } + + ret = H5Sselect_hyperslab(file_space, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* Create a memory dataspace mirroring the dataset and select the same hyperslab + * as in the file space. + */ + mem_space = H5Screate_simple(MAX_RANK, dims, NULL); + VRFY((mem_space >= 0), "mem_space created"); + + ret = H5Sselect_hyperslab(mem_space, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* Get the number of elements in the selection */ + length = dim0 * dim1; + + /* Allocate and initialize the buffer */ + buffer = (int *)HDmalloc(sizeof(int) * (size_t)length); + VRFY((buffer != NULL), "HDmalloc of buffer succeeded"); + for (i = 0; i < length; i++) + buffer[i] = i; + + /* Set up the dxpl for the write */ + dxpl_write = H5Pcreate(H5P_DATASET_XFER); + VRFY((dxpl_write >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); + + /* Set collective I/O properties in the dxpl. */ + if (is_collective) { + /* Request collective I/O */ + ret = H5Pset_dxpl_mpio(dxpl_write, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + /* Set the threshold number of processes per chunk to twice mpi_size. + * This will prevent the threshold from ever being met, thus forcing + * multi chunk io instead of link chunk io. + * This is via default. + */ + if (multi_chunk_io) { + /* force multi-chunk-io by threshold */ + ret = H5Pset_dxpl_mpio_chunk_opt_num(dxpl_write, (unsigned)mpi_size * 2); + VRFY((ret >= 0), "H5Pset_dxpl_mpio_chunk_opt_num succeeded"); + + /* set this to manipulate testing scenario about allocating processes + * to chunks */ + ret = H5Pset_dxpl_mpio_chunk_opt_ratio(dxpl_write, (unsigned)99); + VRFY((ret >= 0), "H5Pset_dxpl_mpio_chunk_opt_ratio succeeded"); + } + + /* Set directly go to multi-chunk-io without threshold calc. */ + if (direct_multi_chunk_io) { + /* set for multi chunk io by property*/ + ret = H5Pset_dxpl_mpio_chunk_opt(dxpl_write, H5FD_MPIO_CHUNK_MULTI_IO); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + } + } + + /* Make a copy of the dxpl to test the read operation */ + dxpl_read = H5Pcopy(dxpl_write); + VRFY((dxpl_read >= 0), "H5Pcopy succeeded"); + + /* Write */ + ret = H5Dwrite(dataset, data_type, mem_space, file_space, dxpl_write, buffer); + if (ret < 0) + H5Eprint2(H5E_DEFAULT, stdout); + VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); + + /* Retrieve Actual io values */ + ret = H5Pget_mpio_actual_io_mode(dxpl_write, &actual_io_mode_write); + VRFY((ret >= 0), "retrieving actual io mode succeeded"); + + ret = H5Pget_mpio_actual_chunk_opt_mode(dxpl_write, &actual_chunk_opt_mode_write); + VRFY((ret >= 0), "retrieving actual chunk opt mode succeeded"); + + /* Read */ + ret = H5Dread(dataset, data_type, mem_space, file_space, dxpl_read, buffer); + if (ret < 0) + H5Eprint2(H5E_DEFAULT, stdout); + VRFY((ret >= 0), "H5Dread() dataset multichunk read succeeded"); + + /* Retrieve Actual io values */ + ret = H5Pget_mpio_actual_io_mode(dxpl_read, &actual_io_mode_read); + VRFY((ret >= 0), "retrieving actual io mode succeeded"); + + ret = H5Pget_mpio_actual_chunk_opt_mode(dxpl_read, &actual_chunk_opt_mode_read); + VRFY((ret >= 0), "retrieving actual chunk opt mode succeeded"); + + /* Check write vs read */ + VRFY((actual_io_mode_read == actual_io_mode_write), + "reading and writing are the same for actual_io_mode"); + VRFY((actual_chunk_opt_mode_read == actual_chunk_opt_mode_write), + "reading and writing are the same for actual_chunk_opt_mode"); + + /* Test values */ + if (actual_chunk_opt_mode_expected != (H5D_mpio_actual_chunk_opt_mode_t)-1 && + actual_io_mode_expected != (H5D_mpio_actual_io_mode_t)-1) { + HDsprintf(message, "Actual Chunk Opt Mode has the correct value for %s.\n", test_name); + VRFY((actual_chunk_opt_mode_write == actual_chunk_opt_mode_expected), message); + HDsprintf(message, "Actual IO Mode has the correct value for %s.\n", test_name); + VRFY((actual_io_mode_write == actual_io_mode_expected), message); + } + else { + HDfprintf(stderr, "%s %d -> (%d,%d)\n", test_name, mpi_rank, actual_chunk_opt_mode_write, + actual_io_mode_write); + } + + /* To test that the property is successfully reset to the default, we perform some + * independent I/O after the collective I/O + */ + if (selection_mode == TEST_ACTUAL_IO_RESET) { + if (mpi_rank == 0) { + /* Switch to independent io */ + ret = H5Pset_dxpl_mpio(dxpl_write, H5FD_MPIO_INDEPENDENT); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + ret = H5Pset_dxpl_mpio(dxpl_read, H5FD_MPIO_INDEPENDENT); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + /* Write */ + ret = H5Dwrite(dataset, data_type, H5S_ALL, H5S_ALL, dxpl_write, buffer); + VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); + + /* Check Properties */ + ret = H5Pget_mpio_actual_io_mode(dxpl_write, &actual_io_mode_write); + VRFY((ret >= 0), "retrieving actual io mode succeeded"); + ret = H5Pget_mpio_actual_chunk_opt_mode(dxpl_write, &actual_chunk_opt_mode_write); + VRFY((ret >= 0), "retrieving actual chunk opt mode succeeded"); + + VRFY(actual_chunk_opt_mode_write == H5D_MPIO_NO_CHUNK_OPTIMIZATION, + "actual_chunk_opt_mode has correct value for reset write (independent)"); + VRFY(actual_io_mode_write == H5D_MPIO_NO_COLLECTIVE, + "actual_io_mode has correct value for reset write (independent)"); + + /* Read */ + ret = H5Dread(dataset, data_type, H5S_ALL, H5S_ALL, dxpl_read, buffer); + VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); + + /* Check Properties */ + ret = H5Pget_mpio_actual_io_mode(dxpl_read, &actual_io_mode_read); + VRFY((ret >= 0), "retrieving actual io mode succeeded"); + ret = H5Pget_mpio_actual_chunk_opt_mode(dxpl_read, &actual_chunk_opt_mode_read); + VRFY((ret >= 0), "retrieving actual chunk opt mode succeeded"); + + VRFY(actual_chunk_opt_mode_read == H5D_MPIO_NO_CHUNK_OPTIMIZATION, + "actual_chunk_opt_mode has correct value for reset read (independent)"); + VRFY(actual_io_mode_read == H5D_MPIO_NO_COLLECTIVE, + "actual_io_mode has correct value for reset read (independent)"); + } + } + + /* Release some resources */ + ret = H5Sclose(sid); + ret = H5Pclose(fapl_id); + ret = H5Pclose(dcpl); + ret = H5Pclose(dxpl_write); + ret = H5Pclose(dxpl_read); + ret = H5Dclose(dataset); + ret = H5Sclose(mem_space); + ret = H5Sclose(file_space); + ret = H5Fclose(fid); + HDfree(buffer); + return; +} + +/* Function: actual_io_mode_tests + * + * Purpose: Tests all possible cases of the actual_io_mode property. + * + * Programmer: Jacob Gruber + * Date: 2011-04-06 + */ +void +actual_io_mode_tests(void) +{ + int mpi_size = -1; + int mpi_rank = -1; + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_size(test_comm, &mpi_rank); + + test_actual_io_mode(TEST_ACTUAL_IO_NO_COLLECTIVE); + + /* + * Test multi-chunk-io via proc_num threshold + */ + test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_IND); + test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_COL); + + /* The Multi Chunk Mixed test requires at least three processes. */ + if (mpi_size > 2) + test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_MIX); + else + HDfprintf(stdout, "Multi Chunk Mixed test requires 3 processes minimum\n"); + + test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE); + + /* + * Test multi-chunk-io via setting direct property + */ + test_actual_io_mode(TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND); + test_actual_io_mode(TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL); + + test_actual_io_mode(TEST_ACTUAL_IO_LINK_CHUNK); + test_actual_io_mode(TEST_ACTUAL_IO_CONTIGUOUS); + + test_actual_io_mode(TEST_ACTUAL_IO_RESET); + return; +} + +/* + * Function: test_no_collective_cause_mode + * + * Purpose: + * tests cases for broken collective I/O and checks that the + * H5Pget_mpio_no_collective_cause properties in the DXPL have the correct values. + * + * Input: + * selection_mode: various mode to cause broken collective I/O + * Note: Originally, each TEST case is supposed to be used alone. + * After some discussion, this is updated to take multiple TEST cases + * with '|'. However there is no error check for any of combined + * test cases, so a tester is responsible to understand and feed + * proper combination of TESTs if needed. + * + * + * TEST_COLLECTIVE: + * Test for regular collective I/O without cause of breaking. + * Just to test normal behavior. + * + * TEST_SET_INDEPENDENT: + * Test for Independent I/O as the cause of breaking collective I/O. + * + * TEST_DATATYPE_CONVERSION: + * Test for Data Type Conversion as the cause of breaking collective I/O. + * + * TEST_DATA_TRANSFORMS: + * Test for Data Transform feature as the cause of breaking collective I/O. + * + * TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES: + * Test for NULL dataspace as the cause of breaking collective I/O. + * + * TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT: + * Test for Compact layout as the cause of breaking collective I/O. + * + * TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL: + * Test for Externl-File storage as the cause of breaking collective I/O. + * + * Programmer: Jonathan Kim + * Date: Aug, 2012 + */ +#define FILE_EXTERNAL "nocolcause_extern.data" +static void +test_no_collective_cause_mode(int selection_mode) +{ + uint32_t no_collective_cause_local_write = 0; + uint32_t no_collective_cause_local_read = 0; + uint32_t no_collective_cause_local_expected = 0; + uint32_t no_collective_cause_global_write = 0; + uint32_t no_collective_cause_global_read = 0; + uint32_t no_collective_cause_global_expected = 0; + // hsize_t coord[NELM][MAX_RANK]; + + const char *filename; + const char *test_name; + hbool_t is_chunked = 1; + hbool_t is_independent = 0; + int mpi_size = -1; + int mpi_rank = -1; + int length; + int * buffer; + int i; + MPI_Comm mpi_comm; + MPI_Info mpi_info; + hid_t fid = -1; + hid_t sid = -1; + hid_t dataset = -1; + hid_t data_type = H5T_NATIVE_INT; + hid_t fapl_id = -1; + hid_t dcpl = -1; + hid_t dxpl_write = -1; + hid_t dxpl_read = -1; + hsize_t dims[MAX_RANK]; + hid_t mem_space = -1; + hid_t file_space = -1; + hsize_t chunk_dims[MAX_RANK]; + herr_t ret; + /* set to global value as default */ + int l_facc_type = facc_type; + char message[256]; + + /* Set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + MPI_Barrier(test_comm); + + HDassert(mpi_size >= 1); + + mpi_comm = test_comm; + mpi_info = MPI_INFO_NULL; + + /* Create the dataset creation plist */ + dcpl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dcpl >= 0), "dataset creation plist created successfully"); + + if (selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT) { + ret = H5Pset_layout(dcpl, H5D_COMPACT); + VRFY((ret >= 0), "set COMPACT layout succeeded"); + is_chunked = 0; + } + + if (selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL) { + ret = H5Pset_external(dcpl, FILE_EXTERNAL, (off_t)0, H5F_UNLIMITED); + VRFY((ret >= 0), "set EXTERNAL file layout succeeded"); + is_chunked = 0; + } + + if (selection_mode & TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES) { + sid = H5Screate(H5S_NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + is_chunked = 0; + } + else { + /* Create the basic Space */ + /* if this is a compact dataset, create a small dataspace that does not exceed 64K */ + if (selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT) { + dims[0] = BIG_X_FACTOR * 6; + dims[1] = BIG_Y_FACTOR * 6; + } + else { + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + } + sid = H5Screate_simple(MAX_RANK, dims, NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + } + + filename = (const char *)GetTestParameters(); + HDassert(filename != NULL); + + /* Setup the file access template */ + fapl_id = create_faccess_plist(mpi_comm, mpi_info, l_facc_type); + VRFY((fapl_id >= 0), "create_faccess_plist() succeeded"); + + /* Create the file */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); + + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* If we are not testing contiguous datasets */ + if (is_chunked) { + /* Set up chunk information. */ + chunk_dims[0] = dims[0] / (hsize_t)mpi_size; + chunk_dims[1] = dims[1]; + ret = H5Pset_chunk(dcpl, 2, chunk_dims); + VRFY((ret >= 0), "chunk creation property list succeeded"); + } + + /* Create the dataset */ + dataset = H5Dcreate2(fid, "nocolcause", data_type, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); + VRFY((dataset >= 0), "H5Dcreate2() dataset succeeded"); + + /* + * Set expected causes and some tweaks based on the type of test + */ + if (selection_mode & TEST_DATATYPE_CONVERSION) { + test_name = "Broken Collective I/O - Datatype Conversion"; + no_collective_cause_local_expected |= H5D_MPIO_DATATYPE_CONVERSION; + no_collective_cause_global_expected |= H5D_MPIO_DATATYPE_CONVERSION; + /* set different sign to trigger type conversion */ + data_type = H5T_NATIVE_UINT; + } + + if (selection_mode & TEST_DATA_TRANSFORMS) { + test_name = "Broken Collective I/O - DATA Transforms"; + no_collective_cause_local_expected |= H5D_MPIO_DATA_TRANSFORMS; + no_collective_cause_global_expected |= H5D_MPIO_DATA_TRANSFORMS; + } + + if (selection_mode & TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES) { + test_name = "Broken Collective I/O - No Simple or Scalar DataSpace"; + no_collective_cause_local_expected |= H5D_MPIO_NOT_SIMPLE_OR_SCALAR_DATASPACES; + no_collective_cause_global_expected |= H5D_MPIO_NOT_SIMPLE_OR_SCALAR_DATASPACES; + } + + if (selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT || + selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL) { + test_name = "Broken Collective I/O - No CONTI or CHUNKED Dataset"; + no_collective_cause_local_expected |= H5D_MPIO_NOT_CONTIGUOUS_OR_CHUNKED_DATASET; + no_collective_cause_global_expected |= H5D_MPIO_NOT_CONTIGUOUS_OR_CHUNKED_DATASET; + } + + if (selection_mode & TEST_COLLECTIVE) { + test_name = "Broken Collective I/O - Not Broken"; + no_collective_cause_local_expected = H5D_MPIO_COLLECTIVE; + no_collective_cause_global_expected = H5D_MPIO_COLLECTIVE; + } + + if (selection_mode & TEST_SET_INDEPENDENT) { + test_name = "Broken Collective I/O - Independent"; + no_collective_cause_local_expected = H5D_MPIO_SET_INDEPENDENT; + no_collective_cause_global_expected = H5D_MPIO_SET_INDEPENDENT; + /* switch to independent io */ + is_independent = 1; + } + + /* use all spaces for certain tests */ + if (selection_mode & TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES || + selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL) { + file_space = H5S_ALL; + mem_space = H5S_ALL; + } + else { + /* Get the file dataspace */ + file_space = H5Dget_space(dataset); + VRFY((file_space >= 0), "H5Dget_space succeeded"); + + /* Create the memory dataspace */ + mem_space = H5Screate_simple(MAX_RANK, dims, NULL); + VRFY((mem_space >= 0), "mem_space created"); + } + + /* Get the number of elements in the selection */ + H5_CHECKED_ASSIGN(length, int, dims[0] * dims[1], hsize_t); + + /* Allocate and initialize the buffer */ + buffer = (int *)HDmalloc(sizeof(int) * (size_t)length); + VRFY((buffer != NULL), "HDmalloc of buffer succeeded"); + for (i = 0; i < length; i++) + buffer[i] = i; + + /* Set up the dxpl for the write */ + dxpl_write = H5Pcreate(H5P_DATASET_XFER); + VRFY((dxpl_write >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); + + if (is_independent) { + /* Set Independent I/O */ + ret = H5Pset_dxpl_mpio(dxpl_write, H5FD_MPIO_INDEPENDENT); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + } + else { + /* Set Collective I/O */ + ret = H5Pset_dxpl_mpio(dxpl_write, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + } + + if (selection_mode & TEST_DATA_TRANSFORMS) { + ret = H5Pset_data_transform(dxpl_write, "x+1"); + VRFY((ret >= 0), "H5Pset_data_transform succeeded"); + } + + /*--------------------- + * Test Write access + *---------------------*/ + + /* Write */ + ret = H5Dwrite(dataset, data_type, mem_space, file_space, dxpl_write, buffer); + if (ret < 0) + H5Eprint2(H5E_DEFAULT, stdout); + VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); + + /* Get the cause of broken collective I/O */ + ret = H5Pget_mpio_no_collective_cause(dxpl_write, &no_collective_cause_local_write, + &no_collective_cause_global_write); + VRFY((ret >= 0), "retrieving no collective cause succeeded"); + + /*--------------------- + * Test Read access + *---------------------*/ + + /* Make a copy of the dxpl to test the read operation */ + dxpl_read = H5Pcopy(dxpl_write); + VRFY((dxpl_read >= 0), "H5Pcopy succeeded"); + + /* Read */ + ret = H5Dread(dataset, data_type, mem_space, file_space, dxpl_read, buffer); + + if (ret < 0) + H5Eprint2(H5E_DEFAULT, stdout); + VRFY((ret >= 0), "H5Dread() dataset multichunk read succeeded"); + + /* Get the cause of broken collective I/O */ + ret = H5Pget_mpio_no_collective_cause(dxpl_read, &no_collective_cause_local_read, + &no_collective_cause_global_read); + VRFY((ret >= 0), "retrieving no collective cause succeeded"); + + /* Check write vs read */ + VRFY((no_collective_cause_local_read == no_collective_cause_local_write), + "reading and writing are the same for local cause of Broken Collective I/O"); + VRFY((no_collective_cause_global_read == no_collective_cause_global_write), + "reading and writing are the same for global cause of Broken Collective I/O"); + + /* Test values */ + HDmemset(message, 0, sizeof(message)); + HDsprintf(message, "Local cause of Broken Collective I/O has the correct value for %s.\n", test_name); + VRFY((no_collective_cause_local_write == no_collective_cause_local_expected), message); + HDmemset(message, 0, sizeof(message)); + HDsprintf(message, "Global cause of Broken Collective I/O has the correct value for %s.\n", test_name); + VRFY((no_collective_cause_global_write == no_collective_cause_global_expected), message); + + /* Release some resources */ + if (sid) + H5Sclose(sid); + if (fapl_id) + H5Pclose(fapl_id); + if (dcpl) + H5Pclose(dcpl); + if (dxpl_write) + H5Pclose(dxpl_write); + if (dxpl_read) + H5Pclose(dxpl_read); + if (dataset) + H5Dclose(dataset); + if (mem_space) + H5Sclose(mem_space); + if (file_space) + H5Sclose(file_space); + if (fid) + H5Fclose(fid); + HDfree(buffer); + + /* clean up external file */ + if (selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL) + HDremove(FILE_EXTERNAL); + + return; +} + +/* Function: no_collective_cause_tests + * + * Purpose: Tests cases for broken collective IO. + * + * Programmer: Jonathan Kim + * Date: Aug, 2012 + */ +void +no_collective_cause_tests(void) +{ + /* + * Test individual cause + */ + test_no_collective_cause_mode(TEST_COLLECTIVE); + test_no_collective_cause_mode(TEST_SET_INDEPENDENT); + test_no_collective_cause_mode(TEST_DATATYPE_CONVERSION); + test_no_collective_cause_mode(TEST_DATA_TRANSFORMS); + test_no_collective_cause_mode(TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES); + test_no_collective_cause_mode(TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT); + test_no_collective_cause_mode(TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL); + + /* + * Test combined causes + */ + test_no_collective_cause_mode(TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL | TEST_DATATYPE_CONVERSION); + test_no_collective_cause_mode(TEST_DATATYPE_CONVERSION | TEST_DATA_TRANSFORMS); + test_no_collective_cause_mode(TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL | TEST_DATATYPE_CONVERSION | + TEST_DATA_TRANSFORMS); + + return; +} + +/* + * Test consistency semantics of atomic mode + */ + +/* + * Example of using the parallel HDF5 library to create a dataset, + * where process 0 writes and the other processes read at the same + * time. If atomic mode is set correctly, the other processes should + * read the old values in the dataset or the new ones. + */ + +void +dataset_atomicity(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t sid; /* Dataspace ID */ + hid_t dataset1; /* Dataset IDs */ + hsize_t dims[MAX_RANK]; /* dataset dim sizes */ + int * write_buf = NULL; /* data buffer */ + int * read_buf = NULL; /* data buffer */ + int buf_size; + hid_t dataset2; + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* Memory dataspace ID */ + hsize_t start[MAX_RANK]; + hsize_t stride[MAX_RANK]; + hsize_t count[MAX_RANK]; + hsize_t block[MAX_RANK]; + const char *filename; + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + int i, j, k; + hbool_t atomicity = FALSE; + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + dim0 = 64; + dim1 = 32; + filename = GetTestParameters(); + if (facc_type != FACC_MPIO) { + HDprintf("Atomicity tests will not work without the MPIO VFD\n"); + return; + } + if (VERBOSE_MED) + HDprintf("atomic writes to file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + buf_size = dim0 * dim1; + /* allocate memory for data buffer */ + write_buf = (int *)HDcalloc((size_t)buf_size, sizeof(int)); + VRFY((write_buf != NULL), "write_buf HDcalloc succeeded"); + /* allocate memory for data buffer */ + read_buf = (int *)HDcalloc((size_t)buf_size, sizeof(int)); + VRFY((read_buf != NULL), "read_buf HDcalloc succeeded"); + + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), "H5Pclose succeeded"); + + /* setup dimensionality object */ + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + sid = H5Screate_simple(MAX_RANK, dims, NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + /* create datasets */ + dataset1 = H5Dcreate2(fid, DATASETNAME5, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); + + dataset2 = H5Dcreate2(fid, DATASETNAME6, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dcreate2 succeeded"); + + /* initialize datasets to 0s */ + if (0 == mpi_rank) { + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, write_buf); + VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); + + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, write_buf); + VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); + } + + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose succeeded"); + ret = H5Sclose(sid); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); + + MPI_Barrier(comm); + + /* make sure setting atomicity fails on a serial file ID */ + /* file locking allows only one file open (serial) for writing */ + if (MAINPROCESS) { + fid = H5Fopen(filename, H5F_ACC_RDWR, H5P_DEFAULT); + VRFY((fid >= 0), "H5Fopen succeeded"); + } + + /* should fail */ + ret = H5Fset_mpi_atomicity(fid, TRUE); + VRFY((ret == FAIL), "H5Fset_mpi_atomicity failed"); + + if (MAINPROCESS) { + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); + } + + MPI_Barrier(comm); + + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* open the file collectively */ + fid = H5Fopen(filename, H5F_ACC_RDWR, acc_tpl); + VRFY((fid >= 0), "H5Fopen succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), "H5Pclose succeeded"); + + ret = H5Fset_mpi_atomicity(fid, TRUE); + VRFY((ret >= 0), "H5Fset_mpi_atomicity succeeded"); + + /* open dataset1 (contiguous case) */ + dataset1 = H5Dopen2(fid, DATASETNAME5, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dopen2 succeeded"); + + if (0 == mpi_rank) { + for (i = 0; i < buf_size; i++) { + write_buf[i] = 5; + } + } + else { + for (i = 0; i < buf_size; i++) { + read_buf[i] = 8; + } + } + + /* check that the atomicity flag is set */ + ret = H5Fget_mpi_atomicity(fid, &atomicity); + VRFY((ret >= 0), "atomcity get failed"); + VRFY((atomicity == TRUE), "atomcity set failed"); + + MPI_Barrier(comm); + + /* Process 0 writes contiguously to the entire dataset */ + if (0 == mpi_rank) { + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, write_buf); + VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); + } + /* The other processes read the entire dataset */ + else { + ret = H5Dread(dataset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, read_buf); + VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); + } + + if (VERBOSE_MED) { + i = 0; + j = 0; + k = 0; + for (i = 0; i < dim0; i++) { + HDprintf("\n"); + for (j = 0; j < dim1; j++) + HDprintf("%d ", read_buf[k++]); + } + } + + /* The processes that read the dataset must either read all values + as 0 (read happened before process 0 wrote to dataset 1), or 5 + (read happened after process 0 wrote to dataset 1) */ + if (0 != mpi_rank) { + int compare = read_buf[0]; + + VRFY((compare == 0 || compare == 5), + "Atomicity Test Failed Process %d: Value read should be 0 or 5\n"); + for (i = 1; i < buf_size; i++) { + if (read_buf[i] != compare) { + HDprintf("Atomicity Test Failed Process %d: read_buf[%d] is %d, should be %d\n", mpi_rank, i, + read_buf[i], compare); + nerrors++; + } + } + } + + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5D close succeeded"); + + /* release data buffers */ + if (write_buf) + HDfree(write_buf); + if (read_buf) + HDfree(read_buf); + + /* open dataset2 (non-contiguous case) */ + dataset2 = H5Dopen2(fid, DATASETNAME6, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dopen2 succeeded"); + + /* allocate memory for data buffer */ + write_buf = (int *)HDcalloc((size_t)buf_size, sizeof(int)); + VRFY((write_buf != NULL), "write_buf HDcalloc succeeded"); + /* allocate memory for data buffer */ + read_buf = (int *)HDcalloc((size_t)buf_size, sizeof(int)); + VRFY((read_buf != NULL), "read_buf HDcalloc succeeded"); + + for (i = 0; i < buf_size; i++) { + write_buf[i] = 5; + } + for (i = 0; i < buf_size; i++) { + read_buf[i] = 8; + } + + atomicity = FALSE; + /* check that the atomicity flag is set */ + ret = H5Fget_mpi_atomicity(fid, &atomicity); + VRFY((ret >= 0), "atomcity get failed"); + VRFY((atomicity == TRUE), "atomcity set failed"); + + block[0] = (hsize_t)(dim0 / mpi_size) - 1; + block[1] = (hsize_t)(dim1 / mpi_size) - 1; + stride[0] = block[0] + 1; + stride[1] = block[1] + 1; + count[0] = (hsize_t)mpi_size; + count[1] = (hsize_t)mpi_size; + start[0] = 0; + start[1] = 0; + + /* create a file dataspace */ + file_dataspace = H5Dget_space(dataset2); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* create a memory dataspace */ + mem_dataspace = H5Screate_simple(MAX_RANK, dims, NULL); + VRFY((mem_dataspace >= 0), ""); + + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + MPI_Barrier(comm); + + /* Process 0 writes to the dataset */ + if (0 == mpi_rank) { + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, write_buf); + VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); + } + /* All processes wait for the write to finish. This works because + atomicity is set to true */ + MPI_Barrier(comm); + /* The other processes read the entire dataset */ + if (0 != mpi_rank) { + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, read_buf); + VRFY((ret >= 0), "H5Dread dataset2 succeeded"); + } + + if (VERBOSE_MED) { + if (mpi_rank == 1) { + i = 0; + j = 0; + k = 0; + for (i = 0; i < dim0; i++) { + HDprintf("\n"); + for (j = 0; j < dim1; j++) + HDprintf("%d ", read_buf[k++]); + } + HDprintf("\n"); + } + } + + /* The processes that read the dataset must either read all values + as 5 (read happened after process 0 wrote to dataset 1) */ + if (0 != mpi_rank) { + int compare; + i = 0; + j = 0; + k = 0; + + compare = 5; + + for (i = 0; i < dim0; i++) { + if ((hsize_t)i >= (hsize_t)mpi_rank * (block[0] + 1)) { + break; + } + if (((hsize_t)i + 1) % (block[0] + 1) == 0) { + k += dim1; + continue; + } + for (j = 0; j < dim1; j++) { + if ((hsize_t)j >= (hsize_t)mpi_rank * (block[1] + 1)) { + H5_CHECKED_ASSIGN(k, int, (hsize_t)dim1 - (hsize_t)mpi_rank * (block[1] + 1) + (hsize_t)k, + hsize_t); + break; + } + if (((hsize_t)j + 1) % (block[1] + 1) == 0) { + k++; + continue; + } + else if (compare != read_buf[k]) { + HDprintf("Atomicity Test Failed Process %d: read_buf[%d] is %d, should be %d\n", mpi_rank, + k, read_buf[k], compare); + nerrors++; + } + k++; + } + } + } + + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose succeeded"); + ret = H5Sclose(file_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Sclose(mem_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + + /* release data buffers */ + if (write_buf) + HDfree(write_buf); + if (read_buf) + HDfree(read_buf); + + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); +} + +/* Function: dense_attr_test + * + * Purpose: Test cases for writing dense attributes in parallel + * + * Programmer: Quincey Koziol + * Date: April, 2013 + */ +void +test_dense_attr(void) +{ + int mpi_size, mpi_rank; + hid_t fpid, fid; + hid_t gid, gpid; + hid_t atFileSpace, atid; + hsize_t atDims[1] = {10000}; + herr_t status; + const char *filename; + + /* get filename */ + filename = (const char *)GetTestParameters(); + HDassert(filename != NULL); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + fpid = H5Pcreate(H5P_FILE_ACCESS); + VRFY((fpid > 0), "H5Pcreate succeeded"); + status = H5Pset_libver_bounds(fpid, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST); + VRFY((status >= 0), "H5Pset_libver_bounds succeeded"); + status = H5Pset_fapl_mpio(fpid, test_comm, MPI_INFO_NULL); + VRFY((status >= 0), "H5Pset_fapl_mpio succeeded"); + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fpid); + VRFY((fid > 0), "H5Fcreate succeeded"); + status = H5Pclose(fpid); + VRFY((status >= 0), "H5Pclose succeeded"); + + gpid = H5Pcreate(H5P_GROUP_CREATE); + VRFY((gpid > 0), "H5Pcreate succeeded"); + status = H5Pset_attr_phase_change(gpid, 0, 0); + VRFY((status >= 0), "H5Pset_attr_phase_change succeeded"); + gid = H5Gcreate2(fid, "foo", H5P_DEFAULT, gpid, H5P_DEFAULT); + VRFY((gid > 0), "H5Gcreate2 succeeded"); + status = H5Pclose(gpid); + VRFY((status >= 0), "H5Pclose succeeded"); + + atFileSpace = H5Screate_simple(1, atDims, NULL); + VRFY((atFileSpace > 0), "H5Screate_simple succeeded"); + atid = H5Acreate2(gid, "bar", H5T_STD_U64LE, atFileSpace, H5P_DEFAULT, H5P_DEFAULT); + VRFY((atid > 0), "H5Acreate succeeded"); + status = H5Sclose(atFileSpace); + VRFY((status >= 0), "H5Sclose succeeded"); + + status = H5Aclose(atid); + VRFY((status >= 0), "H5Aclose succeeded"); + + status = H5Gclose(gid); + VRFY((status >= 0), "H5Gclose succeeded"); + status = H5Fclose(fid); + VRFY((status >= 0), "H5Fclose succeeded"); + + return; +} + +int +main(int argc, char **argv) +{ + int express_test; + int mpi_size, mpi_rank; /* mpi variables */ + hsize_t oldsize, newsize = 1048576; + +#ifndef H5_HAVE_WIN32_API + /* Un-buffer the stdout and stderr */ + HDsetbuf(stderr, NULL); + HDsetbuf(stdout, NULL); +#endif + + MPI_Init(&argc, &argv); + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + dim0 = BIG_X_FACTOR; + dim1 = BIG_Y_FACTOR; + dim2 = BIG_Z_FACTOR; + + if (MAINPROCESS) { + HDprintf("===================================\n"); + HDprintf("2 GByte IO TESTS START\n"); + HDprintf("2 MPI ranks will run the tests...\n"); + HDprintf("===================================\n"); + h5_show_hostname(); + } + + if (H5dont_atexit() < 0) { + HDprintf("Failed to turn off atexit processing. Continue.\n"); + }; + H5open(); + /* Set the internal transition size to allow use of derived datatypes + * without having to actually read or write large datasets (>2GB). + */ + oldsize = H5_mpi_set_bigio_count(newsize); + + if (mpi_size > 2) { + int rank_color = 0; + if (mpi_rank >= 2) + rank_color = 1; + if (MPI_Comm_split(test_comm, rank_color, mpi_rank, &test_comm) != MPI_SUCCESS) { + HDprintf("MPI returned an error. Exiting\n"); + } + } + + /* Initialize testing framework */ + if (mpi_rank < 2) { + TestInit(argv[0], usage, parse_options); + + /* Parse command line arguments */ + TestParseCmdLine(argc, argv); + + AddTest("idsetw", dataset_writeInd, NULL, "dataset independent write", PARATESTFILE); + + AddTest("idsetr", dataset_readInd, NULL, "dataset independent read", PARATESTFILE); + + AddTest("cdsetw", dataset_writeAll, NULL, "dataset collective write", PARATESTFILE); + + AddTest("cdsetr", dataset_readAll, NULL, "dataset collective read", PARATESTFILE); + + AddTest("eidsetw2", extend_writeInd2, NULL, "extendible dataset independent write #2", PARATESTFILE); + + AddTest("selnone", none_selection_chunk, NULL, "chunked dataset with none-selection", PARATESTFILE); + +#ifdef H5_HAVE_FILTER_DEFLATE + AddTest("cmpdsetr", compress_readAll, NULL, "compressed dataset collective read", PARATESTFILE); +#endif /* H5_HAVE_FILTER_DEFLATE */ + + /* Display testing information */ + if (MAINPROCESS) + TestInfo(argv[0]); + + /* setup file access property list */ + fapl = H5Pcreate(H5P_FILE_ACCESS); + H5Pset_fapl_mpio(fapl, test_comm, MPI_INFO_NULL); + + /* Perform requested testing */ + PerformTests(); + } + + MPI_Barrier(MPI_COMM_WORLD); + + /* Restore the default bigio setting */ + H5_mpi_set_bigio_count(oldsize); + + express_test = GetTestExpress(); + if ((express_test == 0) && (mpi_rank < 2)) { + MpioTest2G(test_comm); + } + + MPI_Barrier(MPI_COMM_WORLD); + + if (mpi_rank == 0) + HDremove(FILENAME[0]); + + H5close(); + if (test_comm != MPI_COMM_WORLD) { + MPI_Comm_free(&test_comm); + } + MPI_Finalize(); + return 0; +} diff --git a/testpar/t_bigio.c b/testpar/t_bigio.c index 9ca077c..0a971c5 100644 --- a/testpar/t_bigio.c +++ b/testpar/t_bigio.c @@ -1,87 +1,79 @@ #include "hdf5.h" #include "testphdf5.h" -#include "H5Dprivate.h" /* For Chunk tests */ +#include "H5Dprivate.h" /* For Chunk tests */ /* FILENAME and filenames must have the same number of names */ -const char *FILENAME[2]={ "bigio_test.h5", - NULL - }; +const char *FILENAME[3] = {"bigio_test.h5", "single_rank_independent_io.h5", NULL}; /* Constants definitions */ -#define MAX_ERR_REPORT 10 /* Maximum number of errors reported */ +#define MAX_ERR_REPORT 10 /* Maximum number of errors reported */ /* Define some handy debugging shorthands, routines, ... */ /* debugging tools */ -#define MAINPROCESS (!mpi_rank) /* define process 0 as main process */ +#define MAIN_PROCESS (mpi_rank_g == 0) /* define process 0 as main process */ /* Constants definitions */ -#define RANK 2 +#define RANK 2 #define IN_ORDER 1 #define OUT_OF_ORDER 2 -#define DATASET1 "DSET1" -#define DATASET2 "DSET2" -#define DATASET3 "DSET3" -#define DATASET4 "DSET4" -#define DATASET5 "DSET5" -#define DXFER_COLLECTIVE_IO 0x1 /* Collective IO*/ +#define DATASET1 "DSET1" +#define DATASET2 "DSET2" +#define DATASET3 "DSET3" +#define DATASET4 "DSET4" +#define DXFER_COLLECTIVE_IO 0x1 /* Collective IO*/ #define DXFER_INDEPENDENT_IO 0x2 /* Independent IO collectively */ -#define DXFER_BIGCOUNT 536870916 +#define DXFER_BIGCOUNT (1 < 29) +#define LARGE_DIM 1610612736 #define HYPER 1 #define POINT 2 -#define ALL 3 +#define ALL 3 /* Dataset data type. Int's can be easily octo dumped. */ typedef hsize_t B_DATATYPE; -int facc_type = FACC_MPIO; /*Test file access type */ -int dxfer_coll_type = DXFER_COLLECTIVE_IO; -size_t bigcount = DXFER_BIGCOUNT; -int nerrors = 0; -int mpi_size, mpi_rank; +int facc_type = FACC_MPIO; /*Test file access type */ +int dxfer_coll_type = DXFER_COLLECTIVE_IO; +size_t bigcount = (size_t)DXFER_BIGCOUNT; +int nerrors = 0; +static int mpi_size_g, mpi_rank_g; hsize_t space_dim1 = SPACE_DIM1 * 256; // 4096 hsize_t space_dim2 = SPACE_DIM2; -static void coll_chunktest(const char* filename, int chunk_factor, int select_factor, - int api_option, int file_selection, int mem_selection, int mode); -hid_t create_faccess_plist(MPI_Comm comm, MPI_Info info, int l_facc_type); +static void coll_chunktest(const char *filename, int chunk_factor, int select_factor, int api_option, + int file_selection, int mem_selection, int mode); /* * Setup the coordinates for point selection. */ static void -set_coords(hsize_t start[], - hsize_t count[], - hsize_t stride[], - hsize_t block[], - size_t num_points, - hsize_t coords[], - int order) +set_coords(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], size_t num_points, + hsize_t coords[], int order) { - hsize_t i,j, k = 0, m ,n, s1 ,s2; + hsize_t i, j, k = 0, m, n, s1, s2; - if(OUT_OF_ORDER == order) + if (OUT_OF_ORDER == order) k = (num_points * RANK) - 1; - else if(IN_ORDER == order) + else if (IN_ORDER == order) k = 0; s1 = start[0]; s2 = start[1]; - for(i = 0 ; i < count[0]; i++) - for(j = 0 ; j < count[1]; j++) - for(m = 0 ; m < block[0]; m++) - for(n = 0 ; n < block[1]; n++) - if(OUT_OF_ORDER == order) { + for (i = 0; i < count[0]; i++) + for (j = 0; j < count[1]; j++) + for (m = 0; m < block[0]; m++) + for (n = 0; n < block[1]; n++) + if (OUT_OF_ORDER == order) { coords[k--] = s2 + (stride[1] * j) + n; coords[k--] = s1 + (stride[0] * i) + m; } - else if(IN_ORDER == order) { + else if (IN_ORDER == order) { coords[k++] = s1 + stride[0] * i + m; coords[k++] = s2 + stride[1] * j + n; } @@ -92,63 +84,62 @@ set_coords(hsize_t start[], * Assume dimension rank is 2 and data is stored contiguous. */ static void -fill_datasets(hsize_t start[], hsize_t block[], B_DATATYPE * dataset) +fill_datasets(hsize_t start[], hsize_t block[], B_DATATYPE *dataset) { B_DATATYPE *dataptr = dataset; - hsize_t i, j; + hsize_t i, j; /* put some trivial data in the data_array */ - for (i=0; i < block[0]; i++){ - for (j=0; j < block[1]; j++){ - *dataptr = (B_DATATYPE)((i+start[0])*100 + (j+start[1]+1)); - dataptr++; - } + for (i = 0; i < block[0]; i++) { + for (j = 0; j < block[1]; j++) { + *dataptr = (B_DATATYPE)((i + start[0]) * 100 + (j + start[1] + 1)); + dataptr++; + } } } /* * Setup the coordinates for point selection. */ -void point_set(hsize_t start[], - hsize_t count[], - hsize_t stride[], - hsize_t block[], - size_t num_points, - hsize_t coords[], - int order) +void +point_set(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], size_t num_points, + hsize_t coords[], int order) { - hsize_t i,j, k = 0, m ,n, s1 ,s2; + hsize_t i, j, k = 0, m, n, s1, s2; HDcompile_assert(RANK == 2); - if(OUT_OF_ORDER == order) + if (OUT_OF_ORDER == order) k = (num_points * RANK) - 1; - else if(IN_ORDER == order) + else if (IN_ORDER == order) k = 0; s1 = start[0]; s2 = start[1]; - for(i = 0 ; i < count[0]; i++) - for(j = 0 ; j < count[1]; j++) - for(m = 0 ; m < block[0]; m++) - for(n = 0 ; n < block[1]; n++) - if(OUT_OF_ORDER == order) { + for (i = 0; i < count[0]; i++) + for (j = 0; j < count[1]; j++) + for (m = 0; m < block[0]; m++) + for (n = 0; n < block[1]; n++) + if (OUT_OF_ORDER == order) { coords[k--] = s2 + (stride[1] * j) + n; coords[k--] = s1 + (stride[0] * i) + m; } - else if(IN_ORDER == order) { + else if (IN_ORDER == order) { coords[k++] = s1 + stride[0] * i + m; coords[k++] = s2 + stride[1] * j + n; } - if(VERBOSE_MED) { - HDprintf("start[]=(%lu, %lu), count[]=(%lu, %lu), stride[]=(%lu, %lu), block[]=(%lu, %lu), total datapoints=%lu\n", - (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], (unsigned long)count[1], - (unsigned long)stride[0], (unsigned long)stride[1], (unsigned long)block[0], (unsigned long)block[1], - (unsigned long)(block[0] * block[1] * count[0] * count[1])); + if (VERBOSE_MED) { + HDprintf("start[]=(%" PRIuHSIZE ", %" PRIuHSIZE "), " + "count[]=(%" PRIuHSIZE ", %" PRIuHSIZE "), " + "stride[]=(%" PRIuHSIZE ", %" PRIuHSIZE "), " + "block[]=(%" PRIuHSIZE ", %" PRIuHSIZE "), " + "total datapoints=%" PRIuHSIZE "\n", + start[0], start[1], count[0], count[1], stride[0], stride[1], block[0], block[1], + block[0] * block[1] * count[0] * count[1]); k = 0; - for(i = 0; i < num_points ; i++) { + for (i = 0; i < num_points; i++) { HDprintf("(%d, %d)\n", (int)coords[k], (int)coords[k + 1]); k += 2; } @@ -159,44 +150,46 @@ void point_set(hsize_t start[], * Print the content of the dataset. */ static void -dataset_print(hsize_t start[], hsize_t block[], B_DATATYPE * dataset) +dataset_print(hsize_t start[], hsize_t block[], B_DATATYPE *dataset) { B_DATATYPE *dataptr = dataset; - hsize_t i, j; + hsize_t i, j; /* print the column heading */ HDprintf("%-8s", "Cols:"); - for (j=0; j < block[1]; j++){ - HDprintf("%3lu ", (unsigned long)(start[1]+j)); + for (j = 0; j < block[1]; j++) { + HDprintf("%3" PRIuHSIZE " ", start[1] + j); } HDprintf("\n"); /* print the slab data */ - for (i=0; i < block[0]; i++){ - HDprintf("Row %2lu: ", (unsigned long)(i+start[0])); - for (j=0; j < block[1]; j++){ - HDprintf("%llu ", *dataptr++); - } - HDprintf("\n"); + for (i = 0; i < block[0]; i++) { + HDprintf("Row %2" PRIuHSIZE ": ", i + start[0]); + for (j = 0; j < block[1]; j++) { + HDprintf("%" PRIuHSIZE " ", *dataptr++); + } + HDprintf("\n"); } } - /* * Print the content of the dataset. */ static int -verify_data(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], B_DATATYPE *dataset, B_DATATYPE *original) +verify_data(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], B_DATATYPE *dataset, + B_DATATYPE *original) { hsize_t i, j; - int vrfyerrs; + int vrfyerrs; /* print it if VERBOSE_MED */ - if(VERBOSE_MED) { + if (VERBOSE_MED) { HDprintf("verify_data dumping:::\n"); - HDprintf("start(%lu, %lu), count(%lu, %lu), stride(%lu, %lu), block(%lu, %lu)\n", - (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], (unsigned long)count[1], - (unsigned long)stride[0], (unsigned long)stride[1], (unsigned long)block[0], (unsigned long)block[1]); + HDprintf("start(%" PRIuHSIZE ", %" PRIuHSIZE "), " + "count(%" PRIuHSIZE ", %" PRIuHSIZE "), " + "stride(%" PRIuHSIZE ", %" PRIuHSIZE "), " + "block(%" PRIuHSIZE ", %" PRIuHSIZE ")\n", + start[0], start[1], count[0], count[1], stride[0], stride[1], block[0], block[1]); HDprintf("original values:\n"); dataset_print(start, block, original); HDprintf("compared values:\n"); @@ -204,147 +197,141 @@ verify_data(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], } vrfyerrs = 0; - for (i=0; i < block[0]; i++){ - for (j=0; j < block[1]; j++){ - if(*dataset != *original){ - if(vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED){ - HDprintf("Dataset Verify failed at [%lu][%lu](row %lu, col %lu): expect %llu, got %llu\n", - (unsigned long)i, (unsigned long)j, - (unsigned long)(i+start[0]), (unsigned long)(j+start[1]), - *(original), *(dataset)); - } - dataset++; - original++; + for (i = 0; i < block[0]; i++) { + for (j = 0; j < block[1]; j++) { + if (*dataset != *original) { + if (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED) { + HDprintf("Dataset Verify failed at [%" PRIuHSIZE "][%" PRIuHSIZE "]" + "(row %" PRIuHSIZE ", col %" PRIuHSIZE "): " + "expect %" PRIuHSIZE ", got %" PRIuHSIZE "\n", + i, j, i + start[0], j + start[1], *(original), *(dataset)); + } + dataset++; + original++; + } } } - } - if(vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED) + if (vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED) HDprintf("[more errors ...]\n"); - if(vrfyerrs) + if (vrfyerrs) HDprintf("%d errors found in verify_data\n", vrfyerrs); - return(vrfyerrs); + return (vrfyerrs); } /* Set up the selection */ static void -ccslab_set(int mpi_rank, - int mpi_size, - hsize_t start[], - hsize_t count[], - hsize_t stride[], - hsize_t block[], - int mode) +ccslab_set(int mpi_rank, int mpi_size, hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], + int mode) { - switch (mode){ - - case BYROW_CONT: - /* Each process takes a slabs of rows. */ - block[0] = 1; - block[1] = 1; - stride[0] = 1; - stride[1] = 1; - count[0] = space_dim1; - count[1] = space_dim2; - start[0] = mpi_rank*count[0]; - start[1] = 0; - - break; - - case BYROW_DISCONT: - /* Each process takes several disjoint blocks. */ - block[0] = 1; - block[1] = 1; - stride[0] = 3; - stride[1] = 3; - count[0] = space_dim1/(stride[0]*block[0]); - count[1] = (space_dim2)/(stride[1]*block[1]); - start[0] = space_dim1*mpi_rank; - start[1] = 0; - - break; - - case BYROW_SELECTNONE: - /* Each process takes a slabs of rows, there are - no selections for the last process. */ - block[0] = 1; - block[1] = 1; - stride[0] = 1; - stride[1] = 1; - count[0] = ((mpi_rank >= MAX(1,(mpi_size-2)))?0:space_dim1); - count[1] = space_dim2; - start[0] = mpi_rank*count[0]; - start[1] = 0; - - break; - - case BYROW_SELECTUNBALANCE: - /* The first one-third of the number of processes only - select top half of the domain, The rest will select the bottom - half of the domain. */ - - block[0] = 1; - count[0] = 2; - stride[0] = space_dim1*mpi_size/4+1; - block[1] = space_dim2; - count[1] = 1; - start[1] = 0; - stride[1] = 1; - if((mpi_rank *3)<(mpi_size*2)) start[0] = mpi_rank; - else start[0] = 1 + space_dim1*mpi_size/2 + (mpi_rank-2*mpi_size/3); - break; - - case BYROW_SELECTINCHUNK: - /* Each process will only select one chunk */ - - block[0] = 1; - count[0] = 1; - start[0] = mpi_rank*space_dim1; - stride[0]= 1; - block[1] = space_dim2; - count[1] = 1; - stride[1]= 1; - start[1] = 0; - - break; - - default: - /* Unknown mode. Set it to cover the whole dataset. */ - block[0] = space_dim1*mpi_size; - block[1] = space_dim2; - stride[0] = block[0]; - stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = 0; - start[1] = 0; - - break; + switch (mode) { + + case BYROW_CONT: + /* Each process takes a slabs of rows. */ + block[0] = 1; + block[1] = 1; + stride[0] = 1; + stride[1] = 1; + count[0] = space_dim1; + count[1] = space_dim2; + start[0] = (hsize_t)mpi_rank * count[0]; + start[1] = 0; + + break; + + case BYROW_DISCONT: + /* Each process takes several disjoint blocks. */ + block[0] = 1; + block[1] = 1; + stride[0] = 3; + stride[1] = 3; + count[0] = space_dim1 / (stride[0] * block[0]); + count[1] = (space_dim2) / (stride[1] * block[1]); + start[0] = space_dim1 * (hsize_t)mpi_rank; + start[1] = 0; + + break; + + case BYROW_SELECTNONE: + /* Each process takes a slabs of rows, there are + no selections for the last process. */ + block[0] = 1; + block[1] = 1; + stride[0] = 1; + stride[1] = 1; + count[0] = ((mpi_rank >= MAX(1, (mpi_size - 2))) ? 0 : space_dim1); + count[1] = space_dim2; + start[0] = (hsize_t)mpi_rank * count[0]; + start[1] = 0; + + break; + + case BYROW_SELECTUNBALANCE: + /* The first one-third of the number of processes only + select top half of the domain, The rest will select the bottom + half of the domain. */ + + block[0] = 1; + count[0] = 2; + stride[0] = (hsize_t)(space_dim1 * (hsize_t)mpi_size / 4 + 1); + block[1] = space_dim2; + count[1] = 1; + start[1] = 0; + stride[1] = 1; + if ((mpi_rank * 3) < (mpi_size * 2)) + start[0] = (hsize_t)mpi_rank; + else + start[0] = 1 + space_dim1 * (hsize_t)mpi_size / 2 + (hsize_t)(mpi_rank - 2 * mpi_size / 3); + break; + + case BYROW_SELECTINCHUNK: + /* Each process will only select one chunk */ + + block[0] = 1; + count[0] = 1; + start[0] = (hsize_t)mpi_rank * space_dim1; + stride[0] = 1; + block[1] = space_dim2; + count[1] = 1; + stride[1] = 1; + start[1] = 0; + + break; + + default: + /* Unknown mode. Set it to cover the whole dataset. */ + block[0] = space_dim1 * (hsize_t)mpi_size; + block[1] = space_dim2; + stride[0] = block[0]; + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = 0; + + break; } - if (VERBOSE_MED){ - HDprintf("start[]=(%lu,%lu), count[]=(%lu,%lu), stride[]=(%lu,%lu), block[]=(%lu,%lu), total datapoints=%lu\n", - (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], (unsigned long)count[1], - (unsigned long)stride[0], (unsigned long)stride[1], (unsigned long)block[0], (unsigned long)block[1], - (unsigned long)(block[0]*block[1]*count[0]*count[1])); + if (VERBOSE_MED) { + HDprintf("start[]=(%lu,%lu), count[]=(%lu,%lu), stride[]=(%lu,%lu), block[]=(%lu,%lu), total " + "datapoints=%lu\n", + (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], + (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1], + (unsigned long)block[0], (unsigned long)block[1], + (unsigned long)(block[0] * block[1] * count[0] * count[1])); } } - /* * Fill the dataset with trivial data for testing. * Assume dimension rank is 2. */ static void -ccdataset_fill(hsize_t start[], - hsize_t stride[], - hsize_t count[], - hsize_t block[], - DATATYPE * dataset, +ccdataset_fill(hsize_t start[], hsize_t stride[], hsize_t count[], hsize_t block[], DATATYPE *dataset, int mem_selection) { DATATYPE *dataptr = dataset; DATATYPE *tmptr; - hsize_t i,j,k1,k2,k=0; + hsize_t i, j, k1, k2, k = 0; /* put some trivial data in the data_array */ tmptr = dataptr; @@ -352,23 +339,23 @@ ccdataset_fill(hsize_t start[], through the pointer */ for (k1 = 0; k1 < count[0]; k1++) { - for(i = 0; i < block[0]; i++) { - for(k2 = 0; k2 < count[1]; k2++) { - for(j = 0;j < block[1]; j++) { + for (i = 0; i < block[0]; i++) { + for (k2 = 0; k2 < count[1]; k2++) { + for (j = 0; j < block[1]; j++) { - if (ALL != mem_selection) { - dataptr = tmptr + ((start[0]+k1*stride[0]+i)*space_dim2+ - start[1]+k2*stride[1]+j); - } - else { - dataptr = tmptr + k; - k++; - } + if (ALL != mem_selection) { + dataptr = tmptr + ((start[0] + k1 * stride[0] + i) * space_dim2 + start[1] + + k2 * stride[1] + j); + } + else { + dataptr = tmptr + k; + k++; + } - *dataptr = (DATATYPE)(k1+k2+i+j); - } + *dataptr = (DATATYPE)(k1 + k2 + i + j); + } + } } - } } } @@ -376,26 +363,24 @@ ccdataset_fill(hsize_t start[], * Print the first block of the content of the dataset. */ static void -ccdataset_print(hsize_t start[], - hsize_t block[], - DATATYPE * dataset) +ccdataset_print(hsize_t start[], hsize_t block[], DATATYPE *dataset) { DATATYPE *dataptr = dataset; - hsize_t i, j; + hsize_t i, j; /* print the column heading */ HDprintf("Print only the first block of the dataset\n"); HDprintf("%-8s", "Cols:"); - for (j=0; j < block[1]; j++){ - HDprintf("%3lu ", (unsigned long)(start[1]+j)); + for (j = 0; j < block[1]; j++) { + HDprintf("%3lu ", (unsigned long)(start[1] + j)); } HDprintf("\n"); /* print the slab data */ - for (i=0; i < block[0]; i++){ - HDprintf("Row %2lu: ", (unsigned long)(i+start[0])); - for (j=0; j < block[1]; j++){ + for (i = 0; i < block[0]; i++) { + HDprintf("Row %2lu: ", (unsigned long)(i + start[0])); + for (j = 0; j < block[1]; j++) { HDprintf("%03d ", *dataptr++); } HDprintf("\n"); @@ -406,24 +391,20 @@ ccdataset_print(hsize_t start[], * Print the content of the dataset. */ static int -ccdataset_vrfy(hsize_t start[], - hsize_t count[], - hsize_t stride[], - hsize_t block[], - DATATYPE *dataset, - DATATYPE *original, - int mem_selection) +ccdataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], DATATYPE *dataset, + DATATYPE *original, int mem_selection) { - hsize_t i, j,k1,k2,k=0; - int vrfyerrs; - DATATYPE *dataptr,*oriptr; + hsize_t i, j, k1, k2, k = 0; + int vrfyerrs; + DATATYPE *dataptr, *oriptr; /* print it if VERBOSE_MED */ if (VERBOSE_MED) { HDprintf("dataset_vrfy dumping:::\n"); HDprintf("start(%lu, %lu), count(%lu, %lu), stride(%lu, %lu), block(%lu, %lu)\n", - (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], (unsigned long)count[1], - (unsigned long)stride[0], (unsigned long)stride[1], (unsigned long)block[0], (unsigned long)block[1]); + (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], + (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1], + (unsigned long)block[0], (unsigned long)block[1]); HDprintf("original values:\n"); ccdataset_print(start, block, original); HDprintf("compared values:\n"); @@ -432,26 +413,25 @@ ccdataset_vrfy(hsize_t start[], vrfyerrs = 0; - for (k1=0;k1<count[0];k1++) { - for(i=0;i<block[0];i++) { - for(k2=0; k2<count[1];k2++) { - for(j=0;j<block[1];j++) { + for (k1 = 0; k1 < count[0]; k1++) { + for (i = 0; i < block[0]; i++) { + for (k2 = 0; k2 < count[1]; k2++) { + for (j = 0; j < block[1]; j++) { if (ALL != mem_selection) { - dataptr = dataset + ((start[0]+k1*stride[0]+i)*space_dim2+ - start[1]+k2*stride[1]+j); - oriptr = original + ((start[0]+k1*stride[0]+i)*space_dim2+ - start[1]+k2*stride[1]+j); + dataptr = dataset + ((start[0] + k1 * stride[0] + i) * space_dim2 + start[1] + + k2 * stride[1] + j); + oriptr = original + ((start[0] + k1 * stride[0] + i) * space_dim2 + start[1] + + k2 * stride[1] + j); } else { dataptr = dataset + k; - oriptr = original + k; + oriptr = original + k; k++; } - if (*dataptr != *oriptr){ - if (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED){ + if (*dataptr != *oriptr) { + if (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED) { HDprintf("Dataset Verify failed at [%lu][%lu]: expect %d, got %d\n", - (unsigned long)i, (unsigned long)j, - *(oriptr), *(dataptr)); + (unsigned long)i, (unsigned long)j, *(oriptr), *(dataptr)); } } } @@ -462,7 +442,7 @@ ccdataset_vrfy(hsize_t start[], HDprintf("[more errors ...]\n"); if (vrfyerrs) HDprintf("%d errors found in ccdataset_vrfy\n", vrfyerrs); - return(vrfyerrs); + return (vrfyerrs); } /* @@ -478,97 +458,91 @@ static void dataset_big_write(void) { - hid_t xfer_plist; /* Dataset transfer properties list */ - hid_t sid; /* Dataspace ID */ - hid_t file_dataspace; /* File dataspace ID */ - hid_t mem_dataspace; /* memory dataspace ID */ - hid_t dataset; - hid_t datatype; /* Datatype ID */ - hsize_t dims[RANK]; /* dataset dim sizes */ - hsize_t start[RANK]; /* for hyperslab setting */ - hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ - hsize_t block[RANK]; /* for hyperslab setting */ - hsize_t *coords = NULL; - int i; - herr_t ret; /* Generic return value */ - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hsize_t h; - size_t num_points; - B_DATATYPE * wdata; - + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset; + hsize_t dims[RANK]; /* dataset dim sizes */ + hsize_t start[RANK]; /* for hyperslab setting */ + hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ + hsize_t block[RANK]; /* for hyperslab setting */ + hsize_t * coords = NULL; + herr_t ret; /* Generic return value */ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + size_t num_points; + B_DATATYPE *wdata; /* allocate memory for data buffer */ - wdata = (B_DATATYPE *)HDmalloc(bigcount*sizeof(B_DATATYPE)); - VRFY((wdata != NULL), "wdata malloc succeeded"); + wdata = (B_DATATYPE *)HDmalloc(bigcount * sizeof(B_DATATYPE)); + VRFY_G((wdata != NULL), "wdata malloc succeeded"); /* setup file access template */ - acc_tpl = H5Pcreate (H5P_FILE_ACCESS); - VRFY((acc_tpl >= 0), "H5P_FILE_ACCESS"); + acc_tpl = H5Pcreate(H5P_FILE_ACCESS); + VRFY_G((acc_tpl >= 0), "H5P_FILE_ACCESS"); H5Pset_fapl_mpio(acc_tpl, MPI_COMM_WORLD, MPI_INFO_NULL); /* create the file collectively */ fid = H5Fcreate(FILENAME[0], H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); - VRFY((fid >= 0), "H5Fcreate succeeded"); + VRFY_G((fid >= 0), "H5Fcreate succeeded"); /* Release file-access template */ ret = H5Pclose(acc_tpl); - VRFY((ret >= 0), ""); - + VRFY_G((ret >= 0), ""); /* Each process takes a slabs of rows. */ - if (mpi_rank == 0) + if (mpi_rank_g == 0) HDprintf("\nTesting Dataset1 write by ROW\n"); /* Create a large dataset */ dims[0] = bigcount; - dims[1] = mpi_size; + dims[1] = (hsize_t)mpi_size_g; - sid = H5Screate_simple (RANK, dims, NULL); - VRFY((sid >= 0), "H5Screate_simple succeeded"); + sid = H5Screate_simple(RANK, dims, NULL); + VRFY_G((sid >= 0), "H5Screate_simple succeeded"); dataset = H5Dcreate2(fid, DATASET1, H5T_NATIVE_LLONG, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); - VRFY((dataset >= 0), "H5Dcreate2 succeeded"); + VRFY_G((dataset >= 0), "H5Dcreate2 succeeded"); H5Sclose(sid); - block[0] = dims[0]/mpi_size; - block[1] = dims[1]; + block[0] = dims[0] / (hsize_t)mpi_size_g; + block[1] = dims[1]; stride[0] = block[0]; stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = mpi_rank*block[0]; - start[1] = 0; + count[0] = 1; + count[1] = 1; + start[0] = (hsize_t)mpi_rank_g * block[0]; + start[1] = 0; /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset); - VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + file_dataspace = H5Dget_space(dataset); + VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + VRFY_G((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); - VRFY((mem_dataspace >= 0), ""); + mem_dataspace = H5Screate_simple(RANK, block, NULL); + VRFY_G((mem_dataspace >= 0), ""); /* fill the local slab with some trivial data */ fill_datasets(start, block, wdata); MESG("data_array initialized"); - if(VERBOSE_MED){ + if (VERBOSE_MED) { MESG("data_array created"); dataset_print(start, block, wdata); } /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); - VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY_G((xfer_plist >= 0), "H5Pcreate xfer succeeded"); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + VRFY_G((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY_G((ret >= 0), "set independent IO collectively succeeded"); } - ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, - xfer_plist, wdata); - VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); + ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, wdata); + VRFY_G((ret >= 0), "H5Dwrite dataset1 succeeded"); /* release all temporary handles. */ H5Sclose(file_dataspace); @@ -576,62 +550,60 @@ dataset_big_write(void) H5Pclose(xfer_plist); ret = H5Dclose(dataset); - VRFY((ret >= 0), "H5Dclose1 succeeded"); - + VRFY_G((ret >= 0), "H5Dclose1 succeeded"); /* Each process takes a slabs of cols. */ - if (mpi_rank == 0) + if (mpi_rank_g == 0) HDprintf("\nTesting Dataset2 write by COL\n"); /* Create a large dataset */ dims[0] = bigcount; - dims[1] = mpi_size; + dims[1] = (hsize_t)mpi_size_g; - sid = H5Screate_simple (RANK, dims, NULL); - VRFY((sid >= 0), "H5Screate_simple succeeded"); + sid = H5Screate_simple(RANK, dims, NULL); + VRFY_G((sid >= 0), "H5Screate_simple succeeded"); dataset = H5Dcreate2(fid, DATASET2, H5T_NATIVE_LLONG, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); - VRFY((dataset >= 0), "H5Dcreate2 succeeded"); + VRFY_G((dataset >= 0), "H5Dcreate2 succeeded"); H5Sclose(sid); - block[0] = dims[0]; - block[1] = dims[1]/mpi_size; + block[0] = dims[0]; + block[1] = dims[1] / (hsize_t)mpi_size_g; stride[0] = block[0]; stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = 0; - start[1] = mpi_rank*block[1]; + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = (hsize_t)mpi_rank_g * block[1]; /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset); - VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + file_dataspace = H5Dget_space(dataset); + VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + VRFY_G((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); - VRFY((mem_dataspace >= 0), ""); + mem_dataspace = H5Screate_simple(RANK, block, NULL); + VRFY_G((mem_dataspace >= 0), ""); /* fill the local slab with some trivial data */ fill_datasets(start, block, wdata); MESG("data_array initialized"); - if(VERBOSE_MED){ + if (VERBOSE_MED) { MESG("data_array created"); dataset_print(start, block, wdata); } /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); - VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY_G((xfer_plist >= 0), "H5Pcreate xfer succeeded"); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + VRFY_G((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY_G((ret >= 0), "set independent IO collectively succeeded"); } - ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, - xfer_plist, wdata); - VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); + ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, wdata); + VRFY_G((ret >= 0), "H5Dwrite dataset1 succeeded"); /* release all temporary handles. */ H5Sclose(file_dataspace); @@ -639,63 +611,60 @@ dataset_big_write(void) H5Pclose(xfer_plist); ret = H5Dclose(dataset); - VRFY((ret >= 0), "H5Dclose1 succeeded"); - - + VRFY_G((ret >= 0), "H5Dclose1 succeeded"); /* ALL selection */ - if (mpi_rank == 0) + if (mpi_rank_g == 0) HDprintf("\nTesting Dataset3 write select ALL proc 0, NONE others\n"); /* Create a large dataset */ dims[0] = bigcount; dims[1] = 1; - sid = H5Screate_simple (RANK, dims, NULL); - VRFY((sid >= 0), "H5Screate_simple succeeded"); + sid = H5Screate_simple(RANK, dims, NULL); + VRFY_G((sid >= 0), "H5Screate_simple succeeded"); dataset = H5Dcreate2(fid, DATASET3, H5T_NATIVE_LLONG, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); - VRFY((dataset >= 0), "H5Dcreate2 succeeded"); + VRFY_G((dataset >= 0), "H5Dcreate2 succeeded"); H5Sclose(sid); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset); - VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); - if(mpi_rank == 0) { + file_dataspace = H5Dget_space(dataset); + VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded"); + if (mpi_rank_g == 0) { ret = H5Sselect_all(file_dataspace); - VRFY((ret >= 0), "H5Sset_all succeeded"); + VRFY_G((ret >= 0), "H5Sset_all succeeded"); } else { ret = H5Sselect_none(file_dataspace); - VRFY((ret >= 0), "H5Sset_none succeeded"); + VRFY_G((ret >= 0), "H5Sset_none succeeded"); } /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, dims, NULL); - VRFY((mem_dataspace >= 0), ""); - if(mpi_rank != 0) { + mem_dataspace = H5Screate_simple(RANK, dims, NULL); + VRFY_G((mem_dataspace >= 0), ""); + if (mpi_rank_g != 0) { ret = H5Sselect_none(mem_dataspace); - VRFY((ret >= 0), "H5Sset_none succeeded"); + VRFY_G((ret >= 0), "H5Sset_none succeeded"); } /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); - VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY_G((xfer_plist >= 0), "H5Pcreate xfer succeeded"); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + VRFY_G((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY_G((ret >= 0), "set independent IO collectively succeeded"); } /* fill the local slab with some trivial data */ fill_datasets(start, dims, wdata); MESG("data_array initialized"); - if(VERBOSE_MED){ + if (VERBOSE_MED) { MESG("data_array created"); } - ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, - xfer_plist, wdata); - VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); + ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, wdata); + VRFY_G((ret >= 0), "H5Dwrite dataset1 succeeded"); /* release all temporary handles. */ H5Sclose(file_dataspace); @@ -703,47 +672,48 @@ dataset_big_write(void) H5Pclose(xfer_plist); ret = H5Dclose(dataset); - VRFY((ret >= 0), "H5Dclose1 succeeded"); + VRFY_G((ret >= 0), "H5Dclose1 succeeded"); /* Point selection */ - if (mpi_rank == 0) + if (mpi_rank_g == 0) HDprintf("\nTesting Dataset4 write point selection\n"); /* Create a large dataset */ dims[0] = bigcount; - dims[1] = mpi_size * 4; + dims[1] = (hsize_t)(mpi_size_g * 4); - sid = H5Screate_simple (RANK, dims, NULL); - VRFY((sid >= 0), "H5Screate_simple succeeded"); + sid = H5Screate_simple(RANK, dims, NULL); + VRFY_G((sid >= 0), "H5Screate_simple succeeded"); dataset = H5Dcreate2(fid, DATASET4, H5T_NATIVE_LLONG, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); - VRFY((dataset >= 0), "H5Dcreate2 succeeded"); + VRFY_G((dataset >= 0), "H5Dcreate2 succeeded"); H5Sclose(sid); - block[0] = dims[0]/2; - block[1] = 2; - stride[0] = dims[0]/2; + block[0] = dims[0] / 2; + block[1] = 2; + stride[0] = dims[0] / 2; stride[1] = 2; - count[0] = 1; - count[1] = 1; - start[0] = 0; - start[1] = dims[1]/mpi_size * mpi_rank; + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = dims[1] / (hsize_t)mpi_size_g * (hsize_t)mpi_rank_g; num_points = bigcount; coords = (hsize_t *)HDmalloc(num_points * RANK * sizeof(hsize_t)); - VRFY((coords != NULL), "coords malloc succeeded"); + VRFY_G((coords != NULL), "coords malloc succeeded"); - set_coords (start, count, stride, block, num_points, coords, IN_ORDER); + set_coords(start, count, stride, block, num_points, coords, IN_ORDER); /* create a file dataspace */ - file_dataspace = H5Dget_space (dataset); - VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + file_dataspace = H5Dget_space(dataset); + VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); - VRFY((ret >= 0), "H5Sselect_elements succeeded"); + VRFY_G((ret >= 0), "H5Sselect_elements succeeded"); - if(coords) free(coords); + if (coords) + free(coords); fill_datasets(start, block, wdata); MESG("data_array initialized"); - if(VERBOSE_MED){ + if (VERBOSE_MED) { MESG("data_array created"); dataset_print(start, block, wdata); } @@ -753,22 +723,21 @@ dataset_big_write(void) * even if we only pass only a single value. Attempting anything else * appears to cause problems with 32 bit compilers. */ - mem_dataspace = H5Screate_simple (1, dims, NULL); - VRFY((mem_dataspace >= 0), ""); + mem_dataspace = H5Screate_simple(1, dims, NULL); + VRFY_G((mem_dataspace >= 0), ""); /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); - VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY_G((xfer_plist >= 0), "H5Pcreate xfer succeeded"); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + VRFY_G((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY_G((ret >= 0), "set independent IO collectively succeeded"); } - ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, - xfer_plist, wdata); - VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); + ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, wdata); + VRFY_G((ret >= 0), "H5Dwrite dataset1 succeeded"); /* release all temporary handles. */ H5Sclose(file_dataspace); @@ -776,7 +745,7 @@ dataset_big_write(void) H5Pclose(xfer_plist); ret = H5Dclose(dataset); - VRFY((ret >= 0), "H5Dclose1 succeeded"); + VRFY_G((ret >= 0), "H5Dclose1 succeeded"); HDfree(wdata); H5Fclose(fid); @@ -794,223 +763,226 @@ dataset_big_write(void) static void dataset_big_read(void) { - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hid_t xfer_plist; /* Dataset transfer properties list */ - hid_t file_dataspace; /* File dataspace ID */ - hid_t mem_dataspace; /* memory dataspace ID */ - hid_t dataset; - B_DATATYPE *rdata = NULL; /* data buffer */ - B_DATATYPE *wdata = NULL; /* expected data buffer */ - hsize_t dims[RANK]; /* dataset dim sizes */ - hsize_t start[RANK]; /* for hyperslab setting */ - hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ - hsize_t block[RANK]; /* for hyperslab setting */ - int i,j,k; - hsize_t h; - size_t num_points; - hsize_t *coords = NULL; - herr_t ret; /* Generic return value */ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset; + B_DATATYPE *rdata = NULL; /* data buffer */ + B_DATATYPE *wdata = NULL; /* expected data buffer */ + hsize_t dims[RANK]; /* dataset dim sizes */ + hsize_t start[RANK]; /* for hyperslab setting */ + hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ + hsize_t block[RANK]; /* for hyperslab setting */ + size_t num_points; + hsize_t * coords = NULL; + herr_t ret; /* Generic return value */ /* allocate memory for data buffer */ - rdata = (B_DATATYPE *)HDmalloc(bigcount*sizeof(B_DATATYPE)); - VRFY((rdata != NULL), "rdata malloc succeeded"); - wdata = (B_DATATYPE *)HDmalloc(bigcount*sizeof(B_DATATYPE)); - VRFY((wdata != NULL), "wdata malloc succeeded"); + rdata = (B_DATATYPE *)HDmalloc(bigcount * sizeof(B_DATATYPE)); + VRFY_G((rdata != NULL), "rdata malloc succeeded"); + wdata = (B_DATATYPE *)HDmalloc(bigcount * sizeof(B_DATATYPE)); + VRFY_G((wdata != NULL), "wdata malloc succeeded"); - HDmemset(rdata, 0, bigcount*sizeof(B_DATATYPE)); + HDmemset(rdata, 0, bigcount * sizeof(B_DATATYPE)); /* setup file access template */ - acc_tpl = H5Pcreate (H5P_FILE_ACCESS); - VRFY((acc_tpl >= 0), "H5P_FILE_ACCESS"); + acc_tpl = H5Pcreate(H5P_FILE_ACCESS); + VRFY_G((acc_tpl >= 0), "H5P_FILE_ACCESS"); H5Pset_fapl_mpio(acc_tpl, MPI_COMM_WORLD, MPI_INFO_NULL); /* open the file collectively */ - fid=H5Fopen(FILENAME[0],H5F_ACC_RDONLY,acc_tpl); - VRFY((fid >= 0), "H5Fopen succeeded"); + fid = H5Fopen(FILENAME[0], H5F_ACC_RDONLY, acc_tpl); + VRFY_G((fid >= 0), "H5Fopen succeeded"); /* Release file-access template */ ret = H5Pclose(acc_tpl); - VRFY((ret >= 0), ""); + VRFY_G((ret >= 0), ""); - if (mpi_rank == 0) + if (mpi_rank_g == 0) HDprintf("\nRead Testing Dataset1 by COL\n"); dataset = H5Dopen2(fid, DATASET1, H5P_DEFAULT); - VRFY((dataset >= 0), "H5Dopen2 succeeded"); + VRFY_G((dataset >= 0), "H5Dopen2 succeeded"); dims[0] = bigcount; - dims[1] = mpi_size; + dims[1] = (hsize_t)mpi_size_g; /* Each process takes a slabs of cols. */ - block[0] = dims[0]; - block[1] = dims[1]/mpi_size; + block[0] = dims[0]; + block[1] = dims[1] / (hsize_t)mpi_size_g; stride[0] = block[0]; stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = 0; - start[1] = mpi_rank*block[1]; + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = (hsize_t)mpi_rank_g * block[1]; /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset); - VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + file_dataspace = H5Dget_space(dataset); + VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + VRFY_G((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); - VRFY((mem_dataspace >= 0), ""); + mem_dataspace = H5Screate_simple(RANK, block, NULL); + VRFY_G((mem_dataspace >= 0), ""); /* fill dataset with test data */ fill_datasets(start, block, wdata); MESG("data_array initialized"); - if(VERBOSE_MED){ - MESG("data_array created"); + if (VERBOSE_MED) { + MESG("data_array created"); } /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); - VRFY((xfer_plist >= 0), ""); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY_G((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + VRFY_G((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY_G((ret >= 0), "set independent IO collectively succeeded"); } /* read data collectively */ - ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, - xfer_plist, rdata); - VRFY((ret >= 0), "H5Dread dataset1 succeeded"); + ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, rdata); + VRFY_G((ret >= 0), "H5Dread dataset1 succeeded"); /* verify the read data with original expected data */ ret = verify_data(start, count, stride, block, rdata, wdata); - if(ret) {HDfprintf(stderr, "verify failed\n"); exit(1);} + if (ret) { + HDfprintf(stderr, "verify failed\n"); + exit(1); + } /* release all temporary handles. */ H5Sclose(file_dataspace); H5Sclose(mem_dataspace); H5Pclose(xfer_plist); ret = H5Dclose(dataset); - VRFY((ret >= 0), "H5Dclose1 succeeded"); - + VRFY_G((ret >= 0), "H5Dclose1 succeeded"); - if (mpi_rank == 0) + if (mpi_rank_g == 0) HDprintf("\nRead Testing Dataset2 by ROW\n"); - HDmemset(rdata, 0, bigcount*sizeof(B_DATATYPE)); + HDmemset(rdata, 0, bigcount * sizeof(B_DATATYPE)); dataset = H5Dopen2(fid, DATASET2, H5P_DEFAULT); - VRFY((dataset >= 0), "H5Dopen2 succeeded"); + VRFY_G((dataset >= 0), "H5Dopen2 succeeded"); dims[0] = bigcount; - dims[1] = mpi_size; + dims[1] = (hsize_t)mpi_size_g; /* Each process takes a slabs of rows. */ - block[0] = dims[0]/mpi_size; - block[1] = dims[1]; + block[0] = dims[0] / (hsize_t)mpi_size_g; + block[1] = dims[1]; stride[0] = block[0]; stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = mpi_rank*block[0]; - start[1] = 0; + count[0] = 1; + count[1] = 1; + start[0] = (hsize_t)mpi_rank_g * block[0]; + start[1] = 0; /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset); - VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + file_dataspace = H5Dget_space(dataset); + VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + VRFY_G((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); - VRFY((mem_dataspace >= 0), ""); + mem_dataspace = H5Screate_simple(RANK, block, NULL); + VRFY_G((mem_dataspace >= 0), ""); /* fill dataset with test data */ fill_datasets(start, block, wdata); MESG("data_array initialized"); - if(VERBOSE_MED){ + if (VERBOSE_MED) { MESG("data_array created"); } /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); - VRFY((xfer_plist >= 0), ""); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY_G((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + VRFY_G((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY_G((ret >= 0), "set independent IO collectively succeeded"); } /* read data collectively */ - ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, - xfer_plist, rdata); - VRFY((ret >= 0), "H5Dread dataset2 succeeded"); + ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, rdata); + VRFY_G((ret >= 0), "H5Dread dataset2 succeeded"); /* verify the read data with original expected data */ ret = verify_data(start, count, stride, block, rdata, wdata); - if(ret) {HDfprintf(stderr, "verify failed\n"); exit(1);} + if (ret) { + HDfprintf(stderr, "verify failed\n"); + exit(1); + } /* release all temporary handles. */ H5Sclose(file_dataspace); H5Sclose(mem_dataspace); H5Pclose(xfer_plist); ret = H5Dclose(dataset); - VRFY((ret >= 0), "H5Dclose1 succeeded"); + VRFY_G((ret >= 0), "H5Dclose1 succeeded"); - if (mpi_rank == 0) + if (mpi_rank_g == 0) HDprintf("\nRead Testing Dataset3 read select ALL proc 0, NONE others\n"); - HDmemset(rdata, 0, bigcount*sizeof(B_DATATYPE)); + HDmemset(rdata, 0, bigcount * sizeof(B_DATATYPE)); dataset = H5Dopen2(fid, DATASET3, H5P_DEFAULT); - VRFY((dataset >= 0), "H5Dopen2 succeeded"); + VRFY_G((dataset >= 0), "H5Dopen2 succeeded"); dims[0] = bigcount; dims[1] = 1; /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset); - VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); - if(mpi_rank == 0) { + file_dataspace = H5Dget_space(dataset); + VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded"); + if (mpi_rank_g == 0) { ret = H5Sselect_all(file_dataspace); - VRFY((ret >= 0), "H5Sset_all succeeded"); + VRFY_G((ret >= 0), "H5Sset_all succeeded"); } else { ret = H5Sselect_none(file_dataspace); - VRFY((ret >= 0), "H5Sset_none succeeded"); + VRFY_G((ret >= 0), "H5Sset_none succeeded"); } /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, dims, NULL); - VRFY((mem_dataspace >= 0), ""); - if(mpi_rank != 0) { + mem_dataspace = H5Screate_simple(RANK, dims, NULL); + VRFY_G((mem_dataspace >= 0), ""); + if (mpi_rank_g != 0) { ret = H5Sselect_none(mem_dataspace); - VRFY((ret >= 0), "H5Sset_none succeeded"); + VRFY_G((ret >= 0), "H5Sset_none succeeded"); } /* fill dataset with test data */ fill_datasets(start, dims, wdata); MESG("data_array initialized"); - if(VERBOSE_MED){ + if (VERBOSE_MED) { MESG("data_array created"); } /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); - VRFY((xfer_plist >= 0), ""); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY_G((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + VRFY_G((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY_G((ret >= 0), "set independent IO collectively succeeded"); } /* read data collectively */ - ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, - xfer_plist, rdata); - VRFY((ret >= 0), "H5Dread dataset3 succeeded"); + ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, rdata); + VRFY_G((ret >= 0), "H5Dread dataset3 succeeded"); - if(mpi_rank == 0) { + if (mpi_rank_g == 0) { /* verify the read data with original expected data */ ret = verify_data(start, count, stride, block, rdata, wdata); - if(ret) {HDfprintf(stderr, "verify failed\n"); exit(1);} + if (ret) { + HDfprintf(stderr, "verify failed\n"); + exit(1); + } } /* release all temporary handles. */ @@ -1018,28 +990,28 @@ dataset_big_read(void) H5Sclose(mem_dataspace); H5Pclose(xfer_plist); ret = H5Dclose(dataset); - VRFY((ret >= 0), "H5Dclose1 succeeded"); + VRFY_G((ret >= 0), "H5Dclose1 succeeded"); - if (mpi_rank == 0) + if (mpi_rank_g == 0) HDprintf("\nRead Testing Dataset4 with Point selection\n"); dataset = H5Dopen2(fid, DATASET4, H5P_DEFAULT); - VRFY((dataset >= 0), "H5Dopen2 succeeded"); + VRFY_G((dataset >= 0), "H5Dopen2 succeeded"); dims[0] = bigcount; - dims[1] = mpi_size * 4; + dims[1] = (hsize_t)(mpi_size_g * 4); - block[0] = dims[0]/2; - block[1] = 2; - stride[0] = dims[0]/2; + block[0] = dims[0] / 2; + block[1] = 2; + stride[0] = dims[0] / 2; stride[1] = 2; - count[0] = 1; - count[1] = 1; - start[0] = 0; - start[1] = dims[1]/mpi_size * mpi_rank; + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = dims[1] / (hsize_t)mpi_size_g * (hsize_t)mpi_rank_g; fill_datasets(start, block, wdata); MESG("data_array initialized"); - if(VERBOSE_MED){ + if (VERBOSE_MED) { MESG("data_array created"); dataset_print(start, block, wdata); } @@ -1047,49 +1019,52 @@ dataset_big_read(void) num_points = bigcount; coords = (hsize_t *)HDmalloc(num_points * RANK * sizeof(hsize_t)); - VRFY((coords != NULL), "coords malloc succeeded"); + VRFY_G((coords != NULL), "coords malloc succeeded"); - set_coords (start, count, stride, block, num_points, coords, IN_ORDER); + set_coords(start, count, stride, block, num_points, coords, IN_ORDER); /* create a file dataspace */ - file_dataspace = H5Dget_space (dataset); - VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + file_dataspace = H5Dget_space(dataset); + VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); - VRFY((ret >= 0), "H5Sselect_elements succeeded"); + VRFY_G((ret >= 0), "H5Sselect_elements succeeded"); - if(coords) HDfree(coords); + if (coords) + HDfree(coords); /* create a memory dataspace */ /* Warning: H5Screate_simple requires an array of hsize_t elements * even if we only pass only a single value. Attempting anything else * appears to cause problems with 32 bit compilers. */ - mem_dataspace = H5Screate_simple (1, dims, NULL); - VRFY((mem_dataspace >= 0), ""); + mem_dataspace = H5Screate_simple(1, dims, NULL); + VRFY_G((mem_dataspace >= 0), ""); /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); - VRFY((xfer_plist >= 0), ""); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY_G((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + VRFY_G((ret >= 0), "H5Pcreate xfer succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY_G((ret >= 0), "set independent IO collectively succeeded"); } /* read data collectively */ - ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, - xfer_plist, rdata); - VRFY((ret >= 0), "H5Dread dataset1 succeeded"); + ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, rdata); + VRFY_G((ret >= 0), "H5Dread dataset1 succeeded"); ret = verify_data(start, count, stride, block, rdata, wdata); - if(ret) {HDfprintf(stderr, "verify failed\n"); exit(1);} + if (ret) { + HDfprintf(stderr, "verify failed\n"); + exit(1); + } /* release all temporary handles. */ H5Sclose(file_dataspace); H5Sclose(mem_dataspace); H5Pclose(xfer_plist); ret = H5Dclose(dataset); - VRFY((ret >= 0), "H5Dclose1 succeeded"); + VRFY_G((ret >= 0), "H5Dclose1 succeeded"); HDfree(wdata); HDfree(rdata); @@ -1100,26 +1075,110 @@ dataset_big_read(void) * expect to read it... */ file_dataspace = -1; - mem_dataspace = -1; - xfer_plist = -1; - dataset = -1; + mem_dataspace = -1; + xfer_plist = -1; + dataset = -1; /* release all temporary handles. */ - if (file_dataspace != -1) H5Sclose(file_dataspace); - if (mem_dataspace != -1) H5Sclose(mem_dataspace); - if (xfer_plist != -1) H5Pclose(xfer_plist); + if (file_dataspace != -1) + H5Sclose(file_dataspace); + if (mem_dataspace != -1) + H5Sclose(mem_dataspace); + if (xfer_plist != -1) + H5Pclose(xfer_plist); if (dataset != -1) { ret = H5Dclose(dataset); - VRFY((ret >= 0), "H5Dclose1 succeeded"); + VRFY_G((ret >= 0), "H5Dclose1 succeeded"); } H5Fclose(fid); /* release data buffers */ - if(rdata) HDfree(rdata); - if(wdata) HDfree(wdata); + if (rdata) + HDfree(rdata); + if (wdata) + HDfree(wdata); } /* dataset_large_readAll */ +static void +single_rank_independent_io(void) +{ + if (mpi_rank_g == 0) + HDprintf("\nSingle Rank Independent I/O\n"); + + if (MAIN_PROCESS) { + hsize_t dims[] = {LARGE_DIM}; + hid_t file_id = -1; + hid_t fapl_id = -1; + hid_t dset_id = -1; + hid_t fspace_id = -1; + hid_t mspace_id = -1; + herr_t ret; + int * data = NULL; + uint64_t i; + + fapl_id = H5Pcreate(H5P_FILE_ACCESS); + VRFY_G((fapl_id >= 0), "H5P_FILE_ACCESS"); + + H5Pset_fapl_mpio(fapl_id, MPI_COMM_SELF, MPI_INFO_NULL); + file_id = H5Fcreate(FILENAME[1], H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); + VRFY_G((file_id >= 0), "H5Dcreate2 succeeded"); + + fspace_id = H5Screate_simple(1, dims, NULL); + VRFY_G((fspace_id >= 0), "H5Screate_simple fspace_id succeeded"); + + /* + * Create and write to a >2GB dataset from a single rank. + */ + dset_id = H5Dcreate2(file_id, "test_dset", H5T_NATIVE_INT, fspace_id, H5P_DEFAULT, H5P_DEFAULT, + H5P_DEFAULT); + + VRFY_G((dset_id >= 0), "H5Dcreate2 succeeded"); + + data = malloc(LARGE_DIM * sizeof(int)); + + /* Initialize data */ + for (i = 0; i < LARGE_DIM; i++) + data[i] = (int)(i % (uint64_t)DXFER_BIGCOUNT); + + if (mpi_rank_g == 0) + H5Sselect_all(fspace_id); + else + H5Sselect_none(fspace_id); + + dims[0] = LARGE_DIM; + mspace_id = H5Screate_simple(1, dims, NULL); + VRFY_G((mspace_id >= 0), "H5Screate_simple mspace_id succeeded"); + + /* Write data */ + H5Dwrite(dset_id, H5T_NATIVE_INT, mspace_id, fspace_id, H5P_DEFAULT, data); + VRFY_G((ret >= 0), "H5Dwrite succeeded"); + + /* Wipe buffer */ + HDmemset(data, 0, LARGE_DIM * sizeof(int)); + + /* Read data back */ + H5Dread(dset_id, H5T_NATIVE_INT, mspace_id, fspace_id, H5P_DEFAULT, data); + VRFY_G((ret >= 0), "H5Dread succeeded"); + + /* Verify data */ + for (i = 0; i < LARGE_DIM; i++) + if (data[i] != (int)(i % (uint64_t)DXFER_BIGCOUNT)) { + HDfprintf(stderr, "verify failed\n"); + exit(1); + } + + free(data); + H5Sclose(mspace_id); + H5Sclose(fspace_id); + H5Pclose(fapl_id); + H5Dclose(dset_id); + H5Fclose(file_id); + + HDremove(FILENAME[1]); + } + MPI_Barrier(MPI_COMM_WORLD); +} /* * Create the appropriate File access property list @@ -1127,54 +1186,53 @@ dataset_big_read(void) hid_t create_faccess_plist(MPI_Comm comm, MPI_Info info, int l_facc_type) { - hid_t ret_pl = -1; - herr_t ret; /* generic return value */ - int mpi_rank; /* mpi variables */ + hid_t ret_pl = -1; + herr_t ret; /* generic return value */ + int mpi_rank; /* mpi variables */ /* need the rank for error checking macros */ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - ret_pl = H5Pcreate (H5P_FILE_ACCESS); - VRFY((ret_pl >= 0), "H5P_FILE_ACCESS"); + ret_pl = H5Pcreate(H5P_FILE_ACCESS); + VRFY_G((ret_pl >= 0), "H5P_FILE_ACCESS"); if (l_facc_type == FACC_DEFAULT) - return (ret_pl); + return (ret_pl); - if (l_facc_type == FACC_MPIO){ - /* set Parallel access with communicator */ - ret = H5Pset_fapl_mpio(ret_pl, comm, info); - VRFY((ret >= 0), ""); + if (l_facc_type == FACC_MPIO) { + /* set Parallel access with communicator */ + ret = H5Pset_fapl_mpio(ret_pl, comm, info); + VRFY_G((ret >= 0), ""); ret = H5Pset_all_coll_metadata_ops(ret_pl, TRUE); - VRFY((ret >= 0), ""); + VRFY_G((ret >= 0), ""); ret = H5Pset_coll_metadata_write(ret_pl, TRUE); - VRFY((ret >= 0), ""); - return(ret_pl); + VRFY_G((ret >= 0), ""); + return (ret_pl); } - if (l_facc_type == (FACC_MPIO | FACC_SPLIT)){ - hid_t mpio_pl; - - mpio_pl = H5Pcreate (H5P_FILE_ACCESS); - VRFY((mpio_pl >= 0), ""); - /* set Parallel access with communicator */ - ret = H5Pset_fapl_mpio(mpio_pl, comm, info); - VRFY((ret >= 0), ""); - - /* setup file access template */ - ret_pl = H5Pcreate (H5P_FILE_ACCESS); - VRFY((ret_pl >= 0), ""); - /* set Parallel access with communicator */ - ret = H5Pset_fapl_split(ret_pl, ".meta", mpio_pl, ".raw", mpio_pl); - VRFY((ret >= 0), "H5Pset_fapl_split succeeded"); - H5Pclose(mpio_pl); - return(ret_pl); + if (l_facc_type == (FACC_MPIO | FACC_SPLIT)) { + hid_t mpio_pl; + + mpio_pl = H5Pcreate(H5P_FILE_ACCESS); + VRFY_G((mpio_pl >= 0), ""); + /* set Parallel access with communicator */ + ret = H5Pset_fapl_mpio(mpio_pl, comm, info); + VRFY_G((ret >= 0), ""); + + /* setup file access template */ + ret_pl = H5Pcreate(H5P_FILE_ACCESS); + VRFY_G((ret_pl >= 0), ""); + /* set Parallel access with communicator */ + ret = H5Pset_fapl_split(ret_pl, ".meta", mpio_pl, ".raw", mpio_pl); + VRFY_G((ret >= 0), "H5Pset_fapl_split succeeded"); + H5Pclose(mpio_pl); + return (ret_pl); } /* unknown file access types */ return (ret_pl); } - /*------------------------------------------------------------------------- * Function: coll_chunk1 * @@ -1188,8 +1246,6 @@ create_faccess_plist(MPI_Comm comm, MPI_Info info, int l_facc_type) * Programmer: Unknown * July 12th, 2004 * - * Modifications: - * *------------------------------------------------------------------------- */ @@ -1214,8 +1270,8 @@ void coll_chunk1(void) { const char *filename = FILENAME[0]; - if (mpi_rank == 0) - HDprintf("coll_chunk1\n"); + if (mpi_rank_g == 0) + HDprintf("\nCollective chunk I/O Test #1\n"); coll_chunktest(filename, 1, BYROW_CONT, API_NONE, HYPER, HYPER, OUT_OF_ORDER); coll_chunktest(filename, 1, BYROW_CONT, API_NONE, HYPER, POINT, OUT_OF_ORDER); @@ -1228,7 +1284,6 @@ coll_chunk1(void) coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, HYPER, IN_ORDER); } - /*------------------------------------------------------------------------- * Function: coll_chunk2 * @@ -1247,7 +1302,7 @@ coll_chunk1(void) *------------------------------------------------------------------------- */ - /* ------------------------------------------------------------------------ +/* ------------------------------------------------------------------------ * Descriptions for the selection: many disjoint selections inside one chunk * Two dimensions, * @@ -1268,8 +1323,8 @@ void coll_chunk2(void) { const char *filename = FILENAME[0]; - if (mpi_rank == 0) - HDprintf("coll_chunk2\n"); + if (mpi_rank_g == 0) + HDprintf("\nCollective chunk I/O Test #2\n"); coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, HYPER, HYPER, OUT_OF_ORDER); coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, HYPER, POINT, OUT_OF_ORDER); @@ -1282,7 +1337,6 @@ coll_chunk2(void) coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, HYPER, IN_ORDER); } - /*------------------------------------------------------------------------- * Function: coll_chunk3 * @@ -1296,13 +1350,11 @@ coll_chunk2(void) * Programmer: Unknown * July 12th, 2004 * - * Modifications: - * *------------------------------------------------------------------------- */ /* ------------------------------------------------------------------------ - * Descriptions for the selection: one singular selection accross many chunks + * Descriptions for the selection: one singular selection across many chunks * Two dimensions, Num of chunks = 2* mpi_size * * dim1 = space_dim1*mpi_size @@ -1323,21 +1375,20 @@ void coll_chunk3(void) { const char *filename = FILENAME[0]; - if (mpi_rank == 0) - HDprintf("coll_chunk3\n"); - - coll_chunktest(filename, mpi_size, BYROW_CONT, API_NONE, HYPER, HYPER, OUT_OF_ORDER); - coll_chunktest(filename, mpi_size, BYROW_CONT, API_NONE, HYPER, POINT, OUT_OF_ORDER); - coll_chunktest(filename, mpi_size, BYROW_CONT, API_NONE, POINT, ALL, OUT_OF_ORDER); - coll_chunktest(filename, mpi_size, BYROW_CONT, API_NONE, POINT, POINT, OUT_OF_ORDER); - coll_chunktest(filename, mpi_size, BYROW_CONT, API_NONE, POINT, HYPER, OUT_OF_ORDER); - - coll_chunktest(filename, mpi_size, BYROW_CONT, API_NONE, POINT, ALL, IN_ORDER); - coll_chunktest(filename, mpi_size, BYROW_CONT, API_NONE, POINT, POINT, IN_ORDER); - coll_chunktest(filename, mpi_size, BYROW_CONT, API_NONE, POINT, HYPER, IN_ORDER); + if (mpi_rank_g == 0) + HDprintf("\nCollective chunk I/O Test #3\n"); + + coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, HYPER, HYPER, OUT_OF_ORDER); + coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, HYPER, POINT, OUT_OF_ORDER); + coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, ALL, OUT_OF_ORDER); + coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, POINT, OUT_OF_ORDER); + coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, HYPER, OUT_OF_ORDER); + + coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, ALL, IN_ORDER); + coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, POINT, IN_ORDER); + coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, HYPER, IN_ORDER); } - //------------------------------------------------------------------------- // Borrowed/Modified (slightly) from t_coll_chunk.c /*------------------------------------------------------------------------- @@ -1353,554 +1404,487 @@ coll_chunk3(void) * * Failure: -1 * - * Modifications: - * Remove invalid temporary property checkings for API_LINK_HARD and - * API_LINK_TRUE cases. - * Programmer: Jonathan Kim - * Date: 2012-10-10 - * * Programmer: Unknown * July 12th, 2004 * - * Modifications: - * *------------------------------------------------------------------------- */ static void -coll_chunktest(const char* filename, - int chunk_factor, - int select_factor, - int api_option, - int file_selection, - int mem_selection, - int mode) +coll_chunktest(const char *filename, int chunk_factor, int select_factor, int api_option, int file_selection, + int mem_selection, int mode) { - hid_t file, dataset, file_dataspace, mem_dataspace; - hid_t acc_plist,xfer_plist,crp_plist; + hid_t file, dataset, file_dataspace, mem_dataspace; + hid_t acc_plist, xfer_plist, crp_plist; - hsize_t dims[RANK], chunk_dims[RANK]; - int* data_array1 = NULL; - int* data_origin1 = NULL; + hsize_t dims[RANK], chunk_dims[RANK]; + int * data_array1 = NULL; + int * data_origin1 = NULL; - hsize_t start[RANK],count[RANK],stride[RANK],block[RANK]; + hsize_t start[RANK], count[RANK], stride[RANK], block[RANK]; #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - unsigned prop_value; + unsigned prop_value; #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ - herr_t status; - MPI_Comm comm = MPI_COMM_WORLD; - MPI_Info info = MPI_INFO_NULL; - - size_t num_points; /* for point selection */ - hsize_t *coords = NULL; /* for point selection */ - int i; - - /* Create the data space */ - - acc_plist = create_faccess_plist(comm,info,facc_type); - VRFY((acc_plist >= 0),""); - - file = H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_plist); - VRFY((file >= 0),"H5Fcreate succeeded"); - - status = H5Pclose(acc_plist); - VRFY((status >= 0),""); - - /* setup dimensionality object */ - dims[0] = space_dim1*mpi_size; - dims[1] = space_dim2; - - /* allocate memory for data buffer */ - data_array1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int)); - VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); - - /* set up dimensions of the slab this process accesses */ - ccslab_set(mpi_rank, mpi_size, start, count, stride, block, select_factor); - - /* set up the coords array selection */ - num_points = block[0] * block[1] * count[0] * count[1]; - coords = (hsize_t *)HDmalloc(num_points * RANK * sizeof(hsize_t)); - VRFY((coords != NULL), "coords malloc succeeded"); - point_set(start, count, stride, block, num_points, coords, mode); - - /* Warning: H5Screate_simple requires an array of hsize_t elements - * even if we only pass only a single value. Attempting anything else - * appears to cause problems with 32 bit compilers. - */ - file_dataspace = H5Screate_simple(2, dims, NULL); - VRFY((file_dataspace >= 0), "file dataspace created succeeded"); - - if(ALL != mem_selection) { - mem_dataspace = H5Screate_simple(2, dims, NULL); - VRFY((mem_dataspace >= 0), "mem dataspace created succeeded"); - } - else { - /* Putting the warning about H5Screate_simple (above) into practice... */ - hsize_t dsdims[1] = {num_points}; - mem_dataspace = H5Screate_simple (1, dsdims, NULL); - VRFY((mem_dataspace >= 0), "mem_dataspace create succeeded"); - } - - crp_plist = H5Pcreate(H5P_DATASET_CREATE); - VRFY((crp_plist >= 0),""); - - /* Set up chunk information. */ - chunk_dims[0] = dims[0]/chunk_factor; - - /* to decrease the testing time, maintain bigger chunk size */ - (chunk_factor == 1) ? (chunk_dims[1] = space_dim2) : (chunk_dims[1] = space_dim2/2); - status = H5Pset_chunk(crp_plist, 2, chunk_dims); - VRFY((status >= 0),"chunk creation property list succeeded"); - - dataset = H5Dcreate2(file, DSET_COLLECTIVE_CHUNK_NAME, H5T_NATIVE_INT, - file_dataspace, H5P_DEFAULT, crp_plist, H5P_DEFAULT); - VRFY((dataset >= 0),"dataset created succeeded"); - - status = H5Pclose(crp_plist); - VRFY((status >= 0), ""); - - /*put some trivial data in the data array */ - ccdataset_fill(start, stride, count,block, data_array1, mem_selection); - - MESG("data_array initialized"); - - switch (file_selection) { - case HYPER: - status = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((status >= 0),"hyperslab selection succeeded"); - break; - - case POINT: - if (num_points) { - status = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); - VRFY((status >= 0),"Element selection succeeded"); - } - else { - status = H5Sselect_none(file_dataspace); - VRFY((status >= 0),"none selection succeeded"); - } - break; - - case ALL: - status = H5Sselect_all(file_dataspace); - VRFY((status >= 0), "H5Sselect_all succeeded"); - break; - } - - switch (mem_selection) { - case HYPER: - status = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((status >= 0),"hyperslab selection succeeded"); - break; - - case POINT: - if (num_points) { - status = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); - VRFY((status >= 0),"Element selection succeeded"); - } - else { - status = H5Sselect_none(mem_dataspace); - VRFY((status >= 0),"none selection succeeded"); - } - break; - - case ALL: - status = H5Sselect_all(mem_dataspace); - VRFY((status >= 0), "H5Sselect_all succeeded"); - break; - } - - /* set up the collective transfer property list */ - xfer_plist = H5Pcreate(H5P_DATASET_XFER); - VRFY((xfer_plist >= 0), ""); - - status = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((status>= 0),"MPIO collective transfer property succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - status = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); - VRFY((status>= 0),"set independent IO collectively succeeded"); - } - - switch(api_option){ - case API_LINK_HARD: - status = H5Pset_dxpl_mpio_chunk_opt(xfer_plist,H5FD_MPIO_CHUNK_ONE_IO); - VRFY((status>= 0),"collective chunk optimization succeeded"); - break; - - case API_MULTI_HARD: - status = H5Pset_dxpl_mpio_chunk_opt(xfer_plist,H5FD_MPIO_CHUNK_MULTI_IO); - VRFY((status>= 0),"collective chunk optimization succeeded "); - break; - - case API_LINK_TRUE: - status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist,2); - VRFY((status>= 0),"collective chunk optimization set chunk number succeeded"); - break; - - case API_LINK_FALSE: - status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist,6); - VRFY((status>= 0),"collective chunk optimization set chunk number succeeded"); - break; - - case API_MULTI_COLL: - status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist,8);/* make sure it is using multi-chunk IO */ - VRFY((status>= 0),"collective chunk optimization set chunk number succeeded"); - status = H5Pset_dxpl_mpio_chunk_opt_ratio(xfer_plist,50); - VRFY((status>= 0),"collective chunk optimization set chunk ratio succeeded"); - break; - - case API_MULTI_IND: - status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist,8);/* make sure it is using multi-chunk IO */ - VRFY((status>= 0),"collective chunk optimization set chunk number succeeded"); - status = H5Pset_dxpl_mpio_chunk_opt_ratio(xfer_plist,100); - VRFY((status>= 0),"collective chunk optimization set chunk ratio succeeded"); - break; - - default: - ; - } + herr_t status; + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + + size_t num_points; /* for point selection */ + hsize_t *coords = NULL; /* for point selection */ + + /* Create the data space */ + + acc_plist = create_faccess_plist(comm, info, facc_type); + VRFY_G((acc_plist >= 0), ""); + + file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_plist); + VRFY_G((file >= 0), "H5Fcreate succeeded"); + + status = H5Pclose(acc_plist); + VRFY_G((status >= 0), ""); + + /* setup dimensionality object */ + dims[0] = space_dim1 * (hsize_t)mpi_size_g; + dims[1] = space_dim2; + + /* allocate memory for data buffer */ + data_array1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int)); + VRFY_G((data_array1 != NULL), "data_array1 malloc succeeded"); + + /* set up dimensions of the slab this process accesses */ + ccslab_set(mpi_rank_g, mpi_size_g, start, count, stride, block, select_factor); + + /* set up the coords array selection */ + num_points = block[0] * block[1] * count[0] * count[1]; + coords = (hsize_t *)HDmalloc(num_points * RANK * sizeof(hsize_t)); + VRFY_G((coords != NULL), "coords malloc succeeded"); + point_set(start, count, stride, block, num_points, coords, mode); + + /* Warning: H5Screate_simple requires an array of hsize_t elements + * even if we only pass only a single value. Attempting anything else + * appears to cause problems with 32 bit compilers. + */ + file_dataspace = H5Screate_simple(2, dims, NULL); + VRFY_G((file_dataspace >= 0), "file dataspace created succeeded"); + + if (ALL != mem_selection) { + mem_dataspace = H5Screate_simple(2, dims, NULL); + VRFY_G((mem_dataspace >= 0), "mem dataspace created succeeded"); + } + else { + /* Putting the warning about H5Screate_simple (above) into practice... */ + hsize_t dsdims[1] = {num_points}; + mem_dataspace = H5Screate_simple(1, dsdims, NULL); + VRFY_G((mem_dataspace >= 0), "mem_dataspace create succeeded"); + } + + crp_plist = H5Pcreate(H5P_DATASET_CREATE); + VRFY_G((crp_plist >= 0), ""); + + /* Set up chunk information. */ + chunk_dims[0] = dims[0] / (hsize_t)chunk_factor; + + /* to decrease the testing time, maintain bigger chunk size */ + (chunk_factor == 1) ? (chunk_dims[1] = space_dim2) : (chunk_dims[1] = space_dim2 / 2); + status = H5Pset_chunk(crp_plist, 2, chunk_dims); + VRFY_G((status >= 0), "chunk creation property list succeeded"); + + dataset = H5Dcreate2(file, DSET_COLLECTIVE_CHUNK_NAME, H5T_NATIVE_INT, file_dataspace, H5P_DEFAULT, + crp_plist, H5P_DEFAULT); + VRFY_G((dataset >= 0), "dataset created succeeded"); + + status = H5Pclose(crp_plist); + VRFY_G((status >= 0), ""); + + /*put some trivial data in the data array */ + ccdataset_fill(start, stride, count, block, data_array1, mem_selection); + + MESG("data_array initialized"); + + switch (file_selection) { + case HYPER: + status = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY_G((status >= 0), "hyperslab selection succeeded"); + break; + + case POINT: + if (num_points) { + status = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY_G((status >= 0), "Element selection succeeded"); + } + else { + status = H5Sselect_none(file_dataspace); + VRFY_G((status >= 0), "none selection succeeded"); + } + break; + + case ALL: + status = H5Sselect_all(file_dataspace); + VRFY_G((status >= 0), "H5Sselect_all succeeded"); + break; + } + + switch (mem_selection) { + case HYPER: + status = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY_G((status >= 0), "hyperslab selection succeeded"); + break; + + case POINT: + if (num_points) { + status = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY_G((status >= 0), "Element selection succeeded"); + } + else { + status = H5Sselect_none(mem_dataspace); + VRFY_G((status >= 0), "none selection succeeded"); + } + break; + + case ALL: + status = H5Sselect_all(mem_dataspace); + VRFY_G((status >= 0), "H5Sselect_all succeeded"); + break; + } + + /* set up the collective transfer property list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY_G((xfer_plist >= 0), ""); + + status = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY_G((status >= 0), "MPIO collective transfer property succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + status = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY_G((status >= 0), "set independent IO collectively succeeded"); + } + + switch (api_option) { + case API_LINK_HARD: + status = H5Pset_dxpl_mpio_chunk_opt(xfer_plist, H5FD_MPIO_CHUNK_ONE_IO); + VRFY_G((status >= 0), "collective chunk optimization succeeded"); + break; + + case API_MULTI_HARD: + status = H5Pset_dxpl_mpio_chunk_opt(xfer_plist, H5FD_MPIO_CHUNK_MULTI_IO); + VRFY_G((status >= 0), "collective chunk optimization succeeded "); + break; + + case API_LINK_TRUE: + status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 2); + VRFY_G((status >= 0), "collective chunk optimization set chunk number succeeded"); + break; + + case API_LINK_FALSE: + status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 6); + VRFY_G((status >= 0), "collective chunk optimization set chunk number succeeded"); + break; + + case API_MULTI_COLL: + status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 8); /* make sure it is using multi-chunk IO */ + VRFY_G((status >= 0), "collective chunk optimization set chunk number succeeded"); + status = H5Pset_dxpl_mpio_chunk_opt_ratio(xfer_plist, 50); + VRFY_G((status >= 0), "collective chunk optimization set chunk ratio succeeded"); + break; + + case API_MULTI_IND: + status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 8); /* make sure it is using multi-chunk IO */ + VRFY_G((status >= 0), "collective chunk optimization set chunk number succeeded"); + status = H5Pset_dxpl_mpio_chunk_opt_ratio(xfer_plist, 100); + VRFY_G((status >= 0), "collective chunk optimization set chunk ratio succeeded"); + break; + + default:; + } #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - if(facc_type == FACC_MPIO) { - switch(api_option) { + if (facc_type == FACC_MPIO) { + switch (api_option) { case API_LINK_HARD: - prop_value = H5D_XFER_COLL_CHUNK_DEF; - status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_HARD_NAME, H5D_XFER_COLL_CHUNK_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); - VRFY((status >= 0),"testing property list inserted succeeded"); - break; + prop_value = H5D_XFER_COLL_CHUNK_DEF; + status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_HARD_NAME, H5D_XFER_COLL_CHUNK_SIZE, + &prop_value, NULL, NULL, NULL, NULL, NULL, NULL); + VRFY_G((status >= 0), "testing property list inserted succeeded"); + break; case API_MULTI_HARD: - prop_value = H5D_XFER_COLL_CHUNK_DEF; - status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_HARD_NAME, H5D_XFER_COLL_CHUNK_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); - VRFY((status >= 0),"testing property list inserted succeeded"); - break; + prop_value = H5D_XFER_COLL_CHUNK_DEF; + status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_HARD_NAME, H5D_XFER_COLL_CHUNK_SIZE, + &prop_value, NULL, NULL, NULL, NULL, NULL, NULL); + VRFY_G((status >= 0), "testing property list inserted succeeded"); + break; case API_LINK_TRUE: - prop_value = H5D_XFER_COLL_CHUNK_DEF; - status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_TRUE_NAME, H5D_XFER_COLL_CHUNK_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); - VRFY((status >= 0),"testing property list inserted succeeded"); - break; + prop_value = H5D_XFER_COLL_CHUNK_DEF; + status = + H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_TRUE_NAME, H5D_XFER_COLL_CHUNK_SIZE, + &prop_value, NULL, NULL, NULL, NULL, NULL, NULL); + VRFY_G((status >= 0), "testing property list inserted succeeded"); + break; case API_LINK_FALSE: - prop_value = H5D_XFER_COLL_CHUNK_DEF; - status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_FALSE_NAME, H5D_XFER_COLL_CHUNK_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); - VRFY((status >= 0),"testing property list inserted succeeded"); - break; + prop_value = H5D_XFER_COLL_CHUNK_DEF; + status = + H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_FALSE_NAME, H5D_XFER_COLL_CHUNK_SIZE, + &prop_value, NULL, NULL, NULL, NULL, NULL, NULL); + VRFY_G((status >= 0), "testing property list inserted succeeded"); + break; case API_MULTI_COLL: - prop_value = H5D_XFER_COLL_CHUNK_DEF; - status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_COLL_NAME, H5D_XFER_COLL_CHUNK_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); - VRFY((status >= 0),"testing property list inserted succeeded"); - break; + prop_value = H5D_XFER_COLL_CHUNK_DEF; + status = + H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_COLL_NAME, + H5D_XFER_COLL_CHUNK_SIZE, &prop_value, NULL, NULL, NULL, NULL, NULL, NULL); + VRFY_G((status >= 0), "testing property list inserted succeeded"); + break; case API_MULTI_IND: - prop_value = H5D_XFER_COLL_CHUNK_DEF; - status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_IND_NAME, H5D_XFER_COLL_CHUNK_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); - VRFY((status >= 0),"testing property list inserted succeeded"); - break; - - default: - ; - } - } + prop_value = H5D_XFER_COLL_CHUNK_DEF; + status = + H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_IND_NAME, H5D_XFER_COLL_CHUNK_SIZE, + &prop_value, NULL, NULL, NULL, NULL, NULL, NULL); + VRFY_G((status >= 0), "testing property list inserted succeeded"); + break; + + default:; + } + } #endif - /* write data collectively */ - status = H5Dwrite(dataset, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); - VRFY((status >= 0),"dataset write succeeded"); + /* write data collectively */ + status = H5Dwrite(dataset, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY_G((status >= 0), "dataset write succeeded"); #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - if(facc_type == FACC_MPIO) { - switch(api_option){ + if (facc_type == FACC_MPIO) { + switch (api_option) { case API_LINK_HARD: - status = H5Pget(xfer_plist,H5D_XFER_COLL_CHUNK_LINK_HARD_NAME,&prop_value); - VRFY((status >= 0),"testing property list get succeeded"); - VRFY((prop_value == 0),"API to set LINK COLLECTIVE IO directly succeeded"); - break; + status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_HARD_NAME, &prop_value); + VRFY_G((status >= 0), "testing property list get succeeded"); + VRFY_G((prop_value == 0), "API to set LINK COLLECTIVE IO directly succeeded"); + break; case API_MULTI_HARD: - status = H5Pget(xfer_plist,H5D_XFER_COLL_CHUNK_MULTI_HARD_NAME,&prop_value); - VRFY((status >= 0),"testing property list get succeeded"); - VRFY((prop_value == 0),"API to set MULTI-CHUNK COLLECTIVE IO optimization succeeded"); - break; + status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_HARD_NAME, &prop_value); + VRFY_G((status >= 0), "testing property list get succeeded"); + VRFY_G((prop_value == 0), "API to set MULTI-CHUNK COLLECTIVE IO optimization succeeded"); + break; case API_LINK_TRUE: - status = H5Pget(xfer_plist,H5D_XFER_COLL_CHUNK_LINK_NUM_TRUE_NAME,&prop_value); - VRFY((status >= 0),"testing property list get succeeded"); - VRFY((prop_value == 0),"API to set LINK COLLECTIVE IO succeeded"); - break; + status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_TRUE_NAME, &prop_value); + VRFY_G((status >= 0), "testing property list get succeeded"); + VRFY_G((prop_value == 0), "API to set LINK COLLECTIVE IO succeeded"); + break; case API_LINK_FALSE: - status = H5Pget(xfer_plist,H5D_XFER_COLL_CHUNK_LINK_NUM_FALSE_NAME,&prop_value); - VRFY((status >= 0),"testing property list get succeeded"); - VRFY((prop_value == 0),"API to set LINK IO transferring to multi-chunk IO succeeded"); - break; + status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_FALSE_NAME, &prop_value); + VRFY_G((status >= 0), "testing property list get succeeded"); + VRFY_G((prop_value == 0), "API to set LINK IO transferring to multi-chunk IO succeeded"); + break; case API_MULTI_COLL: - status = H5Pget(xfer_plist,H5D_XFER_COLL_CHUNK_MULTI_RATIO_COLL_NAME,&prop_value); - VRFY((status >= 0),"testing property list get succeeded"); - VRFY((prop_value == 0),"API to set MULTI-CHUNK COLLECTIVE IO with optimization succeeded"); - break; + status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_COLL_NAME, &prop_value); + VRFY_G((status >= 0), "testing property list get succeeded"); + VRFY_G((prop_value == 0), "API to set MULTI-CHUNK COLLECTIVE IO with optimization succeeded"); + break; case API_MULTI_IND: - status = H5Pget(xfer_plist,H5D_XFER_COLL_CHUNK_MULTI_RATIO_IND_NAME,&prop_value); - VRFY((status >= 0),"testing property list get succeeded"); - VRFY((prop_value == 0),"API to set MULTI-CHUNK IO transferring to independent IO succeeded"); - break; - - default: - ; - } - } + status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_IND_NAME, &prop_value); + VRFY_G((status >= 0), "testing property list get succeeded"); + VRFY_G((prop_value == 0), + "API to set MULTI-CHUNK IO transferring to independent IO succeeded"); + break; + + default:; + } + } #endif - status = H5Dclose(dataset); - VRFY((status >= 0),""); - - status = H5Pclose(xfer_plist); - VRFY((status >= 0),"property list closed"); - - status = H5Sclose(file_dataspace); - VRFY((status >= 0),""); - - status = H5Sclose(mem_dataspace); - VRFY((status >= 0),""); - - - status = H5Fclose(file); - VRFY((status >= 0),""); - - if (data_array1) HDfree(data_array1); - - /* Use collective read to verify the correctness of collective write. */ - - /* allocate memory for data buffer */ - data_array1 = (int *)HDmalloc(dims[0]*dims[1]*sizeof(int)); - VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); - - /* allocate memory for data buffer */ - data_origin1 = (int *)HDmalloc(dims[0]*dims[1]*sizeof(int)); - VRFY((data_origin1 != NULL), "data_origin1 malloc succeeded"); - - acc_plist = create_faccess_plist(comm, info, facc_type); - VRFY((acc_plist >= 0),"MPIO creation property list succeeded"); - - file = H5Fopen(FILENAME[0],H5F_ACC_RDONLY,acc_plist); - VRFY((file >= 0),"H5Fcreate succeeded"); - - status = H5Pclose(acc_plist); - VRFY((status >= 0),""); - - /* open the collective dataset*/ - dataset = H5Dopen2(file, DSET_COLLECTIVE_CHUNK_NAME, H5P_DEFAULT); - VRFY((dataset >= 0), ""); - - /* set up dimensions of the slab this process accesses */ - ccslab_set(mpi_rank, mpi_size, start, count, stride, block, select_factor); - - /* obtain the file and mem dataspace*/ - file_dataspace = H5Dget_space (dataset); - VRFY((file_dataspace >= 0), ""); - - if (ALL != mem_selection) { - mem_dataspace = H5Dget_space (dataset); - VRFY((mem_dataspace >= 0), ""); - } - else { - /* Warning: H5Screate_simple requires an array of hsize_t elements - * even if we only pass only a single value. Attempting anything else - * appears to cause problems with 32 bit compilers. - */ - hsize_t dsdims[1] = {num_points}; - mem_dataspace = H5Screate_simple (1, dsdims, NULL); - VRFY((mem_dataspace >= 0), "mem_dataspace create succeeded"); - } - - switch (file_selection) { - case HYPER: - status = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((status >= 0),"hyperslab selection succeeded"); - break; - - case POINT: - if (num_points) { - status = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); - VRFY((status >= 0),"Element selection succeeded"); - } - else { - status = H5Sselect_none(file_dataspace); - VRFY((status >= 0),"none selection succeeded"); - } - break; - - case ALL: - status = H5Sselect_all(file_dataspace); - VRFY((status >= 0), "H5Sselect_all succeeded"); - break; - } - - switch (mem_selection) { - case HYPER: - status = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((status >= 0),"hyperslab selection succeeded"); - break; - - case POINT: - if (num_points) { - status = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); - VRFY((status >= 0),"Element selection succeeded"); - } - else { - status = H5Sselect_none(mem_dataspace); - VRFY((status >= 0),"none selection succeeded"); - } - break; - - case ALL: - status = H5Sselect_all(mem_dataspace); - VRFY((status >= 0), "H5Sselect_all succeeded"); - break; - } - - /* fill dataset with test data */ - ccdataset_fill(start, stride,count,block, data_origin1, mem_selection); - xfer_plist = H5Pcreate (H5P_DATASET_XFER); - VRFY((xfer_plist >= 0),""); - - status = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((status>= 0),"MPIO collective transfer property succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - status = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((status>= 0),"set independent IO collectively succeeded"); - } - - status = H5Dread(dataset, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); - VRFY((status >=0),"dataset read succeeded"); - - /* verify the read data with original expected data */ - status = ccdataset_vrfy(start, count, stride, block, data_array1, data_origin1, mem_selection); - if (status) nerrors++; - - status = H5Pclose(xfer_plist); - VRFY((status >= 0),"property list closed"); - - /* close dataset collectively */ - status=H5Dclose(dataset); - VRFY((status >= 0), "H5Dclose"); - - /* release all IDs created */ - status = H5Sclose(file_dataspace); - VRFY((status >= 0),"H5Sclose"); - - status = H5Sclose(mem_dataspace); - VRFY((status >= 0),"H5Sclose"); - - /* close the file collectively */ - status = H5Fclose(file); - VRFY((status >= 0),"H5Fclose"); - - /* release data buffers */ - if(coords) HDfree(coords); - if(data_array1) HDfree(data_array1); - if(data_origin1) HDfree(data_origin1); + status = H5Dclose(dataset); + VRFY_G((status >= 0), ""); -} + status = H5Pclose(xfer_plist); + VRFY_G((status >= 0), "property list closed"); + status = H5Sclose(file_dataspace); + VRFY_G((status >= 0), ""); + status = H5Sclose(mem_dataspace); + VRFY_G((status >= 0), ""); -/***************************************************************************** - * - * Function: do_express_test() - * - * Purpose: Do an MPI_Allreduce to obtain the maximum value returned - * by GetTestExpress() across all processes. Return this - * value. - * - * Envirmoment variables can be different across different - * processes. This function ensures that all processes agree - * on whether to do an express test. - * - * Return: Success: Maximum of the values returned by - * GetTestExpress() across all processes. - * - * Failure: -1 - * - * Programmer: JRM -- 4/25/06 - * - *****************************************************************************/ -static int -do_express_test(int world_mpi_rank) -{ - int express_test; - int max_express_test; - int result; + status = H5Fclose(file); + VRFY_G((status >= 0), ""); - express_test = GetTestExpress(); + if (data_array1) + HDfree(data_array1); - result = MPI_Allreduce((void *)&express_test, - (void *)&max_express_test, - 1, - MPI_INT, - MPI_MAX, - MPI_COMM_WORLD); + /* Use collective read to verify the correctness of collective write. */ - if ( result != MPI_SUCCESS ) { - nerrors++; - max_express_test = -1; - if ( VERBOSE_MED && (world_mpi_rank == 0)) { - HDfprintf(stdout, "%d:%s: MPI_Allreduce() failed.\n", - world_mpi_rank, FUNC ); - } + /* allocate memory for data buffer */ + data_array1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int)); + VRFY_G((data_array1 != NULL), "data_array1 malloc succeeded"); + + /* allocate memory for data buffer */ + data_origin1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int)); + VRFY_G((data_origin1 != NULL), "data_origin1 malloc succeeded"); + + acc_plist = create_faccess_plist(comm, info, facc_type); + VRFY_G((acc_plist >= 0), "MPIO creation property list succeeded"); + + file = H5Fopen(FILENAME[0], H5F_ACC_RDONLY, acc_plist); + VRFY_G((file >= 0), "H5Fcreate succeeded"); + + status = H5Pclose(acc_plist); + VRFY_G((status >= 0), ""); + + /* open the collective dataset*/ + dataset = H5Dopen2(file, DSET_COLLECTIVE_CHUNK_NAME, H5P_DEFAULT); + VRFY_G((dataset >= 0), ""); + + /* set up dimensions of the slab this process accesses */ + ccslab_set(mpi_rank_g, mpi_size_g, start, count, stride, block, select_factor); + + /* obtain the file and mem dataspace*/ + file_dataspace = H5Dget_space(dataset); + VRFY_G((file_dataspace >= 0), ""); + + if (ALL != mem_selection) { + mem_dataspace = H5Dget_space(dataset); + VRFY_G((mem_dataspace >= 0), ""); + } + else { + /* Warning: H5Screate_simple requires an array of hsize_t elements + * even if we only pass only a single value. Attempting anything else + * appears to cause problems with 32 bit compilers. + */ + hsize_t dsdims[1] = {num_points}; + mem_dataspace = H5Screate_simple(1, dsdims, NULL); + VRFY_G((mem_dataspace >= 0), "mem_dataspace create succeeded"); + } + + switch (file_selection) { + case HYPER: + status = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY_G((status >= 0), "hyperslab selection succeeded"); + break; + + case POINT: + if (num_points) { + status = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY_G((status >= 0), "Element selection succeeded"); + } + else { + status = H5Sselect_none(file_dataspace); + VRFY_G((status >= 0), "none selection succeeded"); + } + break; + + case ALL: + status = H5Sselect_all(file_dataspace); + VRFY_G((status >= 0), "H5Sselect_all succeeded"); + break; + } + + switch (mem_selection) { + case HYPER: + status = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY_G((status >= 0), "hyperslab selection succeeded"); + break; + + case POINT: + if (num_points) { + status = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY_G((status >= 0), "Element selection succeeded"); + } + else { + status = H5Sselect_none(mem_dataspace); + VRFY_G((status >= 0), "none selection succeeded"); + } + break; + + case ALL: + status = H5Sselect_all(mem_dataspace); + VRFY_G((status >= 0), "H5Sselect_all succeeded"); + break; + } + + /* fill dataset with test data */ + ccdataset_fill(start, stride, count, block, data_origin1, mem_selection); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY_G((xfer_plist >= 0), ""); + + status = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY_G((status >= 0), "MPIO collective transfer property succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + status = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY_G((status >= 0), "set independent IO collectively succeeded"); } - return(max_express_test); + status = H5Dread(dataset, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY_G((status >= 0), "dataset read succeeded"); + + /* verify the read data with original expected data */ + status = ccdataset_vrfy(start, count, stride, block, data_array1, data_origin1, mem_selection); + if (status) + nerrors++; + + status = H5Pclose(xfer_plist); + VRFY_G((status >= 0), "property list closed"); + + /* close dataset collectively */ + status = H5Dclose(dataset); + VRFY_G((status >= 0), "H5Dclose"); -} /* do_express_test() */ + /* release all IDs created */ + status = H5Sclose(file_dataspace); + VRFY_G((status >= 0), "H5Sclose"); + status = H5Sclose(mem_dataspace); + VRFY_G((status >= 0), "H5Sclose"); -int main(int argc, char **argv) + /* close the file collectively */ + status = H5Fclose(file); + VRFY_G((status >= 0), "H5Fclose"); + + /* release data buffers */ + if (coords) + HDfree(coords); + if (data_array1) + HDfree(data_array1); + if (data_origin1) + HDfree(data_origin1); +} + +int +main(int argc, char **argv) { - int ExpressMode = 0; hsize_t newsize = 1048576; /* Set the bigio processing limit to be 'newsize' bytes */ - hsize_t oldsize = H5S_mpio_set_bigio_count(newsize); + hsize_t oldsize = H5_mpi_set_bigio_count(newsize); - /* Having set the bigio handling to a size that is managable, + /* Having set the bigio handling to a size that is manageable, * we'll set our 'bigcount' variable to be 2X that limit so * that we try to ensure that our bigio handling is actually * envoked and tested. */ - if (newsize != oldsize) { - bigcount = newsize * 2; - } + if (newsize != oldsize) + bigcount = newsize * 2; MPI_Init(&argc, &argv); - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size_g); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank_g); /* Attempt to turn off atexit post processing so that in case errors * happen during the test and the process is aborted, it will not get * hang in the atexit post processing in which it may try to make MPI * calls. By then, MPI calls may not work. */ - if (H5dont_atexit() < 0){ - HDprintf("Failed to turn off atexit processing. Continue.\n"); - }; + if (H5dont_atexit() < 0) + HDprintf("Failed to turn off atexit processing. Continue.\n"); /* set alarm. */ - ALARM_ON; - - ExpressMode = do_express_test(mpi_rank); + TestAlarmOn(); dataset_big_write(); MPI_Barrier(MPI_COMM_WORLD); @@ -1908,22 +1892,18 @@ int main(int argc, char **argv) dataset_big_read(); MPI_Barrier(MPI_COMM_WORLD); - if (ExpressMode > 0) { - if (mpi_rank == 0) - HDprintf("***Express test mode on. Several tests are skipped\n"); - } - else { - coll_chunk1(); - MPI_Barrier(MPI_COMM_WORLD); - coll_chunk2(); - MPI_Barrier(MPI_COMM_WORLD); - coll_chunk3(); - } + coll_chunk1(); + MPI_Barrier(MPI_COMM_WORLD); + coll_chunk2(); + MPI_Barrier(MPI_COMM_WORLD); + coll_chunk3(); + MPI_Barrier(MPI_COMM_WORLD); + single_rank_independent_io(); /* turn off alarm */ - ALARM_OFF; + TestAlarmOff(); - if (mpi_rank == 0) + if (mpi_rank_g == 0) HDremove(FILENAME[0]); /* close HDF5 library */ @@ -1933,4 +1913,3 @@ int main(int argc, char **argv) return 0; } - diff --git a/testpar/t_cache.c b/testpar/t_cache.c index cde19fe..8559afb 100644 --- a/testpar/t_cache.c +++ b/testpar/t_cache.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -18,9 +18,9 @@ #include "testpar.h" -#define H5AC_FRIEND /*suppress error about including H5ACpkg */ -#define H5C_FRIEND /*suppress error about including H5Cpkg */ -#define H5F_FRIEND /*suppress error about including H5Fpkg */ +#define H5AC_FRIEND /*suppress error about including H5ACpkg */ +#define H5C_FRIEND /*suppress error about including H5Cpkg */ +#define H5F_FRIEND /*suppress error about including H5Fpkg */ #include "H5ACpkg.h" #include "H5Cpkg.h" @@ -28,61 +28,55 @@ #include "H5Fpkg.h" #include "H5Iprivate.h" #include "H5MFprivate.h" +#include "H5private.h" +#define BASE_ADDR (haddr_t)1024 -#define BASE_ADDR (haddr_t)1024 - - -int nerrors = 0; -int failures = 0; -hbool_t verbose = TRUE; /* used to control error messages */ +int nerrors = 0; +int failures = 0; +hbool_t verbose = TRUE; /* used to control error messages */ #define NFILENAME 2 -#define PARATESTFILE filenames[0] -const char *FILENAME[NFILENAME]={"CacheTestDummy", NULL}; +const char *FILENAME[NFILENAME] = {"CacheTestDummy", NULL}; #ifndef PATH_MAX -#define PATH_MAX 512 -#endif /* !PATH_MAX */ +#define PATH_MAX 512 +#endif /* !PATH_MAX */ char filenames[NFILENAME][PATH_MAX]; -hid_t fapl; /* file access property list */ -haddr_t max_addr = 0; /* used to store the end of - * the address space used by - * the data array (see below). - */ -hbool_t callbacks_verbose = FALSE; /* flag used to control whether - * the callback functions are in - * verbose mode. - */ - - -int world_mpi_size = -1; -int world_mpi_rank = -1; -int world_server_mpi_rank = -1; -MPI_Comm world_mpi_comm = MPI_COMM_NULL; -int file_mpi_size = -1; -int file_mpi_rank = -1; -MPI_Comm file_mpi_comm = MPI_COMM_NULL; - +hid_t fapl; /* file access property list */ +haddr_t max_addr = 0; /* used to store the end of + * the address space used by + * the data array (see below). + */ +hbool_t callbacks_verbose = FALSE; /* flag used to control whether + * the callback functions are in + * verbose mode. + */ + +int world_mpi_size = -1; +int world_mpi_rank = -1; +int world_server_mpi_rank = -1; +MPI_Comm world_mpi_comm = MPI_COMM_NULL; +int file_mpi_size = -1; +int file_mpi_rank = -1; +MPI_Comm file_mpi_comm = MPI_COMM_NULL; /* the following globals are used to maintain rudementary statistics * to check the validity of the statistics maintained by H5C.c */ -long datum_clears = 0; -long datum_pinned_clears = 0; -long datum_destroys = 0; -long datum_flushes = 0; -long datum_pinned_flushes = 0; -long datum_loads = 0; -long global_pins = 0; -long global_dirty_pins = 0; +long datum_clears = 0; +long datum_pinned_clears = 0; +long datum_destroys = 0; +long datum_flushes = 0; +long datum_pinned_flushes = 0; +long datum_loads = 0; +long global_pins = 0; +long global_dirty_pins = 0; long local_pins = 0; - /* the following fields are used by the server process only */ -int total_reads = 0; -int total_writes = 0; - +int total_reads = 0; +int total_writes = 0; /***************************************************************************** * struct datum @@ -132,7 +126,7 @@ int total_writes = 0; * * local_pinned: Boolean flag that is set to true iff the entry * has been pinned in the local cache, but probably not all - * caches. Such pins will typically not be consistant across + * caches. Such pins will typically not be consistent across * processes, and thus cannot be marked as dirty unless they * happen to overlap some collective operation. * @@ -162,24 +156,23 @@ int total_writes = 0; * *****************************************************************************/ -struct datum -{ - H5C_cache_entry_t header; - haddr_t base_addr; - size_t len; - size_t local_len; - int ver; - hbool_t dirty; - hbool_t valid; - hbool_t locked; - hbool_t global_pinned; - hbool_t local_pinned; - hbool_t cleared; - hbool_t flushed; - int reads; - int writes; - int index; - struct H5AC_aux_t * aux_ptr; +struct datum { + H5C_cache_entry_t header; + haddr_t base_addr; + size_t len; + size_t local_len; + int ver; + hbool_t dirty; + hbool_t valid; + hbool_t locked; + hbool_t global_pinned; + hbool_t local_pinned; + hbool_t cleared; + hbool_t flushed; + int reads; + int writes; + int index; + struct H5AC_aux_t *aux_ptr; }; /***************************************************************************** @@ -197,11 +190,10 @@ struct datum * *****************************************************************************/ -#define NUM_DATA_ENTRIES 100000 +#define NUM_DATA_ENTRIES 100000 struct datum data[NUM_DATA_ENTRIES]; - /* Many tests use the size of data array as the size of test loops. * On some machines, this results in unacceptably long test runs. * @@ -213,17 +205,18 @@ struct datum data[NUM_DATA_ENTRIES]; * even divisor of NUM_DATA_ENTRIES. So far, all tests have been with * powers of 10 that meet these criteria. * - * Further, this value must be consistant across all processes. + * Further, this value must be consistent across all processes. */ -#define STD_VIRT_NUM_DATA_ENTRIES NUM_DATA_ENTRIES -#define EXPRESS_VIRT_NUM_DATA_ENTRIES (NUM_DATA_ENTRIES / 10) +#define STD_VIRT_NUM_DATA_ENTRIES NUM_DATA_ENTRIES +#define EXPRESS_VIRT_NUM_DATA_ENTRIES (NUM_DATA_ENTRIES / 10) /* Use a smaller test size to avoid creating huge MPE logfiles. */ -#define MPE_VIRT_NUM_DATA_ENTIES (NUM_DATA_ENTRIES / 100) +#ifdef H5_HAVE_MPE +#define MPE_VIRT_NUM_DATA_ENTIES (NUM_DATA_ENTRIES / 100) +#endif int virt_num_data_entries = NUM_DATA_ENTRIES; - /***************************************************************************** * data_index array * @@ -240,7 +233,6 @@ int virt_num_data_entries = NUM_DATA_ENTRIES; int data_index[NUM_DATA_ENTRIES]; - /***************************************************************************** * The following two #defines are used to control code that is in turn used * to force "POSIX" semantics on the server process used to simulate metadata @@ -260,7 +252,7 @@ int data_index[NUM_DATA_ENTRIES]; * * Strangely, at least on Phoenix, the first solution runs faster by a * rather large margin. However, I can imagine this changing with - * different OS's and MPI implementatins. + * different OS's and MPI implementations. * * Thus I have left code supporting the second solution in place. * @@ -270,8 +262,7 @@ int data_index[NUM_DATA_ENTRIES]; *****************************************************************************/ #define DO_WRITE_REQ_ACK TRUE -#define DO_SYNC_AFTER_WRITE FALSE - +#define DO_SYNC_AFTER_WRITE FALSE /***************************************************************************** * struct mssg @@ -301,42 +292,40 @@ int data_index[NUM_DATA_ENTRIES]; * *****************************************************************************/ -#define WRITE_REQ_CODE 0 -#define WRITE_REQ_ACK_CODE 1 -#define READ_REQ_CODE 2 -#define READ_REQ_REPLY_CODE 3 -#define SYNC_REQ_CODE 4 -#define SYNC_ACK_CODE 5 -#define REQ_TTL_WRITES_CODE 6 -#define REQ_TTL_WRITES_RPLY_CODE 7 -#define REQ_TTL_READS_CODE 8 +#define WRITE_REQ_CODE 0 +#define WRITE_REQ_ACK_CODE 1 +#define READ_REQ_CODE 2 +#define READ_REQ_REPLY_CODE 3 +#define SYNC_REQ_CODE 4 +#define SYNC_ACK_CODE 5 +#define REQ_TTL_WRITES_CODE 6 +#define REQ_TTL_WRITES_RPLY_CODE 7 +#define REQ_TTL_READS_CODE 8 #define REQ_TTL_READS_RPLY_CODE 9 #define REQ_ENTRY_WRITES_CODE 10 -#define REQ_ENTRY_WRITES_RPLY_CODE 11 -#define REQ_ENTRY_READS_CODE 12 -#define REQ_ENTRY_READS_RPLY_CODE 13 -#define REQ_RW_COUNT_RESET_CODE 14 -#define REQ_RW_COUNT_RESET_RPLY_CODE 15 -#define DONE_REQ_CODE 16 -#define MAX_REQ_CODE 16 - -#define MSSG_MAGIC 0x1248 - -struct mssg_t -{ - int req; - int src; - int dest; - long int mssg_num; - haddr_t base_addr; - unsigned len; - int ver; - unsigned count; - unsigned magic; +#define REQ_ENTRY_WRITES_RPLY_CODE 11 +#define REQ_ENTRY_READS_CODE 12 +#define REQ_ENTRY_READS_RPLY_CODE 13 +#define REQ_RW_COUNT_RESET_CODE 14 +#define REQ_RW_COUNT_RESET_RPLY_CODE 15 +#define DONE_REQ_CODE 16 +#define MAX_REQ_CODE 16 + +#define MSSG_MAGIC 0x1248 + +struct mssg_t { + int req; + int src; + int dest; + long int mssg_num; + haddr_t base_addr; + unsigned len; + int ver; + unsigned count; + unsigned magic; }; -MPI_Datatype mpi_mssg_t; /* for MPI derived type created from mssg */ - +MPI_Datatype mpi_mssg_t; /* for MPI derived type created from mssg */ /*****************************************************************************/ /************************** function declarations ****************************/ @@ -350,19 +339,16 @@ static void reset_stats(void); static hbool_t set_up_file_communicator(void); - /* data array manipulation functions */ -static int addr_to_datum_index(haddr_t base_addr); +static int addr_to_datum_index(haddr_t base_addr); static void init_data(void); - /* test coodination related functions */ -static int do_express_test(void); +static int do_express_test(void); static void do_sync(void); -static int get_max_nerrors(void); - +static int get_max_nerrors(void); /* mssg xfer related functions */ @@ -371,48 +357,37 @@ static hbool_t send_mssg(struct mssg_t *mssg_ptr, hbool_t add_req_to_tag); static hbool_t setup_derived_types(void); static hbool_t takedown_derived_types(void); - /* server functions */ static hbool_t reset_server_counters(void); static hbool_t server_main(void); -static hbool_t serve_read_request(struct mssg_t * mssg_ptr); -static hbool_t serve_sync_request(struct mssg_t * mssg_ptr); -static hbool_t serve_write_request(struct mssg_t * mssg_ptr); -static hbool_t serve_total_writes_request(struct mssg_t * mssg_ptr); -static hbool_t serve_total_reads_request(struct mssg_t * mssg_ptr); -static hbool_t serve_entry_writes_request(struct mssg_t * mssg_ptr); -static hbool_t serve_entry_reads_request(struct mssg_t * mssg_ptr); -static hbool_t serve_rw_count_reset_request(struct mssg_t * mssg_ptr); - +static hbool_t serve_read_request(struct mssg_t *mssg_ptr); +static hbool_t serve_sync_request(struct mssg_t *mssg_ptr); +static hbool_t serve_write_request(struct mssg_t *mssg_ptr); +static hbool_t serve_total_writes_request(struct mssg_t *mssg_ptr); +static hbool_t serve_total_reads_request(struct mssg_t *mssg_ptr); +static hbool_t serve_entry_writes_request(struct mssg_t *mssg_ptr); +static hbool_t serve_entry_reads_request(struct mssg_t *mssg_ptr); +static hbool_t serve_rw_count_reset_request(struct mssg_t *mssg_ptr); /* call back functions & related data structures */ -static herr_t datum_get_initial_load_size(void *udata_ptr, - size_t *image_len_ptr); +static herr_t datum_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr); -static void * datum_deserialize(const void * image_ptr, - size_t len, - void * udata_ptr, - hbool_t * dirty_ptr); +static void *datum_deserialize(const void *image_ptr, size_t len, void *udata_ptr, hbool_t *dirty_ptr); -static herr_t datum_image_len(const void *thing, - size_t *image_len_ptr); +static herr_t datum_image_len(const void *thing, size_t *image_len_ptr); -static herr_t datum_serialize(const H5F_t *f, - void *image_ptr, - size_t len, - void *thing_ptr); +static herr_t datum_serialize(const H5F_t *f, void *image_ptr, size_t len, void *thing_ptr); static herr_t datum_notify(H5C_notify_action_t action, void *thing); -static herr_t datum_free_icr(void * thing); +static herr_t datum_free_icr(void *thing); /* Masquerade as object header entries to the cache */ -#define DATUM_ENTRY_TYPE H5AC_OHDR_ID - -#define NUMBER_OF_ENTRY_TYPES 1 +#define DATUM_ENTRY_TYPE H5AC_OHDR_ID +#define NUMBER_OF_ENTRY_TYPES 1 /* Note the use of the H5AC__CLASS_SKIP_READS and H5AC__CLASS_SKIP_WRITES * flags. As a result of these flags, the metadata cache does no file I/O @@ -428,9 +403,7 @@ static herr_t datum_free_icr(void * thing); * * JRM -- 1/13/15 */ -const H5C_class_t types[NUMBER_OF_ENTRY_TYPES] = -{ - { +const H5C_class_t types[NUMBER_OF_ENTRY_TYPES] = {{ /* id */ DATUM_ENTRY_TYPE, /* name */ "datum", /* mem_type */ H5FD_MEM_OHDR, @@ -445,48 +418,38 @@ const H5C_class_t types[NUMBER_OF_ENTRY_TYPES] = /* notify */ datum_notify, /* free_icr */ datum_free_icr, /* fsf_size */ NULL, - } -}; - +}}; /* test utility functions */ -static void expunge_entry(H5F_t * file_ptr, int32_t idx); -static void insert_entry(H5C_t * cache_ptr, H5F_t * file_ptr, - int32_t idx, unsigned int flags); -static void local_pin_and_unpin_random_entries(H5F_t * file_ptr, int min_idx, - int max_idx, int min_count, - int max_count); -static void local_pin_random_entry(H5F_t * file_ptr, int min_idx, int max_idx); -static void local_unpin_all_entries(H5F_t * file_ptr, hbool_t via_unprotect); -static int local_unpin_next_pinned_entry(H5F_t * file_ptr, int start_idx, - hbool_t via_unprotect); -static void lock_and_unlock_random_entries(H5F_t * file_ptr, int min_idx, int max_idx, - int min_count, int max_count); -static void lock_and_unlock_random_entry(H5F_t * file_ptr, - int min_idx, int max_idx); -static void lock_entry(H5F_t * file_ptr, int32_t idx); -static void mark_entry_dirty(int32_t idx); -static void pin_entry(H5F_t * file_ptr, int32_t idx, hbool_t global, hbool_t dirty); -static void pin_protected_entry(int32_t idx, hbool_t global); -static void move_entry(H5F_t * file_ptr, int32_t old_idx, int32_t new_idx); +static void expunge_entry(H5F_t *file_ptr, int32_t idx); +static void insert_entry(H5C_t *cache_ptr, H5F_t *file_ptr, int32_t idx, unsigned int flags); +static void local_pin_and_unpin_random_entries(H5F_t *file_ptr, int min_idx, int max_idx, int min_count, + int max_count); +static void local_pin_random_entry(H5F_t *file_ptr, int min_idx, int max_idx); +static void local_unpin_all_entries(H5F_t *file_ptr, hbool_t via_unprotect); +static int local_unpin_next_pinned_entry(H5F_t *file_ptr, int start_idx, hbool_t via_unprotect); +static void lock_and_unlock_random_entries(H5F_t *file_ptr, int min_idx, int max_idx, int min_count, + int max_count); +static void lock_and_unlock_random_entry(H5F_t *file_ptr, int min_idx, int max_idx); +static void lock_entry(H5F_t *file_ptr, int32_t idx); +static void mark_entry_dirty(int32_t idx); +static void pin_entry(H5F_t *file_ptr, int32_t idx, hbool_t global, hbool_t dirty); +static void pin_protected_entry(int32_t idx, hbool_t global); +static void move_entry(H5F_t *file_ptr, int32_t old_idx, int32_t new_idx); static hbool_t reset_server_counts(void); -static void resize_entry(int32_t idx, size_t new_size); -static hbool_t setup_cache_for_test(hid_t * fid_ptr, - H5F_t ** file_ptr_ptr, - H5C_t ** cache_ptr_ptr, - int metadata_write_strategy); -static void setup_rand(void); -static hbool_t take_down_cache(hid_t fid, H5C_t * cache_ptr); +static void resize_entry(int32_t idx, size_t new_size); +static hbool_t setup_cache_for_test(hid_t *fid_ptr, H5F_t **file_ptr_ptr, H5C_t **cache_ptr_ptr, + int metadata_write_strategy); +static void setup_rand(void); +static hbool_t take_down_cache(hid_t fid, H5C_t *cache_ptr); static hbool_t verify_entry_reads(haddr_t addr, int expected_entry_reads); static hbool_t verify_entry_writes(haddr_t addr, int expected_entry_writes); static hbool_t verify_total_reads(int expected_total_reads); static hbool_t verify_total_writes(unsigned expected_total_writes); -static void verify_writes(unsigned num_writes, haddr_t * written_entries_tbl); -static void unlock_entry(H5F_t * file_ptr, int32_t type, unsigned int flags); -static void unpin_entry(H5F_t * file_ptr, int32_t idx, hbool_t global, - hbool_t dirty, hbool_t via_unprotect); - +static void verify_writes(unsigned num_writes, haddr_t *written_entries_tbl); +static void unlock_entry(H5F_t *file_ptr, int32_t type, unsigned int flags); +static void unpin_entry(H5F_t *file_ptr, int32_t idx, hbool_t global, hbool_t dirty, hbool_t via_unprotect); /* test functions */ @@ -499,7 +462,6 @@ static hbool_t smoke_check_5(int metadata_write_strategy); static hbool_t smoke_check_6(int metadata_write_strategy); static hbool_t trace_file_check(int metadata_write_strategy); - /*****************************************************************************/ /****************************** stats functions ******************************/ /*****************************************************************************/ @@ -527,17 +489,12 @@ static hbool_t trace_file_check(int metadata_write_strategy); static void print_stats(void) { - HDfprintf(stdout, - "%d: datum clears / pinned clears / destroys = %ld / %ld / %ld\n", - world_mpi_rank, datum_clears, datum_pinned_clears, - datum_destroys ); - HDfprintf(stdout, - "%d: datum flushes / pinned flushes / loads = %ld / %ld / %ld\n", - world_mpi_rank, datum_flushes, datum_pinned_flushes, - datum_loads ); - HDfprintf(stdout, - "%d: pins: global / global dirty / local = %ld / %ld / %ld\n", - world_mpi_rank, global_pins, global_dirty_pins, local_pins); + HDfprintf(stdout, "%d: datum clears / pinned clears / destroys = %ld / %ld / %ld\n", world_mpi_rank, + datum_clears, datum_pinned_clears, datum_destroys); + HDfprintf(stdout, "%d: datum flushes / pinned flushes / loads = %ld / %ld / %ld\n", world_mpi_rank, + datum_flushes, datum_pinned_flushes, datum_loads); + HDfprintf(stdout, "%d: pins: global / global dirty / local = %ld / %ld / %ld\n", world_mpi_rank, + global_pins, global_dirty_pins, local_pins); HDfflush(stdout); return; @@ -545,7 +502,6 @@ print_stats(void) } /* print_stats() */ #endif /* NOT_USED */ - /***************************************************************************** * * Function: reset_stats() @@ -565,21 +521,20 @@ print_stats(void) static void reset_stats(void) { - datum_clears = 0; - datum_pinned_clears = 0; - datum_destroys = 0; - datum_flushes = 0; - datum_pinned_flushes = 0; - datum_loads = 0; + datum_clears = 0; + datum_pinned_clears = 0; + datum_destroys = 0; + datum_flushes = 0; + datum_pinned_flushes = 0; + datum_loads = 0; global_pins = 0; - global_dirty_pins = 0; - local_pins = 0; + global_dirty_pins = 0; + local_pins = 0; return; } /* reset_stats() */ - /*****************************************************************************/ /**************************** MPI setup functions ****************************/ /*****************************************************************************/ @@ -606,132 +561,123 @@ reset_stats(void) static hbool_t set_up_file_communicator(void) { - hbool_t success = TRUE; - int mpi_result; - int num_excluded_ranks; - int excluded_ranks[1]; + hbool_t success = TRUE; + int mpi_result; + int num_excluded_ranks; + int excluded_ranks[1]; MPI_Group file_group; MPI_Group world_group; - if ( success ) { + if (success) { mpi_result = MPI_Comm_group(world_mpi_comm, &world_group); - if ( mpi_result != MPI_SUCCESS ) { + if (mpi_result != MPI_SUCCESS) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: MPI_Comm_group() failed with error %d.\n", - world_mpi_rank, FUNC, mpi_result); + if (verbose) { + HDfprintf(stdout, "%d:%s: MPI_Comm_group() failed with error %d.\n", world_mpi_rank, __func__, + mpi_result); } } } - if ( success ) { + if (success) { num_excluded_ranks = 1; - excluded_ranks[0] = world_server_mpi_rank; - mpi_result = MPI_Group_excl(world_group, num_excluded_ranks, - excluded_ranks, &file_group); + excluded_ranks[0] = world_server_mpi_rank; + mpi_result = MPI_Group_excl(world_group, num_excluded_ranks, excluded_ranks, &file_group); - if ( mpi_result != MPI_SUCCESS ) { + if (mpi_result != MPI_SUCCESS) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: MPI_Group_excl() failed with error %d.\n", - world_mpi_rank, FUNC, mpi_result); + if (verbose) { + HDfprintf(stdout, "%d:%s: MPI_Group_excl() failed with error %d.\n", world_mpi_rank, __func__, + mpi_result); } } } - if ( success ) { + if (success) { - mpi_result = MPI_Comm_create(world_mpi_comm, file_group, - &file_mpi_comm); + mpi_result = MPI_Comm_create(world_mpi_comm, file_group, &file_mpi_comm); - if ( mpi_result != MPI_SUCCESS ) { + if (mpi_result != MPI_SUCCESS) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: MPI_Comm_create() failed with error %d.\n", - world_mpi_rank, FUNC, mpi_result); + if (verbose) { + HDfprintf(stdout, "%d:%s: MPI_Comm_create() failed with error %d.\n", world_mpi_rank, + __func__, mpi_result); } + } + else { - } else { - - if ( world_mpi_rank != world_server_mpi_rank ) { + if (world_mpi_rank != world_server_mpi_rank) { - if ( file_mpi_comm == MPI_COMM_NULL ) { + if (file_mpi_comm == MPI_COMM_NULL) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: file_mpi_comm == MPI_COMM_NULL.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: file_mpi_comm == MPI_COMM_NULL.\n", world_mpi_rank, + __func__); } } - } else { + } + else { file_mpi_size = world_mpi_size - 1; /* needed by the server */ - if ( file_mpi_comm != MPI_COMM_NULL ) { + if (file_mpi_comm != MPI_COMM_NULL) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: file_mpi_comm != MPI_COMM_NULL.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: file_mpi_comm != MPI_COMM_NULL.\n", world_mpi_rank, + __func__); } } } } } - if ( ( success ) && ( world_mpi_rank != world_server_mpi_rank ) ) { + if ((success) && (world_mpi_rank != world_server_mpi_rank)) { mpi_result = MPI_Comm_size(file_mpi_comm, &file_mpi_size); - if ( mpi_result != MPI_SUCCESS ) { + if (mpi_result != MPI_SUCCESS) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: MPI_Comm_size() failed with error %d.\n", - world_mpi_rank, FUNC, mpi_result); + if (verbose) { + HDfprintf(stdout, "%d:%s: MPI_Comm_size() failed with error %d.\n", world_mpi_rank, __func__, + mpi_result); } } } - if ( ( success ) && ( world_mpi_rank != world_server_mpi_rank ) ) { + if ((success) && (world_mpi_rank != world_server_mpi_rank)) { mpi_result = MPI_Comm_rank(file_mpi_comm, &file_mpi_rank); - if ( mpi_result != MPI_SUCCESS ) { + if (mpi_result != MPI_SUCCESS) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: MPI_Comm_rank() failed with error %d.\n", - world_mpi_rank, FUNC, mpi_result); + if (verbose) { + HDfprintf(stdout, "%d:%s: MPI_Comm_rank() failed with error %d.\n", world_mpi_rank, __func__, + mpi_result); } } } - return(success); + return (success); } /* set_up_file_communicator() */ - /*****************************************************************************/ /******************** data array manipulation functions **********************/ /*****************************************************************************/ @@ -753,36 +699,33 @@ set_up_file_communicator(void) static int addr_to_datum_index(haddr_t base_addr) { - int top = NUM_DATA_ENTRIES - 1; - int bottom = 0; - int middle = (NUM_DATA_ENTRIES - 1) / 2; + int top = NUM_DATA_ENTRIES - 1; + int bottom = 0; + int middle = (NUM_DATA_ENTRIES - 1) / 2; int ret_value = -1; - while ( top >= bottom ) - { - if ( base_addr < data[data_index[middle]].base_addr ) { + while (top >= bottom) { + if (base_addr < data[data_index[middle]].base_addr) { - top = middle - 1; + top = middle - 1; middle = (top + bottom) / 2; - - } else if ( base_addr > data[data_index[middle]].base_addr ) { + } + else if (base_addr > data[data_index[middle]].base_addr) { bottom = middle + 1; middle = (top + bottom) / 2; - - } else /* ( base_addr == data[data_index[middle]].base_addr ) */ { + } + else /* ( base_addr == data[data_index[middle]].base_addr ) */ { ret_value = data_index[middle]; - bottom = top + 1; /* to force exit from while loop */ - + bottom = top + 1; /* to force exit from while loop */ } } - return(ret_value); + return (ret_value); } /* addr_to_datum_index() */ - /***************************************************************************** * * Function: init_data() @@ -807,21 +750,18 @@ init_data(void) * At present, I am using the first 20 entries of the Fibonacci * sequence multiplied by 2. We will see how it works. */ - const int num_addr_offsets = 20; - const haddr_t addr_offsets[20] = { 2, 2, 4, 6, 10, - 16, 26, 42, 68, 110, - 178, 288, 466, 754, 1220, - 1974, 3194, 5168, 8362, 13539}; - int i; - int j = 0; - haddr_t addr = BASE_ADDR; + const int num_addr_offsets = 20; + const haddr_t addr_offsets[20] = {2, 2, 4, 6, 10, 16, 26, 42, 68, 110, + 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13539}; + int i; + int j = 0; + haddr_t addr = BASE_ADDR; /* this must hold so moves don't change entry size. */ - HDassert( (NUM_DATA_ENTRIES / 2) % 20 == 0 ); - HDassert( (virt_num_data_entries / 2) % 20 == 0 ); + HDassert((NUM_DATA_ENTRIES / 2) % 20 == 0); + HDassert((virt_num_data_entries / 2) % 20 == 0); - for ( i = 0; i < NUM_DATA_ENTRIES; i++ ) - { + for (i = 0; i < NUM_DATA_ENTRIES; i++) { data[i].base_addr = addr; data[i].len = (size_t)(addr_offsets[j]); data[i].local_len = (size_t)(addr_offsets[j]); @@ -829,19 +769,19 @@ init_data(void) data[i].dirty = FALSE; data[i].valid = FALSE; data[i].locked = FALSE; - data[i].global_pinned = FALSE; - data[i].local_pinned = FALSE; - data[i].cleared = FALSE; + data[i].global_pinned = FALSE; + data[i].local_pinned = FALSE; + data[i].cleared = FALSE; data[i].flushed = FALSE; data[i].reads = 0; data[i].writes = 0; - data[i].index = i; - data[i].aux_ptr = NULL; + data[i].index = i; + data[i].aux_ptr = NULL; - data_index[i] = i; + data_index[i] = i; addr += addr_offsets[j]; - HDassert( addr > data[i].base_addr ); + HDassert(addr > data[i].base_addr); j = (j + 1) % num_addr_offsets; } @@ -853,7 +793,6 @@ init_data(void) } /* init_data() */ - /*****************************************************************************/ /******************** test coodination related functions *********************/ /*****************************************************************************/ @@ -887,28 +826,22 @@ do_express_test(void) express_test = GetTestExpress(); - result = MPI_Allreduce((void *)&express_test, - (void *)&max_express_test, - 1, - MPI_INT, - MPI_MAX, - world_mpi_comm); + result = + MPI_Allreduce((void *)&express_test, (void *)&max_express_test, 1, MPI_INT, MPI_MAX, world_mpi_comm); - if ( result != MPI_SUCCESS ) { + if (result != MPI_SUCCESS) { nerrors++; max_express_test = -1; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: MPI_Allreduce() failed.\n", - world_mpi_rank, FUNC ); + if (verbose) { + HDfprintf(stdout, "%d:%s: MPI_Allreduce() failed.\n", world_mpi_rank, __func__); } } - return(max_express_test); + return (max_express_test); } /* do_express_test() */ - /***************************************************************************** * * Function: do_sync() @@ -932,10 +865,10 @@ do_sync(void) struct mssg_t mssg; - if ( nerrors <= 0 ) { + if (nerrors <= 0) { /* compose the message */ - mssg.req = SYNC_REQ_CODE; + mssg.req = SYNC_REQ_CODE; mssg.src = world_mpi_rank; mssg.dest = world_server_mpi_rank; mssg.mssg_num = -1; /* set by send function */ @@ -945,43 +878,38 @@ do_sync(void) mssg.count = 0; mssg.magic = MSSG_MAGIC; - if ( ! send_mssg(&mssg, FALSE) ) { + if (!send_mssg(&mssg, FALSE)) { - nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", - world_mpi_rank, FUNC); + nerrors++; + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__); } } } - if ( nerrors <= 0 ) { + if (nerrors <= 0) { - if ( ! recv_mssg(&mssg, SYNC_ACK_CODE) ) { + if (!recv_mssg(&mssg, SYNC_ACK_CODE)) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__); } - } else if ( ( mssg.req != SYNC_ACK_CODE ) || - ( mssg.src != world_server_mpi_rank ) || - ( mssg.dest != world_mpi_rank ) || - ( mssg.magic != MSSG_MAGIC ) ) { + } + else if ((mssg.req != SYNC_ACK_CODE) || (mssg.src != world_server_mpi_rank) || + (mssg.dest != world_mpi_rank) || (mssg.magic != MSSG_MAGIC)) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad data in sync ack.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad data in sync ack.\n", world_mpi_rank, __func__); } - } + } } return; } /* do_sync() */ - /***************************************************************************** * * Function: get_max_nerrors() @@ -1003,28 +931,21 @@ get_max_nerrors(void) int max_nerrors; int result; - result = MPI_Allreduce((void *)&nerrors, - (void *)&max_nerrors, - 1, - MPI_INT, - MPI_MAX, - world_mpi_comm); + result = MPI_Allreduce((void *)&nerrors, (void *)&max_nerrors, 1, MPI_INT, MPI_MAX, world_mpi_comm); - if ( result != MPI_SUCCESS ) { + if (result != MPI_SUCCESS) { nerrors++; max_nerrors = -1; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: MPI_Allreduce() failed.\n", - world_mpi_rank, FUNC ); + if (verbose) { + HDfprintf(stdout, "%d:%s: MPI_Allreduce() failed.\n", world_mpi_rank, __func__); } } - return(max_nerrors); + return (max_nerrors); } /* get_max_nerrors() */ - /*****************************************************************************/ /************************ mssg xfer related functions ************************/ /*****************************************************************************/ @@ -1049,70 +970,63 @@ get_max_nerrors(void) * *****************************************************************************/ -#define CACHE_TEST_TAG 99 /* different from any used by the library */ +#define CACHE_TEST_TAG 99 /* different from any used by the library */ static hbool_t -recv_mssg(struct mssg_t *mssg_ptr, - int mssg_tag_offset) +recv_mssg(struct mssg_t *mssg_ptr, int mssg_tag_offset) { - hbool_t success = TRUE; - int mssg_tag = CACHE_TEST_TAG; - int result; + hbool_t success = TRUE; + int mssg_tag = CACHE_TEST_TAG; + int result; MPI_Status status; - if ( ( mssg_ptr == NULL ) || - ( mssg_tag_offset < 0 ) || - ( mssg_tag_offset> MAX_REQ_CODE ) ) { + if ((mssg_ptr == NULL) || (mssg_tag_offset < 0) || (mssg_tag_offset > MAX_REQ_CODE)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: bad param(s) on entry.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: bad param(s) on entry.\n", world_mpi_rank, __func__); } - } else { + } + else { mssg_tag += mssg_tag_offset; } - if ( success ) { + if (success) { - result = MPI_Recv((void *)mssg_ptr, 1, mpi_mssg_t, MPI_ANY_SOURCE, - mssg_tag, world_mpi_comm, &status); + result = MPI_Recv((void *)mssg_ptr, 1, mpi_mssg_t, MPI_ANY_SOURCE, mssg_tag, world_mpi_comm, &status); - if ( result != MPI_SUCCESS ) { + if (result != MPI_SUCCESS) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: MPI_Recv() failed.\n", - world_mpi_rank, FUNC ); + if (verbose) { + HDfprintf(stdout, "%d:%s: MPI_Recv() failed.\n", world_mpi_rank, __func__); } - } else if ( mssg_ptr->magic != MSSG_MAGIC ) { + } + else if (mssg_ptr->magic != MSSG_MAGIC) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: invalid magic.\n", world_mpi_rank, - FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: invalid magic.\n", world_mpi_rank, __func__); } - } else if ( mssg_ptr->src != status.MPI_SOURCE ) { + } + else if (mssg_ptr->src != status.MPI_SOURCE) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: mssg_ptr->src != status.MPI_SOURCE.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: mssg_ptr->src != status.MPI_SOURCE.\n", world_mpi_rank, __func__); } } } - return(success); + return (success); } /* recv_mssg() */ - /***************************************************************************** * * Function: send_mssg() @@ -1135,59 +1049,49 @@ recv_mssg(struct mssg_t *mssg_ptr, * *****************************************************************************/ static hbool_t -send_mssg(struct mssg_t *mssg_ptr, - hbool_t add_req_to_tag) +send_mssg(struct mssg_t *mssg_ptr, hbool_t add_req_to_tag) { - hbool_t success = TRUE; - int mssg_tag = CACHE_TEST_TAG; - int result; + hbool_t success = TRUE; + int mssg_tag = CACHE_TEST_TAG; + int result; static long mssg_num = 0; - if ( ( mssg_ptr == NULL ) || - ( mssg_ptr->src != world_mpi_rank ) || - ( mssg_ptr->dest < 0 ) || - ( mssg_ptr->dest == mssg_ptr->src ) || - ( mssg_ptr->dest >= world_mpi_size ) || - ( mssg_ptr->req < 0 ) || - ( mssg_ptr->req > MAX_REQ_CODE ) || - ( mssg_ptr->magic != MSSG_MAGIC ) ) { + if ((mssg_ptr == NULL) || (mssg_ptr->src != world_mpi_rank) || (mssg_ptr->dest < 0) || + (mssg_ptr->dest == mssg_ptr->src) || (mssg_ptr->dest >= world_mpi_size) || (mssg_ptr->req < 0) || + (mssg_ptr->req > MAX_REQ_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Invalid mssg on entry.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Invalid mssg on entry.\n", world_mpi_rank, __func__); } } - if ( success ) { + if (success) { mssg_ptr->mssg_num = mssg_num++; - if ( add_req_to_tag ) { + if (add_req_to_tag) { - mssg_tag += mssg_ptr->req; - } + mssg_tag += mssg_ptr->req; + } - result = MPI_Send((void *)mssg_ptr, 1, mpi_mssg_t, - mssg_ptr->dest, mssg_tag, world_mpi_comm); + result = MPI_Send((void *)mssg_ptr, 1, mpi_mssg_t, mssg_ptr->dest, mssg_tag, world_mpi_comm); - if ( result != MPI_SUCCESS ) { + if (result != MPI_SUCCESS) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: MPI_Send() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: MPI_Send() failed.\n", world_mpi_rank, __func__); } } } - return(success); + return (success); } /* send_mssg() */ - /***************************************************************************** * * Function: setup_derived_types() @@ -1205,78 +1109,72 @@ send_mssg(struct mssg_t *mssg_ptr, static hbool_t setup_derived_types(void) { - hbool_t success = TRUE; - int i; - int result; - MPI_Datatype mpi_types[9] = {MPI_INT, MPI_INT, MPI_INT, MPI_LONG, - HADDR_AS_MPI_TYPE, MPI_INT, MPI_INT, - MPI_UNSIGNED, MPI_UNSIGNED}; - int block_len[9] = {1, 1, 1, 1, 1, 1, 1, 1, 1}; - MPI_Aint displs[9]; + hbool_t success = TRUE; + int i; + int result; + MPI_Datatype mpi_types[9] = {MPI_INT, MPI_INT, MPI_INT, MPI_LONG, HADDR_AS_MPI_TYPE, + MPI_INT, MPI_INT, MPI_UNSIGNED, MPI_UNSIGNED}; + int block_len[9] = {1, 1, 1, 1, 1, 1, 1, 1, 1}; + MPI_Aint displs[9]; struct mssg_t sample; /* used to compute displacements */ /* setup the displacements array */ - if ( ( MPI_SUCCESS != MPI_Get_address(&sample.req, &displs[0]) ) || - ( MPI_SUCCESS != MPI_Get_address(&sample.src, &displs[1]) ) || - ( MPI_SUCCESS != MPI_Get_address(&sample.dest, &displs[2]) ) || - ( MPI_SUCCESS != MPI_Get_address(&sample.mssg_num, &displs[3]) ) || - ( MPI_SUCCESS != MPI_Get_address(&sample.base_addr, &displs[4]) ) || - ( MPI_SUCCESS != MPI_Get_address(&sample.len, &displs[5]) ) || - ( MPI_SUCCESS != MPI_Get_address(&sample.ver, &displs[6]) ) || - ( MPI_SUCCESS != MPI_Get_address(&sample.count, &displs[7]) ) || - ( MPI_SUCCESS != MPI_Get_address(&sample.magic, &displs[8]) ) ) { + if ((MPI_SUCCESS != MPI_Get_address(&sample.req, &displs[0])) || + (MPI_SUCCESS != MPI_Get_address(&sample.src, &displs[1])) || + (MPI_SUCCESS != MPI_Get_address(&sample.dest, &displs[2])) || + (MPI_SUCCESS != MPI_Get_address(&sample.mssg_num, &displs[3])) || + (MPI_SUCCESS != MPI_Get_address(&sample.base_addr, &displs[4])) || + (MPI_SUCCESS != MPI_Get_address(&sample.len, &displs[5])) || + (MPI_SUCCESS != MPI_Get_address(&sample.ver, &displs[6])) || + (MPI_SUCCESS != MPI_Get_address(&sample.count, &displs[7])) || + (MPI_SUCCESS != MPI_Get_address(&sample.magic, &displs[8]))) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: MPI_Get_address() call failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: MPI_Get_address() call failed.\n", world_mpi_rank, __func__); } - - } else { + } + else { /* Now calculate the actual displacements */ - for ( i = 8; i >= 0; --i) - { + for (i = 8; i >= 0; --i) { displs[i] -= displs[0]; } } - if ( success ) { + if (success) { result = MPI_Type_create_struct(9, block_len, displs, mpi_types, &mpi_mssg_t); - if ( result != MPI_SUCCESS ) { + if (result != MPI_SUCCESS) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: MPI_Type_create_struct() call failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: MPI_Type_create_struct() call failed.\n", world_mpi_rank, __func__); } } } - if ( success ) { + if (success) { result = MPI_Type_commit(&mpi_mssg_t); - if ( result != MPI_SUCCESS) { + if (result != MPI_SUCCESS) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: MPI_Type_commit() call failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: MPI_Type_commit() call failed.\n", world_mpi_rank, __func__); } } } - return(success); + return (success); } /* setup_derived_types */ - /***************************************************************************** * * Function: takedown_derived_types() @@ -1295,25 +1193,23 @@ static hbool_t takedown_derived_types(void) { hbool_t success = TRUE; - int result; + int result; result = MPI_Type_free(&mpi_mssg_t); - if ( result != MPI_SUCCESS ) { + if (result != MPI_SUCCESS) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: MPI_Type_free() call failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: MPI_Type_free() call failed.\n", world_mpi_rank, __func__); } } - return(success); + return (success); } /* takedown_derived_types() */ - /*****************************************************************************/ /***************************** server functions ******************************/ /*****************************************************************************/ @@ -1336,61 +1232,57 @@ static hbool_t reset_server_counters(void) { hbool_t success = TRUE; - int i; - long actual_total_reads = 0; - long actual_total_writes = 0; + int i; + long actual_total_reads = 0; + long actual_total_writes = 0; - for ( i = 0; i < NUM_DATA_ENTRIES; i++ ) - { - if ( data[i].reads > 0 ) { + for (i = 0; i < NUM_DATA_ENTRIES; i++) { + if (data[i].reads > 0) { actual_total_reads += data[i].reads; data[i].reads = 0; } - if ( data[i].writes > 0 ) { + if (data[i].writes > 0) { actual_total_writes += data[i].writes; data[i].writes = 0; } } - if ( actual_total_reads != total_reads ) { + if (actual_total_reads != total_reads) { success = FALSE; nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: actual/total reads mismatch (%ld/%ld).\n", - world_mpi_rank, FUNC, + if (verbose) { + HDfprintf(stdout, "%d:%s: actual/total reads mismatch (%ld/%d).\n", world_mpi_rank, __func__, actual_total_reads, total_reads); } } - if ( actual_total_writes != total_writes ) { + if (actual_total_writes != total_writes) { success = FALSE; nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: actual/total writes mismatch (%ld/%ld).\n", - world_mpi_rank, FUNC, + if (verbose) { + HDfprintf(stdout, "%d:%s: actual/total writes mismatch (%ld/%d).\n", world_mpi_rank, __func__, actual_total_writes, total_writes); } } - total_reads = 0; + total_reads = 0; total_writes = 0; - return(success); + return (success); } /* reset_server_counters() */ - /***************************************************************************** * * Function: server_main() * * Purpose: Main function for the server process. This process exists - * to provide an independant view of the data array. + * to provide an independent view of the data array. * * The function handles request from the other processes in * the test until the count of done messages received equals @@ -1411,131 +1303,126 @@ reset_server_counters(void) static hbool_t server_main(void) { - hbool_t done = FALSE; - hbool_t success = TRUE; - int done_count = 0; + hbool_t done = FALSE; + hbool_t success = TRUE; + int done_count = 0; struct mssg_t mssg; - if ( world_mpi_rank != world_server_mpi_rank ) { + if (world_mpi_rank != world_server_mpi_rank) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: This isn't the server process?!?!?\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: This isn't the server process?!?!?\n", world_mpi_rank, __func__); } } - - while ( ( success ) && ( ! done ) ) - { + while ((success) && (!done)) { success = recv_mssg(&mssg, 0); - if ( success ) { + if (success) { - switch ( mssg.req ) - { - case WRITE_REQ_CODE: - success = serve_write_request(&mssg); - break; + switch (mssg.req) { + case WRITE_REQ_CODE: + success = serve_write_request(&mssg); + break; - case WRITE_REQ_ACK_CODE: + case WRITE_REQ_ACK_CODE: success = FALSE; - if(verbose) - HDfprintf(stdout, "%s: Received write ack?!?.\n", FUNC); - break; + if (verbose) + HDfprintf(stdout, "%s: Received write ack?!?.\n", __func__); + break; - case READ_REQ_CODE: + case READ_REQ_CODE: success = serve_read_request(&mssg); - break; + break; - case READ_REQ_REPLY_CODE: + case READ_REQ_REPLY_CODE: success = FALSE; - if(verbose) - HDfprintf(stdout, "%s: Received read req reply?!?.\n", FUNC); - break; + if (verbose) + HDfprintf(stdout, "%s: Received read req reply?!?.\n", __func__); + break; - case SYNC_REQ_CODE: + case SYNC_REQ_CODE: success = serve_sync_request(&mssg); - break; + break; - case SYNC_ACK_CODE: + case SYNC_ACK_CODE: success = FALSE; - if(verbose) - HDfprintf(stdout, "%s: Received sync ack?!?.\n", FUNC); - break; + if (verbose) + HDfprintf(stdout, "%s: Received sync ack?!?.\n", __func__); + break; - case REQ_TTL_WRITES_CODE: - success = serve_total_writes_request(&mssg); - break; + case REQ_TTL_WRITES_CODE: + success = serve_total_writes_request(&mssg); + break; - case REQ_TTL_WRITES_RPLY_CODE: + case REQ_TTL_WRITES_RPLY_CODE: success = FALSE; - if(verbose) - HDfprintf(stdout, "%s: Received total writes reply?!?.\n", FUNC); - break; + if (verbose) + HDfprintf(stdout, "%s: Received total writes reply?!?.\n", __func__); + break; - case REQ_TTL_READS_CODE: - success = serve_total_reads_request(&mssg); - break; + case REQ_TTL_READS_CODE: + success = serve_total_reads_request(&mssg); + break; - case REQ_TTL_READS_RPLY_CODE: + case REQ_TTL_READS_RPLY_CODE: success = FALSE; - if(verbose) - HDfprintf(stdout, "%s: Received total reads reply?!?.\n", FUNC); - break; + if (verbose) + HDfprintf(stdout, "%s: Received total reads reply?!?.\n", __func__); + break; - case REQ_ENTRY_WRITES_CODE: - success = serve_entry_writes_request(&mssg); - break; + case REQ_ENTRY_WRITES_CODE: + success = serve_entry_writes_request(&mssg); + break; - case REQ_ENTRY_WRITES_RPLY_CODE: + case REQ_ENTRY_WRITES_RPLY_CODE: success = FALSE; - if(verbose) - HDfprintf(stdout, "%s: Received entry writes reply?!?.\n", FUNC); - break; + if (verbose) + HDfprintf(stdout, "%s: Received entry writes reply?!?.\n", __func__); + break; - case REQ_ENTRY_READS_CODE: - success = serve_entry_reads_request(&mssg); - break; + case REQ_ENTRY_READS_CODE: + success = serve_entry_reads_request(&mssg); + break; - case REQ_ENTRY_READS_RPLY_CODE: + case REQ_ENTRY_READS_RPLY_CODE: success = FALSE; - if(verbose) - HDfprintf(stdout, "%s: Received entry reads reply?!?.\n", FUNC); - break; + if (verbose) + HDfprintf(stdout, "%s: Received entry reads reply?!?.\n", __func__); + break; - case REQ_RW_COUNT_RESET_CODE: - success = serve_rw_count_reset_request(&mssg); - break; + case REQ_RW_COUNT_RESET_CODE: + success = serve_rw_count_reset_request(&mssg); + break; - case REQ_RW_COUNT_RESET_RPLY_CODE: + case REQ_RW_COUNT_RESET_RPLY_CODE: success = FALSE; - if(verbose) - HDfprintf(stdout, "%s: Received RW count reset reply?!?.\n", FUNC); - break; + if (verbose) + HDfprintf(stdout, "%s: Received RW count reset reply?!?.\n", __func__); + break; - case DONE_REQ_CODE: - done_count++; - if(done_count >= file_mpi_size) - done = TRUE; - break; + case DONE_REQ_CODE: + done_count++; + if (done_count >= file_mpi_size) + done = TRUE; + break; - default: + default: nerrors++; success = FALSE; - if(verbose) - HDfprintf(stdout, "%d:%s: Unknown request code.\n", world_mpi_rank, FUNC); - break; + if (verbose) + HDfprintf(stdout, "%d:%s: Unknown request code.\n", world_mpi_rank, __func__); + break; } } } - return(success); + return (success); } /* server_main() */ - /***************************************************************************** * * Function: serve_read_request() @@ -1555,62 +1442,59 @@ server_main(void) * *****************************************************************************/ static hbool_t -serve_read_request(struct mssg_t * mssg_ptr) +serve_read_request(struct mssg_t *mssg_ptr) { - hbool_t report_mssg = FALSE; - hbool_t success = TRUE; - int target_index; - haddr_t target_addr; + hbool_t report_mssg = FALSE; + hbool_t success = TRUE; + int target_index; + haddr_t target_addr; struct mssg_t reply; - if ( ( mssg_ptr == NULL ) || - ( mssg_ptr->req != READ_REQ_CODE ) || - ( mssg_ptr->magic != MSSG_MAGIC ) ) { + if ((mssg_ptr == NULL) || (mssg_ptr->req != READ_REQ_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__); } } - if ( success ) { + if (success) { - target_addr = mssg_ptr->base_addr; + target_addr = mssg_ptr->base_addr; target_index = addr_to_datum_index(target_addr); - if ( target_index < 0 ) { + if (target_index < 0) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: addr lookup failed for %a.\n", - world_mpi_rank, FUNC, target_addr); + if (verbose) { + HDfprintf(stdout, "%d:%s: addr lookup failed for %" PRIuHADDR ".\n", world_mpi_rank, __func__, + target_addr); } - } else if ( data[target_index].len != mssg_ptr->len ) { + } + else if (data[target_index].len != mssg_ptr->len) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: data[i].len = %Zu != mssg->len = %d.\n", - world_mpi_rank, FUNC, - data[target_index].len, mssg_ptr->len); + if (verbose) { + HDfprintf(stdout, "%d:%s: data[i].len = %zu != mssg->len = %d.\n", world_mpi_rank, __func__, + data[target_index].len, mssg_ptr->len); } - } else if ( ! (data[target_index].valid) ) { + } + else if (!(data[target_index].valid)) { nerrors++; success = FALSE; - if ( verbose ) { + if (verbose) { HDfprintf(stdout, - "%d:%s: proc %d read invalid entry. idx/base_addr = %d/%a.\n", - world_mpi_rank, FUNC, - mssg_ptr->src, - target_index, - data[target_index].base_addr); + "%d:%s: proc %d read invalid entry. " + "idx/base_addr = %d/%" PRIuHADDR ".\n", + world_mpi_rank, __func__, mssg_ptr->src, target_index, + data[target_index].base_addr); } - } else { + } + else { /* compose the reply message */ reply.req = READ_REQ_REPLY_CODE; @@ -1618,48 +1502,42 @@ serve_read_request(struct mssg_t * mssg_ptr) reply.dest = mssg_ptr->src; reply.mssg_num = -1; /* set by send function */ reply.base_addr = data[target_index].base_addr; - reply.len = data[target_index].len; - reply.ver = data[target_index].ver; - reply.count = 0; - reply.magic = MSSG_MAGIC; + H5_CHECKED_ASSIGN(reply.len, unsigned, data[target_index].len, size_t); + reply.ver = data[target_index].ver; + reply.count = 0; + reply.magic = MSSG_MAGIC; - /* and update the counters */ - total_reads++; + /* and update the counters */ + total_reads++; (data[target_index].reads)++; } } - if ( success ) { + if (success) { success = send_mssg(&reply, TRUE); } - if ( report_mssg ) { + if (report_mssg) { - if ( success ) { + if (success) { - HDfprintf(stdout, "%d read 0x%llx. len = %d. ver = %d.\n", - (int)(mssg_ptr->src), - (long long)(data[target_index].base_addr), - (int)(data[target_index].len), + HDfprintf(stdout, "%d read 0x%llx. len = %d. ver = %d.\n", (int)(mssg_ptr->src), + (long long)(data[target_index].base_addr), (int)(data[target_index].len), (int)(data[target_index].ver)); + } + else { - } else { - - HDfprintf(stdout, "%d read 0x%llx FAILED. len = %d. ver = %d.\n", - (int)(mssg_ptr->src), - (long long)(data[target_index].base_addr), - (int)(data[target_index].len), + HDfprintf(stdout, "%d read 0x%llx FAILED. len = %d. ver = %d.\n", (int)(mssg_ptr->src), + (long long)(data[target_index].base_addr), (int)(data[target_index].len), (int)(data[target_index].ver)); - } } - return(success); + return (success); } /* serve_read_request() */ - /***************************************************************************** * * Function: serve_sync_request() @@ -1682,25 +1560,22 @@ serve_read_request(struct mssg_t * mssg_ptr) * *****************************************************************************/ static hbool_t -serve_sync_request(struct mssg_t * mssg_ptr) +serve_sync_request(struct mssg_t *mssg_ptr) { - hbool_t report_mssg = FALSE; - hbool_t success = TRUE; + hbool_t report_mssg = FALSE; + hbool_t success = TRUE; struct mssg_t reply; - if ( ( mssg_ptr == NULL ) || - ( mssg_ptr->req != SYNC_REQ_CODE ) || - ( mssg_ptr->magic != MSSG_MAGIC ) ) { + if ((mssg_ptr == NULL) || (mssg_ptr->req != SYNC_REQ_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__); } } - if ( success ) { + if (success) { /* compose the reply message */ reply.req = SYNC_ACK_CODE; @@ -1710,33 +1585,31 @@ serve_sync_request(struct mssg_t * mssg_ptr) reply.base_addr = 0; reply.len = 0; reply.ver = 0; - reply.count = 0; + reply.count = 0; reply.magic = MSSG_MAGIC; } - if ( success ) { + if (success) { success = send_mssg(&reply, TRUE); } - if ( report_mssg ) { + if (report_mssg) { - if ( success ) { + if (success) { HDfprintf(stdout, "%d sync.\n", (int)(mssg_ptr->src)); - - } else { + } + else { HDfprintf(stdout, "%d sync FAILED.\n", (int)(mssg_ptr->src)); - } } - return(success); + return (success); } /* serve_sync_request() */ - /***************************************************************************** * * Function: serve_write_request() @@ -1756,80 +1629,75 @@ serve_sync_request(struct mssg_t * mssg_ptr) * *****************************************************************************/ static hbool_t -serve_write_request(struct mssg_t * mssg_ptr) +serve_write_request(struct mssg_t *mssg_ptr) { hbool_t report_mssg = FALSE; - hbool_t success = TRUE; - int target_index; - int new_ver_num; + hbool_t success = TRUE; + int target_index; + int new_ver_num = 0; haddr_t target_addr; #if DO_WRITE_REQ_ACK struct mssg_t reply; #endif /* DO_WRITE_REQ_ACK */ - if ( ( mssg_ptr == NULL ) || - ( mssg_ptr->req != WRITE_REQ_CODE ) || - ( mssg_ptr->magic != MSSG_MAGIC ) ) { + if ((mssg_ptr == NULL) || (mssg_ptr->req != WRITE_REQ_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__); } } - if ( success ) { + if (success) { - target_addr = mssg_ptr->base_addr; + target_addr = mssg_ptr->base_addr; target_index = addr_to_datum_index(target_addr); - if ( target_index < 0 ) { + if (target_index < 0) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: addr lookup failed for %a.\n", - world_mpi_rank, FUNC, target_addr); + if (verbose) { + HDfprintf(stdout, "%d:%s: addr lookup failed for %" PRIuHADDR ".\n", world_mpi_rank, __func__, + target_addr); } - } else if ( data[target_index].len != mssg_ptr->len ) { + } + else if (data[target_index].len != mssg_ptr->len) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: data[i].len = %Zu != mssg->len = %d.\n", - world_mpi_rank, FUNC, + if (verbose) { + HDfprintf(stdout, "%d:%s: data[i].len = %zu != mssg->len = %d.\n", world_mpi_rank, __func__, data[target_index].len, mssg_ptr->len); } } } - if ( success ) { + if (success) { new_ver_num = mssg_ptr->ver; /* this check should catch duplicate writes */ - if ( new_ver_num <= data[target_index].ver ) { + if (new_ver_num <= data[target_index].ver) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: new ver = %d <= old ver = %d.\n", - world_mpi_rank, FUNC, + if (verbose) { + HDfprintf(stdout, "%d:%s: new ver = %d <= old ver = %d.\n", world_mpi_rank, __func__, new_ver_num, data[target_index].ver); } } } - if ( success ) { + if (success) { - /* process the write */ - data[target_index].ver = new_ver_num; + /* process the write */ + data[target_index].ver = new_ver_num; data[target_index].valid = TRUE; /* and update the counters */ - total_writes++; + total_writes++; (data[target_index].writes)++; #if DO_WRITE_REQ_ACK @@ -1840,44 +1708,37 @@ serve_write_request(struct mssg_t * mssg_ptr) reply.dest = mssg_ptr->src; reply.mssg_num = -1; /* set by send function */ reply.base_addr = data[target_index].base_addr; - reply.len = data[target_index].len; - reply.ver = data[target_index].ver; - reply.count = 0; - reply.magic = MSSG_MAGIC; + H5_CHECKED_ASSIGN(reply.len, unsigned, data[target_index].len, size_t); + reply.ver = data[target_index].ver; + reply.count = 0; + reply.magic = MSSG_MAGIC; - /* and send it */ + /* and send it */ success = send_mssg(&reply, TRUE); #endif /* DO_WRITE_REQ_ACK */ - } - if ( report_mssg ) { + if (report_mssg) { - if ( success ) { + if (success) { - HDfprintf(stdout, "%d write 0x%llx. len = %d. ver = %d.\n", - (int)(mssg_ptr->src), - (long long)(data[target_index].base_addr), - (int)(data[target_index].len), + HDfprintf(stdout, "%d write 0x%llx. len = %d. ver = %d.\n", (int)(mssg_ptr->src), + (long long)(data[target_index].base_addr), (int)(data[target_index].len), (int)(data[target_index].ver)); + } + else { - } else { - - HDfprintf(stdout, "%d write 0x%llx FAILED. len = %d. ver = %d.\n", - (int)(mssg_ptr->src), - (long long)(data[target_index].base_addr), - (int)(data[target_index].len), + HDfprintf(stdout, "%d write 0x%llx FAILED. len = %d. ver = %d.\n", (int)(mssg_ptr->src), + (long long)(data[target_index].base_addr), (int)(data[target_index].len), (int)(data[target_index].ver)); - } } - return(success); + return (success); } /* serve_write_request() */ - /***************************************************************************** * * Function: serve_total_writes_request() @@ -1898,25 +1759,22 @@ serve_write_request(struct mssg_t * mssg_ptr) * *****************************************************************************/ static hbool_t -serve_total_writes_request(struct mssg_t * mssg_ptr) +serve_total_writes_request(struct mssg_t *mssg_ptr) { - hbool_t report_mssg = FALSE; - hbool_t success = TRUE; + hbool_t report_mssg = FALSE; + hbool_t success = TRUE; struct mssg_t reply; - if ( ( mssg_ptr == NULL ) || - ( mssg_ptr->req != REQ_TTL_WRITES_CODE ) || - ( mssg_ptr->magic != MSSG_MAGIC ) ) { + if ((mssg_ptr == NULL) || (mssg_ptr->req != REQ_TTL_WRITES_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__); } } - if ( success ) { + if (success) { /* compose the reply message */ reply.req = REQ_TTL_WRITES_RPLY_CODE; @@ -1926,37 +1784,31 @@ serve_total_writes_request(struct mssg_t * mssg_ptr) reply.base_addr = 0; reply.len = 0; reply.ver = 0; - reply.count = total_writes; + reply.count = (unsigned)total_writes; reply.magic = MSSG_MAGIC; } - if ( success ) { + if (success) { success = send_mssg(&reply, TRUE); } - if ( report_mssg ) { + if (report_mssg) { - if ( success ) { + if (success) { - HDfprintf(stdout, "%d request total writes %ld.\n", - (int)(mssg_ptr->src), - total_writes); - - } else { - - HDfprintf(stdout, "%d request total writes %ld -- FAILED.\n", - (int)(mssg_ptr->src), - total_writes); + HDfprintf(stdout, "%d request total writes %d.\n", (int)(mssg_ptr->src), total_writes); + } + else { + HDfprintf(stdout, "%d request total writes %d -- FAILED.\n", (int)(mssg_ptr->src), total_writes); } } - return(success); + return (success); } /* serve_total_writes_request() */ - /***************************************************************************** * * Function: serve_total_reads_request() @@ -1977,25 +1829,22 @@ serve_total_writes_request(struct mssg_t * mssg_ptr) * *****************************************************************************/ static hbool_t -serve_total_reads_request(struct mssg_t * mssg_ptr) +serve_total_reads_request(struct mssg_t *mssg_ptr) { - hbool_t report_mssg = FALSE; - hbool_t success = TRUE; + hbool_t report_mssg = FALSE; + hbool_t success = TRUE; struct mssg_t reply; - if ( ( mssg_ptr == NULL ) || - ( mssg_ptr->req != REQ_TTL_READS_CODE ) || - ( mssg_ptr->magic != MSSG_MAGIC ) ) { + if ((mssg_ptr == NULL) || (mssg_ptr->req != REQ_TTL_READS_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__); } } - if ( success ) { + if (success) { /* compose the reply message */ reply.req = REQ_TTL_READS_RPLY_CODE; @@ -2005,37 +1854,31 @@ serve_total_reads_request(struct mssg_t * mssg_ptr) reply.base_addr = 0; reply.len = 0; reply.ver = 0; - reply.count = total_reads; + reply.count = (unsigned)total_reads; reply.magic = MSSG_MAGIC; } - if ( success ) { + if (success) { success = send_mssg(&reply, TRUE); } - if ( report_mssg ) { - - if ( success ) { + if (report_mssg) { - HDfprintf(stdout, "%d request total reads %ld.\n", - (int)(mssg_ptr->src), - total_reads); + if (success) { - } else { - - HDfprintf(stdout, "%d request total reads %ld -- FAILED.\n", - (int)(mssg_ptr->src), - total_reads); + HDfprintf(stdout, "%d request total reads %d.\n", (int)(mssg_ptr->src), total_reads); + } + else { + HDfprintf(stdout, "%d request total reads %d -- FAILED.\n", (int)(mssg_ptr->src), total_reads); } } - return(success); + return (success); } /* serve_total_reads_request() */ - /***************************************************************************** * * Function: serve_entry_writes_request() @@ -2056,40 +1899,38 @@ serve_total_reads_request(struct mssg_t * mssg_ptr) * *****************************************************************************/ static hbool_t -serve_entry_writes_request(struct mssg_t * mssg_ptr) +serve_entry_writes_request(struct mssg_t *mssg_ptr) { - hbool_t report_mssg = FALSE; - hbool_t success = TRUE; - int target_index; - haddr_t target_addr; + hbool_t report_mssg = FALSE; + hbool_t success = TRUE; + int target_index; + haddr_t target_addr; struct mssg_t reply; - if ( ( mssg_ptr == NULL ) || - ( mssg_ptr->req != REQ_ENTRY_WRITES_CODE ) || - ( mssg_ptr->magic != MSSG_MAGIC ) ) { + if ((mssg_ptr == NULL) || (mssg_ptr->req != REQ_ENTRY_WRITES_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__); } } - if ( success ) { + if (success) { - target_addr = mssg_ptr->base_addr; + target_addr = mssg_ptr->base_addr; target_index = addr_to_datum_index(target_addr); - if ( target_index < 0 ) { + if (target_index < 0) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: addr lookup failed for %a.\n", - world_mpi_rank, FUNC, target_addr); + if (verbose) { + HDfprintf(stdout, "%d:%s: addr lookup failed for %" PRIuHADDR ".\n", world_mpi_rank, __func__, + target_addr); } - } else { + } + else { /* compose the reply message */ reply.req = REQ_ENTRY_WRITES_RPLY_CODE; @@ -2099,40 +1940,34 @@ serve_entry_writes_request(struct mssg_t * mssg_ptr) reply.base_addr = target_addr; reply.len = 0; reply.ver = 0; - reply.count = data[target_index].writes; + reply.count = (unsigned)data[target_index].writes; reply.magic = MSSG_MAGIC; } } - if ( success ) { + if (success) { success = send_mssg(&reply, TRUE); } - if ( report_mssg ) { - - if ( success ) { - - HDfprintf(stdout, "%d request entry 0x%llx writes = %ld.\n", - (int)(mssg_ptr->src), - (long long)(data[target_index].base_addr), - (long)(data[target_index].writes)); + if (report_mssg) { - } else { + if (success) { - HDfprintf(stdout, "%d request entry 0x%llx writes = %ld FAILED.\n", - (int)(mssg_ptr->src), - (long long)(data[target_index].base_addr), - (long)(data[target_index].writes)); + HDfprintf(stdout, "%d request entry 0x%llx writes = %ld.\n", (int)(mssg_ptr->src), + (long long)(data[target_index].base_addr), (long)(data[target_index].writes)); + } + else { + HDfprintf(stdout, "%d request entry 0x%llx writes = %ld FAILED.\n", (int)(mssg_ptr->src), + (long long)(data[target_index].base_addr), (long)(data[target_index].writes)); } } - return(success); + return (success); } /* serve_entry_writes_request() */ - /***************************************************************************** * * Function: serve_entry_reads_request() @@ -2153,40 +1988,38 @@ serve_entry_writes_request(struct mssg_t * mssg_ptr) * *****************************************************************************/ static hbool_t -serve_entry_reads_request(struct mssg_t * mssg_ptr) +serve_entry_reads_request(struct mssg_t *mssg_ptr) { - hbool_t report_mssg = FALSE; - hbool_t success = TRUE; - int target_index; - haddr_t target_addr; + hbool_t report_mssg = FALSE; + hbool_t success = TRUE; + int target_index; + haddr_t target_addr; struct mssg_t reply; - if ( ( mssg_ptr == NULL ) || - ( mssg_ptr->req != REQ_ENTRY_READS_CODE ) || - ( mssg_ptr->magic != MSSG_MAGIC ) ) { + if ((mssg_ptr == NULL) || (mssg_ptr->req != REQ_ENTRY_READS_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__); } } - if ( success ) { + if (success) { - target_addr = mssg_ptr->base_addr; + target_addr = mssg_ptr->base_addr; target_index = addr_to_datum_index(target_addr); - if ( target_index < 0 ) { + if (target_index < 0) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: addr lookup failed for %a.\n", - world_mpi_rank, FUNC, target_addr); + if (verbose) { + HDfprintf(stdout, "%d:%s: addr lookup failed for %" PRIuHADDR ".\n", world_mpi_rank, __func__, + target_addr); } - } else { + } + else { /* compose the reply message */ reply.req = REQ_ENTRY_READS_RPLY_CODE; @@ -2196,40 +2029,34 @@ serve_entry_reads_request(struct mssg_t * mssg_ptr) reply.base_addr = target_addr; reply.len = 0; reply.ver = 0; - reply.count = (long)(data[target_index].reads); + reply.count = (unsigned)(data[target_index].reads); reply.magic = MSSG_MAGIC; } } - if ( success ) { + if (success) { success = send_mssg(&reply, TRUE); } - if ( report_mssg ) { - - if ( success ) { - - HDfprintf(stdout, "%d request entry 0x%llx reads = %ld.\n", - (int)(mssg_ptr->src), - (long long)(data[target_index].base_addr), - (long)(data[target_index].reads)); + if (report_mssg) { - } else { + if (success) { - HDfprintf(stdout, "%d request entry 0x%llx reads = %ld FAILED.\n", - (int)(mssg_ptr->src), - (long long)(data[target_index].base_addr), - (long)(data[target_index].reads)); + HDfprintf(stdout, "%d request entry 0x%llx reads = %ld.\n", (int)(mssg_ptr->src), + (long long)(data[target_index].base_addr), (long)(data[target_index].reads)); + } + else { + HDfprintf(stdout, "%d request entry 0x%llx reads = %ld FAILED.\n", (int)(mssg_ptr->src), + (long long)(data[target_index].base_addr), (long)(data[target_index].reads)); } } - return(success); + return (success); } /* serve_entry_reads_request() */ - /***************************************************************************** * * Function: serve_rw_count_reset_request() @@ -2249,30 +2076,27 @@ serve_entry_reads_request(struct mssg_t * mssg_ptr) * *****************************************************************************/ static hbool_t -serve_rw_count_reset_request(struct mssg_t * mssg_ptr) +serve_rw_count_reset_request(struct mssg_t *mssg_ptr) { - hbool_t report_mssg = FALSE; - hbool_t success = TRUE; + hbool_t report_mssg = FALSE; + hbool_t success = TRUE; struct mssg_t reply; - if ( ( mssg_ptr == NULL ) || - ( mssg_ptr->req != REQ_RW_COUNT_RESET_CODE ) || - ( mssg_ptr->magic != MSSG_MAGIC ) ) { + if ((mssg_ptr == NULL) || (mssg_ptr->req != REQ_RW_COUNT_RESET_CODE) || (mssg_ptr->magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad mssg on entry.\n", world_mpi_rank, __func__); } } - if ( success ) { + if (success) { success = reset_server_counters(); } - if ( success ) { + if (success) { /* compose the reply message */ reply.req = REQ_RW_COUNT_RESET_RPLY_CODE; @@ -2286,36 +2110,31 @@ serve_rw_count_reset_request(struct mssg_t * mssg_ptr) reply.magic = MSSG_MAGIC; } - if ( success ) { + if (success) { success = send_mssg(&reply, TRUE); } - if ( report_mssg ) { - - if ( success ) { + if (report_mssg) { - HDfprintf(stdout, "%d request R/W counter reset.\n", - (int)(mssg_ptr->src)); + if (success) { - } else { - - HDfprintf(stdout, "%d request R/w counter reset FAILED.\n", - (int)(mssg_ptr->src)); + HDfprintf(stdout, "%d request R/W counter reset.\n", (int)(mssg_ptr->src)); + } + else { + HDfprintf(stdout, "%d request R/w counter reset FAILED.\n", (int)(mssg_ptr->src)); } } - return(success); + return (success); } /* serve_rw_count_reset_request() */ - /*****************************************************************************/ /**************************** Call back functions ****************************/ /*****************************************************************************/ - /*------------------------------------------------------------------------- * Function: datum_get_initial_load_size * @@ -2331,40 +2150,38 @@ serve_rw_count_reset_request(struct mssg_t * mssg_ptr) static herr_t datum_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr) { - haddr_t addr = *(haddr_t *)udata_ptr; - int idx; - struct datum * entry_ptr; + haddr_t addr = *(haddr_t *)udata_ptr; + int idx; + struct datum *entry_ptr; - HDassert( udata_ptr ); - HDassert( image_len_ptr ); + HDassert(udata_ptr); + HDassert(image_len_ptr); idx = addr_to_datum_index(addr); - HDassert( idx >= 0 ); - HDassert( idx < NUM_DATA_ENTRIES ); - HDassert( idx < virt_num_data_entries ); + HDassert(idx >= 0); + HDassert(idx < NUM_DATA_ENTRIES); + HDassert(idx < virt_num_data_entries); entry_ptr = &(data[idx]); - HDassert( addr == entry_ptr->base_addr ); - HDassert( ! entry_ptr->global_pinned ); - HDassert( ! entry_ptr->local_pinned ); + HDassert(addr == entry_ptr->base_addr); + HDassert(!entry_ptr->global_pinned); + HDassert(!entry_ptr->local_pinned); - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: get_initial_load_size() idx = %d, addr = %ld, len = %d.\n", - world_mpi_rank, idx, (long)addr, (int)entry_ptr->local_len); - fflush(stdout); + HDfprintf(stdout, "%d: get_initial_load_size() idx = %d, addr = %ld, len = %d.\n", world_mpi_rank, + idx, (long)addr, (int)entry_ptr->local_len); + fflush(stdout); } /* Set image length size */ *image_len_ptr = entry_ptr->local_len; - return(SUCCEED); + return (SUCCEED); } /* get_initial_load_size() */ - /*------------------------------------------------------------------------- * Function: datum_deserialize * @@ -2378,54 +2195,48 @@ datum_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr) *------------------------------------------------------------------------- */ static void * -datum_deserialize(const void * image_ptr, - H5_ATTR_UNUSED size_t len, - void * udata_ptr, - hbool_t * dirty_ptr) +datum_deserialize(const void H5_ATTR_NDEBUG_UNUSED *image_ptr, H5_ATTR_UNUSED size_t len, void *udata_ptr, + hbool_t *dirty_ptr) { - haddr_t addr = *(haddr_t *)udata_ptr; - hbool_t success = TRUE; - int idx; - struct datum * entry_ptr = NULL; + haddr_t addr = *(haddr_t *)udata_ptr; + hbool_t success = TRUE; + int idx; + struct datum *entry_ptr = NULL; - HDassert( image_ptr != NULL ); + HDassert(image_ptr != NULL); idx = addr_to_datum_index(addr); - HDassert( idx >= 0 ); - HDassert( idx < NUM_DATA_ENTRIES ); - HDassert( idx < virt_num_data_entries ); + HDassert(idx >= 0); + HDassert(idx < NUM_DATA_ENTRIES); + HDassert(idx < virt_num_data_entries); entry_ptr = &(data[idx]); - HDassert( addr == entry_ptr->base_addr ); - HDassert( ! entry_ptr->global_pinned ); - HDassert( ! entry_ptr->local_pinned ); + HDassert(addr == entry_ptr->base_addr); + HDassert(!entry_ptr->global_pinned); + HDassert(!entry_ptr->local_pinned); - HDassert( dirty_ptr ); + HDassert(dirty_ptr); - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: deserialize() idx = %d, addr = %ld, len = %d, is_dirty = %d.\n", - world_mpi_rank, idx, (long)addr, (int)len, - (int)(entry_ptr->header.is_dirty)); - fflush(stdout); + HDfprintf(stdout, "%d: deserialize() idx = %d, addr = %ld, len = %d, is_dirty = %d.\n", + world_mpi_rank, idx, (long)addr, (int)len, (int)(entry_ptr->header.is_dirty)); + fflush(stdout); } *dirty_ptr = FALSE; - if ( ! success ) { + if (!success) { entry_ptr = NULL; - } - return(entry_ptr); + return (entry_ptr); } /* deserialize() */ - /*------------------------------------------------------------------------- * Function: datum_image_len * @@ -2444,39 +2255,36 @@ datum_deserialize(const void * image_ptr, static herr_t datum_image_len(const void *thing, size_t *image_len) { - int idx; - struct datum * entry_ptr; + int idx; + struct datum *entry_ptr; - HDassert( thing ); - HDassert( image_len ); + HDassert(thing); + HDassert(image_len); entry_ptr = (struct datum *)thing; idx = addr_to_datum_index(entry_ptr->base_addr); - HDassert( idx >= 0 ); - HDassert( idx < NUM_DATA_ENTRIES ); - HDassert( idx < virt_num_data_entries ); - HDassert( &(data[idx]) == entry_ptr ); - HDassert( entry_ptr->local_len > 0 ); - HDassert( entry_ptr->local_len <= entry_ptr->len ); + HDassert(idx >= 0); + HDassert(idx < NUM_DATA_ENTRIES); + HDassert(idx < virt_num_data_entries); + HDassert(&(data[idx]) == entry_ptr); + HDassert(entry_ptr->local_len > 0); + HDassert(entry_ptr->local_len <= entry_ptr->len); - if(callbacks_verbose) { - HDfprintf(stdout, - "%d: image_len() idx = %d, addr = %ld, len = %d.\n", - world_mpi_rank, idx, (long)(entry_ptr->base_addr), - (int)(entry_ptr->local_len)); - fflush(stdout); + if (callbacks_verbose) { + HDfprintf(stdout, "%d: image_len() idx = %d, addr = %ld, len = %d.\n", world_mpi_rank, idx, + (long)(entry_ptr->base_addr), (int)(entry_ptr->local_len)); + fflush(stdout); } - HDassert( entry_ptr->header.addr == entry_ptr->base_addr ); + HDassert(entry_ptr->header.addr == entry_ptr->base_addr); *image_len = entry_ptr->local_len; - return(SUCCEED); + return (SUCCEED); } /* datum_image_len() */ - /*------------------------------------------------------------------------- * Function: datum_serialize * @@ -2490,72 +2298,62 @@ datum_image_len(const void *thing, size_t *image_len) *------------------------------------------------------------------------- */ static herr_t -datum_serialize(const H5F_t *f, - void *image_ptr, - size_t len, - void *thing_ptr) +datum_serialize(const H5F_t *f, void H5_ATTR_NDEBUG_UNUSED *image_ptr, size_t len, void *thing_ptr) { - herr_t ret_value = SUCCEED; - int idx; - struct datum * entry_ptr; - H5C_t * cache_ptr; - struct H5AC_aux_t * aux_ptr; + herr_t ret_value = SUCCEED; + int idx; + struct datum * entry_ptr; + struct H5AC_aux_t *aux_ptr; - HDassert( thing_ptr ); - HDassert( image_ptr ); + HDassert(thing_ptr); + HDassert(image_ptr); entry_ptr = (struct datum *)thing_ptr; - HDassert( f ); - HDassert( f->shared ); - HDassert( f->shared->cache ); - - cache_ptr = f->shared->cache; - - HDassert( cache_ptr->magic == H5C__H5C_T_MAGIC ); - HDassert( cache_ptr->aux_ptr ); + HDassert(f); + HDassert(f->shared); + HDassert(f->shared->cache); + HDassert(f->shared->cache->magic == H5C__H5C_T_MAGIC); + HDassert(f->shared->cache->aux_ptr); aux_ptr = (H5AC_aux_t *)(f->shared->cache->aux_ptr); - HDassert( aux_ptr ); - HDassert( aux_ptr->magic == H5AC__H5AC_AUX_T_MAGIC ); + HDassert(aux_ptr); + HDassert(aux_ptr->magic == H5AC__H5AC_AUX_T_MAGIC); entry_ptr->aux_ptr = aux_ptr; idx = addr_to_datum_index(entry_ptr->base_addr); - HDassert( idx >= 0 ); - HDassert( idx < NUM_DATA_ENTRIES ); - HDassert( idx < virt_num_data_entries ); - HDassert( &(data[idx]) == entry_ptr ); + HDassert(idx >= 0); + HDassert(idx < NUM_DATA_ENTRIES); + HDassert(idx < virt_num_data_entries); + HDassert(&(data[idx]) == entry_ptr); - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: serialize() idx = %d, addr = %ld, len = %d.\n", - world_mpi_rank, idx, (long)entry_ptr->header.addr, (int)len); - fflush(stdout); + HDfprintf(stdout, "%d: serialize() idx = %d, addr = %ld, len = %d.\n", world_mpi_rank, idx, + (long)entry_ptr->header.addr, (int)len); + fflush(stdout); } - HDassert( entry_ptr->header.addr == entry_ptr->base_addr ); - HDassert( ( entry_ptr->header.size == entry_ptr->len ) || - ( entry_ptr->header.size == entry_ptr->local_len ) ); + HDassert(entry_ptr->header.addr == entry_ptr->base_addr); + HDassert((entry_ptr->header.size == entry_ptr->len) || (entry_ptr->header.size == entry_ptr->local_len)); - HDassert( entry_ptr->header.is_dirty == entry_ptr->dirty ); + HDassert(entry_ptr->header.is_dirty == entry_ptr->dirty); datum_flushes++; - if ( entry_ptr->header.is_pinned ) { + if (entry_ptr->header.is_pinned) { datum_pinned_flushes++; - HDassert( entry_ptr->global_pinned || entry_ptr->local_pinned ); + HDassert(entry_ptr->global_pinned || entry_ptr->local_pinned); } - return(ret_value); + return (ret_value); } /* datum_serialize() */ - /*------------------------------------------------------------------------- * Function: datum_notify * @@ -2572,61 +2370,56 @@ datum_serialize(const H5F_t *f, static herr_t datum_notify(H5C_notify_action_t action, void *thing) { - hbool_t was_dirty = FALSE; - herr_t ret_value = SUCCEED; - struct datum * entry_ptr; - struct H5AC_aux_t * aux_ptr; - struct mssg_t mssg; - int idx; + hbool_t was_dirty = FALSE; + herr_t ret_value = SUCCEED; + struct datum * entry_ptr; + struct H5AC_aux_t *aux_ptr; + struct mssg_t mssg; + int idx; - HDassert( thing ); + HDassert(thing); entry_ptr = (struct datum *)thing; idx = addr_to_datum_index(entry_ptr->base_addr); - HDassert( idx >= 0 ); - HDassert( idx < NUM_DATA_ENTRIES ); - HDassert( idx < virt_num_data_entries ); - HDassert( &(data[idx]) == entry_ptr ); + HDassert(idx >= 0); + HDassert(idx < NUM_DATA_ENTRIES); + HDassert(idx < virt_num_data_entries); + HDassert(&(data[idx]) == entry_ptr); - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: notify() action = %d, idx = %d, addr = %ld.\n", - world_mpi_rank, (int) action, idx, - (long)entry_ptr->header.addr); + HDfprintf(stdout, "%d: notify() action = %d, idx = %d, addr = %ld.\n", world_mpi_rank, (int)action, + idx, (long)entry_ptr->header.addr); fflush(stdout); } - HDassert( entry_ptr->header.addr == entry_ptr->base_addr ); + HDassert(entry_ptr->header.addr == entry_ptr->base_addr); /* Skip this check when the entry is being dirtied, since the resize * operation sends the message before the len/local_len is updated * (after the resize operation completes successfully) (QAK - 2016/10/19) */ - if(H5AC_NOTIFY_ACTION_ENTRY_DIRTIED != action) - HDassert( ( entry_ptr->header.size == entry_ptr->len ) || - ( entry_ptr->header.size == entry_ptr->local_len ) ); + if (H5AC_NOTIFY_ACTION_ENTRY_DIRTIED != action) + HDassert((entry_ptr->header.size == entry_ptr->len) || + (entry_ptr->header.size == entry_ptr->local_len)); - switch ( action ) - { + switch (action) { case H5AC_NOTIFY_ACTION_AFTER_INSERT: - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: notify() action = insert, idx = %d, addr = %ld.\n", - world_mpi_rank, idx, (long)entry_ptr->header.addr); + HDfprintf(stdout, "%d: notify() action = insert, idx = %d, addr = %ld.\n", world_mpi_rank, + idx, (long)entry_ptr->header.addr); fflush(stdout); } /* do nothing */ break; case H5AC_NOTIFY_ACTION_AFTER_LOAD: - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: notify() action = load, idx = %d, addr = %ld.\n", - world_mpi_rank, idx, (long)entry_ptr->header.addr); + HDfprintf(stdout, "%d: notify() action = load, idx = %d, addr = %ld.\n", world_mpi_rank, idx, + (long)entry_ptr->header.addr); fflush(stdout); } @@ -2636,86 +2429,79 @@ datum_notify(H5C_notify_action_t action, void *thing) mssg.dest = world_server_mpi_rank; mssg.mssg_num = -1; /* set by send function */ mssg.base_addr = entry_ptr->base_addr; - mssg.len = entry_ptr->len; - mssg.ver = 0; /* bogus -- should be corrected by server */ - mssg.count = 0; /* not used */ - mssg.magic = MSSG_MAGIC; + H5_CHECKED_ASSIGN(mssg.len, unsigned, entry_ptr->len, size_t); + mssg.ver = 0; /* bogus -- should be corrected by server */ + mssg.count = 0; /* not used */ + mssg.magic = MSSG_MAGIC; - if ( ! send_mssg(&mssg, FALSE) ) { + if (!send_mssg(&mssg, FALSE)) { nerrors++; ret_value = FAIL; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__); } } - if ( ret_value == SUCCEED ) { + if (ret_value == SUCCEED) { - if ( ! recv_mssg(&mssg, READ_REQ_REPLY_CODE) ) { + if (!recv_mssg(&mssg, READ_REQ_REPLY_CODE)) { nerrors++; ret_value = FAIL; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__); } } } - if ( ret_value == SUCCEED ) { + if (ret_value == SUCCEED) { - if ( ( mssg.req != READ_REQ_REPLY_CODE ) || - ( mssg.src != world_server_mpi_rank ) || - ( mssg.dest != world_mpi_rank ) || - ( mssg.base_addr != entry_ptr->base_addr ) || - ( mssg.len != entry_ptr->len ) || - ( mssg.ver < entry_ptr->ver ) || - ( mssg.magic != MSSG_MAGIC ) ) { + if ((mssg.req != READ_REQ_REPLY_CODE) || (mssg.src != world_server_mpi_rank) || + (mssg.dest != world_mpi_rank) || (mssg.base_addr != entry_ptr->base_addr) || + (mssg.len != entry_ptr->len) || (mssg.ver < entry_ptr->ver) || + (mssg.magic != MSSG_MAGIC)) { nerrors++; ret_value = FAIL; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: Bad data in read req reply.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad data in read req reply.\n", world_mpi_rank, __func__); } -#if 0 /* This has been useful debugging code -- keep it for now. */ +#if 0 /* This has been useful debugging code -- keep it for now. */ if ( mssg.req != READ_REQ_REPLY_CODE ) { HDfprintf(stdout, "%d:%s: mssg.req != READ_REQ_REPLY_CODE.\n", - world_mpi_rank, FUNC); + world_mpi_rank, __func__); HDfprintf(stdout, "%d:%s: mssg.req = %d.\n", - world_mpi_rank, FUNC, (int)(mssg.req)); + world_mpi_rank, __func__, (int)(mssg.req)); } if ( mssg.src != world_server_mpi_rank ) { HDfprintf(stdout, "%d:%s: mssg.src != world_server_mpi_rank.\n", - world_mpi_rank, FUNC); + world_mpi_rank, __func__); } if ( mssg.dest != world_mpi_rank ) { HDfprintf(stdout, "%d:%s: mssg.dest != world_mpi_rank.\n", - world_mpi_rank, FUNC); + world_mpi_rank, __func__); } if ( mssg.base_addr != entry_ptr->base_addr ) { HDfprintf(stdout, "%d:%s: mssg.base_addr != entry_ptr->base_addr.\n", - world_mpi_rank, FUNC); - HDfprintf(stdout, "%d:%s: mssg.base_addr = %a.\n", - world_mpi_rank, FUNC, mssg.base_addr); + world_mpi_rank, __func__); + HDfprintf(stdout, "%d:%s: mssg.base_addr = %" PRIuHADDR ".\n", + world_mpi_rank, __func__, mssg.base_addr); HDfprintf(stdout, - "%d:%s: entry_ptr->base_addr = %a.\n", - world_mpi_rank, FUNC, + "%d:%s: entry_ptr->base_addr = %" PRIuHADDR ".\n", + world_mpi_rank, __func__, entry_ptr->base_addr); } @@ -2723,66 +2509,62 @@ datum_notify(H5C_notify_action_t action, void *thing) HDfprintf(stdout, "%d:%s: mssg.len != entry_ptr->len.\n", - world_mpi_rank, FUNC); - HDfprintf(stdout, "%d:%s: mssg.len = %a.\n", - world_mpi_rank, FUNC, mssg.len); + world_mpi_rank, __func__); + HDfprintf(stdout, "%d:%s: mssg.len = %" PRIuHADDR ".\n", + world_mpi_rank, __func__, mssg.len); } if ( mssg.ver < entry_ptr->ver ) { HDfprintf(stdout, "%d:%s: mssg.ver < entry_ptr->ver.\n", - world_mpi_rank, FUNC); + world_mpi_rank, __func__); } if ( mssg.magic != MSSG_MAGIC ) { HDfprintf(stdout, "%d:%s: mssg.magic != MSSG_MAGIC.\n", - world_mpi_rank, FUNC); + world_mpi_rank, __func__); } #endif /* JRM */ + } + else { - } else { - - entry_ptr->ver = mssg.ver; + entry_ptr->ver = mssg.ver; entry_ptr->dirty = FALSE; datum_loads++; } } break; - case H5C_NOTIFY_ACTION_AFTER_FLUSH: - if ( callbacks_verbose ) { + case H5C_NOTIFY_ACTION_AFTER_FLUSH: + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: notify() action = flush, idx = %d, addr = %ld.\n", - world_mpi_rank, idx, (long)entry_ptr->header.addr); + HDfprintf(stdout, "%d: notify() action = flush, idx = %d, addr = %ld.\n", world_mpi_rank, idx, + (long)entry_ptr->header.addr); fflush(stdout); } - HDassert( entry_ptr->aux_ptr ); - HDassert( entry_ptr->aux_ptr->magic == H5AC__H5AC_AUX_T_MAGIC ); - aux_ptr = entry_ptr->aux_ptr; + HDassert(entry_ptr->aux_ptr); + HDassert(entry_ptr->aux_ptr->magic == H5AC__H5AC_AUX_T_MAGIC); + aux_ptr = entry_ptr->aux_ptr; entry_ptr->aux_ptr = NULL; - HDassert(entry_ptr->header.is_dirty); /* JRM */ + HDassert(entry_ptr->header.is_dirty); /* JRM */ - if ( ( file_mpi_rank != 0 ) && - ( entry_ptr->dirty ) && - ( aux_ptr->metadata_write_strategy == - H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY ) ) { + if ((file_mpi_rank != 0) && (entry_ptr->dirty) && + (aux_ptr->metadata_write_strategy == H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY)) { ret_value = FAIL; - HDfprintf(stdout, - "%d:%s: Flushed dirty entry from non-zero file process.", - world_mpi_rank, FUNC); + HDfprintf(stdout, "%d:%s: Flushed dirty entry from non-zero file process.", world_mpi_rank, + __func__); } - if ( ret_value == SUCCEED ) { + if (ret_value == SUCCEED) { - if ( entry_ptr->header.is_dirty ) { + if (entry_ptr->header.is_dirty) { - was_dirty = TRUE; /* so we will receive the ack + was_dirty = TRUE; /* so we will receive the ack * if requested */ @@ -2792,54 +2574,47 @@ datum_notify(H5C_notify_action_t action, void *thing) mssg.dest = world_server_mpi_rank; mssg.mssg_num = -1; /* set by send function */ mssg.base_addr = entry_ptr->base_addr; - mssg.len = entry_ptr->len; - mssg.ver = entry_ptr->ver; - mssg.count = 0; - mssg.magic = MSSG_MAGIC; + H5_CHECKED_ASSIGN(mssg.len, unsigned, entry_ptr->len, size_t); + mssg.ver = entry_ptr->ver; + mssg.count = 0; + mssg.magic = MSSG_MAGIC; - if ( ! send_mssg(&mssg, FALSE) ) { + if (!send_mssg(&mssg, FALSE)) { nerrors++; ret_value = FAIL; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__); } } - else - { - entry_ptr->dirty = FALSE; - entry_ptr->flushed = TRUE; + else { + entry_ptr->dirty = FALSE; + entry_ptr->flushed = TRUE; } } } #if DO_WRITE_REQ_ACK - if ( ( ret_value == SUCCEED ) && ( was_dirty ) ) { + if ((ret_value == SUCCEED) && (was_dirty)) { - if ( ! recv_mssg(&mssg, WRITE_REQ_ACK_CODE) ) { + if (!recv_mssg(&mssg, WRITE_REQ_ACK_CODE)) { nerrors++; ret_value = FAIL; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__); } - } else if ( ( mssg.req != WRITE_REQ_ACK_CODE ) || - ( mssg.src != world_server_mpi_rank ) || - ( mssg.dest != world_mpi_rank ) || - ( mssg.base_addr != entry_ptr->base_addr ) || - ( mssg.len != entry_ptr->len ) || - ( mssg.ver != entry_ptr->ver ) || - ( mssg.magic != MSSG_MAGIC ) ) { + } + else if ((mssg.req != WRITE_REQ_ACK_CODE) || (mssg.src != world_server_mpi_rank) || + (mssg.dest != world_mpi_rank) || (mssg.base_addr != entry_ptr->base_addr) || + (mssg.len != entry_ptr->len) || (mssg.ver != entry_ptr->ver) || + (mssg.magic != MSSG_MAGIC)) { nerrors++; ret_value = FAIL; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: Bad data in write req ack.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad data in write req ack.\n", world_mpi_rank, __func__); } } } @@ -2848,19 +2623,18 @@ datum_notify(H5C_notify_action_t action, void *thing) datum_flushes++; - if ( entry_ptr->header.is_pinned ) { + if (entry_ptr->header.is_pinned) { datum_pinned_flushes++; HDassert(entry_ptr->global_pinned || entry_ptr->local_pinned); } - break; + break; case H5AC_NOTIFY_ACTION_BEFORE_EVICT: - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: notify() action = evict, idx = %d, addr = %ld.\n", - world_mpi_rank, idx, (long)entry_ptr->header.addr); + HDfprintf(stdout, "%d: notify() action = evict, idx = %d, addr = %ld.\n", world_mpi_rank, idx, + (long)entry_ptr->header.addr); fflush(stdout); } @@ -2868,11 +2642,10 @@ datum_notify(H5C_notify_action_t action, void *thing) break; case H5AC_NOTIFY_ACTION_ENTRY_DIRTIED: - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: notify() action = entry dirty, idx = %d, addr = %ld.\n", - world_mpi_rank, idx, (long)entry_ptr->header.addr); + HDfprintf(stdout, "%d: notify() action = entry dirty, idx = %d, addr = %ld.\n", + world_mpi_rank, idx, (long)entry_ptr->header.addr); fflush(stdout); } @@ -2880,32 +2653,30 @@ datum_notify(H5C_notify_action_t action, void *thing) break; case H5AC_NOTIFY_ACTION_ENTRY_CLEANED: - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: notify() action = entry clean, idx = %d, addr = %ld.\n", - world_mpi_rank, idx, (long)entry_ptr->header.addr); + HDfprintf(stdout, "%d: notify() action = entry clean, idx = %d, addr = %ld.\n", + world_mpi_rank, idx, (long)entry_ptr->header.addr); fflush(stdout); } entry_ptr->cleared = TRUE; - entry_ptr->dirty = FALSE; + entry_ptr->dirty = FALSE; datum_clears++; - if(entry_ptr->header.is_pinned) { + if (entry_ptr->header.is_pinned) { datum_pinned_clears++; - HDassert( entry_ptr->global_pinned || entry_ptr->local_pinned ); + HDassert(entry_ptr->global_pinned || entry_ptr->local_pinned); } /* end if */ break; case H5AC_NOTIFY_ACTION_CHILD_DIRTIED: - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: notify() action = child entry dirty, idx = %d, addr = %ld.\n", - world_mpi_rank, idx, (long)entry_ptr->header.addr); + HDfprintf(stdout, "%d: notify() action = child entry dirty, idx = %d, addr = %ld.\n", + world_mpi_rank, idx, (long)entry_ptr->header.addr); fflush(stdout); } @@ -2913,11 +2684,10 @@ datum_notify(H5C_notify_action_t action, void *thing) break; case H5AC_NOTIFY_ACTION_CHILD_CLEANED: - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: notify() action = child entry clean, idx = %d, addr = %ld.\n", - world_mpi_rank, idx, (long)entry_ptr->header.addr); + HDfprintf(stdout, "%d: notify() action = child entry clean, idx = %d, addr = %ld.\n", + world_mpi_rank, idx, (long)entry_ptr->header.addr); fflush(stdout); } @@ -2925,11 +2695,10 @@ datum_notify(H5C_notify_action_t action, void *thing) break; case H5AC_NOTIFY_ACTION_CHILD_UNSERIALIZED: - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: notify() action = child entry unserialized, idx = %d, addr = %ld.\n", - world_mpi_rank, idx, (long)entry_ptr->header.addr); + HDfprintf(stdout, "%d: notify() action = child entry unserialized, idx = %d, addr = %ld.\n", + world_mpi_rank, idx, (long)entry_ptr->header.addr); fflush(stdout); } @@ -2937,32 +2706,29 @@ datum_notify(H5C_notify_action_t action, void *thing) break; case H5AC_NOTIFY_ACTION_CHILD_SERIALIZED: - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: notify() action = child entry serialized, idx = %d, addr = %ld.\n", - world_mpi_rank, idx, (long)entry_ptr->header.addr); + HDfprintf(stdout, "%d: notify() action = child entry serialized, idx = %d, addr = %ld.\n", + world_mpi_rank, idx, (long)entry_ptr->header.addr); fflush(stdout); } /* do nothing */ break; - default: + default: nerrors++; ret_value = FAIL; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Unknown notify action.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Unknown notify action.\n", world_mpi_rank, __func__); } - break; + break; } - return(ret_value); + return (ret_value); } /* datum_notify() */ - /*------------------------------------------------------------------------- * Function: datum_free_icr * @@ -2980,45 +2746,42 @@ datum_notify(H5C_notify_action_t action, void *thing) *------------------------------------------------------------------------- */ static herr_t -datum_free_icr(void * thing) +datum_free_icr(void *thing) { - int idx; - struct datum * entry_ptr; + int idx; + struct datum *entry_ptr; - HDassert( thing ); + HDassert(thing); entry_ptr = (struct datum *)thing; idx = addr_to_datum_index(entry_ptr->base_addr); - HDassert( idx >= 0 ); - HDassert( idx < NUM_DATA_ENTRIES ); - HDassert( idx < virt_num_data_entries ); - HDassert( &(data[idx]) == entry_ptr ); + HDassert(idx >= 0); + HDassert(idx < NUM_DATA_ENTRIES); + HDassert(idx < virt_num_data_entries); + HDassert(&(data[idx]) == entry_ptr); - if ( callbacks_verbose ) { + if (callbacks_verbose) { - HDfprintf(stdout, - "%d: free_icr() idx = %d, dirty = %d.\n", - world_mpi_rank, idx, (int)(entry_ptr->dirty)); - fflush(stdout); + HDfprintf(stdout, "%d: free_icr() idx = %d, dirty = %d.\n", world_mpi_rank, idx, + (int)(entry_ptr->dirty)); + fflush(stdout); } - HDassert( entry_ptr->header.addr == entry_ptr->base_addr ); - HDassert( ( entry_ptr->header.size == entry_ptr->len ) || - ( entry_ptr->header.size == entry_ptr->local_len ) ); + HDassert(entry_ptr->header.addr == entry_ptr->base_addr); + HDassert((entry_ptr->header.size == entry_ptr->len) || (entry_ptr->header.size == entry_ptr->local_len)); - HDassert( !(entry_ptr->header.is_dirty) ); - HDassert( !(entry_ptr->global_pinned) ); - HDassert( !(entry_ptr->local_pinned) ); - HDassert( !(entry_ptr->header.is_pinned) ); + HDassert(!(entry_ptr->header.is_dirty)); + HDassert(!(entry_ptr->global_pinned)); + HDassert(!(entry_ptr->local_pinned)); + HDassert(!(entry_ptr->header.is_pinned)); datum_destroys++; - return(SUCCEED); + return (SUCCEED); } /* datum_free_icr() */ - /*****************************************************************************/ /************************** test utility functions ***************************/ /*****************************************************************************/ @@ -3038,57 +2801,54 @@ datum_free_icr(void * thing) * *****************************************************************************/ static void -expunge_entry(H5F_t * file_ptr, - int32_t idx) +expunge_entry(H5F_t *file_ptr, int32_t idx) { - hbool_t in_cache; - herr_t result; - struct datum * entry_ptr; + hbool_t in_cache; + herr_t result; + struct datum *entry_ptr; - HDassert( file_ptr ); - HDassert( ( 0 <= idx ) && ( idx < NUM_DATA_ENTRIES ) ); - HDassert( idx < virt_num_data_entries ); + HDassert(file_ptr); + HDassert((0 <= idx) && (idx < NUM_DATA_ENTRIES)); + HDassert(idx < virt_num_data_entries); entry_ptr = &(data[idx]); - HDassert( !(entry_ptr->locked) ); - HDassert( !(entry_ptr->global_pinned) ); - HDassert( !(entry_ptr->local_pinned) ); + HDassert(!(entry_ptr->locked)); + HDassert(!(entry_ptr->global_pinned)); + HDassert(!(entry_ptr->local_pinned)); entry_ptr->dirty = FALSE; - if ( nerrors == 0 ) { + if (nerrors == 0) { result = H5AC_expunge_entry(file_ptr, &(types[0]), entry_ptr->header.addr, H5AC__NO_FLAGS_SET); - if ( result < 0 ) { + if (result < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Error in H5AC_expunge_entry().\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Error in H5AC_expunge_entry().\n", world_mpi_rank, __func__); } } - HDassert( ((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE ); - HDassert( ! ((entry_ptr->header).is_dirty) ); + HDassert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE); + HDassert(!((entry_ptr->header).is_dirty)); - result = H5C_get_entry_status(file_ptr, entry_ptr->base_addr, - NULL, &in_cache, NULL, NULL, NULL, NULL, NULL, NULL, NULL); + result = H5C_get_entry_status(file_ptr, entry_ptr->base_addr, NULL, &in_cache, NULL, NULL, NULL, NULL, + NULL, NULL, NULL); - if ( result < 0 ) { + if (result < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Error in H5C_get_entry_status().\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Error in H5C_get_entry_status().\n", world_mpi_rank, __func__); } - } else if ( in_cache ) { + } + else if (in_cache) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Expunged entry still in cache?!?\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Expunged entry still in cache?!?\n", world_mpi_rank, __func__); } } } @@ -3097,7 +2857,6 @@ expunge_entry(H5F_t * file_ptr, } /* expunge_entry() */ - /***************************************************************************** * Function: insert_entry() * @@ -3120,93 +2879,83 @@ expunge_entry(H5F_t * file_ptr, * *****************************************************************************/ static void -insert_entry(H5C_t * cache_ptr, - H5F_t * file_ptr, - int32_t idx, - unsigned int flags) +insert_entry(H5C_t *cache_ptr, H5F_t *file_ptr, int32_t idx, unsigned int flags) { - hbool_t insert_pinned; - herr_t result; - struct datum * entry_ptr; + hbool_t insert_pinned; + herr_t result; + struct datum *entry_ptr; - HDassert( cache_ptr ); - HDassert( file_ptr ); - HDassert( ( 0 <= idx ) && ( idx < NUM_DATA_ENTRIES ) ); - HDassert( idx < virt_num_data_entries ); + HDassert(cache_ptr); + HDassert(file_ptr); + HDassert((0 <= idx) && (idx < NUM_DATA_ENTRIES)); + HDassert(idx < virt_num_data_entries); entry_ptr = &(data[idx]); - HDassert( !(entry_ptr->locked) ); + HDassert(!(entry_ptr->locked)); - insert_pinned = ((flags & H5C__PIN_ENTRY_FLAG) != 0 ); + insert_pinned = ((flags & H5C__PIN_ENTRY_FLAG) != 0); - if ( nerrors == 0 ) { + if (nerrors == 0) { (entry_ptr->ver)++; entry_ptr->dirty = TRUE; - result = H5AC_insert_entry(file_ptr, &(types[0]), - entry_ptr->base_addr, (void *)(&(entry_ptr->header)), flags); + result = H5AC_insert_entry(file_ptr, &(types[0]), entry_ptr->base_addr, + (void *)(&(entry_ptr->header)), flags); - if ( ( result < 0 ) || - ( entry_ptr->header.type != &(types[0]) ) || - ( entry_ptr->len != entry_ptr->header.size ) || - ( entry_ptr->base_addr != entry_ptr->header.addr ) ) { + if ((result < 0) || (entry_ptr->header.type != &(types[0])) || + (entry_ptr->len != entry_ptr->header.size) || (entry_ptr->base_addr != entry_ptr->header.addr)) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Error in H5AC_insert_entry().\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Error in H5AC_insert_entry().\n", world_mpi_rank, __func__); } } - if ( ! (entry_ptr->header.is_dirty) ) { + if (!(entry_ptr->header.is_dirty)) { - /* it is possible that we just exceeded the dirty bytes - * threshold, triggering a write of the newly inserted - * entry. Test for this, and only flag an error if this - * is not the case. - */ + /* it is possible that we just exceeded the dirty bytes + * threshold, triggering a write of the newly inserted + * entry. Test for this, and only flag an error if this + * is not the case. + */ - struct H5AC_aux_t * aux_ptr; + struct H5AC_aux_t *aux_ptr; - aux_ptr = ((H5AC_aux_t *)(cache_ptr->aux_ptr)); + aux_ptr = ((H5AC_aux_t *)(cache_ptr->aux_ptr)); - if ( ! ( ( aux_ptr != NULL ) && - ( aux_ptr->magic == H5AC__H5AC_AUX_T_MAGIC ) && - ( aux_ptr->dirty_bytes == 0 ) ) ) { + if (!((aux_ptr != NULL) && (aux_ptr->magic == H5AC__H5AC_AUX_T_MAGIC) && + (aux_ptr->dirty_bytes == 0))) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: data[%d].header.is_dirty = %d.\n", - world_mpi_rank, FUNC, idx, - (int)(data[idx].header.is_dirty)); - } + if (verbose) { + HDfprintf(stdout, "%d:%s: data[%d].header.is_dirty = %d.\n", world_mpi_rank, __func__, + idx, (int)(data[idx].header.is_dirty)); + } } } - if ( insert_pinned ) { + if (insert_pinned) { - HDassert( entry_ptr->header.is_pinned ); + HDassert(entry_ptr->header.is_pinned); entry_ptr->global_pinned = TRUE; - global_pins++; - - } else { + global_pins++; + } + else { - HDassert( ! ( entry_ptr->header.is_pinned ) ); + HDassert(!(entry_ptr->header.is_pinned)); entry_ptr->global_pinned = FALSE; - } /* HDassert( entry_ptr->header.is_dirty ); */ - HDassert( ((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE ); + HDassert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE); } return; } /* insert_entry() */ - /***************************************************************************** * Function: local_pin_and_unpin_random_entries() * @@ -3222,59 +2971,52 @@ insert_entry(H5C_t * cache_ptr, * *****************************************************************************/ static void -local_pin_and_unpin_random_entries(H5F_t * file_ptr, - int min_idx, - int max_idx, - int min_count, - int max_count) +local_pin_and_unpin_random_entries(H5F_t *file_ptr, int min_idx, int max_idx, int min_count, int max_count) { - if ( nerrors == 0 ) { + if (nerrors == 0) { hbool_t via_unprotect; - int count; - int i; - int idx; - - HDassert( file_ptr ); - HDassert( 0 <= min_idx ); - HDassert( min_idx < max_idx ); - HDassert( max_idx < NUM_DATA_ENTRIES ); - HDassert( max_idx < virt_num_data_entries ); - HDassert( 0 <= min_count ); - HDassert( min_count < max_count ); + int count; + int i; + int idx; + + HDassert(file_ptr); + HDassert(0 <= min_idx); + HDassert(min_idx < max_idx); + HDassert(max_idx < NUM_DATA_ENTRIES); + HDassert(max_idx < virt_num_data_entries); + HDassert(0 <= min_count); + HDassert(min_count < max_count); - count = (HDrand() % (max_count - min_count)) + min_count; + count = (HDrand() % (max_count - min_count)) + min_count; - HDassert( min_count <= count ); - HDassert( count <= max_count ); + HDassert(min_count <= count); + HDassert(count <= max_count); - for ( i = 0; i < count; i++ ) - { + for (i = 0; i < count; i++) { local_pin_random_entry(file_ptr, min_idx, max_idx); - } + } - count = (HDrand() % (max_count - min_count)) + min_count; + count = (HDrand() % (max_count - min_count)) + min_count; - HDassert( min_count <= count ); - HDassert( count <= max_count ); + HDassert(min_count <= count); + HDassert(count <= max_count); - i = 0; - idx = 0; + i = 0; + idx = 0; - while ( ( i < count ) && ( idx >= 0 ) ) - { - via_unprotect = ( (((unsigned)i) & 0x0001) == 0 ); - idx = local_unpin_next_pinned_entry(file_ptr, idx, via_unprotect); - i++; - } + while ((i < count) && (idx >= 0)) { + via_unprotect = ((((unsigned)i) & 0x0001) == 0); + idx = local_unpin_next_pinned_entry(file_ptr, idx, via_unprotect); + i++; + } } return; } /* local_pin_and_unpin_random_entries() */ - /***************************************************************************** * Function: local_pin_random_entry() * @@ -3292,27 +3034,23 @@ local_pin_and_unpin_random_entries(H5F_t * file_ptr, * *****************************************************************************/ static void -local_pin_random_entry(H5F_t * file_ptr, - int min_idx, - int max_idx) +local_pin_random_entry(H5F_t *file_ptr, int min_idx, int max_idx) { int idx; - if ( nerrors == 0 ) { + if (nerrors == 0) { - HDassert( file_ptr ); - HDassert( 0 <= min_idx ); - HDassert( min_idx < max_idx ); - HDassert( max_idx < NUM_DATA_ENTRIES ); - HDassert( max_idx < virt_num_data_entries ); + HDassert(file_ptr); + HDassert(0 <= min_idx); + HDassert(min_idx < max_idx); + HDassert(max_idx < NUM_DATA_ENTRIES); + HDassert(max_idx < virt_num_data_entries); - do - { + do { idx = (HDrand() % (max_idx - min_idx)) + min_idx; - HDassert( min_idx <= idx ); - HDassert( idx <= max_idx ); - } - while ( data[idx].global_pinned || data[idx].local_pinned ); + HDassert(min_idx <= idx); + HDassert(idx <= max_idx); + } while (data[idx].global_pinned || data[idx].local_pinned); pin_entry(file_ptr, idx, FALSE, FALSE); } @@ -3321,7 +3059,6 @@ local_pin_random_entry(H5F_t * file_ptr, } /* local_pin_random_entry() */ - /***************************************************************************** * Function: local_unpin_all_entries() * @@ -3336,30 +3073,26 @@ local_pin_random_entry(H5F_t * file_ptr, * *****************************************************************************/ static void -local_unpin_all_entries(H5F_t * file_ptr, - hbool_t via_unprotect) +local_unpin_all_entries(H5F_t *file_ptr, hbool_t via_unprotect) { - if ( nerrors == 0 ) { + if (nerrors == 0) { int idx; - HDassert( file_ptr ); + HDassert(file_ptr); - idx = 0; + idx = 0; - while ( idx >= 0 ) - { - idx = local_unpin_next_pinned_entry(file_ptr, - idx, via_unprotect); - } + while (idx >= 0) { + idx = local_unpin_next_pinned_entry(file_ptr, idx, via_unprotect); + } } return; } /* local_unpin_all_entries() */ - /***************************************************************************** * Function: local_unpin_next_pinned_entry() * @@ -3377,47 +3110,42 @@ local_unpin_all_entries(H5F_t * file_ptr, * *****************************************************************************/ static int -local_unpin_next_pinned_entry(H5F_t * file_ptr, - int start_idx, - hbool_t via_unprotect) +local_unpin_next_pinned_entry(H5F_t *file_ptr, int start_idx, hbool_t via_unprotect) { - int i = 0; + int i = 0; int idx = -1; - if ( nerrors == 0 ) { + if (nerrors == 0) { - HDassert( file_ptr ); - HDassert( 0 <= start_idx ); - HDassert( start_idx < NUM_DATA_ENTRIES ); - HDassert( start_idx < virt_num_data_entries ); + HDassert(file_ptr); + HDassert(0 <= start_idx); + HDassert(start_idx < NUM_DATA_ENTRIES); + HDassert(start_idx < virt_num_data_entries); - idx = start_idx; + idx = start_idx; - while ( ( i < virt_num_data_entries ) && - ( ! ( data[idx].local_pinned ) ) ) - { - i++; - idx++; - if ( idx >= virt_num_data_entries ) { - idx = 0; + while ((i < virt_num_data_entries) && (!(data[idx].local_pinned))) { + i++; + idx++; + if (idx >= virt_num_data_entries) { + idx = 0; + } } - } - - if ( data[idx].local_pinned ) { - unpin_entry(file_ptr, idx, FALSE, FALSE, via_unprotect); + if (data[idx].local_pinned) { - } else { + unpin_entry(file_ptr, idx, FALSE, FALSE, via_unprotect); + } + else { - idx = -1; - } + idx = -1; + } } - return(idx); + return (idx); } /* local_unpin_next_pinned_entry() */ - /***************************************************************************** * Function: lock_and_unlock_random_entries() * @@ -3434,28 +3162,23 @@ local_unpin_next_pinned_entry(H5F_t * file_ptr, * *****************************************************************************/ static void -lock_and_unlock_random_entries(H5F_t * file_ptr, - int min_idx, - int max_idx, - int min_count, - int max_count) +lock_and_unlock_random_entries(H5F_t *file_ptr, int min_idx, int max_idx, int min_count, int max_count) { int count; int i; - if ( nerrors == 0 ) { + if (nerrors == 0) { - HDassert( file_ptr ); - HDassert( 0 <= min_count ); - HDassert( min_count < max_count ); + HDassert(file_ptr); + HDassert(0 <= min_count); + HDassert(min_count < max_count); count = (HDrand() % (max_count - min_count)) + min_count; - HDassert( min_count <= count ); - HDassert( count <= max_count ); + HDassert(min_count <= count); + HDassert(count <= max_count); - for ( i = 0; i < count; i++ ) - { + for (i = 0; i < count; i++) { lock_and_unlock_random_entry(file_ptr, min_idx, max_idx); } } @@ -3464,7 +3187,6 @@ lock_and_unlock_random_entries(H5F_t * file_ptr, } /* lock_and_unlock_random_entries() */ - /***************************************************************************** * Function: lock_and_unlock_random_entry() * @@ -3480,34 +3202,31 @@ lock_and_unlock_random_entries(H5F_t * file_ptr, * *****************************************************************************/ static void -lock_and_unlock_random_entry(H5F_t * file_ptr, - int min_idx, - int max_idx) +lock_and_unlock_random_entry(H5F_t *file_ptr, int min_idx, int max_idx) { int idx; - if ( nerrors == 0 ) { + if (nerrors == 0) { - HDassert( file_ptr ); - HDassert( 0 <= min_idx ); - HDassert( min_idx < max_idx ); - HDassert( max_idx < NUM_DATA_ENTRIES ); - HDassert( max_idx < virt_num_data_entries ); + HDassert(file_ptr); + HDassert(0 <= min_idx); + HDassert(min_idx < max_idx); + HDassert(max_idx < NUM_DATA_ENTRIES); + HDassert(max_idx < virt_num_data_entries); idx = (HDrand() % (max_idx - min_idx)) + min_idx; - HDassert( min_idx <= idx ); - HDassert( idx <= max_idx ); + HDassert(min_idx <= idx); + HDassert(idx <= max_idx); - lock_entry(file_ptr, idx); - unlock_entry(file_ptr, idx, H5AC__NO_FLAGS_SET); + lock_entry(file_ptr, idx); + unlock_entry(file_ptr, idx, H5AC__NO_FLAGS_SET); } return; } /* lock_and_unlock_random_entry() */ - /***************************************************************************** * Function: lock_entry() * @@ -3528,51 +3247,45 @@ lock_and_unlock_random_entry(H5F_t * file_ptr, * *****************************************************************************/ static void -lock_entry(H5F_t * file_ptr, - int32_t idx) +lock_entry(H5F_t *file_ptr, int32_t idx) { - struct datum * entry_ptr; - H5C_cache_entry_t * cache_entry_ptr; + struct datum * entry_ptr; + H5C_cache_entry_t *cache_entry_ptr; - if ( nerrors == 0 ) { + if (nerrors == 0) { - HDassert( ( 0 <= idx ) && ( idx < NUM_DATA_ENTRIES ) ); - HDassert( idx < virt_num_data_entries ); + HDassert((0 <= idx) && (idx < NUM_DATA_ENTRIES)); + HDassert(idx < virt_num_data_entries); entry_ptr = &(data[idx]); - HDassert( ! (entry_ptr->locked) ); + HDassert(!(entry_ptr->locked)); - cache_entry_ptr = (H5C_cache_entry_t *)H5AC_protect(file_ptr, - &(types[0]), entry_ptr->base_addr, - &entry_ptr->base_addr, - H5AC__NO_FLAGS_SET); + cache_entry_ptr = (H5C_cache_entry_t *)H5AC_protect(file_ptr, &(types[0]), entry_ptr->base_addr, + &entry_ptr->base_addr, H5AC__NO_FLAGS_SET); - if ( ( cache_entry_ptr != (void *)(&(entry_ptr->header)) ) || - ( entry_ptr->header.type != &(types[0]) ) || - ( ( entry_ptr->len != entry_ptr->header.size ) && - ( entry_ptr->local_len != entry_ptr->header.size ) ) || - ( entry_ptr->base_addr != entry_ptr->header.addr ) ) { + if ((cache_entry_ptr != (void *)(&(entry_ptr->header))) || (entry_ptr->header.type != &(types[0])) || + ((entry_ptr->len != entry_ptr->header.size) && + (entry_ptr->local_len != entry_ptr->header.size)) || + (entry_ptr->base_addr != entry_ptr->header.addr)) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: error in H5AC_protect().\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: error in H5AC_protect().\n", world_mpi_rank, __func__); } - } else { - - entry_ptr->locked = TRUE; + } + else { - } + entry_ptr->locked = TRUE; + } - HDassert( ((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE ); + HDassert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE); } return; } /* lock_entry() */ - /***************************************************************************** * Function: mark_entry_dirty() * @@ -3589,44 +3302,40 @@ lock_entry(H5F_t * file_ptr, static void mark_entry_dirty(int32_t idx) { - herr_t result; - struct datum * entry_ptr; + herr_t result; + struct datum *entry_ptr; - if ( nerrors == 0 ) { + if (nerrors == 0) { - HDassert( ( 0 <= idx ) && ( idx < NUM_DATA_ENTRIES ) ); - HDassert( idx < virt_num_data_entries ); + HDassert((0 <= idx) && (idx < NUM_DATA_ENTRIES)); + HDassert(idx < virt_num_data_entries); entry_ptr = &(data[idx]); - HDassert ( entry_ptr->locked || entry_ptr->global_pinned ); - HDassert ( ! (entry_ptr->local_pinned) ); + HDassert(entry_ptr->locked || entry_ptr->global_pinned); + HDassert(!(entry_ptr->local_pinned)); (entry_ptr->ver)++; entry_ptr->dirty = TRUE; - result = H5AC_mark_entry_dirty( (void *)entry_ptr); + result = H5AC_mark_entry_dirty((void *)entry_ptr); - if ( result < 0 ) { + if (result < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: error in H5AC_mark_entry_dirty().\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: error in H5AC_mark_entry_dirty().\n", world_mpi_rank, __func__); } } - else if ( ! ( entry_ptr->locked ) ) - { - global_dirty_pins++; - } + else if (!(entry_ptr->locked)) { + global_dirty_pins++; + } } return; } /* mark_entry_dirty() */ - /***************************************************************************** * Function: pin_entry() * @@ -3641,58 +3350,53 @@ mark_entry_dirty(int32_t idx) * *****************************************************************************/ static void -pin_entry(H5F_t * file_ptr, - int32_t idx, - hbool_t global, - hbool_t dirty) +pin_entry(H5F_t *file_ptr, int32_t idx, hbool_t global, hbool_t dirty) { - unsigned int flags = H5AC__PIN_ENTRY_FLAG; - struct datum * entry_ptr; + unsigned int flags = H5AC__PIN_ENTRY_FLAG; + struct datum *entry_ptr; - if ( nerrors == 0 ) { + if (nerrors == 0) { - HDassert( file_ptr ); - HDassert( ( 0 <= idx ) && ( idx < NUM_DATA_ENTRIES ) ); - HDassert( idx < virt_num_data_entries ); + HDassert(file_ptr); + HDassert((0 <= idx) && (idx < NUM_DATA_ENTRIES)); + HDassert(idx < virt_num_data_entries); entry_ptr = &(data[idx]); - HDassert ( ! (entry_ptr->global_pinned) ); - HDassert ( ! (entry_ptr->local_pinned) ); - HDassert ( ! ( dirty && ( ! global ) ) ); - - lock_entry(file_ptr, idx); - - if ( dirty ) { + HDassert(!(entry_ptr->global_pinned)); + HDassert(!(entry_ptr->local_pinned)); + HDassert(!(dirty && (!global))); - flags |= H5AC__DIRTIED_FLAG; - } + lock_entry(file_ptr, idx); - unlock_entry(file_ptr, idx, flags); + if (dirty) { - HDassert( (entry_ptr->header).is_pinned ); - HDassert( ( ! dirty ) || ( (entry_ptr->header).is_dirty ) ); + flags |= H5AC__DIRTIED_FLAG; + } - if ( global ) { + unlock_entry(file_ptr, idx, flags); - entry_ptr->global_pinned = TRUE; + HDassert((entry_ptr->header).is_pinned); + HDassert((!dirty) || ((entry_ptr->header).is_dirty)); - global_pins++; + if (global) { - } else { + entry_ptr->global_pinned = TRUE; - entry_ptr->local_pinned = TRUE; + global_pins++; + } + else { - local_pins++; + entry_ptr->local_pinned = TRUE; - } + local_pins++; + } } return; } /* pin_entry() */ - /***************************************************************************** * Function: pin_protected_entry() * @@ -3708,60 +3412,53 @@ pin_entry(H5F_t * file_ptr, * *****************************************************************************/ static void -pin_protected_entry(int32_t idx, - hbool_t global) +pin_protected_entry(int32_t idx, hbool_t global) { - herr_t result; - struct datum * entry_ptr; + herr_t result; + struct datum *entry_ptr; - HDassert( ( 0 <= idx ) && ( idx < NUM_DATA_ENTRIES ) ); - HDassert( idx < virt_num_data_entries ); + HDassert((0 <= idx) && (idx < NUM_DATA_ENTRIES)); + HDassert(idx < virt_num_data_entries); entry_ptr = &(data[idx]); - HDassert( entry_ptr->locked ); + HDassert(entry_ptr->locked); - if ( nerrors == 0 ) { + if (nerrors == 0) { - result = H5AC_pin_protected_entry((void *)entry_ptr); + result = H5AC_pin_protected_entry((void *)entry_ptr); - if ( ( result < 0 ) || - ( entry_ptr->header.type != &(types[0]) ) || - ( ( entry_ptr->len != entry_ptr->header.size ) && - ( entry_ptr->local_len != entry_ptr->header.size ) )|| - ( entry_ptr->base_addr != entry_ptr->header.addr ) || - ( ! ( (entry_ptr->header).is_pinned ) ) ) { + if ((result < 0) || (entry_ptr->header.type != &(types[0])) || + ((entry_ptr->len != entry_ptr->header.size) && + (entry_ptr->local_len != entry_ptr->header.size)) || + (entry_ptr->base_addr != entry_ptr->header.addr) || (!((entry_ptr->header).is_pinned))) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: Error in H5AC_pin_protected entry().\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Error in H5AC_pin_protected entry().\n", world_mpi_rank, __func__); } } - if ( global ) { + if (global) { - entry_ptr->global_pinned = TRUE; - - global_pins++; - - } else { + entry_ptr->global_pinned = TRUE; - entry_ptr->local_pinned = TRUE; + global_pins++; + } + else { - local_pins++; + entry_ptr->local_pinned = TRUE; - } + local_pins++; + } - HDassert( ((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE ); + HDassert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE); } return; } /* pin_protected_entry() */ - /***************************************************************************** * Function: move_entry() * @@ -3779,33 +3476,31 @@ pin_protected_entry(int32_t idx, * *****************************************************************************/ static void -move_entry(H5F_t * file_ptr, - int32_t old_idx, - int32_t new_idx) +move_entry(H5F_t *file_ptr, int32_t old_idx, int32_t new_idx) { - herr_t result; + herr_t result; int tmp; - size_t tmp_len; - haddr_t old_addr = HADDR_UNDEF; - haddr_t new_addr = HADDR_UNDEF; - struct datum * old_entry_ptr; - struct datum * new_entry_ptr; + size_t tmp_len; + haddr_t old_addr = HADDR_UNDEF; + haddr_t new_addr = HADDR_UNDEF; + struct datum *old_entry_ptr; + struct datum *new_entry_ptr; - if ( ( nerrors == 0 ) && ( old_idx != new_idx ) ) { + if ((nerrors == 0) && (old_idx != new_idx)) { - HDassert( file_ptr ); - HDassert( ( 0 <= old_idx ) && ( old_idx < NUM_DATA_ENTRIES ) ); - HDassert( old_idx < virt_num_data_entries ); - HDassert( ( 0 <= new_idx ) && ( new_idx < NUM_DATA_ENTRIES ) ); - HDassert( new_idx < virt_num_data_entries ); + HDassert(file_ptr); + HDassert((0 <= old_idx) && (old_idx < NUM_DATA_ENTRIES)); + HDassert(old_idx < virt_num_data_entries); + HDassert((0 <= new_idx) && (new_idx < NUM_DATA_ENTRIES)); + HDassert(new_idx < virt_num_data_entries); old_entry_ptr = &(data[old_idx]); new_entry_ptr = &(data[new_idx]); - HDassert( ((old_entry_ptr->header).type)->id == DATUM_ENTRY_TYPE ); - HDassert( !(old_entry_ptr->header.is_protected) ); - HDassert( !(old_entry_ptr->locked) ); - HDassert( old_entry_ptr->len == new_entry_ptr->len ); + HDassert(((old_entry_ptr->header).type)->id == DATUM_ENTRY_TYPE); + HDassert(!(old_entry_ptr->header.is_protected)); + HDassert(!(old_entry_ptr->locked)); + HDassert(old_entry_ptr->len == new_entry_ptr->len); old_addr = old_entry_ptr->base_addr; new_addr = new_entry_ptr->base_addr; @@ -3817,8 +3512,8 @@ move_entry(H5F_t * file_ptr, * now as it is possible that the rename will trigger a * sync point. */ - if(old_entry_ptr->ver < new_entry_ptr->ver) - old_entry_ptr->ver = new_entry_ptr->ver; + if (old_entry_ptr->ver < new_entry_ptr->ver) + old_entry_ptr->ver = new_entry_ptr->ver; else (old_entry_ptr->ver)++; @@ -3832,60 +3527,56 @@ move_entry(H5F_t * file_ptr, old_entry_ptr->index = new_entry_ptr->index; new_entry_ptr->index = tmp; - if(old_entry_ptr->local_len != new_entry_ptr->local_len) { - tmp_len = old_entry_ptr->local_len; - old_entry_ptr->local_len = new_entry_ptr->local_len; - new_entry_ptr->local_len = tmp_len; - } /* end if */ + if (old_entry_ptr->local_len != new_entry_ptr->local_len) { + tmp_len = old_entry_ptr->local_len; + old_entry_ptr->local_len = new_entry_ptr->local_len; + new_entry_ptr->local_len = tmp_len; + } /* end if */ result = H5AC_move_entry(file_ptr, &(types[0]), old_addr, new_addr); - if ( ( result < 0 ) || ( old_entry_ptr->header.addr != new_addr ) ) { + if ((result < 0) || (old_entry_ptr->header.addr != new_addr)) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5AC_move_entry() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5AC_move_entry() failed.\n", world_mpi_rank, __func__); } + } + else { - } else { - - HDassert( ((old_entry_ptr->header).type)->id == DATUM_ENTRY_TYPE ); + HDassert(((old_entry_ptr->header).type)->id == DATUM_ENTRY_TYPE); - if ( ! (old_entry_ptr->header.is_dirty) ) { + if (!(old_entry_ptr->header.is_dirty)) { - /* it is possible that we just exceeded the dirty bytes - * threshold, triggering a write of the newly inserted - * entry. Test for this, and only flag an error if this - * is not the case. - */ + /* it is possible that we just exceeded the dirty bytes + * threshold, triggering a write of the newly inserted + * entry. Test for this, and only flag an error if this + * is not the case. + */ - struct H5AC_aux_t * aux_ptr; + struct H5AC_aux_t *aux_ptr; - aux_ptr = ((H5AC_aux_t *)(file_ptr->shared->cache->aux_ptr)); + aux_ptr = ((H5AC_aux_t *)(file_ptr->shared->cache->aux_ptr)); - if ( ! ( ( aux_ptr != NULL ) && - ( aux_ptr->magic == H5AC__H5AC_AUX_T_MAGIC ) && - ( aux_ptr->dirty_bytes == 0 ) ) ) { + if (!((aux_ptr != NULL) && (aux_ptr->magic == H5AC__H5AC_AUX_T_MAGIC) && + (aux_ptr->dirty_bytes == 0))) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: data[%d].header.is_dirty = %d.\n", - world_mpi_rank, FUNC, new_idx, - (int)(data[new_idx].header.is_dirty)); - } + if (verbose) { + HDfprintf(stdout, "%d:%s: data[%d].header.is_dirty = %d.\n", world_mpi_rank, __func__, + new_idx, (int)(data[new_idx].header.is_dirty)); + } } - } else { + } + else { - HDassert( old_entry_ptr->header.is_dirty ); + HDassert(old_entry_ptr->header.is_dirty); } } } } /* move_entry() */ - /***************************************************************************** * * Function: reset_server_counts() @@ -3903,10 +3594,10 @@ move_entry(H5F_t * file_ptr, static hbool_t reset_server_counts(void) { - hbool_t success = TRUE; /* will set to FALSE if appropriate. */ + hbool_t success = TRUE; /* will set to FALSE if appropriate. */ struct mssg_t mssg; - if ( success ) { + if (success) { /* compose the message */ mssg.req = REQ_RW_COUNT_RESET_CODE; @@ -3919,51 +3610,43 @@ reset_server_counts(void) mssg.count = 0; mssg.magic = MSSG_MAGIC; - if ( ! send_mssg(&mssg, FALSE) ) { + if (!send_mssg(&mssg, FALSE)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__); } } } - if ( success ) { + if (success) { - if ( ! recv_mssg(&mssg, REQ_RW_COUNT_RESET_RPLY_CODE) ) { + if (!recv_mssg(&mssg, REQ_RW_COUNT_RESET_RPLY_CODE)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", - world_mpi_rank, FUNC); - } - } else if ( ( mssg.req != REQ_RW_COUNT_RESET_RPLY_CODE ) || - ( mssg.src != world_server_mpi_rank ) || - ( mssg.dest != world_mpi_rank ) || - ( mssg.base_addr != 0 ) || - ( mssg.len != 0 ) || - ( mssg.ver != 0 ) || - ( mssg.count != 0 ) || - ( mssg.magic != MSSG_MAGIC ) ) { + if (verbose) { + HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__); + } + } + else if ((mssg.req != REQ_RW_COUNT_RESET_RPLY_CODE) || (mssg.src != world_server_mpi_rank) || + (mssg.dest != world_mpi_rank) || (mssg.base_addr != 0) || (mssg.len != 0) || + (mssg.ver != 0) || (mssg.count != 0) || (mssg.magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: Bad data in req r/w counter reset reply.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad data in req r/w counter reset reply.\n", world_mpi_rank, + __func__); } } } - return(success); + return (success); } /* reset_server_counts() */ - /***************************************************************************** * Function: resize_entry() * @@ -3980,46 +3663,43 @@ reset_server_counts(void) * *****************************************************************************/ static void -resize_entry(int32_t idx, - size_t new_size) +resize_entry(int32_t idx, size_t new_size) { - herr_t result; - struct datum * entry_ptr; + herr_t result; + struct datum *entry_ptr; - if ( nerrors == 0 ) { + if (nerrors == 0) { - HDassert( ( 0 <= idx ) && ( idx < NUM_DATA_ENTRIES ) ); - HDassert( idx < virt_num_data_entries ); + HDassert((0 <= idx) && (idx < NUM_DATA_ENTRIES)); + HDassert(idx < virt_num_data_entries); entry_ptr = &(data[idx]); - HDassert( ((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE ); - HDassert( !(entry_ptr->locked) ); - HDassert( ( entry_ptr->global_pinned ) && - ( ! entry_ptr->local_pinned ) ); - HDassert( ( entry_ptr->header.size == entry_ptr->len ) || - ( entry_ptr->header.size == entry_ptr->local_len ) ); - HDassert( new_size > 0 ); - HDassert( new_size <= entry_ptr->len ); + HDassert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE); + HDassert(!(entry_ptr->locked)); + HDassert((entry_ptr->global_pinned) && (!entry_ptr->local_pinned)); + HDassert((entry_ptr->header.size == entry_ptr->len) || + (entry_ptr->header.size == entry_ptr->local_len)); + HDassert(new_size > 0); + HDassert(new_size <= entry_ptr->len); - result = H5AC_resize_entry((void *)entry_ptr, new_size); + result = H5AC_resize_entry((void *)entry_ptr, new_size); - if ( result < 0 ) { + if (result < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5AC_resize_entry() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5AC_resize_entry() failed.\n", world_mpi_rank, __func__); } + } + else { - } else { - - HDassert( ((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE ); - HDassert( entry_ptr->header.is_dirty ); - HDassert( entry_ptr->header.size == new_size ); + HDassert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE); + HDassert(entry_ptr->header.is_dirty); + HDassert(entry_ptr->header.size == new_size); - entry_ptr->dirty = TRUE; - entry_ptr->local_len = new_size; + entry_ptr->dirty = TRUE; + entry_ptr->local_len = new_size; /* touch up version. */ @@ -4031,7 +3711,6 @@ resize_entry(int32_t idx, } /* resize_entry() */ - /***************************************************************************** * * Function: setup_cache_for_test() @@ -4052,103 +3731,95 @@ resize_entry(int32_t idx, * *****************************************************************************/ static hbool_t -setup_cache_for_test(hid_t * fid_ptr, - H5F_t ** file_ptr_ptr, - H5C_t ** cache_ptr_ptr, - int metadata_write_strategy) +setup_cache_for_test(hid_t *fid_ptr, H5F_t **file_ptr_ptr, H5C_t **cache_ptr_ptr, int metadata_write_strategy) { - hbool_t success = FALSE; /* will set to TRUE if appropriate. */ - hbool_t enable_rpt_fcn = FALSE; - hid_t fid = -1; + hbool_t success = FALSE; /* will set to TRUE if appropriate. */ + hbool_t enable_rpt_fcn = FALSE; + hid_t fid = -1; H5AC_cache_config_t config; H5AC_cache_config_t test_config; - H5F_t * file_ptr = NULL; - H5C_t * cache_ptr = NULL; - haddr_t actual_base_addr; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; + haddr_t actual_base_addr; - HDassert ( fid_ptr != NULL ); - HDassert ( file_ptr_ptr != NULL ); - HDassert ( cache_ptr_ptr != NULL ); + HDassert(fid_ptr != NULL); + HDassert(file_ptr_ptr != NULL); + HDassert(cache_ptr_ptr != NULL); fid = H5Fcreate(filenames[0], H5F_ACC_TRUNC, H5P_DEFAULT, fapl); /* Push API context */ H5CX_push(); - if ( fid < 0 ) { + if (fid < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Fcreate() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5Fcreate() failed.\n", world_mpi_rank, __func__); } - } else if ( H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0 ) { + } + else if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__); } - } else { + } + else { file_ptr = (H5F_t *)H5VL_object_verify(fid, H5I_FILE); } - if ( file_ptr == NULL ) { + if (file_ptr == NULL) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Can't get file_ptr.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Can't get file_ptr.\n", world_mpi_rank, __func__); } - } else { + } + else { cache_ptr = file_ptr->shared->cache; } - if ( cache_ptr == NULL ) { + if (cache_ptr == NULL) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Can't get cache_ptr.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Can't get cache_ptr.\n", world_mpi_rank, __func__); } - } else if ( cache_ptr->magic != H5C__H5C_T_MAGIC ) { + } + else if (cache_ptr->magic != H5C__H5C_T_MAGIC) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad cache_ptr magic.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad cache_ptr magic.\n", world_mpi_rank, __func__); } - } else { + } + else { cache_ptr->ignore_tags = TRUE; - *fid_ptr = fid; - *file_ptr_ptr = file_ptr; - *cache_ptr_ptr = cache_ptr; + *fid_ptr = fid; + *file_ptr_ptr = file_ptr; + *cache_ptr_ptr = cache_ptr; H5C_stats__reset(cache_ptr); success = TRUE; } - if ( success ) { + if (success) { config.version = H5AC__CURR_CACHE_CONFIG_VERSION; - if ( H5AC_get_cache_auto_resize_config(cache_ptr, &config) - != SUCCEED ) { + if (H5AC_get_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) { - HDfprintf(stdout, - "%d:%s: H5AC_get_cache_auto_resize_config(1) failed.\n", - world_mpi_rank, FUNC); - - } else { + HDfprintf(stdout, "%d:%s: H5AC_get_cache_auto_resize_config(1) failed.\n", world_mpi_rank, + __func__); + } + else { config.rpt_fcn_enabled = enable_rpt_fcn; config.metadata_write_strategy = metadata_write_strategy; - if ( H5AC_set_cache_auto_resize_config(cache_ptr, &config) - != SUCCEED ) { + if (H5AC_set_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) { - HDfprintf(stdout, - "%d:%s: H5AC_set_cache_auto_resize_config() failed.\n", - world_mpi_rank, FUNC); - - } else if ( enable_rpt_fcn ) { + HDfprintf(stdout, "%d:%s: H5AC_set_cache_auto_resize_config() failed.\n", world_mpi_rank, + __func__); + } + else if (enable_rpt_fcn) { - HDfprintf(stdout, "%d:%s: rpt_fcn enabled.\n", - world_mpi_rank, FUNC); + HDfprintf(stdout, "%d:%s: rpt_fcn enabled.\n", world_mpi_rank, __func__); } } } @@ -4158,32 +3829,29 @@ setup_cache_for_test(hid_t * fid_ptr, * we can't do our usual checks in the serial case. */ - if ( success ) /* verify that the metadata write strategy is as expected */ + if (success) /* verify that the metadata write strategy is as expected */ { - if ( cache_ptr->aux_ptr == NULL ) { + if (cache_ptr->aux_ptr == NULL) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: cache_ptr->aux_ptr == NULL.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: cache_ptr->aux_ptr == NULL.\n", world_mpi_rank, __func__); } - } else if ( ((H5AC_aux_t *)(cache_ptr->aux_ptr))->magic != - H5AC__H5AC_AUX_T_MAGIC ) { + } + else if (((H5AC_aux_t *)(cache_ptr->aux_ptr))->magic != H5AC__H5AC_AUX_T_MAGIC) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: cache_ptr->aux_ptr->magic != H5AC__H5AC_AUX_T_MAGIC.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: cache_ptr->aux_ptr->magic != H5AC__H5AC_AUX_T_MAGIC.\n", + world_mpi_rank, __func__); } - } else if( ((H5AC_aux_t *)(cache_ptr->aux_ptr))->metadata_write_strategy - != metadata_write_strategy ) { + } + else if (((H5AC_aux_t *)(cache_ptr->aux_ptr))->metadata_write_strategy != metadata_write_strategy) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: bad cache_ptr->aux_ptr->metadata_write_strategy\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: bad cache_ptr->aux_ptr->metadata_write_strategy\n", world_mpi_rank, + __func__); } } } @@ -4192,27 +3860,22 @@ setup_cache_for_test(hid_t * fid_ptr, * when we get the current configuration. */ - if ( success ) { + if (success) { test_config.version = H5AC__CURR_CACHE_CONFIG_VERSION; - if ( H5AC_get_cache_auto_resize_config(cache_ptr, &test_config) - != SUCCEED ) { - - HDfprintf(stdout, - "%d:%s: H5AC_get_cache_auto_resize_config(2) failed.\n", - world_mpi_rank, FUNC); + if (H5AC_get_cache_auto_resize_config(cache_ptr, &test_config) != SUCCEED) { - } else if ( test_config.metadata_write_strategy != - metadata_write_strategy ) { + HDfprintf(stdout, "%d:%s: H5AC_get_cache_auto_resize_config(2) failed.\n", world_mpi_rank, + __func__); + } + else if (test_config.metadata_write_strategy != metadata_write_strategy) { nerrors++; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, - "%d:%s: unexpected metadata_write_strategy.\n", - world_mpi_rank, FUNC); + HDfprintf(stdout, "%d:%s: unexpected metadata_write_strategy.\n", world_mpi_rank, __func__); } } } @@ -4222,85 +3885,76 @@ setup_cache_for_test(hid_t * fid_ptr, * another flush. If the sync point done callback is set, this will * cause a spurious failure. */ - if ( success ) { /* allocate space for test entries */ + if (success) { /* allocate space for test entries */ - actual_base_addr = H5MF_alloc(file_ptr, H5FD_MEM_DEFAULT, - (hsize_t)(max_addr + BASE_ADDR)); + actual_base_addr = H5MF_alloc(file_ptr, H5FD_MEM_DEFAULT, (hsize_t)(max_addr + BASE_ADDR)); - if ( actual_base_addr == HADDR_UNDEF ) { + if (actual_base_addr == HADDR_UNDEF) { success = FALSE; - nerrors++; + nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5MF_alloc() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5MF_alloc() failed.\n", world_mpi_rank, __func__); } - - } else if ( actual_base_addr > BASE_ADDR ) { + } + else if (actual_base_addr > BASE_ADDR) { /* If this happens, must increase BASE_ADDR so that the * actual_base_addr is <= BASE_ADDR. This should only happen * if the size of the superblock is increase. */ success = FALSE; - nerrors++; + nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: actual_base_addr > BASE_ADDR.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: actual_base_addr > BASE_ADDR.\n", world_mpi_rank, __func__); } } } - /* flush the file again -- space allocation dirtied superblock */ - if ( success ) { + if (success) { - if ( H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0 ) { + if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: second H5Fflush() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: second H5Fflush() failed.\n", world_mpi_rank, __func__); } } } #if DO_SYNC_AFTER_WRITE - if ( success ) { + if (success) { - if ( H5AC__set_write_done_callback(cache_ptr, do_sync) != SUCCEED ) { + if (H5AC__set_write_done_callback(cache_ptr, do_sync) != SUCCEED) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: H5C_set_write_done_callback failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5C_set_write_done_callback failed.\n", world_mpi_rank, __func__); } - } + } } #endif /* DO_SYNC_AFTER_WRITE */ - if ( success ) { + if (success) { - if ( H5AC__set_sync_point_done_callback(cache_ptr, verify_writes) != SUCCEED ) { + if (H5AC__set_sync_point_done_callback(cache_ptr, verify_writes) != SUCCEED) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: H5AC__set_sync_point_done_callback failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5AC__set_sync_point_done_callback failed.\n", world_mpi_rank, + __func__); } - } + } } - return(success); + return (success); } /* setup_cache_for_test() */ - /***************************************************************************** * * Function: verify_writes() @@ -4308,7 +3962,7 @@ setup_cache_for_test(hid_t * fid_ptr, * Purpose: Verify that the indicated entries have been written exactly * once each, and that the indicated total number of writes * has been processed by the server process. Flag an error if - * discrepency is noted. Finally reset the counters maintained + * discrepancy is noted. Finally reset the counters maintained * by the server process. * * This function should only be called by the metadata cache @@ -4331,34 +3985,32 @@ setup_cache_for_test(hid_t * fid_ptr, static void verify_writes(unsigned num_writes, haddr_t *written_entries_tbl) { - const hbool_t report = FALSE; - hbool_t proceed = TRUE; - unsigned u = 0; + const hbool_t report = FALSE; + hbool_t proceed = TRUE; + unsigned u = 0; - HDassert( world_mpi_rank != world_server_mpi_rank ); - HDassert( ( num_writes == 0 ) || - ( written_entries_tbl != NULL ) ); + HDassert(world_mpi_rank != world_server_mpi_rank); + HDassert((num_writes == 0) || (written_entries_tbl != NULL)); /* barrier to ensure that all other processes are ready to leave * the sync point as well. */ - if ( proceed ) { + if (proceed) { - if ( MPI_SUCCESS != MPI_Barrier(file_mpi_comm) ) { + if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) { proceed = FALSE; nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: barrier 1 failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: barrier 1 failed.\n", world_mpi_rank, __func__); } } } - if(proceed) + if (proceed) proceed = verify_total_writes(num_writes); - while(proceed && u < num_writes) { + while (proceed && u < num_writes) { proceed = verify_entry_writes(written_entries_tbl[u], 1); u++; } @@ -4366,55 +4018,50 @@ verify_writes(unsigned num_writes, haddr_t *written_entries_tbl) /* barrier to ensure that all other processes have finished verifying * the number of writes before we reset the counters. */ - if ( proceed ) { + if (proceed) { - if ( MPI_SUCCESS != MPI_Barrier(file_mpi_comm) ) { + if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) { proceed = FALSE; nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: barrier 2 failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: barrier 2 failed.\n", world_mpi_rank, __func__); } } } - if ( proceed ) { + if (proceed) { proceed = reset_server_counts(); } /* if requested, display status of check to stdout */ - if ( ( report ) && ( file_mpi_rank == 0 ) ) { - - if ( proceed ) { - - HDfprintf(stdout, "%d:%s: verified %u writes.\n", - world_mpi_rank, FUNC, num_writes); + if ((report) && (file_mpi_rank == 0)) { - } else { + if (proceed) { - HDfprintf(stdout, "%d:%s: FAILED to verify %u writes.\n", - world_mpi_rank, FUNC, num_writes); + HDfprintf(stdout, "%d:%s: verified %u writes.\n", world_mpi_rank, __func__, num_writes); + } + else { + HDfprintf(stdout, "%d:%s: FAILED to verify %u writes.\n", world_mpi_rank, __func__, num_writes); } } /* final barrier to ensure that all processes think that the server * counters have been reset before we leave the sync point. This - * barrier is probaby not necessary at this point in time (5/9/10), + * barrier is probably not necessary at this point in time (5/9/10), * but I can think of at least one likely change to the metadata write * strategies that will require it -- hence its insertion now. */ - if ( proceed ) { + if (proceed) { - if ( MPI_SUCCESS != MPI_Barrier(file_mpi_comm) ) { + if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) { proceed = FALSE; nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: barrier 3 failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: barrier 3 failed.\n", world_mpi_rank, __func__); } } } @@ -4423,7 +4070,6 @@ verify_writes(unsigned num_writes, haddr_t *written_entries_tbl) } /* verify_writes() */ - /***************************************************************************** * * Function: setup_rand() @@ -4446,38 +4092,35 @@ verify_writes(unsigned num_writes, haddr_t *written_entries_tbl) static void setup_rand(void) { - hbool_t use_predefined_seeds = FALSE; - int num_predefined_seeds = 3; - unsigned predefined_seeds[3] = {18669, 89925, 12577}; - unsigned seed; + hbool_t use_predefined_seeds = FALSE; + int num_predefined_seeds = 3; + unsigned predefined_seeds[3] = {18669, 89925, 12577}; + unsigned seed; struct timeval tv; - if ( ( use_predefined_seeds ) && - ( world_mpi_size == num_predefined_seeds ) ) { + if ((use_predefined_seeds) && (world_mpi_size == num_predefined_seeds)) { - HDassert( world_mpi_rank >= 0 ); - HDassert( world_mpi_rank < world_mpi_size ); + HDassert(world_mpi_rank >= 0); + HDassert(world_mpi_rank < world_mpi_size); - seed = predefined_seeds[world_mpi_rank]; - HDfprintf(stdout, "%d:%s: predefined_seed = %d.\n", - world_mpi_rank, FUNC, seed); + seed = predefined_seeds[world_mpi_rank]; + HDfprintf(stdout, "%d:%s: predefined_seed = %d.\n", world_mpi_rank, __func__, seed); fflush(stdout); - HDsrand(seed); - - } else { + HDsrand(seed); + } + else { - if ( HDgettimeofday(&tv, NULL) != 0 ) { + if (HDgettimeofday(&tv, NULL) != 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: gettimeofday() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: gettimeofday() failed.\n", world_mpi_rank, __func__); } - } else { + } + else { seed = (unsigned)tv.tv_usec; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: seed = %d.\n", - world_mpi_rank, FUNC, seed); + if (verbose) { + HDfprintf(stdout, "%d:%s: seed = %d.\n", world_mpi_rank, __func__, seed); fflush(stdout); } HDsrand(seed); @@ -4488,7 +4131,6 @@ setup_rand(void) } /* setup_rand() */ - /***************************************************************************** * * Function: take_down_cache() @@ -4506,20 +4148,19 @@ setup_rand(void) * *****************************************************************************/ static hbool_t -take_down_cache(hid_t fid, H5C_t * cache_ptr) +take_down_cache(hid_t fid, H5C_t *cache_ptr) { hbool_t success = TRUE; /* will set to FALSE if appropriate. */ /* flush the file -- this should write out any remaining test * entries in the cache. */ - if ( ( success ) && ( H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0 ) ) { + if ((success) && (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0)) { success = FALSE; nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__); } } @@ -4528,65 +4169,58 @@ take_down_cache(hid_t fid, H5C_t * cache_ptr) * un-related to the test entries, and thereby corrupt our counts * of entry writes. */ - if ( success ) { + if (success) { - if ( H5AC__set_sync_point_done_callback(cache_ptr, NULL) != SUCCEED ) { + if (H5AC__set_sync_point_done_callback(cache_ptr, NULL) != SUCCEED) { success = FALSE; nerrors++; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: H5AC__set_sync_point_done_callback failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5AC__set_sync_point_done_callback failed.\n", world_mpi_rank, + __func__); } } - - } /* close the file */ - if ( ( success ) && ( H5Fclose(fid) < 0 ) ) { + if ((success) && (H5Fclose(fid) < 0)) { success = FALSE; nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Fclose() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5Fclose() failed.\n", world_mpi_rank, __func__); } - } /* Pop API context */ - H5CX_pop(); + H5CX_pop(FALSE); - if ( success ) { + if (success) { - if ( world_mpi_rank == world_server_mpi_rank ) { + if (world_mpi_rank == world_server_mpi_rank) { - if ( HDremove(filenames[0]) < 0 ) { + if (HDremove(filenames[0]) < 0) { success = FALSE; nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: HDremove() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: HDremove() failed.\n", world_mpi_rank, __func__); } } - } else { + } + else { - /* verify that there have been no further writes of test + /* verify that there have been no further writes of test * entries during the close */ success = verify_total_writes(0); - } } - return(success); + return (success); } /* take_down_cache() */ - /***************************************************************************** * Function: verify_entry_reads * @@ -4608,14 +4242,13 @@ take_down_cache(hid_t fid, H5C_t * cache_ptr) *------------------------------------------------------------------------- */ static hbool_t -verify_entry_reads(haddr_t addr, - int expected_entry_reads) +verify_entry_reads(haddr_t addr, int expected_entry_reads) { - hbool_t success = TRUE; - int reported_entry_reads; + hbool_t success = TRUE; + int reported_entry_reads = 0; struct mssg_t mssg; - if ( success ) { + if (success) { /* compose the message */ mssg.req = REQ_ENTRY_READS_CODE; @@ -4628,72 +4261,63 @@ verify_entry_reads(haddr_t addr, mssg.count = 0; /* not used */ mssg.magic = MSSG_MAGIC; - if ( ! send_mssg(&mssg, FALSE) ) { + if (!send_mssg(&mssg, FALSE)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__); } } } - if ( success ) { + if (success) { - if ( ! recv_mssg(&mssg, REQ_ENTRY_READS_RPLY_CODE) ) { + if (!recv_mssg(&mssg, REQ_ENTRY_READS_RPLY_CODE)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__); } } } - if ( success ) { + if (success) { - if ( ( mssg.req != REQ_ENTRY_READS_RPLY_CODE ) || - ( mssg.src != world_server_mpi_rank ) || - ( mssg.dest != world_mpi_rank ) || - ( mssg.base_addr != addr ) || - ( mssg.len != 0 ) || - ( mssg.ver != 0 ) || - ( mssg.magic != MSSG_MAGIC ) ) { + if ((mssg.req != REQ_ENTRY_READS_RPLY_CODE) || (mssg.src != world_server_mpi_rank) || + (mssg.dest != world_mpi_rank) || (mssg.base_addr != addr) || (mssg.len != 0) || (mssg.ver != 0) || + (mssg.magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad data in req entry reads reply.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad data in req entry reads reply.\n", world_mpi_rank, __func__); } - } else { + } + else { - reported_entry_reads = mssg.count; + H5_CHECKED_ASSIGN(reported_entry_reads, int, mssg.count, unsigned); } } - if ( ! success ) { + if (success) { - if ( reported_entry_reads != expected_entry_reads ) { + if (reported_entry_reads != expected_entry_reads) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: rep/exp entry 0x%llx reads mismatch (%ld/%ld).\n", - world_mpi_rank, FUNC, (long long)addr, - reported_entry_reads, expected_entry_reads); + if (verbose) { + HDfprintf(stdout, "%d:%s: rep/exp entry 0x%" PRIxHADDR " reads mismatch (%d/%d).\n", + world_mpi_rank, __func__, addr, reported_entry_reads, expected_entry_reads); } } } - return(success); + return (success); } /* verify_entry_reads() */ - /***************************************************************************** * Function: verify_entry_writes * @@ -4715,14 +4339,13 @@ verify_entry_reads(haddr_t addr, *------------------------------------------------------------------------- */ static hbool_t -verify_entry_writes(haddr_t addr, - int expected_entry_writes) +verify_entry_writes(haddr_t addr, int expected_entry_writes) { - hbool_t success = TRUE; - int reported_entry_writes; + hbool_t success = TRUE; + int reported_entry_writes = 0; struct mssg_t mssg; - if ( success ) { + if (success) { /* compose the message */ mssg.req = REQ_ENTRY_WRITES_CODE; @@ -4735,72 +4358,63 @@ verify_entry_writes(haddr_t addr, mssg.count = 0; /* not used */ mssg.magic = MSSG_MAGIC; - if ( ! send_mssg(&mssg, FALSE) ) { + if (!send_mssg(&mssg, FALSE)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__); } } } - if ( success ) { + if (success) { - if ( ! recv_mssg(&mssg, REQ_ENTRY_WRITES_RPLY_CODE) ) { + if (!recv_mssg(&mssg, REQ_ENTRY_WRITES_RPLY_CODE)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__); } } } - if ( success ) { + if (success) { - if ( ( mssg.req != REQ_ENTRY_WRITES_RPLY_CODE ) || - ( mssg.src != world_server_mpi_rank ) || - ( mssg.dest != world_mpi_rank ) || - ( mssg.base_addr != addr ) || - ( mssg.len != 0 ) || - ( mssg.ver != 0 ) || - ( mssg.magic != MSSG_MAGIC ) ) { + if ((mssg.req != REQ_ENTRY_WRITES_RPLY_CODE) || (mssg.src != world_server_mpi_rank) || + (mssg.dest != world_mpi_rank) || (mssg.base_addr != addr) || (mssg.len != 0) || (mssg.ver != 0) || + (mssg.magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad data in req entry writes reply.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad data in req entry writes reply.\n", world_mpi_rank, __func__); } - } else { + } + else { - reported_entry_writes = mssg.count; + H5_CHECKED_ASSIGN(reported_entry_writes, int, mssg.count, unsigned); } } - if ( ! success ) { + if (success) { - if ( reported_entry_writes != expected_entry_writes ) { + if (reported_entry_writes != expected_entry_writes) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: rep/exp entry 0x%llx writes mismatch (%ld/%ld).\n", - world_mpi_rank, FUNC, (long long)addr, - reported_entry_writes, expected_entry_writes); + if (verbose) { + HDfprintf(stdout, "%d:%s: rep/exp entry 0x%llx writes mismatch (%d/%d).\n", world_mpi_rank, + __func__, (long long)addr, reported_entry_writes, expected_entry_writes); } } } - return(success); + return (success); } /* verify_entry_writes() */ - /***************************************************************************** * * Function: verify_total_reads() @@ -4823,11 +4437,11 @@ verify_entry_writes(haddr_t addr, static hbool_t verify_total_reads(int expected_total_reads) { - hbool_t success = TRUE; /* will set to FALSE if appropriate. */ - long reported_total_reads; + hbool_t success = TRUE; /* will set to FALSE if appropriate. */ + long reported_total_reads; struct mssg_t mssg; - if ( success ) { + if (success) { /* compose the message */ mssg.req = REQ_TTL_READS_CODE; @@ -4840,68 +4454,59 @@ verify_total_reads(int expected_total_reads) mssg.count = 0; mssg.magic = MSSG_MAGIC; - if ( ! send_mssg(&mssg, FALSE) ) { + if (!send_mssg(&mssg, FALSE)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__); } } } - if ( success ) { + if (success) { - if ( ! recv_mssg(&mssg, REQ_TTL_READS_RPLY_CODE) ) { + if (!recv_mssg(&mssg, REQ_TTL_READS_RPLY_CODE)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", - world_mpi_rank, FUNC); - } - } else if ( ( mssg.req != REQ_TTL_READS_RPLY_CODE ) || - ( mssg.src != world_server_mpi_rank ) || - ( mssg.dest != world_mpi_rank ) || - ( mssg.base_addr != 0 ) || - ( mssg.len != 0 ) || - ( mssg.ver != 0 ) || - ( mssg.magic != MSSG_MAGIC ) ) { + if (verbose) { + HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__); + } + } + else if ((mssg.req != REQ_TTL_READS_RPLY_CODE) || (mssg.src != world_server_mpi_rank) || + (mssg.dest != world_mpi_rank) || (mssg.base_addr != 0) || (mssg.len != 0) || + (mssg.ver != 0) || (mssg.magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad data in req total reads reply.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad data in req total reads reply.\n", world_mpi_rank, __func__); } - } else { + } + else { reported_total_reads = mssg.count; } } - if ( success ) { + if (success) { - if ( reported_total_reads != expected_total_reads ) { + if (reported_total_reads != expected_total_reads) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: reported/expected total reads mismatch (%ld/%ld).\n", - world_mpi_rank, FUNC, - reported_total_reads, expected_total_reads); - + if (verbose) { + HDfprintf(stdout, "%d:%s: reported/expected total reads mismatch (%ld/%d).\n", world_mpi_rank, + __func__, reported_total_reads, expected_total_reads); } } } - return(success); + return (success); } /* verify_total_reads() */ - /***************************************************************************** * * Function: verify_total_writes() @@ -4924,11 +4529,11 @@ verify_total_reads(int expected_total_reads) static hbool_t verify_total_writes(unsigned expected_total_writes) { - hbool_t success = TRUE; /* will set to FALSE if appropriate. */ - unsigned reported_total_writes; + hbool_t success = TRUE; /* will set to FALSE if appropriate. */ + unsigned reported_total_writes; struct mssg_t mssg; - if ( success ) { + if (success) { /* compose the message */ mssg.req = REQ_TTL_WRITES_CODE; @@ -4941,67 +4546,59 @@ verify_total_writes(unsigned expected_total_writes) mssg.count = 0; mssg.magic = MSSG_MAGIC; - if ( ! send_mssg(&mssg, FALSE) ) { + if (!send_mssg(&mssg, FALSE)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed.\n", world_mpi_rank, __func__); } } } - if ( success ) { + if (success) { - if ( ! recv_mssg(&mssg, REQ_TTL_WRITES_RPLY_CODE) ) { + if (!recv_mssg(&mssg, REQ_TTL_WRITES_RPLY_CODE)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", - world_mpi_rank, FUNC); - } - } else if ( ( mssg.req != REQ_TTL_WRITES_RPLY_CODE ) || - ( mssg.src != world_server_mpi_rank ) || - ( mssg.dest != world_mpi_rank ) || - ( mssg.base_addr != 0 ) || - ( mssg.len != 0 ) || - ( mssg.ver != 0 ) || - ( mssg.magic != MSSG_MAGIC ) ) { + if (verbose) { + HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__); + } + } + else if ((mssg.req != REQ_TTL_WRITES_RPLY_CODE) || (mssg.src != world_server_mpi_rank) || + (mssg.dest != world_mpi_rank) || (mssg.base_addr != 0) || (mssg.len != 0) || + (mssg.ver != 0) || (mssg.magic != MSSG_MAGIC)) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad data in req total reads reply.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad data in req total reads reply.\n", world_mpi_rank, __func__); } - } else { + } + else { reported_total_writes = mssg.count; } } - if ( success ) { + if (success) { - if ( reported_total_writes != expected_total_writes ) { + if (reported_total_writes != expected_total_writes) { nerrors++; success = FALSE; - if ( verbose ) { - HDfprintf(stdout, - "%d:%s: reported/expected total writes mismatch (%u/%u).\n", - world_mpi_rank, FUNC, - reported_total_writes, expected_total_writes); + if (verbose) { + HDfprintf(stdout, "%d:%s: reported/expected total writes mismatch (%u/%u).\n", world_mpi_rank, + __func__, reported_total_writes, expected_total_writes); } } } - return(success); + return (success); } /* verify_total_writes() */ - /***************************************************************************** * Function: unlock_entry() * @@ -5021,64 +4618,55 @@ verify_total_writes(unsigned expected_total_writes) * *****************************************************************************/ static void -unlock_entry(H5F_t * file_ptr, - int32_t idx, - unsigned int flags) +unlock_entry(H5F_t *file_ptr, int32_t idx, unsigned int flags) { - herr_t dirtied; - herr_t result; - struct datum * entry_ptr; + herr_t dirtied; + herr_t result; + struct datum *entry_ptr; - if ( nerrors == 0 ) { + if (nerrors == 0) { - HDassert( file_ptr ); - HDassert( ( 0 <= idx ) && ( idx < NUM_DATA_ENTRIES ) ); - HDassert( idx < virt_num_data_entries ); + HDassert(file_ptr); + HDassert((0 <= idx) && (idx < NUM_DATA_ENTRIES)); + HDassert(idx < virt_num_data_entries); entry_ptr = &(data[idx]); - HDassert( entry_ptr->locked ); + HDassert(entry_ptr->locked); - dirtied = ((flags & H5AC__DIRTIED_FLAG) == H5AC__DIRTIED_FLAG ); + dirtied = ((flags & H5AC__DIRTIED_FLAG) == H5AC__DIRTIED_FLAG); - if ( dirtied ) { + if (dirtied) { (entry_ptr->ver)++; entry_ptr->dirty = TRUE; } - result = H5AC_unprotect(file_ptr, &(types[0]), - entry_ptr->base_addr, (void *)(&(entry_ptr->header)), flags); + result = H5AC_unprotect(file_ptr, &(types[0]), entry_ptr->base_addr, (void *)(&(entry_ptr->header)), + flags); - if ( ( result < 0 ) || - ( entry_ptr->header.type != &(types[0]) ) || - ( ( entry_ptr->len != entry_ptr->header.size ) && - ( entry_ptr->local_len != entry_ptr->header.size ) ) || - ( entry_ptr->base_addr != entry_ptr->header.addr ) ) { + if ((result < 0) || (entry_ptr->header.type != &(types[0])) || + ((entry_ptr->len != entry_ptr->header.size) && + (entry_ptr->local_len != entry_ptr->header.size)) || + (entry_ptr->base_addr != entry_ptr->header.addr)) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: error in H5AC_unprotect().\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: error in H5AC_unprotect().\n", world_mpi_rank, __func__); } - } else { + } + else { entry_ptr->locked = FALSE; + } - } - - HDassert( ((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE ); + HDassert(((entry_ptr->header).type)->id == DATUM_ENTRY_TYPE); - if ( ( (flags & H5AC__DIRTIED_FLAG) != 0 ) && - ( (flags & H5C__DELETED_FLAG) == 0 ) && - ( ! ( ( ( world_mpi_rank == 0 ) && ( entry_ptr->flushed ) ) - || - ( ( world_mpi_rank != 0 ) && ( entry_ptr->cleared ) ) - ) - ) - ) { - HDassert( entry_ptr->header.is_dirty ); - HDassert( entry_ptr->dirty ); + if (((flags & H5AC__DIRTIED_FLAG) != 0) && ((flags & H5C__DELETED_FLAG) == 0) && + (!(((world_mpi_rank == 0) && (entry_ptr->flushed)) || + ((world_mpi_rank != 0) && (entry_ptr->cleared))))) { + HDassert(entry_ptr->header.is_dirty); + HDassert(entry_ptr->dirty); } } @@ -5086,7 +4674,6 @@ unlock_entry(H5F_t * file_ptr, } /* unlock_entry() */ - /***************************************************************************** * Function: unpin_entry() * @@ -5106,84 +4693,74 @@ unlock_entry(H5F_t * file_ptr, * *****************************************************************************/ static void -unpin_entry(H5F_t * file_ptr, - int32_t idx, - hbool_t global, - hbool_t dirty, - hbool_t via_unprotect) +unpin_entry(H5F_t *file_ptr, int32_t idx, hbool_t global, hbool_t dirty, hbool_t via_unprotect) { - herr_t result; - unsigned int flags = H5AC__UNPIN_ENTRY_FLAG; - struct datum * entry_ptr; + herr_t result; + unsigned int flags = H5AC__UNPIN_ENTRY_FLAG; + struct datum *entry_ptr; - if ( nerrors == 0 ) { + if (nerrors == 0) { - HDassert( file_ptr ); - HDassert( ( 0 <= idx ) && ( idx < NUM_DATA_ENTRIES ) ); - HDassert( idx < virt_num_data_entries ); + HDassert(file_ptr); + HDassert((0 <= idx) && (idx < NUM_DATA_ENTRIES)); + HDassert(idx < virt_num_data_entries); entry_ptr = &(data[idx]); - HDassert( (entry_ptr->header).is_pinned ); - HDassert ( ! ( entry_ptr->global_pinned && entry_ptr->local_pinned) ); - HDassert ( ( global && entry_ptr->global_pinned ) || - ( ! global && entry_ptr->local_pinned ) ); - HDassert ( ! ( dirty && ( ! global ) ) ); + HDassert((entry_ptr->header).is_pinned); + HDassert(!(entry_ptr->global_pinned && entry_ptr->local_pinned)); + HDassert((global && entry_ptr->global_pinned) || (!global && entry_ptr->local_pinned)); + HDassert(!(dirty && (!global))); - if ( via_unprotect ) { + if (via_unprotect) { - lock_entry(file_ptr, idx); + lock_entry(file_ptr, idx); - if ( dirty ) { + if (dirty) { - flags |= H5AC__DIRTIED_FLAG; - } - - unlock_entry(file_ptr, idx, flags); - - } else { + flags |= H5AC__DIRTIED_FLAG; + } - if ( dirty ) { + unlock_entry(file_ptr, idx, flags); + } + else { - mark_entry_dirty(idx); + if (dirty) { - } + mark_entry_dirty(idx); + } - result = H5AC_unpin_entry(entry_ptr); + result = H5AC_unpin_entry(entry_ptr); - if ( result < 0 ) { + if (result < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: error in H5AC_unpin_entry().\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: error in H5AC_unpin_entry().\n", world_mpi_rank, __func__); } + } } - } - - HDassert( ! ((entry_ptr->header).is_pinned) ); - if ( global ) { + HDassert(!((entry_ptr->header).is_pinned)); - entry_ptr->global_pinned = FALSE; + if (global) { - } else { - - entry_ptr->local_pinned = FALSE; + entry_ptr->global_pinned = FALSE; + } + else { - } + entry_ptr->local_pinned = FALSE; + } } return; } /* unpin_entry() */ - /*****************************************************************************/ /****************************** test functions *******************************/ /*****************************************************************************/ - /***************************************************************************** * * Function: server_smoke_check() @@ -5200,11 +4777,11 @@ unpin_entry(H5F_t * file_ptr, static hbool_t server_smoke_check(void) { - hbool_t success = TRUE; - int max_nerrors; + hbool_t success = TRUE; + int max_nerrors; struct mssg_t mssg; - if ( world_mpi_rank == 0 ) { + if (world_mpi_rank == 0) { TESTING("server smoke check"); } @@ -5213,15 +4790,14 @@ server_smoke_check(void) init_data(); reset_stats(); - if ( world_mpi_rank == world_server_mpi_rank ) { + if (world_mpi_rank == world_server_mpi_rank) { - if ( ! server_main() ) { + if (!server_main()) { - /* some error occured in the server -- report failure */ + /* some error occurred in the server -- report failure */ nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: server_main() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__); } } } @@ -5233,102 +4809,94 @@ server_smoke_check(void) mssg.dest = world_server_mpi_rank; mssg.mssg_num = -1; /* set by send function */ mssg.base_addr = data[world_mpi_rank].base_addr; - mssg.len = data[world_mpi_rank].len; - mssg.ver = ++(data[world_mpi_rank].ver); - mssg.count = 0; - mssg.magic = MSSG_MAGIC; + H5_CHECKED_ASSIGN(mssg.len, unsigned, data[world_mpi_rank].len, size_t); + mssg.ver = ++(data[world_mpi_rank].ver); + mssg.count = 0; + mssg.magic = MSSG_MAGIC; - if ( ! ( success = send_mssg(&mssg, FALSE) ) ) { + if (!(success = send_mssg(&mssg, FALSE))) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed on write.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed on write.\n", world_mpi_rank, __func__); } } #if DO_WRITE_REQ_ACK /* try to receive the write ack from the server */ - if ( success ) { + if (success) { success = recv_mssg(&mssg, WRITE_REQ_ACK_CODE); - if ( ! success ) { + if (!success) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__); } } } /* verify that we received the expected ack message */ - if ( success ) { + if (success) { - if ( ( mssg.req != WRITE_REQ_ACK_CODE ) || - ( mssg.src != world_server_mpi_rank ) || - ( mssg.dest != world_mpi_rank ) || - ( mssg.base_addr != data[world_mpi_rank].base_addr ) || - ( mssg.len != data[world_mpi_rank].len ) || - ( mssg.ver != data[world_mpi_rank].ver ) || - ( mssg.magic != MSSG_MAGIC ) ) { + if ((mssg.req != WRITE_REQ_ACK_CODE) || (mssg.src != world_server_mpi_rank) || + (mssg.dest != world_mpi_rank) || (mssg.base_addr != data[world_mpi_rank].base_addr) || + (mssg.len != data[world_mpi_rank].len) || (mssg.ver != data[world_mpi_rank].ver) || + (mssg.magic != MSSG_MAGIC)) { success = FALSE; nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad data in write req ack.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad data in write req ack.\n", world_mpi_rank, __func__); } } } #endif /* DO_WRITE_REQ_ACK */ - do_sync(); + do_sync(); - /* barrier to allow all writes to complete */ - if ( MPI_SUCCESS != MPI_Barrier(file_mpi_comm) ) { + /* barrier to allow all writes to complete */ + if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) { success = FALSE; nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: barrier 1 failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: barrier 1 failed.\n", world_mpi_rank, __func__); } } /* verify that the expected entries have been written, the total */ - if ( success ) { + if (success) { success = verify_entry_writes(data[world_mpi_rank].base_addr, 1); } - if ( success ) { + if (success) { success = verify_entry_reads(data[world_mpi_rank].base_addr, 0); } - if ( success ) { + if (success) { success = verify_total_writes((unsigned)(world_mpi_size - 1)); } - if ( success ) { + if (success) { success = verify_total_reads(0); } - /* barrier to allow all writes to complete */ - if ( MPI_SUCCESS != MPI_Barrier(file_mpi_comm) ) { + /* barrier to allow all writes to complete */ + if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) { success = FALSE; nerrors++; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, "%d:%s: barrier 2 failed.\n", - world_mpi_rank, FUNC); + HDfprintf(stdout, "%d:%s: barrier 2 failed.\n", world_mpi_rank, __func__); } } @@ -5338,149 +4906,139 @@ server_smoke_check(void) mssg.dest = world_server_mpi_rank; mssg.mssg_num = -1; /* set by send function */ mssg.base_addr = data[world_mpi_rank].base_addr; - mssg.len = data[world_mpi_rank].len; - mssg.ver = 0; /* bogus -- should be corrected by server */ - mssg.count = 0; - mssg.magic = MSSG_MAGIC; + H5_CHECKED_ASSIGN(mssg.len, unsigned, data[world_mpi_rank].len, size_t); + mssg.ver = 0; /* bogus -- should be corrected by server */ + mssg.count = 0; + mssg.magic = MSSG_MAGIC; - if ( success ) { + if (success) { success = send_mssg(&mssg, FALSE); - if ( ! success ) { + if (!success) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed on write.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed on write.\n", world_mpi_rank, __func__); } } } /* try to receive the reply from the server */ - if ( success ) { + if (success) { success = recv_mssg(&mssg, READ_REQ_REPLY_CODE); - if ( ! success ) { + if (!success) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: recv_mssg() failed.\n", world_mpi_rank, __func__); } } } /* verify that we got the expected result */ - if ( success ) { + if (success) { - if ( ( mssg.req != READ_REQ_REPLY_CODE ) || - ( mssg.src != world_server_mpi_rank ) || - ( mssg.dest != world_mpi_rank ) || - ( mssg.base_addr != data[world_mpi_rank].base_addr ) || - ( mssg.len != data[world_mpi_rank].len ) || - ( mssg.ver != data[world_mpi_rank].ver ) || - ( mssg.magic != MSSG_MAGIC ) ) { + if ((mssg.req != READ_REQ_REPLY_CODE) || (mssg.src != world_server_mpi_rank) || + (mssg.dest != world_mpi_rank) || (mssg.base_addr != data[world_mpi_rank].base_addr) || + (mssg.len != data[world_mpi_rank].len) || (mssg.ver != data[world_mpi_rank].ver) || + (mssg.magic != MSSG_MAGIC)) { success = FALSE; nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Bad data in read req reply.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Bad data in read req reply.\n", world_mpi_rank, __func__); } } } - /* barrier to allow all writes to complete */ - if ( MPI_SUCCESS != MPI_Barrier(file_mpi_comm) ) { + /* barrier to allow all writes to complete */ + if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) { success = FALSE; nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: barrier 3 failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: barrier 3 failed.\n", world_mpi_rank, __func__); } } /* verify that the expected entries have been read, and the total */ - if ( success ) { + if (success) { success = verify_entry_writes(data[world_mpi_rank].base_addr, 1); } - if ( success ) { + if (success) { success = verify_entry_reads(data[world_mpi_rank].base_addr, 1); } - if ( success ) { + if (success) { success = verify_total_writes((unsigned)(world_mpi_size - 1)); } - if ( success ) { + if (success) { success = verify_total_reads(world_mpi_size - 1); } - if ( MPI_SUCCESS != MPI_Barrier(file_mpi_comm) ) { + if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) { success = FALSE; nerrors++; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, "%d:%s: barrier 4 failed.\n", - world_mpi_rank, FUNC); + HDfprintf(stdout, "%d:%s: barrier 4 failed.\n", world_mpi_rank, __func__); } } /* reset the counters */ - if ( success ) { + if (success) { success = reset_server_counts(); } - if ( MPI_SUCCESS != MPI_Barrier(file_mpi_comm) ) { + if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) { success = FALSE; nerrors++; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, "%d:%s: barrier 5 failed.\n", - world_mpi_rank, FUNC); + HDfprintf(stdout, "%d:%s: barrier 5 failed.\n", world_mpi_rank, __func__); } } /* verify that the counters have been reset */ - if ( success ) { + if (success) { success = verify_entry_writes(data[world_mpi_rank].base_addr, 0); } - if ( success ) { + if (success) { success = verify_entry_reads(data[world_mpi_rank].base_addr, 0); } - if ( success ) { + if (success) { success = verify_total_writes(0); } - if ( success ) { + if (success) { success = verify_total_reads(0); } - if ( MPI_SUCCESS != MPI_Barrier(file_mpi_comm) ) { + if (MPI_SUCCESS != MPI_Barrier(file_mpi_comm)) { success = FALSE; nerrors++; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, "%d:%s: barrier 6 failed.\n", - world_mpi_rank, FUNC); + HDfprintf(stdout, "%d:%s: barrier 6 failed.\n", world_mpi_rank, __func__); } } @@ -5489,22 +5047,21 @@ server_smoke_check(void) mssg.src = world_mpi_rank; mssg.dest = world_server_mpi_rank; mssg.mssg_num = -1; /* set by send function */ - mssg.base_addr = 0; /* not used */ - mssg.len = 0; /* not used */ - mssg.ver = 0; /* not used */ + mssg.base_addr = 0; /* not used */ + mssg.len = 0; /* not used */ + mssg.ver = 0; /* not used */ mssg.count = 0; mssg.magic = MSSG_MAGIC; - if ( success ) { + if (success) { success = send_mssg(&mssg, FALSE); - if ( ! success ) { + if (!success) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__); } } } @@ -5512,26 +5069,25 @@ server_smoke_check(void) max_nerrors = get_max_nerrors(); - if ( world_mpi_rank == 0 ) { - - if ( max_nerrors == 0 ) { + if (world_mpi_rank == 0) { - PASSED(); + if (max_nerrors == 0) { - } else { + PASSED(); + } + else { failures++; H5_FAILED(); } } - success = ( ( success ) && ( max_nerrors == 0 ) ); + success = ((success) && (max_nerrors == 0)); - return(success); + return (success); } /* server_smoke_check() */ - /***************************************************************************** * * Function: smoke_check_1() @@ -5548,100 +5104,92 @@ server_smoke_check(void) static hbool_t smoke_check_1(int metadata_write_strategy) { - hbool_t success = TRUE; - int i; - int max_nerrors; - hid_t fid = -1; - H5F_t * file_ptr = NULL; - H5C_t * cache_ptr = NULL; + hbool_t success = TRUE; + int i; + int max_nerrors; + hid_t fid = -1; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; struct mssg_t mssg; - switch ( metadata_write_strategy ) { + switch (metadata_write_strategy) { - case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #1 -- process 0 only md write strategy"); + case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: + if (world_mpi_rank == 0) { + TESTING("smoke check #1 -- process 0 only md write strategy"); } - break; + break; - case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #1 -- distributed md write strategy"); + case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED: + if (world_mpi_rank == 0) { + TESTING("smoke check #1 -- distributed md write strategy"); } - break; + break; default: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #1 -- unknown md write strategy"); + if (world_mpi_rank == 0) { + TESTING("smoke check #1 -- unknown md write strategy"); } - break; + break; } nerrors = 0; init_data(); reset_stats(); - if ( world_mpi_rank == world_server_mpi_rank ) { + if (world_mpi_rank == world_server_mpi_rank) { - if ( ! server_main() ) { + if (!server_main()) { - /* some error occured in the server -- report failure */ + /* some error occurred in the server -- report failure */ nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: server_main() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__); } } } else /* run the clients */ { - if ( ! setup_cache_for_test(&fid, &file_ptr, &cache_ptr, - metadata_write_strategy) ) { + if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) { nerrors++; - fid = -1; + fid = -1; cache_ptr = NULL; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__); } } - for ( i = 0; i < (virt_num_data_entries / 2); i++ ) - { + for (i = 0; i < (virt_num_data_entries / 2); i++) { insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET); } - for ( i = (virt_num_data_entries / 2) - 1; i >= 0; i-- ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); + for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); } /* Move the first half of the entries... */ - for ( i = 0; i < (virt_num_data_entries / 2); i++ ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); - move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); + for (i = 0; i < (virt_num_data_entries / 2); i++) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); + move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); } /* ...and then move them back. */ - for ( i = (virt_num_data_entries / 2) - 1; i >= 0; i-- ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); - move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); + for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); + move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); } - if ( fid >= 0 ) { + if (fid >= 0) { - if ( ! take_down_cache(fid, cache_ptr) ) { + if (!take_down_cache(fid, cache_ptr)) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__); } } } @@ -5650,10 +5198,9 @@ smoke_check_1(int metadata_write_strategy) * and are clean. */ - for ( i = 0; i < NUM_DATA_ENTRIES; i++ ) - { - HDassert( data_index[i] == i ); - HDassert( ! (data[i].dirty) ); + for (i = 0; i < NUM_DATA_ENTRIES; i++) { + HDassert(data_index[i] == i); + HDassert(!(data[i].dirty)); } /* compose the done message */ @@ -5661,22 +5208,21 @@ smoke_check_1(int metadata_write_strategy) mssg.src = world_mpi_rank; mssg.dest = world_server_mpi_rank; mssg.mssg_num = -1; /* set by send function */ - mssg.base_addr = 0; /* not used */ - mssg.len = 0; /* not used */ - mssg.ver = 0; /* not used */ - mssg.count = 0; /* not used */ + mssg.base_addr = 0; /* not used */ + mssg.len = 0; /* not used */ + mssg.ver = 0; /* not used */ + mssg.count = 0; /* not used */ mssg.magic = MSSG_MAGIC; - if ( success ) { + if (success) { success = send_mssg(&mssg, FALSE); - if ( ! success ) { + if (!success) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__); } } } @@ -5684,26 +5230,25 @@ smoke_check_1(int metadata_write_strategy) max_nerrors = get_max_nerrors(); - if ( world_mpi_rank == 0 ) { - - if ( max_nerrors == 0 ) { + if (world_mpi_rank == 0) { - PASSED(); + if (max_nerrors == 0) { - } else { + PASSED(); + } + else { failures++; H5_FAILED(); } } - success = ( ( success ) && ( max_nerrors == 0 ) ); + success = ((success) && (max_nerrors == 0)); - return(success); + return (success); } /* smoke_check_1() */ - /***************************************************************************** * * Function: smoke_check_2() @@ -5723,147 +5268,126 @@ smoke_check_1(int metadata_write_strategy) static hbool_t smoke_check_2(int metadata_write_strategy) { - hbool_t success = TRUE; - int i; - int max_nerrors; - hid_t fid = -1; - H5F_t * file_ptr = NULL; - H5C_t * cache_ptr = NULL; + hbool_t success = TRUE; + int i; + int max_nerrors; + hid_t fid = -1; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; struct mssg_t mssg; - switch ( metadata_write_strategy ) { + switch (metadata_write_strategy) { - case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #2 -- process 0 only md write strategy"); + case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: + if (world_mpi_rank == 0) { + TESTING("smoke check #2 -- process 0 only md write strategy"); } - break; + break; - case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #2 -- distributed md write strategy"); + case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED: + if (world_mpi_rank == 0) { + TESTING("smoke check #2 -- distributed md write strategy"); } - break; + break; default: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #2 -- unknown md write strategy"); + if (world_mpi_rank == 0) { + TESTING("smoke check #2 -- unknown md write strategy"); } - break; + break; } nerrors = 0; init_data(); reset_stats(); - if ( world_mpi_rank == world_server_mpi_rank ) { + if (world_mpi_rank == world_server_mpi_rank) { - if ( ! server_main() ) { + if (!server_main()) { - /* some error occured in the server -- report failure */ + /* some error occurred in the server -- report failure */ nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: server_main() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__); } } } else /* run the clients */ { - if ( ! setup_cache_for_test(&fid, &file_ptr, &cache_ptr, - metadata_write_strategy) ) { + if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) { nerrors++; - fid = -1; + fid = -1; cache_ptr = NULL; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__); } } - for ( i = 0; i < (virt_num_data_entries / 2); i++ ) - { + for (i = 0; i < (virt_num_data_entries / 2); i++) { insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET); - if ( i > 100 ) { + if (i > 100) { - lock_and_unlock_random_entries(file_ptr, (i - 100), i, 0, 10); + lock_and_unlock_random_entries(file_ptr, (i - 100), i, 0, 10); } } - for ( i = 0; i < (virt_num_data_entries / 2); i+=61 ) - { - /* Make sure we don't step on any locally pinned entries */ - if ( data[i].local_pinned ) { - unpin_entry(file_ptr, i, FALSE, FALSE, FALSE); - } + for (i = 0; i < (virt_num_data_entries / 2); i += 61) { + /* Make sure we don't step on any locally pinned entries */ + if (data[i].local_pinned) { + unpin_entry(file_ptr, i, FALSE, FALSE, FALSE); + } - pin_entry(file_ptr, i, TRUE, FALSE); - } + pin_entry(file_ptr, i, TRUE, FALSE); + } - for ( i = (virt_num_data_entries / 2) - 1; i >= 0; i-=2 ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); - lock_and_unlock_random_entries(file_ptr, 0, - (virt_num_data_entries / 20), - 0, 100); - local_pin_and_unpin_random_entries(file_ptr, 0, - (virt_num_data_entries / 4), - 0, 3); + for (i = (virt_num_data_entries / 2) - 1; i >= 0; i -= 2) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); + lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 20), 0, 100); + local_pin_and_unpin_random_entries(file_ptr, 0, (virt_num_data_entries / 4), 0, 3); } - for ( i = 0; i < (virt_num_data_entries / 2); i+=2 ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); - lock_and_unlock_random_entries(file_ptr, 0, - (virt_num_data_entries / 10), - 0, 100); + for (i = 0; i < (virt_num_data_entries / 2); i += 2) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); + lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 10), 0, 100); } - /* we can't move pinned entries, so release any local pins now. */ - local_unpin_all_entries(file_ptr, FALSE); + /* we can't move pinned entries, so release any local pins now. */ + local_unpin_all_entries(file_ptr, FALSE); /* Move the first half of the entries... */ - for ( i = 0; i < (virt_num_data_entries / 2); i++ ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); - move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); - lock_and_unlock_random_entries(file_ptr, 0, - ((virt_num_data_entries / 50) - 1), - 0, 100); + for (i = 0; i < (virt_num_data_entries / 2); i++) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); + move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); + lock_and_unlock_random_entries(file_ptr, 0, ((virt_num_data_entries / 50) - 1), 0, 100); } /* ...and then move them back. */ - for ( i = (virt_num_data_entries / 2) - 1; i >= 0; i-- ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); - move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); - lock_and_unlock_random_entries(file_ptr, 0, - (virt_num_data_entries / 100), - 0, 100); + for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); + move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); + lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 100), 0, 100); } - for ( i = 0; i < (virt_num_data_entries / 2); i+=61 ) - { - hbool_t via_unprotect = ( (((unsigned)i) & 0x01) == 0 ); - hbool_t dirty = ( (((unsigned)i) & 0x02) == 0 ); + for (i = 0; i < (virt_num_data_entries / 2); i += 61) { + hbool_t via_unprotect = ((((unsigned)i) & 0x01) == 0); + hbool_t dirty = ((((unsigned)i) & 0x02) == 0); - unpin_entry(file_ptr, i, TRUE, dirty, via_unprotect); - } + unpin_entry(file_ptr, i, TRUE, dirty, via_unprotect); + } - if ( fid >= 0 ) { + if (fid >= 0) { - if ( ! take_down_cache(fid, cache_ptr) ) { + if (!take_down_cache(fid, cache_ptr)) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__); } } } @@ -5872,10 +5396,9 @@ smoke_check_2(int metadata_write_strategy) * and are clean. */ - for ( i = 0; i < NUM_DATA_ENTRIES; i++ ) - { - HDassert( data_index[i] == i ); - HDassert( ! (data[i].dirty) ); + for (i = 0; i < NUM_DATA_ENTRIES; i++) { + HDassert(data_index[i] == i); + HDassert(!(data[i].dirty)); } /* compose the done message */ @@ -5883,22 +5406,21 @@ smoke_check_2(int metadata_write_strategy) mssg.src = world_mpi_rank; mssg.dest = world_server_mpi_rank; mssg.mssg_num = -1; /* set by send function */ - mssg.base_addr = 0; /* not used */ - mssg.len = 0; /* not used */ - mssg.ver = 0; /* not used */ - mssg.count = 0; /* not used */ + mssg.base_addr = 0; /* not used */ + mssg.len = 0; /* not used */ + mssg.ver = 0; /* not used */ + mssg.count = 0; /* not used */ mssg.magic = MSSG_MAGIC; - if ( success ) { + if (success) { success = send_mssg(&mssg, FALSE); - if ( ! success ) { + if (!success) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__); } } } @@ -5906,33 +5428,32 @@ smoke_check_2(int metadata_write_strategy) max_nerrors = get_max_nerrors(); - if ( world_mpi_rank == 0 ) { + if (world_mpi_rank == 0) { - if ( max_nerrors == 0 ) { + if (max_nerrors == 0) { - PASSED(); - - } else { + PASSED(); + } + else { failures++; H5_FAILED(); } } - success = ( ( success ) && ( max_nerrors == 0 ) ); + success = ((success) && (max_nerrors == 0)); - return(success); + return (success); } /* smoke_check_2() */ - /***************************************************************************** * * Function: smoke_check_3() * * Purpose: Third smoke check for the parallel cache. * - * Use random reads to vary the loads on the diffferent + * Use random reads to vary the loads on the different * processors. Also force different cache size adjustments. * * In this test, load process 0 heavily, and the other @@ -5948,182 +5469,158 @@ smoke_check_2(int metadata_write_strategy) static hbool_t smoke_check_3(int metadata_write_strategy) { - hbool_t success = TRUE; - int i; - int max_nerrors; - int min_count; - int max_count; - int min_idx; - int max_idx; - hid_t fid = -1; - H5F_t * file_ptr = NULL; - H5C_t * cache_ptr = NULL; + hbool_t success = TRUE; + int i; + int max_nerrors; + int min_count; + int max_count; + int min_idx; + int max_idx; + hid_t fid = -1; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; struct mssg_t mssg; - switch ( metadata_write_strategy ) { + switch (metadata_write_strategy) { - case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #3 -- process 0 only md write strategy"); + case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: + if (world_mpi_rank == 0) { + TESTING("smoke check #3 -- process 0 only md write strategy"); } - break; + break; - case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #3 -- distributed md write strategy"); + case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED: + if (world_mpi_rank == 0) { + TESTING("smoke check #3 -- distributed md write strategy"); } - break; + break; default: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #3 -- unknown md write strategy"); + if (world_mpi_rank == 0) { + TESTING("smoke check #3 -- unknown md write strategy"); } - break; + break; } nerrors = 0; init_data(); reset_stats(); - if ( world_mpi_rank == world_server_mpi_rank ) { + if (world_mpi_rank == world_server_mpi_rank) { - if ( ! server_main() ) { + if (!server_main()) { - /* some error occured in the server -- report failure */ + /* some error occurred in the server -- report failure */ nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: server_main() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__); } } } else /* run the clients */ { - if ( ! setup_cache_for_test(&fid, &file_ptr, &cache_ptr, - metadata_write_strategy) ) { + if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) { nerrors++; - fid = -1; + fid = -1; cache_ptr = NULL; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__); } } min_count = 100 / ((file_mpi_rank + 1) * (file_mpi_rank + 1)); max_count = min_count + 50; - for ( i = 0; i < (virt_num_data_entries / 4); i++ ) - { + for (i = 0; i < (virt_num_data_entries / 4); i++) { insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET); - if ( i > 100 ) { + if (i > 100) { - lock_and_unlock_random_entries(file_ptr, (i - 100), i, - min_count, max_count); + lock_and_unlock_random_entries(file_ptr, (i - 100), i, min_count, max_count); } } - min_count = 100 / ((file_mpi_rank + 2) * (file_mpi_rank + 2)); max_count = min_count + 50; - for ( i = (virt_num_data_entries / 4); - i < (virt_num_data_entries / 2); - i++ ) - { + for (i = (virt_num_data_entries / 4); i < (virt_num_data_entries / 2); i++) { insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET); - if ( i % 59 == 0 ) { + if (i % 59 == 0) { - hbool_t dirty = ( (i % 2) == 0); + hbool_t dirty = ((i % 2) == 0); - if ( data[i].local_pinned ) { - unpin_entry(file_ptr, i, FALSE, FALSE, FALSE); - } - - pin_entry(file_ptr, i, TRUE, dirty); - - HDassert( !dirty || data[i].header.is_dirty ); - HDassert( data[i].header.is_pinned ); - HDassert( data[i].global_pinned ); - HDassert( ! data[i].local_pinned ); - } + if (data[i].local_pinned) { + unpin_entry(file_ptr, i, FALSE, FALSE, FALSE); + } - if ( i > 100 ) { + pin_entry(file_ptr, i, TRUE, dirty); - lock_and_unlock_random_entries(file_ptr, (i - 100), i, - min_count, max_count); + HDassert(!dirty || data[i].header.is_dirty); + HDassert(data[i].header.is_pinned); + HDassert(data[i].global_pinned); + HDassert(!data[i].local_pinned); } - local_pin_and_unpin_random_entries(file_ptr, 0, - virt_num_data_entries / 4, - 0, (file_mpi_rank + 2)); + if (i > 100) { - } + lock_and_unlock_random_entries(file_ptr, (i - 100), i, min_count, max_count); + } + local_pin_and_unpin_random_entries(file_ptr, 0, virt_num_data_entries / 4, 0, + (file_mpi_rank + 2)); + } - /* flush the file to be sure that we have no problems flushing - * pinned entries - */ - if ( H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0 ) { + /* flush the file to be sure that we have no problems flushing + * pinned entries + */ + if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__); } } - min_idx = 0; - max_idx = ((virt_num_data_entries / 10) / - ((file_mpi_rank + 1) * (file_mpi_rank + 1))) - 1; - if ( max_idx <= min_idx ) { + max_idx = ((virt_num_data_entries / 10) / ((file_mpi_rank + 1) * (file_mpi_rank + 1))) - 1; + if (max_idx <= min_idx) { max_idx = min_idx + 10; } - for ( i = (virt_num_data_entries / 2) - 1; i >= 0; i-- ) - { - if ( ( i >= (virt_num_data_entries / 4) ) && ( i % 59 == 0 ) ) { + for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) { + if ((i >= (virt_num_data_entries / 4)) && (i % 59 == 0)) { - hbool_t via_unprotect = ( (((unsigned)i) & 0x02) == 0 ); - hbool_t dirty = ( (((unsigned)i) & 0x04) == 0 ); + hbool_t via_unprotect = ((((unsigned)i) & 0x02) == 0); + hbool_t dirty = ((((unsigned)i) & 0x04) == 0); - HDassert( data[i].global_pinned ); - HDassert( ! data[i].local_pinned ); + HDassert(data[i].global_pinned); + HDassert(!data[i].local_pinned); - unpin_entry(file_ptr, i, TRUE, dirty, - via_unprotect); - } - if ( i % 2 == 0 ) { + unpin_entry(file_ptr, i, TRUE, dirty, via_unprotect); + } + if (i % 2 == 0) { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); - local_pin_and_unpin_random_entries(file_ptr, 0, - virt_num_data_entries / 2, - 0, 2); - lock_and_unlock_random_entries(file_ptr, - min_idx, max_idx, 0, 100); - } + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); + local_pin_and_unpin_random_entries(file_ptr, 0, virt_num_data_entries / 2, 0, 2); + lock_and_unlock_random_entries(file_ptr, min_idx, max_idx, 0, 100); + } } min_idx = 0; - max_idx = ((virt_num_data_entries / 10) / - ((file_mpi_rank + 3) * (file_mpi_rank + 3))) - 1; - if ( max_idx <= min_idx ) { + max_idx = ((virt_num_data_entries / 10) / ((file_mpi_rank + 3) * (file_mpi_rank + 3))) - 1; + if (max_idx <= min_idx) { max_idx = min_idx + 10; } - for ( i = 0; i < (virt_num_data_entries / 2); i+=2 ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); - lock_and_unlock_random_entries(file_ptr, - min_idx, max_idx, 0, 100); + for (i = 0; i < (virt_num_data_entries / 2); i += 2) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); + lock_and_unlock_random_entries(file_ptr, min_idx, max_idx, 0, 100); } /* we can't move pinned entries, so release any local pins now. */ @@ -6133,25 +5630,19 @@ smoke_check_3(int metadata_write_strategy) max_count = min_count + 100; /* move the first half of the entries... */ - for ( i = 0; i < (virt_num_data_entries / 2); i++ ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); - move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); - lock_and_unlock_random_entries(file_ptr, 0, - (virt_num_data_entries / 20), - min_count, max_count); + for (i = 0; i < (virt_num_data_entries / 2); i++) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); + move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); + lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 20), min_count, max_count); } /* ...and then move them back. */ - for ( i = (virt_num_data_entries / 2) - 1; i >= 0; i-- ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); - move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); - lock_and_unlock_random_entries(file_ptr, 0, - (virt_num_data_entries / 40), - min_count, max_count); + for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); + move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); + lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 40), min_count, max_count); } /* finally, do some dirty lock/unlocks while we give the cache @@ -6160,33 +5651,28 @@ smoke_check_3(int metadata_write_strategy) min_count = 200 / ((file_mpi_rank + 1) * (file_mpi_rank + 1)); max_count = min_count + 100; - for ( i = 0; i < (virt_num_data_entries / 2); i+=2 ) - { - local_pin_and_unpin_random_entries(file_ptr, 0, - (virt_num_data_entries / 2), - 0, 5); + for (i = 0; i < (virt_num_data_entries / 2); i += 2) { + local_pin_and_unpin_random_entries(file_ptr, 0, (virt_num_data_entries / 2), 0, 5); - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); - if ( i > 100 ) { + if (i > 100) { - lock_and_unlock_random_entries(file_ptr, (i - 100), i, - min_count, max_count); + lock_and_unlock_random_entries(file_ptr, (i - 100), i, min_count, max_count); } } /* release any local pins before we take down the cache. */ local_unpin_all_entries(file_ptr, FALSE); - if ( fid >= 0 ) { + if (fid >= 0) { - if ( ! take_down_cache(fid, cache_ptr) ) { + if (!take_down_cache(fid, cache_ptr)) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__); } } } @@ -6195,10 +5681,9 @@ smoke_check_3(int metadata_write_strategy) * and are clean. */ - for ( i = 0; i < NUM_DATA_ENTRIES; i++ ) - { - HDassert( data_index[i] == i ); - HDassert( ! (data[i].dirty) ); + for (i = 0; i < NUM_DATA_ENTRIES; i++) { + HDassert(data_index[i] == i); + HDassert(!(data[i].dirty)); } /* compose the done message */ @@ -6206,23 +5691,21 @@ smoke_check_3(int metadata_write_strategy) mssg.src = world_mpi_rank; mssg.dest = world_server_mpi_rank; mssg.mssg_num = -1; /* set by send function */ - mssg.base_addr = 0; /* not used */ - mssg.len = 0; /* not used */ - mssg.ver = 0; /* not used */ - mssg.count = 0; /* not used */ + mssg.base_addr = 0; /* not used */ + mssg.len = 0; /* not used */ + mssg.ver = 0; /* not used */ + mssg.count = 0; /* not used */ mssg.magic = MSSG_MAGIC; - if ( success ) { - + if (success) { success = send_mssg(&mssg, FALSE); - if ( ! success ) { + if (!success) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__); } } } @@ -6230,33 +5713,32 @@ smoke_check_3(int metadata_write_strategy) max_nerrors = get_max_nerrors(); - if ( world_mpi_rank == 0 ) { - - if ( max_nerrors == 0 ) { + if (world_mpi_rank == 0) { - PASSED(); + if (max_nerrors == 0) { - } else { + PASSED(); + } + else { failures++; H5_FAILED(); } } - success = ( ( success ) && ( max_nerrors == 0 ) ); + success = ((success) && (max_nerrors == 0)); - return(success); + return (success); } /* smoke_check_3() */ - /***************************************************************************** * * Function: smoke_check_4() * * Purpose: Fourth smoke check for the parallel cache. * - * Use random reads to vary the loads on the diffferent + * Use random reads to vary the loads on the different * processors. Also force different cache size adjustments. * * In this test, load process 0 lightly, and the other @@ -6272,210 +5754,184 @@ smoke_check_3(int metadata_write_strategy) static hbool_t smoke_check_4(int metadata_write_strategy) { - hbool_t success = TRUE; - int i; - int max_nerrors; - int min_count; - int max_count; - int min_idx; - int max_idx; - hid_t fid = -1; - H5F_t * file_ptr = NULL; - H5C_t * cache_ptr = NULL; + hbool_t success = TRUE; + int i; + int max_nerrors; + int min_count; + int max_count; + int min_idx; + int max_idx; + hid_t fid = -1; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; struct mssg_t mssg; - switch ( metadata_write_strategy ) { + switch (metadata_write_strategy) { - case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #4 -- process 0 only md write strategy"); + case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: + if (world_mpi_rank == 0) { + TESTING("smoke check #4 -- process 0 only md write strategy"); } - break; + break; - case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #4 -- distributed md write strategy"); + case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED: + if (world_mpi_rank == 0) { + TESTING("smoke check #4 -- distributed md write strategy"); } - break; + break; default: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #4 -- unknown md write strategy"); + if (world_mpi_rank == 0) { + TESTING("smoke check #4 -- unknown md write strategy"); } - break; + break; } nerrors = 0; init_data(); reset_stats(); - if ( world_mpi_rank == world_server_mpi_rank ) { + if (world_mpi_rank == world_server_mpi_rank) { - if ( ! server_main() ) { + if (!server_main()) { - /* some error occured in the server -- report failure */ + /* some error occurred in the server -- report failure */ nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: server_main() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__); } } } else /* run the clients */ { - if ( ! setup_cache_for_test(&fid, &file_ptr, &cache_ptr, - metadata_write_strategy) ) { + if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) { nerrors++; - fid = -1; + fid = -1; cache_ptr = NULL; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__); } } - min_count = 100 * (file_mpi_rank % 4); max_count = min_count + 50; - for ( i = 0; i < (virt_num_data_entries / 4); i++ ) - { + for (i = 0; i < (virt_num_data_entries / 4); i++) { insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET); - if ( i > 100 ) { + if (i > 100) { - lock_and_unlock_random_entries(file_ptr, (i - 100), i, - min_count, max_count); + lock_and_unlock_random_entries(file_ptr, (i - 100), i, min_count, max_count); } } min_count = 10 * (file_mpi_rank % 4); max_count = min_count + 100; - for ( i = (virt_num_data_entries / 4); - i < (virt_num_data_entries / 2); - i++ ) - { - if ( i % 2 == 0 ) { + for (i = (virt_num_data_entries / 4); i < (virt_num_data_entries / 2); i++) { + if (i % 2 == 0) { insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET); + } + else { - } else { - - /* Insert some entries pinned, and then unpin them - * immediately. We have tested pinned entries elsewhere, - * so it should be sufficient to verify that the - * entries are in fact pinned (which unpin_entry() should do). - */ + /* Insert some entries pinned, and then unpin them + * immediately. We have tested pinned entries elsewhere, + * so it should be sufficient to verify that the + * entries are in fact pinned (which unpin_entry() should do). + */ insert_entry(cache_ptr, file_ptr, i, H5C__PIN_ENTRY_FLAG); unpin_entry(file_ptr, i, TRUE, FALSE, FALSE); - } + } - if ( i % 59 == 0 ) { + if (i % 59 == 0) { - hbool_t dirty = ( (i % 2) == 0); + hbool_t dirty = ((i % 2) == 0); - if ( data[i].local_pinned ) { + if (data[i].local_pinned) { unpin_entry(file_ptr, i, FALSE, FALSE, FALSE); } pin_entry(file_ptr, i, TRUE, dirty); - HDassert( !dirty || data[i].header.is_dirty ); - HDassert( data[i].header.is_pinned ); - HDassert( data[i].global_pinned ); - HDassert( ! data[i].local_pinned ); + HDassert(!dirty || data[i].header.is_dirty); + HDassert(data[i].header.is_pinned); + HDassert(data[i].global_pinned); + HDassert(!data[i].local_pinned); } - if ( i > 100 ) { + if (i > 100) { - lock_and_unlock_random_entries(file_ptr, (i - 100), i, - min_count, max_count); + lock_and_unlock_random_entries(file_ptr, (i - 100), i, min_count, max_count); } - local_pin_and_unpin_random_entries(file_ptr, 0, - (virt_num_data_entries / 4), - 0, (file_mpi_rank + 2)); + local_pin_and_unpin_random_entries(file_ptr, 0, (virt_num_data_entries / 4), 0, + (file_mpi_rank + 2)); } - /* flush the file to be sure that we have no problems flushing - * pinned entries - */ - if ( H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0 ) { + * pinned entries + */ + if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__); } } - min_idx = 0; - max_idx = (((virt_num_data_entries / 10) / 4) * - ((file_mpi_rank % 4) + 1)) - 1; + max_idx = (((virt_num_data_entries / 10) / 4) * ((file_mpi_rank % 4) + 1)) - 1; - for ( i = (virt_num_data_entries / 2) - 1; i >= 0; i-- ) - { - if ( ( i >= (virt_num_data_entries / 4) ) && ( i % 59 == 0 ) ) { + for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) { + if ((i >= (virt_num_data_entries / 4)) && (i % 59 == 0)) { - hbool_t via_unprotect = ( (((unsigned)i) & 0x02) == 0 ); - hbool_t dirty = ( (((unsigned)i) & 0x04) == 0 ); + hbool_t via_unprotect = ((((unsigned)i) & 0x02) == 0); + hbool_t dirty = ((((unsigned)i) & 0x04) == 0); - HDassert( data[i].global_pinned ); - HDassert( ! data[i].local_pinned ); + HDassert(data[i].global_pinned); + HDassert(!data[i].local_pinned); unpin_entry(file_ptr, i, TRUE, dirty, via_unprotect); } - if ( i % 2 == 0 ) { + if (i % 2 == 0) { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); - lock_and_unlock_random_entries(file_ptr, - min_idx, max_idx, 0, 100); - } + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); + lock_and_unlock_random_entries(file_ptr, min_idx, max_idx, 0, 100); + } } min_idx = 0; - max_idx = (((virt_num_data_entries / 10) / 8) * - ((file_mpi_rank % 4) + 1)) - 1; + max_idx = (((virt_num_data_entries / 10) / 8) * ((file_mpi_rank % 4) + 1)) - 1; - for ( i = 0; i < (virt_num_data_entries / 2); i+=2 ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); - lock_and_unlock_random_entries(file_ptr, - min_idx, max_idx, 0, 100); + for (i = 0; i < (virt_num_data_entries / 2); i += 2) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); + lock_and_unlock_random_entries(file_ptr, min_idx, max_idx, 0, 100); } - /* we can't move pinned entries, so release any local pins now. */ - local_unpin_all_entries(file_ptr, FALSE); + /* we can't move pinned entries, so release any local pins now. */ + local_unpin_all_entries(file_ptr, FALSE); min_count = 10 * (file_mpi_rank % 4); max_count = min_count + 100; /* move the first half of the entries... */ - for ( i = 0; i < (virt_num_data_entries / 2); i++ ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); - move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); - lock_and_unlock_random_entries(file_ptr, 0, - (virt_num_data_entries / 20), - min_count, max_count); + for (i = 0; i < (virt_num_data_entries / 2); i++) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); + move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); + lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 20), min_count, max_count); } /* ...and then move them back. */ - for ( i = (virt_num_data_entries / 2) - 1; i >= 0; i-- ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); - move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); - lock_and_unlock_random_entries(file_ptr, 0, - (virt_num_data_entries / 40), - min_count, max_count); + for (i = (virt_num_data_entries / 2) - 1; i >= 0; i--) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); + move_entry(file_ptr, i, (i + (virt_num_data_entries / 2))); + lock_and_unlock_random_entries(file_ptr, 0, (virt_num_data_entries / 40), min_count, max_count); } /* finally, do some dirty lock/unlocks while we give the cache @@ -6484,26 +5940,23 @@ smoke_check_4(int metadata_write_strategy) min_count = 100 * (file_mpi_rank % 4); max_count = min_count + 100; - for ( i = 0; i < (virt_num_data_entries / 2); i+=2 ) - { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); + for (i = 0; i < (virt_num_data_entries / 2); i += 2) { + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); - if ( i > 100 ) { + if (i > 100) { - lock_and_unlock_random_entries(file_ptr, (i - 100), i, - min_count, max_count); + lock_and_unlock_random_entries(file_ptr, (i - 100), i, min_count, max_count); } } - if ( fid >= 0 ) { + if (fid >= 0) { - if ( ! take_down_cache(fid, cache_ptr) ) { + if (!take_down_cache(fid, cache_ptr)) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__); } } } @@ -6512,10 +5965,9 @@ smoke_check_4(int metadata_write_strategy) * and are clean. */ - for ( i = 0; i < NUM_DATA_ENTRIES; i++ ) - { - HDassert( data_index[i] == i ); - HDassert( ! (data[i].dirty) ); + for (i = 0; i < NUM_DATA_ENTRIES; i++) { + HDassert(data_index[i] == i); + HDassert(!(data[i].dirty)); } /* compose the done message */ @@ -6523,23 +5975,21 @@ smoke_check_4(int metadata_write_strategy) mssg.src = world_mpi_rank; mssg.dest = world_server_mpi_rank; mssg.mssg_num = -1; /* set by send function */ - mssg.base_addr = 0; /* not used */ - mssg.len = 0; /* not used */ - mssg.ver = 0; /* not used */ - mssg.count = 0; /* not used */ + mssg.base_addr = 0; /* not used */ + mssg.len = 0; /* not used */ + mssg.ver = 0; /* not used */ + mssg.count = 0; /* not used */ mssg.magic = MSSG_MAGIC; - if ( success ) { - + if (success) { success = send_mssg(&mssg, FALSE); - if ( ! success ) { + if (!success) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__); } } } @@ -6547,26 +5997,25 @@ smoke_check_4(int metadata_write_strategy) max_nerrors = get_max_nerrors(); - if ( world_mpi_rank == 0 ) { - - if ( max_nerrors == 0 ) { + if (world_mpi_rank == 0) { - PASSED(); + if (max_nerrors == 0) { - } else { + PASSED(); + } + else { failures++; H5_FAILED(); } } - success = ( ( success ) && ( max_nerrors == 0 ) ); + success = ((success) && (max_nerrors == 0)); - return(success); + return (success); } /* smoke_check_4() */ - /***************************************************************************** * * Function: smoke_check_5() @@ -6584,136 +6033,122 @@ smoke_check_4(int metadata_write_strategy) static hbool_t smoke_check_5(int metadata_write_strategy) { - hbool_t success = TRUE; - int i; - int max_nerrors; - hid_t fid = -1; - H5F_t * file_ptr = NULL; - H5C_t * cache_ptr = NULL; + hbool_t success = TRUE; + int i; + int max_nerrors; + hid_t fid = -1; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; struct mssg_t mssg; - switch ( metadata_write_strategy ) { + switch (metadata_write_strategy) { - case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #5 -- process 0 only md write strategy"); + case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: + if (world_mpi_rank == 0) { + TESTING("smoke check #5 -- process 0 only md write strategy"); } - break; + break; - case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #5 -- distributed md write strategy"); + case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED: + if (world_mpi_rank == 0) { + TESTING("smoke check #5 -- distributed md write strategy"); } - break; + break; default: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #5 -- unknown md write strategy"); + if (world_mpi_rank == 0) { + TESTING("smoke check #5 -- unknown md write strategy"); } - break; + break; } - nerrors = 0; init_data(); reset_stats(); - if ( world_mpi_rank == world_server_mpi_rank ) { + if (world_mpi_rank == world_server_mpi_rank) { - if ( ! server_main() ) { + if (!server_main()) { - /* some error occured in the server -- report failure */ + /* some error occurred in the server -- report failure */ nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: server_main() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__); } } } else /* run the clients */ { - if ( ! setup_cache_for_test(&fid, &file_ptr, &cache_ptr, - metadata_write_strategy) ) { + if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) { nerrors++; - fid = -1; + fid = -1; cache_ptr = NULL; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__); } } - for ( i = 0; i < (virt_num_data_entries / 2); i++ ) - { + for (i = 0; i < (virt_num_data_entries / 2); i++) { insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET); } - /* flush the file so we can lock known clean entries. */ - if ( H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0 ) { + /* flush the file so we can lock known clean entries. */ + if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__); } } - for ( i = 0; i < (virt_num_data_entries / 4); i++ ) - { - lock_entry(file_ptr, i); + for (i = 0; i < (virt_num_data_entries / 4); i++) { + lock_entry(file_ptr, i); - if ( i % 2 == 0 ) - { - mark_entry_dirty(i); - } + if (i % 2 == 0) { + mark_entry_dirty(i); + } - unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); + unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); - if ( i % 2 == 1 ) - { - if ( i % 4 == 1 ) { + if (i % 2 == 1) { + if (i % 4 == 1) { - lock_entry(file_ptr, i); - unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); - } + lock_entry(file_ptr, i); + unlock_entry(file_ptr, i, H5AC__DIRTIED_FLAG); + } - expunge_entry(file_ptr, i); - } + expunge_entry(file_ptr, i); + } } - for ( i = (virt_num_data_entries / 2) - 1; - i >= (virt_num_data_entries / 4); - i-- ) - { - pin_entry(file_ptr, i, TRUE, FALSE); + for (i = (virt_num_data_entries / 2) - 1; i >= (virt_num_data_entries / 4); i--) { + pin_entry(file_ptr, i, TRUE, FALSE); - if ( i % 2 == 0 ) - { - if ( i % 8 <= 4 ) { + if (i % 2 == 0) { + if (i % 8 <= 4) { - resize_entry(i, data[i].len / 2); - } + resize_entry(i, data[i].len / 2); + } mark_entry_dirty(i); - if ( i % 8 <= 4 ) { + if (i % 8 <= 4) { - resize_entry(i, data[i].len); - } - } + resize_entry(i, data[i].len); + } + } - unpin_entry(file_ptr, i, TRUE, FALSE, FALSE); + unpin_entry(file_ptr, i, TRUE, FALSE, FALSE); } - if ( fid >= 0 ) { + if (fid >= 0) { - if ( ! take_down_cache(fid, cache_ptr) ) { + if (!take_down_cache(fid, cache_ptr)) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__); } } } @@ -6722,10 +6157,9 @@ smoke_check_5(int metadata_write_strategy) * and are clean. */ - for ( i = 0; i < NUM_DATA_ENTRIES; i++ ) - { - HDassert( data_index[i] == i ); - HDassert( ! (data[i].dirty) ); + for (i = 0; i < NUM_DATA_ENTRIES; i++) { + HDassert(data_index[i] == i); + HDassert(!(data[i].dirty)); } /* compose the done message */ @@ -6733,22 +6167,21 @@ smoke_check_5(int metadata_write_strategy) mssg.src = world_mpi_rank; mssg.dest = world_server_mpi_rank; mssg.mssg_num = -1; /* set by send function */ - mssg.base_addr = 0; /* not used */ - mssg.len = 0; /* not used */ - mssg.ver = 0; /* not used */ - mssg.count = 0; /* not used */ + mssg.base_addr = 0; /* not used */ + mssg.len = 0; /* not used */ + mssg.ver = 0; /* not used */ + mssg.count = 0; /* not used */ mssg.magic = MSSG_MAGIC; - if ( success ) { + if (success) { success = send_mssg(&mssg, FALSE); - if ( ! success ) { + if (!success) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__); } } } @@ -6756,26 +6189,25 @@ smoke_check_5(int metadata_write_strategy) max_nerrors = get_max_nerrors(); - if ( world_mpi_rank == 0 ) { + if (world_mpi_rank == 0) { - if ( max_nerrors == 0 ) { + if (max_nerrors == 0) { - PASSED(); - - } else { + PASSED(); + } + else { failures++; H5_FAILED(); } } - success = ( ( success ) && ( max_nerrors == 0 ) ); + success = ((success) && (max_nerrors == 0)); - return(success); + return (success); } /* smoke_check_5() */ - /***************************************************************************** * * Function: trace_file_check() @@ -6818,87 +6250,80 @@ trace_file_check(int metadata_write_strategy) { hbool_t success = TRUE; - const char *((* expected_output)[]) = NULL; - const char * expected_output_0[] = - { - "### HDF5 metadata cache trace file version 1 ###\n", - "H5AC_set_cache_auto_resize_config", - "H5AC_insert_entry", - "H5AC_insert_entry", - "H5AC_insert_entry", - "H5AC_insert_entry", - "H5AC_protect", - "H5AC_mark_entry_dirty", - "H5AC_unprotect", - "H5AC_protect", - "H5AC_pin_protected_entry", - "H5AC_unprotect", - "H5AC_unpin_entry", - "H5AC_expunge_entry", - "H5AC_protect", - "H5AC_pin_protected_entry", - "H5AC_unprotect", - "H5AC_mark_entry_dirty", - "H5AC_resize_entry", - "H5AC_resize_entry", - "H5AC_unpin_entry", - "H5AC_move_entry", - "H5AC_move_entry", - "H5AC_flush", - "H5AC_flush", - NULL - }; - const char * expected_output_1[] = - { - "### HDF5 metadata cache trace file version 1 ###\n", - "H5AC_set_cache_auto_resize_config", - "H5AC_insert_entry", - "H5AC_insert_entry", - "H5AC_insert_entry", - "H5AC_insert_entry", - "H5AC_protect", - "H5AC_mark_entry_dirty", - "H5AC_unprotect", - "H5AC_protect", - "H5AC_pin_protected_entry", - "H5AC_unprotect", - "H5AC_unpin_entry", - "H5AC_expunge_entry", - "H5AC_protect", - "H5AC_pin_protected_entry", - "H5AC_unprotect", - "H5AC_mark_entry_dirty", - "H5AC_resize_entry", - "H5AC_resize_entry", - "H5AC_unpin_entry", - "H5AC_move_entry", - "H5AC_move_entry", - "H5AC_flush", - "H5AC_flush", - NULL - }; - char buffer[256]; - char trace_file_name[64]; - hbool_t done = FALSE; - int i; - int max_nerrors; - size_t expected_line_len; - size_t actual_line_len; - hid_t fid = -1; - H5F_t * file_ptr = NULL; - H5C_t * cache_ptr = NULL; - FILE * trace_file_ptr = NULL; + const char *((*expected_output)[]) = NULL; + const char * expected_output_0[] = {"### HDF5 metadata cache trace file version 1 ###\n", + "H5AC_set_cache_auto_resize_config", + "H5AC_insert_entry", + "H5AC_insert_entry", + "H5AC_insert_entry", + "H5AC_insert_entry", + "H5AC_protect", + "H5AC_mark_entry_dirty", + "H5AC_unprotect", + "H5AC_protect", + "H5AC_pin_protected_entry", + "H5AC_unprotect", + "H5AC_unpin_entry", + "H5AC_expunge_entry", + "H5AC_protect", + "H5AC_pin_protected_entry", + "H5AC_unprotect", + "H5AC_mark_entry_dirty", + "H5AC_resize_entry", + "H5AC_resize_entry", + "H5AC_unpin_entry", + "H5AC_move_entry", + "H5AC_move_entry", + "H5AC_flush", + "H5AC_flush", + NULL}; + const char * expected_output_1[] = {"### HDF5 metadata cache trace file version 1 ###\n", + "H5AC_set_cache_auto_resize_config", + "H5AC_insert_entry", + "H5AC_insert_entry", + "H5AC_insert_entry", + "H5AC_insert_entry", + "H5AC_protect", + "H5AC_mark_entry_dirty", + "H5AC_unprotect", + "H5AC_protect", + "H5AC_pin_protected_entry", + "H5AC_unprotect", + "H5AC_unpin_entry", + "H5AC_expunge_entry", + "H5AC_protect", + "H5AC_pin_protected_entry", + "H5AC_unprotect", + "H5AC_mark_entry_dirty", + "H5AC_resize_entry", + "H5AC_resize_entry", + "H5AC_unpin_entry", + "H5AC_move_entry", + "H5AC_move_entry", + "H5AC_flush", + "H5AC_flush", + NULL}; + char buffer[256]; + char trace_file_name[64]; + hbool_t done = FALSE; + int i; + int max_nerrors; + size_t expected_line_len; + size_t actual_line_len; + hid_t fid = -1; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; + FILE * trace_file_ptr = NULL; H5AC_cache_config_t config; - struct mssg_t mssg; + struct mssg_t mssg; - - switch(metadata_write_strategy) { + switch (metadata_write_strategy) { case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: expected_output = &expected_output_0; - if(world_mpi_rank == 0) + if (world_mpi_rank == 0) TESTING("trace file collection -- process 0 only md write strategy"); break; @@ -6906,7 +6331,7 @@ trace_file_check(int metadata_write_strategy) expected_output = &expected_output_1; - if(world_mpi_rank == 0) + if (world_mpi_rank == 0) TESTING("trace file collection -- distributed md write strategy"); break; @@ -6917,53 +6342,54 @@ trace_file_check(int metadata_write_strategy) */ expected_output = &expected_output_0; - if(world_mpi_rank == 0) + if (world_mpi_rank == 0) TESTING("trace file collection -- unknown md write strategy"); break; } /* end switch */ - nerrors = 0; init_data(); reset_stats(); - if(world_mpi_rank == world_server_mpi_rank) { + if (world_mpi_rank == world_server_mpi_rank) { - if(!server_main()) { + if (!server_main()) { - /* some error occured in the server -- report failure */ + /* some error occurred in the server -- report failure */ nerrors++; - if ( verbose ) - HDfprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, FUNC); + if (verbose) + HDfprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__); } } else { /* run the clients */ - if(!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy) ) { + if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) { nerrors++; - fid = -1; + fid = -1; cache_ptr = NULL; - if(verbose) - HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, FUNC); + if (verbose) + HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__); } - if(nerrors == 0) { + if (nerrors == 0) { config.version = H5AC__CURR_CACHE_CONFIG_VERSION; - if(H5AC_get_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) { + if (H5AC_get_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) { nerrors++; - HDfprintf(stdout, "%d:%s: H5AC_get_cache_auto_resize_config() failed.\n", world_mpi_rank, FUNC); + HDfprintf(stdout, "%d:%s: H5AC_get_cache_auto_resize_config() failed.\n", world_mpi_rank, + __func__); } else { config.open_trace_file = TRUE; strcpy(config.trace_file_name, "t_cache_trace.txt"); - if(H5AC_set_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) { + if (H5AC_set_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) { nerrors++; - HDfprintf(stdout, "%d:%s: H5AC_set_cache_auto_resize_config() failed.\n", world_mpi_rank, FUNC); + HDfprintf(stdout, "%d:%s: H5AC_set_cache_auto_resize_config() failed.\n", world_mpi_rank, + __func__); } } } /* end if */ @@ -6995,37 +6421,39 @@ trace_file_check(int metadata_write_strategy) move_entry(file_ptr, 0, 20); move_entry(file_ptr, 0, 20); - if(H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) { + if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) { nerrors++; - if(verbose) - HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, FUNC); + if (verbose) + HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__); } - if(nerrors == 0) { + if (nerrors == 0) { config.version = H5AC__CURR_CACHE_CONFIG_VERSION; - if(H5AC_get_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) { + if (H5AC_get_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) { nerrors++; - HDfprintf(stdout, "%d:%s: H5AC_get_cache_auto_resize_config() failed.\n", world_mpi_rank, FUNC); + HDfprintf(stdout, "%d:%s: H5AC_get_cache_auto_resize_config() failed.\n", world_mpi_rank, + __func__); } else { - config.open_trace_file = FALSE; - config.close_trace_file = TRUE; + config.open_trace_file = FALSE; + config.close_trace_file = TRUE; config.trace_file_name[0] = '\0'; - if(H5AC_set_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) { + if (H5AC_set_cache_auto_resize_config(cache_ptr, &config) != SUCCEED) { nerrors++; - HDfprintf(stdout, "%d:%s: H5AC_set_cache_auto_resize_config() failed.\n", world_mpi_rank, FUNC); + HDfprintf(stdout, "%d:%s: H5AC_set_cache_auto_resize_config() failed.\n", world_mpi_rank, + __func__); } } } /* end if */ - if(fid >= 0) { - if(!take_down_cache(fid, cache_ptr)) { + if (fid >= 0) { + if (!take_down_cache(fid, cache_ptr)) { nerrors++; - if(verbose) - HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, FUNC); + if (verbose) + HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__); } } /* end if */ @@ -7033,7 +6461,7 @@ trace_file_check(int metadata_write_strategy) * and are clean. */ - for(i = 0; i < NUM_DATA_ENTRIES; i++) { + for (i = 0; i < NUM_DATA_ENTRIES; i++) { HDassert(data_index[i] == i); HDassert(!(data[i].dirty)); } @@ -7043,80 +6471,88 @@ trace_file_check(int metadata_write_strategy) mssg.src = world_mpi_rank; mssg.dest = world_server_mpi_rank; mssg.mssg_num = -1; /* set by send function */ - mssg.base_addr = 0; /* not used */ - mssg.len = 0; /* not used */ - mssg.ver = 0; /* not used */ - mssg.count = 0; /* not used */ + mssg.base_addr = 0; /* not used */ + mssg.len = 0; /* not used */ + mssg.ver = 0; /* not used */ + mssg.count = 0; /* not used */ mssg.magic = MSSG_MAGIC; - if(success) { + if (success) { success = send_mssg(&mssg, FALSE); - if(!success) { + if (!success) { nerrors++; - if(verbose) - HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, FUNC); + if (verbose) + HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__); } } /* end if */ - if(nerrors == 0) { - HDsprintf(trace_file_name, "t_cache_trace.txt.%d", (int)file_mpi_rank); + if (nerrors == 0) { + HDsnprintf(trace_file_name, sizeof(trace_file_name), "t_cache_trace.txt.%d", (int)file_mpi_rank); - if((trace_file_ptr = HDfopen(trace_file_name, "r")) == NULL ) { + if ((trace_file_ptr = HDfopen(trace_file_name, "r")) == NULL) { nerrors++; - if(verbose) - HDfprintf(stdout, "%d:%s: HDfopen failed.\n", world_mpi_rank, FUNC); + if (verbose) + HDfprintf(stdout, "%d:%s: HDfopen failed.\n", world_mpi_rank, __func__); } } /* end if */ - i = 0; - while((nerrors == 0) && (!done)) { + while ((nerrors == 0) && (!done)) { /* Get lines of actual and expected data */ - if((*expected_output)[i] == NULL) + if ((*expected_output)[i] == NULL) expected_line_len = (size_t)0; else expected_line_len = HDstrlen((*expected_output)[i]); - if(HDfgets(buffer, 255, trace_file_ptr) != NULL) + if (HDfgets(buffer, 255, trace_file_ptr) != NULL) actual_line_len = HDstrlen(buffer); else actual_line_len = (size_t)0; /* Compare the lines */ /* Handle running out of data */ - if((actual_line_len == 0) || (expected_line_len == 0)) { - if((actual_line_len == 0) && (expected_line_len == 0)) { + if ((actual_line_len == 0) || (expected_line_len == 0)) { + if ((actual_line_len == 0) && (expected_line_len == 0)) { /* Both ran out at the same time - we're done */ done = TRUE; } else { /* One ran out before the other - BADNESS */ nerrors++; - if(verbose) { - HDfprintf(stdout, "%d:%s: Unexpected data in trace file line %d.\n", world_mpi_rank, FUNC, i); - if(expected_line_len == 0) { - HDfprintf(stdout, "%d:%s: expected = \"%s\" %d\n", world_mpi_rank, FUNC, "<EMPTY>", expected_line_len); - HDfprintf(stdout, "%d:%s: actual = \"%s\" %d\n", world_mpi_rank, FUNC, buffer, actual_line_len); + if (verbose) { + HDfprintf(stdout, "%d:%s: Unexpected data in trace file line %d.\n", world_mpi_rank, + __func__, i); + if (expected_line_len == 0) { + HDfprintf(stdout, "%d:%s: expected = \"%s\" %zu\n", world_mpi_rank, __func__, + "<EMPTY>", expected_line_len); + HDfprintf(stdout, "%d:%s: actual = \"%s\" %zu\n", world_mpi_rank, __func__, + buffer, actual_line_len); } - if(actual_line_len == 0) { - HDfprintf(stdout, "%d:%s: expected = \"%s\" %d\n", world_mpi_rank, FUNC, (*expected_output)[i], expected_line_len); - HDfprintf(stdout, "%d:%s: actual = \"%s\" %d\n", world_mpi_rank, FUNC, "<EMPTY>", actual_line_len); + if (actual_line_len == 0) { + HDfprintf(stdout, "%d:%s: expected = \"%s\" %zu\n", world_mpi_rank, __func__, + (*expected_output)[i], expected_line_len); + HDfprintf(stdout, "%d:%s: actual = \"%s\" %zu\n", world_mpi_rank, __func__, + "<EMPTY>", actual_line_len); } } HDfprintf(stdout, "BADNESS BADNESS BADNESS\n"); } } /* We directly compare the header line (line 0) */ - else if(0 == i) { - if((actual_line_len != expected_line_len) || (HDstrcmp(buffer, (*expected_output)[i]) != 0 )) { + else if (0 == i) { + if ((actual_line_len != expected_line_len) || + (HDstrcmp(buffer, (*expected_output)[i]) != 0)) { nerrors++; - if(verbose) { - HDfprintf(stdout, "%d:%s: Unexpected data in trace file line %d.\n", world_mpi_rank, FUNC, i); - HDfprintf(stdout, "%d:%s: expected = \"%s\" %d\n", world_mpi_rank, FUNC, (*expected_output)[i], expected_line_len); - HDfprintf(stdout, "%d:%s: actual = \"%s\" %d\n", world_mpi_rank, FUNC, buffer, actual_line_len); + if (verbose) { + HDfprintf(stdout, "%d:%s: Unexpected data in trace file line %d.\n", world_mpi_rank, + __func__, i); + HDfprintf(stdout, "%d:%s: expected = \"%s\" %zu\n", world_mpi_rank, __func__, + (*expected_output)[i], expected_line_len); + HDfprintf(stdout, "%d:%s: actual = \"%s\" %zu\n", world_mpi_rank, __func__, buffer, + actual_line_len); } } } @@ -7124,17 +6560,19 @@ trace_file_check(int metadata_write_strategy) * keeps the test from being too fragile. */ else { - char *tok = NULL; /* token for actual line */ + char *tok = NULL; /* token for actual line */ tok = HDstrtok(buffer, " "); - if(HDstrcmp(tok, (*expected_output)[i]) != 0 ) { + if (HDstrcmp(tok, (*expected_output)[i]) != 0) { nerrors++; - if(verbose) { - HDfprintf(stdout, "%d:%s: Unexpected data in trace file line %d.\n", world_mpi_rank, FUNC, i); - HDfprintf(stdout, "%d:%s: expected = \"%s\"\n", world_mpi_rank, FUNC, (*expected_output)[i]); - HDfprintf(stdout, "%d:%s: actual = \"%s\"\n", world_mpi_rank, FUNC, tok); + if (verbose) { + HDfprintf(stdout, "%d:%s: Unexpected data in trace file line %d.\n", world_mpi_rank, + __func__, i); + HDfprintf(stdout, "%d:%s: expected = \"%s\"\n", world_mpi_rank, __func__, + (*expected_output)[i]); + HDfprintf(stdout, "%d:%s: actual = \"%s\"\n", world_mpi_rank, __func__, tok); } } } /* end else */ @@ -7143,7 +6581,7 @@ trace_file_check(int metadata_write_strategy) } /* end while */ /* Clean up the trace file */ - if(trace_file_ptr != NULL) { + if (trace_file_ptr != NULL) { HDfclose(trace_file_ptr); trace_file_ptr = NULL; HDremove(trace_file_name); @@ -7152,9 +6590,9 @@ trace_file_check(int metadata_write_strategy) max_nerrors = get_max_nerrors(); - if(world_mpi_rank == 0) { + if (world_mpi_rank == 0) { - if(max_nerrors == 0) { + if (max_nerrors == 0) { PASSED(); } else { @@ -7165,11 +6603,10 @@ trace_file_check(int metadata_write_strategy) success = ((success) && (max_nerrors == 0)); - return(success); + return (success); } /* trace_file_check() */ - /***************************************************************************** * * Function: smoke_check_6() @@ -7186,48 +6623,49 @@ trace_file_check(int metadata_write_strategy) static hbool_t smoke_check_6(int metadata_write_strategy) { - hbool_t success = TRUE; - int i; - int max_nerrors; - hid_t fid = -1; - H5F_t * file_ptr = NULL; - H5C_t * cache_ptr = NULL; - struct mssg_t mssg; + H5P_coll_md_read_flag_t md_reads_file_flag; + hbool_t md_reads_context_flag; + hbool_t success = TRUE; + int i; + int max_nerrors; + hid_t fid = -1; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; + struct mssg_t mssg; + + switch (metadata_write_strategy) { - switch ( metadata_write_strategy ) { - - case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #6 -- process 0 only md write strategy"); + case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: + if (world_mpi_rank == 0) { + TESTING("smoke check #6 -- process 0 only md write strategy"); } - break; + break; - case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #6 -- distributed md write strategy"); + case H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED: + if (world_mpi_rank == 0) { + TESTING("smoke check #6 -- distributed md write strategy"); } - break; + break; default: - if ( world_mpi_rank == 0 ) { - TESTING("smoke check #6 -- unknown md write strategy"); + if (world_mpi_rank == 0) { + TESTING("smoke check #6 -- unknown md write strategy"); } - break; + break; } nerrors = 0; init_data(); reset_stats(); - if ( world_mpi_rank == world_server_mpi_rank ) { + if (world_mpi_rank == world_server_mpi_rank) { - if ( ! server_main() ) { + if (!server_main()) { - /* some error occured in the server -- report failure */ + /* some error occurred in the server -- report failure */ nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: server_main() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: server_main() failed.\n", world_mpi_rank, __func__); } } } @@ -7235,127 +6673,135 @@ smoke_check_6(int metadata_write_strategy) { int temp; - if ( ! setup_cache_for_test(&fid, &file_ptr, &cache_ptr, - metadata_write_strategy) ) { + if (!setup_cache_for_test(&fid, &file_ptr, &cache_ptr, metadata_write_strategy)) { nerrors++; - fid = -1; + fid = -1; cache_ptr = NULL; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: setup_cache_for_test() failed.\n", world_mpi_rank, __func__); } } - temp = virt_num_data_entries; + temp = virt_num_data_entries; virt_num_data_entries = NUM_DATA_ENTRIES; /* insert the first half collectively */ - H5CX_set_coll_metadata_read(TRUE); - for ( i = 0; i < virt_num_data_entries/2; i++ ) - { - struct datum * entry_ptr; + md_reads_file_flag = H5P_USER_TRUE; + md_reads_context_flag = TRUE; + H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag); + for (i = 0; i < virt_num_data_entries / 2; i++) { + struct datum *entry_ptr; entry_ptr = &(data[i]); insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET); - if(TRUE != entry_ptr->header.coll_access) { + if (TRUE != entry_ptr->header.coll_access) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Entry inserted not marked as collective.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Entry inserted not marked as collective.\n", world_mpi_rank, + __func__); } } /* Make sure coll entries do not cross the 80% threshold */ - HDassert(cache_ptr->max_cache_size*0.8 > cache_ptr->coll_list_size); + H5_CHECK_OVERFLOW(cache_ptr->max_cache_size, size_t, double); + HDassert((double)cache_ptr->max_cache_size * 0.8 > cache_ptr->coll_list_size); } + /* Restore collective metadata reads state */ + H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag); /* insert the other half independently */ - H5CX_set_coll_metadata_read(FALSE); - for ( i = virt_num_data_entries/2; i < virt_num_data_entries; i++ ) - { - struct datum * entry_ptr; + md_reads_file_flag = H5P_USER_FALSE; + md_reads_context_flag = FALSE; + H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag); + for (i = virt_num_data_entries / 2; i < virt_num_data_entries; i++) { + struct datum *entry_ptr; entry_ptr = &(data[i]); insert_entry(cache_ptr, file_ptr, i, H5AC__NO_FLAGS_SET); - if(FALSE != entry_ptr->header.coll_access) { + if (FALSE != entry_ptr->header.coll_access) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Entry inserted indepedently marked as collective.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Entry inserted independently marked as collective.\n", + world_mpi_rank, __func__); } } /* Make sure coll entries do not cross the 80% threshold */ - HDassert(cache_ptr->max_cache_size*0.8 > cache_ptr->coll_list_size); + HDassert((double)cache_ptr->max_cache_size * 0.8 > cache_ptr->coll_list_size); } + /* Restore collective metadata reads state */ + H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag); /* flush the file */ - if ( H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0 ) { + if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5Fflush() failed.\n", world_mpi_rank, __func__); } } /* Protect the first half of the entries collectively */ - H5CX_set_coll_metadata_read(TRUE); - for ( i = 0; i < (virt_num_data_entries / 2); i++ ) - { - struct datum * entry_ptr; + md_reads_file_flag = H5P_USER_TRUE; + md_reads_context_flag = TRUE; + H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag); + for (i = 0; i < (virt_num_data_entries / 2); i++) { + struct datum *entry_ptr; entry_ptr = &(data[i]); - lock_entry(file_ptr, i); + lock_entry(file_ptr, i); - if(TRUE != entry_ptr->header.coll_access) { + if (TRUE != entry_ptr->header.coll_access) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Entry protected not marked as collective.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Entry protected not marked as collective.\n", world_mpi_rank, + __func__); } } /* Make sure coll entries do not cross the 80% threshold */ - HDassert(cache_ptr->max_cache_size*0.8 > cache_ptr->coll_list_size); + HDassert((double)cache_ptr->max_cache_size * 0.8 > cache_ptr->coll_list_size); } + /* Restore collective metadata reads state */ + H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag); /* protect the other half independently */ - H5CX_set_coll_metadata_read(FALSE); - for ( i = virt_num_data_entries/2; i < virt_num_data_entries; i++ ) - { - struct datum * entry_ptr; + md_reads_file_flag = H5P_USER_FALSE; + md_reads_context_flag = FALSE; + H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag); + for (i = virt_num_data_entries / 2; i < virt_num_data_entries; i++) { + struct datum *entry_ptr; entry_ptr = &(data[i]); lock_entry(file_ptr, i); - if(FALSE != entry_ptr->header.coll_access) { + if (FALSE != entry_ptr->header.coll_access) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: Entry inserted indepedently marked as collective.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: Entry inserted independently marked as collective.\n", + world_mpi_rank, __func__); } } /* Make sure coll entries do not cross the 80% threshold */ - HDassert(cache_ptr->max_cache_size*0.8 > cache_ptr->coll_list_size); + HDassert((double)cache_ptr->max_cache_size * 0.8 > cache_ptr->coll_list_size); } + /* Restore collective metadata reads state */ + H5F_set_coll_metadata_reads(file_ptr, &md_reads_file_flag, &md_reads_context_flag); - for ( i = 0; i < (virt_num_data_entries); i++ ) - { + for (i = 0; i < (virt_num_data_entries); i++) { unlock_entry(file_ptr, i, H5AC__NO_FLAGS_SET); } - if ( fid >= 0 ) { + if (fid >= 0) { - if ( ! take_down_cache(fid, cache_ptr) ) { + if (!take_down_cache(fid, cache_ptr)) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: take_down_cache() failed.\n", world_mpi_rank, __func__); } } } @@ -7364,10 +6810,9 @@ smoke_check_6(int metadata_write_strategy) * and are clean. */ - for ( i = 0; i < NUM_DATA_ENTRIES; i++ ) - { - HDassert( data_index[i] == i ); - HDassert( ! (data[i].dirty) ); + for (i = 0; i < NUM_DATA_ENTRIES; i++) { + HDassert(data_index[i] == i); + HDassert(!(data[i].dirty)); } /* compose the done message */ @@ -7375,23 +6820,21 @@ smoke_check_6(int metadata_write_strategy) mssg.src = world_mpi_rank; mssg.dest = world_server_mpi_rank; mssg.mssg_num = -1; /* set by send function */ - mssg.base_addr = 0; /* not used */ - mssg.len = 0; /* not used */ - mssg.ver = 0; /* not used */ - mssg.count = 0; /* not used */ + mssg.base_addr = 0; /* not used */ + mssg.len = 0; /* not used */ + mssg.ver = 0; /* not used */ + mssg.count = 0; /* not used */ mssg.magic = MSSG_MAGIC; - if ( success ) { - + if (success) { success = send_mssg(&mssg, FALSE); - if ( ! success ) { + if (!success) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: send_mssg() failed on done.\n", world_mpi_rank, __func__); } } } @@ -7400,26 +6843,25 @@ smoke_check_6(int metadata_write_strategy) max_nerrors = get_max_nerrors(); - if ( world_mpi_rank == 0 ) { - - if ( max_nerrors == 0 ) { + if (world_mpi_rank == 0) { - PASSED(); + if (max_nerrors == 0) { - } else { + PASSED(); + } + else { failures++; H5_FAILED(); } } - success = ( ( success ) && ( max_nerrors == 0 ) ); + success = ((success) && (max_nerrors == 0)); - return(success); + return (success); } /* smoke_check_6() */ - /***************************************************************************** * * Function: main() @@ -7436,65 +6878,54 @@ smoke_check_6(int metadata_write_strategy) int main(int argc, char **argv) { - int express_test; + int express_test; unsigned u; - int mpi_size; - int mpi_rank; - int max_nerrors; + int mpi_size; + int mpi_rank; + int max_nerrors; MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - world_mpi_size = mpi_size; - world_mpi_rank = mpi_rank; + world_mpi_size = mpi_size; + world_mpi_rank = mpi_rank; world_server_mpi_rank = mpi_size - 1; - world_mpi_comm = MPI_COMM_WORLD; + world_mpi_comm = MPI_COMM_WORLD; /* Attempt to turn off atexit post processing so that in case errors * happen during the test and the process is aborted, it will not get * hang in the atexit post processing in which it may try to make MPI * calls. By then, MPI calls may not work. */ - if (H5dont_atexit() < 0){ - HDprintf("%d:Failed to turn off atexit processing. Continue.\n", - mpi_rank); - }; + if (H5dont_atexit() < 0) + HDprintf("%d:Failed to turn off atexit processing. Continue.\n", mpi_rank); + H5open(); express_test = do_express_test(); -#if 0 /* JRM */ - express_test = 0; -#endif /* JRM */ - if ( express_test ) { - - virt_num_data_entries = EXPRESS_VIRT_NUM_DATA_ENTRIES; - - } else { - - virt_num_data_entries = STD_VIRT_NUM_DATA_ENTRIES; - } + if (express_test) + virt_num_data_entries = EXPRESS_VIRT_NUM_DATA_ENTRIES; + else + virt_num_data_entries = STD_VIRT_NUM_DATA_ENTRIES; #ifdef H5_HAVE_MPE - if ( MAINPROCESS ) { HDprintf(" Tests compiled for MPE.\n"); } + if (MAINPROCESS) + HDprintf(" Tests compiled for MPE.\n"); virt_num_data_entries = MPE_VIRT_NUM_DATA_ENTIES; #endif /* H5_HAVE_MPE */ - - if (MAINPROCESS){ - HDprintf("===================================\n"); - HDprintf("Parallel metadata cache tests\n"); - HDprintf(" mpi_size = %d\n", mpi_size); - HDprintf(" express_test = %d\n", express_test); - HDprintf("===================================\n"); + if (MAINPROCESS) { + HDprintf("===================================\n"); + HDprintf("Parallel metadata cache tests\n"); + HDprintf(" mpi_size = %d\n", mpi_size); + HDprintf(" express_test = %d\n", express_test); + HDprintf("===================================\n"); } - if ( mpi_size < 3 ) { - - if ( MAINPROCESS ) { - + if (mpi_size < 3) { + if (MAINPROCESS) HDprintf(" Need at least 3 processes. Exiting.\n"); - } goto finish; } @@ -7510,82 +6941,61 @@ main(int argc, char **argv) */ /* setup file access property list with the world communicator */ - if ( FAIL == (fapl = H5Pcreate(H5P_FILE_ACCESS)) ) { + if (FAIL == (fapl = H5Pcreate(H5P_FILE_ACCESS))) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Pcreate() failed 1.\n", - world_mpi_rank, FUNC); - } + if (verbose) + HDfprintf(stdout, "%d:%s: H5Pcreate() failed 1.\n", world_mpi_rank, __func__); } - if ( H5Pset_fapl_mpio(fapl, world_mpi_comm, MPI_INFO_NULL) < 0 ) { - + if (H5Pset_fapl_mpio(fapl, world_mpi_comm, MPI_INFO_NULL) < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Pset_fapl_mpio() failed 1.\n", - world_mpi_rank, FUNC); - } + if (verbose) + HDfprintf(stdout, "%d:%s: H5Pset_fapl_mpio() failed 1.\n", world_mpi_rank, __func__); } /* fix the file names */ - for ( u = 0; u < sizeof(FILENAME) / sizeof(FILENAME[0]) - 1; ++u ) - { - if ( h5_fixname(FILENAME[u], fapl, filenames[u], - sizeof(filenames[u])) == NULL ) { - + for (u = 0; u < sizeof(FILENAME) / sizeof(FILENAME[0]) - 1; ++u) { + if (h5_fixname(FILENAME[u], fapl, filenames[u], sizeof(filenames[u])) == NULL) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: h5_fixname() failed.\n", - world_mpi_rank, FUNC); - } + if (verbose) + HDfprintf(stdout, "%d:%s: h5_fixname() failed.\n", world_mpi_rank, __func__); break; } } /* close the fapl before we set it up again */ - if ( H5Pclose(fapl) < 0 ) { + if (H5Pclose(fapl) < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Pclose() failed.\n", - world_mpi_rank, FUNC); - } + if (verbose) + HDfprintf(stdout, "%d:%s: H5Pclose() failed.\n", world_mpi_rank, __func__); } /* now create the fapl again, excluding the server process. */ - if ( world_mpi_rank != world_server_mpi_rank ) { + if (world_mpi_rank != world_server_mpi_rank) { /* setup file access property list */ - if ( FAIL == (fapl = H5Pcreate(H5P_FILE_ACCESS)) ) { - nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Pcreate() failed 2.\n", - world_mpi_rank, FUNC); - } + if (FAIL == (fapl = H5Pcreate(H5P_FILE_ACCESS))) { + nerrors++; + if (verbose) + HDfprintf(stdout, "%d:%s: H5Pcreate() failed 2.\n", world_mpi_rank, __func__); } - if ( H5Pset_fapl_mpio(fapl, file_mpi_comm, MPI_INFO_NULL) < 0 ) { - + if (H5Pset_fapl_mpio(fapl, file_mpi_comm, MPI_INFO_NULL) < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Pset_fapl_mpio() failed 2.\n", - world_mpi_rank, FUNC); - } + if (verbose) + HDfprintf(stdout, "%d:%s: H5Pset_fapl_mpio() failed 2.\n", world_mpi_rank, __func__); } } setup_rand(); max_nerrors = get_max_nerrors(); - - if ( max_nerrors != 0 ) { + if (max_nerrors != 0) { /* errors in setup -- no point in continuing */ - - if ( world_mpi_rank == 0 ) { - + if (world_mpi_rank == 0) HDfprintf(stdout, "Errors in test initialization. Exiting.\n"); - } - goto finish; + goto finish; } /* run the tests */ @@ -7613,13 +7023,13 @@ main(int argc, char **argv) smoke_check_5(H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED); #endif /* enable the collective metadata read property */ - if ( world_mpi_rank != world_server_mpi_rank ) { - if ( H5Pset_all_coll_metadata_ops(fapl, TRUE) < 0 ) { + if (world_mpi_rank != world_server_mpi_rank) { + if (H5Pset_all_coll_metadata_ops(fapl, TRUE) < 0) { nerrors++; - if ( verbose ) { - HDfprintf(stdout, "%d:%s: H5Pset_all_coll_metadata_ops() failed 1.\n", - world_mpi_rank, FUNC); + if (verbose) { + HDfprintf(stdout, "%d:%s: H5Pset_all_coll_metadata_ops() failed 1.\n", world_mpi_rank, + __func__); } } } @@ -7638,16 +7048,15 @@ finish: * and exit. */ MPI_Barrier(MPI_COMM_WORLD); - if (MAINPROCESS){ /* only process 0 reports */ - HDprintf("===================================\n"); - if (failures){ - HDprintf("***metadata cache tests detected %d failures***\n", - failures); - } - else{ - HDprintf("metadata cache tests finished with no failures\n"); - } - HDprintf("===================================\n"); + if (MAINPROCESS) { /* only process 0 reports */ + HDprintf("===================================\n"); + if (failures) { + HDprintf("***metadata cache tests detected %d failures***\n", failures); + } + else { + HDprintf("metadata cache tests finished with no failures\n"); + } + HDprintf("===================================\n"); } takedown_derived_types(); @@ -7659,6 +7068,5 @@ finish: MPI_Finalize(); /* cannot just return (failures) because exit code is limited to 1byte */ - return(failures != 0); + return (failures != 0); } - diff --git a/testpar/t_cache_image.c b/testpar/t_cache_image.c index 14e3d10..4229a77 100644 --- a/testpar/t_cache_image.c +++ b/testpar/t_cache_image.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -27,18 +27,12 @@ #define DSET_SIZE (40 * CHUNK_SIZE) #define MAX_NUM_DSETS 256 #define PAR_NUM_DSETS 32 -#define PAGE_SIZE (4 * 1024) +#define PAGE_SIZE (4 * 1024) #define PB_SIZE (64 * PAGE_SIZE) /* global variable declarations: */ - -const char *FILENAMES[] = { - "t_cache_image_00", - "t_cache_image_01", - "t_cache_image_02", - NULL -}; +const char *FILENAMES[] = {"t_cache_image_00", "t_cache_image_01", "t_cache_image_02", NULL}; /* local utility function declarations */ @@ -47,49 +41,31 @@ static void create_data_sets(hid_t file_id, int min_dset, int max_dset); static void delete_data_sets(hid_t file_id, int min_dset, int max_dset); #endif -static void open_hdf5_file(const hbool_t create_file, - const hbool_t mdci_sbem_expected, - const hbool_t read_only, - const hbool_t set_mdci_fapl, - const hbool_t config_fsm, - const hbool_t enable_page_buffer, - const char * hdf_file_name, - const unsigned cache_image_flags, - hid_t * file_id_ptr, - H5F_t ** file_ptr_ptr, - H5C_t ** cache_ptr_ptr, - MPI_Comm comm, - MPI_Info info, - int l_facc_type, - const hbool_t all_coll_metadata_ops, - const hbool_t coll_metadata_write, - const int md_write_strat); +static void open_hdf5_file(const hbool_t create_file, const hbool_t mdci_sbem_expected, + const hbool_t read_only, const hbool_t set_mdci_fapl, const hbool_t config_fsm, + const hbool_t enable_page_buffer, const char *hdf_file_name, + const unsigned cache_image_flags, hid_t *file_id_ptr, H5F_t **file_ptr_ptr, + H5C_t **cache_ptr_ptr, MPI_Comm comm, MPI_Info info, int l_facc_type, + const hbool_t all_coll_metadata_ops, const hbool_t coll_metadata_write, + const int md_write_strat); static void verify_data_sets(hid_t file_id, int min_dset, int max_dset); /* local test function declarations */ -static hbool_t parse_flags(int argc, char * argv[], hbool_t * setup_ptr, - hbool_t * ici_ptr, int * file_idx_ptr, int * mpi_size_ptr, hbool_t display); -static void usage(void); static unsigned construct_test_file(int test_file_index); -static void par_create_dataset(int dset_num, hid_t file_id, int mpi_rank, - int mpi_size); -static void par_delete_dataset(int dset_num, hid_t file_id, int mpi_rank); -static void par_verify_dataset(int dset_num, hid_t file_id, int mpi_rank); +static void par_create_dataset(int dset_num, hid_t file_id, int mpi_rank, int mpi_size); +static void par_delete_dataset(int dset_num, hid_t file_id, int mpi_rank); +static void par_verify_dataset(int dset_num, hid_t file_id, int mpi_rank); static hbool_t serial_insert_cache_image(int file_name_idx, int mpi_size); -static void serial_verify_dataset(int dset_num, hid_t file_id, int mpi_size); +static void serial_verify_dataset(int dset_num, hid_t file_id, int mpi_size); /* top level test function declarations */ -static unsigned verify_cache_image_RO(int file_name_id, - int md_write_strat, int mpi_rank); -static unsigned verify_cache_image_RW(int file_name_id, - int md_write_strat, int mpi_rank); - -static hbool_t smoke_check_1(MPI_Comm mpi_comm, MPI_Info mpi_info, - int mpi_rank, int mpi_size); +static unsigned verify_cache_image_RO(int file_name_id, int md_write_strat, int mpi_rank); +static unsigned verify_cache_image_RW(int file_name_id, int md_write_strat, int mpi_rank); +static hbool_t smoke_check_1(MPI_Comm mpi_comm, MPI_Info mpi_info, int mpi_rank, int mpi_size); /****************************************************************************/ /***************************** Utility Functions ****************************/ @@ -160,42 +136,38 @@ static hbool_t smoke_check_1(MPI_Comm mpi_comm, MPI_Info mpi_info, static unsigned construct_test_file(int test_file_index) { - const char * fcn_name = "construct_test_file()"; - char filename[512]; - hbool_t show_progress = FALSE; - hid_t file_id = -1; - H5F_t *file_ptr = NULL; - H5C_t *cache_ptr = NULL; - int cp = 0; - int min_dset = 0; - int max_dset = 0; - MPI_Comm dummy_comm = MPI_COMM_WORLD; - MPI_Info dummy_info = MPI_INFO_NULL; + const char *fcn_name = "construct_test_file()"; + char filename[512]; + hbool_t show_progress = FALSE; + hid_t file_id = -1; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; + int cp = 0; + int min_dset = 0; + int max_dset = 0; + MPI_Comm dummy_comm = MPI_COMM_WORLD; + MPI_Info dummy_info = MPI_INFO_NULL; pass = TRUE; - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* setup the file name */ - if ( pass ) { + if (pass) { HDassert(FILENAMES[test_file_index]); - if ( h5_fixname(FILENAMES[test_file_index], H5P_DEFAULT, - filename, sizeof(filename)) - == NULL ) { + if (h5_fixname(FILENAMES[test_file_index], H5P_DEFAULT, filename, sizeof(filename)) == NULL) { - pass = FALSE; + pass = FALSE; failure_mssg = "h5_fixname() failed.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 1) Create a HDF5 file with the cache image FAPL entry. * * Verify that the cache is informed of the cache image FAPL entry. @@ -203,13 +175,13 @@ construct_test_file(int test_file_index) * Set flags forcing full function of the cache image feature. */ - if ( pass ) { + if (pass) { open_hdf5_file(/* create_file */ TRUE, /* mdci_sbem_expected */ FALSE, /* read_only */ FALSE, /* set_mdci_fapl */ TRUE, - /* config_fsm */ TRUE, + /* config_fsm */ TRUE, /* enable_page_buffer */ FALSE, /* hdf_file_name */ filename, /* cache_image_flags */ H5C_CI__ALL_FLAGS, @@ -224,50 +196,45 @@ construct_test_file(int test_file_index) /* md_write_strat */ 0); } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 2) Create a data set in the file. */ - if ( pass ) { + if (pass) { create_data_sets(file_id, min_dset++, max_dset++); } #if H5C_COLLECT_CACHE_STATS - if ( pass ) { + if (pass) { - if ( cache_ptr->images_loaded != 0 ) { + if (cache_ptr->images_loaded != 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "metadata cache image block loaded(1)."; } } #endif /* H5C_COLLECT_CACHE_STATS */ - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 3) Close the file. */ - if ( pass ) { + if (pass) { - if ( H5Fclose(file_id) < 0 ) { + if (H5Fclose(file_id) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Fclose() failed.\n"; - } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - - while ( ( pass ) && ( max_dset < MAX_NUM_DSETS ) ) - { + while ((pass) && (max_dset < MAX_NUM_DSETS)) { /* 4) Open the file. * @@ -275,13 +242,13 @@ construct_test_file(int test_file_index) * metadata cache image. */ - if ( pass ) { + if (pass) { open_hdf5_file(/* create_file */ FALSE, /* mdci_sbem_expected */ TRUE, /* read_only */ FALSE, /* set_mdci_fapl */ TRUE, - /* config_fsm */ FALSE, + /* config_fsm */ FALSE, /* enable_page_buffer */ FALSE, /* hdf_file_name */ filename, /* cache_image_flags */ H5C_CI__ALL_FLAGS, @@ -296,66 +263,59 @@ construct_test_file(int test_file_index) /* md_write_strat */ 0); } - if ( show_progress ) - HDfprintf(stdout, "%s:L1 cp = %d, max_dset = %d, pass = %d.\n", - fcn_name, cp, max_dset, pass); - + if (show_progress) + HDfprintf(stdout, "%s:L1 cp = %d, max_dset = %d, pass = %d.\n", fcn_name, cp, max_dset, pass); /* 5) Create a data set in the file. */ - if ( pass ) { + if (pass) { create_data_sets(file_id, min_dset++, max_dset++); } #if H5C_COLLECT_CACHE_STATS - if ( pass ) { + if (pass) { - if ( cache_ptr->images_loaded == 0 ) { + if (cache_ptr->images_loaded == 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "metadata cache image block not loaded(1)."; } } #endif /* H5C_COLLECT_CACHE_STATS */ - if ( show_progress ) - HDfprintf(stdout, "%s:L2 cp = %d, max_dset = %d, pass = %d.\n", - fcn_name, cp + 1, max_dset, pass); - + if (show_progress) + HDfprintf(stdout, "%s:L2 cp = %d, max_dset = %d, pass = %d.\n", fcn_name, cp + 1, max_dset, pass); /* 6) Close the file. */ - if ( pass ) { + if (pass) { - if ( H5Fclose(file_id) < 0 ) { + if (H5Fclose(file_id) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Fclose() failed.\n"; - } } - if ( show_progress ) - HDfprintf(stdout, "%s:L3 cp = %d, max_dset = %d, pass = %d.\n", - fcn_name, cp + 2, max_dset, pass); + if (show_progress) + HDfprintf(stdout, "%s:L3 cp = %d, max_dset = %d, pass = %d.\n", fcn_name, cp + 2, max_dset, pass); } /* end while */ cp += 3; - /* 7) Open the file R/O. * * Verify that the file contains a metadata cache image * superblock extension message. */ - if ( pass ) { + if (pass) { open_hdf5_file(/* create_file */ FALSE, /* mdci_sbem_expected */ TRUE, /* read_only */ TRUE, /* set_mdci_fapl */ FALSE, - /* config_fsm */ FALSE, + /* config_fsm */ FALSE, /* enable_page_buffer */ FALSE, /* hdf_file_name */ filename, /* cache_image_flags */ H5C_CI__ALL_FLAGS, @@ -370,41 +330,40 @@ construct_test_file(int test_file_index) /* md_write_strat */ 0); } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 8) Open and close all data sets. * * Verify that the cache image has been loaded. */ - if ( pass ) { + if (pass) { - verify_data_sets(file_id, 0, max_dset - 1); + verify_data_sets(file_id, 0, max_dset - 1); } #if H5C_COLLECT_CACHE_STATS - if ( pass ) { + if (pass) { - if ( cache_ptr->images_loaded == 0 ) { + if (cache_ptr->images_loaded == 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "metadata cache image block not loaded(2)."; } } #endif /* H5C_COLLECT_CACHE_STATS */ - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* 9) Close the file. */ - if ( pass ) { + if (pass) { - if ( H5Fclose(file_id) < 0 ) { + if (H5Fclose(file_id) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Fclose() failed.\n"; } } @@ -413,7 +372,6 @@ construct_test_file(int test_file_index) } /* construct_test_file() */ - /*------------------------------------------------------------------------- * Function: create_data_sets() * @@ -446,26 +404,27 @@ construct_test_file(int test_file_index) static void create_data_sets(hid_t file_id, int min_dset, int max_dset) { - const char * fcn_name = "create_data_sets()"; - char dset_name[64]; - hbool_t show_progress = FALSE; - hbool_t valid_chunk; - hbool_t verbose = FALSE; - int cp = 0; - int i, j, k, l, m; - int data_chunk[CHUNK_SIZE][CHUNK_SIZE]; - herr_t status; - hid_t dataspace_id = -1; - hid_t filespace_ids[MAX_NUM_DSETS]; - hid_t memspace_id = -1; - hid_t dataset_ids[MAX_NUM_DSETS]; - hid_t properties = -1; - hsize_t dims[2]; - hsize_t a_size[2]; - hsize_t offset[2]; - hsize_t chunk_size[2]; - - if ( show_progress ) HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); + const char *fcn_name = "create_data_sets()"; + char dset_name[64]; + hbool_t show_progress = FALSE; + hbool_t valid_chunk; + hbool_t verbose = FALSE; + int cp = 0; + int i, j, k, l, m; + int data_chunk[CHUNK_SIZE][CHUNK_SIZE]; + herr_t status; + hid_t dataspace_id = -1; + hid_t filespace_ids[MAX_NUM_DSETS]; + hid_t memspace_id = -1; + hid_t dataset_ids[MAX_NUM_DSETS]; + hid_t properties = -1; + hsize_t dims[2]; + hsize_t a_size[2]; + hsize_t offset[2]; + hsize_t chunk_size[2]; + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); HDassert(0 <= min_dset); HDassert(min_dset <= max_dset); @@ -473,72 +432,70 @@ create_data_sets(hid_t file_id, int min_dset, int max_dset) /* create the datasets */ - if ( pass ) { + if (pass) { i = min_dset; - while ( ( pass ) && ( i <= max_dset ) ) - { + while ((pass) && (i <= max_dset)) { /* create a dataspace for the chunked dataset */ - dims[0] = DSET_SIZE; - dims[1] = DSET_SIZE; + dims[0] = DSET_SIZE; + dims[1] = DSET_SIZE; dataspace_id = H5Screate_simple(2, dims, NULL); - if ( dataspace_id < 0 ) { + if (dataspace_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Screate_simple() failed."; } /* set the dataset creation plist to specify that the raw data is - * to be partioned into 10X10 element chunks. + * to be partitioned into 10X10 element chunks. */ - if ( pass ) { + if (pass) { chunk_size[0] = CHUNK_SIZE; chunk_size[1] = CHUNK_SIZE; - properties = H5Pcreate(H5P_DATASET_CREATE); + properties = H5Pcreate(H5P_DATASET_CREATE); - if ( properties < 0 ) { + if (properties < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pcreate() failed."; } } - if ( pass ) { + if (pass) { - if ( H5Pset_chunk(properties, 2, chunk_size) < 0 ) { + if (H5Pset_chunk(properties, 2, chunk_size) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pset_chunk() failed."; } } /* create the dataset */ - if ( pass ) { + if (pass) { - HDsprintf(dset_name, "/dset%03d", i); - dataset_ids[i] = H5Dcreate2(file_id, dset_name, H5T_STD_I32BE, - dataspace_id, H5P_DEFAULT, + HDsnprintf(dset_name, sizeof(dset_name), "/dset%03d", i); + dataset_ids[i] = H5Dcreate2(file_id, dset_name, H5T_STD_I32BE, dataspace_id, H5P_DEFAULT, properties, H5P_DEFAULT); - if ( dataset_ids[i] < 0 ) { + if (dataset_ids[i] < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dcreate() failed."; } } /* get the file space ID */ - if ( pass ) { + if (pass) { filespace_ids[i] = H5Dget_space(dataset_ids[i]); - if ( filespace_ids[i] < 0 ) { + if (filespace_ids[i] < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dget_space() failed."; } } @@ -547,84 +504,79 @@ create_data_sets(hid_t file_id, int min_dset, int max_dset) } } - if ( show_progress ) HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); /* create the mem space to be used to read and write chunks */ - if ( pass ) { + if (pass) { - dims[0] = CHUNK_SIZE; - dims[1] = CHUNK_SIZE; + dims[0] = CHUNK_SIZE; + dims[1] = CHUNK_SIZE; memspace_id = H5Screate_simple(2, dims, NULL); - if ( memspace_id < 0 ) { + if (memspace_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Screate_simple() failed."; } } - if ( show_progress ) HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); /* select in memory hyperslab */ - if ( pass ) { + if (pass) { - offset[0] = 0; /*offset of hyperslab in memory*/ + offset[0] = 0; /*offset of hyperslab in memory*/ offset[1] = 0; - a_size[0] = CHUNK_SIZE; /*size of hyperslab*/ + a_size[0] = CHUNK_SIZE; /*size of hyperslab*/ a_size[1] = CHUNK_SIZE; - status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, - a_size, NULL); + status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sselect_hyperslab() failed."; } } - if ( show_progress ) HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); /* initialize all datasets on a round robin basis */ i = 0; - while ( ( pass ) && ( i < DSET_SIZE ) ) - { + while ((pass) && (i < DSET_SIZE)) { j = 0; - while ( ( pass ) && ( j < DSET_SIZE ) ) - { + while ((pass) && (j < DSET_SIZE)) { m = min_dset; - while ( ( pass ) && ( m <= max_dset ) ) - { + while ((pass) && (m <= max_dset)) { /* initialize the slab */ - for ( k = 0; k < CHUNK_SIZE; k++ ) - { - for ( l = 0; l < CHUNK_SIZE; l++ ) - { - data_chunk[k][l] = (DSET_SIZE * DSET_SIZE * m) + - (DSET_SIZE * (i + k)) + j + l; + for (k = 0; k < CHUNK_SIZE; k++) { + for (l = 0; l < CHUNK_SIZE; l++) { + data_chunk[k][l] = (DSET_SIZE * DSET_SIZE * m) + (DSET_SIZE * (i + k)) + j + l; } } /* select on disk hyperslab */ offset[0] = (hsize_t)i; /*offset of hyperslab in file*/ offset[1] = (hsize_t)j; - a_size[0] = CHUNK_SIZE; /*size of hyperslab*/ + a_size[0] = CHUNK_SIZE; /*size of hyperslab*/ a_size[1] = CHUNK_SIZE; - status = H5Sselect_hyperslab(filespace_ids[m], H5S_SELECT_SET, - offset, NULL, a_size, NULL); + status = H5Sselect_hyperslab(filespace_ids[m], H5S_SELECT_SET, offset, NULL, a_size, NULL); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "disk H5Sselect_hyperslab() failed."; } /* write the chunk to file */ - status = H5Dwrite(dataset_ids[m], H5T_NATIVE_INT, memspace_id, - filespace_ids[m], H5P_DEFAULT, data_chunk); + status = H5Dwrite(dataset_ids[m], H5T_NATIVE_INT, memspace_id, filespace_ids[m], H5P_DEFAULT, + data_chunk); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dwrite() failed."; } m++; @@ -635,88 +587,75 @@ create_data_sets(hid_t file_id, int min_dset, int max_dset) i += CHUNK_SIZE; } - if ( show_progress ) HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); /* read data from data sets and validate it */ i = 0; - while ( ( pass ) && ( i < DSET_SIZE ) ) - { + while ((pass) && (i < DSET_SIZE)) { j = 0; - while ( ( pass ) && ( j < DSET_SIZE ) ) - { + while ((pass) && (j < DSET_SIZE)) { m = min_dset; - while ( ( pass ) && ( m <= max_dset ) ) - { + while ((pass) && (m <= max_dset)) { /* select on disk hyperslab */ offset[0] = (hsize_t)i; /* offset of hyperslab in file */ offset[1] = (hsize_t)j; a_size[0] = CHUNK_SIZE; /* size of hyperslab */ a_size[1] = CHUNK_SIZE; - status = H5Sselect_hyperslab(filespace_ids[m], H5S_SELECT_SET, - offset, NULL, a_size, NULL); + status = H5Sselect_hyperslab(filespace_ids[m], H5S_SELECT_SET, offset, NULL, a_size, NULL); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; - failure_mssg = "disk hyperslab create failed."; + pass = FALSE; + failure_mssg = "disk hyperslab create failed."; } /* read the chunk from file */ - if ( pass ) { + if (pass) { - status = H5Dread(dataset_ids[m], H5T_NATIVE_INT, - memspace_id, filespace_ids[m], + status = H5Dread(dataset_ids[m], H5T_NATIVE_INT, memspace_id, filespace_ids[m], H5P_DEFAULT, data_chunk); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; - failure_mssg = "disk hyperslab create failed."; + pass = FALSE; + failure_mssg = "disk hyperslab create failed."; } } /* validate the slab */ - if ( pass ) { + if (pass) { valid_chunk = TRUE; - for ( k = 0; k < CHUNK_SIZE; k++ ) - { - for ( l = 0; l < CHUNK_SIZE; l++ ) - { - if ( data_chunk[k][l] - != - ((DSET_SIZE * DSET_SIZE * m) + - (DSET_SIZE * (i + k)) + j + l) ) { + for (k = 0; k < CHUNK_SIZE; k++) { + for (l = 0; l < CHUNK_SIZE; l++) { + if (data_chunk[k][l] != + ((DSET_SIZE * DSET_SIZE * m) + (DSET_SIZE * (i + k)) + j + l)) { valid_chunk = FALSE; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, - "data_chunk[%0d][%0d] = %0d, expect %0d.\n", - k, l, data_chunk[k][l], - ((DSET_SIZE * DSET_SIZE * m) + - (DSET_SIZE * (i + k)) + j + l)); - HDfprintf(stdout, - "m = %d, i = %d, j = %d, k = %d, l = %d\n", - m, i, j, k, l); - } + HDfprintf(stdout, "data_chunk[%0d][%0d] = %0d, expect %0d.\n", k, l, + data_chunk[k][l], + ((DSET_SIZE * DSET_SIZE * m) + (DSET_SIZE * (i + k)) + j + l)); + HDfprintf(stdout, "m = %d, i = %d, j = %d, k = %d, l = %d\n", m, i, j, k, + l); + } } } } - if ( ! valid_chunk ) { + if (!valid_chunk) { - pass = FALSE; + pass = FALSE; failure_mssg = "slab validation failed."; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, - "Chunk (%0d, %0d) in /dset%03d is invalid.\n", - i, j, m); - } + HDfprintf(stdout, "Chunk (%0d, %0d) in /dset%03d is invalid.\n", i, j, m); + } } } m++; @@ -726,39 +665,37 @@ create_data_sets(hid_t file_id, int min_dset, int max_dset) i += CHUNK_SIZE; } - if ( show_progress ) HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); /* close the file spaces */ i = min_dset; - while ( ( pass ) && ( i <= max_dset ) ) - { - if ( H5Sclose(filespace_ids[i]) < 0 ) { + while ((pass) && (i <= max_dset)) { + if (H5Sclose(filespace_ids[i]) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sclose() failed."; } i++; } - /* close the datasets */ i = min_dset; - while ( ( pass ) && ( i <= max_dset ) ) - { - if ( H5Dclose(dataset_ids[i]) < 0 ) { + while ((pass) && (i <= max_dset)) { + if (H5Dclose(dataset_ids[i]) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dclose() failed."; } i++; } /* close the mem space */ - if ( pass ) { + if (pass) { - if ( H5Sclose(memspace_id) < 0 ) { + if (H5Sclose(memspace_id) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sclose(memspace_id) failed."; } } @@ -767,7 +704,6 @@ create_data_sets(hid_t file_id, int min_dset, int max_dset) } /* create_data_sets() */ - /*------------------------------------------------------------------------- * Function: delete_data_sets() * @@ -830,7 +766,7 @@ delete_data_sets(hid_t file_id, int min_dset, int max_dset) while ( ( pass ) && ( i <= max_dset ) ) { - HDsprintf(dset_name, "/dset%03d", i); + HDsnprintf(dset_name, sizeof(dset_name), "/dset%03d", i); if ( H5Ldelete(file_id, dset_name, H5P_DEFAULT) < 0) { @@ -849,7 +785,6 @@ delete_data_sets(hid_t file_id, int min_dset, int max_dset) } /* delete_data_sets() */ #endif - /*------------------------------------------------------------------------- * Function: open_hdf5_file() * @@ -860,7 +795,7 @@ delete_data_sets(hid_t file_id, int min_dset, int max_dset) * Set pass to FALSE and issue a suitable failure * message if either the file contains a metadata cache image * superblock extension and mdci_sbem_expected is TRUE, or - * vise versa. + * vice versa. * * If mdci_sbem_expected is TRUE, also verify that the metadata * cache has been advised of this. @@ -872,7 +807,7 @@ delete_data_sets(hid_t file_id, int min_dset, int max_dset) * FAPL entry when opening the file, and verify that the * metadata cache is notified. * - * If config_fsm is TRUE, setup the persistant free space + * If config_fsm is TRUE, setup the persistent free space * manager. Note that this flag may only be set if * create_file is also TRUE. * @@ -901,277 +836,248 @@ delete_data_sets(hid_t file_id, int min_dset, int max_dset) */ static void -open_hdf5_file(const hbool_t create_file, - const hbool_t mdci_sbem_expected, - const hbool_t read_only, - const hbool_t set_mdci_fapl, - const hbool_t config_fsm, - const hbool_t enable_page_buffer, - const char * hdf_file_name, - const unsigned cache_image_flags, - hid_t * file_id_ptr, - H5F_t ** file_ptr_ptr, - H5C_t ** cache_ptr_ptr, - MPI_Comm comm, - MPI_Info info, - int l_facc_type, - const hbool_t all_coll_metadata_ops, - const hbool_t coll_metadata_write, +open_hdf5_file(const hbool_t create_file, const hbool_t mdci_sbem_expected, const hbool_t read_only, + const hbool_t set_mdci_fapl, const hbool_t config_fsm, const hbool_t enable_page_buffer, + const char *hdf_file_name, const unsigned cache_image_flags, hid_t *file_id_ptr, + H5F_t **file_ptr_ptr, H5C_t **cache_ptr_ptr, MPI_Comm comm, MPI_Info info, int l_facc_type, + const hbool_t all_coll_metadata_ops, const hbool_t coll_metadata_write, const int md_write_strat) { - const char * fcn_name = "open_hdf5_file()"; - hbool_t show_progress = FALSE; - hbool_t verbose = FALSE; - int cp = 0; - hid_t fapl_id = -1; - hid_t fcpl_id = -1; - hid_t file_id = -1; - herr_t result; - H5F_t * file_ptr = NULL; - H5C_t * cache_ptr = NULL; - H5C_cache_image_ctl_t image_ctl; - H5AC_cache_image_config_t cache_image_config = { - H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION, - TRUE, - FALSE, - H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE}; + const char * fcn_name = "open_hdf5_file()"; + hbool_t show_progress = FALSE; + hbool_t verbose = FALSE; + int cp = 0; + hid_t fapl_id = -1; + hid_t fcpl_id = -1; + hid_t file_id = -1; + herr_t result; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; + H5C_cache_image_ctl_t image_ctl; + H5AC_cache_image_config_t cache_image_config = {H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION, TRUE, FALSE, + H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE}; HDassert(!create_file || config_fsm); - if ( pass ) - { - /* opening the file both read only and with a cache image + if (pass) { + /* opening the file both read only and with a cache image * requested is a contradiction. We resolve it by ignoring * the cache image request silently. */ - if ( ( create_file && mdci_sbem_expected ) || - ( create_file && read_only ) || - ( config_fsm && !create_file ) || - ( create_file && enable_page_buffer && ! config_fsm ) || - ( hdf_file_name == NULL ) || - ( ( set_mdci_fapl ) && ( cache_image_flags == 0 ) ) || - ( ( set_mdci_fapl ) && - ( (cache_image_flags & ~H5C_CI__ALL_FLAGS) != 0 ) ) || - ( file_id_ptr == NULL ) || - ( file_ptr_ptr == NULL ) || - ( cache_ptr_ptr == NULL ) || - ( l_facc_type != (l_facc_type & (FACC_MPIO)) ) ) { - - failure_mssg = - "Bad param(s) on entry to open_hdf5_file().\n"; + if ((create_file && mdci_sbem_expected) || (create_file && read_only) || + (config_fsm && !create_file) || (create_file && enable_page_buffer && !config_fsm) || + (hdf_file_name == NULL) || ((set_mdci_fapl) && (cache_image_flags == 0)) || + ((set_mdci_fapl) && ((cache_image_flags & ~H5C_CI__ALL_FLAGS) != 0)) || (file_id_ptr == NULL) || + (file_ptr_ptr == NULL) || (cache_ptr_ptr == NULL) || + (l_facc_type != (l_facc_type & (FACC_MPIO)))) { + + failure_mssg = "Bad param(s) on entry to open_hdf5_file().\n"; pass = FALSE; - } else if ( verbose ) { + } + else if (verbose) { - HDfprintf(stdout, "%s: HDF file name = \"%s\".\n", - fcn_name, hdf_file_name); + HDfprintf(stdout, "%s: HDF file name = \"%s\".\n", fcn_name, hdf_file_name); } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* create a file access propertly list. */ - if ( pass ) { + /* create a file access property list. */ + if (pass) { fapl_id = H5Pcreate(H5P_FILE_ACCESS); - if ( fapl_id < 0 ) { + if (fapl_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pcreate() failed.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* call H5Pset_libver_bounds() on the fapl_id */ - if ( pass ) { + if (pass) { - if ( H5Pset_libver_bounds(fapl_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) - < 0 ) { + if (H5Pset_libver_bounds(fapl_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pset_libver_bounds() failed.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* get metadata cache image config -- verify that it is the default */ - if ( pass ) { + if (pass) { result = H5Pget_mdc_image_config(fapl_id, &cache_image_config); - if ( result < 0 ) { + if (result < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pget_mdc_image_config() failed.\n"; } - if ( ( cache_image_config.version != - H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION ) || - ( cache_image_config.generate_image != FALSE ) || - ( cache_image_config.save_resize_status != FALSE ) || - ( cache_image_config.entry_ageout != - H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE ) ) { + if ((cache_image_config.version != H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION) || + (cache_image_config.generate_image != FALSE) || + (cache_image_config.save_resize_status != FALSE) || + (cache_image_config.entry_ageout != H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE)) { - pass = FALSE; + pass = FALSE; failure_mssg = "Unexpected default cache image config.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* set metadata cache image fapl entry if indicated */ - if ( ( pass ) && ( set_mdci_fapl ) ) { + if ((pass) && (set_mdci_fapl)) { /* set cache image config fields to taste */ - cache_image_config.generate_image = TRUE; + cache_image_config.generate_image = TRUE; cache_image_config.save_resize_status = FALSE; - cache_image_config.entry_ageout = H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE; + cache_image_config.entry_ageout = H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE; result = H5Pset_mdc_image_config(fapl_id, &cache_image_config); - if ( result < 0 ) { + if (result < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pset_mdc_image_config() failed.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* setup the persistant free space manager if indicated */ - if ( ( pass ) && ( config_fsm ) ) { + /* setup the persistent free space manager if indicated */ + if ((pass) && (config_fsm)) { - fcpl_id = H5Pcreate(H5P_FILE_CREATE); + fcpl_id = H5Pcreate(H5P_FILE_CREATE); - if ( fcpl_id <= 0 ) { + if (fcpl_id <= 0) { - pass = FALSE; - failure_mssg = "H5Pcreate(H5P_FILE_CREATE) failed."; - } + pass = FALSE; + failure_mssg = "H5Pcreate(H5P_FILE_CREATE) failed."; + } } - if ( ( pass ) && ( config_fsm ) ) { + if ((pass) && (config_fsm)) { - if ( H5Pset_file_space_strategy(fcpl_id, H5F_FSPACE_STRATEGY_PAGE, - TRUE, (hsize_t)1) == FAIL ) { - pass = FALSE; + if (H5Pset_file_space_strategy(fcpl_id, H5F_FSPACE_STRATEGY_PAGE, TRUE, (hsize_t)1) == FAIL) { + pass = FALSE; failure_mssg = "H5Pset_file_space_strategy() failed.\n"; } } - if ( ( pass ) && ( config_fsm ) ) { + if ((pass) && (config_fsm)) { - if ( H5Pset_file_space_page_size(fcpl_id, PAGE_SIZE) == FAIL ) { + if (H5Pset_file_space_page_size(fcpl_id, PAGE_SIZE) == FAIL) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pset_file_space_page_size() failed.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* setup the page buffer if indicated */ - if ( ( pass ) && ( enable_page_buffer ) ) { + if ((pass) && (enable_page_buffer)) { - if ( H5Pset_page_buffer_size(fapl_id, PB_SIZE, 0, 0) < 0 ) { + if (H5Pset_page_buffer_size(fapl_id, PB_SIZE, 0, 0) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pset_page_buffer_size() failed.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - - if ( ( pass ) && ( l_facc_type == FACC_MPIO ) ) { + if ((pass) && (l_facc_type == FACC_MPIO)) { /* set Parallel access with communicator */ - if ( H5Pset_fapl_mpio(fapl_id, comm, info) < 0 ) { + if (H5Pset_fapl_mpio(fapl_id, comm, info) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pset_fapl_mpio() failed.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - if ( ( pass ) && ( l_facc_type == FACC_MPIO ) ) { + if ((pass) && (l_facc_type == FACC_MPIO)) { if (H5Pset_all_coll_metadata_ops(fapl_id, all_coll_metadata_ops) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pset_all_coll_metadata_ops() failed.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - if ( ( pass ) && ( l_facc_type == FACC_MPIO ) ) { + if ((pass) && (l_facc_type == FACC_MPIO)) { - if ( H5Pset_coll_metadata_write(fapl_id, coll_metadata_write) < 0 ) { + if (H5Pset_coll_metadata_write(fapl_id, coll_metadata_write) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pset_coll_metadata_write() failed.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - if ( ( pass ) && ( l_facc_type == FACC_MPIO ) ) { + if ((pass) && (l_facc_type == FACC_MPIO)) { /* set the desired parallel metadata write strategy */ H5AC_cache_config_t mdc_config; mdc_config.version = H5C__CURR_AUTO_SIZE_CTL_VER; - if ( H5Pget_mdc_config(fapl_id, &mdc_config) < 0 ) { + if (H5Pget_mdc_config(fapl_id, &mdc_config) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pget_mdc_config() failed.\n"; } mdc_config.metadata_write_strategy = md_write_strat; - if ( H5Pset_mdc_config(fapl_id, &mdc_config) < 0 ) { + if (H5Pset_mdc_config(fapl_id, &mdc_config) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pset_mdc_config() failed.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* open the file */ - if ( pass ) { + if (pass) { - if ( create_file ) { + if (create_file) { - if ( fcpl_id != -1 ) - - file_id = H5Fcreate(hdf_file_name, H5F_ACC_TRUNC, - fcpl_id, fapl_id); - else + if (fcpl_id != -1) - file_id = H5Fcreate(hdf_file_name, H5F_ACC_TRUNC, - H5P_DEFAULT, fapl_id); + file_id = H5Fcreate(hdf_file_name, H5F_ACC_TRUNC, fcpl_id, fapl_id); + else - } else { + file_id = H5Fcreate(hdf_file_name, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); + } + else { - if ( read_only ) + if (read_only) file_id = H5Fopen(hdf_file_name, H5F_ACC_RDONLY, fapl_id); @@ -1180,74 +1086,71 @@ open_hdf5_file(const hbool_t create_file, file_id = H5Fopen(hdf_file_name, H5F_ACC_RDWR, fapl_id); } - if ( file_id < 0 ) { + if (file_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Fcreate() or H5Fopen() failed.\n"; - - } else { + } + else { file_ptr = (struct H5F_t *)H5VL_object_verify(file_id, H5I_FILE); - if ( file_ptr == NULL ) { + if (file_ptr == NULL) { - pass = FALSE; + pass = FALSE; failure_mssg = "Can't get file_ptr."; - if ( verbose ) { + if (verbose) { HDfprintf(stdout, "%s: Can't get file_ptr.\n", fcn_name); } } } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* get a pointer to the files internal data structure and then * to the cache structure */ - if ( pass ) { + if (pass) { - if ( file_ptr->shared->cache == NULL ) { + if (file_ptr->shared->cache == NULL) { - pass = FALSE; + pass = FALSE; failure_mssg = "can't get cache pointer(1).\n"; - - } else { + } + else { cache_ptr = file_ptr->shared->cache; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* verify expected page buffer status. At present, page buffering * must be disabled in parallel -- hopefully this will change in the * future. */ - if ( pass ) { + if (pass) { - if ( ( file_ptr->shared->page_buf ) && - ( ( ! enable_page_buffer ) || ( l_facc_type == FACC_MPIO ) ) ) { - - pass = FALSE; - failure_mssg = "page buffer unexepectedly enabled."; + if ((file_ptr->shared->page_buf) && ((!enable_page_buffer) || (l_facc_type == FACC_MPIO))) { - } else if ( ( file_ptr->shared->page_buf != NULL ) && - ( ( enable_page_buffer ) || ( l_facc_type != FACC_MPIO ) ) ) { + pass = FALSE; + failure_mssg = "page buffer unexpectedly enabled."; + } + else if ((file_ptr->shared->page_buf != NULL) && + ((enable_page_buffer) || (l_facc_type != FACC_MPIO))) { - pass = FALSE; - failure_mssg = "page buffer unexepectedly disabled."; + pass = FALSE; + failure_mssg = "page buffer unexpectedly disabled."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* verify expected metadata cache status */ /* get the cache image control structure from the cache, and verify @@ -1255,145 +1158,133 @@ open_hdf5_file(const hbool_t create_file, * * Then set the flags in this structure to the specified value. */ - if ( pass ) { + if (pass) { - if ( H5C_get_cache_image_config(cache_ptr, &image_ctl) < 0 ) { + if (H5C_get_cache_image_config(cache_ptr, &image_ctl) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "error returned by H5C_get_cache_image_config()."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + if (pass) { - if ( pass ) { - - if ( set_mdci_fapl ) { + if (set_mdci_fapl) { - if ( read_only ) { + if (read_only) { - if ( ( image_ctl.version != - H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION ) || - ( image_ctl.generate_image != FALSE ) || - ( image_ctl.save_resize_status != FALSE ) || - ( image_ctl.entry_ageout != - H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE ) || - ( image_ctl.flags != H5C_CI__ALL_FLAGS ) ) { + if ((image_ctl.version != H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION) || + (image_ctl.generate_image != FALSE) || (image_ctl.save_resize_status != FALSE) || + (image_ctl.entry_ageout != H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE) || + (image_ctl.flags != H5C_CI__ALL_FLAGS)) { - pass = FALSE; + pass = FALSE; failure_mssg = "Unexpected image_ctl values(1).\n"; } - } else { + } + else { - if ( ( image_ctl.version != - H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION ) || - ( image_ctl.generate_image != TRUE ) || - ( image_ctl.save_resize_status != FALSE ) || - ( image_ctl.entry_ageout != - H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE ) || - ( image_ctl.flags != H5C_CI__ALL_FLAGS ) ) { + if ((image_ctl.version != H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION) || + (image_ctl.generate_image != TRUE) || (image_ctl.save_resize_status != FALSE) || + (image_ctl.entry_ageout != H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE) || + (image_ctl.flags != H5C_CI__ALL_FLAGS)) { - pass = FALSE; + pass = FALSE; failure_mssg = "Unexpected image_ctl values(2).\n"; } } - } else { + } + else { - if ( ( image_ctl.version != - H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION ) || - ( image_ctl.generate_image != FALSE ) || - ( image_ctl.save_resize_status != FALSE ) || - ( image_ctl.entry_ageout != - H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE ) || - ( image_ctl.flags != H5C_CI__ALL_FLAGS ) ) { + if ((image_ctl.version != H5AC__CURR_CACHE_IMAGE_CONFIG_VERSION) || + (image_ctl.generate_image != FALSE) || (image_ctl.save_resize_status != FALSE) || + (image_ctl.entry_ageout != H5AC__CACHE_IMAGE__ENTRY_AGEOUT__NONE) || + (image_ctl.flags != H5C_CI__ALL_FLAGS)) { - pass = FALSE; + pass = FALSE; failure_mssg = "Unexpected image_ctl values(3).\n"; } } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - if ( ( pass ) && ( set_mdci_fapl ) ) { + if ((pass) && (set_mdci_fapl)) { image_ctl.flags = cache_image_flags; - if ( H5C_set_cache_image_config(file_ptr, cache_ptr, &image_ctl) < 0 ) { + if (H5C_set_cache_image_config(file_ptr, cache_ptr, &image_ctl) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "error returned by H5C_set_cache_image_config()."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - if ( pass ) { + if (pass) { - if ( cache_ptr->close_warning_received == TRUE ) { + if (cache_ptr->close_warning_received == TRUE) { - pass = FALSE; + pass = FALSE; failure_mssg = "Unexpected value of close_warning_received.\n"; } - if ( mdci_sbem_expected ) { + if (mdci_sbem_expected) { - if ( read_only ) { + if (read_only) { - if ( ( cache_ptr->load_image != TRUE ) || - ( cache_ptr->delete_image != FALSE ) ) { + if ((cache_ptr->load_image != TRUE) || (cache_ptr->delete_image != FALSE)) { - pass = FALSE; + pass = FALSE; failure_mssg = "mdci sb extension message not present?\n"; } - } else { + } + else { - if ( ( cache_ptr->load_image != TRUE ) || - ( cache_ptr->delete_image != TRUE ) ) { + if ((cache_ptr->load_image != TRUE) || (cache_ptr->delete_image != TRUE)) { - pass = FALSE; + pass = FALSE; failure_mssg = "mdci sb extension message not present?\n"; } + } } - } else { + else { - if ( ( cache_ptr->load_image == TRUE ) || - ( cache_ptr->delete_image == TRUE ) ) { + if ((cache_ptr->load_image == TRUE) || (cache_ptr->delete_image == TRUE)) { - pass = FALSE; + pass = FALSE; failure_mssg = "mdci sb extension message present?\n"; - } + } } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - if ( pass ) { + if (pass) { - *file_id_ptr = file_id; - *file_ptr_ptr = file_ptr; + *file_id_ptr = file_id; + *file_ptr_ptr = file_ptr; *cache_ptr_ptr = cache_ptr; } - if ( show_progress ) { - HDfprintf(stdout, "%s: cp = %d, pass = %d -- exiting.\n", - fcn_name, cp++, pass); + if (show_progress) { + HDfprintf(stdout, "%s: cp = %d, pass = %d -- exiting.\n", fcn_name, cp++, pass); - if ( ! pass ) - HDfprintf(stdout, "%s: failure_mssg = %s\n", - fcn_name, failure_mssg); + if (!pass) + HDfprintf(stdout, "%s: failure_mssg = %s\n", fcn_name, failure_mssg); } return; } /* open_hdf5_file() */ - /*------------------------------------------------------------------------- * Function: par_create_dataset() * @@ -1418,252 +1309,236 @@ open_hdf5_file(const hbool_t create_file, */ static void -par_create_dataset(int dset_num, - hid_t file_id, - int mpi_rank, - int mpi_size) +par_create_dataset(int dset_num, hid_t file_id, int mpi_rank, int mpi_size) { - const char * fcn_name = "par_create_dataset()"; - char dset_name[256]; - hbool_t show_progress = FALSE; - hbool_t valid_chunk; - hbool_t verbose = FALSE; - int cp = 0; - int i, j, k, l; - int data_chunk[1][CHUNK_SIZE][CHUNK_SIZE]; - hsize_t dims[3]; - hsize_t a_size[3]; - hsize_t offset[3]; - hsize_t chunk_size[3]; - hid_t status; - hid_t dataspace_id = -1; - hid_t memspace_id = -1; - hid_t dset_id = -1; - hid_t filespace_id = -1; - hid_t dcpl_id = -1; - hid_t dxpl_id = -1; + const char *fcn_name = "par_create_dataset()"; + char dset_name[256]; + hbool_t show_progress = FALSE; + hbool_t valid_chunk; + hbool_t verbose = FALSE; + int cp = 0; + int i, j, k, l; + int data_chunk[1][CHUNK_SIZE][CHUNK_SIZE]; + hsize_t dims[3]; + hsize_t a_size[3]; + hsize_t offset[3]; + hsize_t chunk_size[3]; + hid_t status; + hid_t dataspace_id = -1; + hid_t memspace_id = -1; + hid_t dset_id = -1; + hid_t filespace_id = -1; + hid_t dcpl_id = -1; + hid_t dxpl_id = -1; show_progress = (show_progress && (mpi_rank == 0)); verbose = (verbose && (mpi_rank == 0)); - HDsprintf(dset_name, "/dset%03d", dset_num); + HDsnprintf(dset_name, sizeof(dset_name), "/dset%03d", dset_num); - if ( show_progress ) { + if (show_progress) { HDfprintf(stdout, "%s: dset name = \"%s\".\n", fcn_name, dset_name); HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); } - if ( pass ) { + if (pass) { /* create a dataspace for the chunked dataset */ - dims[0] = (hsize_t)mpi_size; - dims[1] = DSET_SIZE; - dims[2] = DSET_SIZE; + dims[0] = (hsize_t)mpi_size; + dims[1] = DSET_SIZE; + dims[2] = DSET_SIZE; dataspace_id = H5Screate_simple(3, dims, NULL); - if ( dataspace_id < 0 ) { + if (dataspace_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Screate_simple() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* set the dataset creation plist to specify that the raw data is - * to be partioned into 1X10X10 element chunks. + * to be partitioned into 1X10X10 element chunks. */ - if ( pass ) { + if (pass) { dcpl_id = H5Pcreate(H5P_DATASET_CREATE); - if ( dcpl_id < 0 ) { + if (dcpl_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pcreate(H5P_DATASET_CREATE) failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - if ( pass ) { + if (pass) { chunk_size[0] = 1; chunk_size[1] = CHUNK_SIZE; chunk_size[2] = CHUNK_SIZE; - if ( H5Pset_chunk(dcpl_id, 3, chunk_size) < 0 ) { + if (H5Pset_chunk(dcpl_id, 3, chunk_size) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pset_chunk() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* create the dataset */ - if ( pass ) { + if (pass) { - dset_id = H5Dcreate2(file_id, dset_name, H5T_STD_I32BE, - dataspace_id, H5P_DEFAULT, - dcpl_id, H5P_DEFAULT); + dset_id = + H5Dcreate2(file_id, dset_name, H5T_STD_I32BE, dataspace_id, H5P_DEFAULT, dcpl_id, H5P_DEFAULT); - if ( dset_id < 0 ) { + if (dset_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dcreate() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* get the file space ID */ - if ( pass ) { + if (pass) { filespace_id = H5Dget_space(dset_id); - if ( filespace_id < 0 ) { + if (filespace_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dget_space() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* create the mem space to be used to read and write chunks */ - if ( pass ) { + if (pass) { - dims[0] = 1; - dims[1] = CHUNK_SIZE; - dims[2] = CHUNK_SIZE; + dims[0] = 1; + dims[1] = CHUNK_SIZE; + dims[2] = CHUNK_SIZE; memspace_id = H5Screate_simple(3, dims, NULL); - if ( memspace_id < 0 ) { + if (memspace_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Screate_simple() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* select in memory hyperslab */ - if ( pass ) { + if (pass) { - offset[0] = 0; /* offset of hyperslab in memory */ + offset[0] = 0; /* offset of hyperslab in memory */ offset[1] = 0; offset[2] = 0; - a_size[0] = 1; /* size of hyperslab */ + a_size[0] = 1; /* size of hyperslab */ a_size[1] = CHUNK_SIZE; a_size[2] = CHUNK_SIZE; - status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, - a_size, NULL); + status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sselect_hyperslab() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* setup the DXPL for collective I/O */ - if ( pass ) { + if (pass) { dxpl_id = H5Pcreate(H5P_DATASET_XFER); - if ( dxpl_id < 0 ) { + if (dxpl_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - if ( pass ) { + if (pass) { - if ( H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) < 0 ) { + if (H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pset_dxpl_mpio() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* initialize the dataset with collective writes */ i = 0; - while ( ( pass ) && ( i < DSET_SIZE ) ) - { + while ((pass) && (i < DSET_SIZE)) { j = 0; - while ( ( pass ) && ( j < DSET_SIZE ) ) - { + while ((pass) && (j < DSET_SIZE)) { - if ( show_progress ) - HDfprintf(stdout, "%s: cp = %d.0, pass = %d.\n", - fcn_name, cp, pass); + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.0, pass = %d.\n", fcn_name, cp, pass); /* initialize the slab */ - for ( k = 0; k < CHUNK_SIZE; k++ ) - { - for ( l = 0; l < CHUNK_SIZE; l++ ) - { - data_chunk[0][k][l] = (DSET_SIZE * DSET_SIZE * mpi_rank) + - (DSET_SIZE * (i + k)) + j + l + - dset_num; + for (k = 0; k < CHUNK_SIZE; k++) { + for (l = 0; l < CHUNK_SIZE; l++) { + data_chunk[0][k][l] = + (DSET_SIZE * DSET_SIZE * mpi_rank) + (DSET_SIZE * (i + k)) + j + l + dset_num; } } - if ( show_progress ) - HDfprintf(stdout, "%s: cp = %d.1, pass = %d.\n", - fcn_name, cp, pass); + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.1, pass = %d.\n", fcn_name, cp, pass); /* select on disk hyperslab */ offset[0] = (hsize_t)mpi_rank; /* offset of hyperslab in file */ offset[1] = (hsize_t)i; offset[2] = (hsize_t)j; - a_size[0] = (hsize_t)1; /* size of hyperslab */ + a_size[0] = (hsize_t)1; /* size of hyperslab */ a_size[1] = CHUNK_SIZE; a_size[2] = CHUNK_SIZE; - status = H5Sselect_hyperslab(filespace_id, H5S_SELECT_SET, - offset, NULL, a_size, NULL); + status = H5Sselect_hyperslab(filespace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "disk H5Sselect_hyperslab() failed."; } - if ( show_progress ) - HDfprintf(stdout, "%s: cp = %d.2, pass = %d.\n", - fcn_name, cp, pass); + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.2, pass = %d.\n", fcn_name, cp, pass); /* write the chunk to file */ - status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace_id, - filespace_id, dxpl_id, data_chunk); + status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace_id, filespace_id, dxpl_id, data_chunk); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dwrite() failed."; } - if ( show_progress ) - HDfprintf(stdout, "%s: cp = %d.3, pass = %d.\n", - fcn_name, cp, pass); + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.3, pass = %d.\n", fcn_name, cp, pass); j += CHUNK_SIZE; } @@ -1672,16 +1547,14 @@ par_create_dataset(int dset_num, } cp++; - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* read data from data sets and validate it */ i = 0; - while ( ( pass ) && ( i < DSET_SIZE ) ) - { + while ((pass) && (i < DSET_SIZE)) { j = 0; - while ( ( pass ) && ( j < DSET_SIZE ) ) - { + while ((pass) && (j < DSET_SIZE)) { /* select on disk hyperslab */ offset[0] = (hsize_t)mpi_rank; offset[1] = (hsize_t)i; /* offset of hyperslab in file */ @@ -1690,69 +1563,58 @@ par_create_dataset(int dset_num, a_size[1] = CHUNK_SIZE; /* size of hyperslab */ a_size[2] = CHUNK_SIZE; - status = H5Sselect_hyperslab(filespace_id, H5S_SELECT_SET, - offset, NULL, a_size, NULL); + status = H5Sselect_hyperslab(filespace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; - failure_mssg = "disk hyperslab create failed."; + pass = FALSE; + failure_mssg = "disk hyperslab create failed."; } /* read the chunk from file */ - if ( pass ) { + if (pass) { - status = H5Dread(dset_id, H5T_NATIVE_INT, - memspace_id, filespace_id, - dxpl_id, data_chunk); + status = H5Dread(dset_id, H5T_NATIVE_INT, memspace_id, filespace_id, dxpl_id, data_chunk); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; - failure_mssg = "chunk read failed."; + pass = FALSE; + failure_mssg = "chunk read failed."; } } /* validate the slab */ - if ( pass ) { + if (pass) { valid_chunk = TRUE; - for ( k = 0; k < CHUNK_SIZE; k++ ) - { - for ( l = 0; l < CHUNK_SIZE; l++ ) - { - if ( data_chunk[0][k][l] - != - ((DSET_SIZE * DSET_SIZE * mpi_rank) + - (DSET_SIZE * (i + k)) + j + l + dset_num) ) { + for (k = 0; k < CHUNK_SIZE; k++) { + for (l = 0; l < CHUNK_SIZE; l++) { + if (data_chunk[0][k][l] != + ((DSET_SIZE * DSET_SIZE * mpi_rank) + (DSET_SIZE * (i + k)) + j + l + dset_num)) { valid_chunk = FALSE; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, - "data_chunk[%0d][%0d] = %0d, expect %0d.\n", - k, l, data_chunk[0][k][l], - ((DSET_SIZE * DSET_SIZE * mpi_rank) + - (DSET_SIZE * (i + k)) + j + l + dset_num)); - HDfprintf(stdout, - "dset_num = %d, i = %d, j = %d, k = %d, l = %d\n", - dset_num, i, j, k, l); + HDfprintf(stdout, "data_chunk[%0d][%0d] = %0d, expect %0d.\n", k, l, + data_chunk[0][k][l], + ((DSET_SIZE * DSET_SIZE * mpi_rank) + (DSET_SIZE * (i + k)) + j + + l + dset_num)); + HDfprintf(stdout, "dset_num = %d, i = %d, j = %d, k = %d, l = %d\n", dset_num, + i, j, k, l); } } } } - if ( ! valid_chunk ) { + if (!valid_chunk) { - pass = FALSE; + pass = FALSE; failure_mssg = "slab validation failed."; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, - "Chunk (%0d, %0d) in /dset%03d is invalid.\n", - i, j, dset_num); + HDfprintf(stdout, "Chunk (%0d, %0d) in /dset%03d is invalid.\n", i, j, dset_num); } } } @@ -1761,59 +1623,58 @@ par_create_dataset(int dset_num, i += CHUNK_SIZE; } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* close the data space */ - if ( ( pass ) && ( H5Sclose(dataspace_id) < 0 ) ) { + if ((pass) && (H5Sclose(dataspace_id) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sclose(dataspace_id) failed."; } /* close the file space */ - if ( ( pass ) && ( H5Sclose(filespace_id) < 0 ) ) { + if ((pass) && (H5Sclose(filespace_id) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sclose(filespace_id) failed."; } /* close the dataset */ - if ( ( pass ) && ( H5Dclose(dset_id) < 0 ) ) { + if ((pass) && (H5Dclose(dset_id) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dclose(dset_id) failed."; } /* close the mem space */ - if ( ( pass ) && ( H5Sclose(memspace_id) < 0 ) ) { + if ((pass) && (H5Sclose(memspace_id) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sclose(memspace_id) failed."; } /* close the dataset creation property list */ - if ( ( pass ) && ( H5Pclose(dcpl_id) < 0 ) ) { + if ((pass) && (H5Pclose(dcpl_id) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pclose(dcpl) failed."; } /* close the data access property list */ - if ( ( pass ) && ( H5Pclose(dxpl_id) < 0 ) ) { + if ((pass) && (H5Pclose(dxpl_id) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pclose(dxpl) failed."; } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); return; } /* par_create_dataset() */ - /*------------------------------------------------------------------------- * Function: par_delete_dataset() * @@ -1837,59 +1698,48 @@ par_create_dataset(int dset_num, */ static void -par_delete_dataset(int dset_num, - hid_t file_id, - int mpi_rank) +par_delete_dataset(int dset_num, hid_t file_id, int mpi_rank) { - const char * fcn_name = "par_delete_dataset()"; - char dset_name[256]; - hbool_t show_progress = FALSE; - int cp = 0; + const char *fcn_name = "par_delete_dataset()"; + char dset_name[256]; + hbool_t show_progress = FALSE; + int cp = 0; show_progress = (show_progress && (mpi_rank == 0)); - HDsprintf(dset_name, "/dset%03d", dset_num); + HDsnprintf(dset_name, sizeof(dset_name), "/dset%03d", dset_num); - if ( show_progress ) { + if (show_progress) { HDfprintf(stdout, "%s: dset name = \"%s\".\n", fcn_name, dset_name); HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); } /* verify the target dataset */ - if ( pass ) { + if (pass) { par_verify_dataset(dset_num, file_id, mpi_rank); } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* delete the target dataset */ - if ( pass ) { + if (pass) { - if ( H5Ldelete(file_id, dset_name, H5P_DEFAULT) < 0) { + if (H5Ldelete(file_id, dset_name, H5P_DEFAULT) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Ldelete() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); return; } /* par_delete_dataset() */ - -/* This test uses many POSIX things that are not available on - * Windows. We're using a check for fork(2) here as a proxy for - * all POSIX/Unix/Linux things until this test can be made - * more platform-independent. - */ -#ifdef H5_HAVE_FORK - - /*------------------------------------------------------------------------- * Function: par_insert_cache_image() * @@ -1919,75 +1769,21 @@ par_delete_dataset(int dset_num, */ static void -par_insert_cache_image(int file_name_idx, int mpi_rank, int mpi_size ) +par_insert_cache_image(int file_name_idx, int mpi_rank, int mpi_size) { - hbool_t show_progress = FALSE; - - if ( pass ) { - - if ( mpi_rank == 0 ) { /* insert cache image in supplied test file */ - - char file_name_idx_str[32]; - char mpi_size_str[32]; - int child_status; - pid_t child_pid; - - HDsprintf(file_name_idx_str, "%d", file_name_idx); - HDsprintf(mpi_size_str, "%d", mpi_size); + if (pass) { - child_pid = fork(); + if (mpi_rank == 0) { /* insert cache image in supplied test file */ - if ( child_pid == 0 ) { /* this is the child process */ - - /* fun and games to shutup the compiler */ - char param0[32] = "t_cache_image"; - char param1[32] = "ici"; - char * child_argv[] = {param0, - param1, - file_name_idx_str, - mpi_size_str, - NULL}; - - /* we may need to play with the path here */ - if ( execv("t_cache_image", child_argv) == -1 ) { - - HDfprintf(stdout, - "execl() of ici process failed. errno = %d(%s)\n", - errno, strerror(errno)); - HDexit(1); - } - - } else if ( child_pid != -1 ) { - /* this is the parent process -- wait until child is done */ - if ( -1 == waitpid(child_pid, &child_status, WUNTRACED)) { - - HDfprintf(stdout, "can't wait on ici process.\n"); - pass = FALSE; - - } else if ( ! WIFEXITED(child_status) ) { - - HDfprintf(stdout, "ici process hasn't exitied.\n"); - pass = FALSE; - - } else if ( WEXITSTATUS(child_status) != 0 ) { - - HDfprintf(stdout, "ici process reports failure.\n"); - pass = FALSE; - - } else if ( show_progress ) { - - HDfprintf(stdout, "cache image insertion complete.\n"); - } - } else { /* fork failed */ - - HDfprintf(stdout, - "can't create process to insert cache image.\n"); - pass = FALSE; + if (!serial_insert_cache_image(file_name_idx, mpi_size)) { + HDfprintf(stderr, "\n\nCache image insertion failed.\n"); + HDfprintf(stderr, " failure mssg = \"%s\"\n", failure_mssg); + HDexit(EXIT_FAILURE); } } } - if ( pass ) { + if (pass) { /* make sure insertion of the cache image is complete * before proceeding @@ -1998,16 +1794,6 @@ par_insert_cache_image(int file_name_idx, int mpi_rank, int mpi_size ) return; } /* par_insert_cache_image() */ -#else /* H5_HAVE_FORK */ - -static void -par_insert_cache_image(int file_name_idx, int mpi_rank, int mpi_size ) -{ - return; -} /* par_insert_cache_image() */ - -#endif /* H5_HAVE_FORK */ - /*------------------------------------------------------------------------- * Function: par_verify_dataset() @@ -2032,139 +1818,134 @@ par_insert_cache_image(int file_name_idx, int mpi_rank, int mpi_size ) */ static void -par_verify_dataset(int dset_num, - hid_t file_id, - int mpi_rank) +par_verify_dataset(int dset_num, hid_t file_id, int mpi_rank) { - const char * fcn_name = "par_verify_dataset()"; - char dset_name[256]; - hbool_t show_progress = FALSE; - hbool_t valid_chunk; - hbool_t verbose = FALSE; - int cp = 0; - int i, j, k, l; - int data_chunk[1][CHUNK_SIZE][CHUNK_SIZE]; - hsize_t dims[3]; - hsize_t a_size[3]; - hsize_t offset[3]; - hid_t status; - hid_t memspace_id = -1; - hid_t dset_id = -1; - hid_t filespace_id = -1; - hid_t dxpl_id = -1; + const char *fcn_name = "par_verify_dataset()"; + char dset_name[256]; + hbool_t show_progress = FALSE; + hbool_t valid_chunk; + hbool_t verbose = FALSE; + int cp = 0; + int i, j, k, l; + int data_chunk[1][CHUNK_SIZE][CHUNK_SIZE]; + hsize_t dims[3]; + hsize_t a_size[3]; + hsize_t offset[3]; + hid_t status; + hid_t memspace_id = -1; + hid_t dset_id = -1; + hid_t filespace_id = -1; + hid_t dxpl_id = -1; show_progress = (show_progress && (mpi_rank == 0)); verbose = (verbose && (mpi_rank == 0)); - HDsprintf(dset_name, "/dset%03d", dset_num); + HDsnprintf(dset_name, sizeof(dset_name), "/dset%03d", dset_num); - if ( show_progress ) { + if (show_progress) { HDfprintf(stdout, "%s: dset name = \"%s\".\n", fcn_name, dset_name); HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); } - if ( pass ) { + if (pass) { /* open the dataset */ dset_id = H5Dopen2(file_id, dset_name, H5P_DEFAULT); - if ( dset_id < 0 ) { + if (dset_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dopen2() failed."; } } /* get the file space ID */ - if ( pass ) { + if (pass) { filespace_id = H5Dget_space(dset_id); - if ( filespace_id < 0 ) { + if (filespace_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dget_space() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* create the mem space to be used to read */ - if ( pass ) { + if (pass) { - dims[0] = 1; - dims[1] = CHUNK_SIZE; - dims[2] = CHUNK_SIZE; + dims[0] = 1; + dims[1] = CHUNK_SIZE; + dims[2] = CHUNK_SIZE; memspace_id = H5Screate_simple(3, dims, NULL); - if ( memspace_id < 0 ) { + if (memspace_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Screate_simple() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* select in memory hyperslab */ - if ( pass ) { + if (pass) { - offset[0] = 0; /* offset of hyperslab in memory */ + offset[0] = 0; /* offset of hyperslab in memory */ offset[1] = 0; offset[2] = 0; - a_size[0] = 1; /* size of hyperslab */ + a_size[0] = 1; /* size of hyperslab */ a_size[1] = CHUNK_SIZE; a_size[2] = CHUNK_SIZE; - status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, - a_size, NULL); + status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sselect_hyperslab() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* setup the DXPL for collective I/O */ - if ( pass ) { + if (pass) { dxpl_id = H5Pcreate(H5P_DATASET_XFER); - if ( dxpl_id < 0 ) { + if (dxpl_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - if ( pass ) { + if (pass) { - if ( H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) < 0 ) { + if (H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pset_dxpl_mpio() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* read data from data sets and validate it */ i = 0; - while ( ( pass ) && ( i < DSET_SIZE ) ) - { + while ((pass) && (i < DSET_SIZE)) { j = 0; - while ( ( pass ) && ( j < DSET_SIZE ) ) - { + while ((pass) && (j < DSET_SIZE)) { /* select on disk hyperslab */ offset[0] = (hsize_t)mpi_rank; offset[1] = (hsize_t)i; /* offset of hyperslab in file */ @@ -2173,69 +1954,58 @@ par_verify_dataset(int dset_num, a_size[1] = CHUNK_SIZE; /* size of hyperslab */ a_size[2] = CHUNK_SIZE; - status = H5Sselect_hyperslab(filespace_id, H5S_SELECT_SET, - offset, NULL, a_size, NULL); + status = H5Sselect_hyperslab(filespace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; - failure_mssg = "disk hyperslab create failed."; + pass = FALSE; + failure_mssg = "disk hyperslab create failed."; } /* read the chunk from file */ - if ( pass ) { + if (pass) { - status = H5Dread(dset_id, H5T_NATIVE_INT, - memspace_id, filespace_id, - dxpl_id, data_chunk); + status = H5Dread(dset_id, H5T_NATIVE_INT, memspace_id, filespace_id, dxpl_id, data_chunk); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; - failure_mssg = "chunk read failed."; + pass = FALSE; + failure_mssg = "chunk read failed."; } } /* validate the slab */ - if ( pass ) { + if (pass) { valid_chunk = TRUE; - for ( k = 0; k < CHUNK_SIZE; k++ ) - { - for ( l = 0; l < CHUNK_SIZE; l++ ) - { - if ( data_chunk[0][k][l] - != - ((DSET_SIZE * DSET_SIZE * mpi_rank) + - (DSET_SIZE * (i + k)) + j + l + dset_num) ) { + for (k = 0; k < CHUNK_SIZE; k++) { + for (l = 0; l < CHUNK_SIZE; l++) { + if (data_chunk[0][k][l] != + ((DSET_SIZE * DSET_SIZE * mpi_rank) + (DSET_SIZE * (i + k)) + j + l + dset_num)) { valid_chunk = FALSE; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, - "data_chunk[%0d][%0d] = %0d, expect %0d.\n", - k, l, data_chunk[0][k][l], - ((DSET_SIZE * DSET_SIZE * mpi_rank) + - (DSET_SIZE * (i + k)) + j + l + dset_num)); - HDfprintf(stdout, - "dset_num = %d, i = %d, j = %d, k = %d, l = %d\n", - dset_num, i, j, k, l); + HDfprintf(stdout, "data_chunk[%0d][%0d] = %0d, expect %0d.\n", k, l, + data_chunk[0][k][l], + ((DSET_SIZE * DSET_SIZE * mpi_rank) + (DSET_SIZE * (i + k)) + j + + l + dset_num)); + HDfprintf(stdout, "dset_num = %d, i = %d, j = %d, k = %d, l = %d\n", dset_num, + i, j, k, l); } } } } - if ( ! valid_chunk ) { + if (!valid_chunk) { - pass = FALSE; + pass = FALSE; failure_mssg = "slab validation failed."; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, - "Chunk (%0d, %0d) in /dset%03d is invalid.\n", - i, j, dset_num); + HDfprintf(stdout, "Chunk (%0d, %0d) in /dset%03d is invalid.\n", i, j, dset_num); } } } @@ -2244,45 +2014,44 @@ par_verify_dataset(int dset_num, i += CHUNK_SIZE; } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* close the file space */ - if ( ( pass ) && ( H5Sclose(filespace_id) < 0 ) ) { + if ((pass) && (H5Sclose(filespace_id) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sclose(filespace_id) failed."; } /* close the dataset */ - if ( ( pass ) && ( H5Dclose(dset_id) < 0 ) ) { + if ((pass) && (H5Dclose(dset_id) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dclose(dset_id) failed."; } /* close the mem space */ - if ( ( pass ) && ( H5Sclose(memspace_id) < 0 ) ) { + if ((pass) && (H5Sclose(memspace_id) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sclose(memspace_id) failed."; } /* close the data access property list */ - if ( ( pass ) && ( H5Pclose(dxpl_id) < 0 ) ) { + if ((pass) && (H5Pclose(dxpl_id) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Pclose(dxpl) failed."; } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); return; } /* par_verify_dataset() */ - /*------------------------------------------------------------------------- * Function: serial_insert_cache_image() * @@ -2307,48 +2076,44 @@ par_verify_dataset(int dset_num, */ static hbool_t -serial_insert_cache_image(int file_name_idx, int mpi_size ) +serial_insert_cache_image(int file_name_idx, int mpi_size) { - const char * fcn_name = "serial_insert_cache_image()"; - char filename[512]; - hbool_t show_progress = FALSE; - int cp = 0; - int i; - int num_dsets = PAR_NUM_DSETS; - hid_t file_id = -1; - H5F_t *file_ptr = NULL; - H5C_t *cache_ptr = NULL; - MPI_Comm dummy_comm = MPI_COMM_WORLD; - MPI_Info dummy_info = MPI_INFO_NULL; + const char *fcn_name = "serial_insert_cache_image()"; + char filename[512]; + hbool_t show_progress = FALSE; + int cp = 0; + int i; + int num_dsets = PAR_NUM_DSETS; + hid_t file_id = -1; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; + MPI_Comm dummy_comm = MPI_COMM_WORLD; + MPI_Info dummy_info = MPI_INFO_NULL; pass = TRUE; - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 1) setup the file name */ - if ( pass ) { + if (pass) { HDassert(FILENAMES[file_name_idx]); - if ( h5_fixname(FILENAMES[file_name_idx], H5P_DEFAULT, - filename, sizeof(filename)) - == NULL ) { + if (h5_fixname(FILENAMES[file_name_idx], H5P_DEFAULT, filename, sizeof(filename)) == NULL) { pass = FALSE; HDfprintf(stdout, "h5_fixname() failed.\n"); } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 2) Open the PHDF5 file with the cache image FAPL entry. */ - if ( pass ) { + if (pass) { open_hdf5_file(/* create_file */ FALSE, /* mdci_sbem_expected */ FALSE, @@ -2369,42 +2134,39 @@ serial_insert_cache_image(int file_name_idx, int mpi_size ) /* md_write_strat */ 1); } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 3) Validate contents of the file */ i = 0; - while ( ( pass ) && ( i < num_dsets ) ) { + while ((pass) && (i < num_dsets)) { serial_verify_dataset(i, file_id, mpi_size); i++; } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 4) Close the file */ - if ( pass ) { + if (pass) { - if ( H5Fclose(file_id) < 0 ) { + if (H5Fclose(file_id) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Fclose() failed.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); return pass; } /* serial_insert_cache_image() */ - /*------------------------------------------------------------------------- * Function: serial_verify_dataset() * @@ -2428,112 +2190,105 @@ serial_insert_cache_image(int file_name_idx, int mpi_size ) */ static void -serial_verify_dataset(int dset_num, - hid_t file_id, - int mpi_size) +serial_verify_dataset(int dset_num, hid_t file_id, int mpi_size) { - const char * fcn_name = "serial_verify_dataset()"; - char dset_name[256]; - hbool_t show_progress = FALSE; - hbool_t valid_chunk; - hbool_t verbose = FALSE; - int cp = 0; - int i, j, k, l, m; - int data_chunk[1][CHUNK_SIZE][CHUNK_SIZE]; - hsize_t dims[3]; - hsize_t a_size[3]; - hsize_t offset[3]; - hid_t status; - hid_t memspace_id = -1; - hid_t dset_id = -1; - hid_t filespace_id = -1; - - HDsprintf(dset_name, "/dset%03d", dset_num); - - if ( show_progress ) { + const char *fcn_name = "serial_verify_dataset()"; + char dset_name[256]; + hbool_t show_progress = FALSE; + hbool_t valid_chunk; + hbool_t verbose = FALSE; + int cp = 0; + int i, j, k, l, m; + int data_chunk[1][CHUNK_SIZE][CHUNK_SIZE]; + hsize_t dims[3]; + hsize_t a_size[3]; + hsize_t offset[3]; + hid_t status; + hid_t memspace_id = -1; + hid_t dset_id = -1; + hid_t filespace_id = -1; + + HDsnprintf(dset_name, sizeof(dset_name), "/dset%03d", dset_num); + + if (show_progress) { HDfprintf(stdout, "%s: dset name = \"%s\".\n", fcn_name, dset_name); HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); } - if ( pass ) { + if (pass) { /* open the dataset */ dset_id = H5Dopen2(file_id, dset_name, H5P_DEFAULT); - if ( dset_id < 0 ) { + if (dset_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dopen2() failed."; } } /* get the file space ID */ - if ( pass ) { + if (pass) { filespace_id = H5Dget_space(dset_id); - if ( filespace_id < 0 ) { + if (filespace_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dget_space() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* create the mem space to be used to read */ - if ( pass ) { + if (pass) { - dims[0] = 1; - dims[1] = CHUNK_SIZE; - dims[2] = CHUNK_SIZE; + dims[0] = 1; + dims[1] = CHUNK_SIZE; + dims[2] = CHUNK_SIZE; memspace_id = H5Screate_simple(3, dims, NULL); - if ( memspace_id < 0 ) { + if (memspace_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Screate_simple() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* select in memory hyperslab */ - if ( pass ) { + if (pass) { - offset[0] = 0; /* offset of hyperslab in memory */ + offset[0] = 0; /* offset of hyperslab in memory */ offset[1] = 0; offset[2] = 0; - a_size[0] = 1; /* size of hyperslab */ + a_size[0] = 1; /* size of hyperslab */ a_size[1] = CHUNK_SIZE; a_size[2] = CHUNK_SIZE; - status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, - a_size, NULL); + status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sselect_hyperslab() failed."; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* read data from data sets and validate it */ i = 0; - while ( ( pass ) && ( i < mpi_size ) ) - { + while ((pass) && (i < mpi_size)) { j = 0; - while ( ( pass ) && ( j < DSET_SIZE ) ) - { + while ((pass) && (j < DSET_SIZE)) { k = 0; - while ( ( pass ) && ( k < DSET_SIZE ) ) - { + while ((pass) && (k < DSET_SIZE)) { /* select on disk hyperslab */ offset[0] = (hsize_t)i; /* offset of hyperslab in file */ offset[1] = (hsize_t)j; /* offset of hyperslab in file */ @@ -2542,70 +2297,61 @@ serial_verify_dataset(int dset_num, a_size[1] = CHUNK_SIZE; /* size of hyperslab */ a_size[2] = CHUNK_SIZE; - status = H5Sselect_hyperslab(filespace_id, H5S_SELECT_SET, - offset, NULL, a_size, NULL); + status = H5Sselect_hyperslab(filespace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; - failure_mssg = "disk hyperslab create failed."; + pass = FALSE; + failure_mssg = "disk hyperslab create failed."; } /* read the chunk from file */ - if ( pass ) { + if (pass) { - status = H5Dread(dset_id, H5T_NATIVE_INT, - memspace_id, filespace_id, - H5P_DEFAULT, data_chunk); + status = + H5Dread(dset_id, H5T_NATIVE_INT, memspace_id, filespace_id, H5P_DEFAULT, data_chunk); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; - failure_mssg = "chunk read failed."; + pass = FALSE; + failure_mssg = "chunk read failed."; } } /* validate the slab */ - if ( pass ) { + if (pass) { valid_chunk = TRUE; - for ( l = 0; l < CHUNK_SIZE; l++ ) - { - for ( m = 0; m < CHUNK_SIZE; m++ ) - { - if ( data_chunk[0][l][m] - != - ((DSET_SIZE * DSET_SIZE * i) + - (DSET_SIZE * (j + l)) + k + m + dset_num) ) { + for (l = 0; l < CHUNK_SIZE; l++) { + for (m = 0; m < CHUNK_SIZE; m++) { + if (data_chunk[0][l][m] != + ((DSET_SIZE * DSET_SIZE * i) + (DSET_SIZE * (j + l)) + k + m + dset_num)) { valid_chunk = FALSE; - if ( verbose ) { + if (verbose) { + HDfprintf(stdout, "data_chunk[%0d][%0d] = %0d, expect %0d.\n", j, k, + data_chunk[0][j][k], + ((DSET_SIZE * DSET_SIZE * i) + (DSET_SIZE * (j + l)) + k + m + + dset_num)); HDfprintf(stdout, - "data_chunk[%0d][%0d] = %0d, expect %0d.\n", - j, k, data_chunk[0][j][k], - ((DSET_SIZE * DSET_SIZE * i) + - (DSET_SIZE * (j + l)) + k + m + dset_num)); - HDfprintf(stdout, - "dset_num = %d, i = %d, j = %d, k = %d, l = %d, m = %d\n", - dset_num, i, j, k, l, m); + "dset_num = %d, i = %d, j = %d, k = %d, l = %d, m = %d\n", + dset_num, i, j, k, l, m); } } } } - if ( ! valid_chunk ) { + if (!valid_chunk) { - pass = FALSE; + pass = FALSE; failure_mssg = "slab validation failed."; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, - "Chunk (%0d, %0d) in /dset%03d is invalid.\n", - j, k, dset_num); + HDfprintf(stdout, "Chunk (%0d, %0d) in /dset%03d is invalid.\n", j, k, dset_num); } } } @@ -2616,199 +2362,37 @@ serial_verify_dataset(int dset_num, i++; } - - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* close the file space */ - if ( ( pass ) && ( H5Sclose(filespace_id) < 0 ) ) { + if ((pass) && (H5Sclose(filespace_id) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sclose(filespace_id) failed."; } /* close the dataset */ - if ( ( pass ) && ( H5Dclose(dset_id) < 0 ) ) { + if ((pass) && (H5Dclose(dset_id) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dclose(dset_id) failed."; } /* close the mem space */ - if ( ( pass ) && ( H5Sclose(memspace_id) < 0 ) ) { + if ((pass) && (H5Sclose(memspace_id) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sclose(memspace_id) failed."; } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); return; } /* serial_verify_dataset() */ - -/*------------------------------------------------------------------------- - * Function: parse_flags - * - * Purpose: Parse the flags passed to this program, and load the - * values into the supplied field. - * - * Return: Success: 1 - * Failure: 0 - * - * Programmer: J Mainzer - * 4/28/11 - * - *------------------------------------------------------------------------- - */ -static hbool_t -parse_flags(int argc, char * argv[], hbool_t * setup_ptr, - hbool_t * ici_ptr, int * file_idx_ptr, int * mpi_size_ptr, hbool_t display) -{ - const char * fcn_name = "parse_flags()"; - const char * (ops[]) = {"setup", "ici"}; - int success = TRUE; - - HDassert(setup_ptr); - HDassert(*setup_ptr == FALSE); - HDassert(ici_ptr); - HDassert(*ici_ptr == FALSE); - HDassert(file_idx_ptr); - HDassert(mpi_size_ptr); - - if ( setup_ptr == NULL ) { - - success = FALSE; - HDfprintf(stdout, "%s: bad arg(s) on entry.\n", fcn_name); - } - - - if ( ( success ) && - ( ( argc != 1 ) && ( argc != 2 ) && ( argc != 4 ) ) ) { - - success = FALSE; - usage(); - } - - - if ( ( success ) && ( argc >= 2 ) ) { - - if ( strcmp(argv[1], ops[0]) == 0 ) { - - if ( argc != 2 ) { - - success = FALSE; - usage(); - - } else { - - *setup_ptr = TRUE; - - } - } else if ( strcmp(argv[1], ops[1]) == 0 ) { - - if ( argc != 4 ) { - - success = FALSE; - usage(); - - } else { - - *ici_ptr = TRUE; - *file_idx_ptr = atoi(argv[2]); - *mpi_size_ptr = atoi(argv[3]); - - } - } - } - - if ( ( success ) && ( display ) ) { - - if ( *setup_ptr ) - - HDfprintf(stdout, "t_cache_image setup\n"); - - else if ( *ici_ptr ) - - HDfprintf(stdout, "t_cache_image ici %d %d\n", - *file_idx_ptr, *mpi_size_ptr); - - else - - HDfprintf(stdout, "t_cache_image\n"); - } - - return(success); - -} /* parse_flags() */ - - -/*------------------------------------------------------------------------- - * Function: usage - * - * Purpose: Display a brief message describing the purpose and use - * of the program. - * - * Return: void - * - * Programmer: John Mainzer - * 4/28/11 - * - * Modifications: - * - *------------------------------------------------------------------------- - */ -void -usage(void) -{ - const char * s[] = - { - "\n", - "t_cache_image:\n", - "\n", - "Run the parallel cache image tests. \n" - "\n" - "In general, this program is run via MPI. However, at present, files\n" - "with cache images can only be constructed by serial processes.\n", - "\n", - "To square this circle, one process in the parallel computation \n" - "forks a serial version of the test program to handle this detail.\n", - "The \"setup\" parameter indicates that t_cache_image is being \n", - "invokde for this purpose.\n", - "\n", - "Similarly, only a serial process can add a cache image to an\n", - "existing file.\n", - "\n", - "Here again, one process forks a serial version of the test program\n", - "with the \"ici\" parameter.\n" - "\n", - "usage: t_cache_image [setup|ici m n]\n", - "\n", - "where:\n", - "\n", - " setup parameter forces creation of test file\n", - "\n", - " ici parameter forces insertion of a cache image into the \n", - " m th test file, created by a parallel computation with .\n", - " n processes\n", - "\n", - "Returns 0 on success, 1 on failure.\n", - "\n", - NULL, - }; - int i = 0; - - while(s[i] != NULL) { - HDfprintf(stdout, "%s", s[i]); - i++; - } - - return; -} /* usage() */ - - /*------------------------------------------------------------------------- * Function: verify_data_sets() * @@ -2843,23 +2427,24 @@ usage(void) static void verify_data_sets(hid_t file_id, int min_dset, int max_dset) { - const char * fcn_name = "verify_data_sets()"; - char dset_name[64]; - hbool_t show_progress = FALSE; - hbool_t valid_chunk; - hbool_t verbose = FALSE; - int cp = 0; - int i, j, k, l, m; - int data_chunk[CHUNK_SIZE][CHUNK_SIZE]; - herr_t status; - hid_t filespace_ids[MAX_NUM_DSETS]; - hid_t memspace_id = -1; - hid_t dataset_ids[MAX_NUM_DSETS]; - hsize_t dims[2]; - hsize_t a_size[2]; - hsize_t offset[2]; - - if ( show_progress ) HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); + const char *fcn_name = "verify_data_sets()"; + char dset_name[64]; + hbool_t show_progress = FALSE; + hbool_t valid_chunk; + hbool_t verbose = FALSE; + int cp = 0; + int i, j, k, l, m; + int data_chunk[CHUNK_SIZE][CHUNK_SIZE]; + herr_t status; + hid_t filespace_ids[MAX_NUM_DSETS]; + hid_t memspace_id = -1; + hid_t dataset_ids[MAX_NUM_DSETS]; + hsize_t dims[2]; + hsize_t a_size[2]; + hsize_t offset[2]; + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); HDassert(0 <= min_dset); HDassert(min_dset <= max_dset); @@ -2867,33 +2452,32 @@ verify_data_sets(hid_t file_id, int min_dset, int max_dset) /* open the datasets */ - if ( pass ) { + if (pass) { i = min_dset; - while ( ( pass ) && ( i <= max_dset ) ) - { + while ((pass) && (i <= max_dset)) { /* open the dataset */ - if ( pass ) { + if (pass) { - HDsprintf(dset_name, "/dset%03d", i); + HDsnprintf(dset_name, sizeof(dset_name), "/dset%03d", i); dataset_ids[i] = H5Dopen2(file_id, dset_name, H5P_DEFAULT); - if ( dataset_ids[i] < 0 ) { + if (dataset_ids[i] < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dopen2() failed."; } } /* get the file space ID */ - if ( pass ) { + if (pass) { filespace_ids[i] = H5Dget_space(dataset_ids[i]); - if ( filespace_ids[i] < 0 ) { + if (filespace_ids[i] < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dget_space() failed."; } } @@ -2902,124 +2486,111 @@ verify_data_sets(hid_t file_id, int min_dset, int max_dset) } } - if ( show_progress ) HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); /* create the mem space to be used to read and write chunks */ - if ( pass ) { + if (pass) { - dims[0] = CHUNK_SIZE; - dims[1] = CHUNK_SIZE; + dims[0] = CHUNK_SIZE; + dims[1] = CHUNK_SIZE; memspace_id = H5Screate_simple(2, dims, NULL); - if ( memspace_id < 0 ) { + if (memspace_id < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Screate_simple() failed."; } } - if ( show_progress ) HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); /* select in memory hyperslab */ - if ( pass ) { + if (pass) { - offset[0] = 0; /*offset of hyperslab in memory*/ + offset[0] = 0; /*offset of hyperslab in memory*/ offset[1] = 0; - a_size[0] = CHUNK_SIZE; /*size of hyperslab*/ + a_size[0] = CHUNK_SIZE; /*size of hyperslab*/ a_size[1] = CHUNK_SIZE; - status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, - a_size, NULL); + status = H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET, offset, NULL, a_size, NULL); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sselect_hyperslab() failed."; } } - if ( show_progress ) HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); - + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); /* read data from data sets and validate it */ i = 0; - while ( ( pass ) && ( i < DSET_SIZE ) ) - { + while ((pass) && (i < DSET_SIZE)) { j = 0; - while ( ( pass ) && ( j < DSET_SIZE ) ) - { + while ((pass) && (j < DSET_SIZE)) { m = min_dset; - while ( ( pass ) && ( m <= max_dset ) ) - { + while ((pass) && (m <= max_dset)) { /* select on disk hyperslab */ offset[0] = (hsize_t)i; /* offset of hyperslab in file */ offset[1] = (hsize_t)j; a_size[0] = CHUNK_SIZE; /* size of hyperslab */ a_size[1] = CHUNK_SIZE; - status = H5Sselect_hyperslab(filespace_ids[m], H5S_SELECT_SET, - offset, NULL, a_size, NULL); + status = H5Sselect_hyperslab(filespace_ids[m], H5S_SELECT_SET, offset, NULL, a_size, NULL); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; - failure_mssg = "disk hyperslab create failed."; + pass = FALSE; + failure_mssg = "disk hyperslab create failed."; } /* read the chunk from file */ - if ( pass ) { + if (pass) { - status = H5Dread(dataset_ids[m], H5T_NATIVE_INT, - memspace_id, filespace_ids[m], + status = H5Dread(dataset_ids[m], H5T_NATIVE_INT, memspace_id, filespace_ids[m], H5P_DEFAULT, data_chunk); - if ( status < 0 ) { + if (status < 0) { - pass = FALSE; - failure_mssg = "disk hyperslab create failed."; + pass = FALSE; + failure_mssg = "disk hyperslab create failed."; } } /* validate the slab */ - if ( pass ) { + if (pass) { valid_chunk = TRUE; - for ( k = 0; k < CHUNK_SIZE; k++ ) - { - for ( l = 0; l < CHUNK_SIZE; l++ ) - { - if ( data_chunk[k][l] - != - ((DSET_SIZE * DSET_SIZE * m) + - (DSET_SIZE * (i + k)) + j + l) ) { + for (k = 0; k < CHUNK_SIZE; k++) { + for (l = 0; l < CHUNK_SIZE; l++) { + if (data_chunk[k][l] != + ((DSET_SIZE * DSET_SIZE * m) + (DSET_SIZE * (i + k)) + j + l)) { valid_chunk = FALSE; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, - "data_chunk[%0d][%0d] = %0d, expect %0d.\n", - k, l, data_chunk[k][l], - ((DSET_SIZE * DSET_SIZE * m) + - (DSET_SIZE * (i + k)) + j + l)); - HDfprintf(stdout, - "m = %d, i = %d, j = %d, k = %d, l = %d\n", - m, i, j, k, l); - } + HDfprintf(stdout, "data_chunk[%0d][%0d] = %0d, expect %0d.\n", k, l, + data_chunk[k][l], + ((DSET_SIZE * DSET_SIZE * m) + (DSET_SIZE * (i + k)) + j + l)); + HDfprintf(stdout, "m = %d, i = %d, j = %d, k = %d, l = %d\n", m, i, j, k, + l); + } } } } - if ( ! valid_chunk ) { + if (!valid_chunk) { - pass = FALSE; + pass = FALSE; failure_mssg = "slab validation failed."; - if ( verbose ) { + if (verbose) { - HDfprintf(stdout, - "Chunk (%0d, %0d) in /dset%03d is invalid.\n", - i, j, m); - } + HDfprintf(stdout, "Chunk (%0d, %0d) in /dset%03d is invalid.\n", i, j, m); + } } } m++; @@ -3029,39 +2600,37 @@ verify_data_sets(hid_t file_id, int min_dset, int max_dset) i += CHUNK_SIZE; } - if ( show_progress ) HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); + if (show_progress) + HDfprintf(stdout, "%s: cp = %d.\n", fcn_name, cp++); /* close the file spaces */ i = min_dset; - while ( ( pass ) && ( i <= max_dset ) ) - { - if ( H5Sclose(filespace_ids[i]) < 0 ) { + while ((pass) && (i <= max_dset)) { + if (H5Sclose(filespace_ids[i]) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sclose() failed."; } i++; } - /* close the datasets */ i = min_dset; - while ( ( pass ) && ( i <= max_dset ) ) - { - if ( H5Dclose(dataset_ids[i]) < 0 ) { + while ((pass) && (i <= max_dset)) { + if (H5Dclose(dataset_ids[i]) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Dclose() failed."; } i++; } /* close the mem space */ - if ( pass ) { + if (pass) { - if ( H5Sclose(memspace_id) < 0 ) { + if (H5Sclose(memspace_id) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Sclose(memspace_id) failed."; } } @@ -3070,7 +2639,6 @@ verify_data_sets(hid_t file_id, int min_dset, int max_dset) } /* verify_data_sets() */ - /****************************************************************************/ /******************************* Test Functions *****************************/ /****************************************************************************/ @@ -3120,19 +2688,19 @@ verify_data_sets(hid_t file_id, int min_dset, int max_dset) static unsigned verify_cache_image_RO(int file_name_id, int md_write_strat, int mpi_rank) { - const char * fcn_name = "verify_cache_image_RO()"; - char filename[512]; - hbool_t show_progress = FALSE; - hid_t file_id = -1; - H5F_t *file_ptr = NULL; - H5C_t *cache_ptr = NULL; - int cp = 0; + const char *fcn_name = "verify_cache_image_RO()"; + char filename[512]; + hbool_t show_progress = FALSE; + hid_t file_id = -1; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; + int cp = 0; pass = TRUE; - if ( mpi_rank == 0 ) { + if (mpi_rank == 0) { - switch(md_write_strat) { + switch (md_write_strat) { case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: TESTING("parallel CI load test -- proc0 md write -- R/O"); @@ -3149,39 +2717,36 @@ verify_cache_image_RO(int file_name_id, int md_write_strat, int mpi_rank) } } - show_progress = ( ( show_progress ) && ( mpi_rank == 0 ) ); + show_progress = ((show_progress) && (mpi_rank == 0)); - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* setup the file name */ - if ( pass ) { + if (pass) { - if ( h5_fixname(FILENAMES[file_name_id], H5P_DEFAULT, - filename, sizeof(filename)) == NULL ) { + if (h5_fixname(FILENAMES[file_name_id], H5P_DEFAULT, filename, sizeof(filename)) == NULL) { - pass = FALSE; + pass = FALSE; failure_mssg = "h5_fixname() failed.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 1) Open the test file created at the beginning of this test. * * Verify that the file contains a cache image. */ - if ( pass ) { + if (pass) { open_hdf5_file(/* create_file */ FALSE, /* mdci_sbem_expected */ TRUE, /* read_only */ TRUE, /* set_mdci_fapl */ FALSE, - /* config_fsm */ FALSE, + /* config_fsm */ FALSE, /* enable_page_buffer */ FALSE, /* hdf_file_name */ filename, /* cache_image_flags */ H5C_CI__ALL_FLAGS, @@ -3196,10 +2761,9 @@ verify_cache_image_RO(int file_name_id, int md_write_strat, int mpi_rank) /* md_write_strat */ md_write_strat); } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 2) Verify that the file contains the expected data. * * Verify that only process 0 reads the cache image. @@ -3208,74 +2772,71 @@ verify_cache_image_RO(int file_name_id, int md_write_strat, int mpi_rank) * image block from process 0. */ - if ( pass ) { + if (pass) { - verify_data_sets(file_id, 0, MAX_NUM_DSETS - 1); + verify_data_sets(file_id, 0, MAX_NUM_DSETS - 1); } /* Verify that only process 0 reads the cache image. */ #if H5C_COLLECT_CACHE_STATS - if ( pass ) { + if (pass) { - if ( ( ( mpi_rank == 0 ) && ( cache_ptr->images_read != 1 ) ) || - ( ( mpi_rank > 0 ) && ( cache_ptr->images_read != 0 ) ) ) { + if (((mpi_rank == 0) && (cache_ptr->images_read != 1)) || + ((mpi_rank > 0) && (cache_ptr->images_read != 0))) { - pass = FALSE; + pass = FALSE; failure_mssg = "unexpected images_read."; } } #endif /* H5C_COLLECT_CACHE_STATS */ - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* Verify that all other processes receive the cache image block - * from process 0. - * - * Since we have alread verified that only process 0 has read the - * image, it is sufficient to verify that the image was loaded on - * all processes. - */ + /* Verify that all other processes receive the cache image block + * from process 0. + * + * Since we have already verified that only process 0 has read the + * image, it is sufficient to verify that the image was loaded on + * all processes. + */ #if H5C_COLLECT_CACHE_STATS - if ( pass ) { + if (pass) { - if ( cache_ptr->images_loaded != 1 ) { + if (cache_ptr->images_loaded != 1) { - pass = FALSE; + pass = FALSE; failure_mssg = "Image not loaded?."; } } #endif /* H5C_COLLECT_CACHE_STATS */ - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 3) Close the file. */ - if ( pass ) { + if (pass) { - if ( H5Fclose(file_id) < 0 ) { + if (H5Fclose(file_id) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Fclose() failed.\n"; - } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 4) Open the file, and verify that it doesn't contain a cache image. */ - if ( pass ) { + if (pass) { open_hdf5_file(/* create_file */ FALSE, /* mdci_sbem_expected */ TRUE, /* read_only */ TRUE, /* set_mdci_fapl */ FALSE, - /* config_fsm */ FALSE, + /* config_fsm */ FALSE, /* enable_page_buffer */ FALSE, /* hdf_file_name */ filename, /* cache_image_flags */ H5C_CI__ALL_FLAGS, @@ -3290,67 +2851,62 @@ verify_cache_image_RO(int file_name_id, int md_write_strat, int mpi_rank) /* md_write_strat */ md_write_strat); } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 5) Verify that the file contains the expected data. */ - if ( pass ) { + if (pass) { - verify_data_sets(file_id, 0, MAX_NUM_DSETS - 1); + verify_data_sets(file_id, 0, MAX_NUM_DSETS - 1); } #if H5C_COLLECT_CACHE_STATS - if ( pass ) { + if (pass) { - if ( cache_ptr->images_loaded != 1 ) { + if (cache_ptr->images_loaded != 1) { - pass = FALSE; + pass = FALSE; failure_mssg = "metadata cache image block not loaded(2)."; } } #endif /* H5C_COLLECT_CACHE_STATS */ - /* 6) Close the file. */ - if ( pass ) { + if (pass) { - if ( H5Fclose(file_id) < 0 ) { + if (H5Fclose(file_id) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Fclose() failed.\n"; - } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* report results */ - if ( mpi_rank == 0 ) { + if (mpi_rank == 0) { - if ( pass ) { + if (pass) { PASSED(); - - } else { + } + else { H5_FAILED(); - if ( show_progress ) - HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", failure_mssg); + if (show_progress) { + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); + } } } - return !pass; } /* verify_cache_image_RO() */ - /*------------------------------------------------------------------------- * Function: verify_cache_image_RW() * @@ -3399,19 +2955,19 @@ verify_cache_image_RO(int file_name_id, int md_write_strat, int mpi_rank) static unsigned verify_cache_image_RW(int file_name_id, int md_write_strat, int mpi_rank) { - const char * fcn_name = "verify_cache_imageRW()"; - char filename[512]; - hbool_t show_progress = FALSE; - hid_t file_id = -1; - H5F_t *file_ptr = NULL; - H5C_t *cache_ptr = NULL; - int cp = 0; + const char *fcn_name = "verify_cache_imageRW()"; + char filename[512]; + hbool_t show_progress = FALSE; + hid_t file_id = -1; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; + int cp = 0; pass = TRUE; - if ( mpi_rank == 0 ) { + if (mpi_rank == 0) { - switch(md_write_strat) { + switch (md_write_strat) { case H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY: TESTING("parallel CI load test -- proc0 md write -- R/W"); @@ -3428,27 +2984,24 @@ verify_cache_image_RW(int file_name_id, int md_write_strat, int mpi_rank) } } - show_progress = ( ( show_progress ) && ( mpi_rank == 0 ) ); + show_progress = ((show_progress) && (mpi_rank == 0)); - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* setup the file name */ - if ( pass ) { + if (pass) { - if ( h5_fixname(FILENAMES[file_name_id], H5P_DEFAULT, - filename, sizeof(filename)) == NULL ) { + if (h5_fixname(FILENAMES[file_name_id], H5P_DEFAULT, filename, sizeof(filename)) == NULL) { - pass = FALSE; + pass = FALSE; failure_mssg = "h5_fixname() failed.\n"; } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 1) Open the test file created at the beginning of this test. * * Verify that the file contains a cache image. @@ -3459,13 +3012,13 @@ verify_cache_image_RW(int file_name_id, int md_write_strat, int mpi_rank) * image block from process 0. */ - if ( pass ) { + if (pass) { open_hdf5_file(/* create_file */ FALSE, /* mdci_sbem_expected */ TRUE, /* read_only */ FALSE, /* set_mdci_fapl */ FALSE, - /* config_fsm */ FALSE, + /* config_fsm */ FALSE, /* enable_page_buffer */ FALSE, /* hdf_file_name */ filename, /* cache_image_flags */ H5C_CI__ALL_FLAGS, @@ -3480,10 +3033,9 @@ verify_cache_image_RW(int file_name_id, int md_write_strat, int mpi_rank) /* md_write_strat */ md_write_strat); } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 2) Verify that the file contains the expected data. * * Verify that only process 0 reads the cache image. @@ -3491,74 +3043,71 @@ verify_cache_image_RW(int file_name_id, int md_write_strat, int mpi_rank) * Verify that all other processes receive the cache * image block from process 0. */ - if ( pass ) { + if (pass) { - verify_data_sets(file_id, 0, MAX_NUM_DSETS - 1); + verify_data_sets(file_id, 0, MAX_NUM_DSETS - 1); } /* Verify that only process 0 reads the cache image. */ #if H5C_COLLECT_CACHE_STATS - if ( pass ) { + if (pass) { - if ( ( ( mpi_rank == 0 ) && ( cache_ptr->images_read != 1 ) ) || - ( ( mpi_rank > 0 ) && ( cache_ptr->images_read != 0 ) ) ) { + if (((mpi_rank == 0) && (cache_ptr->images_read != 1)) || + ((mpi_rank > 0) && (cache_ptr->images_read != 0))) { - pass = FALSE; + pass = FALSE; failure_mssg = "unexpected images_read."; } } #endif /* H5C_COLLECT_CACHE_STATS */ - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* Verify that all other processes receive the cache image block - * from process 0. - * - * Since we have alread verified that only process 0 has read the - * image, it is sufficient to verify that the image was loaded on - * all processes. - */ + /* Verify that all other processes receive the cache image block + * from process 0. + * + * Since we have already verified that only process 0 has read the + * image, it is sufficient to verify that the image was loaded on + * all processes. + */ #if H5C_COLLECT_CACHE_STATS - if ( pass ) { + if (pass) { - if ( cache_ptr->images_loaded != 1 ) { + if (cache_ptr->images_loaded != 1) { - pass = FALSE; + pass = FALSE; failure_mssg = "Image not loaded?."; } } #endif /* H5C_COLLECT_CACHE_STATS */ - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 3) Close the file. */ - if ( pass ) { + if (pass) { - if ( H5Fclose(file_id) < 0 ) { + if (H5Fclose(file_id) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Fclose() failed.\n"; - } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 4) Open the file, and verify that it doesn't contain a cache image. */ - if ( pass ) { + if (pass) { open_hdf5_file(/* create_file */ FALSE, /* mdci_sbem_expected */ FALSE, /* read_only */ FALSE, /* set_mdci_fapl */ FALSE, - /* config_fsm */ FALSE, + /* config_fsm */ FALSE, /* enable_page_buffer */ FALSE, /* hdf_file_name */ filename, /* cache_image_flags */ H5C_CI__ALL_FLAGS, @@ -3573,82 +3122,76 @@ verify_cache_image_RW(int file_name_id, int md_write_strat, int mpi_rank) /* md_write_strat */ md_write_strat); } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 5) Verify that the file contains the expected data. */ - if ( pass ) { + if (pass) { - verify_data_sets(file_id, 0, MAX_NUM_DSETS - 1); + verify_data_sets(file_id, 0, MAX_NUM_DSETS - 1); } #if H5C_COLLECT_CACHE_STATS - if ( pass ) { + if (pass) { - if ( cache_ptr->images_loaded != 0 ) { + if (cache_ptr->images_loaded != 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "metadata cache image block loaded(1)."; } } #endif /* H5C_COLLECT_CACHE_STATS */ - /* 6) Close the file. */ - if ( pass ) { + if (pass) { - if ( H5Fclose(file_id) < 0 ) { + if (H5Fclose(file_id) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Fclose() failed.\n"; - } } - if ( show_progress ) + if (show_progress) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 7) Delete the file. */ - if ( pass ) { + if (pass) { /* wait for everyone to close the file */ MPI_Barrier(MPI_COMM_WORLD); - if ( ( mpi_rank == 0 ) && ( HDremove(filename) < 0 ) ) { + if ((mpi_rank == 0) && (HDremove(filename) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "HDremove() failed.\n"; } } - /* report results */ - if ( mpi_rank == 0 ) { + if (mpi_rank == 0) { - if ( pass ) { + if (pass) { PASSED(); - - } else { + } + else { H5_FAILED(); - if ( show_progress ) - HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", failure_mssg); + if (show_progress) { + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); + } } } - return !pass; } /* verify_cache_imageRW() */ - /***************************************************************************** * * Function: smoke_check_1() @@ -3676,52 +3219,49 @@ verify_cache_image_RW(int file_name_id, int md_write_strat, int mpi_rank) static hbool_t smoke_check_1(MPI_Comm mpi_comm, MPI_Info mpi_info, int mpi_rank, int mpi_size) { - const char * fcn_name = "smoke_check_1()"; - char filename[512]; - hbool_t show_progress = FALSE; - hid_t file_id = -1; - H5F_t *file_ptr = NULL; - H5C_t *cache_ptr = NULL; - int cp = 0; - int i; - int num_dsets = PAR_NUM_DSETS; - int test_file_index = 2; + const char * fcn_name = "smoke_check_1()"; + char filename[512]; + hbool_t show_progress = FALSE; + hid_t file_id = -1; + H5F_t * file_ptr = NULL; + H5C_t * cache_ptr = NULL; + int cp = 0; + int i; + int num_dsets = PAR_NUM_DSETS; + int test_file_index = 2; h5_stat_size_t file_size; pass = TRUE; - if ( mpi_rank == 0 ) { + if (mpi_rank == 0) { TESTING("parallel cache image smoke check 1"); } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); /* setup the file name */ - if ( pass ) { + if (pass) { HDassert(FILENAMES[test_file_index]); - if ( h5_fixname(FILENAMES[test_file_index], H5P_DEFAULT, - filename, sizeof(filename)) - == NULL ) { + if (h5_fixname(FILENAMES[test_file_index], H5P_DEFAULT, filename, sizeof(filename)) == NULL) { - pass = FALSE; + pass = FALSE; failure_mssg = "h5_fixname() failed.\n"; } } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 1) Create a PHDF5 file without the cache image FAPL entry. * * Verify that a cache image is not requested */ - if ( pass ) { + if (pass) { open_hdf5_file(/* create_file */ TRUE, /* mdci_sbem_expected */ FALSE, @@ -3742,63 +3282,57 @@ smoke_check_1(MPI_Comm mpi_comm, MPI_Info mpi_info, int mpi_rank, int mpi_size) /* md_write_strat */ 1); } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 2) Create datasets in the file */ i = 0; - while ( ( pass ) && ( i < num_dsets ) ) { + while ((pass) && (i < num_dsets)) { par_create_dataset(i, file_id, mpi_rank, mpi_size); i++; } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 3) Verify the datasets in the file */ i = 0; - while ( ( pass ) && ( i < num_dsets ) ) { + while ((pass) && (i < num_dsets)) { par_verify_dataset(i, file_id, mpi_rank); i++; } - /* 4) Close the file */ - if ( pass ) { + if (pass) { - if ( H5Fclose(file_id) < 0 ) { + if (H5Fclose(file_id) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Fclose() failed.\n"; - } } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 5 Insert a cache image into the file */ - if ( pass ) { + if (pass) { - par_insert_cache_image(test_file_index, mpi_rank, mpi_size); + par_insert_cache_image(test_file_index, mpi_rank, mpi_size); } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 6) Open the file R/O */ - if ( pass ) { + if (pass) { open_hdf5_file(/* create_file */ FALSE, /* mdci_sbem_expected */ TRUE, @@ -3819,10 +3353,9 @@ smoke_check_1(MPI_Comm mpi_comm, MPI_Info mpi_info, int mpi_rank, int mpi_size) /* md_write_strat */ 1); } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 7) Verify the datasets in the file backwards * * Verify that only process 0 reads the cache image. @@ -3832,72 +3365,69 @@ smoke_check_1(MPI_Comm mpi_comm, MPI_Info mpi_info, int mpi_rank, int mpi_size) */ i = num_dsets - 1; - while ( ( pass ) && ( i >= 0 ) ) { + while ((pass) && (i >= 0)) { par_verify_dataset(i, file_id, mpi_rank); i--; } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* Verify that only process 0 reads the cache image. */ + /* Verify that only process 0 reads the cache image. */ #if H5C_COLLECT_CACHE_STATS - if ( pass ) { + if (pass) { - if ( ( ( mpi_rank == 0 ) && ( cache_ptr->images_read != 1 ) ) || - ( ( mpi_rank > 0 ) && ( cache_ptr->images_read != 0 ) ) ) { + if (((mpi_rank == 0) && (cache_ptr->images_read != 1)) || + ((mpi_rank > 0) && (cache_ptr->images_read != 0))) { - pass = FALSE; + pass = FALSE; failure_mssg = "unexpected images_read."; } } #endif /* H5C_COLLECT_CACHE_STATS */ - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* Verify that all other processes receive the cache image block - * from process 0. - * - * Since we have alread verified that only process 0 has read the - * image, it is sufficient to verify that the image was loaded on - * all processes. - */ + /* Verify that all other processes receive the cache image block + * from process 0. + * + * Since we have already verified that only process 0 has read the + * image, it is sufficient to verify that the image was loaded on + * all processes. + */ #if H5C_COLLECT_CACHE_STATS - if ( pass ) { + if (pass) { - if ( cache_ptr->images_loaded != 1 ) { + if (cache_ptr->images_loaded != 1) { - pass = FALSE; + pass = FALSE; failure_mssg = "Image not loaded?."; } } #endif /* H5C_COLLECT_CACHE_STATS */ - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 8) Close the file */ - if ( pass ) { + if (pass) { - if ( H5Fclose(file_id) < 0 ) { + if (H5Fclose(file_id) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Fclose() failed."; - } } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 9) Open the file */ - if ( pass ) { + if (pass) { open_hdf5_file(/* create_file */ FALSE, /* mdci_sbem_expected */ TRUE, @@ -3918,10 +3448,9 @@ smoke_check_1(MPI_Comm mpi_comm, MPI_Info mpi_info, int mpi_rank, int mpi_size) /* md_write_strat */ 1); } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 10) Verify the datasets in the file * * Verify that only process 0 reads the cache image. @@ -3931,140 +3460,133 @@ smoke_check_1(MPI_Comm mpi_comm, MPI_Info mpi_info, int mpi_rank, int mpi_size) */ i = 0; - while ( ( pass ) && ( i < num_dsets ) ) { + while ((pass) && (i < num_dsets)) { par_verify_dataset(i, file_id, mpi_rank); i++; } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* Verify that only process 0 reads the cache image. */ + /* Verify that only process 0 reads the cache image. */ #if H5C_COLLECT_CACHE_STATS - if ( pass ) { + if (pass) { - if ( ( ( mpi_rank == 0 ) && ( cache_ptr->images_read != 1 ) ) || - ( ( mpi_rank > 0 ) && ( cache_ptr->images_read != 0 ) ) ) { + if (((mpi_rank == 0) && (cache_ptr->images_read != 1)) || + ((mpi_rank > 0) && (cache_ptr->images_read != 0))) { - pass = FALSE; + pass = FALSE; failure_mssg = "unexpected images_read."; } } #endif /* H5C_COLLECT_CACHE_STATS */ - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* Verify that all other processes receive the cache image block - * from process 0. - * - * Since we have alread verified that only process 0 has read the - * image, it is sufficient to verify that the image was loaded on - * all processes. - */ + /* Verify that all other processes receive the cache image block + * from process 0. + * + * Since we have already verified that only process 0 has read the + * image, it is sufficient to verify that the image was loaded on + * all processes. + */ #if H5C_COLLECT_CACHE_STATS - if ( pass ) { + if (pass) { - if ( cache_ptr->images_loaded != 1 ) { + if (cache_ptr->images_loaded != 1) { - pass = FALSE; + pass = FALSE; failure_mssg = "Image not loaded?."; } } #endif /* H5C_COLLECT_CACHE_STATS */ - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 11) Delete the datasets in the file */ i = 0; - while ( ( pass ) && ( i < num_dsets ) ) { + while ((pass) && (i < num_dsets)) { par_delete_dataset(i, file_id, mpi_rank); i++; } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 12) Close the file */ - if ( pass ) { + if (pass) { - if ( H5Fclose(file_id) < 0 ) { + if (H5Fclose(file_id) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "H5Fclose() failed."; - } } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 13) Get the size of the file. Verify that it is less - * than 20 KB. Without deletions and persistant free + * than 20 KB. Without deletions and persistent free * space managers, size size is about 30 MB, so this - * is sufficient to verify that the persistant free + * is sufficient to verify that the persistent free * space managers are more or less doing their job. * * Note that this test will have to change if we use * a larger page size. */ - if ( pass ) { + if (pass) { - if ( ( file_size = h5_get_file_size(filename, H5P_DEFAULT) ) < 0 ) { + if ((file_size = h5_get_file_size(filename, H5P_DEFAULT)) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "h5_get_file_size() failed."; + } + else if (file_size > 20 * 1024) { - } else if ( file_size > 20 * 1024 ) { - - pass = FALSE; + pass = FALSE; failure_mssg = "unexpectedly large file size."; } } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* 14) Delete the file */ - if ( pass ) { + if (pass) { /* wait for everyone to close the file */ MPI_Barrier(MPI_COMM_WORLD); - if ( ( mpi_rank == 0 ) && ( HDremove(filename) < 0 ) ) { + if ((mpi_rank == 0) && (HDremove(filename) < 0)) { - pass = FALSE; + pass = FALSE; failure_mssg = "HDremove() failed.\n"; } } - if ( ( mpi_rank == 0 ) && ( show_progress ) ) + if ((mpi_rank == 0) && (show_progress)) HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); - /* report results */ - if ( mpi_rank == 0 ) { + if (mpi_rank == 0) { - if ( pass ) { + if (pass) { PASSED(); - - } else { + } + else { H5_FAILED(); - HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", - fcn_name, failure_mssg); + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); } } @@ -4072,14 +3594,6 @@ smoke_check_1(MPI_Comm mpi_comm, MPI_Info mpi_info, int mpi_rank, int mpi_size) } /* smoke_check_1() */ - -/* This test uses many POSIX things that are not available on - * Windows. We're using a check for fork(2) here as a proxy for - * all POSIX/Unix/Linux things until this test can be made - * more platform-independent. - */ -#ifdef H5_HAVE_FORK - /*------------------------------------------------------------------------- * Function: main * @@ -4109,64 +3623,11 @@ smoke_check_1(MPI_Comm mpi_comm, MPI_Info mpi_info, int mpi_rank, int mpi_size) int main(int argc, char **argv) { - hbool_t setup = FALSE; - hbool_t ici = FALSE; unsigned nerrs = 0; - MPI_Comm comm = MPI_COMM_WORLD; - MPI_Info info = MPI_INFO_NULL; - int file_idx; - int i; - int mpi_size; - int mpi_rank; - - if ( ! parse_flags(argc, argv, &setup, &ici, &file_idx, &mpi_size, FALSE) ) - exit(1); /* exit now if unable to parse flags */ - - if ( setup ) { /* construct test files and exit */ - - H5open(); - HDfprintf(stdout, "Constructing test files: \n"); - HDfflush(stdout); - - i = 0; - while ( ( FILENAMES[i] != NULL ) && ( i < TEST_FILES_TO_CONSTRUCT ) ) { - - HDfprintf(stdout, " writing %s ... ", FILENAMES[i]); - HDfflush(stdout); - construct_test_file(i); - - if ( pass ) { - - HDprintf("done.\n"); - HDfflush(stdout); - - } else { - - HDprintf("failed.\n"); - HDexit(1); - } - i++; - } - - HDfprintf(stdout, "Test file construction complete.\n"); - HDexit(0); - - } else if ( ici ) { - - if ( serial_insert_cache_image(file_idx, mpi_size) ) { - - HDexit(0); - - } else { - - HDfprintf(stderr, "\n\nCache image insertion failed.\n"); - HDfprintf(stderr, " failure mssg = \"%s\"\n", failure_mssg); - HDexit(1); - } - } - - HDassert(!setup); - HDassert(!ici); + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + int mpi_size; + int mpi_rank; MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); @@ -4177,92 +3638,58 @@ main(int argc, char **argv) * hang in the atexit post processing in which it may try to make MPI * calls. By then, MPI calls may not work. */ - if (H5dont_atexit() < 0){ - HDprintf("%d:Failed to turn off atexit processing. Continue.\n", - mpi_rank); - }; + if (H5dont_atexit() < 0) + HDprintf("%d:Failed to turn off atexit processing. Continue.\n", mpi_rank); H5open(); - if ( mpi_rank == 0 ) { + if (mpi_rank == 0) { HDprintf("===================================\n"); HDprintf("Parallel metadata cache image tests\n"); HDprintf(" mpi_size = %d\n", mpi_size); HDprintf("===================================\n"); } - if ( mpi_size < 2 ) { - - if ( mpi_rank == 0 ) { - + if (mpi_size < 2) { + if (mpi_rank == 0) HDprintf(" Need at least 2 processes. Exiting.\n"); - } goto finish; } - if ( mpi_rank == 0 ) { /* create test files */ - - int child_status; - pid_t child_pid; - - child_pid = fork(); + if (mpi_rank == 0) { /* create test files */ + int i; - if ( child_pid == 0 ) { /* this is the child process */ - - /* fun and games to shutup the compiler */ - char param0[32] = "t_cache_image"; - char param1[32] = "setup"; - char * child_argv[] = {param0, param1, NULL}; + HDfprintf(stdout, "Constructing test files: \n"); + HDfflush(stdout); - /* we may need to play with the path here */ - if ( execv("t_cache_image", child_argv) == -1 ) { + i = 0; + while ((FILENAMES[i] != NULL) && (i < TEST_FILES_TO_CONSTRUCT)) { + HDfprintf(stdout, " writing %s ... ", FILENAMES[i]); + HDfflush(stdout); + construct_test_file(i); - HDfprintf(stdout, - "execl() of setup process failed. errno = %d(%s)\n", - errno, strerror(errno)); - HDexit(1); + if (pass) { + HDprintf("done.\n"); + HDfflush(stdout); } - - } else if ( child_pid != -1 ) { - /* this is the parent process -- wait until child is done */ - if ( -1 == waitpid(child_pid, &child_status, WUNTRACED)) { - - HDfprintf(stdout, "can't wait on setup process.\n"); - - } else if ( ! WIFEXITED(child_status) ) { - - HDfprintf(stdout, "setup process hasn't exitied.\n"); - - } else if ( WEXITSTATUS(child_status) != 0 ) { - - HDfprintf(stdout, "setup process reports failure.\n"); - - } else { - - HDfprintf(stdout, - "testfile construction complete -- proceeding with tests.\n"); + else { + HDprintf("failed.\n"); + HDexit(EXIT_FAILURE); } - } else { /* fork failed */ - - HDfprintf(stdout, "can't create process to construct test file.\n"); + i++; } + HDfprintf(stdout, "Test file construction complete.\n"); } /* can't start test until test files exist */ MPI_Barrier(MPI_COMM_WORLD); - - nerrs += verify_cache_image_RO(0, - H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY, mpi_rank); -#if 1 - nerrs += verify_cache_image_RO(1, - H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED, mpi_rank); - nerrs += verify_cache_image_RW(0, - H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY, mpi_rank); - nerrs += verify_cache_image_RW(1, - H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED, mpi_rank); + nerrs += verify_cache_image_RO(0, H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY, mpi_rank); + nerrs += verify_cache_image_RO(1, H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED, mpi_rank); + nerrs += verify_cache_image_RW(0, H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY, mpi_rank); + nerrs += verify_cache_image_RW(1, H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED, mpi_rank); nerrs += smoke_check_1(comm, info, mpi_rank, mpi_size); -#endif + finish: /* make sure all processes are finished before final report, cleanup @@ -4270,21 +3697,15 @@ finish: */ MPI_Barrier(MPI_COMM_WORLD); - if ( mpi_rank == 0 ) { /* only process 0 reports */ - HDsleep(10); + if (mpi_rank == 0) { /* only process 0 reports */ HDprintf("===================================\n"); - if ( nerrs > 0 ) { - HDprintf("***metadata cache image tests detected %d failures***\n", - nerrs); - } - else { + if (nerrs > 0) + HDprintf("***metadata cache image tests detected %d failures***\n", nerrs); + else HDprintf("metadata cache image tests finished with no failures\n"); - } HDprintf("===================================\n"); } - /* takedown_derived_types(); */ - /* close HDF5 library */ H5close(); @@ -4292,17 +3713,6 @@ finish: MPI_Finalize(); /* cannot just return (nerrs) because exit code is limited to 1byte */ - return(nerrs > 0); + return (nerrs > 0); } /* main() */ -#else /* H5_HAVE_FORK */ - -int -main(void) -{ - HDfprintf(stderr, "Non-POSIX platform. Skipping.\n"); - return EXIT_SUCCESS; -} /* end main() */ - -#endif /* H5_HAVE_FORK */ - diff --git a/testpar/t_chunk_alloc.c b/testpar/t_chunk_alloc.c index bfa0bfe..06f6f20 100644 --- a/testpar/t_chunk_alloc.c +++ b/testpar/t_chunk_alloc.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -22,21 +22,20 @@ #include "testphdf5.h" static int mpi_size, mpi_rank; -#define DSET_NAME "ExtendibleArray" -#define CHUNK_SIZE 1000 /* #elements per chunk */ -#define CHUNK_FACTOR 200 /* default dataset size in terms of chunks */ -#define CLOSE 1 -#define NO_CLOSE 0 +#define DSET_NAME "ExtendibleArray" +#define CHUNK_SIZE 1000 /* #elements per chunk */ +#define CHUNK_FACTOR 200 /* default dataset size in terms of chunks */ +#define CLOSE 1 +#define NO_CLOSE 0 static MPI_Offset get_filesize(const char *filename) { int mpierr; - MPI_File fd; - MPI_Offset filesize; + MPI_File fd; + MPI_Offset filesize; - mpierr = MPI_File_open(MPI_COMM_SELF, filename, MPI_MODE_RDONLY, - MPI_INFO_NULL, &fd); + mpierr = MPI_File_open(MPI_COMM_SELF, filename, MPI_MODE_RDONLY, MPI_INFO_NULL, &fd); VRFY((mpierr == MPI_SUCCESS), ""); mpierr = MPI_File_get_size(fd, &filesize); @@ -45,21 +44,12 @@ get_filesize(const char *filename) mpierr = MPI_File_close(&fd); VRFY((mpierr == MPI_SUCCESS), ""); - return(filesize); + return (filesize); } -typedef enum write_pattern { - none, - sec_last, - all -} write_type; - -typedef enum access_ { - write_all, - open_only, - extend_only -} access_type; +typedef enum write_pattern { none, sec_last, all } write_type; +typedef enum access_ { write_all, open_only, extend_only } access_type; /* * This creates a dataset serially with chunks, each of CHUNK_SIZE @@ -69,35 +59,35 @@ typedef enum access_ { static void create_chunked_dataset(const char *filename, int chunk_factor, write_type write_pattern) { - hid_t file_id, dataset; /* handles */ - hid_t dataspace,memspace; - hid_t cparms; - hsize_t dims[1]; - hsize_t maxdims[1] = {H5S_UNLIMITED}; - - hsize_t chunk_dims[1] ={CHUNK_SIZE}; - hsize_t count[1]; - hsize_t stride[1]; - hsize_t block[1]; - hsize_t offset[1]; /* Selection offset within dataspace */ + hid_t file_id, dataset; /* handles */ + hid_t dataspace, memspace; + hid_t cparms; + hsize_t dims[1]; + hsize_t maxdims[1] = {H5S_UNLIMITED}; + + hsize_t chunk_dims[1] = {CHUNK_SIZE}; + hsize_t count[1]; + hsize_t stride[1]; + hsize_t block[1]; + hsize_t offset[1]; /* Selection offset within dataspace */ /* Variables used in reading data back */ - char buffer[CHUNK_SIZE]; - long nchunks; - herr_t hrc; + char buffer[CHUNK_SIZE]; + long nchunks; + herr_t hrc; - MPI_Offset filesize, /* actual file size */ - est_filesize; /* estimated file size */ + MPI_Offset filesize, /* actual file size */ + est_filesize; /* estimated file size */ /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* Only MAINPROCESS should create the file. Others just wait. */ - if (MAINPROCESS){ - nchunks=chunk_factor*mpi_size; - dims[0]=nchunks*CHUNK_SIZE; + if (MAINPROCESS) { + nchunks = chunk_factor * mpi_size; + dims[0] = (hsize_t)(nchunks * CHUNK_SIZE); /* Create the data space with unlimited dimensions. */ - dataspace = H5Screate_simple (1, dims, maxdims); + dataspace = H5Screate_simple(1, dims, maxdims); VRFY((dataspace >= 0), ""); memspace = H5Screate_simple(1, chunk_dims, NULL); @@ -118,19 +108,20 @@ create_chunked_dataset(const char *filename, int chunk_factor, write_type write_ VRFY((hrc >= 0), ""); /* Create a new dataset within the file using cparms creation properties. */ - dataset = H5Dcreate2(file_id, DSET_NAME, H5T_NATIVE_UCHAR, dataspace, H5P_DEFAULT, cparms, H5P_DEFAULT); + dataset = + H5Dcreate2(file_id, DSET_NAME, H5T_NATIVE_UCHAR, dataspace, H5P_DEFAULT, cparms, H5P_DEFAULT); VRFY((dataset >= 0), ""); - if(write_pattern == sec_last) { + if (write_pattern == sec_last) { HDmemset(buffer, 100, CHUNK_SIZE); - count[0] = 1; + count[0] = 1; stride[0] = 1; - block[0] = chunk_dims[0]; - offset[0] = (nchunks-2)*chunk_dims[0]; + block[0] = chunk_dims[0]; + offset[0] = (hsize_t)(nchunks - 2) * chunk_dims[0]; hrc = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, stride, count, block); - VRFY((hrc >= 0), ""); + VRFY((hrc >= 0), ""); /* Write sec_last chunk */ hrc = H5Dwrite(dataset, H5T_NATIVE_UCHAR, memspace, dataspace, H5P_DEFAULT, buffer); @@ -138,28 +129,27 @@ create_chunked_dataset(const char *filename, int chunk_factor, write_type write_ } /* end if */ /* Close resources */ - hrc = H5Dclose (dataset); + hrc = H5Dclose(dataset); VRFY((hrc >= 0), ""); dataset = -1; - hrc = H5Sclose (dataspace); + hrc = H5Sclose(dataspace); VRFY((hrc >= 0), ""); - hrc = H5Sclose (memspace); + hrc = H5Sclose(memspace); VRFY((hrc >= 0), ""); - hrc = H5Pclose (cparms); + hrc = H5Pclose(cparms); VRFY((hrc >= 0), ""); - hrc = H5Fclose (file_id); + hrc = H5Fclose(file_id); VRFY((hrc >= 0), ""); file_id = -1; /* verify file size */ - filesize = get_filesize(filename); - est_filesize = nchunks * CHUNK_SIZE * sizeof(unsigned char); + filesize = get_filesize(filename); + est_filesize = (MPI_Offset)nchunks * (MPI_Offset)CHUNK_SIZE * (MPI_Offset)sizeof(unsigned char); VRFY((filesize >= est_filesize), "file size check"); - } /* Make sure all processes are done before exiting this routine. Otherwise, @@ -170,7 +160,6 @@ create_chunked_dataset(const char *filename, int chunk_factor, write_type write_ MPI_Barrier(MPI_COMM_WORLD); } - /* * This program performs three different types of parallel access. It writes on * the entire dataset, it extends the dataset to nchunks*CHUNK_SIZE, and it only @@ -178,51 +167,52 @@ create_chunked_dataset(const char *filename, int chunk_factor, write_type write_ * consistent with argument 'chunk_factor'. */ static void -parallel_access_dataset(const char *filename, int chunk_factor, access_type action, hid_t *file_id, hid_t *dataset) +parallel_access_dataset(const char *filename, int chunk_factor, access_type action, hid_t *file_id, + hid_t *dataset) { /* HDF5 gubbins */ - hid_t memspace, dataspace; /* HDF5 file identifier */ - hid_t access_plist; /* HDF5 ID for file access property list */ - herr_t hrc; /* HDF5 return code */ - hsize_t size[1]; - - hsize_t chunk_dims[1] ={CHUNK_SIZE}; - hsize_t count[1]; - hsize_t stride[1]; - hsize_t block[1]; - hsize_t offset[1]; /* Selection offset within dataspace */ - hsize_t dims[1]; - hsize_t maxdims[1]; + hid_t memspace, dataspace; /* HDF5 file identifier */ + hid_t access_plist; /* HDF5 ID for file access property list */ + herr_t hrc; /* HDF5 return code */ + hsize_t size[1]; + + hsize_t chunk_dims[1] = {CHUNK_SIZE}; + hsize_t count[1]; + hsize_t stride[1]; + hsize_t block[1]; + hsize_t offset[1]; /* Selection offset within dataspace */ + hsize_t dims[1]; + hsize_t maxdims[1]; /* Variables used in reading data back */ - char buffer[CHUNK_SIZE]; - int i; - long nchunks; + char buffer[CHUNK_SIZE]; + int i; + long nchunks; /* MPI Gubbins */ - MPI_Offset filesize, /* actual file size */ - est_filesize; /* estimated file size */ + MPI_Offset filesize, /* actual file size */ + est_filesize; /* estimated file size */ /* Initialize MPI */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - nchunks=chunk_factor*mpi_size; + nchunks = chunk_factor * mpi_size; /* Set up MPIO file access property lists */ - access_plist = H5Pcreate(H5P_FILE_ACCESS); + access_plist = H5Pcreate(H5P_FILE_ACCESS); VRFY((access_plist >= 0), ""); hrc = H5Pset_fapl_mpio(access_plist, MPI_COMM_WORLD, MPI_INFO_NULL); VRFY((hrc >= 0), ""); /* Open the file */ - if (*file_id<0){ + if (*file_id < 0) { *file_id = H5Fopen(filename, H5F_ACC_RDWR, access_plist); VRFY((*file_id >= 0), ""); } /* Open dataset*/ - if (*dataset<0){ + if (*dataset < 0) { *dataset = H5Dopen2(*file_id, DSET_NAME, H5P_DEFAULT); VRFY((*dataset >= 0), ""); } @@ -233,19 +223,19 @@ parallel_access_dataset(const char *filename, int chunk_factor, access_type acti dataspace = H5Dget_space(*dataset); VRFY((dataspace >= 0), ""); - size[0] = nchunks*CHUNK_SIZE; + size[0] = (hsize_t)nchunks * CHUNK_SIZE; switch (action) { /* all chunks are written by all the processes in an interleaved way*/ case write_all: - HDmemset(buffer, mpi_rank+1, CHUNK_SIZE); - count[0] = 1; + HDmemset(buffer, mpi_rank + 1, CHUNK_SIZE); + count[0] = 1; stride[0] = 1; - block[0] = chunk_dims[0]; - for (i=0; i<nchunks/mpi_size; i++) { - offset[0] = (i*mpi_size+mpi_rank)*chunk_dims[0]; + block[0] = chunk_dims[0]; + for (i = 0; i < nchunks / mpi_size; i++) { + offset[0] = (hsize_t)(i * mpi_size + mpi_rank) * chunk_dims[0]; hrc = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, stride, count, block); VRFY((hrc >= 0), ""); @@ -282,10 +272,10 @@ parallel_access_dataset(const char *filename, int chunk_factor, access_type acti VRFY((hrc >= 0), ""); *dataset = -1; - hrc = H5Sclose (dataspace); + hrc = H5Sclose(dataspace); VRFY((hrc >= 0), ""); - hrc = H5Sclose (memspace); + hrc = H5Sclose(memspace); VRFY((hrc >= 0), ""); hrc = H5Fclose(*file_id); @@ -293,8 +283,8 @@ parallel_access_dataset(const char *filename, int chunk_factor, access_type acti *file_id = -1; /* verify file size */ - filesize = get_filesize(filename); - est_filesize = nchunks*CHUNK_SIZE*sizeof(unsigned char); + filesize = get_filesize(filename); + est_filesize = (MPI_Offset)nchunks * (MPI_Offset)CHUNK_SIZE * (MPI_Offset)sizeof(unsigned char); VRFY((filesize >= est_filesize), "file size check"); /* Can close some plists */ @@ -317,45 +307,45 @@ parallel_access_dataset(const char *filename, int chunk_factor, access_type acti * interleaved pattern. */ static void -verify_data(const char *filename, int chunk_factor, write_type write_pattern, int vclose, - hid_t *file_id, hid_t *dataset) +verify_data(const char *filename, int chunk_factor, write_type write_pattern, int vclose, hid_t *file_id, + hid_t *dataset) { /* HDF5 gubbins */ - hid_t dataspace, memspace; /* HDF5 file identifier */ - hid_t access_plist; /* HDF5 ID for file access property list */ - herr_t hrc; /* HDF5 return code */ - - hsize_t chunk_dims[1] ={CHUNK_SIZE}; - hsize_t count[1]; - hsize_t stride[1]; - hsize_t block[1]; - hsize_t offset[1]; /* Selection offset within dataspace */ + hid_t dataspace, memspace; /* HDF5 file identifier */ + hid_t access_plist; /* HDF5 ID for file access property list */ + herr_t hrc; /* HDF5 return code */ + + hsize_t chunk_dims[1] = {CHUNK_SIZE}; + hsize_t count[1]; + hsize_t stride[1]; + hsize_t block[1]; + hsize_t offset[1]; /* Selection offset within dataspace */ /* Variables used in reading data back */ - char buffer[CHUNK_SIZE]; - int value, i; - int index_l; - long nchunks; + char buffer[CHUNK_SIZE]; + int value, i; + int index_l; + long nchunks; /* Initialize MPI */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - nchunks=chunk_factor*mpi_size; + nchunks = chunk_factor * mpi_size; /* Set up MPIO file access property lists */ - access_plist = H5Pcreate(H5P_FILE_ACCESS); + access_plist = H5Pcreate(H5P_FILE_ACCESS); VRFY((access_plist >= 0), ""); hrc = H5Pset_fapl_mpio(access_plist, MPI_COMM_WORLD, MPI_INFO_NULL); VRFY((hrc >= 0), ""); /* Open the file */ - if (*file_id<0){ + if (*file_id < 0) { *file_id = H5Fopen(filename, H5F_ACC_RDWR, access_plist); VRFY((*file_id >= 0), ""); } /* Open dataset*/ - if (*dataset<0){ + if (*dataset < 0) { *dataset = H5Dopen2(*file_id, DSET_NAME, H5P_DEFAULT); VRFY((*dataset >= 0), ""); } @@ -367,14 +357,14 @@ verify_data(const char *filename, int chunk_factor, write_type write_pattern, in VRFY((dataspace >= 0), ""); /* all processes check all chunks. */ - count[0] = 1; + count[0] = 1; stride[0] = 1; - block[0] = chunk_dims[0]; - for (i=0; i<nchunks; i++){ + block[0] = chunk_dims[0]; + for (i = 0; i < nchunks; i++) { /* reset buffer values */ HDmemset(buffer, -1, CHUNK_SIZE); - offset[0] = i*chunk_dims[0]; + offset[0] = (hsize_t)i * chunk_dims[0]; hrc = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, stride, count, block); VRFY((hrc >= 0), ""); @@ -385,18 +375,18 @@ verify_data(const char *filename, int chunk_factor, write_type write_pattern, in /* set expected value according the write pattern */ switch (write_pattern) { - case all: - value = i%mpi_size + 1; - break; - case none: - value = 0; - break; - case sec_last: - if (i==nchunks-2) - value = 100; - else + case all: + value = i % mpi_size + 1; + break; + case none: value = 0; break; + case sec_last: + if (i == nchunks - 2) + value = 100; + else + value = 0; + break; default: HDassert(0); } @@ -406,10 +396,10 @@ verify_data(const char *filename, int chunk_factor, write_type write_pattern, in VRFY((buffer[index_l] == value), "data verification"); } - hrc = H5Sclose (dataspace); + hrc = H5Sclose(dataspace); VRFY((hrc >= 0), ""); - hrc = H5Sclose (memspace); + hrc = H5Sclose(memspace); VRFY((hrc >= 0), ""); /* Can close some plists */ @@ -417,7 +407,7 @@ verify_data(const char *filename, int chunk_factor, write_type write_pattern, in VRFY((hrc >= 0), ""); /* Close up */ - if (vclose){ + if (vclose) { hrc = H5Dclose(*dataset); VRFY((hrc >= 0), ""); *dataset = -1; @@ -434,8 +424,6 @@ verify_data(const char *filename, int chunk_factor, write_type write_pattern, in MPI_Barrier(MPI_COMM_WORLD); } - - /* * Test following possible scenarios, * Case 1: @@ -458,15 +446,15 @@ void test_chunk_alloc(void) { const char *filename; - hid_t file_id, dataset; + hid_t file_id, dataset; file_id = dataset = -1; /* Initialize MPI */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - filename = (const char*)GetTestParameters(); + filename = (const char *)GetTestParameters(); if (VERBOSE_MED) HDprintf("Extend Chunked allocation test on file %s\n", filename); @@ -495,5 +483,4 @@ test_chunk_alloc(void) parallel_access_dataset(filename, CHUNK_FACTOR, write_all, &file_id, &dataset); /* reopen dataset in parallel, read and verify the data */ verify_data(filename, CHUNK_FACTOR, all, CLOSE, &file_id, &dataset); - } diff --git a/testpar/t_coll_chunk.c b/testpar/t_coll_chunk.c index 40cc1ca..20efaa1 100644 --- a/testpar/t_coll_chunk.c +++ b/testpar/t_coll_chunk.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -16,26 +16,23 @@ #define HYPER 1 #define POINT 2 -#define ALL 3 +#define ALL 3 /* some commonly used routines for collective chunk IO tests*/ -static void ccslab_set(int mpi_rank,int mpi_size,hsize_t start[],hsize_t count[], - hsize_t stride[],hsize_t block[],int mode); +static void ccslab_set(int mpi_rank, int mpi_size, hsize_t start[], hsize_t count[], hsize_t stride[], + hsize_t block[], int mode); -static void ccdataset_fill(hsize_t start[],hsize_t count[], - hsize_t stride[],hsize_t block[],DATATYPE*dataset, - int mem_selection); +static void ccdataset_fill(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], + DATATYPE *dataset, int mem_selection); -static void ccdataset_print(hsize_t start[],hsize_t block[],DATATYPE*dataset); +static void ccdataset_print(hsize_t start[], hsize_t block[], DATATYPE *dataset); -static int ccdataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], - hsize_t block[], DATATYPE *dataset, DATATYPE *original, - int mem_selection); - -static void coll_chunktest(const char* filename, int chunk_factor, int select_factor, - int api_option, int file_selection, int mem_selection, int mode); +static int ccdataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], + DATATYPE *dataset, DATATYPE *original, int mem_selection); +static void coll_chunktest(const char *filename, int chunk_factor, int select_factor, int api_option, + int file_selection, int mem_selection, int mode); /*------------------------------------------------------------------------- * Function: coll_chunk1 @@ -88,7 +85,6 @@ coll_chunk1(void) coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, HYPER, IN_ORDER); } - /*------------------------------------------------------------------------- * Function: coll_chunk2 * @@ -107,7 +103,7 @@ coll_chunk1(void) *------------------------------------------------------------------------- */ - /* ------------------------------------------------------------------------ +/* ------------------------------------------------------------------------ * Descriptions for the selection: many disjoint selections inside one chunk * Two dimensions, * @@ -140,7 +136,6 @@ coll_chunk2(void) coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, HYPER, IN_ORDER); } - /*------------------------------------------------------------------------- * Function: coll_chunk3 * @@ -160,7 +155,7 @@ coll_chunk2(void) */ /* ------------------------------------------------------------------------ - * Descriptions for the selection: one singular selection accross many chunks + * Descriptions for the selection: one singular selection across many chunks * Two dimensions, Num of chunks = 2* mpi_size * * dim1 = SPACE_DIM1*mpi_size @@ -181,7 +176,7 @@ void coll_chunk3(void) { const char *filename = GetTestParameters(); - int mpi_size; + int mpi_size; MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); coll_chunktest(filename, mpi_size, BYROW_CONT, API_NONE, HYPER, HYPER, OUT_OF_ORDER); @@ -214,7 +209,7 @@ coll_chunk3(void) */ /* ------------------------------------------------------------------------ - * Descriptions for the selection: one singular selection accross many chunks + * Descriptions for the selection: one singular selection across many chunks * Two dimensions, Num of chunks = 2* mpi_size * * dim1 = SPACE_DIM1*mpi_size @@ -266,7 +261,7 @@ coll_chunk4(void) */ /* ------------------------------------------------------------------------ - * Descriptions for the selection: one singular selection accross many chunks + * Descriptions for the selection: one singular selection across many chunks * Two dimensions, Num of chunks = 2* mpi_size * * dim1 = SPACE_DIM1*mpi_size @@ -320,7 +315,7 @@ coll_chunk5(void) */ /* ------------------------------------------------------------------------ - * Descriptions for the selection: one singular selection accross many chunks + * Descriptions for the selection: one singular selection across many chunks * Two dimensions, Num of chunks = 2* mpi_size * * dim1 = SPACE_DIM1*mpi_size @@ -372,7 +367,7 @@ coll_chunk6(void) */ /* ------------------------------------------------------------------------ - * Descriptions for the selection: one singular selection accross many chunks + * Descriptions for the selection: one singular selection across many chunks * Two dimensions, Num of chunks = 2* mpi_size * * dim1 = SPACE_DIM1*mpi_size @@ -424,7 +419,7 @@ coll_chunk7(void) */ /* ------------------------------------------------------------------------ - * Descriptions for the selection: one singular selection accross many chunks + * Descriptions for the selection: one singular selection across many chunks * Two dimensions, Num of chunks = 2* mpi_size * * dim1 = SPACE_DIM1*mpi_size @@ -476,7 +471,7 @@ coll_chunk8(void) */ /* ------------------------------------------------------------------------ - * Descriptions for the selection: one singular selection accross many chunks + * Descriptions for the selection: one singular selection across many chunks * Two dimensions, Num of chunks = 2* mpi_size * * dim1 = SPACE_DIM1*mpi_size @@ -496,17 +491,17 @@ coll_chunk8(void) void coll_chunk9(void) { - const char *filename = GetTestParameters(); + const char *filename = GetTestParameters(); - coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, HYPER, HYPER, OUT_OF_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, HYPER, POINT, OUT_OF_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, POINT, ALL, OUT_OF_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, POINT, POINT, OUT_OF_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, POINT, HYPER, OUT_OF_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, HYPER, HYPER, OUT_OF_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, HYPER, POINT, OUT_OF_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, POINT, ALL, OUT_OF_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, POINT, POINT, OUT_OF_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, POINT, HYPER, OUT_OF_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, POINT, ALL, IN_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, POINT, POINT, IN_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, POINT, HYPER, IN_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, POINT, ALL, IN_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, POINT, POINT, IN_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTUNBALANCE, API_MULTI_COLL, POINT, HYPER, IN_ORDER); } /*------------------------------------------------------------------------- @@ -528,7 +523,7 @@ coll_chunk9(void) */ /* ------------------------------------------------------------------------ - * Descriptions for the selection: one singular selection accross many chunks + * Descriptions for the selection: one singular selection across many chunks * Two dimensions, Num of chunks = 2* mpi_size * * dim1 = SPACE_DIM1*mpi_size @@ -548,28 +543,27 @@ coll_chunk9(void) void coll_chunk10(void) { - const char *filename = GetTestParameters(); + const char *filename = GetTestParameters(); - coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, HYPER, HYPER, OUT_OF_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, HYPER, POINT, OUT_OF_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, POINT, ALL, OUT_OF_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, POINT, POINT, OUT_OF_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, POINT, HYPER, OUT_OF_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, HYPER, HYPER, OUT_OF_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, HYPER, POINT, OUT_OF_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, POINT, ALL, OUT_OF_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, POINT, POINT, OUT_OF_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, POINT, HYPER, OUT_OF_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, POINT, ALL, IN_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, POINT, POINT, IN_ORDER); - coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, POINT, HYPER, IN_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, POINT, ALL, IN_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, POINT, POINT, IN_ORDER); + coll_chunktest(filename, 4, BYROW_SELECTINCHUNK, API_MULTI_IND, POINT, HYPER, IN_ORDER); } - /*------------------------------------------------------------------------- * Function: coll_chunktest * * Purpose: The real testing routine for regular selection of collective chunking storage testing both write and read, - If anything fails, it may be read or write. There is no - separation test between read and write. + If anything fails, it may be read or write. There is no + separation test between read and write. * * Return: Success: 0 * @@ -590,573 +584,566 @@ coll_chunk10(void) */ static void -coll_chunktest(const char* filename, - int chunk_factor, - int select_factor, - int api_option, - int file_selection, - int mem_selection, - int mode) +coll_chunktest(const char *filename, int chunk_factor, int select_factor, int api_option, int file_selection, + int mem_selection, int mode) { - hid_t file, dataset, file_dataspace, mem_dataspace; - hid_t acc_plist,xfer_plist,crp_plist; + hid_t file, dataset, file_dataspace, mem_dataspace; + hid_t acc_plist, xfer_plist, crp_plist; - hsize_t dims[RANK], chunk_dims[RANK]; - int* data_array1 = NULL; - int* data_origin1 = NULL; + hsize_t dims[RANK], chunk_dims[RANK]; + int * data_array1 = NULL; + int * data_origin1 = NULL; - hsize_t start[RANK],count[RANK],stride[RANK],block[RANK]; + hsize_t start[RANK], count[RANK], stride[RANK], block[RANK]; #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - unsigned prop_value; + unsigned prop_value; #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ - int mpi_size,mpi_rank; + int mpi_size, mpi_rank; + + herr_t status; + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + + size_t num_points; /* for point selection */ + hsize_t *coords = NULL; /* for point selection */ + hsize_t current_dims; /* for point selection */ + + /* set up MPI parameters */ + MPI_Comm_size(comm, &mpi_size); + MPI_Comm_rank(comm, &mpi_rank); + + /* Create the data space */ + + acc_plist = create_faccess_plist(comm, info, facc_type); + VRFY((acc_plist >= 0), ""); + + file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_plist); + VRFY((file >= 0), "H5Fcreate succeeded"); + + status = H5Pclose(acc_plist); + VRFY((status >= 0), ""); + + /* setup dimensionality object */ + dims[0] = (hsize_t)(SPACE_DIM1 * mpi_size); + dims[1] = SPACE_DIM2; + + /* allocate memory for data buffer */ + data_array1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int)); + VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); + + /* set up dimensions of the slab this process accesses */ + ccslab_set(mpi_rank, mpi_size, start, count, stride, block, select_factor); + + /* set up the coords array selection */ + num_points = block[0] * block[1] * count[0] * count[1]; + coords = (hsize_t *)HDmalloc(num_points * RANK * sizeof(hsize_t)); + VRFY((coords != NULL), "coords malloc succeeded"); + point_set(start, count, stride, block, num_points, coords, mode); + + file_dataspace = H5Screate_simple(2, dims, NULL); + VRFY((file_dataspace >= 0), "file dataspace created succeeded"); + + if (ALL != mem_selection) { + mem_dataspace = H5Screate_simple(2, dims, NULL); + VRFY((mem_dataspace >= 0), "mem dataspace created succeeded"); + } + else { + current_dims = num_points; + mem_dataspace = H5Screate_simple(1, ¤t_dims, NULL); + VRFY((mem_dataspace >= 0), "mem_dataspace create succeeded"); + } + + crp_plist = H5Pcreate(H5P_DATASET_CREATE); + VRFY((crp_plist >= 0), ""); + + /* Set up chunk information. */ + chunk_dims[0] = dims[0] / (hsize_t)chunk_factor; + + /* to decrease the testing time, maintain bigger chunk size */ + (chunk_factor == 1) ? (chunk_dims[1] = SPACE_DIM2) : (chunk_dims[1] = SPACE_DIM2 / 2); + status = H5Pset_chunk(crp_plist, 2, chunk_dims); + VRFY((status >= 0), "chunk creation property list succeeded"); + + dataset = H5Dcreate2(file, DSET_COLLECTIVE_CHUNK_NAME, H5T_NATIVE_INT, file_dataspace, H5P_DEFAULT, + crp_plist, H5P_DEFAULT); + VRFY((dataset >= 0), "dataset created succeeded"); + + status = H5Pclose(crp_plist); + VRFY((status >= 0), ""); + + /*put some trivial data in the data array */ + ccdataset_fill(start, stride, count, block, data_array1, mem_selection); - herr_t status; - MPI_Comm comm = MPI_COMM_WORLD; - MPI_Info info = MPI_INFO_NULL; - - size_t num_points; /* for point selection */ - hsize_t *coords = NULL; /* for point selection */ - hsize_t current_dims; /* for point selection */ - int i; - - /* set up MPI parameters */ - MPI_Comm_size(comm,&mpi_size); - MPI_Comm_rank(comm,&mpi_rank); - - /* Create the data space */ - - acc_plist = create_faccess_plist(comm,info,facc_type); - VRFY((acc_plist >= 0),""); - - file = H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_plist); - VRFY((file >= 0),"H5Fcreate succeeded"); - - status = H5Pclose(acc_plist); - VRFY((status >= 0),""); - - /* setup dimensionality object */ - dims[0] = SPACE_DIM1*mpi_size; - dims[1] = SPACE_DIM2; - - /* allocate memory for data buffer */ - data_array1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int)); - VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); - - /* set up dimensions of the slab this process accesses */ - ccslab_set(mpi_rank, mpi_size, start, count, stride, block, select_factor); - - /* set up the coords array selection */ - num_points = block[0] * block[1] * count[0] * count[1]; - coords = (hsize_t *)HDmalloc(num_points * RANK * sizeof(hsize_t)); - VRFY((coords != NULL), "coords malloc succeeded"); - point_set(start, count, stride, block, num_points, coords, mode); - - file_dataspace = H5Screate_simple(2, dims, NULL); - VRFY((file_dataspace >= 0), "file dataspace created succeeded"); - - if(ALL != mem_selection) { - mem_dataspace = H5Screate_simple(2, dims, NULL); - VRFY((mem_dataspace >= 0), "mem dataspace created succeeded"); - } - else { - current_dims = num_points; - mem_dataspace = H5Screate_simple (1, ¤t_dims, NULL); - VRFY((mem_dataspace >= 0), "mem_dataspace create succeeded"); - } - - crp_plist = H5Pcreate(H5P_DATASET_CREATE); - VRFY((crp_plist >= 0),""); - - /* Set up chunk information. */ - chunk_dims[0] = dims[0]/chunk_factor; - - /* to decrease the testing time, maintain bigger chunk size */ - (chunk_factor == 1) ? (chunk_dims[1] = SPACE_DIM2) : (chunk_dims[1] = SPACE_DIM2/2); - status = H5Pset_chunk(crp_plist, 2, chunk_dims); - VRFY((status >= 0),"chunk creation property list succeeded"); - - dataset = H5Dcreate2(file, DSET_COLLECTIVE_CHUNK_NAME, H5T_NATIVE_INT, - file_dataspace, H5P_DEFAULT, crp_plist, H5P_DEFAULT); - VRFY((dataset >= 0),"dataset created succeeded"); - - status = H5Pclose(crp_plist); - VRFY((status >= 0), ""); - - /*put some trivial data in the data array */ - ccdataset_fill(start, stride, count,block, data_array1, mem_selection); - - MESG("data_array initialized"); - - switch (file_selection) { - case HYPER: - status = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((status >= 0),"hyperslab selection succeeded"); - break; - - case POINT: - if (num_points) { - status = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); - VRFY((status >= 0),"Element selection succeeded"); - } - else { - status = H5Sselect_none(file_dataspace); - VRFY((status >= 0),"none selection succeeded"); - } - break; - - case ALL: - status = H5Sselect_all(file_dataspace); - VRFY((status >= 0), "H5Sselect_all succeeded"); - break; - } - - switch (mem_selection) { - case HYPER: - status = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((status >= 0),"hyperslab selection succeeded"); - break; - - case POINT: - if (num_points) { - status = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); - VRFY((status >= 0),"Element selection succeeded"); - } - else { - status = H5Sselect_none(mem_dataspace); - VRFY((status >= 0),"none selection succeeded"); - } - break; - - case ALL: - status = H5Sselect_all(mem_dataspace); - VRFY((status >= 0), "H5Sselect_all succeeded"); - break; - } - - /* set up the collective transfer property list */ - xfer_plist = H5Pcreate(H5P_DATASET_XFER); - VRFY((xfer_plist >= 0), ""); - - status = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((status>= 0),"MPIO collective transfer property succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - status = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); - VRFY((status>= 0),"set independent IO collectively succeeded"); - } - - switch(api_option){ - case API_LINK_HARD: - status = H5Pset_dxpl_mpio_chunk_opt(xfer_plist,H5FD_MPIO_CHUNK_ONE_IO); - VRFY((status>= 0),"collective chunk optimization succeeded"); - break; - - case API_MULTI_HARD: - status = H5Pset_dxpl_mpio_chunk_opt(xfer_plist,H5FD_MPIO_CHUNK_MULTI_IO); - VRFY((status>= 0),"collective chunk optimization succeeded "); - break; - - case API_LINK_TRUE: - status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist,2); - VRFY((status>= 0),"collective chunk optimization set chunk number succeeded"); - break; - - case API_LINK_FALSE: - status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist,6); - VRFY((status>= 0),"collective chunk optimization set chunk number succeeded"); - break; - - case API_MULTI_COLL: - status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist,8);/* make sure it is using multi-chunk IO */ - VRFY((status>= 0),"collective chunk optimization set chunk number succeeded"); - status = H5Pset_dxpl_mpio_chunk_opt_ratio(xfer_plist,50); - VRFY((status>= 0),"collective chunk optimization set chunk ratio succeeded"); - break; - - case API_MULTI_IND: - status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist,8);/* make sure it is using multi-chunk IO */ - VRFY((status>= 0),"collective chunk optimization set chunk number succeeded"); - status = H5Pset_dxpl_mpio_chunk_opt_ratio(xfer_plist,100); - VRFY((status>= 0),"collective chunk optimization set chunk ratio succeeded"); - break; - - default: - ; - } + MESG("data_array initialized"); + + switch (file_selection) { + case HYPER: + status = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((status >= 0), "hyperslab selection succeeded"); + break; + + case POINT: + if (num_points) { + status = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((status >= 0), "Element selection succeeded"); + } + else { + status = H5Sselect_none(file_dataspace); + VRFY((status >= 0), "none selection succeeded"); + } + break; + + case ALL: + status = H5Sselect_all(file_dataspace); + VRFY((status >= 0), "H5Sselect_all succeeded"); + break; + } + + switch (mem_selection) { + case HYPER: + status = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((status >= 0), "hyperslab selection succeeded"); + break; + + case POINT: + if (num_points) { + status = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((status >= 0), "Element selection succeeded"); + } + else { + status = H5Sselect_none(mem_dataspace); + VRFY((status >= 0), "none selection succeeded"); + } + break; + + case ALL: + status = H5Sselect_all(mem_dataspace); + VRFY((status >= 0), "H5Sselect_all succeeded"); + break; + } + + /* set up the collective transfer property list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + + status = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((status >= 0), "MPIO collective transfer property succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + status = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((status >= 0), "set independent IO collectively succeeded"); + } + + switch (api_option) { + case API_LINK_HARD: + status = H5Pset_dxpl_mpio_chunk_opt(xfer_plist, H5FD_MPIO_CHUNK_ONE_IO); + VRFY((status >= 0), "collective chunk optimization succeeded"); + break; + + case API_MULTI_HARD: + status = H5Pset_dxpl_mpio_chunk_opt(xfer_plist, H5FD_MPIO_CHUNK_MULTI_IO); + VRFY((status >= 0), "collective chunk optimization succeeded "); + break; + + case API_LINK_TRUE: + status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 2); + VRFY((status >= 0), "collective chunk optimization set chunk number succeeded"); + break; + + case API_LINK_FALSE: + status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 6); + VRFY((status >= 0), "collective chunk optimization set chunk number succeeded"); + break; + + case API_MULTI_COLL: + status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 8); /* make sure it is using multi-chunk IO */ + VRFY((status >= 0), "collective chunk optimization set chunk number succeeded"); + status = H5Pset_dxpl_mpio_chunk_opt_ratio(xfer_plist, 50); + VRFY((status >= 0), "collective chunk optimization set chunk ratio succeeded"); + break; + + case API_MULTI_IND: + status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 8); /* make sure it is using multi-chunk IO */ + VRFY((status >= 0), "collective chunk optimization set chunk number succeeded"); + status = H5Pset_dxpl_mpio_chunk_opt_ratio(xfer_plist, 100); + VRFY((status >= 0), "collective chunk optimization set chunk ratio succeeded"); + break; + + default:; + } #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - if(facc_type == FACC_MPIO) { - switch(api_option) { + if (facc_type == FACC_MPIO) { + switch (api_option) { case API_LINK_HARD: - prop_value = H5D_XFER_COLL_CHUNK_DEF; - status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_HARD_NAME, H5D_XFER_COLL_CHUNK_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); - VRFY((status >= 0),"testing property list inserted succeeded"); - break; + prop_value = H5D_XFER_COLL_CHUNK_DEF; + status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_HARD_NAME, H5D_XFER_COLL_CHUNK_SIZE, + &prop_value, NULL, NULL, NULL, NULL, NULL, NULL); + VRFY((status >= 0), "testing property list inserted succeeded"); + break; case API_MULTI_HARD: - prop_value = H5D_XFER_COLL_CHUNK_DEF; - status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_HARD_NAME, H5D_XFER_COLL_CHUNK_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); - VRFY((status >= 0),"testing property list inserted succeeded"); - break; + prop_value = H5D_XFER_COLL_CHUNK_DEF; + status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_HARD_NAME, H5D_XFER_COLL_CHUNK_SIZE, + &prop_value, NULL, NULL, NULL, NULL, NULL, NULL); + VRFY((status >= 0), "testing property list inserted succeeded"); + break; case API_LINK_TRUE: - prop_value = H5D_XFER_COLL_CHUNK_DEF; - status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_TRUE_NAME, H5D_XFER_COLL_CHUNK_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); - VRFY((status >= 0),"testing property list inserted succeeded"); - break; + prop_value = H5D_XFER_COLL_CHUNK_DEF; + status = + H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_TRUE_NAME, H5D_XFER_COLL_CHUNK_SIZE, + &prop_value, NULL, NULL, NULL, NULL, NULL, NULL); + VRFY((status >= 0), "testing property list inserted succeeded"); + break; case API_LINK_FALSE: - prop_value = H5D_XFER_COLL_CHUNK_DEF; - status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_FALSE_NAME, H5D_XFER_COLL_CHUNK_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); - VRFY((status >= 0),"testing property list inserted succeeded"); - break; + prop_value = H5D_XFER_COLL_CHUNK_DEF; + status = + H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_FALSE_NAME, H5D_XFER_COLL_CHUNK_SIZE, + &prop_value, NULL, NULL, NULL, NULL, NULL, NULL); + VRFY((status >= 0), "testing property list inserted succeeded"); + break; case API_MULTI_COLL: - prop_value = H5D_XFER_COLL_CHUNK_DEF; - status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_COLL_NAME, H5D_XFER_COLL_CHUNK_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); - VRFY((status >= 0),"testing property list inserted succeeded"); - break; + prop_value = H5D_XFER_COLL_CHUNK_DEF; + status = + H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_COLL_NAME, + H5D_XFER_COLL_CHUNK_SIZE, &prop_value, NULL, NULL, NULL, NULL, NULL, NULL); + VRFY((status >= 0), "testing property list inserted succeeded"); + break; case API_MULTI_IND: - prop_value = H5D_XFER_COLL_CHUNK_DEF; - status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_IND_NAME, H5D_XFER_COLL_CHUNK_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); - VRFY((status >= 0),"testing property list inserted succeeded"); - break; - - default: - ; - } - } + prop_value = H5D_XFER_COLL_CHUNK_DEF; + status = + H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_IND_NAME, H5D_XFER_COLL_CHUNK_SIZE, + &prop_value, NULL, NULL, NULL, NULL, NULL, NULL); + VRFY((status >= 0), "testing property list inserted succeeded"); + break; + + default:; + } + } #endif - /* write data collectively */ - status = H5Dwrite(dataset, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); - VRFY((status >= 0),"dataset write succeeded"); + /* write data collectively */ + status = H5Dwrite(dataset, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((status >= 0), "dataset write succeeded"); #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - if(facc_type == FACC_MPIO) { - switch(api_option){ + /* Only check chunk optimization mode if selection I/O is not being used - + * selection I/O bypasses this IO mode decision - it's effectively always + * multi chunk currently */ + if (facc_type == FACC_MPIO && !H5_use_selection_io_g) { + switch (api_option) { case API_LINK_HARD: - status = H5Pget(xfer_plist,H5D_XFER_COLL_CHUNK_LINK_HARD_NAME,&prop_value); - VRFY((status >= 0),"testing property list get succeeded"); - VRFY((prop_value == 0),"API to set LINK COLLECTIVE IO directly succeeded"); - break; + status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_HARD_NAME, &prop_value); + VRFY((status >= 0), "testing property list get succeeded"); + VRFY((prop_value == 0), "API to set LINK COLLECTIVE IO directly succeeded"); + break; case API_MULTI_HARD: - status = H5Pget(xfer_plist,H5D_XFER_COLL_CHUNK_MULTI_HARD_NAME,&prop_value); - VRFY((status >= 0),"testing property list get succeeded"); - VRFY((prop_value == 0),"API to set MULTI-CHUNK COLLECTIVE IO optimization succeeded"); - break; + status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_HARD_NAME, &prop_value); + VRFY((status >= 0), "testing property list get succeeded"); + VRFY((prop_value == 0), "API to set MULTI-CHUNK COLLECTIVE IO optimization succeeded"); + break; case API_LINK_TRUE: - status = H5Pget(xfer_plist,H5D_XFER_COLL_CHUNK_LINK_NUM_TRUE_NAME,&prop_value); - VRFY((status >= 0),"testing property list get succeeded"); - VRFY((prop_value == 0),"API to set LINK COLLECTIVE IO succeeded"); - break; + status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_TRUE_NAME, &prop_value); + VRFY((status >= 0), "testing property list get succeeded"); + VRFY((prop_value == 0), "API to set LINK COLLECTIVE IO succeeded"); + break; case API_LINK_FALSE: - status = H5Pget(xfer_plist,H5D_XFER_COLL_CHUNK_LINK_NUM_FALSE_NAME,&prop_value); - VRFY((status >= 0),"testing property list get succeeded"); - VRFY((prop_value == 0),"API to set LINK IO transferring to multi-chunk IO succeeded"); - break; + status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_FALSE_NAME, &prop_value); + VRFY((status >= 0), "testing property list get succeeded"); + VRFY((prop_value == 0), "API to set LINK IO transferring to multi-chunk IO succeeded"); + break; case API_MULTI_COLL: - status = H5Pget(xfer_plist,H5D_XFER_COLL_CHUNK_MULTI_RATIO_COLL_NAME,&prop_value); - VRFY((status >= 0),"testing property list get succeeded"); - VRFY((prop_value == 0),"API to set MULTI-CHUNK COLLECTIVE IO with optimization succeeded"); - break; + status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_COLL_NAME, &prop_value); + VRFY((status >= 0), "testing property list get succeeded"); + VRFY((prop_value == 0), "API to set MULTI-CHUNK COLLECTIVE IO with optimization succeeded"); + break; case API_MULTI_IND: - status = H5Pget(xfer_plist,H5D_XFER_COLL_CHUNK_MULTI_RATIO_IND_NAME,&prop_value); - VRFY((status >= 0),"testing property list get succeeded"); - VRFY((prop_value == 0),"API to set MULTI-CHUNK IO transferring to independent IO succeeded"); - break; - - default: - ; - } - } + status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_IND_NAME, &prop_value); + VRFY((status >= 0), "testing property list get succeeded"); + VRFY((prop_value == 0), + "API to set MULTI-CHUNK IO transferring to independent IO succeeded"); + break; + + default:; + } + } #endif - status = H5Dclose(dataset); - VRFY((status >= 0),""); - - status = H5Pclose(xfer_plist); - VRFY((status >= 0),"property list closed"); - - status = H5Sclose(file_dataspace); - VRFY((status >= 0),""); - - status = H5Sclose(mem_dataspace); - VRFY((status >= 0),""); - - - status = H5Fclose(file); - VRFY((status >= 0),""); - - if (data_array1) HDfree(data_array1); - - /* Use collective read to verify the correctness of collective write. */ - - /* allocate memory for data buffer */ - data_array1 = (int *)HDmalloc(dims[0]*dims[1]*sizeof(int)); - VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); - - /* allocate memory for data buffer */ - data_origin1 = (int *)HDmalloc(dims[0]*dims[1]*sizeof(int)); - VRFY((data_origin1 != NULL), "data_origin1 malloc succeeded"); - - acc_plist = create_faccess_plist(comm, info, facc_type); - VRFY((acc_plist >= 0),"MPIO creation property list succeeded"); - - file = H5Fopen(filename,H5F_ACC_RDONLY,acc_plist); - VRFY((file >= 0),"H5Fcreate succeeded"); - - status = H5Pclose(acc_plist); - VRFY((status >= 0),""); - - /* open the collective dataset*/ - dataset = H5Dopen2(file, DSET_COLLECTIVE_CHUNK_NAME, H5P_DEFAULT); - VRFY((dataset >= 0), ""); - - /* set up dimensions of the slab this process accesses */ - ccslab_set(mpi_rank, mpi_size, start, count, stride, block, select_factor); - - /* obtain the file and mem dataspace*/ - file_dataspace = H5Dget_space (dataset); - VRFY((file_dataspace >= 0), ""); - - if (ALL != mem_selection) { - mem_dataspace = H5Dget_space (dataset); - VRFY((mem_dataspace >= 0), ""); - } - else { - current_dims = num_points; - mem_dataspace = H5Screate_simple (1, ¤t_dims, NULL); - VRFY((mem_dataspace >= 0), "mem_dataspace create succeeded"); - } - - switch (file_selection) { - case HYPER: - status = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((status >= 0),"hyperslab selection succeeded"); - break; - - case POINT: - if (num_points) { - status = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); - VRFY((status >= 0),"Element selection succeeded"); - } - else { - status = H5Sselect_none(file_dataspace); - VRFY((status >= 0),"none selection succeeded"); - } - break; - - case ALL: - status = H5Sselect_all(file_dataspace); - VRFY((status >= 0), "H5Sselect_all succeeded"); - break; - } - - switch (mem_selection) { - case HYPER: - status = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((status >= 0),"hyperslab selection succeeded"); - break; - - case POINT: - if (num_points) { - status = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); - VRFY((status >= 0),"Element selection succeeded"); - } - else { - status = H5Sselect_none(mem_dataspace); - VRFY((status >= 0),"none selection succeeded"); - } - break; - - case ALL: - status = H5Sselect_all(mem_dataspace); - VRFY((status >= 0), "H5Sselect_all succeeded"); - break; - } - - /* fill dataset with test data */ - ccdataset_fill(start, stride,count,block, data_origin1, mem_selection); - xfer_plist = H5Pcreate (H5P_DATASET_XFER); - VRFY((xfer_plist >= 0),""); - - status = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((status>= 0),"MPIO collective transfer property succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - status = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((status>= 0),"set independent IO collectively succeeded"); - } - - status = H5Dread(dataset, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); - VRFY((status >=0),"dataset read succeeded"); - - /* verify the read data with original expected data */ - status = ccdataset_vrfy(start, count, stride, block, data_array1, data_origin1, mem_selection); - if (status) nerrors++; - - status = H5Pclose(xfer_plist); - VRFY((status >= 0),"property list closed"); - - /* close dataset collectively */ - status=H5Dclose(dataset); - VRFY((status >= 0), "H5Dclose"); - - /* release all IDs created */ - status = H5Sclose(file_dataspace); - VRFY((status >= 0),"H5Sclose"); - - status = H5Sclose(mem_dataspace); - VRFY((status >= 0),"H5Sclose"); - - /* close the file collectively */ - status = H5Fclose(file); - VRFY((status >= 0),"H5Fclose"); - - /* release data buffers */ - if(coords) HDfree(coords); - if(data_array1) HDfree(data_array1); - if(data_origin1) HDfree(data_origin1); + status = H5Dclose(dataset); + VRFY((status >= 0), ""); -} + status = H5Pclose(xfer_plist); + VRFY((status >= 0), "property list closed"); + + status = H5Sclose(file_dataspace); + VRFY((status >= 0), ""); + + status = H5Sclose(mem_dataspace); + VRFY((status >= 0), ""); + status = H5Fclose(file); + VRFY((status >= 0), ""); + + if (data_array1) + HDfree(data_array1); + + /* Use collective read to verify the correctness of collective write. */ + + /* allocate memory for data buffer */ + data_array1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int)); + VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); + + /* allocate memory for data buffer */ + data_origin1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int)); + VRFY((data_origin1 != NULL), "data_origin1 malloc succeeded"); + + acc_plist = create_faccess_plist(comm, info, facc_type); + VRFY((acc_plist >= 0), "MPIO creation property list succeeded"); + + file = H5Fopen(filename, H5F_ACC_RDONLY, acc_plist); + VRFY((file >= 0), "H5Fcreate succeeded"); + + status = H5Pclose(acc_plist); + VRFY((status >= 0), ""); + + /* open the collective dataset*/ + dataset = H5Dopen2(file, DSET_COLLECTIVE_CHUNK_NAME, H5P_DEFAULT); + VRFY((dataset >= 0), ""); + + /* set up dimensions of the slab this process accesses */ + ccslab_set(mpi_rank, mpi_size, start, count, stride, block, select_factor); + + /* obtain the file and mem dataspace*/ + file_dataspace = H5Dget_space(dataset); + VRFY((file_dataspace >= 0), ""); + + if (ALL != mem_selection) { + mem_dataspace = H5Dget_space(dataset); + VRFY((mem_dataspace >= 0), ""); + } + else { + current_dims = num_points; + mem_dataspace = H5Screate_simple(1, ¤t_dims, NULL); + VRFY((mem_dataspace >= 0), "mem_dataspace create succeeded"); + } + + switch (file_selection) { + case HYPER: + status = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((status >= 0), "hyperslab selection succeeded"); + break; + + case POINT: + if (num_points) { + status = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((status >= 0), "Element selection succeeded"); + } + else { + status = H5Sselect_none(file_dataspace); + VRFY((status >= 0), "none selection succeeded"); + } + break; + + case ALL: + status = H5Sselect_all(file_dataspace); + VRFY((status >= 0), "H5Sselect_all succeeded"); + break; + } + + switch (mem_selection) { + case HYPER: + status = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((status >= 0), "hyperslab selection succeeded"); + break; + + case POINT: + if (num_points) { + status = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((status >= 0), "Element selection succeeded"); + } + else { + status = H5Sselect_none(mem_dataspace); + VRFY((status >= 0), "none selection succeeded"); + } + break; + + case ALL: + status = H5Sselect_all(mem_dataspace); + VRFY((status >= 0), "H5Sselect_all succeeded"); + break; + } + + /* fill dataset with test data */ + ccdataset_fill(start, stride, count, block, data_origin1, mem_selection); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + + status = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((status >= 0), "MPIO collective transfer property succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + status = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((status >= 0), "set independent IO collectively succeeded"); + } + + status = H5Dread(dataset, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + VRFY((status >= 0), "dataset read succeeded"); + + /* verify the read data with original expected data */ + status = ccdataset_vrfy(start, count, stride, block, data_array1, data_origin1, mem_selection); + if (status) + nerrors++; + + status = H5Pclose(xfer_plist); + VRFY((status >= 0), "property list closed"); + + /* close dataset collectively */ + status = H5Dclose(dataset); + VRFY((status >= 0), "H5Dclose"); + + /* release all IDs created */ + status = H5Sclose(file_dataspace); + VRFY((status >= 0), "H5Sclose"); + + status = H5Sclose(mem_dataspace); + VRFY((status >= 0), "H5Sclose"); + + /* close the file collectively */ + status = H5Fclose(file); + VRFY((status >= 0), "H5Fclose"); + + /* release data buffers */ + if (coords) + HDfree(coords); + if (data_array1) + HDfree(data_array1); + if (data_origin1) + HDfree(data_origin1); +} /* Set up the selection */ static void -ccslab_set(int mpi_rank, - int mpi_size, - hsize_t start[], - hsize_t count[], - hsize_t stride[], - hsize_t block[], - int mode) +ccslab_set(int mpi_rank, int mpi_size, hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], + int mode) { - switch (mode){ - - case BYROW_CONT: - /* Each process takes a slabs of rows. */ - block[0] = 1; - block[1] = 1; - stride[0] = 1; - stride[1] = 1; - count[0] = SPACE_DIM1; - count[1] = SPACE_DIM2; - start[0] = mpi_rank*count[0]; - start[1] = 0; - - break; - - case BYROW_DISCONT: - /* Each process takes several disjoint blocks. */ - block[0] = 1; - block[1] = 1; - stride[0] = 3; - stride[1] = 3; - count[0] = SPACE_DIM1/(stride[0]*block[0]); - count[1] = (SPACE_DIM2)/(stride[1]*block[1]); - start[0] = SPACE_DIM1*mpi_rank; - start[1] = 0; - - break; - - case BYROW_SELECTNONE: - /* Each process takes a slabs of rows, there are - no selections for the last process. */ - block[0] = 1; - block[1] = 1; - stride[0] = 1; - stride[1] = 1; - count[0] = ((mpi_rank >= MAX(1,(mpi_size-2)))?0:SPACE_DIM1); - count[1] = SPACE_DIM2; - start[0] = mpi_rank*count[0]; - start[1] = 0; - - break; - - case BYROW_SELECTUNBALANCE: - /* The first one-third of the number of processes only - select top half of the domain, The rest will select the bottom - half of the domain. */ - - block[0] = 1; - count[0] = 2; - stride[0] = SPACE_DIM1*mpi_size/4+1; - block[1] = SPACE_DIM2; - count[1] = 1; - start[1] = 0; - stride[1] = 1; - if((mpi_rank *3)<(mpi_size*2)) start[0] = mpi_rank; - else start[0] = 1 + SPACE_DIM1*mpi_size/2 + (mpi_rank-2*mpi_size/3); - break; - - case BYROW_SELECTINCHUNK: - /* Each process will only select one chunk */ - - block[0] = 1; - count[0] = 1; - start[0] = mpi_rank*SPACE_DIM1; - stride[0]= 1; - block[1] = SPACE_DIM2; - count[1] = 1; - stride[1]= 1; - start[1] = 0; - - break; - - default: - /* Unknown mode. Set it to cover the whole dataset. */ - block[0] = SPACE_DIM1*mpi_size; - block[1] = SPACE_DIM2; - stride[0] = block[0]; - stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = 0; - start[1] = 0; - - break; + switch (mode) { + + case BYROW_CONT: + /* Each process takes a slabs of rows. */ + block[0] = 1; + block[1] = 1; + stride[0] = 1; + stride[1] = 1; + count[0] = SPACE_DIM1; + count[1] = SPACE_DIM2; + start[0] = (hsize_t)mpi_rank * count[0]; + start[1] = 0; + + break; + + case BYROW_DISCONT: + /* Each process takes several disjoint blocks. */ + block[0] = 1; + block[1] = 1; + stride[0] = 3; + stride[1] = 3; + count[0] = SPACE_DIM1 / (stride[0] * block[0]); + count[1] = (SPACE_DIM2) / (stride[1] * block[1]); + start[0] = (hsize_t)SPACE_DIM1 * (hsize_t)mpi_rank; + start[1] = 0; + + break; + + case BYROW_SELECTNONE: + /* Each process takes a slabs of rows, there are + no selections for the last process. */ + block[0] = 1; + block[1] = 1; + stride[0] = 1; + stride[1] = 1; + count[0] = ((mpi_rank >= MAX(1, (mpi_size - 2))) ? 0 : SPACE_DIM1); + count[1] = SPACE_DIM2; + start[0] = (hsize_t)mpi_rank * count[0]; + start[1] = 0; + + break; + + case BYROW_SELECTUNBALANCE: + /* The first one-third of the number of processes only + select top half of the domain, The rest will select the bottom + half of the domain. */ + + block[0] = 1; + count[0] = 2; + stride[0] = (hsize_t)SPACE_DIM1 * (hsize_t)mpi_size / 4 + 1; + block[1] = SPACE_DIM2; + count[1] = 1; + start[1] = 0; + stride[1] = 1; + if ((mpi_rank * 3) < (mpi_size * 2)) + start[0] = (hsize_t)mpi_rank; + else + start[0] = (hsize_t)(1 + SPACE_DIM1 * mpi_size / 2 + (mpi_rank - 2 * mpi_size / 3)); + break; + + case BYROW_SELECTINCHUNK: + /* Each process will only select one chunk */ + + block[0] = 1; + count[0] = 1; + start[0] = (hsize_t)(mpi_rank * SPACE_DIM1); + stride[0] = 1; + block[1] = SPACE_DIM2; + count[1] = 1; + stride[1] = 1; + start[1] = 0; + + break; + + default: + /* Unknown mode. Set it to cover the whole dataset. */ + block[0] = (hsize_t)SPACE_DIM1 * (hsize_t)mpi_size; + block[1] = SPACE_DIM2; + stride[0] = block[0]; + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = 0; + + break; } - if (VERBOSE_MED){ - HDprintf("start[]=(%lu,%lu), count[]=(%lu,%lu), stride[]=(%lu,%lu), block[]=(%lu,%lu), total datapoints=%lu\n", - (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], (unsigned long)count[1], - (unsigned long)stride[0], (unsigned long)stride[1], (unsigned long)block[0], (unsigned long)block[1], - (unsigned long)(block[0]*block[1]*count[0]*count[1])); + if (VERBOSE_MED) { + HDprintf("start[]=(%lu,%lu), count[]=(%lu,%lu), stride[]=(%lu,%lu), block[]=(%lu,%lu), total " + "datapoints=%lu\n", + (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], + (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1], + (unsigned long)block[0], (unsigned long)block[1], + (unsigned long)(block[0] * block[1] * count[0] * count[1])); } } - /* * Fill the dataset with trivial data for testing. * Assume dimension rank is 2. */ static void -ccdataset_fill(hsize_t start[], - hsize_t stride[], - hsize_t count[], - hsize_t block[], - DATATYPE * dataset, +ccdataset_fill(hsize_t start[], hsize_t stride[], hsize_t count[], hsize_t block[], DATATYPE *dataset, int mem_selection) { DATATYPE *dataptr = dataset; DATATYPE *tmptr; - hsize_t i,j,k1,k2,k=0; + hsize_t i, j, k1, k2, k = 0; /* put some trivial data in the data_array */ tmptr = dataptr; @@ -1164,23 +1151,23 @@ ccdataset_fill(hsize_t start[], through the pointer */ for (k1 = 0; k1 < count[0]; k1++) { - for(i = 0; i < block[0]; i++) { - for(k2 = 0; k2 < count[1]; k2++) { - for(j = 0;j < block[1]; j++) { + for (i = 0; i < block[0]; i++) { + for (k2 = 0; k2 < count[1]; k2++) { + for (j = 0; j < block[1]; j++) { - if (ALL != mem_selection) { - dataptr = tmptr + ((start[0]+k1*stride[0]+i)*SPACE_DIM2+ - start[1]+k2*stride[1]+j); - } - else { - dataptr = tmptr + k; - k++; - } + if (ALL != mem_selection) { + dataptr = tmptr + ((start[0] + k1 * stride[0] + i) * SPACE_DIM2 + start[1] + + k2 * stride[1] + j); + } + else { + dataptr = tmptr + k; + k++; + } - *dataptr = (DATATYPE)(k1+k2+i+j); - } + *dataptr = (DATATYPE)(k1 + k2 + i + j); + } + } } - } } } @@ -1188,83 +1175,75 @@ ccdataset_fill(hsize_t start[], * Print the first block of the content of the dataset. */ static void -ccdataset_print(hsize_t start[], - hsize_t block[], - DATATYPE * dataset) +ccdataset_print(hsize_t start[], hsize_t block[], DATATYPE *dataset) { DATATYPE *dataptr = dataset; - hsize_t i, j; + hsize_t i, j; /* print the column heading */ HDprintf("Print only the first block of the dataset\n"); HDprintf("%-8s", "Cols:"); - for (j=0; j < block[1]; j++){ - HDprintf("%3lu ", (unsigned long)(start[1]+j)); + for (j = 0; j < block[1]; j++) { + HDprintf("%3lu ", (unsigned long)(start[1] + j)); } HDprintf("\n"); /* print the slab data */ - for (i=0; i < block[0]; i++){ - HDprintf("Row %2lu: ", (unsigned long)(i+start[0])); - for (j=0; j < block[1]; j++){ - HDprintf("%03d ", *dataptr++); - } - HDprintf("\n"); + for (i = 0; i < block[0]; i++) { + HDprintf("Row %2lu: ", (unsigned long)(i + start[0])); + for (j = 0; j < block[1]; j++) { + HDprintf("%03d ", *dataptr++); + } + HDprintf("\n"); } } - /* * Print the content of the dataset. */ static int -ccdataset_vrfy(hsize_t start[], - hsize_t count[], - hsize_t stride[], - hsize_t block[], - DATATYPE *dataset, - DATATYPE *original, - int mem_selection) +ccdataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], DATATYPE *dataset, + DATATYPE *original, int mem_selection) { - hsize_t i, j,k1,k2,k=0; - int vrfyerrs; - DATATYPE *dataptr,*oriptr; + hsize_t i, j, k1, k2, k = 0; + int vrfyerrs; + DATATYPE *dataptr, *oriptr; /* print it if VERBOSE_MED */ if (VERBOSE_MED) { - HDprintf("dataset_vrfy dumping:::\n"); - HDprintf("start(%lu, %lu), count(%lu, %lu), stride(%lu, %lu), block(%lu, %lu)\n", - (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], (unsigned long)count[1], - (unsigned long)stride[0], (unsigned long)stride[1], (unsigned long)block[0], (unsigned long)block[1]); - HDprintf("original values:\n"); - ccdataset_print(start, block, original); - HDprintf("compared values:\n"); - ccdataset_print(start, block, dataset); + HDprintf("dataset_vrfy dumping:::\n"); + HDprintf("start(%lu, %lu), count(%lu, %lu), stride(%lu, %lu), block(%lu, %lu)\n", + (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], + (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1], + (unsigned long)block[0], (unsigned long)block[1]); + HDprintf("original values:\n"); + ccdataset_print(start, block, original); + HDprintf("compared values:\n"); + ccdataset_print(start, block, dataset); } vrfyerrs = 0; - for (k1=0;k1<count[0];k1++) { - for(i=0;i<block[0];i++) { - for(k2=0; k2<count[1];k2++) { - for(j=0;j<block[1];j++) { + for (k1 = 0; k1 < count[0]; k1++) { + for (i = 0; i < block[0]; i++) { + for (k2 = 0; k2 < count[1]; k2++) { + for (j = 0; j < block[1]; j++) { if (ALL != mem_selection) { - dataptr = dataset + ((start[0]+k1*stride[0]+i)*SPACE_DIM2+ - start[1]+k2*stride[1]+j); - oriptr = original + ((start[0]+k1*stride[0]+i)*SPACE_DIM2+ - start[1]+k2*stride[1]+j); + dataptr = dataset + ((start[0] + k1 * stride[0] + i) * SPACE_DIM2 + start[1] + + k2 * stride[1] + j); + oriptr = original + ((start[0] + k1 * stride[0] + i) * SPACE_DIM2 + start[1] + + k2 * stride[1] + j); } else { dataptr = dataset + k; - oriptr = original + k; + oriptr = original + k; k++; } - if (*dataptr != *oriptr){ - if (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED){ + if (*dataptr != *oriptr) { + if (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED) { HDprintf("Dataset Verify failed at [%lu][%lu]: expect %d, got %d\n", - (unsigned long)i, (unsigned long)j, - *(oriptr), *(dataptr)); + (unsigned long)i, (unsigned long)j, *(oriptr), *(dataptr)); } } } @@ -1272,8 +1251,8 @@ ccdataset_vrfy(hsize_t start[], } } if (vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED) - HDprintf("[more errors ...]\n"); + HDprintf("[more errors ...]\n"); if (vrfyerrs) - HDprintf("%d errors found in ccdataset_vrfy\n", vrfyerrs); - return(vrfyerrs); + HDprintf("%d errors found in ccdataset_vrfy\n", vrfyerrs); + return (vrfyerrs); } diff --git a/testpar/t_coll_md_read.c b/testpar/t_coll_md_read.c index 912388c..cabdea0 100644 --- a/testpar/t_coll_md_read.c +++ b/testpar/t_coll_md_read.c @@ -5,7 +5,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -27,18 +27,16 @@ * an if (mpi_rank == 0) check. */ #define PARTIAL_NO_SELECTION_NO_SEL_PROCESS (mpi_rank == mpi_size - 1) -#define PARTIAL_NO_SELECTION_DATASET_NAME "partial_no_selection_dset" -#define PARTIAL_NO_SELECTION_DATASET_NDIMS 2 -#define PARTIAL_NO_SELECTION_Y_DIM_SCALE 5 -#define PARTIAL_NO_SELECTION_X_DIM_SCALE 5 +#define PARTIAL_NO_SELECTION_DATASET_NAME "partial_no_selection_dset" +#define PARTIAL_NO_SELECTION_DATASET_NDIMS 2 +#define PARTIAL_NO_SELECTION_Y_DIM_SCALE 5 +#define PARTIAL_NO_SELECTION_X_DIM_SCALE 5 #define MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS 2 -#define LINK_CHUNK_IO_SORT_CHUNK_ISSUE_NO_SEL_PROCESS (mpi_rank == mpi_size - 1) -#define LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DATASET_NAME "linked_chunk_io_sort_chunk_issue" -#define LINK_CHUNK_IO_SORT_CHUNK_ISSUE_Y_DIM_SCALE 20000 -#define LINK_CHUNK_IO_SORT_CHUNK_ISSUE_CHUNK_SIZE 1 -#define LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS 1 +#define LINK_CHUNK_IO_SORT_CHUNK_ISSUE_COLL_THRESH_NUM 10000 +#define LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DATASET_NAME "linked_chunk_io_sort_chunk_issue" +#define LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS 1 /* * A test for issue HDFFV-10501. A parallel hang was reported which occurred @@ -49,32 +47,34 @@ * in strictly non-decreasing order of chunk address. For version 1 and 2 B-trees, * this caused the non-participating ranks to issue a collective MPI_Bcast() call * which the other ranks did not issue, thus causing a hang. - * + * * However, since these ranks are not actually reading/writing anything, this call * can simply be removed and the address used for the read/write can be set to an * arbitrary number (0 was chosen). */ -void test_partial_no_selection_coll_md_read(void) +void +test_partial_no_selection_coll_md_read(void) { const char *filename; - hsize_t *dataset_dims = NULL; + hsize_t * dataset_dims = NULL; hsize_t max_dataset_dims[PARTIAL_NO_SELECTION_DATASET_NDIMS]; hsize_t sel_dims[1]; - hsize_t chunk_dims[PARTIAL_NO_SELECTION_DATASET_NDIMS] = { PARTIAL_NO_SELECTION_Y_DIM_SCALE, PARTIAL_NO_SELECTION_X_DIM_SCALE }; + hsize_t chunk_dims[PARTIAL_NO_SELECTION_DATASET_NDIMS] = {PARTIAL_NO_SELECTION_Y_DIM_SCALE, + PARTIAL_NO_SELECTION_X_DIM_SCALE}; hsize_t start[PARTIAL_NO_SELECTION_DATASET_NDIMS]; hsize_t stride[PARTIAL_NO_SELECTION_DATASET_NDIMS]; hsize_t count[PARTIAL_NO_SELECTION_DATASET_NDIMS]; hsize_t block[PARTIAL_NO_SELECTION_DATASET_NDIMS]; - hid_t file_id = H5I_INVALID_HID; - hid_t fapl_id = H5I_INVALID_HID; - hid_t dset_id = H5I_INVALID_HID; - hid_t dcpl_id = H5I_INVALID_HID; - hid_t dxpl_id = H5I_INVALID_HID; + hid_t file_id = H5I_INVALID_HID; + hid_t fapl_id = H5I_INVALID_HID; + hid_t dset_id = H5I_INVALID_HID; + hid_t dcpl_id = H5I_INVALID_HID; + hid_t dxpl_id = H5I_INVALID_HID; hid_t fspace_id = H5I_INVALID_HID; hid_t mspace_id = H5I_INVALID_HID; int mpi_rank, mpi_size; - void *data = NULL; - void *read_buf = NULL; + void * data = NULL; + void * read_buf = NULL; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); @@ -97,8 +97,8 @@ void test_partial_no_selection_coll_md_read(void) dataset_dims = HDmalloc(PARTIAL_NO_SELECTION_DATASET_NDIMS * sizeof(*dataset_dims)); VRFY((dataset_dims != NULL), "malloc succeeded"); - dataset_dims[0] = PARTIAL_NO_SELECTION_Y_DIM_SCALE * mpi_size; - dataset_dims[1] = PARTIAL_NO_SELECTION_X_DIM_SCALE * mpi_size; + dataset_dims[0] = (hsize_t)PARTIAL_NO_SELECTION_Y_DIM_SCALE * (hsize_t)mpi_size; + dataset_dims[1] = (hsize_t)PARTIAL_NO_SELECTION_X_DIM_SCALE * (hsize_t)mpi_size; max_dataset_dims[0] = H5S_UNLIMITED; max_dataset_dims[1] = H5S_UNLIMITED; @@ -111,9 +111,11 @@ void test_partial_no_selection_coll_md_read(void) dcpl_id = H5Pcreate(H5P_DATASET_CREATE); VRFY((dcpl_id >= 0), "H5Pcreate succeeded"); - VRFY((H5Pset_chunk(dcpl_id, PARTIAL_NO_SELECTION_DATASET_NDIMS, chunk_dims) >= 0), "H5Pset_chunk succeeded"); + VRFY((H5Pset_chunk(dcpl_id, PARTIAL_NO_SELECTION_DATASET_NDIMS, chunk_dims) >= 0), + "H5Pset_chunk succeeded"); - dset_id = H5Dcreate2(file_id, PARTIAL_NO_SELECTION_DATASET_NAME, H5T_NATIVE_INT, fspace_id, H5P_DEFAULT, dcpl_id, H5P_DEFAULT); + dset_id = H5Dcreate2(file_id, PARTIAL_NO_SELECTION_DATASET_NAME, H5T_NATIVE_INT, fspace_id, H5P_DEFAULT, + dcpl_id, H5P_DEFAULT); VRFY((dset_id >= 0), "H5Dcreate2 succeeded"); /* @@ -121,23 +123,25 @@ void test_partial_no_selection_coll_md_read(void) * * The ranks will write rows across the dataset. */ - start[0] = PARTIAL_NO_SELECTION_Y_DIM_SCALE * mpi_rank; - start[1] = 0; + start[0] = (hsize_t)PARTIAL_NO_SELECTION_Y_DIM_SCALE * (hsize_t)mpi_rank; + start[1] = 0; stride[0] = PARTIAL_NO_SELECTION_Y_DIM_SCALE; stride[1] = PARTIAL_NO_SELECTION_X_DIM_SCALE; - count[0] = 1; - count[1] = mpi_size; - block[0] = PARTIAL_NO_SELECTION_Y_DIM_SCALE; - block[1] = PARTIAL_NO_SELECTION_X_DIM_SCALE; + count[0] = 1; + count[1] = (hsize_t)mpi_size; + block[0] = PARTIAL_NO_SELECTION_Y_DIM_SCALE; + block[1] = PARTIAL_NO_SELECTION_X_DIM_SCALE; - VRFY((H5Sselect_hyperslab(fspace_id, H5S_SELECT_SET, start, stride, count, block) >= 0), "H5Sselect_hyperslab succeeded"); + VRFY((H5Sselect_hyperslab(fspace_id, H5S_SELECT_SET, start, stride, count, block) >= 0), + "H5Sselect_hyperslab succeeded"); sel_dims[0] = count[1] * (PARTIAL_NO_SELECTION_Y_DIM_SCALE * PARTIAL_NO_SELECTION_X_DIM_SCALE); mspace_id = H5Screate_simple(1, sel_dims, NULL); VRFY((mspace_id >= 0), "H5Screate_simple succeeded"); - data = HDcalloc(1, count[1] * (PARTIAL_NO_SELECTION_Y_DIM_SCALE * PARTIAL_NO_SELECTION_X_DIM_SCALE) * sizeof(int)); + data = HDcalloc(1, count[1] * (PARTIAL_NO_SELECTION_Y_DIM_SCALE * PARTIAL_NO_SELECTION_X_DIM_SCALE) * + sizeof(int)); VRFY((data != NULL), "calloc succeeded"); dxpl_id = H5Pcreate(H5P_DATASET_XFER); @@ -157,9 +161,11 @@ void test_partial_no_selection_coll_md_read(void) * the particular code path where the issue lies and we don't * want the library doing multi-chunk I/O behind our backs. */ - VRFY((H5Pset_dxpl_mpio_chunk_opt(dxpl_id, H5FD_MPIO_CHUNK_ONE_IO) >= 0), "H5Pset_dxpl_mpio_chunk_opt succeeded"); + VRFY((H5Pset_dxpl_mpio_chunk_opt(dxpl_id, H5FD_MPIO_CHUNK_ONE_IO) >= 0), + "H5Pset_dxpl_mpio_chunk_opt succeeded"); - read_buf = HDmalloc(count[1] * (PARTIAL_NO_SELECTION_Y_DIM_SCALE * PARTIAL_NO_SELECTION_X_DIM_SCALE) * sizeof(int)); + read_buf = HDmalloc(count[1] * (PARTIAL_NO_SELECTION_Y_DIM_SCALE * PARTIAL_NO_SELECTION_X_DIM_SCALE) * + sizeof(int)); VRFY((read_buf != NULL), "malloc succeeded"); /* @@ -173,13 +179,17 @@ void test_partial_no_selection_coll_md_read(void) /* * Finally have each rank read their section of data back from the dataset. */ - VRFY((H5Dread(dset_id, H5T_NATIVE_INT, mspace_id, fspace_id, dxpl_id, read_buf) >= 0), "H5Dread succeeded"); + VRFY((H5Dread(dset_id, H5T_NATIVE_INT, mspace_id, fspace_id, dxpl_id, read_buf) >= 0), + "H5Dread succeeded"); /* * Check data integrity just to be sure. */ if (!PARTIAL_NO_SELECTION_NO_SEL_PROCESS) { - VRFY((!HDmemcmp(data, read_buf, count[1] * (PARTIAL_NO_SELECTION_Y_DIM_SCALE * PARTIAL_NO_SELECTION_X_DIM_SCALE) * sizeof(int))), "memcmp succeeded"); + VRFY((!HDmemcmp(data, read_buf, + count[1] * (PARTIAL_NO_SELECTION_Y_DIM_SCALE * PARTIAL_NO_SELECTION_X_DIM_SCALE) * + sizeof(int))), + "memcmp succeeded"); } if (dataset_dims) { @@ -219,40 +229,35 @@ void test_partial_no_selection_coll_md_read(void) * major: Internal error (too specific to document in detail) * minor: Some MPI function failed * #009: H5Dmpio.c line 2546 in H5D__obtain_mpio_mode(): Message truncated, error stack: - *PMPI_Bcast(1600)..................: MPI_Bcast(buf=0x1df98e0, count=18, MPI_BYTE, root=0, comm=0x84000006) failed - *MPIR_Bcast_impl(1452).............: - *MPIR_Bcast(1476)..................: + *PMPI_Bcast(1600)..................: MPI_Bcast(buf=0x1df98e0, count=18, MPI_BYTE, root=0, comm=0x84000006) + *failed MPIR_Bcast_impl(1452).............: MPIR_Bcast(1476)..................: *MPIR_Bcast_intra(1249)............: *MPIR_SMP_Bcast(1088)..............: *MPIR_Bcast_binomial(239)..........: - *MPIDI_CH3U_Receive_data_found(131): Message from rank 0 and tag 2 truncated; 2616 bytes received but buffer size is 18 - * major: Internal error (too specific to document in detail) - * minor: MPI Error String + *MPIDI_CH3U_Receive_data_found(131): Message from rank 0 and tag 2 truncated; 2616 bytes received but buffer + *size is 18 major: Internal error (too specific to document in detail) minor: MPI Error String * */ -void test_multi_chunk_io_addrmap_issue(void) +void +test_multi_chunk_io_addrmap_issue(void) { const char *filename; - hsize_t start[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS]; - hsize_t stride[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS]; - hsize_t count[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS]; - hsize_t block[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS]; - hsize_t dims[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS] = {10, 5}; - hsize_t chunk_dims[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS] = {5, 5}; - hsize_t max_dims[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS] = {H5S_UNLIMITED, H5S_UNLIMITED}; - hid_t file_id = H5I_INVALID_HID; - hid_t fapl_id = H5I_INVALID_HID; - hid_t dset_id = H5I_INVALID_HID; - hid_t dcpl_id = H5I_INVALID_HID; - hid_t dxpl_id = H5I_INVALID_HID; - hid_t space_id = H5I_INVALID_HID; - void *read_buf = NULL; - int mpi_rank; - int data[5][5] = { {0, 1, 2, 3, 4}, - {0, 1, 2, 3, 4}, - {0, 1, 2, 3, 4}, - {0, 1, 2, 3, 4}, - {0, 1, 2, 3, 4} }; + hsize_t start[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS]; + hsize_t stride[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS]; + hsize_t count[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS]; + hsize_t block[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS]; + hsize_t dims[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS] = {10, 5}; + hsize_t chunk_dims[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS] = {5, 5}; + hsize_t max_dims[MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS] = {H5S_UNLIMITED, H5S_UNLIMITED}; + hid_t file_id = H5I_INVALID_HID; + hid_t fapl_id = H5I_INVALID_HID; + hid_t dset_id = H5I_INVALID_HID; + hid_t dcpl_id = H5I_INVALID_HID; + hid_t dxpl_id = H5I_INVALID_HID; + hid_t space_id = H5I_INVALID_HID; + void * read_buf = NULL; + int mpi_rank; + int data[5][5] = {{0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}}; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); @@ -277,7 +282,8 @@ void test_multi_chunk_io_addrmap_issue(void) dcpl_id = H5Pcreate(H5P_DATASET_CREATE); VRFY((dcpl_id >= 0), "H5Pcreate succeeded"); - VRFY((H5Pset_chunk(dcpl_id, MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS, chunk_dims) >= 0), "H5Pset_chunk succeeded"); + VRFY((H5Pset_chunk(dcpl_id, MULTI_CHUNK_IO_ADDRMAP_ISSUE_DIMS, chunk_dims) >= 0), + "H5Pset_chunk succeeded"); dset_id = H5Dcreate2(file_id, "dset", H5T_NATIVE_INT, space_id, H5P_DEFAULT, dcpl_id, H5P_DEFAULT); VRFY((dset_id >= 0), "H5Dcreate2 succeeded"); @@ -286,9 +292,10 @@ void test_multi_chunk_io_addrmap_issue(void) VRFY((dxpl_id >= 0), "H5Pcreate succeeded"); VRFY((H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) >= 0), "H5Pset_dxpl_mpio succeeded"); - VRFY((H5Pset_dxpl_mpio_chunk_opt(dxpl_id, H5FD_MPIO_CHUNK_MULTI_IO) >= 0), "H5Pset_dxpl_mpio_chunk_opt succeeded"); + VRFY((H5Pset_dxpl_mpio_chunk_opt(dxpl_id, H5FD_MPIO_CHUNK_MULTI_IO) >= 0), + "H5Pset_dxpl_mpio_chunk_opt succeeded"); - start[1] = 0; + start[1] = 0; stride[0] = stride[1] = 1; count[0] = count[1] = 5; block[0] = block[1] = 1; @@ -298,7 +305,8 @@ void test_multi_chunk_io_addrmap_issue(void) else start[0] = 5; - VRFY((H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start, stride, count, block) >= 0), "H5Sselect_hyperslab succeeded"); + VRFY((H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start, stride, count, block) >= 0), + "H5Sselect_hyperslab succeeded"); if (mpi_rank != 0) VRFY((H5Sselect_none(space_id) >= 0), "H5Sselect_none succeeded"); @@ -330,21 +338,34 @@ void test_multi_chunk_io_addrmap_issue(void) * collective metadata reads being made only by process 0 in H5D__sort_chunk(). * * NOTE: Due to the way that the threshold value which pertains to this test - * is currently calculated within HDF5, there are several conditions that this - * test must maintain. Refer to the function H5D__sort_chunk in H5Dmpio.c for - * a better idea of why. + * is currently calculated within HDF5, the following two conditions must be + * true to trigger the issue: + * + * Condition 1: A certain threshold ratio must be met in order to have HDF5 + * obtain all chunk addresses collectively inside H5D__sort_chunk(). This is + * given by the following: * - * Condition 1: We need to make sure that the test always selects every single - * chunk in the dataset. It is fine if the selection is split up among multiple - * ranks, but their combined selection must cover the whole dataset. + * (sum_chunk * 100) / (dataset_nchunks * mpi_size) >= 30% * - * Condition 2: The number of chunks in the dataset divided by the number of MPI - * ranks must exceed or equal 10000. In other words, each MPI rank must be - * responsible for 10000 or more unique chunks. + * where: + * * `sum_chunk` is the combined sum of the number of chunks selected in + * the dataset by all ranks (chunks selected by more than one rank count + * individually toward the sum for each rank selecting that chunk) + * * `dataset_nchunks` is the number of chunks in the dataset (selected + * or not) + * * `mpi_size` is the size of the MPI Communicator * - * Condition 3: This test will currently only be reliably reproducable for 2 or 3 - * MPI ranks. The threshold value calculated reduces to a constant 100 / mpi_size, - * and is compared against a default value of 30%. + * Condition 2: `sum_chunk` divided by `mpi_size` must exceed or equal a certain + * threshold (as of this writing, 10000). + * + * To satisfy both these conditions, we #define a macro, + * LINK_CHUNK_IO_SORT_CHUNK_ISSUE_COLL_THRESH_NUM, which corresponds to the + * value of the H5D_ALL_CHUNK_ADDR_THRES_COL_NUM macro in H5Dmpio.c (the + * 10000 threshold from condition 2). We then create a dataset of that many + * chunks and have each MPI rank write to and read from a piece of every single + * chunk in the dataset. This ensures chunk utilization is the max possible + * and exceeds our 30% target ratio, while always exactly matching the numeric + * chunk threshold value of condition 2. * * Failure in this test may either cause a hang, or, due to how the MPI calls * pertaining to this issue might mistakenly match up, may cause an MPI error @@ -359,31 +380,30 @@ void test_multi_chunk_io_addrmap_issue(void) *MPIR_Bcast(1476)........: *MPIR_Bcast_intra(1249)..: *MPIR_SMP_Bcast(1088)....: - *MPIR_Bcast_binomial(250): message sizes do not match across processes in the collective routine: Received 2096 but expected 320000 - * major: Internal error (too specific to document in detail) - * minor: MPI Error String + *MPIR_Bcast_binomial(250): message sizes do not match across processes in the collective routine: Received + *2096 but expected 320000 major: Internal error (too specific to document in detail) minor: MPI Error String */ -void test_link_chunk_io_sort_chunk_issue(void) +void +test_link_chunk_io_sort_chunk_issue(void) { const char *filename; - hsize_t *dataset_dims = NULL; - hsize_t max_dataset_dims[LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS]; - hsize_t sel_dims[1]; - hsize_t chunk_dims[LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS] = { LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS }; - hsize_t start[LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS]; - hsize_t stride[LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS]; - hsize_t count[LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS]; - hsize_t block[LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS]; - hid_t file_id = H5I_INVALID_HID; - hid_t fapl_id = H5I_INVALID_HID; - hid_t dset_id = H5I_INVALID_HID; - hid_t dcpl_id = H5I_INVALID_HID; - hid_t dxpl_id = H5I_INVALID_HID; - hid_t fspace_id = H5I_INVALID_HID; - hid_t mspace_id = H5I_INVALID_HID; - int mpi_rank, mpi_size; - void *data = NULL; - void *read_buf = NULL; + hsize_t dataset_dims[LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS]; + hsize_t sel_dims[LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS]; + hsize_t chunk_dims[LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS]; + hsize_t start[LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS]; + hsize_t stride[LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS]; + hsize_t count[LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS]; + hsize_t block[LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS]; + hid_t file_id = H5I_INVALID_HID; + hid_t fapl_id = H5I_INVALID_HID; + hid_t dset_id = H5I_INVALID_HID; + hid_t dcpl_id = H5I_INVALID_HID; + hid_t dxpl_id = H5I_INVALID_HID; + hid_t fspace_id = H5I_INVALID_HID; + hid_t mspace_id = H5I_INVALID_HID; + int mpi_rank, mpi_size; + void * data = NULL; + void * read_buf = NULL; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); @@ -403,13 +423,13 @@ void test_link_chunk_io_sort_chunk_issue(void) file_id = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); VRFY((file_id >= 0), "H5Fcreate succeeded"); - dataset_dims = HDmalloc(LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS * sizeof(*dataset_dims)); - VRFY((dataset_dims != NULL), "malloc succeeded"); - - dataset_dims[0] = LINK_CHUNK_IO_SORT_CHUNK_ISSUE_CHUNK_SIZE * mpi_size * LINK_CHUNK_IO_SORT_CHUNK_ISSUE_Y_DIM_SCALE; - max_dataset_dims[0] = H5S_UNLIMITED; + /* + * Create a one-dimensional dataset of exactly LINK_CHUNK_IO_SORT_CHUNK_ISSUE_COLL_THRESH_NUM + * chunks, where every rank writes to a piece of every single chunk to keep utilization high. + */ + dataset_dims[0] = (hsize_t)mpi_size * (hsize_t)LINK_CHUNK_IO_SORT_CHUNK_ISSUE_COLL_THRESH_NUM; - fspace_id = H5Screate_simple(LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS, dataset_dims, max_dataset_dims); + fspace_id = H5Screate_simple(LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS, dataset_dims, NULL); VRFY((fspace_id >= 0), "H5Screate_simple succeeded"); /* @@ -418,29 +438,33 @@ void test_link_chunk_io_sort_chunk_issue(void) dcpl_id = H5Pcreate(H5P_DATASET_CREATE); VRFY((dcpl_id >= 0), "H5Pcreate succeeded"); - VRFY((H5Pset_chunk(dcpl_id, LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS, chunk_dims) >= 0), "H5Pset_chunk succeeded"); + /* Chunk size is equal to MPI size since each rank writes to a piece of every chunk */ + chunk_dims[0] = (hsize_t)mpi_size; + + VRFY((H5Pset_chunk(dcpl_id, LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DIMS, chunk_dims) >= 0), + "H5Pset_chunk succeeded"); - dset_id = H5Dcreate2(file_id, LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DATASET_NAME, H5T_NATIVE_INT, fspace_id, H5P_DEFAULT, dcpl_id, H5P_DEFAULT); + dset_id = H5Dcreate2(file_id, LINK_CHUNK_IO_SORT_CHUNK_ISSUE_DATASET_NAME, H5T_NATIVE_INT, fspace_id, + H5P_DEFAULT, dcpl_id, H5P_DEFAULT); VRFY((dset_id >= 0), "H5Dcreate2 succeeded"); /* * Setup hyperslab selection to split the dataset among the ranks. - * - * The ranks will write rows across the dataset. */ - stride[0] = LINK_CHUNK_IO_SORT_CHUNK_ISSUE_CHUNK_SIZE; - count[0] = (dataset_dims[0] / LINK_CHUNK_IO_SORT_CHUNK_ISSUE_CHUNK_SIZE) / mpi_size; - start[0] = count[0] * mpi_rank; - block[0] = LINK_CHUNK_IO_SORT_CHUNK_ISSUE_CHUNK_SIZE; + start[0] = (hsize_t)mpi_rank; + stride[0] = (hsize_t)mpi_size; + count[0] = LINK_CHUNK_IO_SORT_CHUNK_ISSUE_COLL_THRESH_NUM; + block[0] = 1; - VRFY((H5Sselect_hyperslab(fspace_id, H5S_SELECT_SET, start, stride, count, block) >= 0), "H5Sselect_hyperslab succeeded"); + VRFY((H5Sselect_hyperslab(fspace_id, H5S_SELECT_SET, start, stride, count, block) >= 0), + "H5Sselect_hyperslab succeeded"); - sel_dims[0] = count[0] * (LINK_CHUNK_IO_SORT_CHUNK_ISSUE_CHUNK_SIZE); + sel_dims[0] = count[0]; mspace_id = H5Screate_simple(1, sel_dims, NULL); VRFY((mspace_id >= 0), "H5Screate_simple succeeded"); - data = HDcalloc(1, count[0] * (LINK_CHUNK_IO_SORT_CHUNK_ISSUE_CHUNK_SIZE) * sizeof(int)); + data = HDcalloc(1, count[0] * sizeof(int)); VRFY((data != NULL), "calloc succeeded"); dxpl_id = H5Pcreate(H5P_DATASET_XFER); @@ -460,32 +484,27 @@ void test_link_chunk_io_sort_chunk_issue(void) * the particular code path where the issue lies and we don't * want the library doing multi-chunk I/O behind our backs. */ - VRFY((H5Pset_dxpl_mpio_chunk_opt(dxpl_id, H5FD_MPIO_CHUNK_ONE_IO) >= 0), "H5Pset_dxpl_mpio_chunk_opt succeeded"); + VRFY((H5Pset_dxpl_mpio_chunk_opt(dxpl_id, H5FD_MPIO_CHUNK_ONE_IO) >= 0), + "H5Pset_dxpl_mpio_chunk_opt succeeded"); - read_buf = HDmalloc(count[0] * (LINK_CHUNK_IO_SORT_CHUNK_ISSUE_CHUNK_SIZE) * sizeof(int)); + read_buf = HDmalloc(count[0] * sizeof(int)); VRFY((read_buf != NULL), "malloc succeeded"); - VRFY((H5Sselect_hyperslab(fspace_id, H5S_SELECT_SET, start, stride, count, block) >= 0), "H5Sselect_hyperslab succeeded"); + VRFY((H5Sselect_hyperslab(fspace_id, H5S_SELECT_SET, start, stride, count, block) >= 0), + "H5Sselect_hyperslab succeeded"); - sel_dims[0] = count[0] * (LINK_CHUNK_IO_SORT_CHUNK_ISSUE_CHUNK_SIZE); + sel_dims[0] = count[0]; VRFY((H5Sclose(mspace_id) >= 0), "H5Sclose succeeded"); mspace_id = H5Screate_simple(1, sel_dims, NULL); VRFY((mspace_id >= 0), "H5Screate_simple succeeded"); - read_buf = HDrealloc(read_buf, count[0] * (LINK_CHUNK_IO_SORT_CHUNK_ISSUE_CHUNK_SIZE) * sizeof(int)); - VRFY((read_buf != NULL), "realloc succeeded"); - /* * Finally have each rank read their section of data back from the dataset. */ - VRFY((H5Dread(dset_id, H5T_NATIVE_INT, mspace_id, fspace_id, dxpl_id, read_buf) >= 0), "H5Dread succeeded"); - - if (dataset_dims) { - HDfree(dataset_dims); - dataset_dims = NULL; - } + VRFY((H5Dread(dset_id, H5T_NATIVE_INT, mspace_id, fspace_id, dxpl_id, read_buf) >= 0), + "H5Dread succeeded"); if (data) { HDfree(data); diff --git a/testpar/t_dset.c b/testpar/t_dset.c index d4e556d..eb11b32 100644 --- a/testpar/t_dset.c +++ b/testpar/t_dset.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -42,131 +42,128 @@ * ZCOL same as BYCOL except process 0 gets 0 columns */ static void -slab_set(int mpi_rank, int mpi_size, hsize_t start[], hsize_t count[], - hsize_t stride[], hsize_t block[], int mode) +slab_set(int mpi_rank, int mpi_size, hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], + int mode) { switch (mode) { - case BYROW: - /* Each process takes a slabs of rows. */ - block[0] = dim0 / mpi_size; - block[1] = dim1; - stride[0] = block[0]; - stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = mpi_rank * block[0]; - start[1] = 0; - if (VERBOSE_MED) - HDprintf("slab_set BYROW\n"); - break; - case BYCOL: - /* Each process takes a block of columns. */ - block[0] = dim0; - block[1] = dim1 / mpi_size; - stride[0] = block[0]; - stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = 0; - start[1] = mpi_rank * block[1]; - if (VERBOSE_MED) - HDprintf("slab_set BYCOL\n"); - break; - case ZROW: - /* Similar to BYROW except process 0 gets 0 row */ - block[0] = (mpi_rank ? dim0 / mpi_size : 0); - block[1] = dim1; - stride[0] = (mpi_rank ? block[0] : 1); /* avoid setting stride to 0 */ - stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = (mpi_rank ? mpi_rank * block[0] : 0); - start[1] = 0; - if (VERBOSE_MED) - HDprintf("slab_set ZROW\n"); - break; - case ZCOL: - /* Similar to BYCOL except process 0 gets 0 column */ - block[0] = dim0; - block[1] = (mpi_rank ? dim1 / mpi_size : 0); - stride[0] = block[0]; - stride[1] = (mpi_rank ? block[1] : 1); /* avoid setting stride to 0 */ - count[0] = 1; - count[1] = 1; - start[0] = 0; - start[1] = (mpi_rank ? mpi_rank * block[1] : 0); - if (VERBOSE_MED) - HDprintf("slab_set ZCOL\n"); - break; - default: - /* Unknown mode. Set it to cover the whole dataset. */ - HDprintf("unknown slab_set mode (%d)\n", mode); - block[0] = dim0; - block[1] = dim1; - stride[0] = block[0]; - stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = 0; - start[1] = 0; - if (VERBOSE_MED) - HDprintf("slab_set wholeset\n"); - break; + case BYROW: + /* Each process takes a slabs of rows. */ + block[0] = (hsize_t)(dim0 / mpi_size); + block[1] = (hsize_t)dim1; + stride[0] = block[0]; + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = (hsize_t)mpi_rank * block[0]; + start[1] = 0; + if (VERBOSE_MED) + HDprintf("slab_set BYROW\n"); + break; + case BYCOL: + /* Each process takes a block of columns. */ + block[0] = (hsize_t)dim0; + block[1] = (hsize_t)(dim1 / mpi_size); + stride[0] = block[0]; + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = (hsize_t)mpi_rank * block[1]; + if (VERBOSE_MED) + HDprintf("slab_set BYCOL\n"); + break; + case ZROW: + /* Similar to BYROW except process 0 gets 0 row */ + block[0] = (hsize_t)(mpi_rank ? dim0 / mpi_size : 0); + block[1] = (hsize_t)dim1; + stride[0] = (mpi_rank ? block[0] : 1); /* avoid setting stride to 0 */ + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = (mpi_rank ? (hsize_t)mpi_rank * block[0] : 0); + start[1] = 0; + if (VERBOSE_MED) + HDprintf("slab_set ZROW\n"); + break; + case ZCOL: + /* Similar to BYCOL except process 0 gets 0 column */ + block[0] = (hsize_t)dim0; + block[1] = (hsize_t)(mpi_rank ? dim1 / mpi_size : 0); + stride[0] = block[0]; + stride[1] = (hsize_t)(mpi_rank ? block[1] : 1); /* avoid setting stride to 0 */ + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = (mpi_rank ? (hsize_t)mpi_rank * block[1] : 0); + if (VERBOSE_MED) + HDprintf("slab_set ZCOL\n"); + break; + default: + /* Unknown mode. Set it to cover the whole dataset. */ + HDprintf("unknown slab_set mode (%d)\n", mode); + block[0] = (hsize_t)dim0; + block[1] = (hsize_t)dim1; + stride[0] = block[0]; + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = 0; + if (VERBOSE_MED) + HDprintf("slab_set wholeset\n"); + break; } if (VERBOSE_MED) { - HDprintf( - "start[]=(%lu,%lu), count[]=(%lu,%lu), stride[]=(%lu,%lu), block[]=(%lu,%lu), total datapoints=%lu\n", - (unsigned long) start[0], (unsigned long) start[1], - (unsigned long) count[0], (unsigned long) count[1], - (unsigned long) stride[0], (unsigned long) stride[1], - (unsigned long) block[0], (unsigned long) block[1], - (unsigned long) (block[0] * block[1] * count[0] * count[1])); + HDprintf("start[]=(%lu,%lu), count[]=(%lu,%lu), stride[]=(%lu,%lu), block[]=(%lu,%lu), total " + "datapoints=%lu\n", + (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], + (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1], + (unsigned long)block[0], (unsigned long)block[1], + (unsigned long)(block[0] * block[1] * count[0] * count[1])); } } /* * Setup the coordinates for point selection. */ -void point_set(hsize_t start[], - hsize_t count[], - hsize_t stride[], - hsize_t block[], - size_t num_points, - hsize_t coords[], - int order) +void +point_set(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], size_t num_points, + hsize_t coords[], int order) { - hsize_t i,j, k = 0, m ,n, s1 ,s2; + hsize_t i, j, k = 0, m, n, s1, s2; HDcompile_assert(RANK == 2); - if(OUT_OF_ORDER == order) + if (OUT_OF_ORDER == order) k = (num_points * RANK) - 1; - else if(IN_ORDER == order) + else if (IN_ORDER == order) k = 0; s1 = start[0]; s2 = start[1]; - for(i = 0 ; i < count[0]; i++) - for(j = 0 ; j < count[1]; j++) - for(m = 0 ; m < block[0]; m++) - for(n = 0 ; n < block[1]; n++) - if(OUT_OF_ORDER == order) { + for (i = 0; i < count[0]; i++) + for (j = 0; j < count[1]; j++) + for (m = 0; m < block[0]; m++) + for (n = 0; n < block[1]; n++) + if (OUT_OF_ORDER == order) { coords[k--] = s2 + (stride[1] * j) + n; coords[k--] = s1 + (stride[0] * i) + m; } - else if(IN_ORDER == order) { + else if (IN_ORDER == order) { coords[k++] = s1 + stride[0] * i + m; coords[k++] = s2 + stride[1] * j + n; } - if(VERBOSE_MED) { - HDprintf("start[]=(%lu, %lu), count[]=(%lu, %lu), stride[]=(%lu, %lu), block[]=(%lu, %lu), total datapoints=%lu\n", - (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], (unsigned long)count[1], - (unsigned long)stride[0], (unsigned long)stride[1], (unsigned long)block[0], (unsigned long)block[1], - (unsigned long)(block[0] * block[1] * count[0] * count[1])); + if (VERBOSE_MED) { + HDprintf("start[]=(%lu, %lu), count[]=(%lu, %lu), stride[]=(%lu, %lu), block[]=(%lu, %lu), total " + "datapoints=%lu\n", + (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], + (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1], + (unsigned long)block[0], (unsigned long)block[1], + (unsigned long)(block[0] * block[1] * count[0] * count[1])); k = 0; - for(i = 0; i < num_points ; i++) { + for (i = 0; i < num_points; i++) { HDprintf("(%d, %d)\n", (int)coords[k], (int)coords[k + 1]); k += 2; } @@ -178,92 +175,90 @@ void point_set(hsize_t start[], * Assume dimension rank is 2 and data is stored contiguous. */ static void -dataset_fill(hsize_t start[], hsize_t block[], DATATYPE * dataset) +dataset_fill(hsize_t start[], hsize_t block[], DATATYPE *dataset) { DATATYPE *dataptr = dataset; - hsize_t i, j; + hsize_t i, j; /* put some trivial data in the data_array */ - for (i=0; i < block[0]; i++){ - for (j=0; j < block[1]; j++){ - *dataptr = (DATATYPE)((i+start[0])*100 + (j+start[1]+1)); - dataptr++; - } + for (i = 0; i < block[0]; i++) { + for (j = 0; j < block[1]; j++) { + *dataptr = (DATATYPE)((i + start[0]) * 100 + (j + start[1] + 1)); + dataptr++; + } } } - /* * Print the content of the dataset. */ static void -dataset_print(hsize_t start[], hsize_t block[], DATATYPE * dataset) +dataset_print(hsize_t start[], hsize_t block[], DATATYPE *dataset) { DATATYPE *dataptr = dataset; - hsize_t i, j; + hsize_t i, j; /* print the column heading */ HDprintf("%-8s", "Cols:"); - for (j=0; j < block[1]; j++){ - HDprintf("%3lu ", (unsigned long)(start[1]+j)); + for (j = 0; j < block[1]; j++) { + HDprintf("%3lu ", (unsigned long)(start[1] + j)); } HDprintf("\n"); /* print the slab data */ - for (i=0; i < block[0]; i++){ - HDprintf("Row %2lu: ", (unsigned long)(i+start[0])); - for (j=0; j < block[1]; j++){ - HDprintf("%03d ", *dataptr++); - } - HDprintf("\n"); + for (i = 0; i < block[0]; i++) { + HDprintf("Row %2lu: ", (unsigned long)(i + start[0])); + for (j = 0; j < block[1]; j++) { + HDprintf("%03d ", *dataptr++); + } + HDprintf("\n"); } } - /* * Print the content of the dataset. */ int -dataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], DATATYPE *dataset, DATATYPE *original) +dataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], DATATYPE *dataset, + DATATYPE *original) { hsize_t i, j; - int vrfyerrs; + int vrfyerrs; /* print it if VERBOSE_MED */ - if(VERBOSE_MED) { - HDprintf("dataset_vrfy dumping:::\n"); - HDprintf("start(%lu, %lu), count(%lu, %lu), stride(%lu, %lu), block(%lu, %lu)\n", - (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], (unsigned long)count[1], - (unsigned long)stride[0], (unsigned long)stride[1], (unsigned long)block[0], (unsigned long)block[1]); - HDprintf("original values:\n"); - dataset_print(start, block, original); - HDprintf("compared values:\n"); - dataset_print(start, block, dataset); + if (VERBOSE_MED) { + HDprintf("dataset_vrfy dumping:::\n"); + HDprintf("start(%lu, %lu), count(%lu, %lu), stride(%lu, %lu), block(%lu, %lu)\n", + (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], + (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1], + (unsigned long)block[0], (unsigned long)block[1]); + HDprintf("original values:\n"); + dataset_print(start, block, original); + HDprintf("compared values:\n"); + dataset_print(start, block, dataset); } vrfyerrs = 0; - for (i=0; i < block[0]; i++){ - for (j=0; j < block[1]; j++){ - if(*dataset != *original){ - if(vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED){ - HDprintf("Dataset Verify failed at [%lu][%lu](row %lu, col %lu): expect %d, got %d\n", - (unsigned long)i, (unsigned long)j, - (unsigned long)(i+start[0]), (unsigned long)(j+start[1]), - *(original), *(dataset)); - } - dataset++; - original++; + for (i = 0; i < block[0]; i++) { + for (j = 0; j < block[1]; j++) { + if (*dataset != *original) { + if (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED) { + HDprintf("Dataset Verify failed at [%lu][%lu](row %lu, col %lu): expect %d, got %d\n", + (unsigned long)i, (unsigned long)j, (unsigned long)(i + start[0]), + (unsigned long)(j + start[1]), *(original), *(dataset)); + } + dataset++; + original++; + } } } - } - if(vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED) - HDprintf("[more errors ...]\n"); - if(vrfyerrs) - HDprintf("%d errors found in dataset_vrfy\n", vrfyerrs); - return(vrfyerrs); + if (vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED) + HDprintf("[more errors ...]\n"); + if (vrfyerrs) + HDprintf("%d errors found in dataset_vrfy\n", vrfyerrs); + return (vrfyerrs); } - /* * Part 1.a--Independent read/write for fixed dimension datasets. */ @@ -279,36 +274,36 @@ dataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[] void dataset_writeInd(void) { - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hid_t sid; /* Dataspace ID */ - hid_t file_dataspace; /* File dataspace ID */ - hid_t mem_dataspace; /* memory dataspace ID */ - hid_t dataset1, dataset2; /* Dataset ID */ - hsize_t dims[RANK]; /* dataset dim sizes */ - DATATYPE *data_array1 = NULL; /* data buffer */ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + hsize_t dims[RANK]; /* dataset dim sizes */ + DATATYPE * data_array1 = NULL; /* data buffer */ const char *filename; - hsize_t start[RANK]; /* for hyperslab setting */ - hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ - hsize_t block[RANK]; /* for hyperslab setting */ + hsize_t start[RANK]; /* for hyperslab setting */ + hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ + hsize_t block[RANK]; /* for hyperslab setting */ - herr_t ret; /* Generic return value */ - int mpi_size, mpi_rank; + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; filename = GetTestParameters(); - if(VERBOSE_MED) - HDprintf("Independent write test on file %s\n", filename); + if (VERBOSE_MED) + HDprintf("Independent write test on file %s\n", filename); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* allocate memory for data buffer */ - data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); /* ---------------------------------------- @@ -326,29 +321,24 @@ dataset_writeInd(void) ret = H5Pclose(acc_tpl); VRFY((ret >= 0), ""); - /* --------------------------------------------- * Define the dimensions of the overall datasets * and the slabs local to the MPI process. * ------------------------------------------- */ /* setup dimensionality object */ - dims[0] = dim0; - dims[1] = dim1; - sid = H5Screate_simple (RANK, dims, NULL); + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + sid = H5Screate_simple(RANK, dims, NULL); VRFY((sid >= 0), "H5Screate_simple succeeded"); - /* create a dataset collectively */ - dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, - H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); /* create another dataset collectively */ - dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid, - H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((dataset2 >= 0), "H5Dcreate2 succeeded"); - /* * To test the independent orders of writes between processes, all * even number processes write to dataset1 first, then dataset2. @@ -363,43 +353,40 @@ dataset_writeInd(void) MESG("data_array initialized"); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset1); + file_dataspace = H5Dget_space(dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* write data independently */ - ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, data_array1); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); /* write data independently */ - ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, data_array1); + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); /* setup dimensions again to write with zero rows for process 0 */ - if(VERBOSE_MED) - HDprintf("writeInd by some with zero row\n"); + if (VERBOSE_MED) + HDprintf("writeInd by some with zero row\n"); slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* need to make mem_dataspace to match for process 0 */ - if(MAINPROCESS){ - ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + if (MAINPROCESS) { + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); } MESG("writeInd by some with zero row"); -if((mpi_rank/2)*2 != mpi_rank){ - ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, data_array1); - VRFY((ret >= 0), "H5Dwrite dataset1 by ZROW succeeded"); -} + if ((mpi_rank / 2) * 2 != mpi_rank) { + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset1 by ZROW succeeded"); + } #ifdef BARRIER_CHECKS -MPI_Barrier(MPI_COMM_WORLD); + MPI_Barrier(MPI_COMM_WORLD); #endif /* BARRIER_CHECKS */ /* release dataspace ID */ @@ -418,44 +405,45 @@ MPI_Barrier(MPI_COMM_WORLD); H5Fclose(fid); /* release data buffers */ - if(data_array1) HDfree(data_array1); + if (data_array1) + HDfree(data_array1); } /* Example of using the parallel HDF5 library to read a dataset */ void dataset_readInd(void) { - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hid_t file_dataspace; /* File dataspace ID */ - hid_t mem_dataspace; /* memory dataspace ID */ - hid_t dataset1, dataset2; /* Dataset ID */ - DATATYPE *data_array1 = NULL; /* data buffer */ - DATATYPE *data_origin1 = NULL; /* expected data buffer */ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + DATATYPE * data_array1 = NULL; /* data buffer */ + DATATYPE * data_origin1 = NULL; /* expected data buffer */ const char *filename; - hsize_t start[RANK]; /* for hyperslab setting */ - hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ - hsize_t block[RANK]; /* for hyperslab setting */ + hsize_t start[RANK]; /* for hyperslab setting */ + hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ + hsize_t block[RANK]; /* for hyperslab setting */ - herr_t ret; /* Generic return value */ - int mpi_size, mpi_rank; + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; filename = GetTestParameters(); - if(VERBOSE_MED) - HDprintf("Independent read test on file %s\n", filename); + if (VERBOSE_MED) + HDprintf("Independent read test on file %s\n", filename); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* allocate memory for data buffer */ - data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); - data_origin1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_origin1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_origin1 != NULL), "data_origin1 HDmalloc succeeded"); /* setup file access template */ @@ -478,40 +466,39 @@ dataset_readInd(void) dataset2 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); VRFY((dataset2 >= 0), ""); - /* set up dimensions of the slab this process accesses */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset1); + file_dataspace = H5Dget_space(dataset1); VRFY((file_dataspace >= 0), ""); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), ""); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill dataset with test data */ dataset_fill(start, block, data_origin1); /* read data independently */ - ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, data_array1); + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), ""); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); - if(ret) nerrors++; + if (ret) + nerrors++; /* read data independently */ - ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, data_array1); + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), ""); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); - if(ret) nerrors++; + if (ret) + nerrors++; /* close dataset collectively */ ret = H5Dclose(dataset1); @@ -526,11 +513,12 @@ dataset_readInd(void) H5Fclose(fid); /* release data buffers */ - if(data_array1) HDfree(data_array1); - if(data_origin1) HDfree(data_origin1); + if (data_array1) + HDfree(data_array1); + if (data_origin1) + HDfree(data_origin1); } - /* * Part 1.b--Collective read/write for fixed dimension datasets. */ @@ -547,49 +535,48 @@ dataset_readInd(void) void dataset_writeAll(void) { - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hid_t xfer_plist; /* Dataset transfer properties list */ - hid_t sid; /* Dataspace ID */ - hid_t file_dataspace; /* File dataspace ID */ - hid_t mem_dataspace; /* memory dataspace ID */ - hid_t dataset1, dataset2, dataset3, dataset4; /* Dataset ID */ - hid_t dataset5, dataset6, dataset7; /* Dataset ID */ - hid_t datatype; /* Datatype ID */ - hsize_t dims[RANK]; /* dataset dim sizes */ - DATATYPE *data_array1 = NULL; /* data buffer */ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2, dataset3, dataset4; /* Dataset ID */ + hid_t dataset5, dataset6, dataset7; /* Dataset ID */ + hid_t datatype; /* Datatype ID */ + hsize_t dims[RANK]; /* dataset dim sizes */ + DATATYPE * data_array1 = NULL; /* data buffer */ const char *filename; - hsize_t start[RANK]; /* for hyperslab setting */ - hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ - hsize_t block[RANK]; /* for hyperslab setting */ + hsize_t start[RANK]; /* for hyperslab setting */ + hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ + hsize_t block[RANK]; /* for hyperslab setting */ - size_t num_points; /* for point selection */ - hsize_t *coords = NULL; /* for point selection */ - hsize_t current_dims; /* for point selection */ - int i; + size_t num_points; /* for point selection */ + hsize_t *coords = NULL; /* for point selection */ + hsize_t current_dims; /* for point selection */ - herr_t ret; /* Generic return value */ - int mpi_size, mpi_rank; + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; filename = GetTestParameters(); - if(VERBOSE_MED) - HDprintf("Collective write test on file %s\n", filename); + if (VERBOSE_MED) + HDprintf("Collective write test on file %s\n", filename); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* set up the coords array selection */ - num_points = dim1; - coords = (hsize_t *)HDmalloc(dim1 * RANK * sizeof(hsize_t)); + num_points = (size_t)dim1; + coords = (hsize_t *)HDmalloc((size_t)dim1 * (size_t)RANK * sizeof(hsize_t)); VRFY((coords != NULL), "coords malloc succeeded"); /* allocate memory for data buffer */ - data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); /* ------------------- @@ -607,25 +594,23 @@ dataset_writeAll(void) ret = H5Pclose(acc_tpl); VRFY((ret >= 0), ""); - /* -------------------------- * Define the dimensions of the overall datasets * and create the dataset * ------------------------- */ /* setup 2-D dimensionality object */ - dims[0] = dim0; - dims[1] = dim1; - sid = H5Screate_simple (RANK, dims, NULL); + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + sid = H5Screate_simple(RANK, dims, NULL); VRFY((sid >= 0), "H5Screate_simple succeeded"); - /* create a dataset collectively */ dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); /* create another dataset collectively */ datatype = H5Tcopy(H5T_NATIVE_INT); - ret = H5Tset_order(datatype, H5T_ORDER_LE); + ret = H5Tset_order(datatype, H5T_ORDER_LE); VRFY((ret >= 0), "H5Tset_order succeeded"); dataset2 = H5Dcreate2(fid, DATASETNAME2, datatype, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -664,54 +649,51 @@ dataset_writeAll(void) slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset1); + file_dataspace = H5Dget_space(dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill the local slab with some trivial data */ dataset_fill(start, block, data_array1); MESG("data_array initialized"); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - /* write data collectively */ MESG("writeAll by Row"); - ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); /* setup dimensions again to writeAll with zero rows for process 0 */ - if(VERBOSE_MED) - HDprintf("writeAll by some with zero row\n"); + if (VERBOSE_MED) + HDprintf("writeAll by some with zero row\n"); slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* need to make mem_dataspace to match for process 0 */ - if(MAINPROCESS){ - ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + if (MAINPROCESS) { + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); } MESG("writeAll by some with zero row"); - ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset1 by ZROW succeeded"); /* release all temporary handles. */ @@ -727,59 +709,56 @@ dataset_writeAll(void) /* put some trivial data in the data_array */ dataset_fill(start, block, data_array1); MESG("data_array initialized"); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset1); + file_dataspace = H5Dget_space(dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill the local slab with some trivial data */ dataset_fill(start, block, data_array1); MESG("data_array initialized"); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - /* write data independently */ - ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); /* setup dimensions again to writeAll with zero columns for process 0 */ - if(VERBOSE_MED) - HDprintf("writeAll by some with zero col\n"); + if (VERBOSE_MED) + HDprintf("writeAll by some with zero col\n"); slab_set(mpi_rank, mpi_size, start, count, stride, block, ZCOL); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* need to make mem_dataspace to match for process 0 */ - if(MAINPROCESS){ - ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + if (MAINPROCESS) { + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); } MESG("writeAll by some with zero col"); - ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset1 by ZCOL succeeded"); /* release all temporary handles. */ @@ -789,16 +768,15 @@ dataset_writeAll(void) H5Sclose(mem_dataspace); H5Pclose(xfer_plist); - /* Dataset3: each process takes a block of rows, except process zero uses "none" selection. */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset3); + file_dataspace = H5Dget_space(dataset3); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); - if(MAINPROCESS) { - ret = H5Sselect_none(file_dataspace); - VRFY((ret >= 0), "H5Sselect_none file_dataspace succeeded"); + if (MAINPROCESS) { + ret = H5Sselect_none(file_dataspace); + VRFY((ret >= 0), "H5Sselect_none file_dataspace succeeded"); } /* end if */ else { ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); @@ -806,42 +784,39 @@ dataset_writeAll(void) } /* end else */ /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); - if(MAINPROCESS) { - ret = H5Sselect_none(mem_dataspace); - VRFY((ret >= 0), "H5Sselect_none mem_dataspace succeeded"); + if (MAINPROCESS) { + ret = H5Sselect_none(mem_dataspace); + VRFY((ret >= 0), "H5Sselect_none mem_dataspace succeeded"); } /* end if */ /* fill the local slab with some trivial data */ dataset_fill(start, block, data_array1); MESG("data_array initialized"); - if(VERBOSE_MED) { - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* end if */ /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - /* write data collectively */ MESG("writeAll with none"); - ret = H5Dwrite(dataset3, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dwrite(dataset3, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset3 succeeded"); /* write data collectively (with datatype conversion) */ MESG("writeAll with none"); - ret = H5Dwrite(dataset3, H5T_NATIVE_UCHAR, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dwrite(dataset3, H5T_NATIVE_UCHAR, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset3 succeeded"); /* release all temporary handles. */ @@ -855,11 +830,11 @@ dataset_writeAll(void) /* Additionally, these are in a scalar dataspace */ /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset4); + file_dataspace = H5Dget_space(dataset4); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); - if(MAINPROCESS) { - ret = H5Sselect_none(file_dataspace); - VRFY((ret >= 0), "H5Sselect_all file_dataspace succeeded"); + if (MAINPROCESS) { + ret = H5Sselect_none(file_dataspace); + VRFY((ret >= 0), "H5Sselect_all file_dataspace succeeded"); } /* end if */ else { ret = H5Sselect_all(file_dataspace); @@ -869,9 +844,9 @@ dataset_writeAll(void) /* create a memory dataspace independently */ mem_dataspace = H5Screate(H5S_SCALAR); VRFY((mem_dataspace >= 0), ""); - if(MAINPROCESS) { - ret = H5Sselect_none(mem_dataspace); - VRFY((ret >= 0), "H5Sselect_all mem_dataspace succeeded"); + if (MAINPROCESS) { + ret = H5Sselect_none(mem_dataspace); + VRFY((ret >= 0), "H5Sselect_all mem_dataspace succeeded"); } /* end if */ else { ret = H5Sselect_all(mem_dataspace); @@ -881,31 +856,29 @@ dataset_writeAll(void) /* fill the local slab with some trivial data */ dataset_fill(start, block, data_array1); MESG("data_array initialized"); - if(VERBOSE_MED) { - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* end if */ /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } /* write data collectively */ MESG("writeAll with scalar dataspace"); - ret = H5Dwrite(dataset4, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dwrite(dataset4, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset4 succeeded"); /* write data collectively (with datatype conversion) */ MESG("writeAll with scalar dataspace"); - ret = H5Dwrite(dataset4, H5T_NATIVE_UCHAR, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dwrite(dataset4, H5T_NATIVE_UCHAR, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset4 succeeded"); /* release all temporary handles. */ @@ -913,55 +886,54 @@ dataset_writeAll(void) H5Sclose(mem_dataspace); H5Pclose(xfer_plist); - - if(data_array1) free(data_array1); - data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + if (data_array1) + free(data_array1); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); - block[0] = 1; - block[1] = dim1; + block[0] = 1; + block[1] = (hsize_t)dim1; stride[0] = 1; - stride[1] = dim1; - count[0] = 1; - count[1] = 1; - start[0] = dim0/mpi_size * mpi_rank; - start[1] = 0; + stride[1] = (hsize_t)dim1; + count[0] = 1; + count[1] = 1; + start[0] = (hsize_t)(dim0 / mpi_size * mpi_rank); + start[1] = 0; dataset_fill(start, block, data_array1); MESG("data_array initialized"); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* Dataset5: point selection in File - Hyperslab selection in Memory*/ /* create a file dataspace independently */ - point_set (start, count, stride, block, num_points, coords, OUT_OF_ORDER); - file_dataspace = H5Dget_space (dataset5); + point_set(start, count, stride, block, num_points, coords, OUT_OF_ORDER); + file_dataspace = H5Dget_space(dataset5); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); VRFY((ret >= 0), "H5Sselect_elements succeeded"); - start[0] = 0; - start[1] = 0; - mem_dataspace = H5Dget_space (dataset5); + start[0] = 0; + start[1] = 0; + mem_dataspace = H5Dget_space(dataset5); VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } /* write data collectively */ - ret = H5Dwrite(dataset5, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dwrite(dataset5, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset5 succeeded"); /* release all temporary handles. */ @@ -971,35 +943,34 @@ dataset_writeAll(void) /* Dataset6: point selection in File - Point selection in Memory*/ /* create a file dataspace independently */ - start[0] = dim0/mpi_size * mpi_rank; + start[0] = (hsize_t)(dim0 / mpi_size * mpi_rank); start[1] = 0; - point_set (start, count, stride, block, num_points, coords, OUT_OF_ORDER); - file_dataspace = H5Dget_space (dataset6); + point_set(start, count, stride, block, num_points, coords, OUT_OF_ORDER); + file_dataspace = H5Dget_space(dataset6); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); VRFY((ret >= 0), "H5Sselect_elements succeeded"); start[0] = 0; start[1] = 0; - point_set (start, count, stride, block, num_points, coords, IN_ORDER); - mem_dataspace = H5Dget_space (dataset6); + point_set(start, count, stride, block, num_points, coords, IN_ORDER); + mem_dataspace = H5Dget_space(dataset6); VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); VRFY((ret >= 0), "H5Sselect_elements succeeded"); /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } /* write data collectively */ - ret = H5Dwrite(dataset6, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dwrite(dataset6, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset6 succeeded"); /* release all temporary handles. */ @@ -1009,34 +980,33 @@ dataset_writeAll(void) /* Dataset7: point selection in File - All selection in Memory*/ /* create a file dataspace independently */ - start[0] = dim0/mpi_size * mpi_rank; + start[0] = (hsize_t)(dim0 / mpi_size * mpi_rank); start[1] = 0; - point_set (start, count, stride, block, num_points, coords, IN_ORDER); - file_dataspace = H5Dget_space (dataset7); + point_set(start, count, stride, block, num_points, coords, IN_ORDER); + file_dataspace = H5Dget_space(dataset7); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); VRFY((ret >= 0), "H5Sselect_elements succeeded"); - current_dims = num_points; - mem_dataspace = H5Screate_simple (1, ¤t_dims, NULL); + current_dims = num_points; + mem_dataspace = H5Screate_simple(1, ¤t_dims, NULL); VRFY((mem_dataspace >= 0), "mem_dataspace create succeeded"); ret = H5Sselect_all(mem_dataspace); VRFY((ret >= 0), "H5Sselect_all succeeded"); /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } /* write data collectively */ - ret = H5Dwrite(dataset7, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dwrite(dataset7, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset7 succeeded"); /* release all temporary handles. */ @@ -1066,8 +1036,10 @@ dataset_writeAll(void) H5Fclose(fid); /* release data buffers */ - if(coords) HDfree(coords); - if(data_array1) HDfree(data_array1); + if (coords) + HDfree(coords); + if (data_array1) + HDfree(data_array1); } /* @@ -1082,48 +1054,47 @@ dataset_writeAll(void) void dataset_readAll(void) { - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hid_t xfer_plist; /* Dataset transfer properties list */ - hid_t file_dataspace; /* File dataspace ID */ - hid_t mem_dataspace; /* memory dataspace ID */ - hid_t dataset1, dataset2, dataset5, dataset6, dataset7; /* Dataset ID */ - DATATYPE *data_array1 = NULL; /* data buffer */ - DATATYPE *data_origin1 = NULL; /* expected data buffer */ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2, dataset5, dataset6, dataset7; /* Dataset ID */ + DATATYPE * data_array1 = NULL; /* data buffer */ + DATATYPE * data_origin1 = NULL; /* expected data buffer */ const char *filename; - hsize_t start[RANK]; /* for hyperslab setting */ - hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ - hsize_t block[RANK]; /* for hyperslab setting */ + hsize_t start[RANK]; /* for hyperslab setting */ + hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ + hsize_t block[RANK]; /* for hyperslab setting */ - size_t num_points; /* for point selection */ - hsize_t *coords = NULL; /* for point selection */ - hsize_t current_dims; /* for point selection */ - int i,j,k; + size_t num_points; /* for point selection */ + hsize_t *coords = NULL; /* for point selection */ + int i, j, k; - herr_t ret; /* Generic return value */ - int mpi_size, mpi_rank; + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; filename = GetTestParameters(); - if(VERBOSE_MED) - HDprintf("Collective read test on file %s\n", filename); + if (VERBOSE_MED) + HDprintf("Collective read test on file %s\n", filename); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* set up the coords array selection */ - num_points = dim1; - coords = (hsize_t *)HDmalloc(dim0 * dim1 * RANK * sizeof(hsize_t)); + num_points = (size_t)dim1; + coords = (hsize_t *)HDmalloc((size_t)dim0 * (size_t)dim1 * RANK * sizeof(hsize_t)); VRFY((coords != NULL), "coords malloc succeeded"); /* allocate memory for data buffer */ - data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); - data_origin1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_origin1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_origin1 != NULL), "data_origin1 HDmalloc succeeded"); /* ------------------- @@ -1134,14 +1105,13 @@ dataset_readAll(void) VRFY((acc_tpl >= 0), ""); /* open the file collectively */ - fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl); + fid = H5Fopen(filename, H5F_ACC_RDONLY, acc_tpl); VRFY((fid >= 0), "H5Fopen succeeded"); /* Release file-access template */ ret = H5Pclose(acc_tpl); VRFY((ret >= 0), ""); - /* -------------------------- * Open the datasets in it * ------------------------- */ @@ -1169,62 +1139,61 @@ dataset_readAll(void) slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset1); + file_dataspace = H5Dget_space(dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill dataset with test data */ dataset_fill(start, block, data_origin1); MESG("data_array initialized"); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(start, block, data_origin1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_origin1); } /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - /* read data collectively */ - ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dread dataset1 succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); - if(ret) nerrors++; + if (ret) + nerrors++; /* setup dimensions again to readAll with zero columns for process 0 */ - if(VERBOSE_MED) - HDprintf("readAll by some with zero col\n"); + if (VERBOSE_MED) + HDprintf("readAll by some with zero col\n"); slab_set(mpi_rank, mpi_size, start, count, stride, block, ZCOL); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* need to make mem_dataspace to match for process 0 */ - if(MAINPROCESS){ - ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + if (MAINPROCESS) { + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); } MESG("readAll by some with zero col"); - ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dread dataset1 by ZCOL succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); - if(ret) nerrors++; + if (ret) + nerrors++; /* release all temporary handles. */ /* Could have used them for dataset2 but it is cleaner */ @@ -1237,219 +1206,221 @@ dataset_readAll(void) slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset1); + file_dataspace = H5Dget_space(dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill dataset with test data */ dataset_fill(start, block, data_origin1); MESG("data_array initialized"); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(start, block, data_origin1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_origin1); } /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - /* read data collectively */ - ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dread dataset2 succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); - if(ret) nerrors++; + if (ret) + nerrors++; /* setup dimensions again to readAll with zero rows for process 0 */ - if(VERBOSE_MED) - HDprintf("readAll by some with zero row\n"); + if (VERBOSE_MED) + HDprintf("readAll by some with zero row\n"); slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* need to make mem_dataspace to match for process 0 */ - if(MAINPROCESS){ - ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + if (MAINPROCESS) { + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); } MESG("readAll by some with zero row"); - ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dread dataset1 by ZROW succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); - if(ret) nerrors++; + if (ret) + nerrors++; /* release all temporary handles. */ H5Sclose(file_dataspace); H5Sclose(mem_dataspace); H5Pclose(xfer_plist); - if(data_array1) free(data_array1); - if(data_origin1) free(data_origin1); - data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + if (data_array1) + free(data_array1); + if (data_origin1) + free(data_origin1); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); - data_origin1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_origin1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_origin1 != NULL), "data_origin1 malloc succeeded"); - block[0] = 1; - block[1] = dim1; + block[0] = 1; + block[1] = (hsize_t)dim1; stride[0] = 1; - stride[1] = dim1; - count[0] = 1; - count[1] = 1; - start[0] = dim0/mpi_size * mpi_rank; - start[1] = 0; + stride[1] = (hsize_t)dim1; + count[0] = 1; + count[1] = 1; + start[0] = (hsize_t)(dim0 / mpi_size * mpi_rank); + start[1] = 0; dataset_fill(start, block, data_origin1); MESG("data_array initialized"); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(start, block, data_origin1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_origin1); } /* Dataset5: point selection in memory - Hyperslab selection in file*/ /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset5); + file_dataspace = H5Dget_space(dataset5); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); start[0] = 0; start[1] = 0; - point_set (start, count, stride, block, num_points, coords, OUT_OF_ORDER); - mem_dataspace = H5Dget_space (dataset5); + point_set(start, count, stride, block, num_points, coords, OUT_OF_ORDER); + mem_dataspace = H5Dget_space(dataset5); VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); VRFY((ret >= 0), "H5Sselect_elements succeeded"); /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } /* read data collectively */ - ret = H5Dread(dataset5, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dread(dataset5, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dread dataset5 succeeded"); - ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); - if(ret) nerrors++; + if (ret) + nerrors++; /* release all temporary handles. */ H5Sclose(file_dataspace); H5Sclose(mem_dataspace); H5Pclose(xfer_plist); - - if(data_array1) free(data_array1); - data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + if (data_array1) + free(data_array1); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); /* Dataset6: point selection in File - Point selection in Memory*/ /* create a file dataspace independently */ - start[0] = dim0/mpi_size * mpi_rank; + start[0] = (hsize_t)(dim0 / mpi_size * mpi_rank); start[1] = 0; - point_set (start, count, stride, block, num_points, coords, IN_ORDER); - file_dataspace = H5Dget_space (dataset6); + point_set(start, count, stride, block, num_points, coords, IN_ORDER); + file_dataspace = H5Dget_space(dataset6); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); VRFY((ret >= 0), "H5Sselect_elements succeeded"); start[0] = 0; start[1] = 0; - point_set (start, count, stride, block, num_points, coords, OUT_OF_ORDER); - mem_dataspace = H5Dget_space (dataset6); + point_set(start, count, stride, block, num_points, coords, OUT_OF_ORDER); + mem_dataspace = H5Dget_space(dataset6); VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); VRFY((ret >= 0), "H5Sselect_elements succeeded"); /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } /* read data collectively */ - ret = H5Dread(dataset6, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dread(dataset6, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dread dataset6 succeeded"); ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); - if(ret) nerrors++; + if (ret) + nerrors++; /* release all temporary handles. */ H5Sclose(file_dataspace); H5Sclose(mem_dataspace); H5Pclose(xfer_plist); - if(data_array1) free(data_array1); - data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + if (data_array1) + free(data_array1); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); /* Dataset7: point selection in memory - All selection in file*/ /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset7); + file_dataspace = H5Dget_space(dataset7); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_all(file_dataspace); VRFY((ret >= 0), "H5Sselect_all succeeded"); - num_points = dim0 * dim1; - k=0; - for (i=0 ; i<dim0; i++) { - for (j=0 ; j<dim1; j++) { - coords[k++] = i; - coords[k++] = j; + num_points = (size_t)(dim0 * dim1); + k = 0; + for (i = 0; i < dim0; i++) { + for (j = 0; j < dim1; j++) { + coords[k++] = (hsize_t)i; + coords[k++] = (hsize_t)j; } } - mem_dataspace = H5Dget_space (dataset7); + mem_dataspace = H5Dget_space(dataset7); VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); VRFY((ret >= 0), "H5Sselect_elements succeeded"); /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } /* read data collectively */ - ret = H5Dread(dataset7, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dread(dataset7, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dread dataset7 succeeded"); - start[0] = dim0/mpi_size * mpi_rank; + start[0] = (hsize_t)(dim0 / mpi_size * mpi_rank); start[1] = 0; - ret = dataset_vrfy(start, count, stride, block, data_array1+(dim0/mpi_size * dim1 * mpi_rank), data_origin1); - if(ret) nerrors++; + ret = dataset_vrfy(start, count, stride, block, data_array1 + (dim0 / mpi_size * dim1 * mpi_rank), + data_origin1); + if (ret) + nerrors++; /* release all temporary handles. */ H5Sclose(file_dataspace); @@ -1474,12 +1445,14 @@ dataset_readAll(void) H5Fclose(fid); /* release data buffers */ - if(coords) HDfree(coords); - if(data_array1) HDfree(data_array1); - if(data_origin1) HDfree(data_origin1); + if (coords) + HDfree(coords); + if (data_array1) + HDfree(data_array1); + if (data_origin1) + HDfree(data_origin1); } - /* * Part 2--Independent read/write for extendible datasets. */ @@ -1495,45 +1468,44 @@ dataset_readAll(void) void extend_writeInd(void) { - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hid_t sid; /* Dataspace ID */ - hid_t file_dataspace; /* File dataspace ID */ - hid_t mem_dataspace; /* memory dataspace ID */ - hid_t dataset1, dataset2; /* Dataset ID */ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ const char *filename; - hsize_t dims[RANK]; /* dataset dim sizes */ - hsize_t max_dims[RANK] = - {H5S_UNLIMITED, H5S_UNLIMITED}; /* dataset maximum dim sizes */ - DATATYPE *data_array1 = NULL; /* data buffer */ - hsize_t chunk_dims[RANK]; /* chunk sizes */ - hid_t dataset_pl; /* dataset create prop. list */ + hsize_t dims[RANK]; /* dataset dim sizes */ + hsize_t max_dims[RANK] = {H5S_UNLIMITED, H5S_UNLIMITED}; /* dataset maximum dim sizes */ + DATATYPE * data_array1 = NULL; /* data buffer */ + hsize_t chunk_dims[RANK]; /* chunk sizes */ + hid_t dataset_pl; /* dataset create prop. list */ - hsize_t start[RANK]; /* for hyperslab setting */ - hsize_t count[RANK]; /* for hyperslab setting */ - hsize_t stride[RANK]; /* for hyperslab setting */ - hsize_t block[RANK]; /* for hyperslab setting */ + hsize_t start[RANK]; /* for hyperslab setting */ + hsize_t count[RANK]; /* for hyperslab setting */ + hsize_t stride[RANK]; /* for hyperslab setting */ + hsize_t block[RANK]; /* for hyperslab setting */ - herr_t ret; /* Generic return value */ - int mpi_size, mpi_rank; + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; filename = GetTestParameters(); - if(VERBOSE_MED) - HDprintf("Extend independent write test on file %s\n", filename); + if (VERBOSE_MED) + HDprintf("Extend independent write test on file %s\n", filename); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* setup chunk-size. Make sure sizes are > 0 */ - chunk_dims[0] = chunkdim0; - chunk_dims[1] = chunkdim1; + chunk_dims[0] = (hsize_t)chunkdim0; + chunk_dims[1] = (hsize_t)chunkdim1; /* allocate memory for data buffer */ - data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); /* ------------------- @@ -1543,22 +1515,22 @@ extend_writeInd(void) acc_tpl = create_faccess_plist(comm, info, facc_type); VRFY((acc_tpl >= 0), ""); -/* Reduce the number of metadata cache slots, so that there are cache - * collisions during the raw data I/O on the chunked dataset. This stresses - * the metadata cache and tests for cache bugs. -QAK - */ -{ - int mdc_nelmts; - size_t rdcc_nelmts; - size_t rdcc_nbytes; - double rdcc_w0; - - ret = H5Pget_cache(acc_tpl,&mdc_nelmts,&rdcc_nelmts,&rdcc_nbytes,&rdcc_w0); - VRFY((ret >= 0), "H5Pget_cache succeeded"); - mdc_nelmts=4; - ret = H5Pset_cache(acc_tpl,mdc_nelmts,rdcc_nelmts,rdcc_nbytes,rdcc_w0); - VRFY((ret >= 0), "H5Pset_cache succeeded"); -} + /* Reduce the number of metadata cache slots, so that there are cache + * collisions during the raw data I/O on the chunked dataset. This stresses + * the metadata cache and tests for cache bugs. -QAK + */ + { + int mdc_nelmts; + size_t rdcc_nelmts; + size_t rdcc_nbytes; + double rdcc_w0; + + ret = H5Pget_cache(acc_tpl, &mdc_nelmts, &rdcc_nelmts, &rdcc_nbytes, &rdcc_w0); + VRFY((ret >= 0), "H5Pget_cache succeeded"); + mdc_nelmts = 4; + ret = H5Pset_cache(acc_tpl, mdc_nelmts, rdcc_nelmts, rdcc_nbytes, rdcc_w0); + VRFY((ret >= 0), "H5Pset_cache succeeded"); + } /* create the file collectively */ fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); @@ -1568,14 +1540,13 @@ extend_writeInd(void) ret = H5Pclose(acc_tpl); VRFY((ret >= 0), ""); - /* -------------------------------------------------------------- * Define the dimensions of the overall datasets and create them. * ------------------------------------------------------------- */ /* set up dataset storage chunk sizes and creation property list */ - if(VERBOSE_MED) - HDprintf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]); + if (VERBOSE_MED) + HDprintf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]); dataset_pl = H5Pcreate(H5P_DATASET_CREATE); VRFY((dataset_pl >= 0), "H5Pcreate succeeded"); ret = H5Pset_chunk(dataset_pl, RANK, chunk_dims); @@ -1584,7 +1555,7 @@ extend_writeInd(void) /* setup dimensionality object */ /* start out with no rows, extend it later. */ dims[0] = dims[1] = 0; - sid = H5Screate_simple (RANK, dims, max_dims); + sid = H5Screate_simple(RANK, dims, max_dims); VRFY((sid >= 0), "H5Screate_simple succeeded"); /* create an extendible dataset collectively */ @@ -1599,8 +1570,6 @@ extend_writeInd(void) H5Sclose(sid); H5Pclose(dataset_pl); - - /* ------------------------- * Test writing to dataset1 * -------------------------*/ @@ -1610,37 +1579,35 @@ extend_writeInd(void) /* put some trivial data in the data_array */ dataset_fill(start, block, data_array1); MESG("data_array initialized"); - if(VERBOSE_MED) { - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* Extend its current dim sizes before writing */ - dims[0] = dim0; - dims[1] = dim1; - ret = H5Dset_extent(dataset1, dims); + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + ret = H5Dset_extent(dataset1, dims); VRFY((ret >= 0), "H5Dset_extent succeeded"); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset1); + file_dataspace = H5Dget_space(dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* write data independently */ - ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, data_array1); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), "H5Dwrite succeeded"); /* release resource */ H5Sclose(file_dataspace); H5Sclose(mem_dataspace); - /* ------------------------- * Test writing to dataset2 * -------------------------*/ @@ -1650,50 +1617,47 @@ extend_writeInd(void) /* put some trivial data in the data_array */ dataset_fill(start, block, data_array1); MESG("data_array initialized"); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* Try write to dataset2 beyond its current dim sizes. Should fail. */ - /* Temporary turn off auto error reporting */ - H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data); - H5Eset_auto2(H5E_DEFAULT, NULL, NULL); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset2); + file_dataspace = H5Dget_space(dataset2); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* write data independently. Should fail. */ - ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, data_array1); + H5E_BEGIN_TRY + { + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); + } + H5E_END_TRY VRFY((ret < 0), "H5Dwrite failed as expected"); - /* restore auto error reporting */ - H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data); H5Sclose(file_dataspace); /* Extend dataset2 and try again. Should succeed. */ - dims[0] = dim0; - dims[1] = dim1; - ret = H5Dset_extent(dataset2, dims); + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + ret = H5Dset_extent(dataset2, dims); VRFY((ret >= 0), "H5Dset_extent succeeded"); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset2); + file_dataspace = H5Dget_space(dataset2); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* write data independently */ - ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, data_array1); + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), "H5Dwrite succeeded"); /* release resource */ @@ -1702,7 +1666,6 @@ extend_writeInd(void) ret = H5Sclose(mem_dataspace); VRFY((ret >= 0), "H5Sclose succeeded"); - /* close dataset collectively */ ret = H5Dclose(dataset1); VRFY((ret >= 0), "H5Dclose1 succeeded"); @@ -1713,7 +1676,8 @@ extend_writeInd(void) H5Fclose(fid); /* release data buffers */ - if(data_array1) HDfree(data_array1); + if (data_array1) + HDfree(data_array1); } /* @@ -1726,30 +1690,30 @@ void extend_writeInd2(void) { const char *filename; - hid_t fid; /* HDF5 file ID */ - hid_t fapl; /* File access templates */ - hid_t fs; /* File dataspace ID */ - hid_t ms; /* Memory dataspace ID */ - hid_t dataset; /* Dataset ID */ - hsize_t orig_size=10; /* Original dataset dim size */ - hsize_t new_size=20; /* Extended dataset dim size */ - hsize_t one=1; - hsize_t max_size = H5S_UNLIMITED; /* dataset maximum dim size */ - hsize_t chunk_size = 16384; /* chunk size */ - hid_t dcpl; /* dataset create prop. list */ - int written[10], /* Data to write */ - retrieved[10]; /* Data read in */ - int mpi_size, mpi_rank; /* MPI settings */ - int i; /* Local index variable */ - herr_t ret; /* Generic return value */ + hid_t fid; /* HDF5 file ID */ + hid_t fapl; /* File access templates */ + hid_t fs; /* File dataspace ID */ + hid_t ms; /* Memory dataspace ID */ + hid_t dataset; /* Dataset ID */ + hsize_t orig_size = 10; /* Original dataset dim size */ + hsize_t new_size = 20; /* Extended dataset dim size */ + hsize_t one = 1; + hsize_t max_size = H5S_UNLIMITED; /* dataset maximum dim size */ + hsize_t chunk_size = 16384; /* chunk size */ + hid_t dcpl; /* dataset create prop. list */ + int written[10], /* Data to write */ + retrieved[10]; /* Data read in */ + int mpi_size, mpi_rank; /* MPI settings */ + int i; /* Local index variable */ + herr_t ret; /* Generic return value */ filename = GetTestParameters(); - if(VERBOSE_MED) - HDprintf("Extend independent write test #2 on file %s\n", filename); + if (VERBOSE_MED) + HDprintf("Extend independent write test #2 on file %s\n", filename); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* ------------------- * START AN HDF5 FILE @@ -1766,7 +1730,6 @@ extend_writeInd2(void) ret = H5Pclose(fapl); VRFY((ret >= 0), "H5Pclose succeeded"); - /* -------------------------------------------------------------- * Define the dimensions of the overall datasets and create them. * ------------------------------------------------------------- */ @@ -1778,7 +1741,7 @@ extend_writeInd2(void) VRFY((ret >= 0), "H5Pset_chunk succeeded"); /* setup dimensionality object */ - fs = H5Screate_simple (1, &orig_size, &max_size); + fs = H5Screate_simple(1, &orig_size, &max_size); VRFY((fs >= 0), "H5Screate_simple succeeded"); /* create an extendible dataset collectively */ @@ -1789,7 +1752,6 @@ extend_writeInd2(void) ret = H5Pclose(dcpl); VRFY((ret >= 0), "H5Pclose succeeded"); - /* ------------------------- * Test writing to dataset * -------------------------*/ @@ -1798,13 +1760,13 @@ extend_writeInd2(void) VRFY((ms >= 0), "H5Screate_simple succeeded"); /* put some trivial data in the data_array */ - for(i = 0; i < (int)orig_size; i++) + for (i = 0; i < (int)orig_size; i++) written[i] = i; MESG("data array initialized"); - if(VERBOSE_MED) { - MESG("writing at offset zero: "); - for(i = 0; i < (int)orig_size; i++) - HDprintf("%s%d", i?", ":"", written[i]); + if (VERBOSE_MED) { + MESG("writing at offset zero: "); + for (i = 0; i < (int)orig_size; i++) + HDprintf("%s%d", i ? ", " : "", written[i]); HDprintf("\n"); } ret = H5Dwrite(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, written); @@ -1815,16 +1777,16 @@ extend_writeInd2(void) * -------------------------*/ ret = H5Dread(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, retrieved); VRFY((ret >= 0), "H5Dread succeeded"); - for (i=0; i<(int)orig_size; i++) - if(written[i]!=retrieved[i]) { - HDprintf("Line #%d: written!=retrieved: written[%d]=%d, retrieved[%d]=%d\n",__LINE__, - i,written[i], i,retrieved[i]); + for (i = 0; i < (int)orig_size; i++) + if (written[i] != retrieved[i]) { + HDprintf("Line #%d: written!=retrieved: written[%d]=%d, retrieved[%d]=%d\n", __LINE__, i, + written[i], i, retrieved[i]); nerrors++; } - if(VERBOSE_MED){ - MESG("read at offset zero: "); - for (i=0; i<(int)orig_size; i++) - HDprintf("%s%d", i?", ":"", retrieved[i]); + if (VERBOSE_MED) { + MESG("read at offset zero: "); + for (i = 0; i < (int)orig_size; i++) + HDprintf("%s%d", i ? ", " : "", retrieved[i]); HDprintf("\n"); } @@ -1841,13 +1803,14 @@ extend_writeInd2(void) /* ------------------------- * Write to the second half of the dataset * -------------------------*/ - for (i=0; i<(int)orig_size; i++) - written[i] = orig_size + i; + H5_CHECK_OVERFLOW(orig_size, hsize_t, int); + for (i = 0; i < (int)orig_size; i++) + written[i] = (int)orig_size + i; MESG("data array re-initialized"); - if(VERBOSE_MED) { - MESG("writing at offset 10: "); - for (i=0; i<(int)orig_size; i++) - HDprintf("%s%d", i?", ":"", written[i]); + if (VERBOSE_MED) { + MESG("writing at offset 10: "); + for (i = 0; i < (int)orig_size; i++) + HDprintf("%s%d", i ? ", " : "", written[i]); HDprintf("\n"); } ret = H5Sselect_hyperslab(fs, H5S_SELECT_SET, &orig_size, NULL, &one, &orig_size); @@ -1860,20 +1823,19 @@ extend_writeInd2(void) * -------------------------*/ ret = H5Dread(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, retrieved); VRFY((ret >= 0), "H5Dread succeeded"); - for (i=0; i<(int)orig_size; i++) - if(written[i]!=retrieved[i]) { - HDprintf("Line #%d: written!=retrieved: written[%d]=%d, retrieved[%d]=%d\n",__LINE__, - i,written[i], i,retrieved[i]); + for (i = 0; i < (int)orig_size; i++) + if (written[i] != retrieved[i]) { + HDprintf("Line #%d: written!=retrieved: written[%d]=%d, retrieved[%d]=%d\n", __LINE__, i, + written[i], i, retrieved[i]); nerrors++; } - if(VERBOSE_MED){ - MESG("read at offset 10: "); - for (i=0; i<(int)orig_size; i++) - HDprintf("%s%d", i?", ":"", retrieved[i]); + if (VERBOSE_MED) { + MESG("read at offset 10: "); + for (i = 0; i < (int)orig_size; i++) + HDprintf("%s%d", i ? ", " : "", retrieved[i]); HDprintf("\n"); } - /* Close dataset collectively */ ret = H5Dclose(dataset); VRFY((ret >= 0), "H5Dclose succeeded"); @@ -1887,41 +1849,41 @@ extend_writeInd2(void) void extend_readInd(void) { - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hid_t file_dataspace; /* File dataspace ID */ - hid_t mem_dataspace; /* memory dataspace ID */ - hid_t dataset1, dataset2; /* Dataset ID */ - hsize_t dims[RANK]; /* dataset dim sizes */ - DATATYPE *data_array1 = NULL; /* data buffer */ - DATATYPE *data_array2 = NULL; /* data buffer */ - DATATYPE *data_origin1 = NULL; /* expected data buffer */ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + hsize_t dims[RANK]; /* dataset dim sizes */ + DATATYPE * data_array1 = NULL; /* data buffer */ + DATATYPE * data_array2 = NULL; /* data buffer */ + DATATYPE * data_origin1 = NULL; /* expected data buffer */ const char *filename; - hsize_t start[RANK]; /* for hyperslab setting */ - hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ - hsize_t block[RANK]; /* for hyperslab setting */ + hsize_t start[RANK]; /* for hyperslab setting */ + hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ + hsize_t block[RANK]; /* for hyperslab setting */ - herr_t ret; /* Generic return value */ - int mpi_size, mpi_rank; + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; filename = GetTestParameters(); - if(VERBOSE_MED) - HDprintf("Extend independent read test on file %s\n", filename); + if (VERBOSE_MED) + HDprintf("Extend independent read test on file %s\n", filename); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* allocate memory for data buffer */ - data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); - data_array2 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_array2 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array2 != NULL), "data_array2 HDmalloc succeeded"); - data_origin1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_origin1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_origin1 != NULL), "data_origin1 HDmalloc succeeded"); /* ------------------- @@ -1932,7 +1894,7 @@ extend_readInd(void) VRFY((acc_tpl >= 0), ""); /* open the file collectively */ - fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl); + fid = H5Fopen(filename, H5F_ACC_RDONLY, acc_tpl); VRFY((fid >= 0), ""); /* Release file-access template */ @@ -1948,88 +1910,85 @@ extend_readInd(void) VRFY((dataset2 >= 0), ""); /* Try extend dataset1 which is open RDONLY. Should fail. */ - /* first turn off auto error reporting */ - H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data); - H5Eset_auto2(H5E_DEFAULT, NULL, NULL); - file_dataspace = H5Dget_space (dataset1); + file_dataspace = H5Dget_space(dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sget_simple_extent_dims(file_dataspace, dims, NULL); VRFY((ret > 0), "H5Sget_simple_extent_dims succeeded"); dims[0]++; - ret = H5Dset_extent(dataset1, dims); + H5E_BEGIN_TRY + { + ret = H5Dset_extent(dataset1, dims); + } + H5E_END_TRY VRFY((ret < 0), "H5Dset_extent failed as expected"); - /* restore auto error reporting */ - H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data); H5Sclose(file_dataspace); - /* Read dataset1 using BYROW pattern */ /* set up dimensions of the slab this process accesses */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset1); + file_dataspace = H5Dget_space(dataset1); VRFY((file_dataspace >= 0), ""); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), ""); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill dataset with test data */ dataset_fill(start, block, data_origin1); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* read data independently */ - ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, data_array1); + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), "H5Dread succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); VRFY((ret == 0), "dataset1 read verified correct"); - if(ret) nerrors++; + if (ret) + nerrors++; H5Sclose(mem_dataspace); H5Sclose(file_dataspace); - /* Read dataset2 using BYCOL pattern */ /* set up dimensions of the slab this process accesses */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset2); + file_dataspace = H5Dget_space(dataset2); VRFY((file_dataspace >= 0), ""); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), ""); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill dataset with test data */ dataset_fill(start, block, data_origin1); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* read data independently */ - ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, data_array1); + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), "H5Dread succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); VRFY((ret == 0), "dataset2 read verified correct"); - if(ret) nerrors++; + if (ret) + nerrors++; H5Sclose(mem_dataspace); H5Sclose(file_dataspace); @@ -2040,14 +1999,16 @@ extend_readInd(void) ret = H5Dclose(dataset2); VRFY((ret >= 0), ""); - /* close the file collectively */ H5Fclose(fid); /* release data buffers */ - if(data_array1) HDfree(data_array1); - if(data_array2) HDfree(data_array2); - if(data_origin1) HDfree(data_origin1); + if (data_array1) + HDfree(data_array1); + if (data_array2) + HDfree(data_array2); + if (data_origin1) + HDfree(data_origin1); } /* @@ -2065,46 +2026,45 @@ extend_readInd(void) void extend_writeAll(void) { - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hid_t xfer_plist; /* Dataset transfer properties list */ - hid_t sid; /* Dataspace ID */ - hid_t file_dataspace; /* File dataspace ID */ - hid_t mem_dataspace; /* memory dataspace ID */ - hid_t dataset1, dataset2; /* Dataset ID */ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ const char *filename; - hsize_t dims[RANK]; /* dataset dim sizes */ - hsize_t max_dims[RANK] = - {H5S_UNLIMITED, H5S_UNLIMITED}; /* dataset maximum dim sizes */ - DATATYPE *data_array1 = NULL; /* data buffer */ - hsize_t chunk_dims[RANK]; /* chunk sizes */ - hid_t dataset_pl; /* dataset create prop. list */ + hsize_t dims[RANK]; /* dataset dim sizes */ + hsize_t max_dims[RANK] = {H5S_UNLIMITED, H5S_UNLIMITED}; /* dataset maximum dim sizes */ + DATATYPE * data_array1 = NULL; /* data buffer */ + hsize_t chunk_dims[RANK]; /* chunk sizes */ + hid_t dataset_pl; /* dataset create prop. list */ - hsize_t start[RANK]; /* for hyperslab setting */ - hsize_t count[RANK]; /* for hyperslab setting */ - hsize_t stride[RANK]; /* for hyperslab setting */ - hsize_t block[RANK]; /* for hyperslab setting */ + hsize_t start[RANK]; /* for hyperslab setting */ + hsize_t count[RANK]; /* for hyperslab setting */ + hsize_t stride[RANK]; /* for hyperslab setting */ + hsize_t block[RANK]; /* for hyperslab setting */ - herr_t ret; /* Generic return value */ - int mpi_size, mpi_rank; + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; filename = GetTestParameters(); - if(VERBOSE_MED) - HDprintf("Extend independent write test on file %s\n", filename); + if (VERBOSE_MED) + HDprintf("Extend independent write test on file %s\n", filename); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* setup chunk-size. Make sure sizes are > 0 */ - chunk_dims[0] = chunkdim0; - chunk_dims[1] = chunkdim1; + chunk_dims[0] = (hsize_t)chunkdim0; + chunk_dims[1] = (hsize_t)chunkdim1; /* allocate memory for data buffer */ - data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); /* ------------------- @@ -2114,22 +2074,22 @@ extend_writeAll(void) acc_tpl = create_faccess_plist(comm, info, facc_type); VRFY((acc_tpl >= 0), ""); -/* Reduce the number of metadata cache slots, so that there are cache - * collisions during the raw data I/O on the chunked dataset. This stresses - * the metadata cache and tests for cache bugs. -QAK - */ -{ - int mdc_nelmts; - size_t rdcc_nelmts; - size_t rdcc_nbytes; - double rdcc_w0; - - ret = H5Pget_cache(acc_tpl,&mdc_nelmts,&rdcc_nelmts,&rdcc_nbytes,&rdcc_w0); - VRFY((ret >= 0), "H5Pget_cache succeeded"); - mdc_nelmts=4; - ret = H5Pset_cache(acc_tpl,mdc_nelmts,rdcc_nelmts,rdcc_nbytes,rdcc_w0); - VRFY((ret >= 0), "H5Pset_cache succeeded"); -} + /* Reduce the number of metadata cache slots, so that there are cache + * collisions during the raw data I/O on the chunked dataset. This stresses + * the metadata cache and tests for cache bugs. -QAK + */ + { + int mdc_nelmts; + size_t rdcc_nelmts; + size_t rdcc_nbytes; + double rdcc_w0; + + ret = H5Pget_cache(acc_tpl, &mdc_nelmts, &rdcc_nelmts, &rdcc_nbytes, &rdcc_w0); + VRFY((ret >= 0), "H5Pget_cache succeeded"); + mdc_nelmts = 4; + ret = H5Pset_cache(acc_tpl, mdc_nelmts, rdcc_nelmts, rdcc_nbytes, rdcc_w0); + VRFY((ret >= 0), "H5Pset_cache succeeded"); + } /* create the file collectively */ fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); @@ -2139,14 +2099,13 @@ extend_writeAll(void) ret = H5Pclose(acc_tpl); VRFY((ret >= 0), ""); - /* -------------------------------------------------------------- * Define the dimensions of the overall datasets and create them. * ------------------------------------------------------------- */ /* set up dataset storage chunk sizes and creation property list */ - if(VERBOSE_MED) - HDprintf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]); + if (VERBOSE_MED) + HDprintf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]); dataset_pl = H5Pcreate(H5P_DATASET_CREATE); VRFY((dataset_pl >= 0), "H5Pcreate succeeded"); ret = H5Pset_chunk(dataset_pl, RANK, chunk_dims); @@ -2155,7 +2114,7 @@ extend_writeAll(void) /* setup dimensionality object */ /* start out with no rows, extend it later. */ dims[0] = dims[1] = 0; - sid = H5Screate_simple (RANK, dims, max_dims); + sid = H5Screate_simple(RANK, dims, max_dims); VRFY((sid >= 0), "H5Screate_simple succeeded"); /* create an extendible dataset collectively */ @@ -2170,8 +2129,6 @@ extend_writeAll(void) H5Sclose(sid); H5Pclose(dataset_pl); - - /* ------------------------- * Test writing to dataset1 * -------------------------*/ @@ -2181,41 +2138,39 @@ extend_writeAll(void) /* put some trivial data in the data_array */ dataset_fill(start, block, data_array1); MESG("data_array initialized"); - if(VERBOSE_MED) { - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* Extend its current dim sizes before writing */ - dims[0] = dim0; - dims[1] = dim1; - ret = H5Dset_extent(dataset1, dims); + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + ret = H5Dset_extent(dataset1, dims); VRFY((ret >= 0), "H5Dset_extent succeeded"); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset1); + file_dataspace = H5Dget_space(dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - /* write data collectively */ - ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite succeeded"); /* release resource */ @@ -2223,7 +2178,6 @@ extend_writeAll(void) H5Sclose(mem_dataspace); H5Pclose(xfer_plist); - /* ------------------------- * Test writing to dataset2 * -------------------------*/ @@ -2233,61 +2187,57 @@ extend_writeAll(void) /* put some trivial data in the data_array */ dataset_fill(start, block, data_array1); MESG("data_array initialized"); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - /* Try write to dataset2 beyond its current dim sizes. Should fail. */ - /* Temporary turn off auto error reporting */ - H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data); - H5Eset_auto2(H5E_DEFAULT, NULL, NULL); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset2); + file_dataspace = H5Dget_space(dataset2); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* write data independently. Should fail. */ - ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + H5E_BEGIN_TRY + { + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); + } + H5E_END_TRY VRFY((ret < 0), "H5Dwrite failed as expected"); - /* restore auto error reporting */ - H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data); H5Sclose(file_dataspace); /* Extend dataset2 and try again. Should succeed. */ - dims[0] = dim0; - dims[1] = dim1; - ret = H5Dset_extent(dataset2, dims); + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + ret = H5Dset_extent(dataset2, dims); VRFY((ret >= 0), "H5Dset_extent succeeded"); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset2); + file_dataspace = H5Dget_space(dataset2); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* write data independently */ - ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite succeeded"); /* release resource */ @@ -2298,7 +2248,6 @@ extend_writeAll(void) ret = H5Pclose(xfer_plist); VRFY((ret >= 0), "H5Pclose succeeded"); - /* close dataset collectively */ ret = H5Dclose(dataset1); VRFY((ret >= 0), "H5Dclose1 succeeded"); @@ -2309,49 +2258,50 @@ extend_writeAll(void) H5Fclose(fid); /* release data buffers */ - if(data_array1) HDfree(data_array1); + if (data_array1) + HDfree(data_array1); } /* Example of using the parallel HDF5 library to read an extendible dataset */ void extend_readAll(void) { - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hid_t xfer_plist; /* Dataset transfer properties list */ - hid_t file_dataspace; /* File dataspace ID */ - hid_t mem_dataspace; /* memory dataspace ID */ - hid_t dataset1, dataset2; /* Dataset ID */ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ const char *filename; - hsize_t dims[RANK]; /* dataset dim sizes */ - DATATYPE *data_array1 = NULL; /* data buffer */ - DATATYPE *data_array2 = NULL; /* data buffer */ - DATATYPE *data_origin1 = NULL; /* expected data buffer */ + hsize_t dims[RANK]; /* dataset dim sizes */ + DATATYPE * data_array1 = NULL; /* data buffer */ + DATATYPE * data_array2 = NULL; /* data buffer */ + DATATYPE * data_origin1 = NULL; /* expected data buffer */ - hsize_t start[RANK]; /* for hyperslab setting */ - hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ - hsize_t block[RANK]; /* for hyperslab setting */ + hsize_t start[RANK]; /* for hyperslab setting */ + hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ + hsize_t block[RANK]; /* for hyperslab setting */ - herr_t ret; /* Generic return value */ - int mpi_size, mpi_rank; + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; filename = GetTestParameters(); - if(VERBOSE_MED) - HDprintf("Extend independent read test on file %s\n", filename); + if (VERBOSE_MED) + HDprintf("Extend independent read test on file %s\n", filename); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* allocate memory for data buffer */ - data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_array1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); - data_array2 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_array2 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_array2 != NULL), "data_array2 HDmalloc succeeded"); - data_origin1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + data_origin1 = (DATATYPE *)HDmalloc((size_t)dim0 * (size_t)dim1 * sizeof(DATATYPE)); VRFY((data_origin1 != NULL), "data_origin1 HDmalloc succeeded"); /* ------------------- @@ -2362,7 +2312,7 @@ extend_readAll(void) VRFY((acc_tpl >= 0), ""); /* open the file collectively */ - fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl); + fid = H5Fopen(filename, H5F_ACC_RDONLY, acc_tpl); VRFY((fid >= 0), ""); /* Release file-access template */ @@ -2378,111 +2328,106 @@ extend_readAll(void) VRFY((dataset2 >= 0), ""); /* Try extend dataset1 which is open RDONLY. Should fail. */ - /* first turn off auto error reporting */ - H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data); - H5Eset_auto2(H5E_DEFAULT, NULL, NULL); - file_dataspace = H5Dget_space (dataset1); + file_dataspace = H5Dget_space(dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sget_simple_extent_dims(file_dataspace, dims, NULL); VRFY((ret > 0), "H5Sget_simple_extent_dims succeeded"); dims[0]++; - ret = H5Dset_extent(dataset1, dims); + H5E_BEGIN_TRY + { + ret = H5Dset_extent(dataset1, dims); + } + H5E_END_TRY VRFY((ret < 0), "H5Dset_extent failed as expected"); - /* restore auto error reporting */ - H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data); H5Sclose(file_dataspace); - /* Read dataset1 using BYROW pattern */ /* set up dimensions of the slab this process accesses */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset1); + file_dataspace = H5Dget_space(dataset1); VRFY((file_dataspace >= 0), ""); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), ""); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill dataset with test data */ dataset_fill(start, block, data_origin1); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - /* read data collectively */ - ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dread succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); VRFY((ret == 0), "dataset1 read verified correct"); - if(ret) nerrors++; + if (ret) + nerrors++; H5Sclose(mem_dataspace); H5Sclose(file_dataspace); H5Pclose(xfer_plist); - /* Read dataset2 using BYCOL pattern */ /* set up dimensions of the slab this process accesses */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset2); + file_dataspace = H5Dget_space(dataset2); VRFY((file_dataspace >= 0), ""); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), ""); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill dataset with test data */ dataset_fill(start, block, data_origin1); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(start, block, data_array1); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); } /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - /* read data collectively */ - ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_array1); + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dread succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); VRFY((ret == 0), "dataset2 read verified correct"); - if(ret) nerrors++; + if (ret) + nerrors++; H5Sclose(mem_dataspace); H5Sclose(file_dataspace); @@ -2494,14 +2439,16 @@ extend_readAll(void) ret = H5Dclose(dataset2); VRFY((ret >= 0), ""); - /* close the file collectively */ H5Fclose(fid); /* release data buffers */ - if(data_array1) HDfree(data_array1); - if(data_array2) HDfree(data_array2); - if(data_origin1) HDfree(data_origin1); + if (data_array1) + HDfree(data_array1); + if (data_array2) + HDfree(data_array2); + if (data_origin1) + HDfree(data_origin1); } /* @@ -2512,49 +2459,49 @@ extend_readAll(void) void compress_readAll(void) { - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hid_t dcpl; /* Dataset creation property list */ - hid_t xfer_plist; /* Dataset transfer properties list */ - hid_t dataspace; /* Dataspace ID */ - hid_t dataset; /* Dataset ID */ - int rank=1; /* Dataspace rank */ - hsize_t dim=dim0; /* Dataspace dimensions */ - unsigned u; /* Local index variable */ - unsigned chunk_opts; /* Chunk options */ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t dcpl; /* Dataset creation property list */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t dataspace; /* Dataspace ID */ + hid_t dataset; /* Dataset ID */ + int rank = 1; /* Dataspace rank */ + hsize_t dim = (hsize_t)dim0; /* Dataspace dimensions */ + unsigned u; /* Local index variable */ + unsigned chunk_opts; /* Chunk options */ unsigned disable_partial_chunk_filters; /* Whether filters are disabled on partial chunks */ - DATATYPE *data_read = NULL; /* data buffer */ - DATATYPE *data_orig = NULL; /* expected data buffer */ + DATATYPE * data_read = NULL; /* data buffer */ + DATATYPE * data_orig = NULL; /* expected data buffer */ const char *filename; - MPI_Comm comm = MPI_COMM_WORLD; - MPI_Info info = MPI_INFO_NULL; - int mpi_size, mpi_rank; - herr_t ret; /* Generic return value */ + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + int mpi_size, mpi_rank; + herr_t ret; /* Generic return value */ filename = GetTestParameters(); - if(VERBOSE_MED) - HDprintf("Collective chunked dataset read test on file %s\n", filename); + if (VERBOSE_MED) + HDprintf("Collective chunked dataset read test on file %s\n", filename); /* Retrieve MPI parameters */ - MPI_Comm_size(comm,&mpi_size); - MPI_Comm_rank(comm,&mpi_rank); + MPI_Comm_size(comm, &mpi_size); + MPI_Comm_rank(comm, &mpi_rank); /* Allocate data buffer */ - data_orig = (DATATYPE *)HDmalloc((size_t)dim*sizeof(DATATYPE)); + data_orig = (DATATYPE *)HDmalloc((size_t)dim * sizeof(DATATYPE)); VRFY((data_orig != NULL), "data_origin1 HDmalloc succeeded"); - data_read = (DATATYPE *)HDmalloc((size_t)dim*sizeof(DATATYPE)); + data_read = (DATATYPE *)HDmalloc((size_t)dim * sizeof(DATATYPE)); VRFY((data_read != NULL), "data_array1 HDmalloc succeeded"); /* Initialize data buffers */ - for(u=0; u<dim;u++) - data_orig[u]=u; + for (u = 0; u < dim; u++) + data_orig[u] = (DATATYPE)u; /* Run test both with and without filters disabled on partial chunks */ - for(disable_partial_chunk_filters = 0; disable_partial_chunk_filters <= 1; - disable_partial_chunk_filters++) { + for (disable_partial_chunk_filters = 0; disable_partial_chunk_filters <= 1; + disable_partial_chunk_filters++) { /* Process zero creates the file with a compressed, chunked dataset */ - if(mpi_rank==0) { - hsize_t chunk_dim; /* Chunk dimensions */ + if (mpi_rank == 0) { + hsize_t chunk_dim; /* Chunk dimensions */ /* Create the file */ fid = H5Fcreate(h5_rmprefix(filename), H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); @@ -2569,18 +2516,18 @@ compress_readAll(void) /* Use eight chunks */ chunk_dim = dim / 8; - ret = H5Pset_chunk(dcpl, rank, &chunk_dim); + ret = H5Pset_chunk(dcpl, rank, &chunk_dim); VRFY((ret >= 0), "H5Pset_chunk succeeded"); /* Set chunk options appropriately */ - if(disable_partial_chunk_filters) { + if (disable_partial_chunk_filters) { ret = H5Pget_chunk_opts(dcpl, &chunk_opts); - VRFY((ret>=0),"H5Pget_chunk_opts succeeded"); + VRFY((ret >= 0), "H5Pget_chunk_opts succeeded"); chunk_opts |= H5D_CHUNK_DONT_FILTER_PARTIAL_CHUNKS; ret = H5Pset_chunk_opts(dcpl, chunk_opts); - VRFY((ret>=0),"H5Pset_chunk_opts succeeded"); + VRFY((ret >= 0), "H5Pset_chunk_opts succeeded"); } /* end if */ ret = H5Pset_deflate(dcpl, 9); @@ -2591,7 +2538,8 @@ compress_readAll(void) VRFY((dataspace > 0), "H5Screate_simple succeeded"); /* Create dataset */ - dataset = H5Dcreate2(fid, "compressed_data", H5T_NATIVE_INT, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT); + dataset = + H5Dcreate2(fid, "compressed_data", H5T_NATIVE_INT, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT); VRFY((dataset > 0), "H5Dcreate2 succeeded"); /* Write compressed data */ @@ -2613,53 +2561,51 @@ compress_readAll(void) MPI_Barrier(comm); /* ------------------- - * OPEN AN HDF5 FILE - * -------------------*/ + * OPEN AN HDF5 FILE + * -------------------*/ /* setup file access template */ acc_tpl = create_faccess_plist(comm, info, facc_type); VRFY((acc_tpl >= 0), ""); /* open the file collectively */ - fid=H5Fopen(filename,H5F_ACC_RDWR,acc_tpl); + fid = H5Fopen(filename, H5F_ACC_RDWR, acc_tpl); VRFY((fid > 0), "H5Fopen succeeded"); /* Release file-access template */ ret = H5Pclose(acc_tpl); VRFY((ret >= 0), "H5Pclose succeeded"); - /* Open dataset with compressed chunks */ dataset = H5Dopen2(fid, "compressed_data", H5P_DEFAULT); VRFY((dataset > 0), "H5Dopen2 succeeded"); /* Try reading & writing data */ - if(dataset>0) { + if (dataset > 0) { /* Create dataset transfer property list */ xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist > 0), "H5Pcreate succeeded"); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - /* Try reading the data */ ret = H5Dread(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, xfer_plist, data_read); VRFY((ret >= 0), "H5Dread succeeded"); /* Verify data read */ - for(u=0; u<dim; u++) - if(data_orig[u]!=data_read[u]) { - HDprintf("Line #%d: written!=retrieved: data_orig[%u]=%d, data_read[%u]=%d\n",__LINE__, - (unsigned)u,data_orig[u],(unsigned)u,data_read[u]); + for (u = 0; u < dim; u++) + if (data_orig[u] != data_read[u]) { + HDprintf("Line #%d: written!=retrieved: data_orig[%u]=%d, data_read[%u]=%d\n", __LINE__, + (unsigned)u, data_orig[u], (unsigned)u, data_read[u]); nerrors++; } -#if MPI_VERSION >= 3 +#ifdef H5_HAVE_PARALLEL_FILTERED_WRITES ret = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, xfer_plist, data_read); VRFY((ret >= 0), "H5Dwrite succeeded"); #endif @@ -2676,8 +2622,10 @@ compress_readAll(void) } /* end for */ /* release data buffers */ - if(data_read) HDfree(data_read); - if(data_orig) HDfree(data_orig); + if (data_read) + HDfree(data_read); + if (data_orig) + HDfree(data_orig); } #endif /* H5_HAVE_FILTER_DEFLATE */ @@ -2696,43 +2644,43 @@ compress_readAll(void) void none_selection_chunk(void) { - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hid_t xfer_plist; /* Dataset transfer properties list */ - hid_t sid; /* Dataspace ID */ - hid_t file_dataspace; /* File dataspace ID */ - hid_t mem_dataspace; /* memory dataspace ID */ - hid_t dataset1, dataset2; /* Dataset ID */ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ const char *filename; - hsize_t dims[RANK]; /* dataset dim sizes */ - DATATYPE *data_origin = NULL; /* data buffer */ - DATATYPE *data_array = NULL; /* data buffer */ - hsize_t chunk_dims[RANK]; /* chunk sizes */ - hid_t dataset_pl; /* dataset create prop. list */ + hsize_t dims[RANK]; /* dataset dim sizes */ + DATATYPE * data_origin = NULL; /* data buffer */ + DATATYPE * data_array = NULL; /* data buffer */ + hsize_t chunk_dims[RANK]; /* chunk sizes */ + hid_t dataset_pl; /* dataset create prop. list */ - hsize_t start[RANK]; /* for hyperslab setting */ - hsize_t count[RANK]; /* for hyperslab setting */ - hsize_t stride[RANK]; /* for hyperslab setting */ - hsize_t block[RANK]; /* for hyperslab setting */ - hsize_t mstart[RANK]; /* for data buffer in memory */ + hsize_t start[RANK]; /* for hyperslab setting */ + hsize_t count[RANK]; /* for hyperslab setting */ + hsize_t stride[RANK]; /* for hyperslab setting */ + hsize_t block[RANK]; /* for hyperslab setting */ + hsize_t mstart[RANK]; /* for data buffer in memory */ - herr_t ret; /* Generic return value */ - int mpi_size, mpi_rank; + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; filename = GetTestParameters(); - if(VERBOSE_MED) - HDprintf("Extend independent write test on file %s\n", filename); + if (VERBOSE_MED) + HDprintf("Extend independent write test on file %s\n", filename); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* setup chunk-size. Make sure sizes are > 0 */ - chunk_dims[0] = chunkdim0; - chunk_dims[1] = chunkdim1; + chunk_dims[0] = (hsize_t)chunkdim0; + chunk_dims[1] = (hsize_t)chunkdim1; /* ------------------- * START AN HDF5 FILE @@ -2754,17 +2702,17 @@ none_selection_chunk(void) * ------------------------------------------------------------- */ /* set up dataset storage chunk sizes and creation property list */ - if(VERBOSE_MED) - HDprintf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]); + if (VERBOSE_MED) + HDprintf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]); dataset_pl = H5Pcreate(H5P_DATASET_CREATE); VRFY((dataset_pl >= 0), "H5Pcreate succeeded"); ret = H5Pset_chunk(dataset_pl, RANK, chunk_dims); VRFY((ret >= 0), "H5Pset_chunk succeeded"); /* setup dimensionality object */ - dims[0] = dim0; - dims[1] = dim1; - sid = H5Screate_simple(RANK, dims, NULL); + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + sid = H5Screate_simple(RANK, dims, NULL); VRFY((sid >= 0), "H5Screate_simple succeeded"); /* create an extendible dataset collectively */ @@ -2787,65 +2735,64 @@ none_selection_chunk(void) /* allocate memory for data buffer. Only allocate enough buffer for * each processor's data. */ - if(mpi_rank) { - data_origin = (DATATYPE *)HDmalloc(block[0]*block[1]*sizeof(DATATYPE)); + if (mpi_rank) { + data_origin = (DATATYPE *)HDmalloc(block[0] * block[1] * sizeof(DATATYPE)); VRFY((data_origin != NULL), "data_origin HDmalloc succeeded"); - data_array = (DATATYPE *)HDmalloc(block[0]*block[1]*sizeof(DATATYPE)); + data_array = (DATATYPE *)HDmalloc(block[0] * block[1] * sizeof(DATATYPE)); VRFY((data_array != NULL), "data_array HDmalloc succeeded"); /* put some trivial data in the data_array */ mstart[0] = mstart[1] = 0; dataset_fill(mstart, block, data_origin); MESG("data_array initialized"); - if(VERBOSE_MED){ - MESG("data_array created"); - dataset_print(mstart, block, data_origin); + if (VERBOSE_MED) { + MESG("data_array created"); + dataset_print(mstart, block, data_origin); } } /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* Process 0 has no selection */ - if(!mpi_rank) { + if (!mpi_rank) { ret = H5Sselect_none(mem_dataspace); VRFY((ret >= 0), "H5Sselect_none succeeded"); } /* create a file dataspace independently */ - file_dataspace = H5Dget_space (dataset1); + file_dataspace = H5Dget_space(dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* Process 0 has no selection */ - if(!mpi_rank) { + if (!mpi_rank) { ret = H5Sselect_none(file_dataspace); VRFY((ret >= 0), "H5Sselect_none succeeded"); } /* set up the collective transfer properties list */ - xfer_plist = H5Pcreate (H5P_DATASET_XFER); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); /* write data collectively */ - ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_origin); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_origin); VRFY((ret >= 0), "H5Dwrite succeeded"); /* read data independently */ - ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, data_array); + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array); VRFY((ret >= 0), ""); /* verify the read data with original expected data */ - if(mpi_rank) { + if (mpi_rank) { ret = dataset_vrfy(mstart, count, stride, block, data_array, data_origin); - if(ret) nerrors++; + if (ret) + nerrors++; } /* ------------------------- @@ -2855,19 +2802,18 @@ none_selection_chunk(void) VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); /* write data collectively */ - ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - xfer_plist, data_origin); + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_origin); VRFY((ret >= 0), "H5Dwrite succeeded"); /* read data independently */ - ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, data_array); + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array); VRFY((ret >= 0), ""); /* verify the read data with original expected data */ - if(mpi_rank) { + if (mpi_rank) { ret = dataset_vrfy(mstart, count, stride, block, data_array, data_origin); - if(ret) nerrors++; + if (ret) + nerrors++; } /* release resource */ @@ -2878,7 +2824,6 @@ none_selection_chunk(void) ret = H5Pclose(xfer_plist); VRFY((ret >= 0), "H5Pclose succeeded"); - /* close dataset collectively */ ret = H5Dclose(dataset1); VRFY((ret >= 0), "H5Dclose1 succeeded"); @@ -2889,11 +2834,12 @@ none_selection_chunk(void) H5Fclose(fid); /* release data buffers */ - if(data_origin) HDfree(data_origin); - if(data_array) HDfree(data_array); + if (data_origin) + HDfree(data_origin); + if (data_array) + HDfree(data_array); } - /* Function: test_actual_io_mode * * Purpose: tests one specific case of collective I/O and checks that the @@ -2935,7 +2881,7 @@ none_selection_chunk(void) * Simple independent I/O. This tests that the defaults are properly set. * * TEST_ACTUAL_IO_RESET: - * Perfroms collective and then independent I/O wit hthe same dxpl to + * Performs collective and then independent I/O with hthe same dxpl to * make sure the peroperty is correctly reset to the default on each use. * Specifically, this test runs TEST_ACTUAL_IO_MULTI_CHUNK_NO_OPT_MIX_DISAGREE * (The most complex case that works on all builds) and then performs @@ -2944,7 +2890,7 @@ none_selection_chunk(void) * Note: DIRECT_MULTI_CHUNK_MIX and DIRECT_MULTI_CHUNK_MIX_DISAGREE * is not needed as they are covered by DIRECT_CHUNK_MIX and * MULTI_CHUNK_MIX_DISAGREE cases. _DIRECT_ cases are only for testing - * path way to multi-chunk-io by H5FD_MPIO_CHUNK_MULTI_IO insted of num-threshold. + * path way to multi-chunk-io by H5FD_MPIO_CHUNK_MULTI_IO instead of num-threshold. * * Modification: * - Refctore to remove multi-chunk-without-opimization test and update for @@ -2957,63 +2903,61 @@ none_selection_chunk(void) * Date: 2011-04-06 */ static void -test_actual_io_mode(int selection_mode) { - H5D_mpio_actual_chunk_opt_mode_t actual_chunk_opt_mode_write = -1; - H5D_mpio_actual_chunk_opt_mode_t actual_chunk_opt_mode_read = -1; - H5D_mpio_actual_chunk_opt_mode_t actual_chunk_opt_mode_expected = -1; - H5D_mpio_actual_io_mode_t actual_io_mode_write = -1; - H5D_mpio_actual_io_mode_t actual_io_mode_read = -1; - H5D_mpio_actual_io_mode_t actual_io_mode_expected = -1; - const char * filename; - const char * test_name; - hbool_t direct_multi_chunk_io; - hbool_t multi_chunk_io; - hbool_t is_chunked; - hbool_t is_collective; - int mpi_size = -1; - int mpi_rank = -1; - int length; - int * buffer; - int i; - MPI_Comm mpi_comm = MPI_COMM_NULL; - MPI_Info mpi_info = MPI_INFO_NULL; - hid_t fid = -1; - hid_t sid = -1; - hid_t dataset = -1; - hid_t data_type = H5T_NATIVE_INT; - hid_t fapl = -1; - hid_t mem_space = -1; - hid_t file_space = -1; - hid_t dcpl = -1; - hid_t dxpl_write = -1; - hid_t dxpl_read = -1; - hsize_t dims[RANK]; - hsize_t chunk_dims[RANK]; - hsize_t start[RANK]; - hsize_t stride[RANK]; - hsize_t count[RANK]; - hsize_t block[RANK]; - char message[256]; - herr_t ret; +test_actual_io_mode(int selection_mode) +{ + H5D_mpio_actual_chunk_opt_mode_t actual_chunk_opt_mode_write = H5D_MPIO_NO_CHUNK_OPTIMIZATION; + H5D_mpio_actual_chunk_opt_mode_t actual_chunk_opt_mode_read = H5D_MPIO_NO_CHUNK_OPTIMIZATION; + H5D_mpio_actual_chunk_opt_mode_t actual_chunk_opt_mode_expected = H5D_MPIO_NO_CHUNK_OPTIMIZATION; + H5D_mpio_actual_io_mode_t actual_io_mode_write = H5D_MPIO_NO_COLLECTIVE; + H5D_mpio_actual_io_mode_t actual_io_mode_read = H5D_MPIO_NO_COLLECTIVE; + H5D_mpio_actual_io_mode_t actual_io_mode_expected = H5D_MPIO_NO_COLLECTIVE; + const char * filename; + const char * test_name; + hbool_t direct_multi_chunk_io; + hbool_t multi_chunk_io; + hbool_t is_chunked; + hbool_t is_collective; + int mpi_size = -1; + int mpi_rank = -1; + int length; + int * buffer; + int i; + MPI_Comm mpi_comm = MPI_COMM_NULL; + MPI_Info mpi_info = MPI_INFO_NULL; + hid_t fid = -1; + hid_t sid = -1; + hid_t dataset = -1; + hid_t data_type = H5T_NATIVE_INT; + hid_t fapl = -1; + hid_t mem_space = -1; + hid_t file_space = -1; + hid_t dcpl = -1; + hid_t dxpl_write = -1; + hid_t dxpl_read = -1; + hsize_t dims[RANK]; + hsize_t chunk_dims[RANK]; + hsize_t start[RANK]; + hsize_t stride[RANK]; + hsize_t count[RANK]; + hsize_t block[RANK]; + char message[256]; + herr_t ret; /* Set up some flags to make some future if statements slightly more readable */ - direct_multi_chunk_io = ( - selection_mode == TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND || - selection_mode == TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL ); + direct_multi_chunk_io = (selection_mode == TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND || + selection_mode == TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL); /* Note: RESET performs the same tests as MULTI_CHUNK_MIX_DISAGREE and then * tests independent I/O */ - multi_chunk_io = ( - selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_IND || - selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_COL || - selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_MIX || - selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE || - selection_mode == TEST_ACTUAL_IO_RESET ); + multi_chunk_io = + (selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_IND || + selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_COL || + selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_MIX || + selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE || selection_mode == TEST_ACTUAL_IO_RESET); - is_chunked = ( - selection_mode != TEST_ACTUAL_IO_CONTIGUOUS && - selection_mode != TEST_ACTUAL_IO_NO_COLLECTIVE); + is_chunked = + (selection_mode != TEST_ACTUAL_IO_CONTIGUOUS && selection_mode != TEST_ACTUAL_IO_NO_COLLECTIVE); is_collective = selection_mode != TEST_ACTUAL_IO_NO_COLLECTIVE; @@ -3040,9 +2984,9 @@ test_actual_io_mode(int selection_mode) { VRFY((fid >= 0), "H5Fcreate succeeded"); /* Create the basic Space */ - dims[0] = dim0; - dims[1] = dim1; - sid = H5Screate_simple (RANK, dims, NULL); + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + sid = H5Screate_simple(RANK, dims, NULL); VRFY((sid >= 0), "H5Screate_simple succeeded"); /* Create the dataset creation plist */ @@ -3050,17 +2994,16 @@ test_actual_io_mode(int selection_mode) { VRFY((dcpl >= 0), "dataset creation plist created successfully"); /* If we are not testing contiguous datasets */ - if(is_chunked) { + if (is_chunked) { /* Set up chunk information. */ - chunk_dims[0] = dims[0]/mpi_size; + chunk_dims[0] = dims[0] / (hsize_t)mpi_size; chunk_dims[1] = dims[1]; - ret = H5Pset_chunk(dcpl, 2, chunk_dims); - VRFY((ret >= 0),"chunk creation property list succeeded"); + ret = H5Pset_chunk(dcpl, 2, chunk_dims); + VRFY((ret >= 0), "chunk creation property list succeeded"); } /* Create the dataset */ - dataset = H5Dcreate2(fid, "actual_io", data_type, sid, H5P_DEFAULT, - dcpl, H5P_DEFAULT); + dataset = H5Dcreate2(fid, "actual_io", data_type, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); VRFY((dataset >= 0), "H5Dcreate2() dataset succeeded"); /* Create the file dataspace */ @@ -3069,7 +3012,7 @@ test_actual_io_mode(int selection_mode) { /* Choose a selection method based on the type of I/O we want to occur, * and also set up some selection-dependeent test info. */ - switch(selection_mode) { + switch (selection_mode) { /* Independent I/O with optimization */ case TEST_ACTUAL_IO_MULTI_CHUNK_IND: @@ -3080,9 +3023,9 @@ test_actual_io_mode(int selection_mode) { */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); - test_name = "Multi Chunk - Independent"; + test_name = "Multi Chunk - Independent"; actual_chunk_opt_mode_expected = H5D_MPIO_MULTI_CHUNK; - actual_io_mode_expected = H5D_MPIO_CHUNK_INDEPENDENT; + actual_io_mode_expected = H5D_MPIO_CHUNK_INDEPENDENT; break; /* Collective I/O with optimization */ @@ -3094,9 +3037,9 @@ test_actual_io_mode(int selection_mode) { */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); - test_name = "Multi Chunk - Collective"; + test_name = "Multi Chunk - Collective"; actual_chunk_opt_mode_expected = H5D_MPIO_MULTI_CHUNK; - if(mpi_size > 1) + if (mpi_size > 1) actual_io_mode_expected = H5D_MPIO_CHUNK_COLLECTIVE; else actual_io_mode_expected = H5D_MPIO_CHUNK_INDEPENDENT; @@ -3113,28 +3056,29 @@ test_actual_io_mode(int selection_mode) { * and at least one chunk independently, reporting mixed I/O. */ - if(mpi_rank == 0) { - /* Select the first column */ - slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); - } else { + if (mpi_rank == 0) { + /* Select the first column */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + } + else { /* Select the first and the nth chunk in the nth column */ - block[0] = dim0 / mpi_size; - block[1] = dim1 / mpi_size; - count[0] = 2; - count[1] = 1; - stride[0] = mpi_rank * block[0]; + block[0] = (hsize_t)(dim0 / mpi_size); + block[1] = (hsize_t)(dim1 / mpi_size); + count[0] = 2; + count[1] = 1; + stride[0] = (hsize_t)mpi_rank * block[0]; stride[1] = 1; - start[0] = 0; - start[1] = mpi_rank*block[1]; + start[0] = 0; + start[1] = (hsize_t)mpi_rank * block[1]; } - test_name = "Multi Chunk - Mixed"; + test_name = "Multi Chunk - Mixed"; actual_chunk_opt_mode_expected = H5D_MPIO_MULTI_CHUNK; - actual_io_mode_expected = H5D_MPIO_CHUNK_MIXED; + actual_io_mode_expected = H5D_MPIO_CHUNK_MIXED; break; /* RESET tests that the properties are properly reset to defaults each time I/O is - * performed. To acheive this, we have RESET perform collective I/O (which would change + * performed. To achieve this, we have RESET perform collective I/O (which would change * the values from the defaults) followed by independent I/O (which should report the * default values). RESET doesn't need to have a unique selection, so we reuse * MULTI_CHUMK_MIX_DISAGREE, which was chosen because it is a complex case that works @@ -3150,23 +3094,24 @@ test_actual_io_mode(int selection_mode) { * assgigned collective I/O, while each other process gets independent I/O. * Since the root process with only access the first chunk, it will report * collective I/O. The subsequent processes will access the first chunk - * collectively, and their other chunk indpendently, reporting mixed I/O. + * collectively, and their other chunk independently, reporting mixed I/O. */ - if(mpi_rank == 0) { - /* Select the first chunk in the first column */ - slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); - block[0] = block[0] / mpi_size; - } else { + if (mpi_rank == 0) { + /* Select the first chunk in the first column */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + block[0] = block[0] / (hsize_t)mpi_size; + } + else { /* Select the first and the nth chunk in the nth column */ - block[0] = dim0 / mpi_size; - block[1] = dim1 / mpi_size; - count[0] = 2; - count[1] = 1; - stride[0] = mpi_rank * block[0]; + block[0] = (hsize_t)(dim0 / mpi_size); + block[1] = (hsize_t)(dim1 / mpi_size); + count[0] = 2; + count[1] = 1; + stride[0] = (hsize_t)mpi_rank * block[0]; stride[1] = 1; - start[0] = 0; - start[1] = mpi_rank*block[1]; + start[0] = 0; + start[1] = (hsize_t)mpi_rank * block[1]; } /* If the testname was not already set by the RESET case */ @@ -3176,8 +3121,8 @@ test_actual_io_mode(int selection_mode) { test_name = "Multi Chunk - Mixed (Disagreement)"; actual_chunk_opt_mode_expected = H5D_MPIO_MULTI_CHUNK; - if(mpi_size > 1) { - if(mpi_rank == 0) + if (mpi_size > 1) { + if (mpi_rank == 0) actual_io_mode_expected = H5D_MPIO_CHUNK_COLLECTIVE; else actual_io_mode_expected = H5D_MPIO_CHUNK_MIXED; @@ -3192,9 +3137,9 @@ test_actual_io_mode(int selection_mode) { /* Nothing special; link chunk I/O is forced in the dxpl settings. */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); - test_name = "Link Chunk"; + test_name = "Link Chunk"; actual_chunk_opt_mode_expected = H5D_MPIO_LINK_CHUNK; - actual_io_mode_expected = H5D_MPIO_CHUNK_COLLECTIVE; + actual_io_mode_expected = H5D_MPIO_CHUNK_COLLECTIVE; break; /* Contiguous Dataset */ @@ -3203,23 +3148,23 @@ test_actual_io_mode(int selection_mode) { * collective I/O */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); - test_name = "Contiguous"; + test_name = "Contiguous"; actual_chunk_opt_mode_expected = H5D_MPIO_NO_CHUNK_OPTIMIZATION; - actual_io_mode_expected = H5D_MPIO_CONTIGUOUS_COLLECTIVE; + actual_io_mode_expected = H5D_MPIO_CONTIGUOUS_COLLECTIVE; break; case TEST_ACTUAL_IO_NO_COLLECTIVE: slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); - test_name = "Independent"; + test_name = "Independent"; actual_chunk_opt_mode_expected = H5D_MPIO_NO_CHUNK_OPTIMIZATION; - actual_io_mode_expected = H5D_MPIO_NO_COLLECTIVE; + actual_io_mode_expected = H5D_MPIO_NO_COLLECTIVE; break; default: - test_name = "Undefined Selection Mode"; - actual_chunk_opt_mode_expected = -1; - actual_io_mode_expected = -1; + test_name = "Undefined Selection Mode"; + actual_chunk_opt_mode_expected = H5D_MPIO_NO_CHUNK_OPTIMIZATION; + actual_io_mode_expected = H5D_MPIO_NO_COLLECTIVE; break; } @@ -3229,7 +3174,7 @@ test_actual_io_mode(int selection_mode) { /* Create a memory dataspace mirroring the dataset and select the same hyperslab * as in the file space. */ - mem_space = H5Screate_simple (RANK, dims, NULL); + mem_space = H5Screate_simple(RANK, dims, NULL); VRFY((mem_space >= 0), "mem_space created"); ret = H5Sselect_hyperslab(mem_space, H5S_SELECT_SET, start, stride, count, block); @@ -3239,9 +3184,9 @@ test_actual_io_mode(int selection_mode) { length = dim0 * dim1; /* Allocate and initialize the buffer */ - buffer = (int *)HDmalloc(sizeof(int) * length); + buffer = (int *)HDmalloc(sizeof(int) * (size_t)length); VRFY((buffer != NULL), "HDmalloc of buffer succeeded"); - for(i = 0; i < length; i++) + for (i = 0; i < length; i++) buffer[i] = i; /* Set up the dxpl for the write */ @@ -3249,7 +3194,7 @@ test_actual_io_mode(int selection_mode) { VRFY((dxpl_write >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); /* Set collective I/O properties in the dxpl. */ - if(is_collective) { + if (is_collective) { /* Request collective I/O */ ret = H5Pset_dxpl_mpio(dxpl_write, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); @@ -3257,21 +3202,21 @@ test_actual_io_mode(int selection_mode) { /* Set the threshold number of processes per chunk to twice mpi_size. * This will prevent the threshold from ever being met, thus forcing * multi chunk io instead of link chunk io. - * This is via deault. + * This is via default. */ - if(multi_chunk_io) { + if (multi_chunk_io) { /* force multi-chunk-io by threshold */ - ret = H5Pset_dxpl_mpio_chunk_opt_num(dxpl_write, (unsigned) mpi_size*2); + ret = H5Pset_dxpl_mpio_chunk_opt_num(dxpl_write, (unsigned)mpi_size * 2); VRFY((ret >= 0), "H5Pset_dxpl_mpio_chunk_opt_num succeeded"); - /* set this to manipulate testing senario about allocating processes + /* set this to manipulate testing scenario about allocating processes * to chunks */ - ret = H5Pset_dxpl_mpio_chunk_opt_ratio(dxpl_write, (unsigned) 99); + ret = H5Pset_dxpl_mpio_chunk_opt_ratio(dxpl_write, (unsigned)99); VRFY((ret >= 0), "H5Pset_dxpl_mpio_chunk_opt_ratio succeeded"); } /* Set directly go to multi-chunk-io without threshold calc. */ - if(direct_multi_chunk_io) { + if (direct_multi_chunk_io) { /* set for multi chunk io by property*/ ret = H5Pset_dxpl_mpio_chunk_opt(dxpl_write, H5FD_MPIO_CHUNK_MULTI_IO); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); @@ -3284,46 +3229,50 @@ test_actual_io_mode(int selection_mode) { /* Write */ ret = H5Dwrite(dataset, data_type, mem_space, file_space, dxpl_write, buffer); - if(ret < 0) H5Eprint2(H5E_DEFAULT, stdout); + if (ret < 0) + H5Eprint2(H5E_DEFAULT, stdout); VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); - /* Retreive Actual io valuess */ + /* Retrieve Actual io values */ ret = H5Pget_mpio_actual_io_mode(dxpl_write, &actual_io_mode_write); - VRFY((ret >= 0), "retriving actual io mode suceeded" ); + VRFY((ret >= 0), "retrieving actual io mode succeeded"); ret = H5Pget_mpio_actual_chunk_opt_mode(dxpl_write, &actual_chunk_opt_mode_write); - VRFY((ret >= 0), "retriving actual chunk opt mode succeeded" ); + VRFY((ret >= 0), "retrieving actual chunk opt mode succeeded"); /* Read */ ret = H5Dread(dataset, data_type, mem_space, file_space, dxpl_read, buffer); - if(ret < 0) H5Eprint2(H5E_DEFAULT, stdout); + if (ret < 0) + H5Eprint2(H5E_DEFAULT, stdout); VRFY((ret >= 0), "H5Dread() dataset multichunk read succeeded"); - /* Retreive Actual io values */ + /* Retrieve Actual io values */ ret = H5Pget_mpio_actual_io_mode(dxpl_read, &actual_io_mode_read); - VRFY((ret >= 0), "retriving actual io mode succeeded" ); + VRFY((ret >= 0), "retrieving actual io mode succeeded"); ret = H5Pget_mpio_actual_chunk_opt_mode(dxpl_read, &actual_chunk_opt_mode_read); - VRFY((ret >= 0), "retriving actual chunk opt mode succeeded" ); + VRFY((ret >= 0), "retrieving actual chunk opt mode succeeded"); /* Check write vs read */ VRFY((actual_io_mode_read == actual_io_mode_write), - "reading and writing are the same for actual_io_mode"); + "reading and writing are the same for actual_io_mode"); VRFY((actual_chunk_opt_mode_read == actual_chunk_opt_mode_write), - "reading and writing are the same for actual_chunk_opt_mode"); + "reading and writing are the same for actual_chunk_opt_mode"); /* Test values */ - if(actual_chunk_opt_mode_expected != (H5D_mpio_actual_chunk_opt_mode_t) -1 && actual_io_mode_expected != (H5D_mpio_actual_io_mode_t) -1) { - HDsprintf(message, "Actual Chunk Opt Mode has the correct value for %s.\n",test_name); + if (actual_chunk_opt_mode_expected != (H5D_mpio_actual_chunk_opt_mode_t)-1 && + actual_io_mode_expected != (H5D_mpio_actual_io_mode_t)-1) { + HDsprintf(message, "Actual Chunk Opt Mode has the correct value for %s.\n", test_name); VRFY((actual_chunk_opt_mode_write == actual_chunk_opt_mode_expected), message); - HDsprintf(message, "Actual IO Mode has the correct value for %s.\n",test_name); + HDsprintf(message, "Actual IO Mode has the correct value for %s.\n", test_name); VRFY((actual_io_mode_write == actual_io_mode_expected), message); - } else { - HDfprintf(stderr, "%s %d -> (%d,%d)\n", test_name, mpi_rank, - actual_chunk_opt_mode_write, actual_io_mode_write); + } + else { + HDfprintf(stderr, "%s %d -> (%d,%d)\n", test_name, mpi_rank, actual_chunk_opt_mode_write, + actual_io_mode_write); } - /* To test that the property is succesfully reset to the default, we perform some + /* To test that the property is successfully reset to the default, we perform some * independent I/O after the collective I/O */ if (selection_mode == TEST_ACTUAL_IO_RESET) { @@ -3340,14 +3289,14 @@ test_actual_io_mode(int selection_mode) { /* Check Properties */ ret = H5Pget_mpio_actual_io_mode(dxpl_write, &actual_io_mode_write); - VRFY( (ret >= 0), "retriving actual io mode succeeded" ); + VRFY((ret >= 0), "retrieving actual io mode succeeded"); ret = H5Pget_mpio_actual_chunk_opt_mode(dxpl_write, &actual_chunk_opt_mode_write); - VRFY( (ret >= 0), "retriving actual chunk opt mode succeeded" ); + VRFY((ret >= 0), "retrieving actual chunk opt mode succeeded"); VRFY(actual_chunk_opt_mode_write == H5D_MPIO_NO_CHUNK_OPTIMIZATION, - "actual_chunk_opt_mode has correct value for reset write (independent)"); + "actual_chunk_opt_mode has correct value for reset write (independent)"); VRFY(actual_io_mode_write == H5D_MPIO_NO_COLLECTIVE, - "actual_io_mode has correct value for reset write (independent)"); + "actual_io_mode has correct value for reset write (independent)"); /* Read */ ret = H5Dread(dataset, data_type, H5S_ALL, H5S_ALL, dxpl_read, buffer); @@ -3355,32 +3304,40 @@ test_actual_io_mode(int selection_mode) { /* Check Properties */ ret = H5Pget_mpio_actual_io_mode(dxpl_read, &actual_io_mode_read); - VRFY( (ret >= 0), "retriving actual io mode succeeded" ); + VRFY((ret >= 0), "retrieving actual io mode succeeded"); ret = H5Pget_mpio_actual_chunk_opt_mode(dxpl_read, &actual_chunk_opt_mode_read); - VRFY( (ret >= 0), "retriving actual chunk opt mode succeeded" ); + VRFY((ret >= 0), "retrieving actual chunk opt mode succeeded"); VRFY(actual_chunk_opt_mode_read == H5D_MPIO_NO_CHUNK_OPTIMIZATION, - "actual_chunk_opt_mode has correct value for reset read (independent)"); + "actual_chunk_opt_mode has correct value for reset read (independent)"); VRFY(actual_io_mode_read == H5D_MPIO_NO_COLLECTIVE, - "actual_io_mode has correct value for reset read (independent)"); - } + "actual_io_mode has correct value for reset read (independent)"); + } } /* Release some resources */ ret = H5Sclose(sid); + VRFY((ret >= 0), "H5Sclose succeeded"); ret = H5Pclose(fapl); + VRFY((ret >= 0), "H5Pclose succeeded"); ret = H5Pclose(dcpl); + VRFY((ret >= 0), "H5Pclose succeeded"); ret = H5Pclose(dxpl_write); + VRFY((ret >= 0), "H5Pclose succeeded"); ret = H5Pclose(dxpl_read); + VRFY((ret >= 0), "H5Pclose succeeded"); ret = H5Dclose(dataset); + VRFY((ret >= 0), "H5Dclose succeeded"); ret = H5Sclose(mem_space); + VRFY((ret >= 0), "H5Sclose succeeded"); ret = H5Sclose(file_space); + VRFY((ret >= 0), "H5Sclose succeeded"); ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); HDfree(buffer); return; } - /* Function: actual_io_mode_tests * * Purpose: Tests all possible cases of the actual_io_mode property. @@ -3389,38 +3346,43 @@ test_actual_io_mode(int selection_mode) { * Date: 2011-04-06 */ void -actual_io_mode_tests(void) { +actual_io_mode_tests(void) +{ int mpi_size = -1; - int mpi_rank = -1; MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); - MPI_Comm_size(MPI_COMM_WORLD, &mpi_rank); - test_actual_io_mode(TEST_ACTUAL_IO_NO_COLLECTIVE); + /* Only run these tests if selection I/O is not being used - selection I/O + * bypasses this IO mode decision - it's effectively always multi chunk + * currently */ + if (!H5_use_selection_io_g) { + test_actual_io_mode(TEST_ACTUAL_IO_NO_COLLECTIVE); - /* - * Test multi-chunk-io via proc_num threshold - */ - test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_IND); - test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_COL); + /* + * Test multi-chunk-io via proc_num threshold + */ + test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_IND); + test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_COL); - /* The Multi Chunk Mixed test requires atleast three processes. */ - if (mpi_size > 2) - test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_MIX); - else - HDfprintf(stdout, "Multi Chunk Mixed test requires 3 proceses minimum\n"); + /* The Multi Chunk Mixed test requires at least three processes. */ + if (mpi_size > 2) + test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_MIX); + else + HDfprintf(stdout, "Multi Chunk Mixed test requires 3 processes minimum\n"); - test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE); + test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE); - /* - * Test multi-chunk-io via setting direct property - */ - test_actual_io_mode(TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND); - test_actual_io_mode(TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL); + /* + * Test multi-chunk-io via setting direct property + */ + test_actual_io_mode(TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND); + test_actual_io_mode(TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL); + + test_actual_io_mode(TEST_ACTUAL_IO_LINK_CHUNK); + test_actual_io_mode(TEST_ACTUAL_IO_CONTIGUOUS); - test_actual_io_mode(TEST_ACTUAL_IO_LINK_CHUNK); - test_actual_io_mode(TEST_ACTUAL_IO_CONTIGUOUS); + test_actual_io_mode(TEST_ACTUAL_IO_RESET); + } - test_actual_io_mode(TEST_ACTUAL_IO_RESET); return; } @@ -3451,7 +3413,7 @@ actual_io_mode_tests(void) { * Test for Data Type Conversion as the cause of breaking collective I/O. * * TEST_DATA_TRANSFORMS: - * Test for Data Transfrom feature as the cause of breaking collective I/O. + * Test for Data Transform feature as the cause of breaking collective I/O. * * TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES: * Test for NULL dataspace as the cause of breaking collective I/O. @@ -3462,57 +3424,49 @@ actual_io_mode_tests(void) { * TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL: * Test for Externl-File storage as the cause of breaking collective I/O. * - * TEST_FILTERS: - * Test for using filter (checksum) as the cause of breaking collective I/O. - * Note: TEST_FILTERS mode will not work until H5Dcreate and H5write is supported for mpio and filter feature. Use test_no_collective_cause_mode_filter() function instead. - * - * * Programmer: Jonathan Kim * Date: Aug, 2012 */ +#ifdef LATER #define DSET_NOCOLCAUSE "nocolcause" -#define NELM 2 +#endif #define FILE_EXTERNAL "nocolcause_extern.data" static void test_no_collective_cause_mode(int selection_mode) { - uint32_t no_collective_cause_local_write = 0; - uint32_t no_collective_cause_local_read = 0; - uint32_t no_collective_cause_local_expected = 0; - uint32_t no_collective_cause_global_write = 0; - uint32_t no_collective_cause_global_read = 0; + uint32_t no_collective_cause_local_write = 0; + uint32_t no_collective_cause_local_read = 0; + uint32_t no_collective_cause_local_expected = 0; + uint32_t no_collective_cause_global_write = 0; + uint32_t no_collective_cause_global_read = 0; uint32_t no_collective_cause_global_expected = 0; - hsize_t coord[NELM][RANK]; - - const char * filename; - const char * test_name; - hbool_t is_chunked=1; - hbool_t is_independent=0; - int mpi_size = -1; - int mpi_rank = -1; + + const char *filename; + const char *test_name; + hbool_t is_chunked = 1; + hbool_t is_independent = 0; + int mpi_size = -1; + int mpi_rank = -1; int length; - int * buffer; + int * buffer; int i; MPI_Comm mpi_comm; MPI_Info mpi_info; - hid_t fid = -1; - hid_t sid = -1; - hid_t dataset = -1; - hid_t data_type = H5T_NATIVE_INT; - hid_t fapl = -1; - hid_t dcpl = -1; + hid_t fid = -1; + hid_t sid = -1; + hid_t dataset = -1; + hid_t data_type = H5T_NATIVE_INT; + hid_t fapl = -1; + hid_t dcpl = -1; hid_t dxpl_write = -1; - hid_t dxpl_read = -1; + hid_t dxpl_read = -1; hsize_t dims[RANK]; - hid_t mem_space = -1; + hid_t mem_space = -1; hid_t file_space = -1; hsize_t chunk_dims[RANK]; herr_t ret; -#ifdef LATER /* fletcher32 */ - H5Z_filter_t filter_info; -#endif /* LATER */ /* set to global value as default */ - int l_facc_type = facc_type; + int l_facc_type = facc_type; char message[256]; /* Set up MPI parameters */ @@ -3531,30 +3485,17 @@ test_no_collective_cause_mode(int selection_mode) VRFY((dcpl >= 0), "dataset creation plist created successfully"); if (selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT) { - ret = H5Pset_layout (dcpl, H5D_COMPACT); - VRFY((ret >= 0),"set COMPACT layout succeeded"); + ret = H5Pset_layout(dcpl, H5D_COMPACT); + VRFY((ret >= 0), "set COMPACT layout succeeded"); is_chunked = 0; } if (selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL) { - ret = H5Pset_external (dcpl, FILE_EXTERNAL, (off_t) 0, H5F_UNLIMITED); - VRFY((ret >= 0),"set EXTERNAL file layout succeeded"); + ret = H5Pset_external(dcpl, FILE_EXTERNAL, (off_t)0, H5F_UNLIMITED); + VRFY((ret >= 0), "set EXTERNAL file layout succeeded"); is_chunked = 0; } -#ifdef LATER /* fletcher32 */ - if (selection_mode & TEST_FILTERS) { - ret = H5Zfilter_avail(H5Z_FILTER_FLETCHER32); - VRFY ((ret >=0 ), "Fletcher32 filter is available.\n"); - - ret = H5Zget_filter_info (H5Z_FILTER_FLETCHER32, &filter_info); - VRFY ( ( (filter_info & H5Z_FILTER_CONFIG_ENCODE_ENABLED) || (filter_info & H5Z_FILTER_CONFIG_DECODE_ENABLED) ) , "Fletcher32 filter encoding and decoding available.\n"); - - ret = H5Pset_fletcher32(dcpl); - VRFY((ret >= 0),"set filter (flecher32) succeeded"); - } -#endif /* LATER */ - if (selection_mode & TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES) { sid = H5Screate(H5S_NULL); VRFY((sid >= 0), "H5Screate_simple succeeded"); @@ -3568,14 +3509,13 @@ test_no_collective_cause_mode(int selection_mode) dims[1] = COL_FACTOR * 6; } else { - dims[0] = dim0; - dims[1] = dim1; + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; } - sid = H5Screate_simple (RANK, dims, NULL); + sid = H5Screate_simple(RANK, dims, NULL); VRFY((sid >= 0), "H5Screate_simple succeeded"); } - filename = (const char *)GetTestParameters(); HDassert(filename != NULL); @@ -3589,20 +3529,18 @@ test_no_collective_cause_mode(int selection_mode) VRFY((fid >= 0), "H5Fcreate succeeded"); /* If we are not testing contiguous datasets */ - if(is_chunked) { + if (is_chunked) { /* Set up chunk information. */ - chunk_dims[0] = dims[0]/mpi_size; + chunk_dims[0] = dims[0] / (hsize_t)mpi_size; chunk_dims[1] = dims[1]; - ret = H5Pset_chunk(dcpl, 2, chunk_dims); - VRFY((ret >= 0),"chunk creation property list succeeded"); + ret = H5Pset_chunk(dcpl, 2, chunk_dims); + VRFY((ret >= 0), "chunk creation property list succeeded"); } - /* Create the dataset */ dataset = H5Dcreate2(fid, "nocolcause", data_type, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); VRFY((dataset >= 0), "H5Dcreate2() dataset succeeded"); - /* * Set expected causes and some tweaks based on the type of test */ @@ -3615,7 +3553,7 @@ test_no_collective_cause_mode(int selection_mode) } if (selection_mode & TEST_DATA_TRANSFORMS) { - test_name = "Broken Collective I/O - DATA Transfroms"; + test_name = "Broken Collective I/O - DATA Transforms"; no_collective_cause_local_expected |= H5D_MPIO_DATA_TRANSFORMS; no_collective_cause_global_expected |= H5D_MPIO_DATA_TRANSFORMS; } @@ -3633,23 +3571,15 @@ test_no_collective_cause_mode(int selection_mode) no_collective_cause_global_expected |= H5D_MPIO_NOT_CONTIGUOUS_OR_CHUNKED_DATASET; } -#ifdef LATER /* fletcher32 */ - if (selection_mode & TEST_FILTERS) { - test_name = "Broken Collective I/O - Filter is required"; - no_collective_cause_local_expected |= H5D_MPIO_FILTERS; - no_collective_cause_global_expected |= H5D_MPIO_FILTERS; - } -#endif /* LATER */ - if (selection_mode & TEST_COLLECTIVE) { - test_name = "Broken Collective I/O - Not Broken"; - no_collective_cause_local_expected = H5D_MPIO_COLLECTIVE; + test_name = "Broken Collective I/O - Not Broken"; + no_collective_cause_local_expected = H5D_MPIO_COLLECTIVE; no_collective_cause_global_expected = H5D_MPIO_COLLECTIVE; } if (selection_mode & TEST_SET_INDEPENDENT) { - test_name = "Broken Collective I/O - Independent"; - no_collective_cause_local_expected = H5D_MPIO_SET_INDEPENDENT; + test_name = "Broken Collective I/O - Independent"; + no_collective_cause_local_expected = H5D_MPIO_SET_INDEPENDENT; no_collective_cause_global_expected = H5D_MPIO_SET_INDEPENDENT; /* switch to independent io */ is_independent = 1; @@ -3659,7 +3589,7 @@ test_no_collective_cause_mode(int selection_mode) if (selection_mode & TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES || selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL) { file_space = H5S_ALL; - mem_space = H5S_ALL; + mem_space = H5S_ALL; } else { /* Get the file dataspace */ @@ -3667,24 +3597,24 @@ test_no_collective_cause_mode(int selection_mode) VRFY((file_space >= 0), "H5Dget_space succeeded"); /* Create the memory dataspace */ - mem_space = H5Screate_simple (RANK, dims, NULL); + mem_space = H5Screate_simple(RANK, dims, NULL); VRFY((mem_space >= 0), "mem_space created"); } /* Get the number of elements in the selection */ - length = dims[0] * dims[1]; + H5_CHECKED_ASSIGN(length, int, dims[0] * dims[1], uint64_t); /* Allocate and initialize the buffer */ - buffer = (int *)HDmalloc(sizeof(int) * length); + buffer = (int *)HDmalloc(sizeof(int) * (size_t)length); VRFY((buffer != NULL), "HDmalloc of buffer succeeded"); - for(i = 0; i < length; i++) + for (i = 0; i < length; i++) buffer[i] = i; /* Set up the dxpl for the write */ dxpl_write = H5Pcreate(H5P_DATASET_XFER); VRFY((dxpl_write >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); - if(is_independent) { + if (is_independent) { /* Set Independent I/O */ ret = H5Pset_dxpl_mpio(dxpl_write, H5FD_MPIO_INDEPENDENT); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); @@ -3693,11 +3623,10 @@ test_no_collective_cause_mode(int selection_mode) /* Set Collective I/O */ ret = H5Pset_dxpl_mpio(dxpl_write, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - } if (selection_mode & TEST_DATA_TRANSFORMS) { - ret = H5Pset_data_transform (dxpl_write, "x+1"); + ret = H5Pset_data_transform(dxpl_write, "x+1"); VRFY((ret >= 0), "H5Pset_data_transform succeeded"); } @@ -3707,14 +3636,14 @@ test_no_collective_cause_mode(int selection_mode) /* Write */ ret = H5Dwrite(dataset, data_type, mem_space, file_space, dxpl_write, buffer); - if(ret < 0) H5Eprint2(H5E_DEFAULT, stdout); + if (ret < 0) + H5Eprint2(H5E_DEFAULT, stdout); VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); - /* Get the cause of broken collective I/O */ - ret = H5Pget_mpio_no_collective_cause (dxpl_write, &no_collective_cause_local_write, &no_collective_cause_global_write); - VRFY((ret >= 0), "retriving no collective cause succeeded" ); - + ret = H5Pget_mpio_no_collective_cause(dxpl_write, &no_collective_cause_local_write, + &no_collective_cause_global_write); + VRFY((ret >= 0), "retrieving no collective cause succeeded"); /*--------------------- * Test Read access @@ -3727,25 +3656,29 @@ test_no_collective_cause_mode(int selection_mode) /* Read */ ret = H5Dread(dataset, data_type, mem_space, file_space, dxpl_read, buffer); - if(ret < 0) H5Eprint2(H5E_DEFAULT, stdout); + if (ret < 0) + H5Eprint2(H5E_DEFAULT, stdout); VRFY((ret >= 0), "H5Dread() dataset multichunk read succeeded"); /* Get the cause of broken collective I/O */ - ret = H5Pget_mpio_no_collective_cause (dxpl_read, &no_collective_cause_local_read, &no_collective_cause_global_read); - VRFY((ret >= 0), "retriving no collective cause succeeded" ); + ret = H5Pget_mpio_no_collective_cause(dxpl_read, &no_collective_cause_local_read, + &no_collective_cause_global_read); + VRFY((ret >= 0), "retrieving no collective cause succeeded"); /* Check write vs read */ VRFY((no_collective_cause_local_read == no_collective_cause_local_write), - "reading and writing are the same for local cause of Broken Collective I/O"); + "reading and writing are the same for local cause of Broken Collective I/O"); VRFY((no_collective_cause_global_read == no_collective_cause_global_write), - "reading and writing are the same for global cause of Broken Collective I/O"); + "reading and writing are the same for global cause of Broken Collective I/O"); /* Test values */ - HDmemset (message, 0, sizeof (message)); - HDsprintf(message, "Local cause of Broken Collective I/O has the correct value for %s.\n",test_name); + HDmemset(message, 0, sizeof(message)); + HDsnprintf(message, sizeof(message), + "Local cause of Broken Collective I/O has the correct value for %s.\n", test_name); VRFY((no_collective_cause_local_write == no_collective_cause_local_expected), message); - HDmemset (message, 0, sizeof (message)); - HDsprintf(message, "Global cause of Broken Collective I/O has the correct value for %s.\n",test_name); + HDmemset(message, 0, sizeof(message)); + HDsnprintf(message, sizeof(message), + "Global cause of Broken Collective I/O has the correct value for %s.\n", test_name); VRFY((no_collective_cause_global_write == no_collective_cause_global_expected), message); /* Release some resources */ @@ -3776,239 +3709,6 @@ test_no_collective_cause_mode(int selection_mode) return; } - -/* - * Function: test_no_collective_cause_mode_filter - * - * Purpose: - * Test specific for using filter as a caus of broken collective I/O and - * checks that the H5Pget_mpio_no_collective_cause properties in the DXPL - * have the correct values. - * - * NOTE: - * This is a temporary function. - * test_no_collective_cause_mode(TEST_FILTERS) will replace this when - * H5Dcreate and H5write support for mpio and filter feature. - * - * Input: - * TEST_FILTERS_READ: - * Test for using filter (checksum) as the cause of breaking collective I/O. - * - * Programmer: Jonathan Kim - * Date: Aug, 2012 - */ -static void -test_no_collective_cause_mode_filter(int selection_mode) -{ - uint32_t no_collective_cause_local_read = 0; - uint32_t no_collective_cause_local_expected = 0; - uint32_t no_collective_cause_global_read = 0; - uint32_t no_collective_cause_global_expected = 0; - - const char * filename; - const char * test_name; - hbool_t is_chunked=1; - int mpi_size = -1; - int mpi_rank = -1; - int length; - int * buffer; - int i; - MPI_Comm mpi_comm = MPI_COMM_NULL; - MPI_Info mpi_info = MPI_INFO_NULL; - hid_t fid = -1; - hid_t sid = -1; - hid_t dataset = -1; - hid_t data_type = H5T_NATIVE_INT; - hid_t fapl_write = -1; - hid_t fapl_read = -1; - hid_t dcpl = -1; - hid_t dxpl = -1; - hsize_t dims[RANK]; - hid_t mem_space = -1; - hid_t file_space = -1; - hsize_t chunk_dims[RANK]; - herr_t ret; -#ifdef LATER /* fletcher32 */ - H5Z_filter_t filter_info; -#endif /* LATER */ - char message[256]; - - /* Set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - - MPI_Barrier(MPI_COMM_WORLD); - - HDassert(mpi_size >= 1); - - mpi_comm = MPI_COMM_WORLD; - mpi_info = MPI_INFO_NULL; - - /* Create the dataset creation plist */ - dcpl = H5Pcreate(H5P_DATASET_CREATE); - VRFY((dcpl >= 0), "dataset creation plist created successfully"); - - if (selection_mode == TEST_FILTERS_READ ) { -#ifdef LATER /* fletcher32 */ - ret = H5Zfilter_avail(H5Z_FILTER_FLETCHER32); - VRFY ((ret >=0 ), "Fletcher32 filter is available.\n"); - - ret = H5Zget_filter_info (H5Z_FILTER_FLETCHER32, (unsigned int *) &filter_info); - VRFY ( ( (filter_info & H5Z_FILTER_CONFIG_ENCODE_ENABLED) || (filter_info & H5Z_FILTER_CONFIG_DECODE_ENABLED) ) , "Fletcher32 filter encoding and decoding available.\n"); - - ret = H5Pset_fletcher32(dcpl); - VRFY((ret >= 0),"set filter (flecher32) succeeded"); -#endif /* LATER */ - } - else { - VRFY(0, "Unexpected mode, only test for TEST_FILTERS_READ."); - } - - /* Create the basic Space */ - dims[0] = dim0; - dims[1] = dim1; - sid = H5Screate_simple (RANK, dims, NULL); - VRFY((sid >= 0), "H5Screate_simple succeeded"); - - - filename = (const char *)GetTestParameters(); - HDassert(filename != NULL); - - /* Setup the file access template */ - fapl_write = create_faccess_plist(mpi_comm, mpi_info, FACC_DEFAULT); - VRFY((fapl_write >= 0), "create_faccess_plist() succeeded"); - - fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_write); - VRFY((fid >= 0), "H5Fcreate succeeded"); - - /* If we are not testing contiguous datasets */ - if(is_chunked) { - /* Set up chunk information. */ - chunk_dims[0] = dims[0]/mpi_size; - chunk_dims[1] = dims[1]; - ret = H5Pset_chunk(dcpl, 2, chunk_dims); - VRFY((ret >= 0),"chunk creation property list succeeded"); - } - - - /* Create the dataset */ - dataset = H5Dcreate2(fid, DSET_NOCOLCAUSE, data_type, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); - VRFY((dataset >= 0), "H5Dcreate2() dataset succeeded"); - -#ifdef LATER /* fletcher32 */ - /* Set expected cause */ - test_name = "Broken Collective I/O - Filter is required"; - no_collective_cause_local_expected = H5D_MPIO_FILTERS; - no_collective_cause_global_expected = H5D_MPIO_FILTERS; -#endif /* LATER */ - - /* Get the file dataspace */ - file_space = H5Dget_space(dataset); - VRFY((file_space >= 0), "H5Dget_space succeeded"); - - /* Create the memory dataspace */ - mem_space = H5Screate_simple (RANK, dims, NULL); - VRFY((mem_space >= 0), "mem_space created"); - - /* Get the number of elements in the selection */ - length = dim0 * dim1; - - /* Allocate and initialize the buffer */ - buffer = (int *)HDmalloc(sizeof(int) * length); - VRFY((buffer != NULL), "HDmalloc of buffer succeeded"); - for(i = 0; i < length; i++) - buffer[i] = i; - - /* Set up the dxpl for the write */ - dxpl = H5Pcreate(H5P_DATASET_XFER); - VRFY((dxpl >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); - - if (selection_mode == TEST_FILTERS_READ) { - /* To test read in collective I/O mode , write in independent mode - * because write fails with mpio + filter */ - ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_INDEPENDENT); - VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - } - else { - /* To test write in collective I/O mode. */ - ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - } - - - /* Write */ - ret = H5Dwrite(dataset, data_type, mem_space, file_space, dxpl, buffer); - - if(ret < 0) H5Eprint2(H5E_DEFAULT, stdout); - VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); - - - /* Make a copy of the dxpl to test the read operation */ - dxpl = H5Pcopy(dxpl); - VRFY((dxpl >= 0), "H5Pcopy succeeded"); - - if (dataset) - H5Dclose(dataset); - if (fapl_write) - H5Pclose(fapl_write); - if (fid) - H5Fclose(fid); - - - /*--------------------- - * Test Read access - *---------------------*/ - - /* Setup the file access template */ - fapl_read = create_faccess_plist(mpi_comm, mpi_info, facc_type); - VRFY((fapl_read >= 0), "create_faccess_plist() succeeded"); - - fid = H5Fopen (filename, H5F_ACC_RDONLY, fapl_read); - dataset = H5Dopen2 (fid, DSET_NOCOLCAUSE, H5P_DEFAULT); - - /* Set collective I/O properties in the dxpl. */ - ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - - /* Read */ - ret = H5Dread(dataset, data_type, mem_space, file_space, dxpl, buffer); - - if(ret < 0) H5Eprint2(H5E_DEFAULT, stdout); - VRFY((ret >= 0), "H5Dread() dataset multichunk read succeeded"); - - /* Get the cause of broken collective I/O */ - ret = H5Pget_mpio_no_collective_cause (dxpl, &no_collective_cause_local_read, &no_collective_cause_global_read); - VRFY((ret >= 0), "retriving no collective cause succeeded" ); - - /* Test values */ - HDmemset (message, 0, sizeof (message)); - HDsprintf(message, "Local cause of Broken Collective I/O has the correct value for %s.\n",test_name); - VRFY((no_collective_cause_local_read == (uint32_t)no_collective_cause_local_expected), message); - HDmemset (message, 0, sizeof (message)); - HDsprintf(message, "Global cause of Broken Collective I/O has the correct value for %s.\n",test_name); - VRFY((no_collective_cause_global_read == (uint32_t)no_collective_cause_global_expected), message); - - /* Release some resources */ - if (sid) - H5Sclose(sid); - if (fapl_read) - H5Pclose(fapl_read); - if (dcpl) - H5Pclose(dcpl); - if (dxpl) - H5Pclose(dxpl); - if (dataset) - H5Dclose(dataset); - if (mem_space) - H5Sclose(mem_space); - if (file_space) - H5Sclose(file_space); - if (fid) - H5Fclose(fid); - HDfree(buffer); - return; -} - /* Function: no_collective_cause_tests * * Purpose: Tests cases for broken collective IO. @@ -4022,27 +3722,21 @@ no_collective_cause_tests(void) /* * Test individual cause */ - test_no_collective_cause_mode (TEST_COLLECTIVE); - test_no_collective_cause_mode (TEST_SET_INDEPENDENT); - test_no_collective_cause_mode (TEST_DATATYPE_CONVERSION); - test_no_collective_cause_mode (TEST_DATA_TRANSFORMS); - test_no_collective_cause_mode (TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES); - test_no_collective_cause_mode (TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT); - test_no_collective_cause_mode (TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL); -#ifdef LATER /* fletcher32 */ - /* TODO: use this instead of below TEST_FILTERS_READ when H5Dcreate and - * H5Dwrite is ready for mpio + filter feature. - */ - /* test_no_collective_cause_mode (TEST_FILTERS); */ - test_no_collective_cause_mode_filter (TEST_FILTERS_READ); -#endif /* LATER */ + test_no_collective_cause_mode(TEST_COLLECTIVE); + test_no_collective_cause_mode(TEST_SET_INDEPENDENT); + test_no_collective_cause_mode(TEST_DATATYPE_CONVERSION); + test_no_collective_cause_mode(TEST_DATA_TRANSFORMS); + test_no_collective_cause_mode(TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES); + test_no_collective_cause_mode(TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT); + test_no_collective_cause_mode(TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL); /* * Test combined causes */ - test_no_collective_cause_mode (TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL | TEST_DATATYPE_CONVERSION); - test_no_collective_cause_mode (TEST_DATATYPE_CONVERSION | TEST_DATA_TRANSFORMS); - test_no_collective_cause_mode (TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL | TEST_DATATYPE_CONVERSION | TEST_DATA_TRANSFORMS); + test_no_collective_cause_mode(TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL | TEST_DATATYPE_CONVERSION); + test_no_collective_cause_mode(TEST_DATATYPE_CONVERSION | TEST_DATA_TRANSFORMS); + test_no_collective_cause_mode(TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL | TEST_DATATYPE_CONVERSION | + TEST_DATA_TRANSFORMS); return; } @@ -4061,48 +3755,49 @@ no_collective_cause_tests(void) void dataset_atomicity(void) { - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hid_t sid; /* Dataspace ID */ - hid_t dataset1; /* Dataset IDs */ - hsize_t dims[RANK]; /* dataset dim sizes */ - int *write_buf = NULL; /* data buffer */ - int *read_buf = NULL; /* data buffer */ - int buf_size; - hid_t dataset2; - hid_t file_dataspace; /* File dataspace ID */ - hid_t mem_dataspace; /* Memory dataspace ID */ - hsize_t start[RANK]; - hsize_t stride[RANK]; - hsize_t count[RANK]; - hsize_t block[RANK]; + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t sid; /* Dataspace ID */ + hid_t dataset1; /* Dataset IDs */ + hsize_t dims[RANK]; /* dataset dim sizes */ + int * write_buf = NULL; /* data buffer */ + int * read_buf = NULL; /* data buffer */ + int buf_size; + hid_t dataset2; + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* Memory dataspace ID */ + hsize_t start[RANK]; + hsize_t stride[RANK]; + hsize_t count[RANK]; + hsize_t block[RANK]; const char *filename; - herr_t ret; /* Generic return value */ - int mpi_size, mpi_rank; - int i, j, k; - hbool_t atomicity = FALSE; - MPI_Comm comm = MPI_COMM_WORLD; - MPI_Info info = MPI_INFO_NULL; - - dim0 = 64; dim1 = 32; + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + int i, j, k; + hbool_t atomicity = FALSE; + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + + dim0 = 64; + dim1 = 32; filename = GetTestParameters(); if (facc_type != FACC_MPIO) { HDprintf("Atomicity tests will not work without the MPIO VFD\n"); return; } - if(VERBOSE_MED) + if (VERBOSE_MED) HDprintf("atomic writes to file %s\n", filename); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); buf_size = dim0 * dim1; /* allocate memory for data buffer */ - write_buf = (int *)HDcalloc(buf_size, sizeof(int)); + write_buf = (int *)HDcalloc((size_t)buf_size, sizeof(int)); VRFY((write_buf != NULL), "write_buf HDcalloc succeeded"); /* allocate memory for data buffer */ - read_buf = (int *)HDcalloc(buf_size, sizeof(int)); + read_buf = (int *)HDcalloc((size_t)buf_size, sizeof(int)); VRFY((read_buf != NULL), "read_buf HDcalloc succeeded"); /* setup file access template */ @@ -4118,28 +3813,24 @@ dataset_atomicity(void) VRFY((ret >= 0), "H5Pclose succeeded"); /* setup dimensionality object */ - dims[0] = dim0; - dims[1] = dim1; - sid = H5Screate_simple (RANK, dims, NULL); + dims[0] = (hsize_t)dim0; + dims[1] = (hsize_t)dim1; + sid = H5Screate_simple(RANK, dims, NULL); VRFY((sid >= 0), "H5Screate_simple succeeded"); /* create datasets */ - dataset1 = H5Dcreate2(fid, DATASETNAME5, H5T_NATIVE_INT, sid, - H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + dataset1 = H5Dcreate2(fid, DATASETNAME5, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); - dataset2 = H5Dcreate2(fid, DATASETNAME6, H5T_NATIVE_INT, sid, - H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + dataset2 = H5Dcreate2(fid, DATASETNAME6, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((dataset2 >= 0), "H5Dcreate2 succeeded"); /* initialize datasets to 0s */ if (0 == mpi_rank) { - ret = H5Dwrite(dataset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, - H5P_DEFAULT, write_buf); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, write_buf); VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); - ret = H5Dwrite(dataset2, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, - H5P_DEFAULT, write_buf); + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, write_buf); VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); } @@ -4152,39 +3843,41 @@ dataset_atomicity(void) ret = H5Fclose(fid); VRFY((ret >= 0), "H5Fclose succeeded"); - MPI_Barrier (comm); + MPI_Barrier(comm); /* make sure setting atomicity fails on a serial file ID */ /* file locking allows only one file open (serial) for writing */ - if(MAINPROCESS){ - fid=H5Fopen(filename,H5F_ACC_RDWR,H5P_DEFAULT); - VRFY((fid >= 0), "H5Fopen succeeed"); - } - - /* should fail */ - ret = H5Fset_mpi_atomicity (fid , TRUE); - VRFY((ret == FAIL), "H5Fset_mpi_atomicity failed"); + if (MAINPROCESS) { + fid = H5Fopen(filename, H5F_ACC_RDWR, H5P_DEFAULT); + VRFY((fid >= 0), "H5Fopen succeeded"); + + /* should fail */ + H5E_BEGIN_TRY + { + ret = H5Fset_mpi_atomicity(fid, TRUE); + } + H5E_END_TRY + VRFY((ret == FAIL), "H5Fset_mpi_atomicity failed"); - if(MAINPROCESS){ ret = H5Fclose(fid); VRFY((ret >= 0), "H5Fclose succeeded"); } - MPI_Barrier (comm); + MPI_Barrier(comm); /* setup file access template */ acc_tpl = create_faccess_plist(comm, info, facc_type); VRFY((acc_tpl >= 0), ""); /* open the file collectively */ - fid=H5Fopen(filename,H5F_ACC_RDWR,acc_tpl); + fid = H5Fopen(filename, H5F_ACC_RDWR, acc_tpl); VRFY((fid >= 0), "H5Fopen succeeded"); /* Release file-access template */ ret = H5Pclose(acc_tpl); VRFY((ret >= 0), "H5Pclose succeeded"); - ret = H5Fset_mpi_atomicity (fid , TRUE); + ret = H5Fset_mpi_atomicity(fid, TRUE); VRFY((ret >= 0), "H5Fset_mpi_atomicity succeeded"); /* open dataset1 (contiguous case) */ @@ -4192,22 +3885,22 @@ dataset_atomicity(void) VRFY((dataset1 >= 0), "H5Dopen2 succeeded"); if (0 == mpi_rank) { - for (i=0 ; i<buf_size ; i++) { + for (i = 0; i < buf_size; i++) { write_buf[i] = 5; } } else { - for (i=0 ; i<buf_size ; i++) { + for (i = 0; i < buf_size; i++) { read_buf[i] = 8; } } /* check that the atomicity flag is set */ - ret = H5Fget_mpi_atomicity (fid , &atomicity); + ret = H5Fget_mpi_atomicity(fid, &atomicity); VRFY((ret >= 0), "atomcity get failed"); VRFY((atomicity == TRUE), "atomcity set failed"); - MPI_Barrier (comm); + MPI_Barrier(comm); /* Process 0 writes contiguously to the entire dataset */ if (0 == mpi_rank) { @@ -4220,12 +3913,14 @@ dataset_atomicity(void) VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); } - if(VERBOSE_MED) { - i=0;j=0;k=0; - for (i=0 ; i<dim0 ; i++) { - HDprintf ("\n"); - for (j=0 ; j<dim1 ; j++) - HDprintf ("%d ", read_buf[k++]); + if (VERBOSE_MED) { + i = 0; + j = 0; + k = 0; + for (i = 0; i < dim0; i++) { + HDprintf("\n"); + for (j = 0; j < dim1; j++) + HDprintf("%d ", read_buf[k++]); } } @@ -4237,10 +3932,11 @@ dataset_atomicity(void) VRFY((compare == 0 || compare == 5), "Atomicity Test Failed Process %d: Value read should be 0 or 5\n"); - for (i=1; i<buf_size; i++) { + for (i = 1; i < buf_size; i++) { if (read_buf[i] != compare) { - HDprintf("Atomicity Test Failed Process %d: read_buf[%d] is %d, should be %d\n", mpi_rank, i, read_buf[i], compare); - nerrors ++; + HDprintf("Atomicity Test Failed Process %d: read_buf[%d] is %d, should be %d\n", mpi_rank, i, + read_buf[i], compare); + nerrors++; } } } @@ -4249,83 +3945,84 @@ dataset_atomicity(void) VRFY((ret >= 0), "H5D close succeeded"); /* release data buffers */ - if(write_buf) HDfree(write_buf); - if(read_buf) HDfree(read_buf); + if (write_buf) + HDfree(write_buf); + if (read_buf) + HDfree(read_buf); /* open dataset2 (non-contiguous case) */ dataset2 = H5Dopen2(fid, DATASETNAME6, H5P_DEFAULT); VRFY((dataset2 >= 0), "H5Dopen2 succeeded"); /* allocate memory for data buffer */ - write_buf = (int *)HDcalloc(buf_size, sizeof(int)); + write_buf = (int *)HDcalloc((size_t)buf_size, sizeof(int)); VRFY((write_buf != NULL), "write_buf HDcalloc succeeded"); /* allocate memory for data buffer */ - read_buf = (int *)HDcalloc(buf_size, sizeof(int)); + read_buf = (int *)HDcalloc((size_t)buf_size, sizeof(int)); VRFY((read_buf != NULL), "read_buf HDcalloc succeeded"); - for (i=0 ; i<buf_size ; i++) { + for (i = 0; i < buf_size; i++) { write_buf[i] = 5; } - for (i=0 ; i<buf_size ; i++) { + for (i = 0; i < buf_size; i++) { read_buf[i] = 8; } atomicity = FALSE; /* check that the atomicity flag is set */ - ret = H5Fget_mpi_atomicity (fid , &atomicity); + ret = H5Fget_mpi_atomicity(fid, &atomicity); VRFY((ret >= 0), "atomcity get failed"); VRFY((atomicity == TRUE), "atomcity set failed"); - - block[0] = dim0/mpi_size - 1; - block[1] = dim1/mpi_size - 1; + block[0] = (hsize_t)(dim0 / mpi_size - 1); + block[1] = (hsize_t)(dim1 / mpi_size - 1); stride[0] = block[0] + 1; stride[1] = block[1] + 1; - count[0] = mpi_size; - count[1] = mpi_size; - start[0] = 0; - start[1] = 0; + count[0] = (hsize_t)mpi_size; + count[1] = (hsize_t)mpi_size; + start[0] = 0; + start[1] = 0; /* create a file dataspace */ - file_dataspace = H5Dget_space (dataset2); + file_dataspace = H5Dget_space(dataset2); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace */ - mem_dataspace = H5Screate_simple (RANK, dims, NULL); + mem_dataspace = H5Screate_simple(RANK, dims, NULL); VRFY((mem_dataspace >= 0), ""); ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); - MPI_Barrier (comm); + MPI_Barrier(comm); /* Process 0 writes to the dataset */ if (0 == mpi_rank) { - ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, write_buf); + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, write_buf); VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); } /* All processes wait for the write to finish. This works because atomicity is set to true */ - MPI_Barrier (comm); + MPI_Barrier(comm); /* The other processes read the entire dataset */ if (0 != mpi_rank) { - ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, - H5P_DEFAULT, read_buf); + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, read_buf); VRFY((ret >= 0), "H5Dread dataset2 succeeded"); } - if(VERBOSE_MED) { + if (VERBOSE_MED) { if (mpi_rank == 1) { - i=0;j=0;k=0; - for (i=0 ; i<dim0 ; i++) { - HDprintf ("\n"); - for (j=0 ; j<dim1 ; j++) - HDprintf ("%d ", read_buf[k++]); + i = 0; + j = 0; + k = 0; + for (i = 0; i < dim0; i++) { + HDprintf("\n"); + for (j = 0; j < dim1; j++) + HDprintf("%d ", read_buf[k++]); } - HDprintf ("\n"); + HDprintf("\n"); } } @@ -4333,32 +4030,37 @@ dataset_atomicity(void) as 5 (read happened after process 0 wrote to dataset 1) */ if (0 != mpi_rank) { int compare; - i=0;j=0;k=0; + i = 0; + j = 0; + k = 0; compare = 5; - for (i=0 ; i<dim0 ; i++) { - if (i >= mpi_rank*(block[0]+1)) { + H5_CHECK_OVERFLOW(block[0], hsize_t, int); + H5_CHECK_OVERFLOW(block[1], hsize_t, int); + for (i = 0; i < dim0; i++) { + if (i >= mpi_rank * ((int)block[0] + 1)) { break; } - if ((i+1)%(block[0]+1)==0) { + if ((i + 1) % ((int)block[0] + 1) == 0) { k += dim1; continue; } - for (j=0 ; j<dim1 ; j++) { - if (j >= mpi_rank*(block[1]+1)) { - k += dim1 - mpi_rank*(block[1]+1); + for (j = 0; j < dim1; j++) { + if (j >= mpi_rank * ((int)block[1] + 1)) { + k += dim1 - mpi_rank * ((int)block[1] + 1); break; } - if ((j+1)%(block[1]+1)==0) { + if ((j + 1) % ((int)block[1] + 1) == 0) { k++; continue; } else if (compare != read_buf[k]) { - HDprintf("Atomicity Test Failed Process %d: read_buf[%d] is %d, should be %d\n", mpi_rank, k, read_buf[k], compare); + HDprintf("Atomicity Test Failed Process %d: read_buf[%d] is %d, should be %d\n", mpi_rank, + k, read_buf[k], compare); nerrors++; } - k ++; + k++; } } } @@ -4371,12 +4073,13 @@ dataset_atomicity(void) VRFY((ret >= 0), "H5Sclose succeeded"); /* release data buffers */ - if(write_buf) HDfree(write_buf); - if(read_buf) HDfree(read_buf); + if (write_buf) + HDfree(write_buf); + if (read_buf) + HDfree(read_buf); ret = H5Fclose(fid); VRFY((ret >= 0), "H5Fclose succeeded"); - } /* Function: dense_attr_test @@ -4389,21 +4092,21 @@ dataset_atomicity(void) void test_dense_attr(void) { - int mpi_size, mpi_rank; - hid_t fpid, fid; - hid_t gid, gpid; - hid_t atFileSpace, atid; - hsize_t atDims[1] = {10000}; - herr_t status; + int mpi_size, mpi_rank; + hid_t fpid, fid; + hid_t gid, gpid; + hid_t atFileSpace, atid; + hsize_t atDims[1] = {10000}; + herr_t status; const char *filename; /* get filename */ filename = (const char *)GetTestParameters(); - HDassert( filename != NULL ); + HDassert(filename != NULL); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); fpid = H5Pcreate(H5P_FILE_ACCESS); VRFY((fpid > 0), "H5Pcreate succeeded"); @@ -4442,4 +4145,3 @@ test_dense_attr(void) return; } - diff --git a/testpar/t_file.c b/testpar/t_file.c index 204095b..229fd6c 100644 --- a/testpar/t_file.c +++ b/testpar/t_file.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -17,30 +17,30 @@ #include "testphdf5.h" -#include "H5CXprivate.h" /* API Contexts */ +#include "H5CXprivate.h" /* API Contexts */ #include "H5Iprivate.h" #include "H5PBprivate.h" /* * This file needs to access private information from the H5F package. */ -#define H5AC_FRIEND /*suppress error about including H5ACpkg */ +#define H5AC_FRIEND /*suppress error about including H5ACpkg */ #include "H5ACpkg.h" -#define H5C_FRIEND /*suppress error about including H5Cpkg */ +#define H5C_FRIEND /*suppress error about including H5Cpkg */ #include "H5Cpkg.h" -#define H5F_FRIEND /*suppress error about including H5Fpkg */ +#define H5F_FRIEND /*suppress error about including H5Fpkg */ #define H5F_TESTING #include "H5Fpkg.h" -#define H5MF_FRIEND /*suppress error about including H5MFpkg */ +#define H5MF_FRIEND /*suppress error about including H5MFpkg */ #include "H5MFpkg.h" -#define NUM_DSETS 5 +#define NUM_DSETS 5 int mpi_size, mpi_rank; static int create_file(const char *filename, hid_t fcpl, hid_t fapl, int metadata_write_strategy); -static int open_file(const char *filename, hid_t fapl, int metadata_write_strategy, - hsize_t page_size, size_t page_buffer_size); +static int open_file(const char *filename, hid_t fapl, int metadata_write_strategy, hsize_t page_size, + size_t page_buffer_size); /* * test file access by communicator besides COMM_WORLD. @@ -56,79 +56,79 @@ static int open_file(const char *filename, hid_t fapl, int metadata_write_strate void test_split_comm_access(void) { - MPI_Comm comm; - MPI_Info info = MPI_INFO_NULL; - int is_old, mrc; - int newrank, newprocs; - hid_t fid; /* file IDs */ - hid_t acc_tpl; /* File access properties */ - herr_t ret; /* generic return value */ + MPI_Comm comm; + MPI_Info info = MPI_INFO_NULL; + int is_old, mrc; + int newrank, newprocs; + hid_t fid; /* file IDs */ + hid_t acc_tpl; /* File access properties */ + herr_t ret; /* generic return value */ const char *filename; filename = (const char *)GetTestParameters(); if (VERBOSE_MED) - HDprintf("Split Communicator access test on file %s\n", - filename); + HDprintf("Split Communicator access test on file %s\n", filename); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); - is_old = mpi_rank%2; - mrc = MPI_Comm_split(MPI_COMM_WORLD, is_old, mpi_rank, &comm); - VRFY((mrc==MPI_SUCCESS), ""); - MPI_Comm_size(comm,&newprocs); - MPI_Comm_rank(comm,&newrank); - - if (is_old){ - /* odd-rank processes */ - mrc = MPI_Barrier(comm); - VRFY((mrc==MPI_SUCCESS), ""); - }else{ - /* even-rank processes */ - int sub_mpi_rank; /* rank in the sub-comm */ - MPI_Comm_rank(comm,&sub_mpi_rank); - - /* setup file access template */ - acc_tpl = create_faccess_plist(comm, info, facc_type); - VRFY((acc_tpl >= 0), ""); - - /* create the file collectively */ - fid=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl); - VRFY((fid >= 0), "H5Fcreate succeeded"); - - /* Release file-access template */ - ret=H5Pclose(acc_tpl); - VRFY((ret >= 0), ""); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); + is_old = mpi_rank % 2; + mrc = MPI_Comm_split(MPI_COMM_WORLD, is_old, mpi_rank, &comm); + VRFY((mrc == MPI_SUCCESS), ""); + MPI_Comm_size(comm, &newprocs); + MPI_Comm_rank(comm, &newrank); + + if (is_old) { + /* odd-rank processes */ + mrc = MPI_Barrier(comm); + VRFY((mrc == MPI_SUCCESS), ""); + } + else { + /* even-rank processes */ + int sub_mpi_rank; /* rank in the sub-comm */ + MPI_Comm_rank(comm, &sub_mpi_rank); - /* close the file */ - ret=H5Fclose(fid); - VRFY((ret >= 0), ""); + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); - /* delete the test file */ - if (sub_mpi_rank == 0){ - mrc = MPI_File_delete((char *)filename, info); - /*VRFY((mrc==MPI_SUCCESS), ""); */ - } + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* close the file */ + ret = H5Fclose(fid); + VRFY((ret >= 0), ""); + + /* delete the test file */ + if (sub_mpi_rank == 0) { + mrc = MPI_File_delete(filename, info); + /*VRFY((mrc==MPI_SUCCESS), ""); */ + } } mrc = MPI_Comm_free(&comm); - VRFY((mrc==MPI_SUCCESS), "MPI_Comm_free succeeded"); + VRFY((mrc == MPI_SUCCESS), "MPI_Comm_free succeeded"); mrc = MPI_Barrier(MPI_COMM_WORLD); - VRFY((mrc==MPI_SUCCESS), "final MPI_Barrier succeeded"); + VRFY((mrc == MPI_SUCCESS), "final MPI_Barrier succeeded"); } void test_page_buffer_access(void) { - hid_t file_id = -1; /* File ID */ - hid_t fcpl, fapl; - size_t page_count = 0; - int i, num_elements = 200; - haddr_t raw_addr, meta_addr; - int *data; - H5F_t *f = NULL; - herr_t ret; /* generic return value */ + hid_t file_id = -1; /* File ID */ + hid_t fcpl, fapl; + size_t page_count = 0; + int i, num_elements = 200; + haddr_t raw_addr, meta_addr; + int * data; + H5F_t * f = NULL; + herr_t ret; /* generic return value */ const char *filename; - hbool_t api_ctx_pushed = FALSE; /* Whether API context pushed */ + hbool_t api_ctx_pushed = FALSE; /* Whether API context pushed */ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); @@ -136,7 +136,7 @@ test_page_buffer_access(void) filename = (const char *)GetTestParameters(); if (VERBOSE_MED) - HDprintf("Page Buffer Usage in Parallel %s\n", filename); + HDprintf("Page Buffer Usage in Parallel %s\n", filename); fapl = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); VRFY((fapl >= 0), "create_faccess_plist succeeded"); @@ -145,15 +145,17 @@ test_page_buffer_access(void) ret = H5Pset_file_space_strategy(fcpl, H5F_FSPACE_STRATEGY_PAGE, 1, (hsize_t)0); VRFY((ret == 0), ""); - ret = H5Pset_file_space_page_size(fcpl, sizeof(int)*100); + ret = H5Pset_file_space_page_size(fcpl, sizeof(int) * 128); VRFY((ret == 0), ""); - ret = H5Pset_page_buffer_size(fapl, sizeof(int)*100000, 0, 0); + ret = H5Pset_page_buffer_size(fapl, sizeof(int) * 100000, 0, 0); VRFY((ret == 0), ""); /* This should fail because collective metadata writes are not supported with page buffering */ - H5E_BEGIN_TRY { + H5E_BEGIN_TRY + { file_id = H5Fcreate(filename, H5F_ACC_TRUNC, fcpl, fapl); - } H5E_END_TRY; + } + H5E_END_TRY; VRFY((file_id < 0), "H5Fcreate failed"); /* disable collective metadata writes for page buffering to work */ @@ -162,28 +164,29 @@ test_page_buffer_access(void) ret = create_file(filename, fcpl, fapl, H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED); VRFY((ret == 0), ""); - ret = open_file(filename, fapl, H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED, sizeof(int)*100, sizeof(int)*100000); + ret = open_file(filename, fapl, H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED, sizeof(int) * 100, + sizeof(int) * 100000); VRFY((ret == 0), ""); ret = create_file(filename, fcpl, fapl, H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY); VRFY((ret == 0), ""); - ret = open_file(filename, fapl, H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY, sizeof(int)*100, sizeof(int)*100000); + ret = open_file(filename, fapl, H5AC_METADATA_WRITE_STRATEGY__PROCESS_0_ONLY, sizeof(int) * 100, + sizeof(int) * 100000); VRFY((ret == 0), ""); - ret = H5Pset_file_space_page_size(fcpl, sizeof(int)*100); + ret = H5Pset_file_space_page_size(fcpl, sizeof(int) * 100); VRFY((ret == 0), ""); - data = (int *) HDmalloc(sizeof(int)*(size_t)num_elements); + data = (int *)HDmalloc(sizeof(int) * (size_t)num_elements); - /* intialize all the elements to have a value of -1 */ - for(i=0 ; i<num_elements ; i++) + /* initialize all the elements to have a value of -1 */ + for (i = 0; i < num_elements; i++) data[i] = -1; - if(MAINPROCESS) { + if (MAINPROCESS) { hid_t fapl_self = H5I_INVALID_HID; + fapl_self = create_faccess_plist(MPI_COMM_SELF, MPI_INFO_NULL, facc_type); - fapl_self = create_faccess_plist(MPI_COMM_SELF, MPI_INFO_NULL, facc_type); - - ret = H5Pset_page_buffer_size(fapl_self, sizeof(int)*1000, 0, 0); + ret = H5Pset_page_buffer_size(fapl_self, sizeof(int) * 1000, 0, 0); VRFY((ret == 0), ""); /* collective metadata writes do not work with page buffering */ ret = H5Pset_coll_metadata_write(fapl_self, FALSE); @@ -203,49 +206,49 @@ test_page_buffer_access(void) VRFY((f->shared->page_buf != NULL), "Page Buffer created with 1 process"); /* allocate space for 200 raw elements */ - raw_addr = H5MF_alloc(f, H5FD_MEM_DRAW, sizeof(int)*(size_t)num_elements); + raw_addr = H5MF_alloc(f, H5FD_MEM_DRAW, sizeof(int) * (size_t)num_elements); VRFY((raw_addr != HADDR_UNDEF), ""); /* allocate space for 200 metadata elements */ - meta_addr = H5MF_alloc(f, H5FD_MEM_SUPER, sizeof(int)*(size_t)num_elements); + meta_addr = H5MF_alloc(f, H5FD_MEM_SUPER, sizeof(int) * (size_t)num_elements); VRFY((meta_addr != HADDR_UNDEF), ""); page_count = 0; - ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr, sizeof(int)*(size_t)num_elements, data); + ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr, sizeof(int) * (size_t)num_elements, data); VRFY((ret == 0), ""); - ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr, sizeof(int)*(size_t)num_elements, data); - ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr, sizeof(int)*(size_t)num_elements, data); + ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr, sizeof(int) * (size_t)num_elements, data); + ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr, sizeof(int) * (size_t)num_elements, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); /* update the first 50 elements */ - for(i=0 ; i<50 ; i++) + for (i = 0; i < 50; i++) data[i] = i; - ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr, sizeof(int)*50, data); + ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr, sizeof(int) * 50, data); H5Eprint2(H5E_DEFAULT, stderr); VRFY((ret == 0), ""); - ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr, sizeof(int)*50, data); + ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr, sizeof(int) * 50, data); VRFY((ret == 0), ""); page_count += 2; VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); /* update the second 50 elements */ - for(i=0 ; i<50 ; i++) - data[i] = i+50; - ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr+(sizeof(int)*50), sizeof(int)*50, data); + for (i = 0; i < 50; i++) + data[i] = i + 50; + ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr + (sizeof(int) * 50), sizeof(int) * 50, data); VRFY((ret == 0), ""); - ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr+(sizeof(int)*50), sizeof(int)*50, data); + ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr + (sizeof(int) * 50), sizeof(int) * 50, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); /* update 100 - 200 */ - for(i=0 ; i<100 ; i++) - data[i] = i+100; - ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr+(sizeof(int)*100), sizeof(int)*100, data); + for (i = 0; i < 100; i++) + data[i] = i + 100; + ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr + (sizeof(int) * 100), sizeof(int) * 100, data); VRFY((ret == 0), ""); - ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr+(sizeof(int)*100), sizeof(int)*100, data); + ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr + (sizeof(int) * 100), sizeof(int) * 100, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); @@ -253,43 +256,47 @@ test_page_buffer_access(void) VRFY((ret == 0), ""); /* read elements 0 - 200 */ - ret = H5F_block_read(f, H5FD_MEM_DRAW, raw_addr, sizeof(int)*200, data); + ret = H5F_block_read(f, H5FD_MEM_DRAW, raw_addr, sizeof(int) * 200, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); - for (i=0; i < 200; i++) + for (i = 0; i < 200; i++) VRFY((data[i] == i), "Read different values than written"); - ret = H5F_block_read(f, H5FD_MEM_SUPER, meta_addr, sizeof(int)*200, data); + ret = H5F_block_read(f, H5FD_MEM_SUPER, meta_addr, sizeof(int) * 200, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); - for (i=0; i < 200; i++) + for (i = 0; i < 200; i++) VRFY((data[i] == i), "Read different values than written"); /* read elements 0 - 50 */ - ret = H5F_block_read(f, H5FD_MEM_DRAW, raw_addr, sizeof(int)*50, data); + ret = H5F_block_read(f, H5FD_MEM_DRAW, raw_addr, sizeof(int) * 50, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); - for (i=0; i < 50; i++) + for (i = 0; i < 50; i++) VRFY((data[i] == i), "Read different values than written"); - ret = H5F_block_read(f, H5FD_MEM_SUPER, meta_addr, sizeof(int)*50, data); + ret = H5F_block_read(f, H5FD_MEM_SUPER, meta_addr, sizeof(int) * 50, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); - for (i=0; i < 50; i++) + for (i = 0; i < 50; i++) VRFY((data[i] == i), "Read different values than written"); /* close the file */ ret = H5Fclose(file_id); VRFY((ret >= 0), "H5Fclose succeeded"); ret = H5Pclose(fapl_self); - VRFY((ret>=0), "H5Pclose succeeded"); + VRFY((ret >= 0), "H5Pclose succeeded"); /* Pop API context */ - if(api_ctx_pushed) { ret = H5CX_pop(); VRFY((ret == 0), "H5CX_pop()"); api_ctx_pushed = FALSE; } + if (api_ctx_pushed) { + ret = H5CX_pop(FALSE); + VRFY((ret == 0), "H5CX_pop()"); + api_ctx_pushed = FALSE; + } } MPI_Barrier(MPI_COMM_WORLD); - if(mpi_size > 1) { - ret = H5Pset_page_buffer_size(fapl, sizeof(int)*1000, 0, 0); + if (mpi_size > 1) { + ret = H5Pset_page_buffer_size(fapl, sizeof(int) * 1000, 0, 0); VRFY((ret == 0), ""); /* collective metadata writes do not work with page buffering */ ret = H5Pset_coll_metadata_write(fapl, FALSE); @@ -309,45 +316,45 @@ test_page_buffer_access(void) VRFY((f->shared->page_buf != NULL), "Page Buffer created with 1 process"); /* allocate space for 200 raw elements */ - raw_addr = H5MF_alloc(f, H5FD_MEM_DRAW, sizeof(int)*(size_t)num_elements); + raw_addr = H5MF_alloc(f, H5FD_MEM_DRAW, sizeof(int) * (size_t)num_elements); VRFY((raw_addr != HADDR_UNDEF), ""); /* allocate space for 200 metadata elements */ - meta_addr = H5MF_alloc(f, H5FD_MEM_SUPER, sizeof(int)*(size_t)num_elements); + meta_addr = H5MF_alloc(f, H5FD_MEM_SUPER, sizeof(int) * (size_t)num_elements); VRFY((meta_addr != HADDR_UNDEF), ""); page_count = 0; - ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr, sizeof(int)*(size_t)num_elements, data); + ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr, sizeof(int) * (size_t)num_elements, data); VRFY((ret == 0), ""); - ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr, sizeof(int)*(size_t)num_elements, data); + ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr, sizeof(int) * (size_t)num_elements, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); /* update the first 50 elements */ - for(i=0 ; i<50 ; i++) + for (i = 0; i < 50; i++) data[i] = i; - ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr, sizeof(int)*50, data); + ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr, sizeof(int) * 50, data); VRFY((ret == 0), ""); - ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr, sizeof(int)*50, data); + ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr, sizeof(int) * 50, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); /* update the second 50 elements */ - for(i=0 ; i<50 ; i++) - data[i] = i+50; - ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr+(sizeof(int)*50), sizeof(int)*50, data); + for (i = 0; i < 50; i++) + data[i] = i + 50; + ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr + (sizeof(int) * 50), sizeof(int) * 50, data); VRFY((ret == 0), ""); - ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr+(sizeof(int)*50), sizeof(int)*50, data); + ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr + (sizeof(int) * 50), sizeof(int) * 50, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); /* update 100 - 200 */ - for(i=0 ; i<100 ; i++) - data[i] = i+100; - ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr+(sizeof(int)*100), sizeof(int)*100, data); + for (i = 0; i < 100; i++) + data[i] = i + 100; + ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr + (sizeof(int) * 100), sizeof(int) * 100, data); VRFY((ret == 0), ""); - ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr+(sizeof(int)*100), sizeof(int)*100, data); + ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr + (sizeof(int) * 100), sizeof(int) * 100, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); @@ -355,51 +362,51 @@ test_page_buffer_access(void) VRFY((ret == 0), ""); /* read elements 0 - 200 */ - ret = H5F_block_read(f, H5FD_MEM_DRAW, raw_addr, sizeof(int)*200, data); + ret = H5F_block_read(f, H5FD_MEM_DRAW, raw_addr, sizeof(int) * 200, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); - for (i=0; i < 200; i++) + for (i = 0; i < 200; i++) VRFY((data[i] == i), "Read different values than written"); - ret = H5F_block_read(f, H5FD_MEM_SUPER, meta_addr, sizeof(int)*200, data); + ret = H5F_block_read(f, H5FD_MEM_SUPER, meta_addr, sizeof(int) * 200, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); - for (i=0; i < 200; i++) + for (i = 0; i < 200; i++) VRFY((data[i] == i), "Read different values than written"); /* read elements 0 - 50 */ - ret = H5F_block_read(f, H5FD_MEM_DRAW, raw_addr, sizeof(int)*50, data); + ret = H5F_block_read(f, H5FD_MEM_DRAW, raw_addr, sizeof(int) * 50, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); - for (i=0; i < 50; i++) + for (i = 0; i < 50; i++) VRFY((data[i] == i), "Read different values than written"); - ret = H5F_block_read(f, H5FD_MEM_SUPER, meta_addr, sizeof(int)*50, data); + ret = H5F_block_read(f, H5FD_MEM_SUPER, meta_addr, sizeof(int) * 50, data); VRFY((ret == 0), ""); page_count += 1; VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); - for (i=0; i < 50; i++) + for (i = 0; i < 50; i++) VRFY((data[i] == i), "Read different values than written"); MPI_Barrier(MPI_COMM_WORLD); /* reset the first 50 elements to -1*/ - for(i=0 ; i<50 ; i++) + for (i = 0; i < 50; i++) data[i] = -1; - ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr, sizeof(int)*50, data); + ret = H5F_block_write(f, H5FD_MEM_DRAW, raw_addr, sizeof(int) * 50, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); - ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr, sizeof(int)*50, data); + ret = H5F_block_write(f, H5FD_MEM_SUPER, meta_addr, sizeof(int) * 50, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); /* read elements 0 - 50 */ - ret = H5F_block_read(f, H5FD_MEM_DRAW, raw_addr, sizeof(int)*50, data); + ret = H5F_block_read(f, H5FD_MEM_DRAW, raw_addr, sizeof(int) * 50, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); - for (i=0; i < 50; i++) + for (i = 0; i < 50; i++) VRFY((data[i] == -1), "Read different values than written"); - ret = H5F_block_read(f, H5FD_MEM_SUPER, meta_addr, sizeof(int)*50, data); + ret = H5F_block_read(f, H5FD_MEM_SUPER, meta_addr, sizeof(int) * 50, data); VRFY((ret == 0), ""); VRFY((H5SL_count(f->shared->page_buf->slist_ptr) == page_count), "Wrong number of pages in PB"); - for (i=0; i < 50; i++) + for (i = 0; i < 50; i++) VRFY((data[i] == -1), "Read different values than written"); /* close the file */ @@ -408,12 +415,16 @@ test_page_buffer_access(void) } ret = H5Pclose(fapl); - VRFY((ret>=0), "H5Pclose succeeded"); + VRFY((ret >= 0), "H5Pclose succeeded"); ret = H5Pclose(fcpl); - VRFY((ret>=0), "H5Pclose succeeded"); + VRFY((ret >= 0), "H5Pclose succeeded"); /* Pop API context */ - if(api_ctx_pushed) { ret = H5CX_pop(); VRFY((ret == 0), "H5CX_pop()"); api_ctx_pushed = FALSE; } + if (api_ctx_pushed) { + ret = H5CX_pop(FALSE); + VRFY((ret == 0), "H5CX_pop()"); + api_ctx_pushed = FALSE; + } HDfree(data); data = NULL; @@ -423,22 +434,22 @@ test_page_buffer_access(void) static int create_file(const char *filename, hid_t fcpl, hid_t fapl, int metadata_write_strategy) { - hid_t file_id, dset_id, grp_id; - hid_t sid, mem_dataspace; - hsize_t start[RANK]; - hsize_t count[RANK]; - hsize_t stride[RANK]; - hsize_t block[RANK]; - DATATYPE *data_array = NULL; - hsize_t dims[RANK], i; - hsize_t num_elements; - int k; - char dset_name[10]; - H5F_t *f = NULL; - H5C_t *cache_ptr = NULL; + hid_t file_id, dset_id, grp_id; + hid_t sid, mem_dataspace; + hsize_t start[RANK]; + hsize_t count[RANK]; + hsize_t stride[RANK]; + hsize_t block[RANK]; + DATATYPE * data_array = NULL; + hsize_t dims[RANK], i; + hsize_t num_elements; + int k; + char dset_name[20]; + H5F_t * f = NULL; + H5C_t * cache_ptr = NULL; H5AC_cache_config_t config; - hbool_t api_ctx_pushed = FALSE; /* Whether API context pushed */ - herr_t ret; + hbool_t api_ctx_pushed = FALSE; /* Whether API context pushed */ + herr_t ret; file_id = H5Fcreate(filename, H5F_ACC_TRUNC, fcpl, fapl); VRFY((file_id >= 0), ""); @@ -472,61 +483,57 @@ create_file(const char *filename, hid_t fcpl, hid_t fapl, int metadata_write_str grp_id = H5Gcreate2(file_id, "GROUP", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((grp_id >= 0), ""); - dims[0] = ROW_FACTOR*mpi_size; - dims[1] = COL_FACTOR*mpi_size; - sid = H5Screate_simple (RANK, dims, NULL); + dims[0] = (hsize_t)(ROW_FACTOR * mpi_size); + dims[1] = (hsize_t)(COL_FACTOR * mpi_size); + sid = H5Screate_simple(RANK, dims, NULL); VRFY((sid >= 0), "H5Screate_simple succeeded"); /* Each process takes a slabs of rows. */ - block[0] = dims[0]/mpi_size; - block[1] = dims[1]; + block[0] = dims[0] / (hsize_t)mpi_size; + block[1] = dims[1]; stride[0] = block[0]; stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = mpi_rank*block[0]; - start[1] = 0; + count[0] = 1; + count[1] = 1; + start[0] = (hsize_t)mpi_rank * block[0]; + start[1] = 0; num_elements = block[0] * block[1]; /* allocate memory for data buffer */ - data_array = (DATATYPE *)HDmalloc(num_elements*sizeof(DATATYPE)); + data_array = (DATATYPE *)HDmalloc(num_elements * sizeof(DATATYPE)); VRFY((data_array != NULL), "data_array HDmalloc succeeded"); /* put some trivial data in the data_array */ - for(i=0 ; i<num_elements; i++) + for (i = 0; i < num_elements; i++) data_array[i] = mpi_rank + 1; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (1, &num_elements, NULL); + mem_dataspace = H5Screate_simple(1, &num_elements, NULL); VRFY((mem_dataspace >= 0), ""); - for(k=0 ; k<NUM_DSETS; k++) { - HDsprintf(dset_name, "D1dset%d", k); - dset_id = H5Dcreate2(grp_id, dset_name, H5T_NATIVE_INT, sid, - H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + for (k = 0; k < NUM_DSETS; k++) { + HDsnprintf(dset_name, sizeof(dset_name), "D1dset%d", k); + dset_id = H5Dcreate2(grp_id, dset_name, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((dset_id >= 0), ""); ret = H5Dclose(dset_id); VRFY((ret == 0), ""); - HDsprintf(dset_name, "D2dset%d", k); - dset_id = H5Dcreate2(grp_id, dset_name, H5T_NATIVE_INT, sid, - H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + HDsnprintf(dset_name, sizeof(dset_name), "D2dset%d", k); + dset_id = H5Dcreate2(grp_id, dset_name, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((dset_id >= 0), ""); ret = H5Dclose(dset_id); VRFY((ret == 0), ""); - HDsprintf(dset_name, "D3dset%d", k); - dset_id = H5Dcreate2(grp_id, dset_name, H5T_NATIVE_INT, sid, - H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + HDsnprintf(dset_name, sizeof(dset_name), "D3dset%d", k); + dset_id = H5Dcreate2(grp_id, dset_name, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((dset_id >= 0), ""); ret = H5Dclose(dset_id); VRFY((ret == 0), ""); - HDsprintf(dset_name, "dset%d", k); - dset_id = H5Dcreate2(grp_id, dset_name, H5T_NATIVE_INT, sid, - H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + HDsnprintf(dset_name, sizeof(dset_name), "dset%d", k); + dset_id = H5Dcreate2(grp_id, dset_name, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((dset_id >= 0), ""); ret = H5Dwrite(dset_id, H5T_NATIVE_INT, mem_dataspace, sid, H5P_DEFAULT, data_array); @@ -535,7 +542,7 @@ create_file(const char *filename, hid_t fcpl, hid_t fapl, int metadata_write_str ret = H5Dclose(dset_id); VRFY((ret == 0), ""); - HDmemset(data_array, 0, num_elements*sizeof(DATATYPE)); + HDmemset(data_array, 0, num_elements * sizeof(DATATYPE)); dset_id = H5Dopen2(grp_id, dset_name, H5P_DEFAULT); VRFY((dset_id >= 0), ""); @@ -545,16 +552,16 @@ create_file(const char *filename, hid_t fcpl, hid_t fapl, int metadata_write_str ret = H5Dclose(dset_id); VRFY((ret == 0), ""); - for (i=0; i < num_elements; i++) - VRFY((data_array[i] == mpi_rank+1), "Dataset Verify failed"); + for (i = 0; i < num_elements; i++) + VRFY((data_array[i] == mpi_rank + 1), "Dataset Verify failed"); - HDsprintf(dset_name, "D1dset%d", k); + HDsnprintf(dset_name, sizeof(dset_name), "D1dset%d", k); ret = H5Ldelete(grp_id, dset_name, H5P_DEFAULT); VRFY((ret == 0), ""); - HDsprintf(dset_name, "D2dset%d", k); + HDsnprintf(dset_name, sizeof(dset_name), "D2dset%d", k); ret = H5Ldelete(grp_id, dset_name, H5P_DEFAULT); VRFY((ret == 0), ""); - HDsprintf(dset_name, "D3dset%d", k); + HDsnprintf(dset_name, sizeof(dset_name), "D3dset%d", k); ret = H5Ldelete(grp_id, dset_name, H5P_DEFAULT); VRFY((ret == 0), ""); } @@ -569,7 +576,11 @@ create_file(const char *filename, hid_t fcpl, hid_t fapl, int metadata_write_str VRFY((ret == 0), ""); /* Pop API context */ - if(api_ctx_pushed) { ret = H5CX_pop(); VRFY((ret == 0), "H5CX_pop()"); api_ctx_pushed = FALSE; } + if (api_ctx_pushed) { + ret = H5CX_pop(FALSE); + VRFY((ret == 0), "H5CX_pop()"); + api_ctx_pushed = FALSE; + } MPI_Barrier(MPI_COMM_WORLD); HDfree(data_array); @@ -577,28 +588,28 @@ create_file(const char *filename, hid_t fcpl, hid_t fapl, int metadata_write_str } /* create_file */ static int -open_file(const char *filename, hid_t fapl, int metadata_write_strategy, - hsize_t page_size, size_t page_buffer_size) +open_file(const char *filename, hid_t fapl, int metadata_write_strategy, hsize_t page_size, + size_t page_buffer_size) { - hid_t file_id, dset_id, grp_id, grp_id2; - hid_t sid, mem_dataspace; - DATATYPE *data_array = NULL; - hsize_t dims[RANK]; - hsize_t start[RANK]; - hsize_t count[RANK]; - hsize_t stride[RANK]; - hsize_t block[RANK]; - int i, k, ndims; - hsize_t num_elements; - char dset_name[10]; - H5F_t *f = NULL; - H5C_t *cache_ptr = NULL; + hid_t file_id, dset_id, grp_id, grp_id2; + hid_t sid, mem_dataspace; + DATATYPE * data_array = NULL; + hsize_t dims[RANK]; + hsize_t start[RANK]; + hsize_t count[RANK]; + hsize_t stride[RANK]; + hsize_t block[RANK]; + int i, k, ndims; + hsize_t num_elements; + char dset_name[20]; + H5F_t * f = NULL; + H5C_t * cache_ptr = NULL; H5AC_cache_config_t config; - hbool_t api_ctx_pushed = FALSE; /* Whether API context pushed */ - herr_t ret; + hbool_t api_ctx_pushed = FALSE; /* Whether API context pushed */ + herr_t ret; config.version = H5AC__CURR_CACHE_CONFIG_VERSION; - ret = H5Pget_mdc_config(fapl, &config); + ret = H5Pget_mdc_config(fapl, &config); VRFY((ret == 0), ""); config.metadata_write_strategy = metadata_write_strategy; @@ -633,30 +644,30 @@ open_file(const char *filename, hid_t fapl, int metadata_write_strategy, grp_id = H5Gopen2(file_id, "GROUP", H5P_DEFAULT); VRFY((grp_id >= 0), ""); - dims[0] = ROW_FACTOR*mpi_size; - dims[1] = COL_FACTOR*mpi_size; + dims[0] = (hsize_t)(ROW_FACTOR * mpi_size); + dims[1] = (hsize_t)(COL_FACTOR * mpi_size); /* Each process takes a slabs of rows. */ - block[0] = dims[0]/mpi_size; - block[1] = dims[1]; + block[0] = dims[0] / (hsize_t)mpi_size; + block[1] = dims[1]; stride[0] = block[0]; stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = mpi_rank*block[0]; - start[1] = 0; + count[0] = 1; + count[1] = 1; + start[0] = (hsize_t)mpi_rank * block[0]; + start[1] = 0; num_elements = block[0] * block[1]; /* allocate memory for data buffer */ - data_array = (DATATYPE *)HDmalloc(num_elements*sizeof(DATATYPE)); + data_array = (DATATYPE *)HDmalloc(num_elements * sizeof(DATATYPE)); VRFY((data_array != NULL), "data_array HDmalloc succeeded"); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (1, &num_elements, NULL); + mem_dataspace = H5Screate_simple(1, &num_elements, NULL); VRFY((mem_dataspace >= 0), ""); - for(k=0 ; k<NUM_DSETS; k++) { - HDsprintf(dset_name, "dset%d", k); + for (k = 0; k < NUM_DSETS; k++) { + HDsnprintf(dset_name, sizeof(dset_name), "dset%d", k); dset_id = H5Dopen2(grp_id, dset_name, H5P_DEFAULT); VRFY((dset_id >= 0), ""); @@ -665,8 +676,8 @@ open_file(const char *filename, hid_t fapl, int metadata_write_strategy, ndims = H5Sget_simple_extent_dims(sid, dims, NULL); VRFY((ndims == 2), "H5Sget_simple_extent_dims succeeded"); - VRFY(dims[0] == ROW_FACTOR*mpi_size, "Wrong dataset dimensions"); - VRFY(dims[1] == COL_FACTOR*mpi_size, "Wrong dataset dimensions"); + VRFY(dims[0] == (hsize_t)(ROW_FACTOR * mpi_size), "Wrong dataset dimensions"); + VRFY(dims[1] == (hsize_t)(COL_FACTOR * mpi_size), "Wrong dataset dimensions"); ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); @@ -679,8 +690,8 @@ open_file(const char *filename, hid_t fapl, int metadata_write_strategy, ret = H5Sclose(sid); VRFY((ret == 0), ""); - for (i=0; i < num_elements; i++) - VRFY((data_array[i] == mpi_rank+1), "Dataset Verify failed"); + for (i = 0; i < (int)num_elements; i++) + VRFY((data_array[i] == mpi_rank + 1), "Dataset Verify failed"); } grp_id2 = H5Gcreate2(file_id, "GROUP/GROUP2", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -695,16 +706,16 @@ open_file(const char *filename, hid_t fapl, int metadata_write_strategy, /* flush invalidate each ring, starting from the outermost ring and * working inward. */ - for ( i = 0; i < H5C__HASH_TABLE_LEN; i++ ) { - H5C_cache_entry_t * entry_ptr = NULL; + for (i = 0; i < H5C__HASH_TABLE_LEN; i++) { + H5C_cache_entry_t *entry_ptr = NULL; entry_ptr = cache_ptr->index[i]; - while ( entry_ptr != NULL ) { + while (entry_ptr != NULL) { HDassert(entry_ptr->magic == H5C__H5C_CACHE_ENTRY_T_MAGIC); HDassert(entry_ptr->is_dirty == FALSE); - if(!entry_ptr->is_pinned && !entry_ptr->is_protected) { + if (!entry_ptr->is_pinned && !entry_ptr->is_protected) { ret = H5AC_expunge_entry(f, entry_ptr->type, entry_ptr->addr, 0); VRFY((ret == 0), ""); } @@ -729,7 +740,11 @@ open_file(const char *filename, hid_t fapl, int metadata_write_strategy, VRFY((ret == 0), ""); /* Pop API context */ - if(api_ctx_pushed) { ret = H5CX_pop(); VRFY((ret == 0), "H5CX_pop()"); api_ctx_pushed = FALSE; } + if (api_ctx_pushed) { + ret = H5CX_pop(FALSE); + VRFY((ret == 0), "H5CX_pop()"); + api_ctx_pushed = FALSE; + } HDfree(data_array); @@ -737,26 +752,26 @@ open_file(const char *filename, hid_t fapl, int metadata_write_strategy, } /* - * NOTE: See HDFFV-10894 and add tests later to verify MPI-specific properties in the + * NOTE: See HDFFV-10894 and add tests later to verify MPI-specific properties in the * incoming fapl that could conflict with the existing values in H5F_shared_t on * multiple opens of the same file. */ void test_file_properties(void) { - hid_t fid = H5I_INVALID_HID; /* HDF5 file ID */ - hid_t fapl_id = H5I_INVALID_HID; /* File access plist */ - hid_t fapl_copy_id = H5I_INVALID_HID; /* File access plist */ - hbool_t is_coll; - htri_t are_equal; + hid_t fid = H5I_INVALID_HID; /* HDF5 file ID */ + hid_t fapl_id = H5I_INVALID_HID; /* File access plist */ + hid_t fapl_copy_id = H5I_INVALID_HID; /* File access plist */ + hbool_t is_coll; + htri_t are_equal; const char *filename; - MPI_Comm comm = MPI_COMM_WORLD; - MPI_Info info = MPI_INFO_NULL; - MPI_Comm comm_out = MPI_COMM_NULL; - MPI_Info info_out = MPI_INFO_NULL; - herr_t ret; /* Generic return value */ - int mpi_ret; /* MPI return value */ - int cmp; /* Compare value */ + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + MPI_Comm comm_out = MPI_COMM_NULL; + MPI_Info info_out = MPI_INFO_NULL; + herr_t ret; /* Generic return value */ + int mpi_ret; /* MPI return value */ + int cmp; /* Compare value */ filename = (const char *)GetTestParameters(); @@ -786,7 +801,7 @@ test_file_properties(void) /* Check the communicator */ VRFY((comm != comm_out), "Communicators should not be bitwise identical"); - cmp = MPI_UNEQUAL; + cmp = MPI_UNEQUAL; mpi_ret = MPI_Comm_compare(comm, comm_out, &cmp); VRFY((ret >= 0), "MPI_Comm_compare succeeded"); VRFY((cmp == MPI_CONGRUENT), "Communicators should be congruent via MPI_Comm_compare"); @@ -934,3 +949,56 @@ test_file_properties(void) } /* end test_file_properties() */ +void +test_delete(void) +{ + hid_t fid = H5I_INVALID_HID; /* HDF5 file ID */ + hid_t fapl_id = H5I_INVALID_HID; /* File access plist */ + const char *filename = NULL; + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + htri_t is_hdf5 = FAIL; /* Whether a file is an HDF5 file */ + herr_t ret; /* Generic return value */ + + filename = (const char *)GetTestParameters(); + + /* set up MPI parameters */ + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); + + /* setup file access plist */ + fapl_id = H5Pcreate(H5P_FILE_ACCESS); + VRFY((fapl_id != H5I_INVALID_HID), "H5Pcreate"); + ret = H5Pset_fapl_mpio(fapl_id, comm, info); + VRFY((SUCCEED == ret), "H5Pset_fapl_mpio"); + + /* create the file */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); + VRFY((fid != H5I_INVALID_HID), "H5Fcreate"); + + /* close the file */ + ret = H5Fclose(fid); + VRFY((SUCCEED == ret), "H5Fclose"); + + /* Verify that the file is an HDF5 file */ + is_hdf5 = H5Fis_accessible(filename, fapl_id); + VRFY((TRUE == is_hdf5), "H5Fis_accessible"); + + /* Delete the file */ + ret = H5Fdelete(filename, fapl_id); + VRFY((SUCCEED == ret), "H5Fdelete"); + + /* Verify that the file is NO LONGER an HDF5 file */ + /* This should fail since there is no file */ + H5E_BEGIN_TRY + { + is_hdf5 = H5Fis_accessible(filename, fapl_id); + } + H5E_END_TRY; + VRFY((is_hdf5 != SUCCEED), "H5Fis_accessible"); + + /* Release file-access plist */ + ret = H5Pclose(fapl_id); + VRFY((SUCCEED == ret), "H5Pclose"); + +} /* end test_delete() */ diff --git a/testpar/t_file_image.c b/testpar/t_file_image.c index 62db11a..a8251de 100644 --- a/testpar/t_file_image.c +++ b/testpar/t_file_image.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -21,11 +21,11 @@ * * Process zero: * - * 1) Creates a core file with an integer vector data set of - * length n (= mpi_size), + * 1) Creates a core file with an integer vector data set of + * length n (= mpi_size), * - * 2) Initializes the vector to zero in * location 0, and to -1 - * everywhere else. + * 2) Initializes the vector to zero in * location 0, and to -1 + * everywhere else. * * 3) Flushes the core file, and gets an image of it. Closes * the core file. @@ -35,7 +35,7 @@ * 5) Awaits receipt on a file image from process n-1. * * 6) opens the image received from process n-1, verifies that - * it contains a vector of length equal to mpi_size, and + * it contains a vector of length equal to mpi_size, and * that the vector contains (0, 1, 2, ... n-1) * * 7) closes the core file and exits. @@ -45,7 +45,7 @@ * 1) Await receipt of file image from process (i - 1). * * 2) Open the image with the core file driver, verify that i - * contains a vector v of length, and that v[j] = j for + * contains a vector v of length, and that v[j] = j for * 0 <= j < i, and that v[j] == -1 for i <= j < n * * 3) Set v[i] = i in the core file. @@ -61,81 +61,75 @@ void file_image_daisy_chain_test(void) { - char file_name[1024] = "\0"; - int mpi_size, mpi_rank; - int mpi_result; - int i; - int space_ndims; + char file_name[1024] = "\0"; + int mpi_size, mpi_rank; + int mpi_result; + int i; + int space_ndims; MPI_Status rcvstat; - int * vector_ptr = NULL; - hid_t fapl_id = -1; - hid_t file_id; /* file IDs */ - hid_t dset_id = -1; - hid_t dset_type_id = -1; - hid_t space_id = -1; - herr_t err; - hsize_t dims[1]; - void * image_ptr = NULL; - ssize_t bytes_read; - ssize_t image_len; - hbool_t vector_ok = TRUE; - htri_t tri_result; - + int * vector_ptr = NULL; + hid_t fapl_id = -1; + hid_t file_id; /* file IDs */ + hid_t dset_id = -1; + hid_t dset_type_id = -1; + hid_t space_id = -1; + herr_t err; + hsize_t dims[1]; + void * image_ptr = NULL; + ssize_t bytes_read; + ssize_t image_len; + hbool_t vector_ok = TRUE; + htri_t tri_result; /* set up MPI parameters */ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* setup file name */ - HDsnprintf(file_name, 1024, "file_image_daisy_chain_test_%05d.h5", - (int)mpi_rank); + HDsnprintf(file_name, 1024, "file_image_daisy_chain_test_%05d.h5", (int)mpi_rank); + + if (mpi_rank == 0) { - if(mpi_rank == 0) { - - /* 1) Creates a core file with an integer vector data set - * of length mpi_size, + /* 1) Creates a core file with an integer vector data set + * of length mpi_size, */ - fapl_id = H5Pcreate(H5P_FILE_ACCESS); + fapl_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((fapl_id >= 0), "creating fapl"); - err = H5Pset_fapl_core(fapl_id, (size_t)(64 *1024), FALSE); + err = H5Pset_fapl_core(fapl_id, (size_t)(64 * 1024), FALSE); VRFY((err >= 0), "setting core file driver in fapl."); file_id = H5Fcreate(file_name, 0, H5P_DEFAULT, fapl_id); VRFY((file_id >= 0), "created core file"); - dims[0] = (hsize_t)mpi_size; - space_id = H5Screate_simple(1, dims, dims); + dims[0] = (hsize_t)mpi_size; + space_id = H5Screate_simple(1, dims, dims); VRFY((space_id >= 0), "created data space"); - dset_id = H5Dcreate2(file_id, "v", H5T_NATIVE_INT, space_id, - H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + dset_id = H5Dcreate2(file_id, "v", H5T_NATIVE_INT, space_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((dset_id >= 0), "created data set"); - - /* 2) Initialize the vector to zero in location 0, and - * to -1 everywhere else. + /* 2) Initialize the vector to zero in location 0, and + * to -1 everywhere else. */ - vector_ptr = (int *)HDmalloc((size_t)(mpi_size) * sizeof(int)); + vector_ptr = (int *)HDmalloc((size_t)(mpi_size) * sizeof(int)); VRFY((vector_ptr != NULL), "allocated in memory representation of vector"); vector_ptr[0] = 0; - for(i = 1; i < mpi_size; i++) + for (i = 1; i < mpi_size; i++) vector_ptr[i] = -1; - err = H5Dwrite(dset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, - H5P_DEFAULT, (void *)vector_ptr); + err = H5Dwrite(dset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, (void *)vector_ptr); VRFY((err >= 0), "wrote initial data to vector."); HDfree(vector_ptr); vector_ptr = NULL; - /* 3) Flush the core file, and get an image of it. Close * the core file. */ - err = H5Fflush(file_id, H5F_SCOPE_GLOBAL); + err = H5Fflush(file_id, H5F_SCOPE_GLOBAL); VRFY((err >= 0), "flushed core file."); image_len = H5Fget_file_image(file_id, NULL, (size_t)0); @@ -148,206 +142,192 @@ file_image_daisy_chain_test(void) VRFY(bytes_read == image_len, "wrote file into image buffer"); err = H5Sclose(space_id); - VRFY((err >= 0), "closed data space."); + VRFY((err >= 0), "closed data space."); - err = H5Dclose(dset_id); - VRFY((err >= 0), "closed data set."); + err = H5Dclose(dset_id); + VRFY((err >= 0), "closed data set."); - err = H5Fclose(file_id); - VRFY((err >= 0), "closed core file(1)."); + err = H5Fclose(file_id); + VRFY((err >= 0), "closed core file(1)."); - err = H5Pclose(fapl_id); - VRFY((err >= 0), "closed fapl(1)."); + err = H5Pclose(fapl_id); + VRFY((err >= 0), "closed fapl(1)."); - /* 4) Send the image to process 1. */ - mpi_result = MPI_Ssend((void *)(&image_len), (int)sizeof(ssize_t), - MPI_BYTE, 1, 0, MPI_COMM_WORLD); - VRFY((mpi_result == MPI_SUCCESS), "sent image size to process 1"); + mpi_result = MPI_Ssend((void *)(&image_len), (int)sizeof(ssize_t), MPI_BYTE, 1, 0, MPI_COMM_WORLD); + VRFY((mpi_result == MPI_SUCCESS), "sent image size to process 1"); - mpi_result = MPI_Ssend((void *)image_ptr, (int)image_len, - MPI_BYTE, 1, 0, MPI_COMM_WORLD); - VRFY((mpi_result == MPI_SUCCESS), "sent image to process 1"); + mpi_result = MPI_Ssend((void *)image_ptr, (int)image_len, MPI_BYTE, 1, 0, MPI_COMM_WORLD); + VRFY((mpi_result == MPI_SUCCESS), "sent image to process 1"); HDfree(image_ptr); image_ptr = NULL; image_len = 0; + /* 5) Await receipt on a file image from process n-1. */ - /* 5) Await receipt on a file image from process n-1. */ - - mpi_result = MPI_Recv((void *)(&image_len), (int)sizeof(ssize_t), - MPI_BYTE, mpi_size - 1, 0, MPI_COMM_WORLD, - &rcvstat); - VRFY((mpi_result == MPI_SUCCESS), "received image len from process n-1"); + mpi_result = MPI_Recv((void *)(&image_len), (int)sizeof(ssize_t), MPI_BYTE, mpi_size - 1, 0, + MPI_COMM_WORLD, &rcvstat); + VRFY((mpi_result == MPI_SUCCESS), "received image len from process n-1"); image_ptr = (void *)HDmalloc((size_t)image_len); VRFY(image_ptr != NULL, "allocated file image receive buffer."); - mpi_result = MPI_Recv((void *)image_ptr, (int)image_len, - MPI_BYTE, mpi_size - 1, 0, MPI_COMM_WORLD, - &rcvstat); - VRFY((mpi_result == MPI_SUCCESS), \ - "received file image from process n-1"); - - /* 6) open the image received from process n-1, verify that - * it contains a vector of length equal to mpi_size, and - * that the vector contains (0, 1, 2, ... n-1). + mpi_result = + MPI_Recv((void *)image_ptr, (int)image_len, MPI_BYTE, mpi_size - 1, 0, MPI_COMM_WORLD, &rcvstat); + VRFY((mpi_result == MPI_SUCCESS), "received file image from process n-1"); + + /* 6) open the image received from process n-1, verify that + * it contains a vector of length equal to mpi_size, and + * that the vector contains (0, 1, 2, ... n-1). */ - fapl_id = H5Pcreate(H5P_FILE_ACCESS); + fapl_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((fapl_id >= 0), "creating fapl"); - err = H5Pset_fapl_core(fapl_id, (size_t)(64 *1024), FALSE); + err = H5Pset_fapl_core(fapl_id, (size_t)(64 * 1024), FALSE); VRFY((err >= 0), "setting core file driver in fapl."); - err = H5Pset_file_image(fapl_id, image_ptr, (size_t)image_len); + err = H5Pset_file_image(fapl_id, image_ptr, (size_t)image_len); VRFY((err >= 0), "set file image in fapl."); file_id = H5Fopen(file_name, H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "opened received file image file"); - dset_id = H5Dopen2(file_id, "v", H5P_DEFAULT); + dset_id = H5Dopen2(file_id, "v", H5P_DEFAULT); VRFY((dset_id >= 0), "opened data set"); - dset_type_id = H5Dget_type(dset_id); + dset_type_id = H5Dget_type(dset_id); VRFY((dset_type_id >= 0), "obtained data set type"); - tri_result = H5Tequal(dset_type_id, H5T_NATIVE_INT); + tri_result = H5Tequal(dset_type_id, H5T_NATIVE_INT); VRFY((tri_result == TRUE), "verified data set type"); - space_id = H5Dget_space(dset_id); + space_id = H5Dget_space(dset_id); VRFY((space_id >= 0), "opened data space"); - space_ndims = H5Sget_simple_extent_ndims(space_id); - VRFY((space_ndims == 1), "verified data space num dims(1)"); + space_ndims = H5Sget_simple_extent_ndims(space_id); + VRFY((space_ndims == 1), "verified data space num dims(1)"); - space_ndims = H5Sget_simple_extent_dims(space_id, dims, NULL); - VRFY((space_ndims == 1), "verified data space num dims(2)"); - VRFY((dims[0] == (hsize_t)mpi_size), "verified data space dims"); + space_ndims = H5Sget_simple_extent_dims(space_id, dims, NULL); + VRFY((space_ndims == 1), "verified data space num dims(2)"); + VRFY((dims[0] == (hsize_t)mpi_size), "verified data space dims"); - vector_ptr = (int *)HDmalloc((size_t)(mpi_size) * sizeof(int)); + vector_ptr = (int *)HDmalloc((size_t)(mpi_size) * sizeof(int)); VRFY((vector_ptr != NULL), "allocated in memory rep of vector"); - err = H5Dread(dset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, - H5P_DEFAULT, (void *)vector_ptr); + err = H5Dread(dset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, (void *)vector_ptr); VRFY((err >= 0), "read received vector."); - vector_ok = TRUE; - for(i = 0; i < mpi_size; i++) - if(vector_ptr[i] != i) + vector_ok = TRUE; + for (i = 0; i < mpi_size; i++) + if (vector_ptr[i] != i) vector_ok = FALSE; VRFY((vector_ok), "verified received vector."); - + HDfree(vector_ptr); vector_ptr = NULL; - /* 7) closes the core file and exit. */ + /* 7) closes the core file and exit. */ err = H5Sclose(space_id); - VRFY((err >= 0), "closed data space."); + VRFY((err >= 0), "closed data space."); - err = H5Dclose(dset_id); - VRFY((err >= 0), "closed data set."); + err = H5Dclose(dset_id); + VRFY((err >= 0), "closed data set."); - err = H5Fclose(file_id); - VRFY((err >= 0), "closed core file(1)."); + err = H5Fclose(file_id); + VRFY((err >= 0), "closed core file(1)."); - err = H5Pclose(fapl_id); - VRFY((err >= 0), "closed fapl(1)."); + err = H5Pclose(fapl_id); + VRFY((err >= 0), "closed fapl(1)."); HDfree(image_ptr); image_ptr = NULL; image_len = 0; - } else { + } + else { /* 1) Await receipt of file image from process (i - 1). */ - mpi_result = MPI_Recv((void *)(&image_len), (int)sizeof(ssize_t), - MPI_BYTE, mpi_rank - 1, 0, MPI_COMM_WORLD, - &rcvstat); - VRFY((mpi_result == MPI_SUCCESS), \ - "received image size from process mpi_rank-1"); + mpi_result = MPI_Recv((void *)(&image_len), (int)sizeof(ssize_t), MPI_BYTE, mpi_rank - 1, 0, + MPI_COMM_WORLD, &rcvstat); + VRFY((mpi_result == MPI_SUCCESS), "received image size from process mpi_rank-1"); image_ptr = (void *)HDmalloc((size_t)image_len); VRFY(image_ptr != NULL, "allocated file image receive buffer."); - mpi_result = MPI_Recv((void *)image_ptr, (int)image_len, - MPI_BYTE, mpi_rank - 1, 0, MPI_COMM_WORLD, - &rcvstat); - VRFY((mpi_result == MPI_SUCCESS), \ - "received file image from process mpi_rank-1"); - - /* 2) Open the image with the core file driver, verify that it - * contains a vector v of length, and that v[j] = j for - * 0 <= j < i, and that v[j] == -1 for i <= j < n - */ - fapl_id = H5Pcreate(H5P_FILE_ACCESS); + mpi_result = + MPI_Recv((void *)image_ptr, (int)image_len, MPI_BYTE, mpi_rank - 1, 0, MPI_COMM_WORLD, &rcvstat); + VRFY((mpi_result == MPI_SUCCESS), "received file image from process mpi_rank-1"); + + /* 2) Open the image with the core file driver, verify that it + * contains a vector v of length, and that v[j] = j for + * 0 <= j < i, and that v[j] == -1 for i <= j < n + */ + fapl_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((fapl_id >= 0), "creating fapl"); - err = H5Pset_fapl_core(fapl_id, (size_t)(64 * 1024), FALSE); + err = H5Pset_fapl_core(fapl_id, (size_t)(64 * 1024), FALSE); VRFY((err >= 0), "setting core file driver in fapl."); - err = H5Pset_file_image(fapl_id, image_ptr, (size_t)image_len); + err = H5Pset_file_image(fapl_id, image_ptr, (size_t)image_len); VRFY((err >= 0), "set file image in fapl."); file_id = H5Fopen(file_name, H5F_ACC_RDWR, fapl_id); - H5Eprint2(H5P_DEFAULT, stderr); + H5Eprint2(H5P_DEFAULT, stderr); VRFY((file_id >= 0), "opened received file image file"); - dset_id = H5Dopen2(file_id, "v", H5P_DEFAULT); + dset_id = H5Dopen2(file_id, "v", H5P_DEFAULT); VRFY((dset_id >= 0), "opened data set"); - dset_type_id = H5Dget_type(dset_id); + dset_type_id = H5Dget_type(dset_id); VRFY((dset_type_id >= 0), "obtained data set type"); - tri_result = H5Tequal(dset_type_id, H5T_NATIVE_INT); + tri_result = H5Tequal(dset_type_id, H5T_NATIVE_INT); VRFY((tri_result == TRUE), "verified data set type"); - space_id = H5Dget_space(dset_id); + space_id = H5Dget_space(dset_id); VRFY((space_id >= 0), "opened data space"); - space_ndims = H5Sget_simple_extent_ndims(space_id); - VRFY((space_ndims == 1), "verified data space num dims(1)"); + space_ndims = H5Sget_simple_extent_ndims(space_id); + VRFY((space_ndims == 1), "verified data space num dims(1)"); - space_ndims = H5Sget_simple_extent_dims(space_id, dims, NULL); - VRFY((space_ndims == 1), "verified data space num dims(2)"); - VRFY((dims[0] == (hsize_t)mpi_size), "verified data space dims"); + space_ndims = H5Sget_simple_extent_dims(space_id, dims, NULL); + VRFY((space_ndims == 1), "verified data space num dims(2)"); + VRFY((dims[0] == (hsize_t)mpi_size), "verified data space dims"); - vector_ptr = (int *)HDmalloc((size_t)(mpi_size) * sizeof(int)); + vector_ptr = (int *)HDmalloc((size_t)(mpi_size) * sizeof(int)); VRFY((vector_ptr != NULL), "allocated in memory rep of vector"); - err = H5Dread(dset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, - H5P_DEFAULT, (void *)vector_ptr); + err = H5Dread(dset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, (void *)vector_ptr); VRFY((err >= 0), "read received vector."); - vector_ok = TRUE; - for(i = 0; i < mpi_size; i++){ - if(i < mpi_rank) { - if(vector_ptr[i] != i) + vector_ok = TRUE; + for (i = 0; i < mpi_size; i++) { + if (i < mpi_rank) { + if (vector_ptr[i] != i) vector_ok = FALSE; - } else { - if(vector_ptr[i] != -1) + } + else { + if (vector_ptr[i] != -1) vector_ok = FALSE; - } + } } VRFY((vector_ok), "verified received vector."); - - /* 3) Set v[i] = i in the core file. */ + /* 3) Set v[i] = i in the core file. */ - vector_ptr[mpi_rank] = mpi_rank; + vector_ptr[mpi_rank] = mpi_rank; - err = H5Dwrite(dset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, - H5P_DEFAULT, (void *)vector_ptr); + err = H5Dwrite(dset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, (void *)vector_ptr); VRFY((err >= 0), "wrote modified data to vector."); HDfree(vector_ptr); vector_ptr = NULL; - - /* 4) Flush the core file and send it to process (mpi_rank + 1) % n. */ + /* 4) Flush the core file and send it to process (mpi_rank + 1) % n. */ - err = H5Fflush(file_id, H5F_SCOPE_GLOBAL); + err = H5Fflush(file_id, H5F_SCOPE_GLOBAL); VRFY((err >= 0), "flushed core file."); image_len = H5Fget_file_image(file_id, NULL, (size_t)0); @@ -359,38 +339,33 @@ file_image_daisy_chain_test(void) bytes_read = H5Fget_file_image(file_id, image_ptr, (size_t)image_len); VRFY(bytes_read == image_len, "wrote file into image buffer"); - mpi_result = MPI_Ssend((void *)(&image_len), (int)sizeof(ssize_t), - MPI_BYTE, (mpi_rank + 1) % mpi_size, 0, - MPI_COMM_WORLD); - VRFY((mpi_result == MPI_SUCCESS), \ - "sent image size to process (mpi_rank + 1) % mpi_size"); + mpi_result = MPI_Ssend((void *)(&image_len), (int)sizeof(ssize_t), MPI_BYTE, + (mpi_rank + 1) % mpi_size, 0, MPI_COMM_WORLD); + VRFY((mpi_result == MPI_SUCCESS), "sent image size to process (mpi_rank + 1) % mpi_size"); - mpi_result = MPI_Ssend((void *)image_ptr, (int)image_len, - MPI_BYTE, (mpi_rank + 1) % mpi_size, 0, + mpi_result = MPI_Ssend((void *)image_ptr, (int)image_len, MPI_BYTE, (mpi_rank + 1) % mpi_size, 0, MPI_COMM_WORLD); - VRFY((mpi_result == MPI_SUCCESS), \ - "sent image to process (mpi_rank + 1) % mpi_size"); + VRFY((mpi_result == MPI_SUCCESS), "sent image to process (mpi_rank + 1) % mpi_size"); HDfree(image_ptr); image_ptr = NULL; image_len = 0; - - /* 5) close the core file and exit. */ + + /* 5) close the core file and exit. */ err = H5Sclose(space_id); - VRFY((err >= 0), "closed data space."); + VRFY((err >= 0), "closed data space."); - err = H5Dclose(dset_id); - VRFY((err >= 0), "closed data set."); + err = H5Dclose(dset_id); + VRFY((err >= 0), "closed data set."); - err = H5Fclose(file_id); - VRFY((err >= 0), "closed core file(1)."); + err = H5Fclose(file_id); + VRFY((err >= 0), "closed core file(1)."); - err = H5Pclose(fapl_id); - VRFY((err >= 0), "closed fapl(1)."); + err = H5Pclose(fapl_id); + VRFY((err >= 0), "closed fapl(1)."); } return; } /* file_image_daisy_chain_test() */ - diff --git a/testpar/t_filter_read.c b/testpar/t_filter_read.c index 28baed5..5c0d10f 100644 --- a/testpar/t_filter_read.c +++ b/testpar/t_filter_read.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -19,24 +19,22 @@ * Date: 2007/05/15 */ - #include "testphdf5.h" #ifdef H5_HAVE_SZLIB_H -# include "szlib.h" +#include "szlib.h" #endif static int mpi_size, mpi_rank; /* Chunk sizes */ -#define CHUNK_DIM1 7 -#define CHUNK_DIM2 27 +#define CHUNK_DIM1 7 +#define CHUNK_DIM2 27 /* Sizes of the vertical hyperslabs. Total dataset size is {HS_DIM1, HS_DIM2 * mpi_size } */ -#define HS_DIM1 200 -#define HS_DIM2 100 - +#define HS_DIM1 200 +#define HS_DIM2 100 /*------------------------------------------------------------------------- * Function: filter_read_internal @@ -51,80 +49,79 @@ static int mpi_size, mpi_rank; *------------------------------------------------------------------------- */ static void -filter_read_internal(const char *filename, hid_t dcpl, - hsize_t *dset_size) +filter_read_internal(const char *filename, hid_t dcpl, hsize_t *dset_size) { - hid_t file, dataset; /* HDF5 IDs */ - hid_t access_plist; /* Access property list ID */ - hid_t sid, memspace; /* Dataspace IDs */ - hsize_t size[2]; /* Dataspace dimensions */ - hsize_t hs_offset[2]; /* Hyperslab offset */ - hsize_t hs_size[2]; /* Hyperslab size */ - size_t i, j; /* Local index variables */ - char name[32] = "dataset"; - herr_t hrc; /* Error status */ - int *points = NULL; /* Writing buffer for entire dataset */ - int *check = NULL; /* Reading buffer for selected hyperslab */ + hid_t file, dataset; /* HDF5 IDs */ + hid_t access_plist; /* Access property list ID */ + hid_t sid, memspace; /* Dataspace IDs */ + hsize_t size[2]; /* Dataspace dimensions */ + hsize_t hs_offset[2]; /* Hyperslab offset */ + hsize_t hs_size[2]; /* Hyperslab size */ + size_t i, j; /* Local index variables */ + char name[32] = "dataset"; + herr_t hrc; /* Error status */ + int * points = NULL; /* Writing buffer for entire dataset */ + int * check = NULL; /* Reading buffer for selected hyperslab */ /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* set sizes for dataset and hyperslabs */ hs_size[0] = size[0] = HS_DIM1; - hs_size[1] = HS_DIM2; + hs_size[1] = HS_DIM2; - size[1] = hs_size[1] * mpi_size; + size[1] = hs_size[1] * (hsize_t)mpi_size; hs_offset[0] = 0; - hs_offset[1] = hs_size[1] * mpi_rank; + hs_offset[1] = hs_size[1] * (hsize_t)mpi_rank; /* Create the data space */ sid = H5Screate_simple(2, size, NULL); - VRFY(sid>=0, "H5Screate_simple"); + VRFY(sid >= 0, "H5Screate_simple"); /* Create buffers */ points = (int *)HDmalloc(size[0] * size[1] * sizeof(int)); - VRFY(points!=NULL, "HDmalloc"); + VRFY(points != NULL, "HDmalloc"); check = (int *)HDmalloc(hs_size[0] * hs_size[1] * sizeof(int)); - VRFY(check!=NULL, "HDmalloc"); + VRFY(check != NULL, "HDmalloc"); /* Initialize writing buffer with random data */ - for(i = 0; i < size[0]; i++) - for(j = 0; j < size[1]; j++) - points[i * size[1]+j] = (int)(i+j+7); + for (i = 0; i < size[0]; i++) + for (j = 0; j < size[1]; j++) + points[i * size[1] + j] = (int)(i + j + 7); VRFY(H5Pall_filters_avail(dcpl), "Incorrect filter availability"); /* Serial write phase */ - if(MAINPROCESS) { + if (MAINPROCESS) { file = H5Fcreate(h5_rmprefix(filename), H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); - VRFY(file>=0, "H5Fcreate"); + VRFY(file >= 0, "H5Fcreate"); /* Create the dataset */ dataset = H5Dcreate2(file, name, H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); - VRFY(dataset>=0, "H5Dcreate2"); + VRFY(dataset >= 0, "H5Dcreate2"); hrc = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, points); - VRFY(hrc>=0, "H5Dwrite"); + VRFY(hrc >= 0, "H5Dwrite"); *dset_size = H5Dget_storage_size(dataset); - VRFY(*dset_size>0, "H5Dget_storage_size"); + VRFY(*dset_size > 0, "H5Dget_storage_size"); - hrc = H5Dclose (dataset); - VRFY(hrc>=0, "H5Dclose"); + hrc = H5Dclose(dataset); + VRFY(hrc >= 0, "H5Dclose"); - hrc = H5Fclose (file); - VRFY(hrc>=0, "H5Fclose"); + hrc = H5Fclose(file); + VRFY(hrc >= 0, "H5Fclose"); } MPI_Barrier(MPI_COMM_WORLD); /* Parallel read phase */ /* Set up MPIO file access property lists */ - access_plist = H5Pcreate(H5P_FILE_ACCESS); + access_plist = H5Pcreate(H5P_FILE_ACCESS); VRFY((access_plist >= 0), "H5Pcreate"); hrc = H5Pset_fapl_mpio(access_plist, MPI_COMM_WORLD, MPI_INFO_NULL); @@ -138,51 +135,48 @@ filter_read_internal(const char *filename, hid_t dcpl, VRFY((dataset >= 0), "H5Dopen2"); hrc = H5Sselect_hyperslab(sid, H5S_SELECT_SET, hs_offset, NULL, hs_size, NULL); - VRFY(hrc>=0, "H5Sselect_hyperslab"); + VRFY(hrc >= 0, "H5Sselect_hyperslab"); memspace = H5Screate_simple(2, hs_size, NULL); - VRFY(memspace>=0, "H5Screate_simple"); + VRFY(memspace >= 0, "H5Screate_simple"); - hrc = H5Dread (dataset, H5T_NATIVE_INT, memspace, sid, H5P_DEFAULT, check); - VRFY(hrc>=0, "H5Dread"); + hrc = H5Dread(dataset, H5T_NATIVE_INT, memspace, sid, H5P_DEFAULT, check); + VRFY(hrc >= 0, "H5Dread"); /* Check that the values read are the same as the values written */ - for (i=0; i<hs_size[0]; i++) { - for (j=0; j<hs_size[1]; j++) { - if(points[i*size[1]+(size_t)hs_offset[1]+j] != - check[i*hs_size[1]+j]) { - HDfprintf(stderr," Read different values than written.\n"); - HDfprintf(stderr," At index %lu,%lu\n", - (unsigned long)(i), - (unsigned long)(hs_offset[1]+j)); - HDfprintf(stderr," At original: %d\n", - (int)points[i*size[1]+(size_t)hs_offset[1]+j]); - HDfprintf(stderr," At returned: %d\n", - (int)check[i*hs_size[1]+j]); - VRFY(FALSE, ""); + for (i = 0; i < hs_size[0]; i++) { + for (j = 0; j < hs_size[1]; j++) { + if (points[i * size[1] + (size_t)hs_offset[1] + j] != check[i * hs_size[1] + j]) { + HDfprintf(stderr, " Read different values than written.\n"); + HDfprintf(stderr, " At index %lu,%lu\n", (unsigned long)(i), + (unsigned long)(hs_offset[1] + j)); + HDfprintf(stderr, " At original: %d\n", + (int)points[i * size[1] + (size_t)hs_offset[1] + j]); + HDfprintf(stderr, " At returned: %d\n", (int)check[i * hs_size[1] + j]); + VRFY(FALSE, ""); + } } } - } /* Get the storage size of the dataset */ - *dset_size=H5Dget_storage_size(dataset); - VRFY(*dset_size!=0, "H5Dget_storage_size"); + *dset_size = H5Dget_storage_size(dataset); + VRFY(*dset_size != 0, "H5Dget_storage_size"); /* Clean up objects used for this test */ - hrc = H5Dclose (dataset); - VRFY(hrc>=0, "H5Dclose"); + hrc = H5Dclose(dataset); + VRFY(hrc >= 0, "H5Dclose"); - hrc = H5Sclose (sid); - VRFY(hrc>=0, "H5Sclose"); + hrc = H5Sclose(sid); + VRFY(hrc >= 0, "H5Sclose"); - hrc = H5Sclose (memspace); - VRFY(hrc>=0, "H5Sclose"); + hrc = H5Sclose(memspace); + VRFY(hrc >= 0, "H5Sclose"); - hrc = H5Pclose (access_plist); - VRFY(hrc>=0, "H5Pclose"); + hrc = H5Pclose(access_plist); + VRFY(hrc >= 0, "H5Pclose"); - hrc = H5Fclose (file); - VRFY(hrc>=0, "H5Fclose"); + hrc = H5Fclose(file); + VRFY(hrc >= 0, "H5Fclose"); HDfree(points); HDfree(check); @@ -190,7 +184,6 @@ filter_read_internal(const char *filename, hid_t dcpl, MPI_Barrier(MPI_COMM_WORLD); } - /*------------------------------------------------------------------------- * Function: test_filter_read * @@ -208,34 +201,36 @@ filter_read_internal(const char *filename, hid_t dcpl, void test_filter_read(void) { - hid_t dc; /* HDF5 IDs */ - const hsize_t chunk_size[2] = {CHUNK_DIM1, CHUNK_DIM2}; /* Chunk dimensions */ - hsize_t null_size; /* Size of dataset without filters */ - unsigned chunk_opts; /* Chunk options */ - unsigned disable_partial_chunk_filters; /* Whether filters are disabled on partial chunks */ - herr_t hrc; - const char *filename; - hsize_t fletcher32_size; /* Size of dataset with Fletcher32 checksum */ + hid_t dc; /* HDF5 IDs */ + const hsize_t chunk_size[2] = {CHUNK_DIM1, CHUNK_DIM2}; /* Chunk dimensions */ + hsize_t null_size; /* Size of dataset without filters */ + unsigned chunk_opts; /* Chunk options */ + unsigned disable_partial_chunk_filters; /* Whether filters are disabled on partial chunks */ + herr_t hrc; + const char * filename; +#ifdef H5_HAVE_FILTER_FLETCHER32 + hsize_t fletcher32_size; /* Size of dataset with Fletcher32 checksum */ +#endif #ifdef H5_HAVE_FILTER_DEFLATE - hsize_t deflate_size; /* Size of dataset with deflate filter */ -#endif /* H5_HAVE_FILTER_DEFLATE */ + hsize_t deflate_size; /* Size of dataset with deflate filter */ +#endif /* H5_HAVE_FILTER_DEFLATE */ #ifdef H5_HAVE_FILTER_SZIP - hsize_t szip_size; /* Size of dataset with szip filter */ - unsigned szip_options_mask=H5_SZIP_NN_OPTION_MASK; - unsigned szip_pixels_per_block=4; + hsize_t szip_size; /* Size of dataset with szip filter */ + unsigned szip_options_mask = H5_SZIP_NN_OPTION_MASK; + unsigned szip_pixels_per_block = 4; #endif /* H5_HAVE_FILTER_SZIP */ - hsize_t shuffle_size; /* Size of dataset with shuffle filter */ + hsize_t shuffle_size; /* Size of dataset with shuffle filter */ -#if(defined H5_HAVE_FILTER_DEFLATE || defined H5_HAVE_FILTER_SZIP) - hsize_t combo_size; /* Size of dataset with multiple filters */ -#endif /* H5_HAVE_FILTER_DEFLATE || H5_HAVE_FILTER_SZIP */ +#if (defined H5_HAVE_FILTER_DEFLATE || defined H5_HAVE_FILTER_SZIP) + hsize_t combo_size; /* Size of dataset with multiple filters */ +#endif /* H5_HAVE_FILTER_DEFLATE || H5_HAVE_FILTER_SZIP */ filename = GetTestParameters(); - if(VERBOSE_MED) + if (VERBOSE_MED) HDprintf("Parallel reading of dataset written with filters %s\n", filename); /*---------------------------------------------------------- @@ -243,116 +238,115 @@ test_filter_read(void) *---------------------------------------------------------- */ dc = H5Pcreate(H5P_DATASET_CREATE); - VRFY(dc>=0,"H5Pcreate"); + VRFY(dc >= 0, "H5Pcreate"); - hrc = H5Pset_chunk (dc, 2, chunk_size); - VRFY(hrc>=0,"H5Pset_chunk"); + hrc = H5Pset_chunk(dc, 2, chunk_size); + VRFY(hrc >= 0, "H5Pset_chunk"); - filter_read_internal(filename,dc,&null_size); + filter_read_internal(filename, dc, &null_size); /* Clean up objects used for this test */ - hrc = H5Pclose (dc); - VRFY(hrc>=0,"H5Pclose"); + hrc = H5Pclose(dc); + VRFY(hrc >= 0, "H5Pclose"); /* Run steps 1-3 both with and without filters disabled on partial chunks */ - for(disable_partial_chunk_filters = 0; disable_partial_chunk_filters <= 1; - disable_partial_chunk_filters++) { + for (disable_partial_chunk_filters = 0; disable_partial_chunk_filters <= 1; + disable_partial_chunk_filters++) { /* Set chunk options appropriately */ dc = H5Pcreate(H5P_DATASET_CREATE); - VRFY(dc>=0,"H5Pcreate"); + VRFY(dc >= 0, "H5Pcreate"); - hrc = H5Pset_chunk (dc, 2, chunk_size); - VRFY(hrc>=0,"H5Pset_filter"); + hrc = H5Pset_chunk(dc, 2, chunk_size); + VRFY(hrc >= 0, "H5Pset_filter"); hrc = H5Pget_chunk_opts(dc, &chunk_opts); - VRFY(hrc>=0,"H5Pget_chunk_opts"); + VRFY(hrc >= 0, "H5Pget_chunk_opts"); - if(disable_partial_chunk_filters) + if (disable_partial_chunk_filters) chunk_opts |= H5D_CHUNK_DONT_FILTER_PARTIAL_CHUNKS; - hrc = H5Pclose (dc); - VRFY(hrc>=0,"H5Pclose"); + hrc = H5Pclose(dc); + VRFY(hrc >= 0, "H5Pclose"); /*---------------------------------------------------------- - * STEP 1: Test Fletcher32 Checksum by itself. - *---------------------------------------------------------- - */ + * STEP 1: Test Fletcher32 Checksum by itself. + *---------------------------------------------------------- + */ #ifdef H5_HAVE_FILTER_FLETCHER32 dc = H5Pcreate(H5P_DATASET_CREATE); - VRFY(dc>=0,"H5Pset_filter"); + VRFY(dc >= 0, "H5Pset_filter"); - hrc = H5Pset_chunk (dc, 2, chunk_size); - VRFY(hrc>=0,"H5Pset_filter"); + hrc = H5Pset_chunk(dc, 2, chunk_size); + VRFY(hrc >= 0, "H5Pset_filter"); - hrc = H5Pset_chunk_opts (dc, chunk_opts); - VRFY(hrc>=0,"H5Pset_chunk_opts"); + hrc = H5Pset_chunk_opts(dc, chunk_opts); + VRFY(hrc >= 0, "H5Pset_chunk_opts"); - hrc = H5Pset_filter (dc,H5Z_FILTER_FLETCHER32,0,0,NULL); - VRFY(hrc>=0,"H5Pset_filter"); + hrc = H5Pset_filter(dc, H5Z_FILTER_FLETCHER32, 0, 0, NULL); + VRFY(hrc >= 0, "H5Pset_filter"); - filter_read_internal(filename,dc,&fletcher32_size); - VRFY(fletcher32_size > null_size,"Size after checksumming is incorrect."); + filter_read_internal(filename, dc, &fletcher32_size); + VRFY(fletcher32_size > null_size, "Size after checksumming is incorrect."); /* Clean up objects used for this test */ - hrc = H5Pclose (dc); - VRFY(hrc>=0, "H5Pclose"); + hrc = H5Pclose(dc); + VRFY(hrc >= 0, "H5Pclose"); #endif /* H5_HAVE_FILTER_FLETCHER32 */ /*---------------------------------------------------------- - * STEP 2: Test deflation by itself. - *---------------------------------------------------------- - */ + * STEP 2: Test deflation by itself. + *---------------------------------------------------------- + */ #ifdef H5_HAVE_FILTER_DEFLATE dc = H5Pcreate(H5P_DATASET_CREATE); - VRFY(dc>=0, "H5Pcreate"); + VRFY(dc >= 0, "H5Pcreate"); - hrc = H5Pset_chunk (dc, 2, chunk_size); - VRFY(hrc>=0, "H5Pset_chunk"); + hrc = H5Pset_chunk(dc, 2, chunk_size); + VRFY(hrc >= 0, "H5Pset_chunk"); - hrc = H5Pset_chunk_opts (dc, chunk_opts); - VRFY(hrc>=0,"H5Pset_chunk_opts"); + hrc = H5Pset_chunk_opts(dc, chunk_opts); + VRFY(hrc >= 0, "H5Pset_chunk_opts"); - hrc = H5Pset_deflate (dc, 6); - VRFY(hrc>=0, "H5Pset_deflate"); + hrc = H5Pset_deflate(dc, 6); + VRFY(hrc >= 0, "H5Pset_deflate"); - filter_read_internal(filename,dc,&deflate_size); + filter_read_internal(filename, dc, &deflate_size); /* Clean up objects used for this test */ - hrc = H5Pclose (dc); - VRFY(hrc>=0, "H5Pclose"); + hrc = H5Pclose(dc); + VRFY(hrc >= 0, "H5Pclose"); #endif /* H5_HAVE_FILTER_DEFLATE */ /*---------------------------------------------------------- - * STEP 3: Test szip compression by itself. - *---------------------------------------------------------- - */ + * STEP 3: Test szip compression by itself. + *---------------------------------------------------------- + */ #ifdef H5_HAVE_FILTER_SZIP - if(h5_szip_can_encode() == 1) { + if (h5_szip_can_encode() == 1) { dc = H5Pcreate(H5P_DATASET_CREATE); - VRFY(dc>=0, "H5Pcreate"); + VRFY(dc >= 0, "H5Pcreate"); - hrc = H5Pset_chunk (dc, 2, chunk_size); - VRFY(hrc>=0, "H5Pset_chunk"); + hrc = H5Pset_chunk(dc, 2, chunk_size); + VRFY(hrc >= 0, "H5Pset_chunk"); - hrc = H5Pset_chunk_opts (dc, chunk_opts); - VRFY(hrc>=0,"H5Pset_chunk_opts"); + hrc = H5Pset_chunk_opts(dc, chunk_opts); + VRFY(hrc >= 0, "H5Pset_chunk_opts"); hrc = H5Pset_szip(dc, szip_options_mask, szip_pixels_per_block); - VRFY(hrc>=0, "H5Pset_szip"); + VRFY(hrc >= 0, "H5Pset_szip"); - filter_read_internal(filename,dc,&szip_size); + filter_read_internal(filename, dc, &szip_size); /* Clean up objects used for this test */ - hrc = H5Pclose (dc); - VRFY(hrc>=0, "H5Pclose"); + hrc = H5Pclose(dc); + VRFY(hrc >= 0, "H5Pclose"); } #endif /* H5_HAVE_FILTER_SZIP */ - } /* end for */ - + } /* end for */ /*---------------------------------------------------------- * STEP 4: Test shuffling by itself. @@ -360,21 +354,20 @@ test_filter_read(void) */ dc = H5Pcreate(H5P_DATASET_CREATE); - VRFY(dc>=0, "H5Pcreate"); + VRFY(dc >= 0, "H5Pcreate"); - hrc = H5Pset_chunk (dc, 2, chunk_size); - VRFY(hrc>=0, "H5Pset_chunk"); + hrc = H5Pset_chunk(dc, 2, chunk_size); + VRFY(hrc >= 0, "H5Pset_chunk"); - hrc = H5Pset_shuffle (dc); - VRFY(hrc>=0, "H5Pset_shuffle"); + hrc = H5Pset_shuffle(dc); + VRFY(hrc >= 0, "H5Pset_shuffle"); - filter_read_internal(filename,dc,&shuffle_size); - VRFY(shuffle_size==null_size,"Shuffled size not the same as uncompressed size."); + filter_read_internal(filename, dc, &shuffle_size); + VRFY(shuffle_size == null_size, "Shuffled size not the same as uncompressed size."); /* Clean up objects used for this test */ - hrc = H5Pclose (dc); - VRFY(hrc>=0, "H5Pclose"); - + hrc = H5Pclose(dc); + VRFY(hrc >= 0, "H5Pclose"); /*---------------------------------------------------------- * STEP 5: Test shuffle + deflate + checksum in any order. @@ -383,47 +376,47 @@ test_filter_read(void) #ifdef H5_HAVE_FILTER_DEFLATE /* Testing shuffle+deflate+checksum filters (checksum first) */ dc = H5Pcreate(H5P_DATASET_CREATE); - VRFY(dc>=0, "H5Pcreate"); + VRFY(dc >= 0, "H5Pcreate"); - hrc = H5Pset_chunk (dc, 2, chunk_size); - VRFY(hrc>=0, "H5Pset_chunk"); + hrc = H5Pset_chunk(dc, 2, chunk_size); + VRFY(hrc >= 0, "H5Pset_chunk"); - hrc = H5Pset_fletcher32 (dc); - VRFY(hrc>=0, "H5Pset_fletcher32"); + hrc = H5Pset_fletcher32(dc); + VRFY(hrc >= 0, "H5Pset_fletcher32"); - hrc = H5Pset_shuffle (dc); - VRFY(hrc>=0, "H5Pset_shuffle"); + hrc = H5Pset_shuffle(dc); + VRFY(hrc >= 0, "H5Pset_shuffle"); - hrc = H5Pset_deflate (dc, 6); - VRFY(hrc>=0, "H5Pset_deflate"); + hrc = H5Pset_deflate(dc, 6); + VRFY(hrc >= 0, "H5Pset_deflate"); - filter_read_internal(filename,dc,&combo_size); + filter_read_internal(filename, dc, &combo_size); /* Clean up objects used for this test */ - hrc = H5Pclose (dc); - VRFY(hrc>=0, "H5Pclose"); + hrc = H5Pclose(dc); + VRFY(hrc >= 0, "H5Pclose"); /* Testing shuffle+deflate+checksum filters (checksum last) */ dc = H5Pcreate(H5P_DATASET_CREATE); - VRFY(dc>=0, "H5Pcreate"); + VRFY(dc >= 0, "H5Pcreate"); - hrc = H5Pset_chunk (dc, 2, chunk_size); - VRFY(hrc>=0, "H5Pset_chunk"); + hrc = H5Pset_chunk(dc, 2, chunk_size); + VRFY(hrc >= 0, "H5Pset_chunk"); - hrc = H5Pset_shuffle (dc); - VRFY(hrc>=0, "H5Pset_shuffle"); + hrc = H5Pset_shuffle(dc); + VRFY(hrc >= 0, "H5Pset_shuffle"); - hrc = H5Pset_deflate (dc, 6); - VRFY(hrc>=0, "H5Pset_deflate"); + hrc = H5Pset_deflate(dc, 6); + VRFY(hrc >= 0, "H5Pset_deflate"); - hrc = H5Pset_fletcher32 (dc); - VRFY(hrc>=0, "H5Pset_fletcher32"); + hrc = H5Pset_fletcher32(dc); + VRFY(hrc >= 0, "H5Pset_fletcher32"); - filter_read_internal(filename,dc,&combo_size); + filter_read_internal(filename, dc, &combo_size); /* Clean up objects used for this test */ - hrc = H5Pclose (dc); - VRFY(hrc>=0, "H5Pclose"); + hrc = H5Pclose(dc); + VRFY(hrc >= 0, "H5Pclose"); #endif /* H5_HAVE_FILTER_DEFLATE */ @@ -435,54 +428,53 @@ test_filter_read(void) /* Testing shuffle+szip(with encoder)+checksum filters(checksum first) */ dc = H5Pcreate(H5P_DATASET_CREATE); - VRFY(dc>=0, "H5Pcreate"); + VRFY(dc >= 0, "H5Pcreate"); - hrc = H5Pset_chunk (dc, 2, chunk_size); - VRFY(hrc>=0, "H5Pset_chunk"); + hrc = H5Pset_chunk(dc, 2, chunk_size); + VRFY(hrc >= 0, "H5Pset_chunk"); - hrc = H5Pset_fletcher32 (dc); - VRFY(hrc>=0, "H5Pset_fletcher32"); + hrc = H5Pset_fletcher32(dc); + VRFY(hrc >= 0, "H5Pset_fletcher32"); - hrc = H5Pset_shuffle (dc); - VRFY(hrc>=0, "H5Pset_shuffle"); + hrc = H5Pset_shuffle(dc); + VRFY(hrc >= 0, "H5Pset_shuffle"); /* Make sure encoding is enabled */ - if(h5_szip_can_encode() == 1) { - hrc = H5Pset_szip(dc, szip_options_mask, szip_pixels_per_block); - VRFY(hrc>=0, "H5Pset_szip"); + if (h5_szip_can_encode() == 1) { + hrc = H5Pset_szip(dc, szip_options_mask, szip_pixels_per_block); + VRFY(hrc >= 0, "H5Pset_szip"); - filter_read_internal(filename,dc,&combo_size); + filter_read_internal(filename, dc, &combo_size); } /* Clean up objects used for this test */ - hrc = H5Pclose (dc); - VRFY(hrc>=0, "H5Pclose"); + hrc = H5Pclose(dc); + VRFY(hrc >= 0, "H5Pclose"); /* Testing shuffle+szip(with encoder)+checksum filters(checksum last) */ /* Make sure encoding is enabled */ - if(h5_szip_can_encode() == 1) { - dc = H5Pcreate(H5P_DATASET_CREATE); - VRFY(dc>=0, "H5Pcreate"); + if (h5_szip_can_encode() == 1) { + dc = H5Pcreate(H5P_DATASET_CREATE); + VRFY(dc >= 0, "H5Pcreate"); - hrc = H5Pset_chunk (dc, 2, chunk_size); - VRFY(hrc>=0, "H5Pset_chunk"); + hrc = H5Pset_chunk(dc, 2, chunk_size); + VRFY(hrc >= 0, "H5Pset_chunk"); - hrc = H5Pset_shuffle (dc); - VRFY(hrc>=0, "H5Pset_shuffle"); + hrc = H5Pset_shuffle(dc); + VRFY(hrc >= 0, "H5Pset_shuffle"); - hrc = H5Pset_szip(dc, szip_options_mask, szip_pixels_per_block); - VRFY(hrc>=0, "H5Pset_szip"); + hrc = H5Pset_szip(dc, szip_options_mask, szip_pixels_per_block); + VRFY(hrc >= 0, "H5Pset_szip"); - hrc = H5Pset_fletcher32 (dc); - VRFY(hrc>=0, "H5Pset_fletcher32"); + hrc = H5Pset_fletcher32(dc); + VRFY(hrc >= 0, "H5Pset_fletcher32"); - filter_read_internal(filename,dc,&combo_size); + filter_read_internal(filename, dc, &combo_size); - /* Clean up objects used for this test */ - hrc = H5Pclose (dc); - VRFY(hrc>=0, "H5Pclose"); + /* Clean up objects used for this test */ + hrc = H5Pclose(dc); + VRFY(hrc >= 0, "H5Pclose"); } #endif /* H5_HAVE_FILTER_SZIP */ } - diff --git a/testpar/t_filters_parallel.c b/testpar/t_filters_parallel.c index 76f9276..8a55519 100644 --- a/testpar/t_filters_parallel.c +++ b/testpar/t_filters_parallel.c @@ -23,77 +23,142 @@ #include "t_filters_parallel.h" -const char *FILENAME[] = { - "t_filters_parallel", - NULL -}; -char filenames[1][256]; +const char *FILENAME[] = {"t_filters_parallel", NULL}; +char filenames[1][256]; + +static MPI_Comm comm = MPI_COMM_WORLD; +static MPI_Info info = MPI_INFO_NULL; +static int mpi_rank; +static int mpi_size; int nerrors = 0; -size_t cur_filter_idx = 0; -#define GZIP_INDEX 0 -#define FLETCHER32_INDEX 1 +/* Arrays of filter ID values and filter names (should match each other) */ +H5Z_filter_t filterIDs[] = { + H5Z_FILTER_DEFLATE, H5Z_FILTER_SHUFFLE, H5Z_FILTER_FLETCHER32, + H5Z_FILTER_SZIP, H5Z_FILTER_NBIT, H5Z_FILTER_SCALEOFFSET, +}; + +const char *filterNames[] = {"Deflate", "Shuffle", "Fletcher32", "SZIP", "Nbit", "ScaleOffset"}; + +/* Function pointer typedef for test functions */ +typedef void (*test_func)(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, hid_t dcpl_id, + hid_t dxpl_id); -#define ARRAY_SIZE(a) sizeof(a) / sizeof(a[0]) +/* Typedef for filter arguments for user-defined filters */ +typedef struct filter_options_t { + unsigned int flags; + size_t cd_nelmts; + const unsigned int cd_values[]; +} filter_options_t; /* - * Used to check if a filter is available before running a test. + * Enum for verify_space_alloc_status which specifies + * how many chunks have been written to in a dataset */ -#define CHECK_CUR_FILTER_AVAIL() \ -{ \ - htri_t filter_is_avail; \ - \ - if (cur_filter_idx == GZIP_INDEX) { \ - if ((filter_is_avail = H5Zfilter_avail(H5Z_FILTER_DEFLATE)) != TRUE) { \ - if (MAINPROCESS) { \ - HDputs(" - SKIPPED - Deflate filter not available"); \ - } \ - return; \ - } \ - } \ -} +typedef enum num_chunks_written_t { + DATASET_JUST_CREATED, + NO_CHUNKS_WRITTEN, + SOME_CHUNKS_WRITTEN, + ALL_CHUNKS_WRITTEN +} num_chunks_written_t; -static herr_t set_dcpl_filter(hid_t dcpl); +static herr_t set_dcpl_filter(hid_t dcpl_id, H5Z_filter_t filter_id, filter_options_t *filter_options); +static herr_t verify_space_alloc_status(hid_t dset_id, hid_t dcpl_id, num_chunks_written_t chunks_written); -#if MPI_VERSION >= 3 +#ifdef H5_HAVE_PARALLEL_FILTERED_WRITES /* Tests for writing data in parallel */ -static void test_write_one_chunk_filtered_dataset(void); -static void test_write_filtered_dataset_no_overlap(void); -static void test_write_filtered_dataset_overlap(void); -static void test_write_filtered_dataset_single_no_selection(void); -static void test_write_filtered_dataset_all_no_selection(void); -static void test_write_filtered_dataset_point_selection(void); -static void test_write_filtered_dataset_interleaved_write(void); -static void test_write_3d_filtered_dataset_no_overlap_separate_pages(void); -static void test_write_3d_filtered_dataset_no_overlap_same_pages(void); -static void test_write_3d_filtered_dataset_overlap(void); -static void test_write_cmpd_filtered_dataset_no_conversion_unshared(void); -static void test_write_cmpd_filtered_dataset_no_conversion_shared(void); -static void test_write_cmpd_filtered_dataset_type_conversion_unshared(void); -static void test_write_cmpd_filtered_dataset_type_conversion_shared(void); +static void test_write_one_chunk_filtered_dataset(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_write_filtered_dataset_no_overlap(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_write_filtered_dataset_no_overlap_partial(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_write_filtered_dataset_overlap(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_write_filtered_dataset_single_unlim_dim_no_overlap(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_write_filtered_dataset_single_unlim_dim_overlap(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_write_filtered_dataset_multi_unlim_dim_no_overlap(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_write_filtered_dataset_multi_unlim_dim_overlap(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_write_filtered_dataset_single_no_selection(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_write_filtered_dataset_all_no_selection(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_write_filtered_dataset_point_selection(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_write_filtered_dataset_interleaved_write(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_write_transformed_filtered_dataset_no_overlap(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_write_3d_filtered_dataset_no_overlap_separate_pages(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_write_3d_filtered_dataset_no_overlap_same_pages(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_write_3d_filtered_dataset_overlap(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_write_cmpd_filtered_dataset_no_conversion_unshared(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_write_cmpd_filtered_dataset_no_conversion_shared(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_write_cmpd_filtered_dataset_type_conversion_unshared(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_write_cmpd_filtered_dataset_type_conversion_shared(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); #endif /* Tests for reading data in parallel */ -static void test_read_one_chunk_filtered_dataset(void); -static void test_read_filtered_dataset_no_overlap(void); -static void test_read_filtered_dataset_overlap(void); -static void test_read_filtered_dataset_single_no_selection(void); -static void test_read_filtered_dataset_all_no_selection(void); -static void test_read_filtered_dataset_point_selection(void); -static void test_read_filtered_dataset_interleaved_read(void); -static void test_read_3d_filtered_dataset_no_overlap_separate_pages(void); -static void test_read_3d_filtered_dataset_no_overlap_same_pages(void); -static void test_read_3d_filtered_dataset_overlap(void); -static void test_read_cmpd_filtered_dataset_no_conversion_unshared(void); -static void test_read_cmpd_filtered_dataset_no_conversion_shared(void); -static void test_read_cmpd_filtered_dataset_type_conversion_unshared(void); -static void test_read_cmpd_filtered_dataset_type_conversion_shared(void); - -#if MPI_VERSION >= 3 -/* Other miscellaneous tests */ -static void test_shrinking_growing_chunks(void); -#endif +static void test_read_one_chunk_filtered_dataset(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_read_filtered_dataset_no_overlap(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_read_filtered_dataset_overlap(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_read_filtered_dataset_single_no_selection(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_read_filtered_dataset_all_no_selection(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_read_filtered_dataset_point_selection(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_read_filtered_dataset_interleaved_read(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_read_transformed_filtered_dataset_no_overlap(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_read_3d_filtered_dataset_no_overlap_separate_pages(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_read_3d_filtered_dataset_no_overlap_same_pages(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_read_3d_filtered_dataset_overlap(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id); +static void test_read_cmpd_filtered_dataset_no_conversion_unshared(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_read_cmpd_filtered_dataset_no_conversion_shared(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_read_cmpd_filtered_dataset_type_conversion_unshared(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_read_cmpd_filtered_dataset_type_conversion_shared(const char * parent_group, + H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); /* * Tests for attempting to round-trip the data going from @@ -104,25 +169,45 @@ static void test_shrinking_growing_chunks(void); * * written in parallel -> read serially */ -static void test_write_serial_read_parallel(void); -#if MPI_VERSION >= 3 -static void test_write_parallel_read_serial(void); -#endif +static void test_write_serial_read_parallel(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); -static MPI_Comm comm = MPI_COMM_WORLD; -static MPI_Info info = MPI_INFO_NULL; -static int mpi_rank; -static int mpi_size; +#ifdef H5_HAVE_PARALLEL_FILTERED_WRITES +static void test_write_parallel_read_serial(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); -static void (*tests[])(void) = { -#if MPI_VERSION >= 3 +/* Other miscellaneous tests */ +static void test_shrinking_growing_chunks(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_edge_chunks_no_overlap(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_edge_chunks_overlap(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_edge_chunks_partial_write(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_fill_values(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, hid_t dcpl_id, + hid_t dxpl_id); +static void test_fill_value_undefined(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +static void test_fill_time_never(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id); +#endif + +static test_func tests[] = { +#ifdef H5_HAVE_PARALLEL_FILTERED_WRITES test_write_one_chunk_filtered_dataset, test_write_filtered_dataset_no_overlap, + test_write_filtered_dataset_no_overlap_partial, test_write_filtered_dataset_overlap, + test_write_filtered_dataset_single_unlim_dim_no_overlap, + test_write_filtered_dataset_single_unlim_dim_overlap, + test_write_filtered_dataset_multi_unlim_dim_no_overlap, + test_write_filtered_dataset_multi_unlim_dim_overlap, test_write_filtered_dataset_single_no_selection, test_write_filtered_dataset_all_no_selection, test_write_filtered_dataset_point_selection, test_write_filtered_dataset_interleaved_write, + test_write_transformed_filtered_dataset_no_overlap, test_write_3d_filtered_dataset_no_overlap_separate_pages, test_write_3d_filtered_dataset_no_overlap_same_pages, test_write_3d_filtered_dataset_overlap, @@ -138,6 +223,7 @@ static void (*tests[])(void) = { test_read_filtered_dataset_all_no_selection, test_read_filtered_dataset_point_selection, test_read_filtered_dataset_interleaved_read, + test_read_transformed_filtered_dataset_no_overlap, test_read_3d_filtered_dataset_no_overlap_separate_pages, test_read_3d_filtered_dataset_no_overlap_same_pages, test_read_3d_filtered_dataset_overlap, @@ -146,33 +232,168 @@ static void (*tests[])(void) = { test_read_cmpd_filtered_dataset_type_conversion_unshared, test_read_cmpd_filtered_dataset_type_conversion_shared, test_write_serial_read_parallel, -#if MPI_VERSION >= 3 +#ifdef H5_HAVE_PARALLEL_FILTERED_WRITES test_write_parallel_read_serial, test_shrinking_growing_chunks, + test_edge_chunks_no_overlap, + test_edge_chunks_overlap, + test_edge_chunks_partial_write, + test_fill_values, + test_fill_value_undefined, + test_fill_time_never, #endif }; /* * Function to call the appropriate HDF5 filter-setting function - * depending on the currently set index. Used to re-run the tests + * depending on the given filter ID. Used to re-run the tests * with different filters to check that the data still comes back * correctly under a variety of circumstances, such as the * Fletcher32 checksum filter increasing the size of the chunk. */ static herr_t -set_dcpl_filter(hid_t dcpl) +set_dcpl_filter(hid_t dcpl_id, H5Z_filter_t filter_id, filter_options_t *filter_options) { - switch (cur_filter_idx) { - case GZIP_INDEX: - return H5Pset_deflate(dcpl, DEFAULT_DEFLATE_LEVEL); - case FLETCHER32_INDEX: - return H5Pset_fletcher32(dcpl); - default: - return H5Pset_deflate(dcpl, DEFAULT_DEFLATE_LEVEL); + switch (filter_id) { + case H5Z_FILTER_DEFLATE: + return H5Pset_deflate(dcpl_id, DEFAULT_DEFLATE_LEVEL); + case H5Z_FILTER_SHUFFLE: + return H5Pset_shuffle(dcpl_id); + case H5Z_FILTER_FLETCHER32: + return H5Pset_fletcher32(dcpl_id); + case H5Z_FILTER_SZIP: { + unsigned pixels_per_block = H5_SZIP_MAX_PIXELS_PER_BLOCK; + hsize_t chunk_dims[H5S_MAX_RANK] = {0}; + size_t i, chunk_nelemts; + + VRFY(H5Pget_chunk(dcpl_id, H5S_MAX_RANK, chunk_dims) >= 0, "H5Pget_chunk succeeded"); + + for (i = 0, chunk_nelemts = 1; i < H5S_MAX_RANK; i++) + if (chunk_dims[i] > 0) + chunk_nelemts *= chunk_dims[i]; + + if (chunk_nelemts < H5_SZIP_MAX_PIXELS_PER_BLOCK) { + /* + * Can't set SZIP for chunk of 1 data element. + * Pixels-per-block value must be both even + * and non-zero. + */ + if (chunk_nelemts == 1) + return SUCCEED; + + if ((chunk_nelemts % 2) == 0) + pixels_per_block = (unsigned)chunk_nelemts; + else + pixels_per_block = (unsigned)(chunk_nelemts - 1); + } + else + pixels_per_block = H5_SZIP_MAX_PIXELS_PER_BLOCK; + + return H5Pset_szip(dcpl_id, 0, pixels_per_block); + } + case H5Z_FILTER_NBIT: + return H5Pset_nbit(dcpl_id); + case H5Z_FILTER_SCALEOFFSET: + return H5Pset_scaleoffset(dcpl_id, H5Z_SO_INT, 0); + default: { + if (!filter_options) + return FAIL; + + return H5Pset_filter(dcpl_id, filter_id, filter_options->flags, filter_options->cd_nelmts, + filter_options->cd_values); + } } } -#if MPI_VERSION >= 3 +/* + * Function to verify the status of dataset storage space allocation + * based on the dataset's allocation time setting and how many chunks + * in the dataset have been written to. + */ +static herr_t +verify_space_alloc_status(hid_t dset_id, hid_t dcpl_id, num_chunks_written_t chunks_written) +{ + int nfilters; + herr_t ret_value = SUCCEED; + + VRFY(((nfilters = H5Pget_nfilters(dcpl_id)) >= 0), "H5Pget_nfilters succeeded"); + + /* + * Only verify space allocation status when there are filters + * in the dataset's filter pipeline. When filters aren't in the + * pipeline, the space allocation time and status can vary based + * on whether the file was created in parallel or serial mode. + */ + if (nfilters > 0) { + H5D_space_status_t space_status; + H5D_alloc_time_t alloc_time; + + VRFY((H5Pget_alloc_time(dcpl_id, &alloc_time) >= 0), "H5Pget_alloc_time succeeded"); + VRFY((H5Dget_space_status(dset_id, &space_status) >= 0), "H5Dget_space_status succeeded"); + + switch (alloc_time) { + case H5D_ALLOC_TIME_EARLY: + /* + * Early space allocation should always result in the + * full dataset storage space being allocated. + */ + VRFY(space_status == H5D_SPACE_STATUS_ALLOCATED, "verified space allocation status"); + break; + case H5D_ALLOC_TIME_LATE: + /* + * Late space allocation should always result in the + * full dataset storage space being allocated when + * the dataset gets written to. However, if the dataset + * is extended the dataset's space allocation status + * can become partly allocated until the dataset is + * written to again. + */ + if (chunks_written == SOME_CHUNKS_WRITTEN || chunks_written == ALL_CHUNKS_WRITTEN) + VRFY((space_status == H5D_SPACE_STATUS_ALLOCATED) || + (space_status == H5D_SPACE_STATUS_PART_ALLOCATED), + "verified space allocation status"); + else if (chunks_written == NO_CHUNKS_WRITTEN) + /* + * A special case where we wrote to a dataset that + * uses late space allocation, but the write was + * either a no-op (no selection in the dataset + * from any rank) or something caused the write to + * fail late in the process of performing the actual + * write. In either case, space should still have + * been allocated. + */ + VRFY(space_status == H5D_SPACE_STATUS_ALLOCATED, "verified space allocation status"); + else + VRFY(space_status == H5D_SPACE_STATUS_NOT_ALLOCATED, "verified space allocation status"); + break; + case H5D_ALLOC_TIME_DEFAULT: + case H5D_ALLOC_TIME_INCR: + /* + * Incremental space allocation should result in + * the dataset's storage space being incrementally + * allocated as chunks are written to. Once all chunks + * have been written to, the space allocation should be + * seen as fully allocated. + */ + if (chunks_written == SOME_CHUNKS_WRITTEN) + VRFY((space_status == H5D_SPACE_STATUS_PART_ALLOCATED), + "verified space allocation status"); + else if (chunks_written == ALL_CHUNKS_WRITTEN) + VRFY((space_status == H5D_SPACE_STATUS_ALLOCATED), "verified space allocation status"); + else + VRFY(space_status == H5D_SPACE_STATUS_NOT_ALLOCATED, "verified space allocation status"); + break; + default: + if (MAINPROCESS) + MESG("unknown space allocation time"); + MPI_Abort(MPI_COMM_WORLD, 1); + } + } + + return ret_value; +} + +#ifdef H5_HAVE_PARALLEL_FILTERED_WRITES /* * Tests parallel write of filtered data in the special * case where a dataset is composed of a single chunk. @@ -181,10 +402,11 @@ set_dcpl_filter(hid_t dcpl) * 02/01/2017 */ static void -test_write_one_chunk_filtered_dataset(void) +test_write_one_chunk_filtered_dataset(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *data = NULL; - C_DATATYPE *read_buf = NULL; + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_ONE_CHUNK_FILTERED_DATASET_DIMS]; hsize_t chunk_dims[WRITE_ONE_CHUNK_FILTERED_DATASET_DIMS]; @@ -194,34 +416,26 @@ test_write_one_chunk_filtered_dataset(void) hsize_t count[WRITE_ONE_CHUNK_FILTERED_DATASET_DIMS]; hsize_t block[WRITE_ONE_CHUNK_FILTERED_DATASET_DIMS]; size_t i, data_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing write to one-chunk filtered dataset"); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - CHECK_CUR_FILTER_AVAIL(); + if (MAINPROCESS) + HDputs("Testing write to one-chunk filtered dataset"); - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) WRITE_ONE_CHUNK_FILTERED_DATASET_NROWS; - dataset_dims[1] = (hsize_t) WRITE_ONE_CHUNK_FILTERED_DATASET_NCOLS; - chunk_dims[0] = (hsize_t) WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NROWS; - chunk_dims[1] = (hsize_t) WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS; - sel_dims[0] = (hsize_t) WRITE_ONE_CHUNK_FILTERED_DATASET_NROWS / (hsize_t) mpi_size; - sel_dims[1] = (hsize_t) WRITE_ONE_CHUNK_FILTERED_DATASET_NCOLS; + dataset_dims[0] = (hsize_t)WRITE_ONE_CHUNK_FILTERED_DATASET_NROWS; + dataset_dims[1] = (hsize_t)WRITE_ONE_CHUNK_FILTERED_DATASET_NCOLS; + chunk_dims[0] = (hsize_t)WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS; + sel_dims[0] = (hsize_t)WRITE_ONE_CHUNK_FILTERED_DATASET_NROWS / (hsize_t)mpi_size; + sel_dims[1] = (hsize_t)WRITE_ONE_CHUNK_FILTERED_DATASET_NCOLS; filespace = H5Screate_simple(WRITE_ONE_CHUNK_FILTERED_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); @@ -230,37 +444,40 @@ test_write_one_chunk_filtered_dataset(void) VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); - VRFY((H5Pset_chunk(plist_id, WRITE_ONE_CHUNK_FILTERED_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + VRFY((H5Pset_chunk(plist_id, WRITE_ONE_CHUNK_FILTERED_DATASET_DIMS, chunk_dims) >= 0), "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, WRITE_ONE_CHUNK_FILTERED_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_ONE_CHUNK_FILTERED_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ - count[0] = 1; - count[1] = 1; - stride[0] = (hsize_t) WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NROWS; - stride[1] = (hsize_t) WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS; - block[0] = sel_dims[0]; - block[1] = sel_dims[1]; - start[0] = ((hsize_t) mpi_rank * sel_dims[0]); - start[1] = 0; + count[0] = 1; + count[1] = 1; + stride[0] = (hsize_t)WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NROWS; + stride[1] = (hsize_t)WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS; + block[0] = sel_dims[0]; + block[1] = sel_dims[1]; + start[0] = ((hsize_t)mpi_rank * sel_dims[0]); + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } @@ -269,60 +486,61 @@ test_write_one_chunk_filtered_dataset(void) VRFY((filespace >= 0), "File dataspace retrieval succeeded"); VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); + "Hyperslab selection succeeded"); /* Fill data buffer */ - data_size = (hsize_t) WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NROWS - * (hsize_t) WRITE_ONE_CHUNK_FILTERED_DATASET_NCOLS * sizeof(*data); + data_size = (hsize_t)WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NROWS * + (hsize_t)WRITE_ONE_CHUNK_FILTERED_DATASET_NCOLS * sizeof(*data); correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - data = (C_DATATYPE *) HDcalloc(1, data_size); + data = (C_DATATYPE *)HDcalloc(1, data_size); VRFY((NULL != data), "HDcalloc succeeded"); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < data_size / sizeof(*data); i++) - data[i] = (C_DATATYPE) GEN_DATA(i); + data[i] = (C_DATATYPE)GEN_DATA(i); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = ((C_DATATYPE) i % (WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NROWS / mpi_size * WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS)) - + ((C_DATATYPE) i / (WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NROWS / mpi_size * WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS)); + correct_buf[i] = ((C_DATATYPE)i % (WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NROWS / mpi_size * + WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS)) + + ((C_DATATYPE)i / (WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NROWS / mpi_size * + WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS)); - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); - VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); - if (data) HDfree(data); + if (data) + HDfree(data); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); /* Verify the correct data was written */ - read_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_ONE_CHUNK_FILTERED_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, WRITE_ONE_CHUNK_FILTERED_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -338,10 +556,11 @@ test_write_one_chunk_filtered_dataset(void) * 02/01/2017 */ static void -test_write_filtered_dataset_no_overlap(void) +test_write_filtered_dataset_no_overlap(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *data = NULL; - C_DATATYPE *read_buf = NULL; + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_UNSHARED_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t chunk_dims[WRITE_UNSHARED_FILTERED_CHUNKS_DATASET_DIMS]; @@ -351,35 +570,26 @@ test_write_filtered_dataset_no_overlap(void) hsize_t count[WRITE_UNSHARED_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t block[WRITE_UNSHARED_FILTERED_CHUNKS_DATASET_DIMS]; size_t i, data_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - if (MAINPROCESS) HDputs("Testing write to unshared filtered chunks"); + if (MAINPROCESS) + HDputs("Testing write to unshared filtered chunks"); - CHECK_CUR_FILTER_AVAIL(); - - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_NROWS; - dataset_dims[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_NCOLS; - chunk_dims[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_CH_NROWS; - chunk_dims[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; - sel_dims[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_CH_NROWS; - sel_dims[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_NCOLS; + dataset_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_NCOLS; + chunk_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; + sel_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_CH_NROWS; + sel_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_NCOLS; filespace = H5Screate_simple(WRITE_UNSHARED_FILTERED_CHUNKS_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); @@ -388,101 +598,257 @@ test_write_filtered_dataset_no_overlap(void) VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, WRITE_UNSHARED_FILTERED_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, WRITE_UNSHARED_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_UNSHARED_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ count[0] = 1; - count[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_NCOLS / (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; - stride[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_CH_NROWS; - stride[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; - block[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_CH_NROWS; - block[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; - start[0] = ((hsize_t) mpi_rank * (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_CH_NROWS * count[0]); - start[1] = 0; + count[1] = + (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_NCOLS / (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; + stride[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_CH_NROWS; + stride[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; + block[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_CH_NROWS; + block[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; + start[0] = ((hsize_t)mpi_rank * (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_CH_NROWS * count[0]); + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } /* Select hyperslab in the file */ filespace = H5Dget_space(dset_id); - VRFY((dset_id >= 0), "File dataspace retrieval succeeded"); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); + "Hyperslab selection succeeded"); /* Fill data buffer */ - data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - data = (C_DATATYPE *) HDcalloc(1, data_size); + data = (C_DATATYPE *)HDcalloc(1, data_size); VRFY((NULL != data), "HDcalloc succeeded"); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < data_size / sizeof(*data); i++) - data[i] = (C_DATATYPE) GEN_DATA(i); + data[i] = (C_DATATYPE)GEN_DATA(i); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = - (C_DATATYPE) ( - (i % (dataset_dims[0] / (hsize_t) mpi_size * dataset_dims[1])) - + (i / (dataset_dims[0] / (hsize_t) mpi_size * dataset_dims[1])) - ); + correct_buf[i] = (C_DATATYPE)((i % (dataset_dims[0] / (hsize_t)mpi_size * dataset_dims[1])) + + (i / (dataset_dims[0] / (hsize_t)mpi_size * dataset_dims[1]))); - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); - VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); - - if (data) HDfree(data); + if (data) + HDfree(data); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); /* Verify the correct data was written */ - read_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_UNSHARED_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, WRITE_UNSHARED_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); + VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + + return; +} + +/* + * Tests parallel write of filtered data in the case where only + * one process is writing to a particular chunk in the operation + * and that process only writes to part of a chunk. + */ +static void +test_write_filtered_dataset_no_overlap_partial(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) +{ + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; + C_DATATYPE *correct_buf = NULL; + hsize_t dataset_dims[WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_DATASET_DIMS]; + hsize_t chunk_dims[WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_DATASET_DIMS]; + hsize_t sel_dims[WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_DATASET_DIMS]; + hsize_t start[WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_DATASET_DIMS]; + hsize_t stride[WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_DATASET_DIMS]; + hsize_t count[WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_DATASET_DIMS]; + hsize_t block[WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_DATASET_DIMS]; + size_t i, data_size, correct_buf_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs("Testing partial write to unshared filtered chunks"); + + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); + VRFY((file_id >= 0), "Test file open succeeded"); + + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + /* Create the dataspace for the dataset */ + dataset_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_NROWS; + dataset_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_NCOLS; + chunk_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NCOLS; + sel_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NROWS; + sel_dims[1] = (hsize_t)(WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_NCOLS / + WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NCOLS); + + filespace = H5Screate_simple(WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_DATASET_DIMS, dataset_dims, NULL); + VRFY((filespace >= 0), "File dataspace creation succeeded"); + + /* Create chunked dataset */ + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); + + VRFY((H5Pset_chunk(plist_id, WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_DATASET_DIMS, chunk_dims) >= 0), + "Chunk size set"); + + /* Add test filter to the pipeline */ + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); + + dset_id = H5Dcreate2(group_id, WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_DATASET_NAME, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = 1; + count[1] = (hsize_t)(WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_NCOLS / + WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NCOLS); + stride[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NROWS; + stride[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NCOLS; + block[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NROWS; + block[1] = (hsize_t)1; + start[0] = ((hsize_t)mpi_rank * (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NROWS * count[0]); + start[1] = 0; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + /* Fill data buffer */ + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); + + data = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != data), "HDcalloc succeeded"); + + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); + VRFY((NULL != correct_buf), "HDcalloc succeeded"); + + for (i = 0; i < data_size / sizeof(*data); i++) + data[i] = (C_DATATYPE)GEN_DATA(i); + + for (i = 0; i < (size_t)mpi_size; i++) { + size_t rank_n_elems = (size_t)(mpi_size * (WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NROWS * + WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NCOLS)); + size_t data_idx = i; + + for (size_t j = 0; j < rank_n_elems; j++) { + if ((j % WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NCOLS) == 0) { + correct_buf[(i * rank_n_elems) + j] = (C_DATATYPE)data_idx; + data_idx++; + } + } + } + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + if (data) + HDfree(data); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Verify the correct data was written */ + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); + VRFY((NULL != read_buf), "HDcalloc succeeded"); + + dset_id = H5Dopen2(group_id, WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); + + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -499,10 +865,11 @@ test_write_filtered_dataset_no_overlap(void) * 02/01/2017 */ static void -test_write_filtered_dataset_overlap(void) +test_write_filtered_dataset_overlap(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *data = NULL; - C_DATATYPE *read_buf = NULL; + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_SHARED_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t chunk_dims[WRITE_SHARED_FILTERED_CHUNKS_DATASET_DIMS]; @@ -512,35 +879,26 @@ test_write_filtered_dataset_overlap(void) hsize_t count[WRITE_SHARED_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t block[WRITE_SHARED_FILTERED_CHUNKS_DATASET_DIMS]; size_t i, data_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing write to shared filtered chunks"); - - CHECK_CUR_FILTER_AVAIL(); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); + if (MAINPROCESS) + HDputs("Testing write to shared filtered chunks"); - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_NROWS; - dataset_dims[1] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_NCOLS; - chunk_dims[0] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_CH_NROWS; - chunk_dims[1] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_CH_NCOLS; - sel_dims[0] = (hsize_t) DIM0_SCALE_FACTOR; - sel_dims[1] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_CH_NCOLS * (hsize_t) DIM1_SCALE_FACTOR; + dataset_dims[0] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_NCOLS; + chunk_dims[0] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_CH_NCOLS; + sel_dims[0] = (hsize_t)DIM0_SCALE_FACTOR; + sel_dims[1] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_CH_NCOLS * (hsize_t)DIM1_SCALE_FACTOR; filespace = H5Screate_simple(WRITE_SHARED_FILTERED_CHUNKS_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); @@ -549,37 +907,41 @@ test_write_filtered_dataset_overlap(void) VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, WRITE_SHARED_FILTERED_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, WRITE_SHARED_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_SHARED_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ - count[0] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_NROWS / (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_CH_NROWS; - count[1] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_NCOLS / (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_CH_NCOLS; - stride[0] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_CH_NROWS; - stride[1] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_CH_NCOLS; - block[0] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_CH_NROWS / (hsize_t) mpi_size; - block[1] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_CH_NCOLS; - start[0] = (hsize_t) mpi_rank * block[0]; - start[1] = 0; + count[0] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_NROWS / (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_CH_NROWS; + count[1] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_NCOLS / (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_CH_NCOLS; + stride[0] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_CH_NROWS; + stride[1] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_CH_NCOLS; + block[0] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_CH_NROWS / (hsize_t)mpi_size; + block[1] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_CH_NCOLS; + start[0] = (hsize_t)mpi_rank * block[0]; + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } @@ -588,62 +950,698 @@ test_write_filtered_dataset_overlap(void) VRFY((filespace >= 0), "File dataspace retrieval succeeded"); VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); + "Hyperslab selection succeeded"); /* Fill data buffer */ - data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - data = (C_DATATYPE *) HDcalloc(1, data_size); + data = (C_DATATYPE *)HDcalloc(1, data_size); VRFY((NULL != data), "HDcalloc succeeded"); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < data_size / sizeof(*data); i++) - data[i] = (C_DATATYPE) GEN_DATA(i); + data[i] = (C_DATATYPE)GEN_DATA(i); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = (C_DATATYPE) ( - (dataset_dims[1] * (i / ((hsize_t) mpi_size * dataset_dims[1]))) - + (i % dataset_dims[1]) - + (((i % ((hsize_t) mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1]) - ); - - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); + correct_buf[i] = (C_DATATYPE)( + (dataset_dims[1] * (i / ((hsize_t)mpi_size * dataset_dims[1]))) + (i % dataset_dims[1]) + + (((i % ((hsize_t)mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1])); - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); - VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); - if (data) HDfree(data); + if (data) + HDfree(data); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); /* Verify correct data was written */ - read_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_SHARED_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, WRITE_SHARED_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); + VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + + return; +} + +/* + * Tests parallel write of filtered data in the case where + * a dataset has a single unlimited dimension and each + * MPI rank writes to its own separate chunk. On each + * iteration, the dataset is extended in its extensible + * dimension by "MPI size" chunks per rank and the new + * chunks are written to, read back and verified. + */ +static void +test_write_filtered_dataset_single_unlim_dim_no_overlap(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) +{ + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; + hsize_t dataset_dims[WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t max_dims[WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t chunk_dims[WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t sel_dims[WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t start[WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t stride[WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t count[WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t block[WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + size_t i, data_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs("Testing write to unshared filtered chunks w/ single unlimited dimension"); + + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); + VRFY((file_id >= 0), "Test file open succeeded"); + + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + /* Create the dataspace for the dataset */ + dataset_dims[0] = (hsize_t)WRITE_UNSHARED_ONE_UNLIM_DIM_NROWS; + dataset_dims[1] = (hsize_t)WRITE_UNSHARED_ONE_UNLIM_DIM_NCOLS; + max_dims[0] = dataset_dims[0]; + max_dims[1] = H5S_UNLIMITED; + chunk_dims[0] = (hsize_t)WRITE_UNSHARED_ONE_UNLIM_DIM_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_UNSHARED_ONE_UNLIM_DIM_CH_NCOLS; + sel_dims[0] = (hsize_t)WRITE_UNSHARED_ONE_UNLIM_DIM_CH_NROWS; + sel_dims[1] = (hsize_t)WRITE_UNSHARED_ONE_UNLIM_DIM_NCOLS; + + filespace = H5Screate_simple(WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_DIMS, dataset_dims, max_dims); + VRFY((filespace >= 0), "File dataspace creation succeeded"); + + /* Create chunked dataset */ + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); + + VRFY((H5Pset_chunk(plist_id, WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_DIMS, chunk_dims) >= 0), + "Chunk size set"); + + /* Add test filter to the pipeline */ + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); + + dset_id = H5Dcreate2(group_id, WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + /* Fill data buffer */ + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + + data = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != data), "HDcalloc succeeded"); + + read_buf = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != read_buf), "HDcalloc succeeded"); + + for (i = 0; i < data_size / sizeof(*data); i++) + data[i] = (C_DATATYPE)GEN_DATA(i); + + for (i = 0; i < (size_t)WRITE_UNSHARED_ONE_UNLIM_DIM_NLOOPS; i++) { + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = 1; + count[1] = + (hsize_t)WRITE_UNSHARED_ONE_UNLIM_DIM_NCOLS / (hsize_t)WRITE_UNSHARED_ONE_UNLIM_DIM_CH_NCOLS; + stride[0] = (hsize_t)WRITE_UNSHARED_ONE_UNLIM_DIM_CH_NROWS; + stride[1] = (hsize_t)WRITE_UNSHARED_ONE_UNLIM_DIM_CH_NCOLS; + block[0] = (hsize_t)WRITE_UNSHARED_ONE_UNLIM_DIM_CH_NROWS; + block[1] = (hsize_t)WRITE_UNSHARED_ONE_UNLIM_DIM_CH_NCOLS; + start[0] = ((hsize_t)mpi_rank * block[0] * count[0]); + start[1] = i * count[1] * block[1]; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], + block[1]); + HDfflush(stdout); + } + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + dset_id = H5Dopen2(group_id, WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + HDmemset(read_buf, 255, data_size); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + /* Verify the correct data was written */ + VRFY((0 == HDmemcmp(read_buf, data, data_size)), "Data verification succeeded"); + + if (i < (size_t)WRITE_UNSHARED_ONE_UNLIM_DIM_NLOOPS - 1) { + /* Extend the dataset by count[1] chunks in the extensible dimension */ + dataset_dims[1] += count[1] * block[1]; + VRFY(H5Dset_extent(dset_id, dataset_dims) >= 0, "H5Dset_extent succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, SOME_CHUNKS_WRITTEN); + } + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + } + + if (data) + HDfree(data); + if (read_buf) + HDfree(read_buf); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); + VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + + return; +} + +/* + * Tests parallel write of filtered data in the case where + * a dataset has a single unlimited dimension and each + * MPI rank writes to a portion of each chunk in the dataset. + * On each iteration, the dataset is extended in its extensible + * dimension by two chunks and the new chunks are written to + * by all ranks, then read back and verified. + */ +static void +test_write_filtered_dataset_single_unlim_dim_overlap(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) +{ + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; + hsize_t dataset_dims[WRITE_SHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t max_dims[WRITE_SHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t chunk_dims[WRITE_SHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t sel_dims[WRITE_SHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t start[WRITE_SHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t stride[WRITE_SHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t count[WRITE_SHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + hsize_t block[WRITE_SHARED_ONE_UNLIM_DIM_DATASET_DIMS]; + size_t i, data_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs("Testing write to shared filtered chunks w/ single unlimited dimension"); + + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); + VRFY((file_id >= 0), "Test file open succeeded"); + + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + /* Create the dataspace for the dataset */ + dataset_dims[0] = (hsize_t)WRITE_SHARED_ONE_UNLIM_DIM_NROWS; + dataset_dims[1] = (hsize_t)WRITE_SHARED_ONE_UNLIM_DIM_NCOLS; + max_dims[0] = dataset_dims[0]; + max_dims[1] = H5S_UNLIMITED; + chunk_dims[0] = (hsize_t)WRITE_SHARED_ONE_UNLIM_DIM_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_SHARED_ONE_UNLIM_DIM_CH_NCOLS; + sel_dims[0] = (hsize_t)DIM0_SCALE_FACTOR; + sel_dims[1] = (hsize_t)WRITE_SHARED_ONE_UNLIM_DIM_CH_NCOLS * (hsize_t)DIM1_SCALE_FACTOR; + + filespace = H5Screate_simple(WRITE_SHARED_ONE_UNLIM_DIM_DATASET_DIMS, dataset_dims, max_dims); + VRFY((filespace >= 0), "File dataspace creation succeeded"); + + /* Create chunked dataset */ + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); + + VRFY((H5Pset_chunk(plist_id, WRITE_SHARED_ONE_UNLIM_DIM_DATASET_DIMS, chunk_dims) >= 0), + "Chunk size set"); + + /* Add test filter to the pipeline */ + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); + + dset_id = H5Dcreate2(group_id, WRITE_SHARED_ONE_UNLIM_DIM_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + /* Fill data buffer */ + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + + data = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != data), "HDcalloc succeeded"); + + read_buf = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != read_buf), "HDcalloc succeeded"); + + for (i = 0; i < data_size / sizeof(*data); i++) + data[i] = (C_DATATYPE)GEN_DATA(i); + + for (i = 0; i < (size_t)WRITE_SHARED_ONE_UNLIM_DIM_NLOOPS; i++) { + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = (hsize_t)WRITE_SHARED_ONE_UNLIM_DIM_NROWS / (hsize_t)WRITE_SHARED_ONE_UNLIM_DIM_CH_NROWS; + count[1] = (hsize_t)WRITE_SHARED_ONE_UNLIM_DIM_NCOLS / (hsize_t)WRITE_SHARED_ONE_UNLIM_DIM_CH_NCOLS; + stride[0] = (hsize_t)WRITE_SHARED_ONE_UNLIM_DIM_CH_NROWS; + stride[1] = (hsize_t)WRITE_SHARED_ONE_UNLIM_DIM_CH_NCOLS; + block[0] = (hsize_t)WRITE_SHARED_ONE_UNLIM_DIM_CH_NROWS / (hsize_t)mpi_size; + block[1] = (hsize_t)WRITE_SHARED_ONE_UNLIM_DIM_CH_NCOLS; + start[0] = (hsize_t)mpi_rank * block[0]; + start[1] = i * count[1] * block[1]; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], + block[1]); + HDfflush(stdout); + } + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + dset_id = H5Dopen2(group_id, WRITE_SHARED_ONE_UNLIM_DIM_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + HDmemset(read_buf, 255, data_size); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + /* Verify correct data was written */ + VRFY((0 == HDmemcmp(read_buf, data, data_size)), "Data verification succeeded"); + + if (i < (size_t)WRITE_SHARED_ONE_UNLIM_DIM_NLOOPS - 1) { + /* Extend the dataset by count[1] chunks in the extensible dimension */ + dataset_dims[1] += count[1] * block[1]; + VRFY(H5Dset_extent(dset_id, dataset_dims) >= 0, "H5Dset_extent succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, SOME_CHUNKS_WRITTEN); + } + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + } + + if (data) + HDfree(data); + if (read_buf) + HDfree(read_buf); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); + VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + + return; +} + +/* + * Tests parallel write of filtered data in the case where + * a dataset has two unlimited dimensions and each + * MPI rank writes to its own separate chunks. On each + * iteration, the dataset is extended in its first + * extensible dimension by the size of one chunk per rank + * and in its second extensible dimension by the size of + * one chunk. Then, all chunks are written to, read back + * and verified. + */ +static void +test_write_filtered_dataset_multi_unlim_dim_no_overlap(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) +{ + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; + hsize_t dataset_dims[WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t max_dims[WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t chunk_dims[WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t sel_dims[WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t start[WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t stride[WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t count[WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t block[WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + size_t i, data_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs("Testing write to unshared filtered chunks w/ two unlimited dimensions"); + + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); + VRFY((file_id >= 0), "Test file open succeeded"); + + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + /* Create the dataspace for the dataset */ + dataset_dims[0] = (hsize_t)WRITE_UNSHARED_TWO_UNLIM_DIM_NROWS; + dataset_dims[1] = (hsize_t)WRITE_UNSHARED_TWO_UNLIM_DIM_NCOLS; + max_dims[0] = H5S_UNLIMITED; + max_dims[1] = H5S_UNLIMITED; + chunk_dims[0] = (hsize_t)WRITE_UNSHARED_TWO_UNLIM_DIM_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_UNSHARED_TWO_UNLIM_DIM_CH_NCOLS; + sel_dims[0] = (hsize_t)WRITE_UNSHARED_TWO_UNLIM_DIM_CH_NROWS; + sel_dims[1] = (hsize_t)WRITE_UNSHARED_TWO_UNLIM_DIM_NCOLS; + + filespace = H5Screate_simple(WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_DIMS, dataset_dims, max_dims); + VRFY((filespace >= 0), "File dataspace creation succeeded"); + + /* Create chunked dataset */ + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); + + VRFY((H5Pset_chunk(plist_id, WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_DIMS, chunk_dims) >= 0), + "Chunk size set"); + + /* Add test filter to the pipeline */ + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); + + dset_id = H5Dcreate2(group_id, WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + for (i = 0; i < (size_t)WRITE_UNSHARED_TWO_UNLIM_DIM_NLOOPS; i++) { + C_DATATYPE *tmp_realloc = NULL; + size_t j; + + /* Set selected dimensions */ + sel_dims[0] = (i + 1) * WRITE_UNSHARED_TWO_UNLIM_DIM_CH_NROWS; + sel_dims[1] = (i + 1) * WRITE_UNSHARED_TWO_UNLIM_DIM_CH_NCOLS; + + /* Fill data buffer */ + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + + tmp_realloc = (C_DATATYPE *)HDrealloc(data, data_size); + VRFY((NULL != tmp_realloc), "HDrealloc succeeded"); + data = tmp_realloc; + + tmp_realloc = (C_DATATYPE *)HDrealloc(read_buf, data_size); + VRFY((NULL != tmp_realloc), "HDrealloc succeeded"); + read_buf = tmp_realloc; + + for (j = 0; j < data_size / sizeof(*data); j++) + data[j] = (C_DATATYPE)GEN_DATA(j); + + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = (i + 1); + count[1] = (i + 1); + stride[0] = (hsize_t)WRITE_UNSHARED_TWO_UNLIM_DIM_CH_NROWS; + stride[1] = (hsize_t)WRITE_UNSHARED_TWO_UNLIM_DIM_CH_NCOLS; + block[0] = (hsize_t)WRITE_UNSHARED_TWO_UNLIM_DIM_CH_NROWS; + block[1] = (hsize_t)WRITE_UNSHARED_TWO_UNLIM_DIM_CH_NCOLS; + start[0] = ((hsize_t)mpi_rank * block[0] * count[0]); + start[1] = 0; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], + block[1]); + HDfflush(stdout); + } + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + dset_id = H5Dopen2(group_id, WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + HDmemset(read_buf, 255, data_size); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + /* Verify the correct data was written */ + VRFY((0 == HDmemcmp(read_buf, data, data_size)), "Data verification succeeded"); + + if (i < (size_t)WRITE_UNSHARED_TWO_UNLIM_DIM_NLOOPS - 1) { + /* + * Extend the dataset by the size of one chunk per rank + * in the first extensible dimension. Extend the dataset + * by the size of chunk in the second extensible dimension. + */ + dataset_dims[0] += (hsize_t)mpi_size * block[0]; + dataset_dims[1] += block[1]; + VRFY(H5Dset_extent(dset_id, dataset_dims) >= 0, "H5Dset_extent succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, SOME_CHUNKS_WRITTEN); + } + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + } + + if (data) + HDfree(data); + if (read_buf) + HDfree(read_buf); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); + VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + + return; +} + +/* + * Tests parallel write of filtered data in the case where + * a dataset has two unlimited dimensions and each MPI + * rank writes to a portion of each chunk in the dataset. + * On each iteration, the dataset is extended in its extensible + * dimensions by the size of a chunk and then all chunks are + * written to by all ranks, then read back and verified. + */ +static void +test_write_filtered_dataset_multi_unlim_dim_overlap(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) +{ + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; + hsize_t dataset_dims[WRITE_SHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t max_dims[WRITE_SHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t chunk_dims[WRITE_SHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t sel_dims[WRITE_SHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t start[WRITE_SHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t stride[WRITE_SHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t count[WRITE_SHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + hsize_t block[WRITE_SHARED_TWO_UNLIM_DIM_DATASET_DIMS]; + size_t i, data_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs("Testing write to shared filtered chunks w/ two unlimited dimensions"); + + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); + VRFY((file_id >= 0), "Test file open succeeded"); + + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + /* Create the dataspace for the dataset */ + dataset_dims[0] = (hsize_t)WRITE_SHARED_TWO_UNLIM_DIM_NROWS; + dataset_dims[1] = (hsize_t)WRITE_SHARED_TWO_UNLIM_DIM_NCOLS; + max_dims[0] = H5S_UNLIMITED; + max_dims[1] = H5S_UNLIMITED; + chunk_dims[0] = (hsize_t)WRITE_SHARED_TWO_UNLIM_DIM_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_SHARED_TWO_UNLIM_DIM_CH_NCOLS; + sel_dims[0] = (hsize_t)DIM0_SCALE_FACTOR; + sel_dims[1] = (hsize_t)WRITE_SHARED_TWO_UNLIM_DIM_CH_NCOLS * (hsize_t)DIM1_SCALE_FACTOR; + + filespace = H5Screate_simple(WRITE_SHARED_TWO_UNLIM_DIM_DATASET_DIMS, dataset_dims, max_dims); + VRFY((filespace >= 0), "File dataspace creation succeeded"); + + /* Create chunked dataset */ + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); + + VRFY((H5Pset_chunk(plist_id, WRITE_SHARED_TWO_UNLIM_DIM_DATASET_DIMS, chunk_dims) >= 0), + "Chunk size set"); + + /* Add test filter to the pipeline */ + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); + + dset_id = H5Dcreate2(group_id, WRITE_SHARED_TWO_UNLIM_DIM_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + for (i = 0; i < (size_t)WRITE_SHARED_TWO_UNLIM_DIM_NLOOPS; i++) { + C_DATATYPE *tmp_realloc = NULL; + size_t j; + + /* Set selected dimensions */ + sel_dims[0] = (i + 1); + sel_dims[1] = (i + 1) * (size_t)WRITE_SHARED_TWO_UNLIM_DIM_CH_NCOLS; + + /* Fill data buffer */ + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + + tmp_realloc = (C_DATATYPE *)HDrealloc(data, data_size); + VRFY((NULL != tmp_realloc), "HDrealloc succeeded"); + data = tmp_realloc; + + tmp_realloc = (C_DATATYPE *)HDrealloc(read_buf, data_size); + VRFY((NULL != tmp_realloc), "HDrealloc succeeded"); + read_buf = tmp_realloc; + + for (j = 0; j < data_size / sizeof(*data); j++) + data[j] = (C_DATATYPE)GEN_DATA(j); + + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = (i + 1); + count[1] = (i + 1); + stride[0] = (hsize_t)WRITE_SHARED_TWO_UNLIM_DIM_CH_NROWS; + stride[1] = (hsize_t)WRITE_SHARED_TWO_UNLIM_DIM_CH_NCOLS; + block[0] = 1; + block[1] = (hsize_t)WRITE_SHARED_TWO_UNLIM_DIM_CH_NROWS; + start[0] = (hsize_t)mpi_rank; + start[1] = 0; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], + block[1]); + HDfflush(stdout); + } + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + dset_id = H5Dopen2(group_id, WRITE_SHARED_TWO_UNLIM_DIM_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + HDmemset(read_buf, 255, data_size); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + /* Verify correct data was written */ + VRFY((0 == HDmemcmp(read_buf, data, data_size)), "Data verification succeeded"); + + if (i < (size_t)WRITE_SHARED_TWO_UNLIM_DIM_NLOOPS - 1) { + /* Extend the dataset by the size of a chunk in each extensible dimension */ + dataset_dims[0] += (hsize_t)WRITE_SHARED_TWO_UNLIM_DIM_CH_NROWS; + dataset_dims[1] += (hsize_t)WRITE_SHARED_TWO_UNLIM_DIM_CH_NCOLS; + VRFY(H5Dset_extent(dset_id, dataset_dims) >= 0, "H5Dset_extent succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, SOME_CHUNKS_WRITTEN); + } + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + } + + if (data) + HDfree(data); + if (read_buf) + HDfree(read_buf); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -662,10 +1660,11 @@ test_write_filtered_dataset_overlap(void) * 02/01/2017 */ static void -test_write_filtered_dataset_single_no_selection(void) +test_write_filtered_dataset_single_no_selection(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *data = NULL; - C_DATATYPE *read_buf = NULL; + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t chunk_dims[WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; @@ -676,35 +1675,26 @@ test_write_filtered_dataset_single_no_selection(void) hsize_t block[WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; size_t i, data_size, correct_buf_size; size_t segment_length; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing write to filtered chunks with a single process having no selection"); - - CHECK_CUR_FILTER_AVAIL(); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); + if (MAINPROCESS) + HDputs("Testing write to filtered chunks with a single process having no selection"); - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NROWS; - dataset_dims[1] = (hsize_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS; - chunk_dims[0] = (hsize_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; - chunk_dims[1] = (hsize_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; - sel_dims[0] = (hsize_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; - sel_dims[1] = (hsize_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS; + dataset_dims[0] = (hsize_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS; + chunk_dims[0] = (hsize_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; + sel_dims[0] = (hsize_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; + sel_dims[1] = (hsize_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS; if (mpi_rank == WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NO_SELECT_PROC) sel_dims[0] = sel_dims[1] = 0; @@ -716,37 +1706,42 @@ test_write_filtered_dataset_single_no_selection(void) VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ count[0] = 1; - count[1] = (hsize_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS / (hsize_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; - stride[0] = (hsize_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; - stride[1] = (hsize_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; - block[0] = (hsize_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; - block[1] = (hsize_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; - start[0] = (hsize_t) mpi_rank * (hsize_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * count[0]; - start[1] = 0; + count[1] = (hsize_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS / + (hsize_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; + stride[0] = (hsize_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; + stride[1] = (hsize_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; + block[0] = (hsize_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; + block[1] = (hsize_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; + start[0] = (hsize_t)mpi_rank * (hsize_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * count[0]; + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } @@ -758,67 +1753,66 @@ test_write_filtered_dataset_single_no_selection(void) VRFY((H5Sselect_none(filespace) >= 0), "Select none succeeded"); else VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); + "Hyperslab selection succeeded"); /* Fill data buffer */ - data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - data = (C_DATATYPE *) HDcalloc(1, data_size); - VRFY((NULL != data), "HDcalloc succeeded"); + if (mpi_rank != WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NO_SELECT_PROC) { + data = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != data), "HDcalloc succeeded"); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); - VRFY((NULL != correct_buf), "HDcalloc succeeded"); + for (i = 0; i < data_size / sizeof(*data); i++) + data[i] = (C_DATATYPE)GEN_DATA(i); + } - for (i = 0; i < data_size / sizeof(*data); i++) - data[i] = (C_DATATYPE) GEN_DATA(i); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); + VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = - (C_DATATYPE) ( - (i % (dataset_dims[0] / (hsize_t) mpi_size * dataset_dims[1])) - + (i / (dataset_dims[0] / (hsize_t) mpi_size * dataset_dims[1])) - ); + correct_buf[i] = (C_DATATYPE)((i % (dataset_dims[0] / (hsize_t)mpi_size * dataset_dims[1])) + + (i / (dataset_dims[0] / (hsize_t)mpi_size * dataset_dims[1]))); /* Compute the correct offset into the buffer for the process having no selection and clear it */ - segment_length = dataset_dims[0] * dataset_dims[1] / (hsize_t) mpi_size; - HDmemset(correct_buf + ((size_t) WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NO_SELECT_PROC * segment_length), - 0, segment_length * sizeof(*data)); + segment_length = dataset_dims[0] * dataset_dims[1] / (hsize_t)mpi_size; + HDmemset(correct_buf + + ((size_t)WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NO_SELECT_PROC * segment_length), + 0, segment_length * sizeof(*data)); - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + /* Verify space allocation status - data should only have been written if MPI size > 1 */ + verify_space_alloc_status(dset_id, plist_id, (mpi_size > 1 ? SOME_CHUNKS_WRITTEN : NO_CHUNKS_WRITTEN)); - VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); - - if (data) HDfree(data); + if (data) + HDfree(data); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); /* Verify the correct data was written */ - read_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -838,42 +1832,34 @@ test_write_filtered_dataset_single_no_selection(void) * 02/02/2017 */ static void -test_write_filtered_dataset_all_no_selection(void) +test_write_filtered_dataset_all_no_selection(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *data = NULL; - C_DATATYPE *read_buf = NULL; + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t chunk_dims[WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t sel_dims[WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; size_t i, data_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing write to filtered chunks with all processes having no selection"); - - CHECK_CUR_FILTER_AVAIL(); - - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); + if (MAINPROCESS) + HDputs("Testing write to filtered chunks with all processes having no selection"); - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_NROWS; - dataset_dims[1] = (hsize_t) WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_NCOLS; - chunk_dims[0] = (hsize_t) WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; - chunk_dims[1] = (hsize_t) WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; + dataset_dims[0] = (hsize_t)WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_NCOLS; + chunk_dims[0] = (hsize_t)WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; sel_dims[0] = sel_dims[1] = 0; filespace = H5Screate_simple(WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, dataset_dims, NULL); @@ -883,20 +1869,22 @@ test_write_filtered_dataset_all_no_selection(void) VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); filespace = H5Dget_space(dset_id); @@ -905,52 +1893,51 @@ test_write_filtered_dataset_all_no_selection(void) VRFY((H5Sselect_none(filespace) >= 0), "Select none succeeded"); /* Fill data buffer */ - data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - data = (C_DATATYPE *) HDcalloc(1, data_size); + data = (C_DATATYPE *)HDcalloc(1, data_size); VRFY((NULL != data), "HDcalloc succeeded"); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < data_size / sizeof(*data); i++) - data[i] = (C_DATATYPE) GEN_DATA(i); + data[i] = (C_DATATYPE)GEN_DATA(i); - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + /* Verify space allocation status - no ranks should have written any data */ + verify_space_alloc_status(dset_id, plist_id, NO_CHUNKS_WRITTEN); - VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); - - if (data) HDfree(data); + if (data) + HDfree(data); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); /* Verify the correct data was written */ - read_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -964,142 +1951,136 @@ test_write_filtered_dataset_all_no_selection(void) * 02/02/2017 */ static void -test_write_filtered_dataset_point_selection(void) +test_write_filtered_dataset_point_selection(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *data = NULL; + C_DATATYPE *data = NULL; C_DATATYPE *correct_buf = NULL; - C_DATATYPE *read_buf = NULL; - hsize_t *coords = NULL; + C_DATATYPE *read_buf = NULL; + hsize_t * coords = NULL; hsize_t dataset_dims[WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t chunk_dims[WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t sel_dims[WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; size_t i, j, data_size, correct_buf_size; size_t num_points; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing write to filtered chunks with point selection"); - - CHECK_CUR_FILTER_AVAIL(); - - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); + if (MAINPROCESS) + HDputs("Testing write to filtered chunks with point selection"); - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) WRITE_POINT_SELECTION_FILTERED_CHUNKS_NROWS; - dataset_dims[1] = (hsize_t) WRITE_POINT_SELECTION_FILTERED_CHUNKS_NCOLS; - chunk_dims[0] = (hsize_t) WRITE_POINT_SELECTION_FILTERED_CHUNKS_CH_NROWS; - chunk_dims[1] = (hsize_t) WRITE_POINT_SELECTION_FILTERED_CHUNKS_CH_NCOLS; - sel_dims[0] = (hsize_t) WRITE_POINT_SELECTION_FILTERED_CHUNKS_NROWS / (hsize_t) mpi_size; - sel_dims[1] = (hsize_t) WRITE_POINT_SELECTION_FILTERED_CHUNKS_NCOLS; - - filespace = H5Screate_simple(WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, dataset_dims,NULL); + dataset_dims[0] = (hsize_t)WRITE_POINT_SELECTION_FILTERED_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)WRITE_POINT_SELECTION_FILTERED_CHUNKS_NCOLS; + chunk_dims[0] = (hsize_t)WRITE_POINT_SELECTION_FILTERED_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_POINT_SELECTION_FILTERED_CHUNKS_CH_NCOLS; + sel_dims[0] = (hsize_t)WRITE_POINT_SELECTION_FILTERED_CHUNKS_NROWS / (hsize_t)mpi_size; + sel_dims[1] = (hsize_t)WRITE_POINT_SELECTION_FILTERED_CHUNKS_NCOLS; + + filespace = H5Screate_simple(WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); memspace = H5Screate_simple(WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, sel_dims, NULL); VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Set up point selection */ filespace = H5Dget_space(dset_id); VRFY((filespace >= 0), "File dataspace retrieval succeeded"); - num_points = (hsize_t) WRITE_POINT_SELECTION_FILTERED_CHUNKS_NROWS * (hsize_t) WRITE_POINT_SELECTION_FILTERED_CHUNKS_NCOLS / (hsize_t) mpi_size; - coords = (hsize_t *) HDcalloc(1, 2 * num_points * sizeof(*coords)); + num_points = (hsize_t)WRITE_POINT_SELECTION_FILTERED_CHUNKS_NROWS * + (hsize_t)WRITE_POINT_SELECTION_FILTERED_CHUNKS_NCOLS / (hsize_t)mpi_size; + coords = (hsize_t *)HDcalloc(1, 2 * num_points * sizeof(*coords)); VRFY((NULL != coords), "Coords HDcalloc succeeded"); for (i = 0; i < num_points; i++) for (j = 0; j < WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS; j++) coords[(i * WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS) + j] = - (j > 0) ? (i % (hsize_t) WRITE_POINT_SELECTION_FILTERED_CHUNKS_NCOLS) - : ((hsize_t) mpi_rank + ((hsize_t) mpi_size * (i / (hsize_t) WRITE_POINT_SELECTION_FILTERED_CHUNKS_NCOLS))); + (j > 0) ? (i % (hsize_t)WRITE_POINT_SELECTION_FILTERED_CHUNKS_NCOLS) + : ((hsize_t)mpi_rank + + ((hsize_t)mpi_size * (i / (hsize_t)WRITE_POINT_SELECTION_FILTERED_CHUNKS_NCOLS))); - VRFY((H5Sselect_elements(filespace, H5S_SELECT_SET, (hsize_t ) num_points, (const hsize_t * ) coords) >= 0), - "Point selection succeeded"); + VRFY((H5Sselect_elements(filespace, H5S_SELECT_SET, (hsize_t)num_points, (const hsize_t *)coords) >= 0), + "Point selection succeeded"); /* Fill data buffer */ - data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - data = (C_DATATYPE *) HDcalloc(1, data_size); + data = (C_DATATYPE *)HDcalloc(1, data_size); VRFY((NULL != data), "HDcalloc succeeded"); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < data_size / sizeof(*data); i++) - data[i] = (C_DATATYPE) GEN_DATA(i); + data[i] = (C_DATATYPE)GEN_DATA(i); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = (C_DATATYPE) ( - (dataset_dims[1] * (i / ((hsize_t) mpi_size * dataset_dims[1]))) - + (i % dataset_dims[1]) - + (((i % ((hsize_t) mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1]) - ); - - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); + correct_buf[i] = (C_DATATYPE)( + (dataset_dims[1] * (i / ((hsize_t)mpi_size * dataset_dims[1]))) + (i % dataset_dims[1]) + + (((i % ((hsize_t)mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1])); - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); - VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); - if (data) HDfree(data); + if (data) + HDfree(data); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); /* Verify the correct data was written */ - read_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (coords) HDfree(coords); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (coords) + HDfree(coords); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -1117,10 +2098,11 @@ test_write_filtered_dataset_point_selection(void) * 02/02/2017 */ static void -test_write_filtered_dataset_interleaved_write(void) +test_write_filtered_dataset_interleaved_write(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *data = NULL; - C_DATATYPE *read_buf = NULL; + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[INTERLEAVED_WRITE_FILTERED_DATASET_DIMS]; hsize_t chunk_dims[INTERLEAVED_WRITE_FILTERED_DATASET_DIMS]; @@ -1130,35 +2112,26 @@ test_write_filtered_dataset_interleaved_write(void) hsize_t count[INTERLEAVED_WRITE_FILTERED_DATASET_DIMS]; hsize_t block[INTERLEAVED_WRITE_FILTERED_DATASET_DIMS]; size_t i, data_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing interleaved write to filtered chunks"); - - CHECK_CUR_FILTER_AVAIL(); - - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); + if (MAINPROCESS) + HDputs("Testing interleaved write to filtered chunks"); - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) INTERLEAVED_WRITE_FILTERED_DATASET_NROWS; - dataset_dims[1] = (hsize_t) INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS; - chunk_dims[0] = (hsize_t) INTERLEAVED_WRITE_FILTERED_DATASET_CH_NROWS; - chunk_dims[1] = (hsize_t) INTERLEAVED_WRITE_FILTERED_DATASET_CH_NCOLS; - sel_dims[0] = (hsize_t) (INTERLEAVED_WRITE_FILTERED_DATASET_NROWS / mpi_size); - sel_dims[1] = (hsize_t) INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS; + dataset_dims[0] = (hsize_t)INTERLEAVED_WRITE_FILTERED_DATASET_NROWS; + dataset_dims[1] = (hsize_t)INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS; + chunk_dims[0] = (hsize_t)INTERLEAVED_WRITE_FILTERED_DATASET_CH_NROWS; + chunk_dims[1] = (hsize_t)INTERLEAVED_WRITE_FILTERED_DATASET_CH_NCOLS; + sel_dims[0] = (hsize_t)(INTERLEAVED_WRITE_FILTERED_DATASET_NROWS / mpi_size); + sel_dims[1] = (hsize_t)INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS; filespace = H5Screate_simple(INTERLEAVED_WRITE_FILTERED_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); @@ -1167,37 +2140,43 @@ test_write_filtered_dataset_interleaved_write(void) VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, INTERLEAVED_WRITE_FILTERED_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, INTERLEAVED_WRITE_FILTERED_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, INTERLEAVED_WRITE_FILTERED_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ - count[0] = (hsize_t) (INTERLEAVED_WRITE_FILTERED_DATASET_NROWS / INTERLEAVED_WRITE_FILTERED_DATASET_CH_NROWS); - count[1] = (hsize_t) (INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS / INTERLEAVED_WRITE_FILTERED_DATASET_CH_NCOLS); - stride[0] = (hsize_t) INTERLEAVED_WRITE_FILTERED_DATASET_CH_NROWS; - stride[1] = (hsize_t) INTERLEAVED_WRITE_FILTERED_DATASET_CH_NCOLS; - block[0] = 1; - block[1] = (hsize_t) INTERLEAVED_WRITE_FILTERED_DATASET_CH_NCOLS; - start[0] = (hsize_t) mpi_rank; - start[1] = 0; + count[0] = + (hsize_t)(INTERLEAVED_WRITE_FILTERED_DATASET_NROWS / INTERLEAVED_WRITE_FILTERED_DATASET_CH_NROWS); + count[1] = + (hsize_t)(INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS / INTERLEAVED_WRITE_FILTERED_DATASET_CH_NCOLS); + stride[0] = (hsize_t)INTERLEAVED_WRITE_FILTERED_DATASET_CH_NROWS; + stride[1] = (hsize_t)INTERLEAVED_WRITE_FILTERED_DATASET_CH_NCOLS; + block[0] = 1; + block[1] = (hsize_t)INTERLEAVED_WRITE_FILTERED_DATASET_CH_NCOLS; + start[0] = (hsize_t)mpi_rank; + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } @@ -1206,68 +2185,240 @@ test_write_filtered_dataset_interleaved_write(void) VRFY((filespace >= 0), "File dataspace retrieval succeeded"); VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); + "Hyperslab selection succeeded"); /* Fill data buffer */ - data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - data = (C_DATATYPE *) HDcalloc(1, data_size); + data = (C_DATATYPE *)HDcalloc(1, data_size); VRFY((NULL != data), "HDcalloc succeeded"); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < data_size / sizeof(*data); i++) - data[i] = (C_DATATYPE) GEN_DATA(i); + data[i] = (C_DATATYPE)GEN_DATA(i); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) /* Add Column Index */ correct_buf[i] = - (C_DATATYPE) ( - (i % (hsize_t) INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS) + (C_DATATYPE)((i % (hsize_t)INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS) - /* Add the Row Index */ - + ((i % (hsize_t) (mpi_size * INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS)) / (hsize_t) INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS) + /* Add the Row Index */ + + ((i % (hsize_t)(mpi_size * INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS)) / + (hsize_t)INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS) - /* Add the amount that gets added when a rank moves down to its next section vertically in the dataset */ - + ((hsize_t) INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS * (i / (hsize_t) (mpi_size * INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS))) - ); + /* Add the amount that gets added when a rank moves down to its next section + vertically in the dataset */ + + ((hsize_t)INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS * + (i / (hsize_t)(mpi_size * INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS)))); - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + if (data) + HDfree(data); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Verify the correct data was written */ + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); + VRFY((NULL != read_buf), "HDcalloc succeeded"); + + dset_id = H5Dopen2(group_id, INTERLEAVED_WRITE_FILTERED_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); + + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); + VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + + return; +} + +/* + * Tests parallel write of transformed and filtered data + * in the case where only one process is writing to a + * particular chunk in the operation. Normally, a data + * transform function will cause the parallel library to + * break to independent I/O and this isn't allowed when + * there are filters in the pipeline. However, in this + * case the parallel library recognizes that the used + * data transform function "x" is the same as not applying + * the transform function. Therefore it does not apply + * the transform function resulting in not breaking to + * independent I/O. + * + * Programmer: Jan-Willem Blokland + * 08/20/2021 + */ +static void +test_write_transformed_filtered_dataset_no_overlap(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) +{ + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; + C_DATATYPE *correct_buf = NULL; + hsize_t dataset_dims[WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + hsize_t chunk_dims[WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + hsize_t sel_dims[WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + hsize_t start[WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + hsize_t stride[WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + hsize_t count[WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + hsize_t block[WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + size_t i, data_size, correct_buf_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs("Testing write to unshared transformed and filtered chunks"); + + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); + VRFY((file_id >= 0), "Test file open succeeded"); + + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + /* Create the dataspace for the dataset */ + dataset_dims[0] = (hsize_t)WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NCOLS; + chunk_dims[0] = (hsize_t)WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NCOLS; + sel_dims[0] = (hsize_t)WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NROWS; + sel_dims[1] = (hsize_t)WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NCOLS; + + filespace = H5Screate_simple(WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS, dataset_dims, NULL); + VRFY((filespace >= 0), "File dataspace creation succeeded"); + + memspace = H5Screate_simple(WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS, sel_dims, NULL); + VRFY((memspace >= 0), "Memory dataspace creation succeeded"); + + /* Create chunked dataset */ + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); + + VRFY((H5Pset_chunk(plist_id, WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), + "Chunk size set"); + + /* Add test filter to the pipeline */ + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); + + dset_id = H5Dcreate2(group_id, WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_NAME, + HDF5_DATATYPE_NAME, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = 1; + count[1] = (hsize_t)WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NCOLS / + (hsize_t)WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NCOLS; + stride[0] = (hsize_t)WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NROWS; + stride[1] = (hsize_t)WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NCOLS; + block[0] = (hsize_t)WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NROWS; + block[1] = (hsize_t)WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NCOLS; + start[0] = ((hsize_t)mpi_rank * (hsize_t)WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NROWS * count[0]); + start[1] = 0; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + /* Fill data buffer */ + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + data = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != data), "HDcalloc succeeded"); + + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); + VRFY((NULL != correct_buf), "HDcalloc succeeded"); + + for (i = 0; i < data_size / sizeof(*data); i++) + data[i] = (C_DATATYPE)GEN_DATA(i); + + for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) + correct_buf[i] = (C_DATATYPE)((i % (dataset_dims[0] / (hsize_t)mpi_size * dataset_dims[1])) + + (i / (dataset_dims[0] / (hsize_t)mpi_size * dataset_dims[1]))); + + /* Create property list for data transform */ + plist_id = H5Pcopy(dxpl_id); + VRFY((plist_id >= 0), "DXPL copy succeeded"); + + /* Set data transform expression */ + VRFY((H5Pset_data_transform(plist_id, "x") >= 0), "Set data transform expression succeeded"); VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); - if (data) HDfree(data); + if (data) + HDfree(data); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); /* Verify the correct data was written */ - read_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" INTERLEAVED_WRITE_FILTERED_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + /* Verify space allocation status */ + plist_id = H5Dget_create_plist(dset_id); + VRFY((plist_id >= 0), "H5Dget_create_plist succeeded"); + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -1282,10 +2433,11 @@ test_write_filtered_dataset_interleaved_write(void) * 02/06/2017 */ static void -test_write_3d_filtered_dataset_no_overlap_separate_pages(void) +test_write_3d_filtered_dataset_no_overlap_separate_pages(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *data = NULL; - C_DATATYPE *read_buf = NULL; + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; hsize_t chunk_dims[WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; @@ -1295,81 +2447,80 @@ test_write_3d_filtered_dataset_no_overlap_separate_pages(void) hsize_t count[WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; hsize_t block[WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; size_t i, data_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing write to unshared filtered chunks on separate pages in 3D dataset"); - - CHECK_CUR_FILTER_AVAIL(); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); + if (MAINPROCESS) + HDputs("Testing write to unshared filtered chunks on separate pages in 3D dataset"); - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS; - dataset_dims[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS; - dataset_dims[2] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DEPTH; - chunk_dims[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; - chunk_dims[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; - chunk_dims[2] = 1; - sel_dims[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS; - sel_dims[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS; - sel_dims[2] = 1; - - filespace = H5Screate_simple( WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS, dataset_dims, NULL); + dataset_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS; + dataset_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS; + dataset_dims[2] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DEPTH; + chunk_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; + chunk_dims[2] = 1; + sel_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS; + sel_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS; + sel_dims[2] = 1; + + filespace = H5Screate_simple(WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); - memspace = H5Screate_simple( WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS, sel_dims, NULL); + memspace = H5Screate_simple(WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS, sel_dims, NULL); VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_NAME, + HDF5_DATATYPE_NAME, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ - count[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS / (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; - count[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS / (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; - count[2] = 1; - stride[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; - stride[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; + count[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS / + (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; + count[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS / + (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; + count[2] = 1; + stride[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; + stride[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; stride[2] = 1; - block[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; - block[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; - block[2] = 1; - start[0] = 0; - start[1] = 0; - start[2] = (hsize_t) mpi_rank; + block[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; + block[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; + block[2] = 1; + start[0] = 0; + start[1] = 0; + start[2] = (hsize_t)mpi_rank; if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu, %llu ], stride[ %llu, %llu, %llu ], start[ %llu, %llu, %llu ], block size[ %llu, %llu, %llu ]\n", - mpi_rank, count[0], count[1], count[2], stride[0], stride[1], stride[2], start[0], start[1], start[2], block[0], block[1], block[2]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE ", %" PRIuHSIZE + " ], stride[ %" PRIuHSIZE ", %" PRIuHSIZE ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE + ", %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE ", %" PRIuHSIZE ", %" PRIuHSIZE + " ]\n", + mpi_rank, count[0], count[1], count[2], stride[0], stride[1], stride[2], start[0], start[1], + start[2], block[0], block[1], block[2]); HDfflush(stdout); } @@ -1378,58 +2529,57 @@ test_write_3d_filtered_dataset_no_overlap_separate_pages(void) VRFY((filespace >= 0), "File dataspace retrieval succeeded"); VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); + "Hyperslab selection succeeded"); /* Fill data buffer */ - data_size = sel_dims[0] * sel_dims[1] * sel_dims[2] * sizeof(*data); + data_size = sel_dims[0] * sel_dims[1] * sel_dims[2] * sizeof(*data); correct_buf_size = dataset_dims[0] * dataset_dims[1] * dataset_dims[2] * sizeof(*correct_buf); - data = (C_DATATYPE *) HDcalloc(1, data_size); + data = (C_DATATYPE *)HDcalloc(1, data_size); VRFY((NULL != data), "HDcalloc succeeded"); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < data_size / sizeof(*data); i++) - data[i] = (C_DATATYPE) GEN_DATA(i); + data[i] = (C_DATATYPE)GEN_DATA(i); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = (C_DATATYPE) ((i % (hsize_t) mpi_size) + (i / (hsize_t) mpi_size)); - - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); + correct_buf[i] = (C_DATATYPE)((i % (hsize_t)mpi_size) + (i / (hsize_t)mpi_size)); - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); - VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); - if (data) HDfree(data); + if (data) + HDfree(data); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); /* Verify the correct data was written */ - read_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -1445,10 +2595,11 @@ test_write_3d_filtered_dataset_no_overlap_separate_pages(void) * 02/06/2017 */ static void -test_write_3d_filtered_dataset_no_overlap_same_pages(void) +test_write_3d_filtered_dataset_no_overlap_same_pages(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *data = NULL; - C_DATATYPE *read_buf = NULL; + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS]; hsize_t chunk_dims[WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS]; @@ -1458,81 +2609,80 @@ test_write_3d_filtered_dataset_no_overlap_same_pages(void) hsize_t count[WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS]; hsize_t block[WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS]; size_t i, data_size, correct_buf_size; - hid_t file_id, dset_id, plist_id; - hid_t filespace, memspace; - - if (MAINPROCESS) HDputs("Testing write to unshared filtered chunks on the same pages in 3D dataset"); - - CHECK_CUR_FILTER_AVAIL(); - - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); + if (MAINPROCESS) + HDputs("Testing write to unshared filtered chunks on the same pages in 3D dataset"); - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NROWS; - dataset_dims[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS; - dataset_dims[2] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DEPTH; - chunk_dims[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; - chunk_dims[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; - chunk_dims[2] = 1; - sel_dims[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; - sel_dims[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS; - sel_dims[2] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DEPTH; - - filespace = H5Screate_simple(WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS, dataset_dims, NULL); + dataset_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NROWS; + dataset_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS; + dataset_dims[2] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DEPTH; + chunk_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; + chunk_dims[2] = 1; + sel_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; + sel_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS; + sel_dims[2] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DEPTH; + + filespace = + H5Screate_simple(WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); memspace = H5Screate_simple(WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS, sel_dims, NULL); VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_NAME, + HDF5_DATATYPE_NAME, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ count[0] = 1; - count[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS / (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; - count[2] = (hsize_t) mpi_size; - stride[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; - stride[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; + count[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS / + (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; + count[2] = (hsize_t)mpi_size; + stride[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; + stride[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; stride[2] = 1; - block[0] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; - block[1] = (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; - block[2] = 1; - start[0] = ((hsize_t) mpi_rank * (hsize_t) WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS * count[0]); + block[0] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; + block[1] = (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; + block[2] = 1; + start[0] = ((hsize_t)mpi_rank * (hsize_t)WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS * count[0]); start[1] = 0; start[2] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu, %llu ], stride[ %llu, %llu, %llu ], start[ %llu, %llu, %llu ], block size[ %llu, %llu, %llu ]\n", - mpi_rank, count[0], count[1], count[2], stride[0], stride[1], stride[2], start[0], start[1], start[2], block[0], block[1], block[2]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE ", %" PRIuHSIZE + " ], stride[ %" PRIuHSIZE ", %" PRIuHSIZE ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE + ", %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE ", %" PRIuHSIZE ", %" PRIuHSIZE + " ]\n", + mpi_rank, count[0], count[1], count[2], stride[0], stride[1], stride[2], start[0], start[1], + start[2], block[0], block[1], block[2]); HDfflush(stdout); } @@ -1541,61 +2691,58 @@ test_write_3d_filtered_dataset_no_overlap_same_pages(void) VRFY((filespace >= 0), "File dataspace retrieval succeeded"); VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); + "Hyperslab selection succeeded"); /* Fill data buffer */ - data_size = sel_dims[0] * sel_dims[1] * sel_dims[2] * sizeof(*data); + data_size = sel_dims[0] * sel_dims[1] * sel_dims[2] * sizeof(*data); correct_buf_size = dataset_dims[0] * dataset_dims[1] * dataset_dims[2] * sizeof(*correct_buf); - data = (C_DATATYPE *) HDcalloc(1, data_size); + data = (C_DATATYPE *)HDcalloc(1, data_size); VRFY((NULL != data), "HDcalloc succeeded"); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < data_size / sizeof(*data); i++) - data[i] = (C_DATATYPE) GEN_DATA(i); + data[i] = (C_DATATYPE)GEN_DATA(i); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = (C_DATATYPE) ( - (i % (dataset_dims[0] * dataset_dims[1])) - + (i / (dataset_dims[0] * dataset_dims[1])) - ); - - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); + correct_buf[i] = (C_DATATYPE)((i % (dataset_dims[0] * dataset_dims[1])) + + (i / (dataset_dims[0] * dataset_dims[1]))); - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); - VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); - if (data) HDfree(data); + if (data) + HDfree(data); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); /* Verify the correct data was written */ - read_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -1611,10 +2758,11 @@ test_write_3d_filtered_dataset_no_overlap_same_pages(void) * 02/06/2017 */ static void -test_write_3d_filtered_dataset_overlap(void) +test_write_3d_filtered_dataset_overlap(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *data = NULL; - C_DATATYPE *read_buf = NULL; + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; hsize_t chunk_dims[WRITE_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; @@ -1624,38 +2772,29 @@ test_write_3d_filtered_dataset_overlap(void) hsize_t count[WRITE_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; hsize_t block[WRITE_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; size_t i, data_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing write to shared filtered chunks in 3D dataset"); - - CHECK_CUR_FILTER_AVAIL(); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); + if (MAINPROCESS) + HDputs("Testing write to shared filtered chunks in 3D dataset"); - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_3D_NROWS; - dataset_dims[1] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS; - dataset_dims[2] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH; - chunk_dims[0] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NROWS; - chunk_dims[1] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS; - chunk_dims[2] = 1; - sel_dims[0] = (hsize_t) (WRITE_SHARED_FILTERED_CHUNKS_3D_NROWS / mpi_size); - sel_dims[1] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS; - sel_dims[2] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH; + dataset_dims[0] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_3D_NROWS; + dataset_dims[1] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS; + dataset_dims[2] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH; + chunk_dims[0] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS; + chunk_dims[2] = 1; + sel_dims[0] = (hsize_t)(WRITE_SHARED_FILTERED_CHUNKS_3D_NROWS / mpi_size); + sel_dims[1] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS; + sel_dims[2] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH; filespace = H5Screate_simple(WRITE_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); @@ -1664,41 +2803,47 @@ test_write_3d_filtered_dataset_overlap(void) VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, WRITE_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, WRITE_SHARED_FILTERED_CHUNKS_3D_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_SHARED_FILTERED_CHUNKS_3D_DATASET_NAME, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ - count[0] = (hsize_t) (WRITE_SHARED_FILTERED_CHUNKS_3D_NROWS / WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NROWS); - count[1] = (hsize_t) (WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS / WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS); - count[2] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH; - stride[0] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NROWS; - stride[1] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS; + count[0] = (hsize_t)(WRITE_SHARED_FILTERED_CHUNKS_3D_NROWS / WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NROWS); + count[1] = (hsize_t)(WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS / WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS); + count[2] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH; + stride[0] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NROWS; + stride[1] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS; stride[2] = 1; - block[0] = 1; - block[1] = (hsize_t) WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS; - block[2] = 1; - start[0] = (hsize_t) mpi_rank; - start[1] = 0; - start[2] = 0; + block[0] = 1; + block[1] = (hsize_t)WRITE_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS; + block[2] = 1; + start[0] = (hsize_t)mpi_rank; + start[1] = 0; + start[2] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu, %llu ], stride[ %llu, %llu, %llu ], start[ %llu, %llu, %llu ], block size[ %llu, %llu, %llu ]\n", - mpi_rank, count[0], count[1], count[2], stride[0], stride[1], stride[2], start[0], start[1], start[2], block[0], block[1], block[2]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE ", %" PRIuHSIZE + " ], stride[ %" PRIuHSIZE ", %" PRIuHSIZE ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE + ", %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE ", %" PRIuHSIZE ", %" PRIuHSIZE + " ]\n", + mpi_rank, count[0], count[1], count[2], stride[0], stride[1], stride[2], start[0], start[1], + start[2], block[0], block[1], block[2]); HDfflush(stdout); } @@ -1706,71 +2851,71 @@ test_write_3d_filtered_dataset_overlap(void) filespace = H5Dget_space(dset_id); VRFY((filespace >= 0), "File dataspace retrieval succeeded"); - VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, - count, block) >= 0), "Hyperslab selection succeeded"); + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); /* Fill data buffer */ - data_size = sel_dims[0] * sel_dims[1] * sel_dims[2] * sizeof(*data); + data_size = sel_dims[0] * sel_dims[1] * sel_dims[2] * sizeof(*data); correct_buf_size = dataset_dims[0] * dataset_dims[1] * dataset_dims[2] * sizeof(*correct_buf); - data = (C_DATATYPE *) HDcalloc(1, data_size); + data = (C_DATATYPE *)HDcalloc(1, data_size); VRFY((NULL != data), "HDcalloc succeeded"); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < data_size / sizeof(*data); i++) - data[i] = (C_DATATYPE) GEN_DATA(i); + data[i] = (C_DATATYPE)GEN_DATA(i); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) /* Add the Column Index */ - correct_buf[i] = - (C_DATATYPE) ( - (i % (hsize_t) (WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH * WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS)) + correct_buf[i] = (C_DATATYPE)( + (i % (hsize_t)(WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH * WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS)) - /* Add the Row Index */ - + ((i % (hsize_t) (mpi_size * WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH * WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS)) - / (hsize_t) (WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH * WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS)) + /* Add the Row Index */ + + ((i % (hsize_t)(mpi_size * WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH * + WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS)) / + (hsize_t)(WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH * WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS)) - /* Add the amount that gets added when a rank moves down to its next section vertically in the dataset */ - + ((hsize_t) (WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH * WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS) - * (i / (hsize_t) (mpi_size * WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH * WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS))) - ); + /* Add the amount that gets added when a rank moves down to its next + section vertically in the dataset */ + + ((hsize_t)(WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH * WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS) * + (i / (hsize_t)(mpi_size * WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH * + WRITE_SHARED_FILTERED_CHUNKS_3D_NCOLS)))); - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); - VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); - - if (data) HDfree(data); + if (data) + HDfree(data); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); /* Verify the correct data was written */ - read_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_SHARED_FILTERED_CHUNKS_3D_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, WRITE_SHARED_FILTERED_CHUNKS_3D_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -1785,10 +2930,11 @@ test_write_3d_filtered_dataset_overlap(void) * 02/10/2017 */ static void -test_write_cmpd_filtered_dataset_no_conversion_unshared(void) +test_write_cmpd_filtered_dataset_no_conversion_unshared(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - COMPOUND_C_DATATYPE *data = NULL; - COMPOUND_C_DATATYPE *read_buf = NULL; + COMPOUND_C_DATATYPE *data = NULL; + COMPOUND_C_DATATYPE *read_buf = NULL; COMPOUND_C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS]; hsize_t chunk_dims[WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS]; @@ -1798,85 +2944,92 @@ test_write_cmpd_filtered_dataset_no_conversion_unshared(void) hsize_t count[WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS]; hsize_t block[WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS]; size_t i, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1, memtype = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing write to unshared filtered chunks in Compound Datatype dataset without Datatype conversion"); - - CHECK_CUR_FILTER_AVAIL(); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID, + memtype = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); + if (MAINPROCESS) + HDputs("Testing write to unshared filtered chunks in Compound Datatype dataset without Datatype " + "conversion"); - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + /* SZIP and ScaleOffset filters don't support compound types */ + if (filter_id == H5Z_FILTER_SZIP || filter_id == H5Z_FILTER_SCALEOFFSET) { + if (MAINPROCESS) + SKIPPED(); + return; + } - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ dataset_dims[0] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NROWS; - dataset_dims[1] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NCOLS; - chunk_dims[0] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS; - chunk_dims[1] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS; - sel_dims[0] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS; - sel_dims[1] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC; - - filespace = H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS, dataset_dims, NULL); + dataset_dims[1] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NCOLS; + chunk_dims[0] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS; + chunk_dims[1] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS; + sel_dims[0] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS; + sel_dims[1] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC; + + filespace = H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS, + dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); - memspace = H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS, sel_dims, NULL); + memspace = + H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS, sel_dims, NULL); VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); - VRFY((H5Pset_chunk(plist_id, WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + VRFY((H5Pset_chunk(plist_id, WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS, + chunk_dims) >= 0), + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); /* Create the compound type for memory. */ memtype = H5Tcreate(H5T_COMPOUND, sizeof(COMPOUND_C_DATATYPE)); VRFY((memtype >= 0), "Datatype creation succeeded"); VRFY((H5Tinsert(memtype, "ShortData", HOFFSET(COMPOUND_C_DATATYPE, field1), H5T_NATIVE_SHORT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "IntData", HOFFSET(COMPOUND_C_DATATYPE, field2), H5T_NATIVE_INT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "LongData", HOFFSET(COMPOUND_C_DATATYPE, field3), H5T_NATIVE_LONG) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); - dset_id = H5Dcreate2(file_id, WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_NAME, memtype, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_NAME, + memtype, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ - count[0] = 1; - count[1] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC; + count[0] = 1; + count[1] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC; stride[0] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS; stride[1] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS; - block[0] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS; - block[1] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS; - start[0] = 0; - start[1] = ((hsize_t) mpi_rank * WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS); + block[0] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS; + block[1] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS; + start[0] = 0; + start[1] = ((hsize_t)mpi_rank * WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS); if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } @@ -1885,75 +3038,65 @@ test_write_cmpd_filtered_dataset_no_conversion_unshared(void) VRFY((filespace >= 0), "File dataspace retrieval succeeded"); VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); + "Hyperslab selection succeeded"); - data = (COMPOUND_C_DATATYPE *) HDcalloc(1, (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC * sizeof(*data)); + data = (COMPOUND_C_DATATYPE *)HDcalloc( + 1, (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC * sizeof(*data)); VRFY((NULL != data), "HDcalloc succeeded"); correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(COMPOUND_C_DATATYPE); - correct_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); /* Fill data buffer */ - for (i = 0; i < (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC; i++) { - data[i].field1 = (short) GEN_DATA(i); - data[i].field2 = (int) GEN_DATA(i); - data[i].field3 = (long) GEN_DATA(i); + for (i = 0; i < (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC; i++) { + data[i].field1 = (short)GEN_DATA(i); + data[i].field2 = (int)GEN_DATA(i); + data[i].field3 = (long)GEN_DATA(i); } for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) { - correct_buf[i].field1 = (short) ( - (i % dataset_dims[1]) - + (i / dataset_dims[1]) - ); - - correct_buf[i].field2 = (int) ( - (i % dataset_dims[1]) - + (i / dataset_dims[1]) - ); - - correct_buf[i].field3 = (long) ( - (i % dataset_dims[1]) - + (i / dataset_dims[1]) - ); - } + correct_buf[i].field1 = (short)((i % dataset_dims[1]) + (i / dataset_dims[1])); - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); + correct_buf[i].field2 = (int)((i % dataset_dims[1]) + (i / dataset_dims[1])); - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + correct_buf[i].field3 = (long)((i % dataset_dims[1]) + (i / dataset_dims[1])); + } - VRFY((H5Dwrite(dset_id, memtype, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); + VRFY((H5Dwrite(dset_id, memtype, memspace, filespace, dxpl_id, data) >= 0), "Dataset write succeeded"); - if (data) HDfree(data); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + if (data) + HDfree(data); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); /* Verify the correct data was written */ - read_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_NAME, H5P_DEFAULT); + dset_id = + H5Dopen2(group_id, WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - VRFY((H5Dread(dset_id, memtype, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, memtype, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); VRFY((H5Tclose(memtype) >= 0), "Datatype close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -1968,10 +3111,11 @@ test_write_cmpd_filtered_dataset_no_conversion_unshared(void) * 02/10/2017 */ static void -test_write_cmpd_filtered_dataset_no_conversion_shared(void) +test_write_cmpd_filtered_dataset_no_conversion_shared(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - COMPOUND_C_DATATYPE *data = NULL; - COMPOUND_C_DATATYPE *read_buf = NULL; + COMPOUND_C_DATATYPE *data = NULL; + COMPOUND_C_DATATYPE *read_buf = NULL; COMPOUND_C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS]; hsize_t chunk_dims[WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS]; @@ -1981,85 +3125,92 @@ test_write_cmpd_filtered_dataset_no_conversion_shared(void) hsize_t count[WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS]; hsize_t block[WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS]; size_t i, correct_buf_size; - hid_t file_id, dset_id, plist_id, memtype; - hid_t filespace, memspace; - - if (MAINPROCESS) HDputs("Testing write to shared filtered chunks in Compound Datatype dataset without Datatype conversion"); - - CHECK_CUR_FILTER_AVAIL(); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID, + memtype = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); + if (MAINPROCESS) + HDputs("Testing write to shared filtered chunks in Compound Datatype dataset without Datatype " + "conversion"); - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + /* SZIP and ScaleOffset filters don't support compound types */ + if (filter_id == H5Z_FILTER_SZIP || filter_id == H5Z_FILTER_SCALEOFFSET) { + if (MAINPROCESS) + SKIPPED(); + return; + } - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NROWS; - dataset_dims[1] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NCOLS; - chunk_dims[0] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS; - chunk_dims[1] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS; - sel_dims[0] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS / (hsize_t) mpi_size; - sel_dims[1] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC; - - filespace = H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS, dataset_dims, NULL); + dataset_dims[0] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NROWS; + dataset_dims[1] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NCOLS; + chunk_dims[0] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS; + chunk_dims[1] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS; + sel_dims[0] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS / (hsize_t)mpi_size; + sel_dims[1] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC; + + filespace = H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS, + dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); - memspace = H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS, sel_dims, NULL); + memspace = + H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS, sel_dims, NULL); VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); - VRFY((H5Pset_chunk(plist_id, WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + VRFY((H5Pset_chunk(plist_id, WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS, + chunk_dims) >= 0), + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); /* Create the compound type for memory. */ memtype = H5Tcreate(H5T_COMPOUND, sizeof(COMPOUND_C_DATATYPE)); VRFY((memtype >= 0), "Datatype creation succeeded"); VRFY((H5Tinsert(memtype, "ShortData", HOFFSET(COMPOUND_C_DATATYPE, field1), H5T_NATIVE_SHORT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "IntData", HOFFSET(COMPOUND_C_DATATYPE, field2), H5T_NATIVE_INT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "LongData", HOFFSET(COMPOUND_C_DATATYPE, field3), H5T_NATIVE_LONG) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); - dset_id = H5Dcreate2(file_id, WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_NAME, memtype, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_NAME, memtype, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ - count[0] = 1; - count[1] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC; - stride[0] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS; + count[0] = 1; + count[1] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC; + stride[0] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS; stride[1] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS; - block[0] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS / (hsize_t) mpi_size; - block[1] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS; - start[0] = (hsize_t) mpi_rank; - start[1] = 0; + block[0] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS / (hsize_t)mpi_size; + block[1] = WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS; + start[0] = (hsize_t)mpi_rank; + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } @@ -2068,78 +3219,71 @@ test_write_cmpd_filtered_dataset_no_conversion_shared(void) VRFY((filespace >= 0), "File dataspace retrieval succeeded"); VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); + "Hyperslab selection succeeded"); - data = (COMPOUND_C_DATATYPE *) HDcalloc(1, (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC * sizeof(*data)); + data = (COMPOUND_C_DATATYPE *)HDcalloc( + 1, (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC * sizeof(*data)); VRFY((NULL != data), "HDcalloc succeeded"); correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(COMPOUND_C_DATATYPE); - correct_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); /* Fill data buffer */ - for (i = 0; i < (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC; i++) { - data[i].field1 = (short) GEN_DATA(i); - data[i].field2 = (int) GEN_DATA(i); - data[i].field3 = (long) GEN_DATA(i); + for (i = 0; i < (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC; i++) { + data[i].field1 = (short)GEN_DATA(i); + data[i].field2 = (int)GEN_DATA(i); + data[i].field3 = (long)GEN_DATA(i); } for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) { - correct_buf[i].field1 = (short) ( - (dataset_dims[1] * (i / ((hsize_t) mpi_size * dataset_dims[1]))) - + (i % dataset_dims[1]) - + (((i % ((hsize_t) mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1]) - ); - - correct_buf[i].field2 = (int) ( - (dataset_dims[1] * (i / ((hsize_t) mpi_size * dataset_dims[1]))) - + (i % dataset_dims[1]) - + (((i % ((hsize_t) mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1]) - ); - - correct_buf[i].field3 = (long) ( - (dataset_dims[1] * (i / ((hsize_t) mpi_size * dataset_dims[1]))) - + (i % dataset_dims[1]) - + (((i % ((hsize_t) mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1]) - ); - } + correct_buf[i].field1 = + (short)((dataset_dims[1] * (i / ((hsize_t)mpi_size * dataset_dims[1]))) + (i % dataset_dims[1]) + + (((i % ((hsize_t)mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1])); - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); + correct_buf[i].field2 = + (int)((dataset_dims[1] * (i / ((hsize_t)mpi_size * dataset_dims[1]))) + (i % dataset_dims[1]) + + (((i % ((hsize_t)mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1])); + + correct_buf[i].field3 = + (long)((dataset_dims[1] * (i / ((hsize_t)mpi_size * dataset_dims[1]))) + (i % dataset_dims[1]) + + (((i % ((hsize_t)mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1])); + } - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + VRFY((H5Dwrite(dset_id, memtype, memspace, filespace, dxpl_id, data) >= 0), "Dataset write succeeded"); - VRFY((H5Dwrite(dset_id, memtype, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); - if (data) HDfree(data); + if (data) + HDfree(data); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); /* Verify the correct data was written */ - read_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_NAME, H5P_DEFAULT); + dset_id = + H5Dopen2(group_id, WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - VRFY((H5Dread(dset_id, memtype, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, memtype, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); VRFY((H5Tclose(memtype) >= 0), "Datatype close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -2150,19 +3294,21 @@ test_write_cmpd_filtered_dataset_no_conversion_shared(void) * chunks using a compound datatype which requires a * datatype conversion. * - * NOTE: This test currently should fail because the - * datatype conversion causes the parallel library to - * break to independent I/O and this isn't allowed when - * there are filters in the pipeline. + * NOTE: This test currently should fail for mpi_size > 1 + * because the datatype conversion causes the parallel + * library to break to independent I/O and this isn't + * allowed when there are filters in the pipeline, + * unless there is only one MPI rank. * * Programmer: Jordan Henderson * 02/07/2017 */ static void -test_write_cmpd_filtered_dataset_type_conversion_unshared(void) +test_write_cmpd_filtered_dataset_type_conversion_unshared(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - COMPOUND_C_DATATYPE *data = NULL; - COMPOUND_C_DATATYPE *read_buf = NULL; + COMPOUND_C_DATATYPE *data = NULL; + COMPOUND_C_DATATYPE *read_buf = NULL; COMPOUND_C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS]; hsize_t chunk_dims[WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS]; @@ -2172,96 +3318,106 @@ test_write_cmpd_filtered_dataset_type_conversion_unshared(void) hsize_t count[WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS]; hsize_t block[WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS]; size_t i, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1, filetype = -1, memtype = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing write to unshared filtered chunks in Compound Datatype dataset with Datatype conversion"); - - CHECK_CUR_FILTER_AVAIL(); - - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID, + filetype = H5I_INVALID_HID, memtype = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs("Testing write to unshared filtered chunks in Compound Datatype dataset with Datatype " + "conversion"); + + /* Skip for MPI communicator size of 1 */ + if (mpi_size == 1) { + SKIPPED(); + return; + } - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + /* SZIP and ScaleOffset filters don't support compound types */ + if (filter_id == H5Z_FILTER_SZIP || filter_id == H5Z_FILTER_SCALEOFFSET) { + if (MAINPROCESS) + SKIPPED(); + return; + } - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ dataset_dims[0] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NROWS; - dataset_dims[1] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NCOLS; - chunk_dims[0] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS; - chunk_dims[1] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS; - sel_dims[0] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS; - sel_dims[1] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC; - - filespace = H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS, dataset_dims, NULL); + dataset_dims[1] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NCOLS; + chunk_dims[0] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS; + chunk_dims[1] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS; + sel_dims[0] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS; + sel_dims[1] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC; + + filespace = H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS, + dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); - memspace = H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS, sel_dims, NULL); + memspace = H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS, + sel_dims, NULL); VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); - VRFY((H5Pset_chunk(plist_id, WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + VRFY((H5Pset_chunk(plist_id, WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS, + chunk_dims) >= 0), + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); /* Create the compound type for memory. */ memtype = H5Tcreate(H5T_COMPOUND, sizeof(COMPOUND_C_DATATYPE)); VRFY((memtype >= 0), "Datatype creation succeeded"); VRFY((H5Tinsert(memtype, "ShortData", HOFFSET(COMPOUND_C_DATATYPE, field1), H5T_NATIVE_SHORT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "IntData", HOFFSET(COMPOUND_C_DATATYPE, field2), H5T_NATIVE_INT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "LongData", HOFFSET(COMPOUND_C_DATATYPE, field3), H5T_NATIVE_LONG) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); /* Create the compound type for file. */ filetype = H5Tcreate(H5T_COMPOUND, 32); VRFY((filetype >= 0), "Datatype creation succeeded"); - VRFY((H5Tinsert(filetype, "ShortData", 0, H5T_STD_I64BE) >= 0), - "Datatype insertion succeeded"); - VRFY((H5Tinsert(filetype, "IntData", 8, H5T_STD_I64BE) >= 0), - "Datatype insertion succeeded"); - VRFY((H5Tinsert(filetype, "LongData", 16, H5T_STD_I64BE) >= 0), - "Datatype insertion succeeded"); + VRFY((H5Tinsert(filetype, "ShortData", 0, H5T_STD_I64BE) >= 0), "Datatype insertion succeeded"); + VRFY((H5Tinsert(filetype, "IntData", 8, H5T_STD_I64BE) >= 0), "Datatype insertion succeeded"); + VRFY((H5Tinsert(filetype, "LongData", 16, H5T_STD_I64BE) >= 0), "Datatype insertion succeeded"); - dset_id = H5Dcreate2(file_id, WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_NAME, filetype, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_NAME, + filetype, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ - count[0] = 1; - count[1] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC; + count[0] = 1; + count[1] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC; stride[0] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS; stride[1] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS; - block[0] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS; - block[1] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS; - start[0] = 0; - start[1] = ((hsize_t) mpi_rank * WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS); + block[0] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS; + block[1] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS; + start[0] = 0; + start[1] = ((hsize_t)mpi_rank * WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS); if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } @@ -2270,62 +3426,63 @@ test_write_cmpd_filtered_dataset_type_conversion_unshared(void) VRFY((filespace >= 0), "File dataspace retrieval succeeded"); VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); + "Hyperslab selection succeeded"); - data = (COMPOUND_C_DATATYPE *) HDcalloc(1, (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC * sizeof(*data)); + data = (COMPOUND_C_DATATYPE *)HDcalloc( + 1, (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC * sizeof(*data)); VRFY((NULL != data), "HDcalloc succeeded"); correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(COMPOUND_C_DATATYPE); - correct_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); /* Fill data buffer */ - for (i = 0; i < (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC; i++) { - data[i].field1 = (short) GEN_DATA(i); - data[i].field2 = (int) GEN_DATA(i); - data[i].field3 = (long) GEN_DATA(i); + for (i = 0; i < (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC; i++) { + data[i].field1 = (short)GEN_DATA(i); + data[i].field2 = (int)GEN_DATA(i); + data[i].field3 = (long)GEN_DATA(i); } - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); - /* Ensure that this test currently fails since type conversions break collective mode */ - H5E_BEGIN_TRY { - VRFY((H5Dwrite(dset_id, memtype, memspace, filespace, plist_id, data) < 0), - "Dataset write succeeded"); - } H5E_END_TRY; + H5E_BEGIN_TRY + { + VRFY((H5Dwrite(dset_id, memtype, memspace, filespace, dxpl_id, data) < 0), "Dataset write succeeded"); + } + H5E_END_TRY; + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, NO_CHUNKS_WRITTEN); - if (data) HDfree(data); + if (data) + HDfree(data); /* Verify that no data was written */ VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); - read_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_NAME, H5P_DEFAULT); + dset_id = + H5Dopen2(group_id, WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - VRFY((H5Dread(dset_id, memtype, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, memtype, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); VRFY((H5Tclose(filetype) >= 0), "File datatype close succeeded"); VRFY((H5Tclose(memtype) >= 0), "Memory datatype close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -2336,19 +3493,21 @@ test_write_cmpd_filtered_dataset_type_conversion_unshared(void) * chunks using a compound datatype which requires * a datatype conversion. * - * NOTE: This test currently should fail because the - * datatype conversion causes the parallel library to - * break to independent I/O and this isn't allowed when - * there are filters in the pipeline. + * NOTE: This test currently should fail for mpi_size > 1 + * because the datatype conversion causes the parallel + * library to break to independent I/O and this isn't + * allowed when there are filters in the pipeline, + * unless there is only one MPI rank. * * Programmer: Jordan Henderson * 02/10/2017 */ static void -test_write_cmpd_filtered_dataset_type_conversion_shared(void) +test_write_cmpd_filtered_dataset_type_conversion_shared(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - COMPOUND_C_DATATYPE *data = NULL; - COMPOUND_C_DATATYPE *read_buf = NULL; + COMPOUND_C_DATATYPE *data = NULL; + COMPOUND_C_DATATYPE *read_buf = NULL; COMPOUND_C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS]; hsize_t chunk_dims[WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS]; @@ -2358,96 +3517,106 @@ test_write_cmpd_filtered_dataset_type_conversion_shared(void) hsize_t count[WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS]; hsize_t block[WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS]; size_t i, correct_buf_size; - hid_t file_id, dset_id, plist_id, filetype, memtype; - hid_t filespace, memspace; - - if (MAINPROCESS) HDputs("Testing write to shared filtered chunks in Compound Datatype dataset with Datatype conversion"); - - CHECK_CUR_FILTER_AVAIL(); - - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t filetype = H5I_INVALID_HID, memtype = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs( + "Testing write to shared filtered chunks in Compound Datatype dataset with Datatype conversion"); + + /* Skip for MPI communicator size of 1 */ + if (mpi_size == 1) { + SKIPPED(); + return; + } - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + /* SZIP and ScaleOffset filters don't support compound types */ + if (filter_id == H5Z_FILTER_SZIP || filter_id == H5Z_FILTER_SCALEOFFSET) { + if (MAINPROCESS) + SKIPPED(); + return; + } - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NROWS; - dataset_dims[1] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NCOLS; - chunk_dims[0] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS; - chunk_dims[1] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS; - sel_dims[0] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS / (hsize_t) mpi_size; - sel_dims[1] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC; - - filespace = H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS, dataset_dims, NULL); + dataset_dims[0] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NROWS; + dataset_dims[1] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NCOLS; + chunk_dims[0] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS; + chunk_dims[1] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS; + sel_dims[0] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS / (hsize_t)mpi_size; + sel_dims[1] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC; + + filespace = H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS, + dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); - memspace = H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS, sel_dims, NULL); + memspace = + H5Screate_simple(WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS, sel_dims, NULL); VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); - VRFY((H5Pset_chunk(plist_id, WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + VRFY((H5Pset_chunk(plist_id, WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS, + chunk_dims) >= 0), + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); /* Create the compound type for memory. */ memtype = H5Tcreate(H5T_COMPOUND, sizeof(COMPOUND_C_DATATYPE)); VRFY((memtype >= 0), "Datatype creation succeeded"); VRFY((H5Tinsert(memtype, "ShortData", HOFFSET(COMPOUND_C_DATATYPE, field1), H5T_NATIVE_SHORT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "IntData", HOFFSET(COMPOUND_C_DATATYPE, field2), H5T_NATIVE_INT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "LongData", HOFFSET(COMPOUND_C_DATATYPE, field3), H5T_NATIVE_LONG) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); /* Create the compound type for file. */ filetype = H5Tcreate(H5T_COMPOUND, 32); VRFY((filetype >= 0), "Datatype creation succeeded"); - VRFY((H5Tinsert(filetype, "ShortData", 0, H5T_STD_I64BE) >= 0), - "Datatype insertion succeeded"); - VRFY((H5Tinsert(filetype, "IntData", 8, H5T_STD_I64BE) >= 0), - "Datatype insertion succeeded"); - VRFY((H5Tinsert(filetype, "LongData", 16, H5T_STD_I64BE) >= 0), - "Datatype insertion succeeded"); + VRFY((H5Tinsert(filetype, "ShortData", 0, H5T_STD_I64BE) >= 0), "Datatype insertion succeeded"); + VRFY((H5Tinsert(filetype, "IntData", 8, H5T_STD_I64BE) >= 0), "Datatype insertion succeeded"); + VRFY((H5Tinsert(filetype, "LongData", 16, H5T_STD_I64BE) >= 0), "Datatype insertion succeeded"); - dset_id = H5Dcreate2(file_id, WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_NAME, filetype, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_NAME, + filetype, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ - count[0] = 1; - count[1] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC; - stride[0] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS; + count[0] = 1; + count[1] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC; + stride[0] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS; stride[1] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS; - block[0] = (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS / (hsize_t) mpi_size; - block[1] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS; - start[0] = (hsize_t) mpi_rank; - start[1] = 0; + block[0] = (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS / (hsize_t)mpi_size; + block[1] = WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS; + start[0] = (hsize_t)mpi_rank; + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } @@ -2456,62 +3625,63 @@ test_write_cmpd_filtered_dataset_type_conversion_shared(void) VRFY((filespace >= 0), "File dataspace retrieval succeeded"); VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); + "Hyperslab selection succeeded"); - data = (COMPOUND_C_DATATYPE *) HDcalloc(1, (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC * sizeof(*data)); + data = (COMPOUND_C_DATATYPE *)HDcalloc( + 1, (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC * sizeof(*data)); VRFY((NULL != data), "HDcalloc succeeded"); correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(COMPOUND_C_DATATYPE); - correct_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); /* Fill data buffer */ - for (i = 0; i < (hsize_t) WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC; i++) { - data[i].field1 = (short) GEN_DATA(i); - data[i].field2 = (int) GEN_DATA(i); - data[i].field3 = (long) GEN_DATA(i); + for (i = 0; i < (hsize_t)WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC; i++) { + data[i].field1 = (short)GEN_DATA(i); + data[i].field2 = (int)GEN_DATA(i); + data[i].field3 = (long)GEN_DATA(i); } - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); - /* Ensure that this test currently fails since type conversions break collective mode */ - H5E_BEGIN_TRY { - VRFY((H5Dwrite(dset_id, memtype, memspace, filespace, plist_id, data) < 0), - "Dataset write succeeded"); - } H5E_END_TRY; + H5E_BEGIN_TRY + { + VRFY((H5Dwrite(dset_id, memtype, memspace, filespace, dxpl_id, data) < 0), "Dataset write succeeded"); + } + H5E_END_TRY; - if (data) HDfree(data); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, NO_CHUNKS_WRITTEN); + + if (data) + HDfree(data); /* Verify that no data was written */ VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); - read_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_NAME, H5P_DEFAULT); + dset_id = + H5Dopen2(group_id, WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - VRFY((H5Dread(dset_id, memtype, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, memtype, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); VRFY((H5Tclose(filetype) >= 0), "File datatype close succeeded"); VRFY((H5Tclose(memtype) >= 0), "Memory datatype close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -2531,11 +3701,12 @@ test_write_cmpd_filtered_dataset_type_conversion_shared(void) * 05/14/2018 */ static void -test_read_one_chunk_filtered_dataset(void) +test_read_one_chunk_filtered_dataset(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *read_buf = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; - C_DATATYPE *global_buf = NULL; + C_DATATYPE *global_buf = NULL; hsize_t dataset_dims[READ_ONE_CHUNK_FILTERED_DATASET_DIMS]; hsize_t chunk_dims[READ_ONE_CHUNK_FILTERED_DATASET_DIMS]; hsize_t sel_dims[READ_ONE_CHUNK_FILTERED_DATASET_DIMS]; @@ -2545,91 +3716,94 @@ test_read_one_chunk_filtered_dataset(void) hsize_t block[READ_ONE_CHUNK_FILTERED_DATASET_DIMS]; hsize_t flat_dims[1]; size_t i, read_buf_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - int *recvcounts = NULL; - int *displs = NULL; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; - if (MAINPROCESS) HDputs("Testing read from one-chunk filtered dataset"); + if (MAINPROCESS) + HDputs("Testing read from one-chunk filtered dataset"); - CHECK_CUR_FILTER_AVAIL(); - - dataset_dims[0] = (hsize_t) READ_ONE_CHUNK_FILTERED_DATASET_NROWS; - dataset_dims[1] = (hsize_t) READ_ONE_CHUNK_FILTERED_DATASET_NCOLS; + dataset_dims[0] = (hsize_t)READ_ONE_CHUNK_FILTERED_DATASET_NROWS; + dataset_dims[1] = (hsize_t)READ_ONE_CHUNK_FILTERED_DATASET_NCOLS; /* Setup the buffer for writing and for comparison */ correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = ((C_DATATYPE) i % (READ_ONE_CHUNK_FILTERED_DATASET_CH_NROWS / mpi_size * READ_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS)) - + ((C_DATATYPE) i / (READ_ONE_CHUNK_FILTERED_DATASET_CH_NROWS / mpi_size * READ_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS)); + correct_buf[i] = ((C_DATATYPE)i % (READ_ONE_CHUNK_FILTERED_DATASET_CH_NROWS / mpi_size * + READ_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS)) + + ((C_DATATYPE)i / (READ_ONE_CHUNK_FILTERED_DATASET_CH_NROWS / mpi_size * + READ_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS)); if (MAINPROCESS) { plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ filespace = H5Screate_simple(READ_ONE_CHUNK_FILTERED_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ - chunk_dims[0] = (hsize_t) READ_ONE_CHUNK_FILTERED_DATASET_CH_NROWS; - chunk_dims[1] = (hsize_t) READ_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS; + chunk_dims[0] = (hsize_t)READ_ONE_CHUNK_FILTERED_DATASET_CH_NROWS; + chunk_dims[1] = (hsize_t)READ_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, READ_ONE_CHUNK_FILTERED_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, READ_ONE_CHUNK_FILTERED_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, READ_ONE_CHUNK_FILTERED_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" READ_ONE_CHUNK_FILTERED_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, READ_ONE_CHUNK_FILTERED_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - sel_dims[0] = (hsize_t) READ_ONE_CHUNK_FILTERED_DATASET_NROWS / (hsize_t) mpi_size; - sel_dims[1] = (hsize_t) READ_ONE_CHUNK_FILTERED_DATASET_NCOLS; + sel_dims[0] = (hsize_t)READ_ONE_CHUNK_FILTERED_DATASET_NROWS / (hsize_t)mpi_size; + sel_dims[1] = (hsize_t)READ_ONE_CHUNK_FILTERED_DATASET_NCOLS; /* Setup one-dimensional memory dataspace for reading the dataset data into a contiguous buffer */ flat_dims[0] = sel_dims[0] * sel_dims[1]; @@ -2645,71 +3819,71 @@ test_read_one_chunk_filtered_dataset(void) * Each process defines the dataset selection in the file and * reads it to the selection in memory */ - count[0] = 1; - count[1] = 1; - stride[0] = (hsize_t) READ_ONE_CHUNK_FILTERED_DATASET_CH_NROWS; - stride[1] = (hsize_t) READ_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS; - block[0] = sel_dims[0]; - block[1] = sel_dims[1]; - start[0] = ((hsize_t) mpi_rank * sel_dims[0]); - start[1] = 0; + count[0] = 1; + count[1] = 1; + stride[0] = (hsize_t)READ_ONE_CHUNK_FILTERED_DATASET_CH_NROWS; + stride[1] = (hsize_t)READ_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS; + block[0] = sel_dims[0]; + block[1] = sel_dims[1]; + start[0] = ((hsize_t)mpi_rank * sel_dims[0]); + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is reading with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is reading with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); - - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + "Hyperslab selection succeeded"); read_buf_size = flat_dims[0] * sizeof(*read_buf); - read_buf = (C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - global_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + global_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != global_buf), "HDcalloc succeeded"); /* Collect each piece of data from all ranks into a global buffer on all ranks */ - recvcounts = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*recvcounts)); + recvcounts = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); VRFY((NULL != recvcounts), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - recvcounts[i] = (int) flat_dims[0]; + for (i = 0; i < (size_t)mpi_size; i++) + recvcounts[i] = (int)flat_dims[0]; - displs = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*displs)); + displs = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); VRFY((NULL != displs), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - displs[i] = (int) (i * flat_dims[0]); + for (i = 0; i < (size_t)mpi_size; i++) + displs[i] = (int)(i * flat_dims[0]); - VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int) flat_dims[0], C_DATATYPE_MPI, global_buf, recvcounts, displs, C_DATATYPE_MPI, comm)), - "MPI_Allgatherv succeeded"); + VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int)flat_dims[0], C_DATATYPE_MPI, global_buf, recvcounts, + displs, C_DATATYPE_MPI, comm)), + "MPI_Allgatherv succeeded"); - VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (displs) HDfree(displs); - if (recvcounts) HDfree(recvcounts); - if (global_buf) HDfree(global_buf); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -2728,11 +3902,12 @@ test_read_one_chunk_filtered_dataset(void) * 05/15/2018 */ static void -test_read_filtered_dataset_no_overlap(void) +test_read_filtered_dataset_no_overlap(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *read_buf = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; - C_DATATYPE *global_buf = NULL; + C_DATATYPE *global_buf = NULL; hsize_t dataset_dims[READ_UNSHARED_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t chunk_dims[READ_UNSHARED_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t sel_dims[READ_UNSHARED_FILTERED_CHUNKS_DATASET_DIMS]; @@ -2742,93 +3917,93 @@ test_read_filtered_dataset_no_overlap(void) hsize_t block[READ_UNSHARED_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t flat_dims[1]; size_t i, read_buf_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - int *recvcounts = NULL; - int *displs = NULL; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; - if (MAINPROCESS) HDputs("Testing read from unshared filtered chunks"); + if (MAINPROCESS) + HDputs("Testing read from unshared filtered chunks"); - CHECK_CUR_FILTER_AVAIL(); - - dataset_dims[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_NROWS; - dataset_dims[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_NCOLS; + dataset_dims[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_NCOLS; /* Setup the buffer for writing and for comparison */ - correct_buf_size = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_NROWS * (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_NCOLS * sizeof(*correct_buf); + correct_buf_size = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_NROWS * + (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_NCOLS * sizeof(*correct_buf); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = (C_DATATYPE) ( - (i % (dataset_dims[0] / (hsize_t) mpi_size * dataset_dims[1])) - + (i / (dataset_dims[0] / (hsize_t) mpi_size * dataset_dims[1])) - ); + correct_buf[i] = (C_DATATYPE)((i % (dataset_dims[0] / (hsize_t)mpi_size * dataset_dims[1])) + + (i / (dataset_dims[0] / (hsize_t)mpi_size * dataset_dims[1]))); if (MAINPROCESS) { plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ filespace = H5Screate_simple(READ_UNSHARED_FILTERED_CHUNKS_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ - chunk_dims[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_CH_NROWS; - chunk_dims[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; + chunk_dims[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, READ_UNSHARED_FILTERED_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, READ_UNSHARED_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, READ_UNSHARED_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" READ_UNSHARED_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, READ_UNSHARED_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - sel_dims[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_CH_NROWS; - sel_dims[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_NCOLS; + sel_dims[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_CH_NROWS; + sel_dims[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_NCOLS; /* Setup one-dimensional memory dataspace for reading the dataset data into a contiguous buffer */ flat_dims[0] = sel_dims[0] * sel_dims[1]; @@ -2845,70 +4020,70 @@ test_read_filtered_dataset_no_overlap(void) * it to the selection in memory */ count[0] = 1; - count[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_NCOLS / (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; - stride[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_CH_NROWS; - stride[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; - block[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_CH_NROWS; - block[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; - start[0] = ((hsize_t) mpi_rank * (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_CH_NROWS * count[0]); - start[1] = 0; + count[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_NCOLS / (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; + stride[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_CH_NROWS; + stride[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; + block[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_CH_NROWS; + block[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_CH_NCOLS; + start[0] = ((hsize_t)mpi_rank * (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_CH_NROWS * count[0]); + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is reading with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is reading with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); - - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + "Hyperslab selection succeeded"); read_buf_size = flat_dims[0] * sizeof(*read_buf); - read_buf = (C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - global_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + global_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != global_buf), "HDcalloc succeeded"); /* Collect each piece of data from all ranks into a global buffer on all ranks */ - recvcounts = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*recvcounts)); + recvcounts = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); VRFY((NULL != recvcounts), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - recvcounts[i] = (int) flat_dims[0]; + for (i = 0; i < (size_t)mpi_size; i++) + recvcounts[i] = (int)flat_dims[0]; - displs = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*displs)); + displs = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); VRFY((NULL != displs), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - displs[i] = (int) (i * flat_dims[0]); + for (i = 0; i < (size_t)mpi_size; i++) + displs[i] = (int)(i * flat_dims[0]); - VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int) flat_dims[0], C_DATATYPE_MPI, global_buf, recvcounts, displs, C_DATATYPE_MPI, comm)), - "MPI_Allgatherv succeeded"); + VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int)flat_dims[0], C_DATATYPE_MPI, global_buf, recvcounts, + displs, C_DATATYPE_MPI, comm)), + "MPI_Allgatherv succeeded"); - VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (displs) HDfree(displs); - if (recvcounts) HDfree(recvcounts); - if (global_buf) HDfree(global_buf); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -2928,11 +4103,12 @@ test_read_filtered_dataset_no_overlap(void) * 05/15/2018 */ static void -test_read_filtered_dataset_overlap(void) +test_read_filtered_dataset_overlap(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *read_buf = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; - C_DATATYPE *global_buf = NULL; + C_DATATYPE *global_buf = NULL; hsize_t dataset_dims[READ_SHARED_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t chunk_dims[READ_SHARED_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t sel_dims[READ_SHARED_FILTERED_CHUNKS_DATASET_DIMS]; @@ -2942,94 +4118,93 @@ test_read_filtered_dataset_overlap(void) hsize_t block[READ_SHARED_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t flat_dims[1]; size_t i, read_buf_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - int *recvcounts = NULL; - int *displs = NULL; - - if (MAINPROCESS) HDputs("Testing read from shared filtered chunks"); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; - CHECK_CUR_FILTER_AVAIL(); + if (MAINPROCESS) + HDputs("Testing read from shared filtered chunks"); - dataset_dims[0] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_NROWS; - dataset_dims[1] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_NCOLS; + dataset_dims[0] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_NCOLS; /* Setup the buffer for writing and for comparison */ correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = (C_DATATYPE) ( - (dataset_dims[1] * (i / ((hsize_t) mpi_size * dataset_dims[1]))) - + (i % dataset_dims[1]) - + (((i % ((hsize_t) mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1]) - ); + correct_buf[i] = (C_DATATYPE)( + (dataset_dims[1] * (i / ((hsize_t)mpi_size * dataset_dims[1]))) + (i % dataset_dims[1]) + + (((i % ((hsize_t)mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1])); if (MAINPROCESS) { plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ filespace = H5Screate_simple(READ_SHARED_FILTERED_CHUNKS_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ - chunk_dims[0] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_CH_NROWS; - chunk_dims[1] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_CH_NCOLS; + chunk_dims[0] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_CH_NCOLS; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, READ_SHARED_FILTERED_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, READ_SHARED_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, READ_SHARED_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" READ_SHARED_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, READ_SHARED_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - sel_dims[0] = (hsize_t) DIM0_SCALE_FACTOR; - sel_dims[1] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_CH_NCOLS * (hsize_t) DIM1_SCALE_FACTOR; + sel_dims[0] = (hsize_t)DIM0_SCALE_FACTOR; + sel_dims[1] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_CH_NCOLS * (hsize_t)DIM1_SCALE_FACTOR; /* Setup one-dimensional memory dataspace for reading the dataset data into a contiguous buffer */ flat_dims[0] = sel_dims[0] * sel_dims[1]; @@ -3045,40 +4220,35 @@ test_read_filtered_dataset_overlap(void) * Each process defines the dataset selection in the file and * reads it to the selection in memory */ - count[0] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_NROWS / (hsize_t) READ_SHARED_FILTERED_CHUNKS_CH_NROWS; - count[1] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_NCOLS / (hsize_t) READ_SHARED_FILTERED_CHUNKS_CH_NCOLS; - stride[0] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_CH_NROWS; - stride[1] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_CH_NCOLS; - block[0] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_CH_NROWS / (hsize_t) mpi_size; - block[1] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_CH_NCOLS; - start[0] = (hsize_t) mpi_rank * block[0]; - start[1] = 0; + count[0] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_NROWS / (hsize_t)READ_SHARED_FILTERED_CHUNKS_CH_NROWS; + count[1] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_NCOLS / (hsize_t)READ_SHARED_FILTERED_CHUNKS_CH_NCOLS; + stride[0] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_CH_NROWS; + stride[1] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_CH_NCOLS; + block[0] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_CH_NROWS / (hsize_t)mpi_size; + block[1] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_CH_NCOLS; + start[0] = (hsize_t)mpi_rank * block[0]; + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is reading with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is reading with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); - - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + "Hyperslab selection succeeded"); read_buf_size = flat_dims[0] * sizeof(*read_buf); - read_buf = (C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - global_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + global_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != global_buf), "HDcalloc succeeded"); /* @@ -3088,43 +4258,49 @@ test_read_filtered_dataset_overlap(void) * of chunks in the first dimension of the dataset. */ { - size_t loop_count = count[0]; + size_t loop_count = count[0]; size_t total_recvcounts = 0; - recvcounts = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*recvcounts)); + recvcounts = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); VRFY((NULL != recvcounts), "HDcalloc succeeded"); - displs = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*displs)); + displs = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); VRFY((NULL != displs), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) { - recvcounts[i] = (int) dataset_dims[1]; - total_recvcounts += (size_t) recvcounts[i]; + for (i = 0; i < (size_t)mpi_size; i++) { + recvcounts[i] = (int)dataset_dims[1]; + total_recvcounts += (size_t)recvcounts[i]; } - for (i = 0; i < (size_t) mpi_size; i++) - displs[i] = (int) (i * dataset_dims[1]); + for (i = 0; i < (size_t)mpi_size; i++) + displs[i] = (int)(i * dataset_dims[1]); for (; loop_count; loop_count--) { - VRFY((MPI_SUCCESS == MPI_Allgatherv(&read_buf[(count[0] - loop_count) * dataset_dims[1]], recvcounts[mpi_rank], C_DATATYPE_MPI, - &global_buf[(count[0] - loop_count) * total_recvcounts], recvcounts, displs, C_DATATYPE_MPI, comm)), - "MPI_Allgatherv succeeded"); + VRFY((MPI_SUCCESS == MPI_Allgatherv(&read_buf[(count[0] - loop_count) * dataset_dims[1]], + recvcounts[mpi_rank], C_DATATYPE_MPI, + &global_buf[(count[0] - loop_count) * total_recvcounts], + recvcounts, displs, C_DATATYPE_MPI, comm)), + "MPI_Allgatherv succeeded"); } } - VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (displs) HDfree(displs); - if (recvcounts) HDfree(recvcounts); - if (global_buf) HDfree(global_buf); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -3144,11 +4320,12 @@ test_read_filtered_dataset_overlap(void) * 05/15/2018 */ static void -test_read_filtered_dataset_single_no_selection(void) +test_read_filtered_dataset_single_no_selection(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *read_buf = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; - C_DATATYPE *global_buf = NULL; + C_DATATYPE *global_buf = NULL; hsize_t dataset_dims[READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t chunk_dims[READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t sel_dims[READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; @@ -3159,99 +4336,98 @@ test_read_filtered_dataset_single_no_selection(void) hsize_t flat_dims[1]; size_t i, read_buf_size, correct_buf_size; size_t segment_length; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - int *recvcounts = NULL; - int *displs = NULL; - - if (MAINPROCESS) HDputs("Testing read from filtered chunks with a single process having no selection"); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; - CHECK_CUR_FILTER_AVAIL(); + if (MAINPROCESS) + HDputs("Testing read from filtered chunks with a single process having no selection"); - dataset_dims[0] = (hsize_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NROWS; - dataset_dims[1] = (hsize_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS; + dataset_dims[0] = (hsize_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS; /* Setup the buffer for writing and for comparison */ correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = - (C_DATATYPE) ( - (i % (dataset_dims[0] / (hsize_t) mpi_size * dataset_dims[1])) - + (i / (dataset_dims[0] / (hsize_t) mpi_size * dataset_dims[1])) - ); + correct_buf[i] = (C_DATATYPE)((i % (dataset_dims[0] / (hsize_t)mpi_size * dataset_dims[1])) + + (i / (dataset_dims[0] / (hsize_t)mpi_size * dataset_dims[1]))); /* Compute the correct offset into the buffer for the process having no selection and clear it */ - segment_length = dataset_dims[0] * dataset_dims[1] / (hsize_t) mpi_size; - HDmemset(correct_buf + ((size_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NO_SELECT_PROC * segment_length), - 0, segment_length * sizeof(*correct_buf)); + segment_length = dataset_dims[0] * dataset_dims[1] / (hsize_t)mpi_size; + HDmemset(correct_buf + ((size_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NO_SELECT_PROC * segment_length), + 0, segment_length * sizeof(*correct_buf)); if (MAINPROCESS) { plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ - filespace = H5Screate_simple(READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, dataset_dims, NULL); + filespace = + H5Screate_simple(READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ - chunk_dims[0] = (hsize_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; - chunk_dims[1] = (hsize_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; + chunk_dims[0] = (hsize_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, + HDF5_DATATYPE_NAME, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - sel_dims[0] = (hsize_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; - sel_dims[1] = (hsize_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS; + sel_dims[0] = (hsize_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; + sel_dims[1] = (hsize_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS; if (mpi_rank == READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NO_SELECT_PROC) sel_dims[0] = sel_dims[1] = 0; @@ -3271,17 +4447,20 @@ test_read_filtered_dataset_single_no_selection(void) * reads it to the selection in memory */ count[0] = 1; - count[1] = (hsize_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS / (hsize_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; - stride[0] = (hsize_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; - stride[1] = (hsize_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; - block[0] = (hsize_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; - block[1] = (hsize_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; - start[0] = (hsize_t) mpi_rank * (hsize_t) READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * count[0]; - start[1] = 0; + count[1] = (hsize_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS / + (hsize_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; + stride[0] = (hsize_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; + stride[1] = (hsize_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; + block[0] = (hsize_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; + block[1] = (hsize_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; + start[0] = (hsize_t)mpi_rank * (hsize_t)READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * count[0]; + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is reading with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is reading with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } @@ -3289,60 +4468,67 @@ test_read_filtered_dataset_single_no_selection(void) VRFY((H5Sselect_none(filespace) >= 0), "Select none succeeded"); else VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); - - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + "Hyperslab selection succeeded"); read_buf_size = flat_dims[0] * sizeof(*read_buf); - read_buf = (C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + if (mpi_rank == READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NO_SELECT_PROC) { + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, NULL) >= 0), + "Dataset read succeeded"); + } + else { + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + } - global_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + global_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != global_buf), "HDcalloc succeeded"); /* Collect each piece of data from all ranks into a global buffer on all ranks */ - recvcounts = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*recvcounts)); + recvcounts = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); VRFY((NULL != recvcounts), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - recvcounts[i] = (int) (READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS); + for (i = 0; i < (size_t)mpi_size; i++) + recvcounts[i] = (int)(READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * + READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS); recvcounts[READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NO_SELECT_PROC] = 0; - displs = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*displs)); + displs = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); VRFY((NULL != displs), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - displs[i] = (int) (i * (size_t) (READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS)); + for (i = 0; i < (size_t)mpi_size; i++) + displs[i] = (int)(i * (size_t)(READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * + READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS)); if (mpi_rank == READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NO_SELECT_PROC) - VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, 0, C_DATATYPE_MPI, global_buf, recvcounts, displs, C_DATATYPE_MPI, comm)), - "MPI_Allgatherv succeeded"); + VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, 0, C_DATATYPE_MPI, global_buf, recvcounts, displs, + C_DATATYPE_MPI, comm)), + "MPI_Allgatherv succeeded"); else - VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int) flat_dims[0], C_DATATYPE_MPI, global_buf, recvcounts, displs, C_DATATYPE_MPI, comm)), - "MPI_Allgatherv succeeded"); - - VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); - - if (displs) HDfree(displs); - if (recvcounts) HDfree(recvcounts); - if (global_buf) HDfree(global_buf); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int)flat_dims[0], C_DATATYPE_MPI, global_buf, + recvcounts, displs, C_DATATYPE_MPI, comm)), + "MPI_Allgatherv succeeded"); + + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); + + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -3363,28 +4549,29 @@ test_read_filtered_dataset_single_no_selection(void) * 05/15/2018 */ static void -test_read_filtered_dataset_all_no_selection(void) +test_read_filtered_dataset_all_no_selection(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *read_buf = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[READ_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t chunk_dims[READ_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t sel_dims[READ_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; size_t read_buf_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing read from filtered chunks with all processes having no selection"); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - CHECK_CUR_FILTER_AVAIL(); + if (MAINPROCESS) + HDputs("Testing read from filtered chunks with all processes having no selection"); - dataset_dims[0] = (hsize_t) READ_ALL_NO_SELECTION_FILTERED_CHUNKS_NROWS; - dataset_dims[1] = (hsize_t) READ_ALL_NO_SELECTION_FILTERED_CHUNKS_NCOLS; + dataset_dims[0] = (hsize_t)READ_ALL_NO_SELECTION_FILTERED_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)READ_ALL_NO_SELECTION_FILTERED_CHUNKS_NCOLS; /* Setup the buffer for writing and for comparison */ correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); if (MAINPROCESS) { @@ -3392,60 +4579,61 @@ test_read_filtered_dataset_all_no_selection(void) VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ filespace = H5Screate_simple(READ_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ - chunk_dims[0] = (hsize_t) READ_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; - chunk_dims[1] = (hsize_t) READ_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; + chunk_dims[0] = (hsize_t)READ_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)READ_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, READ_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, READ_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, READ_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" READ_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, READ_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); sel_dims[0] = sel_dims[1] = 0; @@ -3459,28 +4647,25 @@ test_read_filtered_dataset_all_no_selection(void) VRFY((H5Sselect_none(filespace) >= 0), "Select none succeeded"); - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); - read_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*read_buf); - read_buf = (C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); + + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -3500,106 +4685,106 @@ test_read_filtered_dataset_all_no_selection(void) * 05/15/2018 */ static void -test_read_filtered_dataset_point_selection(void) +test_read_filtered_dataset_point_selection(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { C_DATATYPE *correct_buf = NULL; - C_DATATYPE *read_buf = NULL; - C_DATATYPE *global_buf = NULL; - hsize_t *coords = NULL; + C_DATATYPE *read_buf = NULL; + C_DATATYPE *global_buf = NULL; + hsize_t * coords = NULL; hsize_t dataset_dims[READ_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t chunk_dims[READ_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t sel_dims[READ_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS]; hsize_t flat_dims[1]; size_t i, j, read_buf_size, correct_buf_size; size_t num_points; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - int *recvcounts = NULL; - int *displs = NULL; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; - if (MAINPROCESS) HDputs("Testing read from filtered chunks with point selection"); + if (MAINPROCESS) + HDputs("Testing read from filtered chunks with point selection"); - CHECK_CUR_FILTER_AVAIL(); - - dataset_dims[0] = (hsize_t) READ_POINT_SELECTION_FILTERED_CHUNKS_NROWS; - dataset_dims[1] = (hsize_t) READ_POINT_SELECTION_FILTERED_CHUNKS_NCOLS; + dataset_dims[0] = (hsize_t)READ_POINT_SELECTION_FILTERED_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)READ_POINT_SELECTION_FILTERED_CHUNKS_NCOLS; /* Setup the buffer for writing and for comparison */ correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = (C_DATATYPE) ( - (dataset_dims[1] * (i / ((hsize_t) mpi_size * dataset_dims[1]))) - + (i % dataset_dims[1]) - + (((i % ((hsize_t) mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1]) - ); + correct_buf[i] = (C_DATATYPE)( + (dataset_dims[1] * (i / ((hsize_t)mpi_size * dataset_dims[1]))) + (i % dataset_dims[1]) + + (((i % ((hsize_t)mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1])); if (MAINPROCESS) { plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ filespace = H5Screate_simple(READ_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ - chunk_dims[0] = (hsize_t) READ_POINT_SELECTION_FILTERED_CHUNKS_CH_NROWS; - chunk_dims[1] = (hsize_t) READ_POINT_SELECTION_FILTERED_CHUNKS_CH_NCOLS; + chunk_dims[0] = (hsize_t)READ_POINT_SELECTION_FILTERED_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)READ_POINT_SELECTION_FILTERED_CHUNKS_CH_NCOLS; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, READ_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, READ_POINT_SELECTION_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, READ_POINT_SELECTION_FILTERED_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" READ_POINT_SELECTION_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, READ_POINT_SELECTION_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - sel_dims[0] = (hsize_t) READ_POINT_SELECTION_FILTERED_CHUNKS_NROWS / (hsize_t) mpi_size; - sel_dims[1] = (hsize_t) READ_POINT_SELECTION_FILTERED_CHUNKS_NCOLS; + sel_dims[0] = (hsize_t)READ_POINT_SELECTION_FILTERED_CHUNKS_NROWS / (hsize_t)mpi_size; + sel_dims[1] = (hsize_t)READ_POINT_SELECTION_FILTERED_CHUNKS_NCOLS; /* Setup one-dimensional memory dataspace for reading the dataset data into a contiguous buffer */ flat_dims[0] = sel_dims[0] * sel_dims[1]; @@ -3611,35 +4796,30 @@ test_read_filtered_dataset_point_selection(void) filespace = H5Dget_space(dset_id); VRFY((filespace >= 0), "File dataspace retrieval succeeded"); - num_points = (hsize_t) READ_POINT_SELECTION_FILTERED_CHUNKS_NROWS * (hsize_t) READ_POINT_SELECTION_FILTERED_CHUNKS_NCOLS / (hsize_t) mpi_size; - coords = (hsize_t *) HDcalloc(1, 2 * num_points * sizeof(*coords)); + num_points = (hsize_t)READ_POINT_SELECTION_FILTERED_CHUNKS_NROWS * + (hsize_t)READ_POINT_SELECTION_FILTERED_CHUNKS_NCOLS / (hsize_t)mpi_size; + coords = (hsize_t *)HDcalloc(1, 2 * num_points * sizeof(*coords)); VRFY((NULL != coords), "Coords HDcalloc succeeded"); for (i = 0; i < num_points; i++) for (j = 0; j < READ_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS; j++) coords[(i * READ_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS) + j] = - (j > 0) ? (i % (hsize_t) READ_POINT_SELECTION_FILTERED_CHUNKS_NCOLS) - : ((hsize_t) mpi_rank + ((hsize_t) mpi_size * (i / (hsize_t) READ_POINT_SELECTION_FILTERED_CHUNKS_NCOLS))); + (j > 0) ? (i % (hsize_t)READ_POINT_SELECTION_FILTERED_CHUNKS_NCOLS) + : ((hsize_t)mpi_rank + + ((hsize_t)mpi_size * (i / (hsize_t)READ_POINT_SELECTION_FILTERED_CHUNKS_NCOLS))); - VRFY((H5Sselect_elements(filespace, H5S_SELECT_SET, (hsize_t ) num_points, (const hsize_t * ) coords) >= 0), - "Point selection succeeded"); - - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + VRFY((H5Sselect_elements(filespace, H5S_SELECT_SET, (hsize_t)num_points, (const hsize_t *)coords) >= 0), + "Point selection succeeded"); read_buf_size = flat_dims[0] * sizeof(*read_buf); - read_buf = (C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - global_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + global_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != global_buf), "HDcalloc succeeded"); /* @@ -3649,46 +4829,53 @@ test_read_filtered_dataset_point_selection(void) * of chunks in the first dimension of the dataset. */ { - size_t original_loop_count = dataset_dims[0] / (hsize_t) mpi_size; - size_t cur_loop_count = original_loop_count; - size_t total_recvcounts = 0; + size_t original_loop_count = dataset_dims[0] / (hsize_t)mpi_size; + size_t cur_loop_count = original_loop_count; + size_t total_recvcounts = 0; - recvcounts = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*recvcounts)); + recvcounts = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); VRFY((NULL != recvcounts), "HDcalloc succeeded"); - displs = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*displs)); + displs = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); VRFY((NULL != displs), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) { - recvcounts[i] = (int) dataset_dims[1]; - total_recvcounts += (size_t) recvcounts[i]; + for (i = 0; i < (size_t)mpi_size; i++) { + recvcounts[i] = (int)dataset_dims[1]; + total_recvcounts += (size_t)recvcounts[i]; } - for (i = 0; i < (size_t) mpi_size; i++) - displs[i] = (int) (i * dataset_dims[1]); + for (i = 0; i < (size_t)mpi_size; i++) + displs[i] = (int)(i * dataset_dims[1]); for (; cur_loop_count; cur_loop_count--) { - VRFY((MPI_SUCCESS == MPI_Allgatherv(&read_buf[(original_loop_count - cur_loop_count) * dataset_dims[1]], recvcounts[mpi_rank], C_DATATYPE_MPI, - &global_buf[(original_loop_count - cur_loop_count) * total_recvcounts], recvcounts, displs, C_DATATYPE_MPI, comm)), - "MPI_Allgatherv succeeded"); + VRFY((MPI_SUCCESS == + MPI_Allgatherv(&read_buf[(original_loop_count - cur_loop_count) * dataset_dims[1]], + recvcounts[mpi_rank], C_DATATYPE_MPI, + &global_buf[(original_loop_count - cur_loop_count) * total_recvcounts], + recvcounts, displs, C_DATATYPE_MPI, comm)), + "MPI_Allgatherv succeeded"); } } - VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (displs) HDfree(displs); - if (recvcounts) HDfree(recvcounts); - if (global_buf) HDfree(global_buf); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); HDfree(coords); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -3711,11 +4898,12 @@ test_read_filtered_dataset_point_selection(void) * 05/15/2018 */ static void -test_read_filtered_dataset_interleaved_read(void) +test_read_filtered_dataset_interleaved_read(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *read_buf = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; - C_DATATYPE *global_buf = NULL; + C_DATATYPE *global_buf = NULL; hsize_t dataset_dims[INTERLEAVED_READ_FILTERED_DATASET_DIMS]; hsize_t chunk_dims[INTERLEAVED_READ_FILTERED_DATASET_DIMS]; hsize_t sel_dims[INTERLEAVED_READ_FILTERED_DATASET_DIMS]; @@ -3725,100 +4913,102 @@ test_read_filtered_dataset_interleaved_read(void) hsize_t block[INTERLEAVED_READ_FILTERED_DATASET_DIMS]; hsize_t flat_dims[1]; size_t i, read_buf_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - int *recvcounts = NULL; - int *displs = NULL; - - if (MAINPROCESS) HDputs("Testing interleaved read from filtered chunks"); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; - CHECK_CUR_FILTER_AVAIL(); + if (MAINPROCESS) + HDputs("Testing interleaved read from filtered chunks"); - dataset_dims[0] = (hsize_t) INTERLEAVED_READ_FILTERED_DATASET_NROWS; - dataset_dims[1] = (hsize_t) INTERLEAVED_READ_FILTERED_DATASET_NCOLS; + dataset_dims[0] = (hsize_t)INTERLEAVED_READ_FILTERED_DATASET_NROWS; + dataset_dims[1] = (hsize_t)INTERLEAVED_READ_FILTERED_DATASET_NCOLS; /* Setup the buffer for writing and for comparison */ correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) /* Add Column Index */ correct_buf[i] = - (C_DATATYPE) ( - (i % (hsize_t) INTERLEAVED_READ_FILTERED_DATASET_NCOLS) + (C_DATATYPE)((i % (hsize_t)INTERLEAVED_READ_FILTERED_DATASET_NCOLS) - /* Add the Row Index */ - + ((i % (hsize_t) (mpi_size * INTERLEAVED_READ_FILTERED_DATASET_NCOLS)) / (hsize_t) INTERLEAVED_READ_FILTERED_DATASET_NCOLS) + /* Add the Row Index */ + + ((i % (hsize_t)(mpi_size * INTERLEAVED_READ_FILTERED_DATASET_NCOLS)) / + (hsize_t)INTERLEAVED_READ_FILTERED_DATASET_NCOLS) - /* Add the amount that gets added when a rank moves down to its next section vertically in the dataset */ - + ((hsize_t) INTERLEAVED_READ_FILTERED_DATASET_NCOLS * (i / (hsize_t) (mpi_size * INTERLEAVED_READ_FILTERED_DATASET_NCOLS))) - ); + /* Add the amount that gets added when a rank moves down to its next section + vertically in the dataset */ + + ((hsize_t)INTERLEAVED_READ_FILTERED_DATASET_NCOLS * + (i / (hsize_t)(mpi_size * INTERLEAVED_READ_FILTERED_DATASET_NCOLS)))); if (MAINPROCESS) { plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ filespace = H5Screate_simple(INTERLEAVED_READ_FILTERED_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ - chunk_dims[0] = (hsize_t) INTERLEAVED_READ_FILTERED_DATASET_CH_NROWS; - chunk_dims[1] = (hsize_t) INTERLEAVED_READ_FILTERED_DATASET_CH_NCOLS; + chunk_dims[0] = (hsize_t)INTERLEAVED_READ_FILTERED_DATASET_CH_NROWS; + chunk_dims[1] = (hsize_t)INTERLEAVED_READ_FILTERED_DATASET_CH_NCOLS; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, INTERLEAVED_READ_FILTERED_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, INTERLEAVED_READ_FILTERED_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, INTERLEAVED_READ_FILTERED_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" INTERLEAVED_READ_FILTERED_DATASET_NAME, H5P_DEFAULT); - VRFY((dset_id >= 0), "Dataset open succeeded"); + dset_id = H5Dopen2(group_id, INTERLEAVED_READ_FILTERED_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); - sel_dims[0] = (hsize_t) (INTERLEAVED_READ_FILTERED_DATASET_NROWS / mpi_size); - sel_dims[1] = (hsize_t) INTERLEAVED_READ_FILTERED_DATASET_NCOLS; + sel_dims[0] = (hsize_t)(INTERLEAVED_READ_FILTERED_DATASET_NROWS / mpi_size); + sel_dims[1] = (hsize_t)INTERLEAVED_READ_FILTERED_DATASET_NCOLS; /* Setup one-dimensional memory dataspace for reading the dataset data into a contiguous buffer */ flat_dims[0] = sel_dims[0] * sel_dims[1]; @@ -3834,40 +5024,37 @@ test_read_filtered_dataset_interleaved_read(void) * Each process defines the dataset selection in the file and * reads it to the selection in memory */ - count[0] = (hsize_t) (INTERLEAVED_READ_FILTERED_DATASET_NROWS / INTERLEAVED_READ_FILTERED_DATASET_CH_NROWS); - count[1] = (hsize_t) (INTERLEAVED_READ_FILTERED_DATASET_NCOLS / INTERLEAVED_READ_FILTERED_DATASET_CH_NCOLS); - stride[0] = (hsize_t) INTERLEAVED_READ_FILTERED_DATASET_CH_NROWS; - stride[1] = (hsize_t) INTERLEAVED_READ_FILTERED_DATASET_CH_NCOLS; - block[0] = 1; - block[1] = (hsize_t) INTERLEAVED_READ_FILTERED_DATASET_CH_NCOLS; - start[0] = (hsize_t) mpi_rank; - start[1] = 0; + count[0] = + (hsize_t)(INTERLEAVED_READ_FILTERED_DATASET_NROWS / INTERLEAVED_READ_FILTERED_DATASET_CH_NROWS); + count[1] = + (hsize_t)(INTERLEAVED_READ_FILTERED_DATASET_NCOLS / INTERLEAVED_READ_FILTERED_DATASET_CH_NCOLS); + stride[0] = (hsize_t)INTERLEAVED_READ_FILTERED_DATASET_CH_NROWS; + stride[1] = (hsize_t)INTERLEAVED_READ_FILTERED_DATASET_CH_NCOLS; + block[0] = 1; + block[1] = (hsize_t)INTERLEAVED_READ_FILTERED_DATASET_CH_NCOLS; + start[0] = (hsize_t)mpi_rank; + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is reading with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is reading with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); - - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + "Hyperslab selection succeeded"); read_buf_size = flat_dims[0] * sizeof(*read_buf); - read_buf = (C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - global_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + global_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != global_buf), "HDcalloc succeeded"); /* @@ -3877,43 +5064,49 @@ test_read_filtered_dataset_interleaved_read(void) * of chunks in the first dimension of the dataset. */ { - size_t loop_count = count[0]; + size_t loop_count = count[0]; size_t total_recvcounts = 0; - recvcounts = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*recvcounts)); + recvcounts = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); VRFY((NULL != recvcounts), "HDcalloc succeeded"); - displs = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*displs)); + displs = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); VRFY((NULL != displs), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) { - recvcounts[i] = (int) dataset_dims[1]; - total_recvcounts += (size_t) recvcounts[i]; + for (i = 0; i < (size_t)mpi_size; i++) { + recvcounts[i] = (int)dataset_dims[1]; + total_recvcounts += (size_t)recvcounts[i]; } - for (i = 0; i < (size_t) mpi_size; i++) - displs[i] = (int) (i * dataset_dims[1]); + for (i = 0; i < (size_t)mpi_size; i++) + displs[i] = (int)(i * dataset_dims[1]); for (; loop_count; loop_count--) { - VRFY((MPI_SUCCESS == MPI_Allgatherv(&read_buf[(count[0] - loop_count) * dataset_dims[1]], recvcounts[mpi_rank], C_DATATYPE_MPI, - &global_buf[(count[0] - loop_count) * total_recvcounts], recvcounts, displs, C_DATATYPE_MPI, comm)), - "MPI_Allgatherv succeeded"); + VRFY((MPI_SUCCESS == MPI_Allgatherv(&read_buf[(count[0] - loop_count) * dataset_dims[1]], + recvcounts[mpi_rank], C_DATATYPE_MPI, + &global_buf[(count[0] - loop_count) * total_recvcounts], + recvcounts, displs, C_DATATYPE_MPI, comm)), + "MPI_Allgatherv succeeded"); } } - VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (displs) HDfree(displs); - if (recvcounts) HDfree(recvcounts); - if (global_buf) HDfree(global_buf); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -3933,106 +5126,110 @@ test_read_filtered_dataset_interleaved_read(void) * 05/16/2018 */ static void -test_read_3d_filtered_dataset_no_overlap_separate_pages(void) +test_read_3d_filtered_dataset_no_overlap_separate_pages(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - MPI_Datatype vector_type; - MPI_Datatype resized_vector_type; - C_DATATYPE *read_buf = NULL; - C_DATATYPE *correct_buf = NULL; - C_DATATYPE *global_buf = NULL; - hsize_t dataset_dims[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; - hsize_t chunk_dims[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; - hsize_t sel_dims[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; - hsize_t start[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; - hsize_t stride[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; - hsize_t count[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; - hsize_t block[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; - hsize_t flat_dims[1]; - size_t i, read_buf_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing read from unshared filtered chunks on separate pages in 3D dataset"); - - CHECK_CUR_FILTER_AVAIL(); - - dataset_dims[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS; - dataset_dims[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS; - dataset_dims[2] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DEPTH; + MPI_Datatype vector_type; + MPI_Datatype resized_vector_type; + C_DATATYPE * read_buf = NULL; + C_DATATYPE * correct_buf = NULL; + C_DATATYPE * global_buf = NULL; + hsize_t dataset_dims[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; + hsize_t chunk_dims[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; + hsize_t sel_dims[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; + hsize_t start[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; + hsize_t stride[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; + hsize_t count[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; + hsize_t block[READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS]; + hsize_t flat_dims[1]; + size_t i, read_buf_size, correct_buf_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs("Testing read from unshared filtered chunks on separate pages in 3D dataset"); + + dataset_dims[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS; + dataset_dims[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS; + dataset_dims[2] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DEPTH; /* Setup the buffer for writing and for comparison */ correct_buf_size = dataset_dims[0] * dataset_dims[1] * dataset_dims[2] * sizeof(*correct_buf); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = (C_DATATYPE) ((i % (hsize_t) mpi_size) + (i / (hsize_t) mpi_size)); + correct_buf[i] = (C_DATATYPE)((i % (hsize_t)mpi_size) + (i / (hsize_t)mpi_size)); if (MAINPROCESS) { plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ - filespace = H5Screate_simple(READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS, dataset_dims, NULL); + filespace = + H5Screate_simple(READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ - chunk_dims[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; - chunk_dims[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; + chunk_dims[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; + chunk_dims[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; chunk_dims[2] = 1; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); - VRFY((H5Pset_chunk(plist_id, READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + VRFY( + (H5Pset_chunk(plist_id, READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS, chunk_dims) >= 0), + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_NAME, + HDF5_DATATYPE_NAME, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - sel_dims[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS; - sel_dims[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS; + sel_dims[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS; + sel_dims[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS; sel_dims[2] = 1; /* Setup one-dimensional memory dataspace for reading the dataset data into a contiguous buffer */ @@ -4049,52 +5246,49 @@ test_read_3d_filtered_dataset_no_overlap_separate_pages(void) * Each process defines the dataset selection in the file and * reads it to the selection in memory */ - count[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS / (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; - count[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS / (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; - count[2] = 1; - stride[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; - stride[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; + count[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS / + (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; + count[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS / + (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; + count[2] = 1; + stride[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; + stride[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; stride[2] = 1; - block[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; - block[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; - block[2] = 1; - start[0] = 0; - start[1] = 0; - start[2] = (hsize_t) mpi_rank; + block[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS; + block[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS; + block[2] = 1; + start[0] = 0; + start[1] = 0; + start[2] = (hsize_t)mpi_rank; if (VERBOSE_MED) { - HDprintf("Process %d is reading with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is reading with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); - - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + "Hyperslab selection succeeded"); read_buf_size = flat_dims[0] * sizeof(*read_buf); - read_buf = (C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - global_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + global_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != global_buf), "HDcalloc succeeded"); /* * Due to the nature of 3-dimensional reading, create an MPI vector type that allows each * rank to write to the nth position of the global data buffer, where n is the rank number. */ - VRFY((MPI_SUCCESS == MPI_Type_vector((int) flat_dims[0], 1, mpi_size, C_DATATYPE_MPI, &vector_type)), - "MPI_Type_vector succeeded"); + VRFY((MPI_SUCCESS == MPI_Type_vector((int)flat_dims[0], 1, mpi_size, C_DATATYPE_MPI, &vector_type)), + "MPI_Type_vector succeeded"); VRFY((MPI_SUCCESS == MPI_Type_commit(&vector_type)), "MPI_Type_commit succeeded"); /* @@ -4102,26 +5296,260 @@ test_read_3d_filtered_dataset_no_overlap_separate_pages(void) * so make it only one MPI_LONG wide */ VRFY((MPI_SUCCESS == MPI_Type_create_resized(vector_type, 0, sizeof(long), &resized_vector_type)), - "MPI_Type_create_resized"); + "MPI_Type_create_resized"); VRFY((MPI_SUCCESS == MPI_Type_commit(&resized_vector_type)), "MPI_Type_commit succeeded"); - VRFY((MPI_SUCCESS == MPI_Allgather(read_buf, (int) flat_dims[0], C_DATATYPE_MPI, global_buf, 1, resized_vector_type, comm)), - "MPI_Allgather succeeded"); + VRFY((MPI_SUCCESS == MPI_Allgather(read_buf, (int)flat_dims[0], C_DATATYPE_MPI, global_buf, 1, + resized_vector_type, comm)), + "MPI_Allgather succeeded"); - VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); VRFY((MPI_SUCCESS == MPI_Type_free(&vector_type)), "MPI_Type_free succeeded"); VRFY((MPI_SUCCESS == MPI_Type_free(&resized_vector_type)), "MPI_Type_free succeeded"); - if (global_buf) HDfree(global_buf); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); + VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + + return; +} + +/* + * Tests parallel read of transformed and filtered data in the + * case where only one process is reading from a particular + * chunk in the operation. Normally, a data transform function + * will cause the parallel library to break to independent I/O + * and this isn't allowed when there are filters in the pipeline. + * However, in this case the parallel library recognizes that + * the used data transform function "x" is the same as not + * applying the transform function. Therefore it does not apply + * the transform function resulting in not breaking to + * independent I/O. + * + * The MAINPROCESS rank will first write out all of the + * data to the dataset. Then, each rank reads a part of + * the dataset and contributes its piece to a global buffer + * that is checked for consistency. + * + * Programmer: Jan-Willem Blokland + * 08/20/2021 + */ +static void +test_read_transformed_filtered_dataset_no_overlap(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) +{ + C_DATATYPE *read_buf = NULL; + C_DATATYPE *correct_buf = NULL; + C_DATATYPE *global_buf = NULL; + hsize_t dataset_dims[READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + hsize_t chunk_dims[READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + hsize_t sel_dims[READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + hsize_t start[READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + hsize_t stride[READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + hsize_t count[READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + hsize_t block[READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS]; + hsize_t flat_dims[1]; + size_t i, read_buf_size, correct_buf_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; + + if (MAINPROCESS) + HDputs("Testing read from unshared transformed and filtered chunks"); + + dataset_dims[0] = (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NCOLS; + + /* Setup the buffer for writing and for comparison */ + correct_buf_size = (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NROWS * + (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NCOLS * sizeof(*correct_buf); + + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); + VRFY((NULL != correct_buf), "HDcalloc succeeded"); + + for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) + correct_buf[i] = (C_DATATYPE)((i % (dataset_dims[0] / (hsize_t)mpi_size * dataset_dims[1])) + + (i / (dataset_dims[0] / (hsize_t)mpi_size * dataset_dims[1]))); + + if (MAINPROCESS) { + plist_id = H5Pcreate(H5P_FILE_ACCESS); + VRFY((plist_id >= 0), "FAPL creation succeeded"); + + VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), + "Set libver bounds succeeded"); + + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + VRFY((file_id >= 0), "Test file open succeeded"); + + VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + /* Create the dataspace for the dataset */ + filespace = + H5Screate_simple(READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS, dataset_dims, NULL); + VRFY((filespace >= 0), "File dataspace creation succeeded"); + + /* Create chunked dataset */ + chunk_dims[0] = (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NCOLS; + + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); + + VRFY( + (H5Pset_chunk(plist_id, READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), + "Chunk size set"); + + /* Add test filter to the pipeline */ + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); + + dset_id = H5Dcreate2(group_id, READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_NAME, + HDF5_DATATYPE_NAME, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + /* Create property list for collective dataset read */ + plist_id = H5Pcreate(H5P_DATASET_XFER); + VRFY((plist_id >= 0), "DXPL creation succeeded"); + + /* Set data transform expression */ + VRFY((H5Pset_data_transform(plist_id, "x") >= 0), "Set data transform expression succeeded"); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, plist_id, correct_buf) >= 0), + "Dataset write succeeded"); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + + /* Verify space allocation status */ + plist_id = H5Dget_create_plist(dset_id); + VRFY((plist_id >= 0), "H5Dget_create_plist succeeded"); + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); + VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + } + + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); + VRFY((file_id >= 0), "Test file open succeeded"); + + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + dset_id = H5Dopen2(group_id, READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + sel_dims[0] = (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NROWS; + sel_dims[1] = (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NCOLS; + + /* Setup one-dimensional memory dataspace for reading the dataset data into a contiguous buffer */ + flat_dims[0] = sel_dims[0] * sel_dims[1]; + + memspace = H5Screate_simple(1, flat_dims, NULL); + VRFY((memspace >= 0), "Memory dataspace creation succeeded"); + + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + /* + * Each process defines the dataset selection in the file and reads + * it to the selection in memory + */ + count[0] = 1; + count[1] = (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NCOLS / + (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NCOLS; + stride[0] = (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NROWS; + stride[1] = (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NCOLS; + block[0] = (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NROWS; + block[1] = (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NCOLS; + start[0] = ((hsize_t)mpi_rank * (hsize_t)READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NROWS * count[0]); + start[1] = 0; + + if (VERBOSE_MED) { + HDprintf("Process %d is reading with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + /* Create property list for data transform */ + plist_id = H5Pcopy(dxpl_id); + VRFY((plist_id >= 0), "DXPL copy succeeded"); + + /* Set data transform expression */ + VRFY((H5Pset_data_transform(plist_id, "x") >= 0), "Set data transform expression succeeded"); + + read_buf_size = flat_dims[0] * sizeof(*read_buf); + + read_buf = (C_DATATYPE *)HDcalloc(1, read_buf_size); + VRFY((NULL != read_buf), "HDcalloc succeeded"); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, read_buf) >= 0), + "Dataset read succeeded"); + + global_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); + VRFY((NULL != global_buf), "HDcalloc succeeded"); + + /* Collect each piece of data from all ranks into a global buffer on all ranks */ + recvcounts = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); + VRFY((NULL != recvcounts), "HDcalloc succeeded"); + + for (i = 0; i < (size_t)mpi_size; i++) + recvcounts[i] = (int)flat_dims[0]; + + displs = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); + VRFY((NULL != displs), "HDcalloc succeeded"); + + for (i = 0; i < (size_t)mpi_size; i++) + displs[i] = (int)(i * flat_dims[0]); + + VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int)flat_dims[0], C_DATATYPE_MPI, global_buf, recvcounts, + displs, C_DATATYPE_MPI, comm)), + "MPI_Allgatherv succeeded"); + + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); + + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -4142,11 +5570,12 @@ test_read_3d_filtered_dataset_no_overlap_separate_pages(void) * 05/16/2018 */ static void -test_read_3d_filtered_dataset_no_overlap_same_pages(void) +test_read_3d_filtered_dataset_no_overlap_same_pages(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *read_buf = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; - C_DATATYPE *global_buf = NULL; + C_DATATYPE *global_buf = NULL; hsize_t dataset_dims[READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS]; hsize_t chunk_dims[READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS]; hsize_t sel_dims[READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS]; @@ -4156,96 +5585,97 @@ test_read_3d_filtered_dataset_no_overlap_same_pages(void) hsize_t block[READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS]; hsize_t flat_dims[1]; size_t i, read_buf_size, correct_buf_size; - hid_t file_id, dset_id, plist_id; - hid_t filespace, memspace; - int *recvcounts = NULL; - int *displs = NULL; - - if (MAINPROCESS) HDputs("Testing read from unshared filtered chunks on the same pages in 3D dataset"); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; - CHECK_CUR_FILTER_AVAIL(); + if (MAINPROCESS) + HDputs("Testing read from unshared filtered chunks on the same pages in 3D dataset"); - dataset_dims[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NROWS; - dataset_dims[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS; - dataset_dims[2] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DEPTH; + dataset_dims[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NROWS; + dataset_dims[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS; + dataset_dims[2] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DEPTH; /* Setup the buffer for writing and for comparison */ correct_buf_size = dataset_dims[0] * dataset_dims[1] * dataset_dims[2] * sizeof(*correct_buf); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = (C_DATATYPE) ( - (i % (dataset_dims[0] * dataset_dims[1])) - + (i / (dataset_dims[0] * dataset_dims[1])) - ); + correct_buf[i] = (C_DATATYPE)((i % (dataset_dims[0] * dataset_dims[1])) + + (i / (dataset_dims[0] * dataset_dims[1]))); if (MAINPROCESS) { plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ - filespace = H5Screate_simple(READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS, dataset_dims, NULL); + filespace = + H5Screate_simple(READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ - chunk_dims[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; - chunk_dims[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; + chunk_dims[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; + chunk_dims[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; chunk_dims[2] = 1; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); - VRFY((H5Pset_chunk(plist_id, READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + VRFY((H5Pset_chunk(plist_id, READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS, chunk_dims) >= + 0), + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_NAME, + HDF5_DATATYPE_NAME, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - sel_dims[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; - sel_dims[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS; - sel_dims[2] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DEPTH; + sel_dims[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; + sel_dims[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS; + sel_dims[2] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DEPTH; /* Setup one-dimensional memory dataspace for reading the dataset data into a contiguous buffer */ flat_dims[0] = sel_dims[0] * sel_dims[1] * sel_dims[2]; @@ -4262,74 +5692,75 @@ test_read_3d_filtered_dataset_no_overlap_same_pages(void) * reads it to the selection in memory */ count[0] = 1; - count[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS / (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; - count[2] = (hsize_t) mpi_size; - stride[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; - stride[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; + count[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS / + (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; + count[2] = (hsize_t)mpi_size; + stride[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; + stride[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; stride[2] = 1; - block[0] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; - block[1] = (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; - block[2] = 1; - start[0] = ((hsize_t) mpi_rank * (hsize_t) READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS * count[0]); - start[1] = 0; - start[2] = 0; + block[0] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS; + block[1] = (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS; + block[2] = 1; + start[0] = ((hsize_t)mpi_rank * (hsize_t)READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS * count[0]); + start[1] = 0; + start[2] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is reading with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is reading with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); - - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + "Hyperslab selection succeeded"); read_buf_size = flat_dims[0] * sizeof(*read_buf); - read_buf = (C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - global_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + global_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != global_buf), "HDcalloc succeeded"); /* Collect each piece of data from all ranks into a global buffer on all ranks */ - recvcounts = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*recvcounts)); + recvcounts = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); VRFY((NULL != recvcounts), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - recvcounts[i] = (int) flat_dims[0]; + for (i = 0; i < (size_t)mpi_size; i++) + recvcounts[i] = (int)flat_dims[0]; - displs = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*displs)); + displs = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); VRFY((NULL != displs), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - displs[i] = (int) (i * flat_dims[0]); + for (i = 0; i < (size_t)mpi_size; i++) + displs[i] = (int)(i * flat_dims[0]); - VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int) flat_dims[0], C_DATATYPE_MPI, global_buf, recvcounts, displs, C_DATATYPE_MPI, comm)), - "MPI_Allgatherv succeeded"); + VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int)flat_dims[0], C_DATATYPE_MPI, global_buf, recvcounts, + displs, C_DATATYPE_MPI, comm)), + "MPI_Allgatherv succeeded"); - VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (displs) HDfree(displs); - if (recvcounts) HDfree(recvcounts); - if (global_buf) HDfree(global_buf); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -4350,119 +5781,122 @@ test_read_3d_filtered_dataset_no_overlap_same_pages(void) * 05/16/2018 */ static void -test_read_3d_filtered_dataset_overlap(void) +test_read_3d_filtered_dataset_overlap(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - MPI_Datatype vector_type; - MPI_Datatype resized_vector_type; - C_DATATYPE *read_buf = NULL; - C_DATATYPE *correct_buf = NULL; - C_DATATYPE *global_buf = NULL; - hsize_t dataset_dims[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; - hsize_t chunk_dims[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; - hsize_t sel_dims[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; - hsize_t start[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; - hsize_t stride[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; - hsize_t count[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; - hsize_t block[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; - hsize_t flat_dims[1]; - size_t i, read_buf_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing read from shared filtered chunks in 3D dataset"); - - CHECK_CUR_FILTER_AVAIL(); - - dataset_dims[0] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_3D_NROWS; - dataset_dims[1] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_3D_NCOLS; - dataset_dims[2] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_3D_DEPTH; + MPI_Datatype vector_type; + MPI_Datatype resized_vector_type; + C_DATATYPE * read_buf = NULL; + C_DATATYPE * correct_buf = NULL; + C_DATATYPE * global_buf = NULL; + hsize_t dataset_dims[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; + hsize_t chunk_dims[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; + hsize_t sel_dims[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; + hsize_t start[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; + hsize_t stride[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; + hsize_t count[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; + hsize_t block[READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS]; + hsize_t flat_dims[1]; + size_t i, read_buf_size, correct_buf_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs("Testing read from shared filtered chunks in 3D dataset"); + + dataset_dims[0] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_3D_NROWS; + dataset_dims[1] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_3D_NCOLS; + dataset_dims[2] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_3D_DEPTH; /* Setup the buffer for writing and for comparison */ correct_buf_size = dataset_dims[0] * dataset_dims[1] * dataset_dims[2] * sizeof(*correct_buf); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) /* Add the Column Index */ - correct_buf[i] = - (C_DATATYPE) ( - (i % (hsize_t) (READ_SHARED_FILTERED_CHUNKS_3D_DEPTH * READ_SHARED_FILTERED_CHUNKS_3D_NCOLS)) + correct_buf[i] = (C_DATATYPE)( + (i % (hsize_t)(READ_SHARED_FILTERED_CHUNKS_3D_DEPTH * READ_SHARED_FILTERED_CHUNKS_3D_NCOLS)) - /* Add the Row Index */ - + ((i % (hsize_t) (mpi_size * READ_SHARED_FILTERED_CHUNKS_3D_DEPTH * READ_SHARED_FILTERED_CHUNKS_3D_NCOLS)) - / (hsize_t) (READ_SHARED_FILTERED_CHUNKS_3D_DEPTH * READ_SHARED_FILTERED_CHUNKS_3D_NCOLS)) + /* Add the Row Index */ + + ((i % (hsize_t)(mpi_size * READ_SHARED_FILTERED_CHUNKS_3D_DEPTH * + READ_SHARED_FILTERED_CHUNKS_3D_NCOLS)) / + (hsize_t)(READ_SHARED_FILTERED_CHUNKS_3D_DEPTH * READ_SHARED_FILTERED_CHUNKS_3D_NCOLS)) - /* Add the amount that gets added when a rank moves down to its next section vertically in the dataset */ - + ((hsize_t) (READ_SHARED_FILTERED_CHUNKS_3D_DEPTH * READ_SHARED_FILTERED_CHUNKS_3D_NCOLS) - * (i / (hsize_t) (mpi_size * READ_SHARED_FILTERED_CHUNKS_3D_DEPTH * READ_SHARED_FILTERED_CHUNKS_3D_NCOLS))) - ); + /* Add the amount that gets added when a rank moves down to its next + section vertically in the dataset */ + + ((hsize_t)(READ_SHARED_FILTERED_CHUNKS_3D_DEPTH * READ_SHARED_FILTERED_CHUNKS_3D_NCOLS) * + (i / (hsize_t)(mpi_size * READ_SHARED_FILTERED_CHUNKS_3D_DEPTH * + READ_SHARED_FILTERED_CHUNKS_3D_NCOLS)))); if (MAINPROCESS) { plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ filespace = H5Screate_simple(READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ - chunk_dims[0] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_3D_CH_NROWS; - chunk_dims[1] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS; + chunk_dims[0] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_3D_CH_NROWS; + chunk_dims[1] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS; chunk_dims[2] = 1; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, READ_SHARED_FILTERED_CHUNKS_3D_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, READ_SHARED_FILTERED_CHUNKS_3D_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, READ_SHARED_FILTERED_CHUNKS_3D_DATASET_NAME, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" READ_SHARED_FILTERED_CHUNKS_3D_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, READ_SHARED_FILTERED_CHUNKS_3D_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - sel_dims[0] = (hsize_t) (READ_SHARED_FILTERED_CHUNKS_3D_NROWS / mpi_size); - sel_dims[1] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_3D_NCOLS; - sel_dims[2] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_3D_DEPTH; + sel_dims[0] = (hsize_t)(READ_SHARED_FILTERED_CHUNKS_3D_NROWS / mpi_size); + sel_dims[1] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_3D_NCOLS; + sel_dims[2] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_3D_DEPTH; /* Setup one-dimensional memory dataspace for reading the dataset data into a contiguous buffer */ flat_dims[0] = sel_dims[0] * sel_dims[1] * sel_dims[2]; @@ -4478,84 +5912,86 @@ test_read_3d_filtered_dataset_overlap(void) * Each process defines the dataset selection in the file and * reads it to the selection in memory */ - count[0] = (hsize_t) (READ_SHARED_FILTERED_CHUNKS_3D_NROWS / READ_SHARED_FILTERED_CHUNKS_3D_CH_NROWS); - count[1] = (hsize_t) (READ_SHARED_FILTERED_CHUNKS_3D_NCOLS / READ_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS); - count[2] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_3D_DEPTH; - stride[0] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_3D_CH_NROWS; - stride[1] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS; + count[0] = (hsize_t)(READ_SHARED_FILTERED_CHUNKS_3D_NROWS / READ_SHARED_FILTERED_CHUNKS_3D_CH_NROWS); + count[1] = (hsize_t)(READ_SHARED_FILTERED_CHUNKS_3D_NCOLS / READ_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS); + count[2] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_3D_DEPTH; + stride[0] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_3D_CH_NROWS; + stride[1] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS; stride[2] = 1; - block[0] = 1; - block[1] = (hsize_t) READ_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS; - block[2] = 1; - start[0] = (hsize_t) mpi_rank; - start[1] = 0; - start[2] = 0; + block[0] = 1; + block[1] = (hsize_t)READ_SHARED_FILTERED_CHUNKS_3D_CH_NCOLS; + block[2] = 1; + start[0] = (hsize_t)mpi_rank; + start[1] = 0; + start[2] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is reading with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is reading with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); - - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + "Hyperslab selection succeeded"); read_buf_size = flat_dims[0] * sizeof(*read_buf); - read_buf = (C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - global_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + global_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != global_buf), "HDcalloc succeeded"); { - size_t run_length = (size_t) (READ_SHARED_FILTERED_CHUNKS_3D_NCOLS * READ_SHARED_FILTERED_CHUNKS_3D_DEPTH); - size_t num_blocks = (size_t) (READ_SHARED_FILTERED_CHUNKS_3D_NROWS / mpi_size); + size_t run_length = + (size_t)(READ_SHARED_FILTERED_CHUNKS_3D_NCOLS * READ_SHARED_FILTERED_CHUNKS_3D_DEPTH); + size_t num_blocks = (size_t)(READ_SHARED_FILTERED_CHUNKS_3D_NROWS / mpi_size); /* * Due to the nature of 3-dimensional reading, create an MPI vector type that allows each * rank to write to the nth position of the global data buffer, where n is the rank number. */ - VRFY((MPI_SUCCESS == MPI_Type_vector((int) num_blocks, (int) run_length, (int) (mpi_size * (int) run_length), C_DATATYPE_MPI, &vector_type)), - "MPI_Type_vector succeeded"); + VRFY( + (MPI_SUCCESS == MPI_Type_vector((int)num_blocks, (int)run_length, + (int)(mpi_size * (int)run_length), C_DATATYPE_MPI, &vector_type)), + "MPI_Type_vector succeeded"); VRFY((MPI_SUCCESS == MPI_Type_commit(&vector_type)), "MPI_Type_commit succeeded"); /* * Resize the type to allow interleaving, * so make it "run_length" MPI_LONGs wide */ - VRFY((MPI_SUCCESS == MPI_Type_create_resized(vector_type, 0, (MPI_Aint) (run_length * sizeof(long)), &resized_vector_type)), - "MPI_Type_create_resized"); + VRFY((MPI_SUCCESS == MPI_Type_create_resized(vector_type, 0, (MPI_Aint)(run_length * sizeof(long)), + &resized_vector_type)), + "MPI_Type_create_resized"); VRFY((MPI_SUCCESS == MPI_Type_commit(&resized_vector_type)), "MPI_Type_commit succeeded"); } - VRFY((MPI_SUCCESS == MPI_Allgather(read_buf, (int) flat_dims[0], C_DATATYPE_MPI, global_buf, 1, resized_vector_type, comm)), - "MPI_Allgatherv succeeded"); + VRFY((MPI_SUCCESS == MPI_Allgather(read_buf, (int)flat_dims[0], C_DATATYPE_MPI, global_buf, 1, + resized_vector_type, comm)), + "MPI_Allgatherv succeeded"); - VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); VRFY((MPI_SUCCESS == MPI_Type_free(&vector_type)), "MPI_Type_free succeeded"); VRFY((MPI_SUCCESS == MPI_Type_free(&resized_vector_type)), "MPI_Type_free succeeded"); - if (global_buf) HDfree(global_buf); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -4575,11 +6011,12 @@ test_read_3d_filtered_dataset_overlap(void) * 05/17/2018 */ static void -test_read_cmpd_filtered_dataset_no_conversion_unshared(void) +test_read_cmpd_filtered_dataset_no_conversion_unshared(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - COMPOUND_C_DATATYPE *read_buf = NULL; + COMPOUND_C_DATATYPE *read_buf = NULL; COMPOUND_C_DATATYPE *correct_buf = NULL; - COMPOUND_C_DATATYPE *global_buf = NULL; + COMPOUND_C_DATATYPE *global_buf = NULL; hsize_t dataset_dims[READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS]; hsize_t chunk_dims[READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS]; hsize_t sel_dims[READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS]; @@ -4589,39 +6026,39 @@ test_read_cmpd_filtered_dataset_no_conversion_unshared(void) hsize_t block[READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS]; hsize_t flat_dims[1]; size_t i, read_buf_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1, memtype = -1; - hid_t filespace = -1, memspace = -1; - int *recvcounts = NULL; - int *displs = NULL; - - if (MAINPROCESS) HDputs("Testing read from unshared filtered chunks in Compound Datatype dataset without Datatype conversion"); - - CHECK_CUR_FILTER_AVAIL(); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID, + memtype = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; + + if (MAINPROCESS) + HDputs("Testing read from unshared filtered chunks in Compound Datatype dataset without Datatype " + "conversion"); + + /* SZIP and ScaleOffset filters don't support compound types */ + if (filter_id == H5Z_FILTER_SZIP || filter_id == H5Z_FILTER_SCALEOFFSET) { + if (MAINPROCESS) + SKIPPED(); + return; + } - dataset_dims[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NROWS; - dataset_dims[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NCOLS; + dataset_dims[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NROWS; + dataset_dims[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NCOLS; /* Setup the buffer for writing and for comparison */ correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - correct_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) { - correct_buf[i].field1 = (short) ( - (i % dataset_dims[1]) - + (i / dataset_dims[1]) - ); - - correct_buf[i].field2 = (int) ( - (i % dataset_dims[1]) - + (i / dataset_dims[1]) - ); - - correct_buf[i].field3 = (long) ( - (i % dataset_dims[1]) - + (i / dataset_dims[1]) - ); + correct_buf[i].field1 = (short)((i % dataset_dims[1]) + (i / dataset_dims[1])); + + correct_buf[i].field2 = (int)((i % dataset_dims[1]) + (i / dataset_dims[1])); + + correct_buf[i].field3 = (long)((i % dataset_dims[1]) + (i / dataset_dims[1])); } /* Create the compound type for memory. */ @@ -4629,75 +6066,79 @@ test_read_cmpd_filtered_dataset_no_conversion_unshared(void) VRFY((memtype >= 0), "Datatype creation succeeded"); VRFY((H5Tinsert(memtype, "ShortData", HOFFSET(COMPOUND_C_DATATYPE, field1), H5T_NATIVE_SHORT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "IntData", HOFFSET(COMPOUND_C_DATATYPE, field2), H5T_NATIVE_INT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "LongData", HOFFSET(COMPOUND_C_DATATYPE, field3), H5T_NATIVE_LONG) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); if (MAINPROCESS) { plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ - filespace = H5Screate_simple(READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS, dataset_dims, NULL); + filespace = H5Screate_simple(READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS, + dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ chunk_dims[0] = READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS; chunk_dims[1] = READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); - VRFY((H5Pset_chunk(plist_id, READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + VRFY((H5Pset_chunk(plist_id, READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS, + chunk_dims) >= 0), + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_NAME, memtype, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_NAME, + memtype, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, memtype, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_NAME, H5P_DEFAULT); + dset_id = + H5Dopen2(group_id, READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - sel_dims[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS; - sel_dims[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC; + sel_dims[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS; + sel_dims[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC; /* Setup one-dimensional memory dataspace for reading the dataset data into a contiguous buffer */ flat_dims[0] = sel_dims[0] * sel_dims[1]; @@ -4713,72 +6154,71 @@ test_read_cmpd_filtered_dataset_no_conversion_unshared(void) * Each process defines the dataset selection in the file and * reads it to the selection in memory */ - count[0] = 1; - count[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC; + count[0] = 1; + count[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC; stride[0] = READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS; stride[1] = READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS; - block[0] = READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS; - block[1] = READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS; - start[0] = 0; - start[1] = ((hsize_t) mpi_rank * READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS); + block[0] = READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS; + block[1] = READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS; + start[0] = 0; + start[1] = ((hsize_t)mpi_rank * READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS); if (VERBOSE_MED) { - HDprintf("Process %d is reading with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is reading with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); - - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + "Hyperslab selection succeeded"); read_buf_size = flat_dims[0] * sizeof(*read_buf); - read_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, memtype, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, memtype, memspace, filespace, dxpl_id, read_buf) >= 0), "Dataset read succeeded"); - global_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + global_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != global_buf), "HDcalloc succeeded"); /* Collect each piece of data from all ranks into a global buffer on all ranks */ - recvcounts = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*recvcounts)); + recvcounts = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); VRFY((NULL != recvcounts), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - recvcounts[i] = (int) (flat_dims[0] * sizeof(*read_buf)); + for (i = 0; i < (size_t)mpi_size; i++) + recvcounts[i] = (int)(flat_dims[0] * sizeof(*read_buf)); - displs = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*displs)); + displs = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); VRFY((NULL != displs), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - displs[i] = (int) (i * flat_dims[0] * sizeof(*read_buf)); + for (i = 0; i < (size_t)mpi_size; i++) + displs[i] = (int)(i * flat_dims[0] * sizeof(*read_buf)); - VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int) (flat_dims[0] * sizeof(COMPOUND_C_DATATYPE)), MPI_BYTE, global_buf, recvcounts, displs, MPI_BYTE, comm)), - "MPI_Allgatherv succeeded"); + VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int)(flat_dims[0] * sizeof(COMPOUND_C_DATATYPE)), MPI_BYTE, + global_buf, recvcounts, displs, MPI_BYTE, comm)), + "MPI_Allgatherv succeeded"); - VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (displs) HDfree(displs); - if (recvcounts) HDfree(recvcounts); - if (global_buf) HDfree(global_buf); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); VRFY((H5Tclose(memtype) >= 0), "Memory datatype close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -4798,11 +6238,12 @@ test_read_cmpd_filtered_dataset_no_conversion_unshared(void) * 05/17/2018 */ static void -test_read_cmpd_filtered_dataset_no_conversion_shared(void) +test_read_cmpd_filtered_dataset_no_conversion_shared(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - COMPOUND_C_DATATYPE *read_buf = NULL; + COMPOUND_C_DATATYPE *read_buf = NULL; COMPOUND_C_DATATYPE *correct_buf = NULL; - COMPOUND_C_DATATYPE *global_buf = NULL; + COMPOUND_C_DATATYPE *global_buf = NULL; hsize_t dataset_dims[READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS]; hsize_t chunk_dims[READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS]; hsize_t sel_dims[READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS]; @@ -4812,42 +6253,45 @@ test_read_cmpd_filtered_dataset_no_conversion_shared(void) hsize_t block[READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS]; hsize_t flat_dims[1]; size_t i, read_buf_size, correct_buf_size; - hid_t file_id, dset_id, plist_id, memtype; - hid_t filespace, memspace; - int *recvcounts = NULL; - int *displs = NULL; - - if (MAINPROCESS) HDputs("Testing read from shared filtered chunks in Compound Datatype dataset without Datatype conversion"); - - CHECK_CUR_FILTER_AVAIL(); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID, + memtype = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; + + if (MAINPROCESS) + HDputs("Testing read from shared filtered chunks in Compound Datatype dataset without Datatype " + "conversion"); + + /* SZIP and ScaleOffset filters don't support compound types */ + if (filter_id == H5Z_FILTER_SZIP || filter_id == H5Z_FILTER_SCALEOFFSET) { + if (MAINPROCESS) + SKIPPED(); + return; + } - dataset_dims[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NROWS; - dataset_dims[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NCOLS; + dataset_dims[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NROWS; + dataset_dims[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NCOLS; /* Setup the buffer for writing and for comparison */ correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - correct_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) { - correct_buf[i].field1 = (short) ( - (dataset_dims[1] * (i / ((hsize_t) mpi_size * dataset_dims[1]))) - + (i % dataset_dims[1]) - + (((i % ((hsize_t) mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1]) - ); - - correct_buf[i].field2 = (int) ( - (dataset_dims[1] * (i / ((hsize_t) mpi_size * dataset_dims[1]))) - + (i % dataset_dims[1]) - + (((i % ((hsize_t) mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1]) - ); - - correct_buf[i].field3 = (long) ( - (dataset_dims[1] * (i / ((hsize_t) mpi_size * dataset_dims[1]))) - + (i % dataset_dims[1]) - + (((i % ((hsize_t) mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1]) - ); + correct_buf[i].field1 = + (short)((dataset_dims[1] * (i / ((hsize_t)mpi_size * dataset_dims[1]))) + (i % dataset_dims[1]) + + (((i % ((hsize_t)mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1])); + + correct_buf[i].field2 = + (int)((dataset_dims[1] * (i / ((hsize_t)mpi_size * dataset_dims[1]))) + (i % dataset_dims[1]) + + (((i % ((hsize_t)mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1])); + + correct_buf[i].field3 = + (long)((dataset_dims[1] * (i / ((hsize_t)mpi_size * dataset_dims[1]))) + (i % dataset_dims[1]) + + (((i % ((hsize_t)mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1])); } /* Create the compound type for memory. */ @@ -4855,75 +6299,79 @@ test_read_cmpd_filtered_dataset_no_conversion_shared(void) VRFY((memtype >= 0), "Datatype creation succeeded"); VRFY((H5Tinsert(memtype, "ShortData", HOFFSET(COMPOUND_C_DATATYPE, field1), H5T_NATIVE_SHORT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "IntData", HOFFSET(COMPOUND_C_DATATYPE, field2), H5T_NATIVE_INT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "LongData", HOFFSET(COMPOUND_C_DATATYPE, field3), H5T_NATIVE_LONG) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); if (MAINPROCESS) { plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ - filespace = H5Screate_simple(READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS, dataset_dims, NULL); + filespace = H5Screate_simple(READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS, + dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ - chunk_dims[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS; - chunk_dims[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS; + chunk_dims[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS; + chunk_dims[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); - VRFY((H5Pset_chunk(plist_id, READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + VRFY((H5Pset_chunk(plist_id, READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS, + chunk_dims) >= 0), + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_NAME, memtype, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_NAME, + memtype, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, memtype, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_NAME, H5P_DEFAULT); + dset_id = + H5Dopen2(group_id, READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - sel_dims[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS / (hsize_t) mpi_size; - sel_dims[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC; + sel_dims[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS / (hsize_t)mpi_size; + sel_dims[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC; /* Setup one-dimensional memory dataspace for reading the dataset data into a contiguous buffer */ flat_dims[0] = sel_dims[0] * sel_dims[1]; @@ -4939,72 +6387,71 @@ test_read_cmpd_filtered_dataset_no_conversion_shared(void) * Each process defines the dataset selection in the file and * reads it to the selection in memory */ - count[0] = 1; - count[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC; - stride[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS; + count[0] = 1; + count[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC; + stride[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS; stride[1] = READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS; - block[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS / (hsize_t) mpi_size; - block[1] = READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS; - start[0] = (hsize_t) mpi_rank; - start[1] = 0; + block[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS / (hsize_t)mpi_size; + block[1] = READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS; + start[0] = (hsize_t)mpi_rank; + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is reading with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is reading with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); - - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + "Hyperslab selection succeeded"); read_buf_size = flat_dims[0] * sizeof(*read_buf); - read_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, memtype, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, memtype, memspace, filespace, dxpl_id, read_buf) >= 0), "Dataset read succeeded"); - global_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + global_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != global_buf), "HDcalloc succeeded"); /* Collect each piece of data from all ranks into a global buffer on all ranks */ - recvcounts = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*recvcounts)); + recvcounts = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); VRFY((NULL != recvcounts), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - recvcounts[i] = (int) (flat_dims[0] * sizeof(*read_buf)); + for (i = 0; i < (size_t)mpi_size; i++) + recvcounts[i] = (int)(flat_dims[0] * sizeof(*read_buf)); - displs = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*displs)); + displs = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); VRFY((NULL != displs), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - displs[i] = (int) (i * flat_dims[0] * sizeof(*read_buf)); + for (i = 0; i < (size_t)mpi_size; i++) + displs[i] = (int)(i * flat_dims[0] * sizeof(*read_buf)); - VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int) (flat_dims[0] * sizeof(COMPOUND_C_DATATYPE)), MPI_BYTE, global_buf, recvcounts, displs, MPI_BYTE, comm)), - "MPI_Allgatherv succeeded"); + VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int)(flat_dims[0] * sizeof(COMPOUND_C_DATATYPE)), MPI_BYTE, + global_buf, recvcounts, displs, MPI_BYTE, comm)), + "MPI_Allgatherv succeeded"); - VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (displs) HDfree(displs); - if (recvcounts) HDfree(recvcounts); - if (global_buf) HDfree(global_buf); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); VRFY((H5Tclose(memtype) >= 0), "Memory datatype close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -5024,11 +6471,12 @@ test_read_cmpd_filtered_dataset_no_conversion_shared(void) * 05/17/2018 */ static void -test_read_cmpd_filtered_dataset_type_conversion_unshared(void) +test_read_cmpd_filtered_dataset_type_conversion_unshared(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - COMPOUND_C_DATATYPE *read_buf = NULL; + COMPOUND_C_DATATYPE *read_buf = NULL; COMPOUND_C_DATATYPE *correct_buf = NULL; - COMPOUND_C_DATATYPE *global_buf = NULL; + COMPOUND_C_DATATYPE *global_buf = NULL; hsize_t dataset_dims[READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS]; hsize_t chunk_dims[READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS]; hsize_t sel_dims[READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS]; @@ -5038,39 +6486,39 @@ test_read_cmpd_filtered_dataset_type_conversion_unshared(void) hsize_t block[READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS]; hsize_t flat_dims[1]; size_t i, read_buf_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1, filetype = -1, memtype = -1; - hid_t filespace = -1, memspace = -1; - int *recvcounts = NULL; - int *displs = NULL; - - if (MAINPROCESS) HDputs("Testing read from unshared filtered chunks in Compound Datatype dataset with Datatype conversion"); - - CHECK_CUR_FILTER_AVAIL(); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t filetype = H5I_INVALID_HID, memtype = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; + + if (MAINPROCESS) + HDputs("Testing read from unshared filtered chunks in Compound Datatype dataset with Datatype " + "conversion"); + + /* SZIP and ScaleOffset filters don't support compound types */ + if (filter_id == H5Z_FILTER_SZIP || filter_id == H5Z_FILTER_SCALEOFFSET) { + if (MAINPROCESS) + SKIPPED(); + return; + } - dataset_dims[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NROWS; - dataset_dims[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NCOLS; + dataset_dims[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NROWS; + dataset_dims[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NCOLS; /* Setup the buffer for writing and for comparison */ correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - correct_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) { - correct_buf[i].field1 = (short) ( - (i % dataset_dims[1]) - + (i / dataset_dims[1]) - ); - - correct_buf[i].field2 = (int) ( - (i % dataset_dims[1]) - + (i / dataset_dims[1]) - ); - - correct_buf[i].field3 = (long) ( - (i % dataset_dims[1]) - + (i / dataset_dims[1]) - ); + correct_buf[i].field1 = (short)((i % dataset_dims[1]) + (i / dataset_dims[1])); + + correct_buf[i].field2 = (int)((i % dataset_dims[1]) + (i / dataset_dims[1])); + + correct_buf[i].field3 = (long)((i % dataset_dims[1]) + (i / dataset_dims[1])); } /* Create the compound type for memory. */ @@ -5078,86 +6526,87 @@ test_read_cmpd_filtered_dataset_type_conversion_unshared(void) VRFY((memtype >= 0), "Datatype creation succeeded"); VRFY((H5Tinsert(memtype, "ShortData", HOFFSET(COMPOUND_C_DATATYPE, field1), H5T_NATIVE_SHORT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "IntData", HOFFSET(COMPOUND_C_DATATYPE, field2), H5T_NATIVE_INT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "LongData", HOFFSET(COMPOUND_C_DATATYPE, field3), H5T_NATIVE_LONG) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); /* Create the compound type for file. */ filetype = H5Tcreate(H5T_COMPOUND, 32); VRFY((filetype >= 0), "Datatype creation succeeded"); - VRFY((H5Tinsert(filetype, "ShortData", 0, H5T_STD_I64BE) >= 0), - "Datatype insertion succeeded"); - VRFY((H5Tinsert(filetype, "IntData", 8, H5T_STD_I64BE) >= 0), - "Datatype insertion succeeded"); - VRFY((H5Tinsert(filetype, "LongData", 16, H5T_STD_I64BE) >= 0), - "Datatype insertion succeeded"); + VRFY((H5Tinsert(filetype, "ShortData", 0, H5T_STD_I64BE) >= 0), "Datatype insertion succeeded"); + VRFY((H5Tinsert(filetype, "IntData", 8, H5T_STD_I64BE) >= 0), "Datatype insertion succeeded"); + VRFY((H5Tinsert(filetype, "LongData", 16, H5T_STD_I64BE) >= 0), "Datatype insertion succeeded"); if (MAINPROCESS) { plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ - filespace = H5Screate_simple(READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS, dataset_dims, NULL); + filespace = H5Screate_simple(READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS, + dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ chunk_dims[0] = READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS; chunk_dims[1] = READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); - VRFY((H5Pset_chunk(plist_id, READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + VRFY((H5Pset_chunk(plist_id, READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS, + chunk_dims) >= 0), + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_NAME, filetype, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_NAME, + filetype, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, memtype, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_NAME, H5P_DEFAULT); + dset_id = + H5Dopen2(group_id, READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - sel_dims[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS; - sel_dims[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC; + sel_dims[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS; + sel_dims[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC; /* Setup one-dimensional memory dataspace for reading the dataset data into a contiguous buffer */ flat_dims[0] = sel_dims[0] * sel_dims[1]; @@ -5173,73 +6622,72 @@ test_read_cmpd_filtered_dataset_type_conversion_unshared(void) * Each process defines the dataset selection in the file and * reads it to the selection in memory */ - count[0] = 1; - count[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC; + count[0] = 1; + count[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC; stride[0] = READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS; stride[1] = READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS; - block[0] = READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS; - block[1] = READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS; - start[0] = 0; - start[1] = ((hsize_t) mpi_rank * READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS); + block[0] = READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS; + block[1] = READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS; + start[0] = 0; + start[1] = ((hsize_t)mpi_rank * READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS); if (VERBOSE_MED) { - HDprintf("Process %d is reading with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is reading with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); - - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + "Hyperslab selection succeeded"); read_buf_size = flat_dims[0] * sizeof(*read_buf); - read_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, memtype, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, memtype, memspace, filespace, dxpl_id, read_buf) >= 0), "Dataset read succeeded"); - global_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + global_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != global_buf), "HDcalloc succeeded"); /* Collect each piece of data from all ranks into a global buffer on all ranks */ - recvcounts = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*recvcounts)); + recvcounts = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); VRFY((NULL != recvcounts), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - recvcounts[i] = (int) (flat_dims[0] * sizeof(*read_buf)); + for (i = 0; i < (size_t)mpi_size; i++) + recvcounts[i] = (int)(flat_dims[0] * sizeof(*read_buf)); - displs = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*displs)); + displs = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); VRFY((NULL != displs), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - displs[i] = (int) (i * flat_dims[0] * sizeof(*read_buf)); + for (i = 0; i < (size_t)mpi_size; i++) + displs[i] = (int)(i * flat_dims[0] * sizeof(*read_buf)); - VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int) (flat_dims[0] * sizeof(COMPOUND_C_DATATYPE)), MPI_BYTE, global_buf, recvcounts, displs, MPI_BYTE, comm)), - "MPI_Allgatherv succeeded"); + VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int)(flat_dims[0] * sizeof(COMPOUND_C_DATATYPE)), MPI_BYTE, + global_buf, recvcounts, displs, MPI_BYTE, comm)), + "MPI_Allgatherv succeeded"); - VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (displs) HDfree(displs); - if (recvcounts) HDfree(recvcounts); - if (global_buf) HDfree(global_buf); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); VRFY((H5Tclose(filetype) >= 0), "File datatype close succeeded"); VRFY((H5Tclose(memtype) >= 0), "Memory datatype close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -5259,11 +6707,12 @@ test_read_cmpd_filtered_dataset_type_conversion_unshared(void) * 05/17/2018 */ static void -test_read_cmpd_filtered_dataset_type_conversion_shared(void) +test_read_cmpd_filtered_dataset_type_conversion_shared(const char *parent_group, H5Z_filter_t filter_id, + hid_t fapl_id, hid_t dcpl_id, hid_t dxpl_id) { - COMPOUND_C_DATATYPE *read_buf = NULL; + COMPOUND_C_DATATYPE *read_buf = NULL; COMPOUND_C_DATATYPE *correct_buf = NULL; - COMPOUND_C_DATATYPE *global_buf = NULL; + COMPOUND_C_DATATYPE *global_buf = NULL; hsize_t dataset_dims[READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS]; hsize_t chunk_dims[READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS]; hsize_t sel_dims[READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS]; @@ -5273,42 +6722,45 @@ test_read_cmpd_filtered_dataset_type_conversion_shared(void) hsize_t block[READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS]; hsize_t flat_dims[1]; size_t i, read_buf_size, correct_buf_size; - hid_t file_id, dset_id, plist_id, filetype, memtype; - hid_t filespace, memspace; - int *recvcounts = NULL; - int *displs = NULL; - - if (MAINPROCESS) HDputs("Testing read from shared filtered chunks in Compound Datatype dataset with Datatype conversion"); - - CHECK_CUR_FILTER_AVAIL(); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t filetype = H5I_INVALID_HID, memtype = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; + + if (MAINPROCESS) + HDputs( + "Testing read from shared filtered chunks in Compound Datatype dataset with Datatype conversion"); + + /* SZIP and ScaleOffset filters don't support compound types */ + if (filter_id == H5Z_FILTER_SZIP || filter_id == H5Z_FILTER_SCALEOFFSET) { + if (MAINPROCESS) + SKIPPED(); + return; + } - dataset_dims[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NROWS; - dataset_dims[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NCOLS; + dataset_dims[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NROWS; + dataset_dims[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NCOLS; /* Setup the buffer for writing and for comparison */ correct_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*correct_buf); - correct_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) { - correct_buf[i].field1 = (short) ( - (dataset_dims[1] * (i / ((hsize_t) mpi_size * dataset_dims[1]))) - + (i % dataset_dims[1]) - + (((i % ((hsize_t) mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1]) - ); - - correct_buf[i].field2 = (int) ( - (dataset_dims[1] * (i / ((hsize_t) mpi_size * dataset_dims[1]))) - + (i % dataset_dims[1]) - + (((i % ((hsize_t) mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1]) - ); - - correct_buf[i].field3 = (long) ( - (dataset_dims[1] * (i / ((hsize_t) mpi_size * dataset_dims[1]))) - + (i % dataset_dims[1]) - + (((i % ((hsize_t) mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1]) - ); + correct_buf[i].field1 = + (short)((dataset_dims[1] * (i / ((hsize_t)mpi_size * dataset_dims[1]))) + (i % dataset_dims[1]) + + (((i % ((hsize_t)mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1])); + + correct_buf[i].field2 = + (int)((dataset_dims[1] * (i / ((hsize_t)mpi_size * dataset_dims[1]))) + (i % dataset_dims[1]) + + (((i % ((hsize_t)mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1])); + + correct_buf[i].field3 = + (long)((dataset_dims[1] * (i / ((hsize_t)mpi_size * dataset_dims[1]))) + (i % dataset_dims[1]) + + (((i % ((hsize_t)mpi_size * dataset_dims[1])) / dataset_dims[1]) % dataset_dims[1])); } /* Create the compound type for memory. */ @@ -5316,86 +6768,87 @@ test_read_cmpd_filtered_dataset_type_conversion_shared(void) VRFY((memtype >= 0), "Datatype creation succeeded"); VRFY((H5Tinsert(memtype, "ShortData", HOFFSET(COMPOUND_C_DATATYPE, field1), H5T_NATIVE_SHORT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "IntData", HOFFSET(COMPOUND_C_DATATYPE, field2), H5T_NATIVE_INT) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); VRFY((H5Tinsert(memtype, "LongData", HOFFSET(COMPOUND_C_DATATYPE, field3), H5T_NATIVE_LONG) >= 0), - "Datatype insertion succeeded"); + "Datatype insertion succeeded"); /* Create the compound type for file. */ filetype = H5Tcreate(H5T_COMPOUND, 32); VRFY((filetype >= 0), "Datatype creation succeeded"); - VRFY((H5Tinsert(filetype, "ShortData", 0, H5T_STD_I64BE) >= 0), - "Datatype insertion succeeded"); - VRFY((H5Tinsert(filetype, "IntData", 8, H5T_STD_I64BE) >= 0), - "Datatype insertion succeeded"); - VRFY((H5Tinsert(filetype, "LongData", 16, H5T_STD_I64BE) >= 0), - "Datatype insertion succeeded"); + VRFY((H5Tinsert(filetype, "ShortData", 0, H5T_STD_I64BE) >= 0), "Datatype insertion succeeded"); + VRFY((H5Tinsert(filetype, "IntData", 8, H5T_STD_I64BE) >= 0), "Datatype insertion succeeded"); + VRFY((H5Tinsert(filetype, "LongData", 16, H5T_STD_I64BE) >= 0), "Datatype insertion succeeded"); if (MAINPROCESS) { plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ - filespace = H5Screate_simple(READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS, dataset_dims, NULL); + filespace = H5Screate_simple(READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS, + dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ - chunk_dims[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS; - chunk_dims[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS; + chunk_dims[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS; + chunk_dims[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS; - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); - VRFY((H5Pset_chunk(plist_id, READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + VRFY((H5Pset_chunk(plist_id, READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS, + chunk_dims) >= 0), + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_NAME, filetype, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_NAME, + filetype, filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Dwrite(dset_id, memtype, H5S_ALL, H5S_ALL, H5P_DEFAULT, correct_buf) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDONLY, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_NAME, H5P_DEFAULT); + dset_id = + H5Dopen2(group_id, READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - sel_dims[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS / (hsize_t) mpi_size; - sel_dims[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC; + sel_dims[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS / (hsize_t)mpi_size; + sel_dims[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC; /* Setup one-dimensional memory dataspace for reading the dataset data into a contiguous buffer */ flat_dims[0] = sel_dims[0] * sel_dims[1]; @@ -5411,72 +6864,71 @@ test_read_cmpd_filtered_dataset_type_conversion_shared(void) * Each process defines the dataset selection in the file and * reads it to the selection in memory */ - count[0] = 1; - count[1] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC; - stride[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS; + count[0] = 1; + count[1] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC; + stride[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS; stride[1] = READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS; - block[0] = (hsize_t) READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS / (hsize_t) mpi_size; - block[1] = READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS; - start[0] = (hsize_t) mpi_rank; - start[1] = 0; + block[0] = (hsize_t)READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS / (hsize_t)mpi_size; + block[1] = READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS; + start[0] = (hsize_t)mpi_rank; + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is reading with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is reading with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); - - /* Create property list for collective dataset read */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + "Hyperslab selection succeeded"); read_buf_size = flat_dims[0] * sizeof(*read_buf); - read_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, read_buf_size); + read_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, read_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); - VRFY((H5Dread(dset_id, memtype, memspace, filespace, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((H5Dread(dset_id, memtype, memspace, filespace, dxpl_id, read_buf) >= 0), "Dataset read succeeded"); - global_buf = (COMPOUND_C_DATATYPE *) HDcalloc(1, correct_buf_size); + global_buf = (COMPOUND_C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != global_buf), "HDcalloc succeeded"); /* Collect each piece of data from all ranks into a global buffer on all ranks */ - recvcounts = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*recvcounts)); + recvcounts = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); VRFY((NULL != recvcounts), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - recvcounts[i] = (int) (flat_dims[0] * sizeof(*read_buf)); + for (i = 0; i < (size_t)mpi_size; i++) + recvcounts[i] = (int)(flat_dims[0] * sizeof(*read_buf)); - displs = (int *) HDcalloc(1, (size_t) mpi_size * sizeof(*displs)); + displs = (int *)HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); VRFY((NULL != displs), "HDcalloc succeeded"); - for (i = 0; i < (size_t) mpi_size; i++) - displs[i] = (int) (i * flat_dims[0] * sizeof(*read_buf)); + for (i = 0; i < (size_t)mpi_size; i++) + displs[i] = (int)(i * flat_dims[0] * sizeof(*read_buf)); - VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int) (flat_dims[0] * sizeof(COMPOUND_C_DATATYPE)), MPI_BYTE, global_buf, recvcounts, displs, MPI_BYTE, comm)), - "MPI_Allgatherv succeeded"); + VRFY((MPI_SUCCESS == MPI_Allgatherv(read_buf, (int)(flat_dims[0] * sizeof(COMPOUND_C_DATATYPE)), MPI_BYTE, + global_buf, recvcounts, displs, MPI_BYTE, comm)), + "MPI_Allgatherv succeeded"); - VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(global_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - if (displs) HDfree(displs); - if (recvcounts) HDfree(recvcounts); - if (global_buf) HDfree(global_buf); - if (read_buf) HDfree(read_buf); - if (correct_buf) HDfree(correct_buf); + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (global_buf) + HDfree(global_buf); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); VRFY((H5Tclose(memtype) >= 0), "Memory datatype close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -5493,24 +6945,25 @@ test_read_cmpd_filtered_dataset_type_conversion_shared(void) * 08/03/2017 */ static void -test_write_serial_read_parallel(void) +test_write_serial_read_parallel(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *data = NULL; - C_DATATYPE *read_buf = NULL; + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_SERIAL_READ_PARALLEL_DATASET_DIMS]; hsize_t chunk_dims[WRITE_SERIAL_READ_PARALLEL_DATASET_DIMS]; size_t i, data_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID; - if (MAINPROCESS) HDputs("Testing write file serially; read file in parallel"); + if (MAINPROCESS) + HDputs("Testing write file serially; read file in parallel"); - CHECK_CUR_FILTER_AVAIL(); - - dataset_dims[0] = (hsize_t) WRITE_SERIAL_READ_PARALLEL_NROWS; - dataset_dims[1] = (hsize_t) WRITE_SERIAL_READ_PARALLEL_NCOLS; - dataset_dims[2] = (hsize_t) WRITE_SERIAL_READ_PARALLEL_DEPTH; + dataset_dims[0] = (hsize_t)WRITE_SERIAL_READ_PARALLEL_NROWS; + dataset_dims[1] = (hsize_t)WRITE_SERIAL_READ_PARALLEL_NCOLS; + dataset_dims[2] = (hsize_t)WRITE_SERIAL_READ_PARALLEL_DEPTH; /* Write the file on the MAINPROCESS rank */ if (MAINPROCESS) { @@ -5519,107 +6972,105 @@ test_write_serial_read_parallel(void) VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + /* Create the dataspace for the dataset */ - chunk_dims[0] = (hsize_t) WRITE_SERIAL_READ_PARALLEL_CH_NROWS; - chunk_dims[1] = (hsize_t) WRITE_SERIAL_READ_PARALLEL_CH_NCOLS; + chunk_dims[0] = (hsize_t)WRITE_SERIAL_READ_PARALLEL_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_SERIAL_READ_PARALLEL_CH_NCOLS; chunk_dims[2] = 1; filespace = H5Screate_simple(WRITE_SERIAL_READ_PARALLEL_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, WRITE_SERIAL_READ_PARALLEL_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, WRITE_SERIAL_READ_PARALLEL_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_SERIAL_READ_PARALLEL_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); data_size = dataset_dims[0] * dataset_dims[1] * dataset_dims[2] * sizeof(*data); - data = (C_DATATYPE *) HDcalloc(1, data_size); + data = (C_DATATYPE *)HDcalloc(1, data_size); VRFY((NULL != data), "HDcalloc succeeded"); for (i = 0; i < data_size / sizeof(*data); i++) - data[i] = (C_DATATYPE) GEN_DATA(i); + data[i] = (C_DATATYPE)GEN_DATA(i); VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, H5P_DEFAULT, data) >= 0), - "Dataset write succeeded"); + "Dataset write succeeded"); - if (data) HDfree(data); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + if (data) + HDfree(data); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); } correct_buf_size = dataset_dims[0] * dataset_dims[1] * dataset_dims[2] * sizeof(*correct_buf); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); - read_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = (long) i; + correct_buf[i] = (long)i; /* All ranks open the file and verify their "portion" of the dataset is correct */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_SERIAL_READ_PARALLEL_DATASET_NAME, H5P_DEFAULT); + dset_id = H5Dopen2(group_id, WRITE_SERIAL_READ_PARALLEL_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); - - VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, plist_id, read_buf) >= 0), - "Dataset read succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); - - if (correct_buf) HDfree(correct_buf); - if (read_buf) HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + if (read_buf) + HDfree(read_buf); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; } -#if MPI_VERSION >= 3 +#ifdef H5_HAVE_PARALLEL_FILTERED_WRITES /* * Tests parallel write of filtered data * to a dataset. After the write has @@ -5631,10 +7082,11 @@ test_write_serial_read_parallel(void) * 08/03/2017 */ static void -test_write_parallel_read_serial(void) +test_write_parallel_read_serial(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, + hid_t dcpl_id, hid_t dxpl_id) { - C_DATATYPE *data = NULL; - C_DATATYPE *read_buf = NULL; + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; C_DATATYPE *correct_buf = NULL; hsize_t dataset_dims[WRITE_PARALLEL_READ_SERIAL_DATASET_DIMS]; hsize_t chunk_dims[WRITE_PARALLEL_READ_SERIAL_DATASET_DIMS]; @@ -5644,38 +7096,29 @@ test_write_parallel_read_serial(void) hsize_t block[WRITE_PARALLEL_READ_SERIAL_DATASET_DIMS]; hsize_t offset[WRITE_PARALLEL_READ_SERIAL_DATASET_DIMS]; size_t i, data_size, correct_buf_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing write file in parallel; read serially"); - - CHECK_CUR_FILTER_AVAIL(); + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); + if (MAINPROCESS) + HDputs("Testing write file in parallel; read serially"); - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) WRITE_PARALLEL_READ_SERIAL_NROWS; - dataset_dims[1] = (hsize_t) WRITE_PARALLEL_READ_SERIAL_NCOLS; - dataset_dims[2] = (hsize_t) WRITE_PARALLEL_READ_SERIAL_DEPTH; - chunk_dims[0] = (hsize_t) WRITE_PARALLEL_READ_SERIAL_CH_NROWS; - chunk_dims[1] = (hsize_t) WRITE_PARALLEL_READ_SERIAL_CH_NCOLS; - chunk_dims[2] = 1; - sel_dims[0] = (hsize_t) WRITE_PARALLEL_READ_SERIAL_CH_NROWS; - sel_dims[1] = (hsize_t) WRITE_PARALLEL_READ_SERIAL_NCOLS; - sel_dims[2] = (hsize_t) WRITE_PARALLEL_READ_SERIAL_DEPTH; + dataset_dims[0] = (hsize_t)WRITE_PARALLEL_READ_SERIAL_NROWS; + dataset_dims[1] = (hsize_t)WRITE_PARALLEL_READ_SERIAL_NCOLS; + dataset_dims[2] = (hsize_t)WRITE_PARALLEL_READ_SERIAL_DEPTH; + chunk_dims[0] = (hsize_t)WRITE_PARALLEL_READ_SERIAL_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_PARALLEL_READ_SERIAL_CH_NCOLS; + chunk_dims[2] = 1; + sel_dims[0] = (hsize_t)WRITE_PARALLEL_READ_SERIAL_CH_NROWS; + sel_dims[1] = (hsize_t)WRITE_PARALLEL_READ_SERIAL_NCOLS; + sel_dims[2] = (hsize_t)WRITE_PARALLEL_READ_SERIAL_DEPTH; filespace = H5Screate_simple(WRITE_PARALLEL_READ_SERIAL_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); @@ -5684,41 +7127,47 @@ test_write_parallel_read_serial(void) VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); VRFY((H5Pset_chunk(plist_id, WRITE_PARALLEL_READ_SERIAL_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, WRITE_PARALLEL_READ_SERIAL_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, WRITE_PARALLEL_READ_SERIAL_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ - count[0] = 1; - count[1] = (hsize_t) WRITE_PARALLEL_READ_SERIAL_NCOLS / (hsize_t) WRITE_PARALLEL_READ_SERIAL_CH_NCOLS; - count[2] = (hsize_t) mpi_size; - stride[0] = (hsize_t) WRITE_PARALLEL_READ_SERIAL_CH_NROWS; - stride[1] = (hsize_t) WRITE_PARALLEL_READ_SERIAL_CH_NCOLS; + count[0] = 1; + count[1] = (hsize_t)WRITE_PARALLEL_READ_SERIAL_NCOLS / (hsize_t)WRITE_PARALLEL_READ_SERIAL_CH_NCOLS; + count[2] = (hsize_t)mpi_size; + stride[0] = (hsize_t)WRITE_PARALLEL_READ_SERIAL_CH_NROWS; + stride[1] = (hsize_t)WRITE_PARALLEL_READ_SERIAL_CH_NCOLS; stride[2] = 1; - block[0] = (hsize_t) WRITE_PARALLEL_READ_SERIAL_CH_NROWS; - block[1] = (hsize_t) WRITE_PARALLEL_READ_SERIAL_CH_NCOLS; - block[2] = 1; - offset[0] = ((hsize_t) mpi_rank * (hsize_t) WRITE_PARALLEL_READ_SERIAL_CH_NROWS * count[0]); + block[0] = (hsize_t)WRITE_PARALLEL_READ_SERIAL_CH_NROWS; + block[1] = (hsize_t)WRITE_PARALLEL_READ_SERIAL_CH_NCOLS; + block[2] = 1; + offset[0] = ((hsize_t)mpi_rank * (hsize_t)WRITE_PARALLEL_READ_SERIAL_CH_NROWS * count[0]); offset[1] = 0; offset[2] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu, %llu ], stride[ %llu, %llu, %llu ], offset[ %llu, %llu, %llu ], block size[ %llu, %llu, %llu ]\n", - mpi_rank, count[0], count[1], count[2], stride[0], stride[1], stride[2], offset[0], offset[1], offset[2], block[0], block[1], block[2]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE ", %" PRIuHSIZE + " ], stride[ %" PRIuHSIZE ", %" PRIuHSIZE ", %" PRIuHSIZE " ], offset[ %" PRIuHSIZE + ", %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE ", %" PRIuHSIZE ", %" PRIuHSIZE + " ]\n", + mpi_rank, count[0], count[1], count[2], stride[0], stride[1], stride[2], offset[0], + offset[1], offset[2], block[0], block[1], block[2]); HDfflush(stdout); } @@ -5726,34 +7175,32 @@ test_write_parallel_read_serial(void) filespace = H5Dget_space(dset_id); VRFY((filespace >= 0), "File dataspace retrieval succeeded"); - VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, offset, stride, - count, block) >= 0), "Hyperslab selection succeeded"); + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, offset, stride, count, block) >= 0), + "Hyperslab selection succeeded"); /* Fill data buffer */ data_size = sel_dims[0] * sel_dims[1] * sel_dims[2] * sizeof(*data); - data = (C_DATATYPE *) HDcalloc(1, data_size); + data = (C_DATATYPE *)HDcalloc(1, data_size); VRFY((NULL != data), "HDcalloc succeeded"); for (i = 0; i < data_size / sizeof(*data); i++) - data[i] = (C_DATATYPE) GEN_DATA(i); + data[i] = (C_DATATYPE)GEN_DATA(i); - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); - VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); - if (data) HDfree(data); + if (data) + HDfree(data); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); if (MAINPROCESS) { @@ -5761,37 +7208,38 @@ test_write_parallel_read_serial(void) VRFY((plist_id >= 0), "FAPL creation succeeded"); VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + "Set libver bounds succeeded"); file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); VRFY((file_id >= 0), "Test file open succeeded"); VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); - dset_id = H5Dopen2(file_id, "/" WRITE_PARALLEL_READ_SERIAL_DATASET_NAME, H5P_DEFAULT); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + dset_id = H5Dopen2(group_id, WRITE_PARALLEL_READ_SERIAL_DATASET_NAME, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset open succeeded"); correct_buf_size = dataset_dims[0] * dataset_dims[1] * dataset_dims[2] * sizeof(*correct_buf); - correct_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + correct_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != correct_buf), "HDcalloc succeeded"); - read_buf = (C_DATATYPE *) HDcalloc(1, correct_buf_size); + read_buf = (C_DATATYPE *)HDcalloc(1, correct_buf_size); VRFY((NULL != read_buf), "HDcalloc succeeded"); for (i = 0; i < correct_buf_size / sizeof(*correct_buf); i++) - correct_buf[i] = (C_DATATYPE) ( - (i % (dataset_dims[0] * dataset_dims[1])) - + (i / (dataset_dims[0] * dataset_dims[1])) - ); + correct_buf[i] = (C_DATATYPE)((i % (dataset_dims[0] * dataset_dims[1])) + + (i / (dataset_dims[0] * dataset_dims[1]))); VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, H5P_DEFAULT, read_buf) >= 0), - "Dataset read succeeded"); + "Dataset read succeeded"); - VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), - "Data verification succeeded"); + VRFY((0 == HDmemcmp(read_buf, correct_buf, correct_buf_size)), "Data verification succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); HDfree(correct_buf); @@ -5811,46 +7259,39 @@ test_write_parallel_read_serial(void) * 06/04/2018 */ static void -test_shrinking_growing_chunks(void) +test_shrinking_growing_chunks(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, hid_t dcpl_id, + hid_t dxpl_id) { - double *data = NULL; - hsize_t dataset_dims[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; - hsize_t chunk_dims[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; - hsize_t sel_dims[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; - hsize_t start[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; - hsize_t stride[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; - hsize_t count[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; - hsize_t block[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; - size_t i, data_size; - hid_t file_id = -1, dset_id = -1, plist_id = -1; - hid_t filespace = -1, memspace = -1; - - if (MAINPROCESS) HDputs("Testing continually shrinking/growing chunks"); - - CHECK_CUR_FILTER_AVAIL(); - - /* Set up file access property list with parallel I/O access */ - plist_id = H5Pcreate(H5P_FILE_ACCESS); - VRFY((plist_id >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(plist_id, comm, info) >= 0), - "Set FAPL MPIO succeeded"); - - VRFY((H5Pset_libver_bounds(plist_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, plist_id); + double *data = NULL; + double *read_buf = NULL; + hsize_t dataset_dims[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; + hsize_t chunk_dims[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; + hsize_t sel_dims[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; + hsize_t start[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; + hsize_t stride[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; + hsize_t count[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; + hsize_t block[SHRINKING_GROWING_CHUNKS_DATASET_DIMS]; + size_t i, data_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID, memspace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs("Testing continually shrinking/growing chunks"); + + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); VRFY((file_id >= 0), "Test file open succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "FAPL close succeeded"); + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); /* Create the dataspace for the dataset */ - dataset_dims[0] = (hsize_t) SHRINKING_GROWING_CHUNKS_NROWS; - dataset_dims[1] = (hsize_t) SHRINKING_GROWING_CHUNKS_NCOLS; - chunk_dims[0] = (hsize_t) SHRINKING_GROWING_CHUNKS_CH_NROWS; - chunk_dims[1] = (hsize_t) SHRINKING_GROWING_CHUNKS_CH_NCOLS; - sel_dims[0] = (hsize_t) SHRINKING_GROWING_CHUNKS_CH_NROWS; - sel_dims[1] = (hsize_t) SHRINKING_GROWING_CHUNKS_NCOLS; + dataset_dims[0] = (hsize_t)SHRINKING_GROWING_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)SHRINKING_GROWING_CHUNKS_NCOLS; + chunk_dims[0] = (hsize_t)SHRINKING_GROWING_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)SHRINKING_GROWING_CHUNKS_CH_NCOLS; + sel_dims[0] = (hsize_t)SHRINKING_GROWING_CHUNKS_CH_NROWS; + sel_dims[1] = (hsize_t)SHRINKING_GROWING_CHUNKS_NCOLS; filespace = H5Screate_simple(SHRINKING_GROWING_CHUNKS_DATASET_DIMS, dataset_dims, NULL); VRFY((filespace >= 0), "File dataspace creation succeeded"); @@ -5859,38 +7300,41 @@ test_shrinking_growing_chunks(void) VRFY((memspace >= 0), "Memory dataspace creation succeeded"); /* Create chunked dataset */ - plist_id = H5Pcreate(H5P_DATASET_CREATE); - VRFY((plist_id >= 0), "DCPL creation succeeded"); + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); - VRFY((H5Pset_chunk(plist_id, SHRINKING_GROWING_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), - "Chunk size set"); + VRFY((H5Pset_chunk(plist_id, SHRINKING_GROWING_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), "Chunk size set"); /* Add test filter to the pipeline */ - VRFY((set_dcpl_filter(plist_id) >= 0), "Filter set"); + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); - dset_id = H5Dcreate2(file_id, SHRINKING_GROWING_CHUNKS_DATASET_NAME, H5T_NATIVE_DOUBLE, filespace, - H5P_DEFAULT, plist_id, H5P_DEFAULT); + dset_id = H5Dcreate2(group_id, SHRINKING_GROWING_CHUNKS_DATASET_NAME, H5T_NATIVE_DOUBLE, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); VRFY((dset_id >= 0), "Dataset creation succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); /* * Each process defines the dataset selection in memory and writes * it to the hyperslab in the file */ - count[0] = 1; - count[1] = (hsize_t) SHRINKING_GROWING_CHUNKS_NCOLS / (hsize_t) SHRINKING_GROWING_CHUNKS_CH_NCOLS; - stride[0] = (hsize_t) SHRINKING_GROWING_CHUNKS_CH_NROWS; - stride[1] = (hsize_t) SHRINKING_GROWING_CHUNKS_CH_NCOLS; - block[0] = (hsize_t) SHRINKING_GROWING_CHUNKS_CH_NROWS; - block[1] = (hsize_t) SHRINKING_GROWING_CHUNKS_CH_NCOLS; - start[0] = ((hsize_t) mpi_rank * (hsize_t) SHRINKING_GROWING_CHUNKS_CH_NROWS * count[0]); - start[1] = 0; + count[0] = 1; + count[1] = (hsize_t)SHRINKING_GROWING_CHUNKS_NCOLS / (hsize_t)SHRINKING_GROWING_CHUNKS_CH_NCOLS; + stride[0] = (hsize_t)SHRINKING_GROWING_CHUNKS_CH_NROWS; + stride[1] = (hsize_t)SHRINKING_GROWING_CHUNKS_CH_NCOLS; + block[0] = (hsize_t)SHRINKING_GROWING_CHUNKS_CH_NROWS; + block[1] = (hsize_t)SHRINKING_GROWING_CHUNKS_CH_NCOLS; + start[0] = ((hsize_t)mpi_rank * (hsize_t)SHRINKING_GROWING_CHUNKS_CH_NROWS * count[0]); + start[1] = 0; if (VERBOSE_MED) { - HDprintf("Process %d is writing with count[ %llu, %llu ], stride[ %llu, %llu ], start[ %llu, %llu ], block size[ %llu, %llu ]\n", - mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); HDfflush(stdout); } @@ -5899,41 +7343,1304 @@ test_shrinking_growing_chunks(void) VRFY((dset_id >= 0), "File dataspace retrieval succeeded"); VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), - "Hyperslab selection succeeded"); - - /* Create property list for collective dataset write */ - plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id >= 0), "DXPL creation succeeded"); - - VRFY((H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE) >= 0), - "Set DXPL MPIO succeeded"); + "Hyperslab selection succeeded"); data_size = sel_dims[0] * sel_dims[1] * sizeof(double); - data = (double *) HDcalloc(1, data_size); + data = (double *)HDcalloc(1, data_size); VRFY((NULL != data), "HDcalloc succeeded"); + read_buf = (double *)HDcalloc(1, data_size); + VRFY((NULL != read_buf), "HDcalloc succeeded"); + for (i = 0; i < SHRINKING_GROWING_CHUNKS_NLOOPS; i++) { /* Continually write random float data, followed by zeroed-out data */ - if ((i % 2)) + if (i % 2) HDmemset(data, 0, data_size); else { size_t j; for (j = 0; j < data_size / sizeof(*data); j++) { - data[j] = (float) ( rand() / (double) (RAND_MAX / (double) 1.0L) ); + data[j] = (rand() / (double)(RAND_MAX / (double)1.0L)); } } - VRFY((H5Dwrite(dset_id, H5T_NATIVE_DOUBLE, memspace, filespace, plist_id, data) >= 0), - "Dataset write succeeded"); + VRFY((H5Dwrite(dset_id, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + if (i % 2) { + HDmemset(read_buf, 255, data_size); + } + else { + HDmemset(read_buf, 0, data_size); + } + + VRFY((H5Dread(dset_id, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + VRFY((0 == HDmemcmp(read_buf, data, data_size)), "data verification succeeded"); } - if (data) HDfree(data); + if (read_buf) + HDfree(read_buf); + if (data) + HDfree(data); + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); VRFY((H5Sclose(memspace) >= 0), "Memory dataspace close succeeded"); - VRFY((H5Pclose(plist_id) >= 0), "DXPL close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); + VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + + return; +} + +/* + * Tests that filtered and unfiltered partial edge chunks can be + * written to and read from correctly in parallel when only one MPI + * rank writes to a particular partial edge chunk in the dataset. + * + * The dataset contains partial edge chunks in the second dimension. + * Each MPI rank selects a hyperslab in the shape of a single chunk + * that is offset to cover the whole edge chunk and part of the + * full chunk next to the edge chunk. + */ +static void +test_edge_chunks_no_overlap(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, hid_t dcpl_id, + hid_t dxpl_id) +{ + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; + hsize_t dataset_dims[WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + hsize_t chunk_dims[WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + hsize_t sel_dims[WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + hsize_t start[WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + hsize_t stride[WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + hsize_t count[WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + hsize_t block[WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + size_t i, data_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs("Testing write to unshared filtered edge chunks"); + + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); + VRFY((file_id >= 0), "Test file open succeeded"); + + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + /* Create the dataspace for the dataset */ + dataset_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_NCOLS; + chunk_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS; + sel_dims[0] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NROWS; + sel_dims[1] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS; + + filespace = H5Screate_simple(WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS, dataset_dims, NULL); + VRFY((filespace >= 0), "File dataspace creation succeeded"); + + /* Create chunked dataset */ + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); + + VRFY((H5Pset_chunk(plist_id, WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), + "Chunk size set"); + + /* Add test filter to the pipeline */ + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); + + dset_id = H5Dcreate2(group_id, WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = 1; + count[1] = 1; + stride[0] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NROWS; + stride[1] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS; + block[0] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NROWS; + block[1] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS; + start[0] = ((hsize_t)mpi_rank * (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NROWS); + start[1] = + (hsize_t)(WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_NCOLS - WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS); + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + /* Fill data buffer */ + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + + data = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != data), "HDcalloc succeeded"); + + read_buf = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != read_buf), "HDcalloc succeeded"); + + for (i = 0; i < data_size / sizeof(*data); i++) + data[i] = (C_DATATYPE)GEN_DATA(i); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, (mpi_size > 1) ? SOME_CHUNKS_WRITTEN : ALL_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Verify the correct data was written */ + dset_id = H5Dopen2(group_id, WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + VRFY((0 == HDmemcmp(read_buf, data, data_size)), "Data verification succeeded"); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Repeat the previous, but set option to not filter partial edge chunks */ + if (MAINPROCESS) + HDputs("Testing write to unshared unfiltered edge chunks"); + + H5Pset_chunk_opts(plist_id, H5D_CHUNK_DONT_FILTER_PARTIAL_CHUNKS); + + dset_id = H5Dcreate2(group_id, WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_NAME2, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = 1; + count[1] = 1; + stride[0] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NROWS; + stride[1] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS; + block[0] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NROWS; + block[1] = (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS; + start[0] = ((hsize_t)mpi_rank * (hsize_t)WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NROWS); + start[1] = + (hsize_t)(WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_NCOLS - WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS); + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, (mpi_size > 1) ? SOME_CHUNKS_WRITTEN : ALL_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Verify the correct data was written */ + dset_id = H5Dopen2(group_id, WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_NAME2, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + HDmemset(read_buf, 255, data_size); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + VRFY((0 == HDmemcmp(read_buf, data, data_size)), "Data verification succeeded"); + + if (data) + HDfree(data); + if (read_buf) + HDfree(read_buf); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); + VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + + return; +} + +/* + * Tests that filtered and unfiltered partial edge chunks can be + * written to and read from correctly in parallel when every MPI + * rank writes to every partial edge chunk in the dataset. + * + * The dataset contains partial edge chunks in the second dimension. + * Each MPI rank selects a hyperslab in the shape of one row of each + * chunk that is offset in the second dimension to cover the whole + * edge chunk and part of the full chunk next to the edge chunk. + */ +static void +test_edge_chunks_overlap(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, hid_t dcpl_id, + hid_t dxpl_id) +{ + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; + hsize_t dataset_dims[WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + hsize_t chunk_dims[WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + hsize_t sel_dims[WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + hsize_t start[WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + hsize_t stride[WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + hsize_t count[WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + hsize_t block[WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS]; + size_t i, data_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs("Testing write to shared filtered edge chunks"); + + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); + VRFY((file_id >= 0), "Test file open succeeded"); + + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + /* Create the dataspace for the dataset */ + dataset_dims[0] = (hsize_t)WRITE_SHARED_FILTERED_EDGE_CHUNKS_NROWS; + dataset_dims[1] = (hsize_t)WRITE_SHARED_FILTERED_EDGE_CHUNKS_NCOLS; + chunk_dims[0] = (hsize_t)WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NROWS; + chunk_dims[1] = (hsize_t)WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS; + sel_dims[0] = (hsize_t)DIM0_SCALE_FACTOR; + sel_dims[1] = (hsize_t)WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS; + + filespace = H5Screate_simple(WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS, dataset_dims, NULL); + VRFY((filespace >= 0), "File dataspace creation succeeded"); + + /* Create chunked dataset */ + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); + + VRFY((H5Pset_chunk(plist_id, WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS, chunk_dims) >= 0), + "Chunk size set"); + + /* Add test filter to the pipeline */ + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); + + dset_id = H5Dcreate2(group_id, WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_NAME, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = + (hsize_t)(WRITE_SHARED_FILTERED_EDGE_CHUNKS_NROWS / WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NROWS); + count[1] = 1; + stride[0] = (hsize_t)WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NROWS; + stride[1] = (hsize_t)WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS; + block[0] = (hsize_t)1; + block[1] = (hsize_t)WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS; + start[0] = (hsize_t)mpi_rank; + start[1] = + (hsize_t)(WRITE_SHARED_FILTERED_EDGE_CHUNKS_NCOLS - WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS); + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + /* Fill data buffer */ + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + + data = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != data), "HDcalloc succeeded"); + + read_buf = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != read_buf), "HDcalloc succeeded"); + + for (i = 0; i < data_size / sizeof(*data); i++) + data[i] = (C_DATATYPE)GEN_DATA(i); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, SOME_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Verify the correct data was written */ + dset_id = H5Dopen2(group_id, WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + VRFY((0 == HDmemcmp(read_buf, data, data_size)), "Data verification succeeded"); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Repeat the previous, but set option to not filter partial edge chunks */ + if (MAINPROCESS) + HDputs("Testing write to shared unfiltered edge chunks"); + + H5Pset_chunk_opts(plist_id, H5D_CHUNK_DONT_FILTER_PARTIAL_CHUNKS); + + dset_id = H5Dcreate2(group_id, WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_NAME2, HDF5_DATATYPE_NAME, + filespace, H5P_DEFAULT, plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = + (hsize_t)(WRITE_SHARED_FILTERED_EDGE_CHUNKS_NROWS / WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NROWS); + count[1] = 1; + stride[0] = (hsize_t)WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NROWS; + stride[1] = (hsize_t)WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS; + block[0] = (hsize_t)1; + block[1] = (hsize_t)WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS; + start[0] = (hsize_t)mpi_rank; + start[1] = + (hsize_t)(WRITE_SHARED_FILTERED_EDGE_CHUNKS_NCOLS - WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS); + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, SOME_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Verify the correct data was written */ + dset_id = H5Dopen2(group_id, WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_NAME2, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + HDmemset(read_buf, 255, data_size); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + VRFY((0 == HDmemcmp(read_buf, data, data_size)), "Data verification succeeded"); + + if (data) + HDfree(data); + if (read_buf) + HDfree(read_buf); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); + VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + + return; +} + +/* + * Tests that filtered and unfiltered partial edge chunks can be + * written to and read from correctly in parallel when only one + * MPI rank writes to a particular edge chunk in the dataset and + * only performs a partial write to the edge chunk. + * + * The dataset contains partial edge chunks in the second dimension. + * Each MPI rank selects a hyperslab in the shape of part of a single + * edge chunk and writes to just a portion of the edge chunk. + */ +static void +test_edge_chunks_partial_write(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, hid_t dcpl_id, + hid_t dxpl_id) +{ + /* TODO */ +} + +/* + * Tests that the parallel compression feature correctly handles + * writing fill values to a dataset and reading fill values from + * unallocated parts of a dataset. + */ +static void +test_fill_values(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, hid_t dcpl_id, + hid_t dxpl_id) +{ + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; + C_DATATYPE *correct_buf = NULL; + C_DATATYPE fill_value; + hsize_t dataset_dims[FILL_VALUES_TEST_DATASET_DIMS]; + hsize_t chunk_dims[FILL_VALUES_TEST_DATASET_DIMS]; + hsize_t sel_dims[FILL_VALUES_TEST_DATASET_DIMS]; + hsize_t start[FILL_VALUES_TEST_DATASET_DIMS]; + hsize_t stride[FILL_VALUES_TEST_DATASET_DIMS]; + hsize_t count[FILL_VALUES_TEST_DATASET_DIMS]; + hsize_t block[FILL_VALUES_TEST_DATASET_DIMS]; + size_t i, data_size, read_buf_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; + + if (MAINPROCESS) + HDputs("Testing fill values"); + + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); + VRFY((file_id >= 0), "Test file open succeeded"); + + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + /* Create the dataspace for the dataset */ + dataset_dims[0] = (hsize_t)FILL_VALUES_TEST_NROWS; + dataset_dims[1] = (hsize_t)FILL_VALUES_TEST_NCOLS; + chunk_dims[0] = (hsize_t)FILL_VALUES_TEST_CH_NROWS; + chunk_dims[1] = (hsize_t)FILL_VALUES_TEST_CH_NCOLS; + sel_dims[0] = (hsize_t)DIM0_SCALE_FACTOR; + sel_dims[1] = (hsize_t)FILL_VALUES_TEST_CH_NCOLS * (hsize_t)DIM1_SCALE_FACTOR; + + filespace = H5Screate_simple(FILL_VALUES_TEST_DATASET_DIMS, dataset_dims, NULL); + VRFY((filespace >= 0), "File dataspace creation succeeded"); + + /* Create chunked dataset */ + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); + + VRFY((H5Pset_chunk(plist_id, FILL_VALUES_TEST_DATASET_DIMS, chunk_dims) >= 0), "Chunk size set"); + + /* Add test filter to the pipeline */ + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); + + /* Set a fill value */ + fill_value = FILL_VALUES_TEST_FILL_VAL; + VRFY((H5Pset_fill_value(plist_id, HDF5_DATATYPE_NAME, &fill_value) >= 0), "Fill Value set"); + + dset_id = H5Dcreate2(group_id, FILL_VALUES_TEST_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, H5P_DEFAULT, + plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + /* Allocate buffer for reading entire dataset */ + read_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*read_buf); + + read_buf = HDcalloc(1, read_buf_size); + VRFY((NULL != read_buf), "HDcalloc succeeded"); + + correct_buf = HDcalloc(1, read_buf_size); + VRFY((NULL != correct_buf), "HDcalloc succeeded"); + + /* Read entire dataset and verify that the fill value is returned */ + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + for (i = 0; i < read_buf_size / sizeof(*read_buf); i++) + correct_buf[i] = FILL_VALUES_TEST_FILL_VAL; + + VRFY((0 == HDmemcmp(read_buf, correct_buf, read_buf_size)), "Data verification succeeded"); + + /* + * Write to part of the first chunk in the dataset with + * all ranks, then read the whole dataset and ensure that + * the fill value is returned for the unwritten part of + * the chunk, as well as for the rest of the dataset that + * hasn't been written to yet. + */ + count[0] = 1; + count[1] = 1; + stride[0] = (hsize_t)FILL_VALUES_TEST_CH_NROWS; + stride[1] = (hsize_t)FILL_VALUES_TEST_CH_NCOLS; + block[0] = 1; + block[1] = (hsize_t)(FILL_VALUES_TEST_CH_NCOLS - 1); + start[0] = (hsize_t)mpi_rank; + start[1] = 0; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + /* Fill data buffer */ + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + + data = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != data), "HDcalloc succeeded"); + + for (i = 0; i < data_size / sizeof(*data); i++) + data[i] = (C_DATATYPE)GEN_DATA(i); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, SOME_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Verify correct data was written */ + dset_id = H5Dopen2(group_id, FILL_VALUES_TEST_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + /* + * Each MPI rank communicates their written piece of data + * into each other rank's correctness-checking buffer + */ + recvcounts = HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); + VRFY((NULL != recvcounts), "HDcalloc succeeded"); + + displs = HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); + VRFY((NULL != displs), "HDcalloc succeeded"); + + for (i = 0; i < (size_t)mpi_size; i++) { + recvcounts[i] = (int)(count[1] * block[1]); + displs[i] = (int)(i * dataset_dims[1]); + } + + VRFY((MPI_SUCCESS == MPI_Allgatherv(data, recvcounts[mpi_rank], C_DATATYPE_MPI, correct_buf, recvcounts, + displs, C_DATATYPE_MPI, comm)), + "MPI_Allgatherv succeeded"); + + VRFY((0 == HDmemcmp(read_buf, correct_buf, read_buf_size)), "Data verification succeeded"); + + /* + * Write to whole dataset and ensure fill value isn't returned + * after reading whole dataset back + */ + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = (hsize_t)FILL_VALUES_TEST_NROWS / (hsize_t)FILL_VALUES_TEST_CH_NROWS; + count[1] = (hsize_t)FILL_VALUES_TEST_NCOLS / (hsize_t)FILL_VALUES_TEST_CH_NCOLS; + stride[0] = (hsize_t)FILL_VALUES_TEST_CH_NROWS; + stride[1] = (hsize_t)FILL_VALUES_TEST_CH_NCOLS; + block[0] = (hsize_t)FILL_VALUES_TEST_CH_NROWS / (hsize_t)mpi_size; + block[1] = (hsize_t)FILL_VALUES_TEST_CH_NCOLS; + start[0] = (hsize_t)mpi_rank * block[0]; + start[1] = 0; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Verify correct data was written */ + dset_id = H5Dopen2(group_id, FILL_VALUES_TEST_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + for (i = 0; i < read_buf_size / sizeof(*read_buf); i++) + VRFY((read_buf[i] != FILL_VALUES_TEST_FILL_VAL), "Data verification succeeded"); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /******************************************************************** + * Set the fill time to H5D_FILL_TIME_ALLOC and repeat the previous * + ********************************************************************/ + + VRFY((H5Pset_fill_time(plist_id, H5D_FILL_TIME_ALLOC) >= 0), "H5Pset_fill_time succeeded"); + + dset_id = H5Dcreate2(group_id, FILL_VALUES_TEST_DATASET_NAME2, HDF5_DATATYPE_NAME, filespace, H5P_DEFAULT, + plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + /* Read entire dataset and verify that the fill value is returned */ + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + for (i = 0; i < read_buf_size / sizeof(*read_buf); i++) + correct_buf[i] = FILL_VALUES_TEST_FILL_VAL; + + VRFY((0 == HDmemcmp(read_buf, correct_buf, read_buf_size)), "Data verification succeeded"); + + /* + * Write to part of the first chunk in the dataset with + * all ranks, then read the whole dataset and ensure that + * the fill value is returned for the unwritten part of + * the chunk, as well as for the rest of the dataset that + * hasn't been written to yet. + */ + count[0] = 1; + count[1] = 1; + stride[0] = (hsize_t)FILL_VALUES_TEST_CH_NROWS; + stride[1] = (hsize_t)FILL_VALUES_TEST_CH_NCOLS; + block[0] = 1; + block[1] = (hsize_t)(FILL_VALUES_TEST_CH_NCOLS - 1); + start[0] = (hsize_t)mpi_rank; + start[1] = 0; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + for (i = 0; i < data_size / sizeof(*data); i++) + data[i] = (C_DATATYPE)GEN_DATA(i); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, SOME_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Verify correct data was written */ + dset_id = H5Dopen2(group_id, FILL_VALUES_TEST_DATASET_NAME2, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + for (i = 0; i < (size_t)mpi_size; i++) { + recvcounts[i] = (int)(count[1] * block[1]); + displs[i] = (int)(i * dataset_dims[1]); + } + + /* + * Each MPI rank communicates their written piece of data + * into each other rank's correctness-checking buffer + */ + VRFY((MPI_SUCCESS == MPI_Allgatherv(data, recvcounts[mpi_rank], C_DATATYPE_MPI, correct_buf, recvcounts, + displs, C_DATATYPE_MPI, comm)), + "MPI_Allgatherv succeeded"); + + VRFY((0 == HDmemcmp(read_buf, correct_buf, read_buf_size)), "Data verification succeeded"); + + /* + * Write to whole dataset and ensure fill value isn't returned + * after reading whole dataset back + */ + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = (hsize_t)FILL_VALUES_TEST_NROWS / (hsize_t)FILL_VALUES_TEST_CH_NROWS; + count[1] = (hsize_t)FILL_VALUES_TEST_NCOLS / (hsize_t)FILL_VALUES_TEST_CH_NCOLS; + stride[0] = (hsize_t)FILL_VALUES_TEST_CH_NROWS; + stride[1] = (hsize_t)FILL_VALUES_TEST_CH_NCOLS; + block[0] = (hsize_t)FILL_VALUES_TEST_CH_NROWS / (hsize_t)mpi_size; + block[1] = (hsize_t)FILL_VALUES_TEST_CH_NCOLS; + start[0] = (hsize_t)mpi_rank * block[0]; + start[1] = 0; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Verify correct data was written */ + dset_id = H5Dopen2(group_id, FILL_VALUES_TEST_DATASET_NAME2, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + for (i = 0; i < read_buf_size / sizeof(*read_buf); i++) + VRFY((read_buf[i] != FILL_VALUES_TEST_FILL_VAL), "Data verification succeeded"); + + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (data) + HDfree(data); + if (read_buf) + HDfree(read_buf); + if (correct_buf) + HDfree(correct_buf); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); + VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + + return; +} + +/* + * Tests that the parallel compression feature can handle + * an undefined fill value. Nothing is verified in this + * test since the fill value isn't defined. + */ +static void +test_fill_value_undefined(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, hid_t dcpl_id, + hid_t dxpl_id) +{ + H5D_alloc_time_t alloc_time; + C_DATATYPE * data = NULL; + C_DATATYPE * read_buf = NULL; + hsize_t dataset_dims[FILL_VALUE_UNDEFINED_TEST_DATASET_DIMS]; + hsize_t chunk_dims[FILL_VALUE_UNDEFINED_TEST_DATASET_DIMS]; + hsize_t sel_dims[FILL_VALUE_UNDEFINED_TEST_DATASET_DIMS]; + hsize_t start[FILL_VALUE_UNDEFINED_TEST_DATASET_DIMS]; + hsize_t stride[FILL_VALUE_UNDEFINED_TEST_DATASET_DIMS]; + hsize_t count[FILL_VALUE_UNDEFINED_TEST_DATASET_DIMS]; + hsize_t block[FILL_VALUE_UNDEFINED_TEST_DATASET_DIMS]; + size_t i, data_size, read_buf_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID; + + if (MAINPROCESS) + HDputs("Testing undefined fill value"); + + VRFY((H5Pget_alloc_time(dcpl_id, &alloc_time) >= 0), "H5Pget_alloc_time succeeded"); + + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); + VRFY((file_id >= 0), "Test file open succeeded"); + + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + /* Create the dataspace for the dataset */ + dataset_dims[0] = (hsize_t)FILL_VALUE_UNDEFINED_TEST_NROWS; + dataset_dims[1] = (hsize_t)FILL_VALUE_UNDEFINED_TEST_NCOLS; + chunk_dims[0] = (hsize_t)FILL_VALUE_UNDEFINED_TEST_CH_NROWS; + chunk_dims[1] = (hsize_t)FILL_VALUE_UNDEFINED_TEST_CH_NCOLS; + sel_dims[0] = (hsize_t)DIM0_SCALE_FACTOR; + sel_dims[1] = (hsize_t)FILL_VALUE_UNDEFINED_TEST_CH_NCOLS * (hsize_t)DIM1_SCALE_FACTOR; + + filespace = H5Screate_simple(FILL_VALUE_UNDEFINED_TEST_DATASET_DIMS, dataset_dims, NULL); + VRFY((filespace >= 0), "File dataspace creation succeeded"); + + /* Create chunked dataset */ + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); + + VRFY((H5Pset_chunk(plist_id, FILL_VALUE_UNDEFINED_TEST_DATASET_DIMS, chunk_dims) >= 0), "Chunk size set"); + + /* Add test filter to the pipeline */ + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); + + /* Set an undefined fill value */ + VRFY((H5Pset_fill_value(plist_id, HDF5_DATATYPE_NAME, NULL) >= 0), "Fill Value set"); + + dset_id = H5Dcreate2(group_id, FILL_VALUE_UNDEFINED_TEST_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + /* Allocate buffer for reading entire dataset */ + read_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*read_buf); + + read_buf = HDcalloc(1, read_buf_size); + VRFY((NULL != read_buf), "HDcalloc succeeded"); + + /* + * Read entire dataset - nothing to verify since there's no fill value. + * If not using early space allocation, the read should fail since storage + * isn't allocated yet and no fill value is defined. + */ + if (alloc_time == H5D_ALLOC_TIME_EARLY) { + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + } + else { + H5E_BEGIN_TRY + { + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) < 0), + "Dataset read succeeded"); + } + H5E_END_TRY; + } + + /* + * Write to part of the first chunk in the dataset with + * all ranks, then read the whole dataset. Don't verify + * anything since there's no fill value defined. + */ + count[0] = 1; + count[1] = 1; + stride[0] = (hsize_t)FILL_VALUE_UNDEFINED_TEST_CH_NROWS; + stride[1] = (hsize_t)FILL_VALUE_UNDEFINED_TEST_CH_NCOLS; + block[0] = 1; + block[1] = (hsize_t)(FILL_VALUE_UNDEFINED_TEST_CH_NCOLS - 1); + start[0] = (hsize_t)mpi_rank; + start[1] = 0; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + /* Fill data buffer */ + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + + data = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != data), "HDcalloc succeeded"); + + for (i = 0; i < data_size / sizeof(*data); i++) + data[i] = (C_DATATYPE)GEN_DATA(i); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, SOME_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + dset_id = H5Dopen2(group_id, FILL_VALUE_UNDEFINED_TEST_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + /* + * Write to whole dataset and ensure data is correct + * after reading whole dataset back + */ + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = (hsize_t)FILL_VALUE_UNDEFINED_TEST_NROWS / (hsize_t)FILL_VALUE_UNDEFINED_TEST_CH_NROWS; + count[1] = (hsize_t)FILL_VALUE_UNDEFINED_TEST_NCOLS / (hsize_t)FILL_VALUE_UNDEFINED_TEST_CH_NCOLS; + stride[0] = (hsize_t)FILL_VALUE_UNDEFINED_TEST_CH_NROWS; + stride[1] = (hsize_t)FILL_VALUE_UNDEFINED_TEST_CH_NCOLS; + block[0] = (hsize_t)FILL_VALUE_UNDEFINED_TEST_CH_NROWS / (hsize_t)mpi_size; + block[1] = (hsize_t)FILL_VALUE_UNDEFINED_TEST_CH_NCOLS; + start[0] = (hsize_t)mpi_rank * block[0]; + start[1] = 0; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Verify correct data was written */ + dset_id = H5Dopen2(group_id, FILL_VALUE_UNDEFINED_TEST_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + if (data) + HDfree(data); + if (read_buf) + HDfree(read_buf); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); + VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + + return; +} + +/* + * Tests that the parallel compression feature correctly handles + * avoiding writing fill values to a dataset when the fill time + * is set as H5D_FILL_TIME_NEVER. + */ +static void +test_fill_time_never(const char *parent_group, H5Z_filter_t filter_id, hid_t fapl_id, hid_t dcpl_id, + hid_t dxpl_id) +{ + C_DATATYPE *data = NULL; + C_DATATYPE *read_buf = NULL; + C_DATATYPE *fill_buf = NULL; + C_DATATYPE fill_value; + hsize_t dataset_dims[FILL_TIME_NEVER_TEST_DATASET_DIMS]; + hsize_t chunk_dims[FILL_TIME_NEVER_TEST_DATASET_DIMS]; + hsize_t sel_dims[FILL_TIME_NEVER_TEST_DATASET_DIMS]; + hsize_t start[FILL_TIME_NEVER_TEST_DATASET_DIMS]; + hsize_t stride[FILL_TIME_NEVER_TEST_DATASET_DIMS]; + hsize_t count[FILL_TIME_NEVER_TEST_DATASET_DIMS]; + hsize_t block[FILL_TIME_NEVER_TEST_DATASET_DIMS]; + size_t i, data_size, read_buf_size; + hid_t file_id = H5I_INVALID_HID, dset_id = H5I_INVALID_HID, plist_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t filespace = H5I_INVALID_HID; + int * recvcounts = NULL; + int * displs = NULL; + + if (MAINPROCESS) + HDputs("Testing fill time H5D_FILL_TIME_NEVER"); + + /* + * Only run this test when incremental file space allocation is + * used, as HDF5's chunk allocation code always writes fill values + * when filters are in the pipeline, but parallel compression does + * incremental file space allocation differently. + */ + { + H5D_alloc_time_t alloc_time; + + VRFY((H5Pget_alloc_time(dcpl_id, &alloc_time) >= 0), "H5Pget_alloc_time succeeded"); + + if (alloc_time != H5D_ALLOC_TIME_INCR) { + if (MAINPROCESS) + SKIPPED(); + return; + } + } + + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); + VRFY((file_id >= 0), "Test file open succeeded"); + + group_id = H5Gopen2(file_id, parent_group, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gopen2 succeeded"); + + /* Create the dataspace for the dataset */ + dataset_dims[0] = (hsize_t)FILL_TIME_NEVER_TEST_NROWS; + dataset_dims[1] = (hsize_t)FILL_TIME_NEVER_TEST_NCOLS; + chunk_dims[0] = (hsize_t)FILL_TIME_NEVER_TEST_CH_NROWS; + chunk_dims[1] = (hsize_t)FILL_TIME_NEVER_TEST_CH_NCOLS; + sel_dims[0] = (hsize_t)DIM0_SCALE_FACTOR; + sel_dims[1] = (hsize_t)FILL_TIME_NEVER_TEST_CH_NCOLS * (hsize_t)DIM1_SCALE_FACTOR; + + filespace = H5Screate_simple(FILL_TIME_NEVER_TEST_DATASET_DIMS, dataset_dims, NULL); + VRFY((filespace >= 0), "File dataspace creation succeeded"); + + /* Create chunked dataset */ + plist_id = H5Pcopy(dcpl_id); + VRFY((plist_id >= 0), "DCPL copy succeeded"); + + VRFY((H5Pset_chunk(plist_id, FILL_TIME_NEVER_TEST_DATASET_DIMS, chunk_dims) >= 0), "Chunk size set"); + + /* Add test filter to the pipeline */ + VRFY((set_dcpl_filter(plist_id, filter_id, NULL) >= 0), "Filter set"); + + /* Set a fill value */ + fill_value = FILL_VALUES_TEST_FILL_VAL; + VRFY((H5Pset_fill_value(plist_id, HDF5_DATATYPE_NAME, &fill_value) >= 0), "Fill Value set"); + + /* Set fill time of 'never' */ + VRFY((H5Pset_fill_time(plist_id, H5D_FILL_TIME_NEVER) >= 0), "H5Pset_fill_time succeeded"); + + dset_id = H5Dcreate2(group_id, FILL_TIME_NEVER_TEST_DATASET_NAME, HDF5_DATATYPE_NAME, filespace, + H5P_DEFAULT, plist_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset creation succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, DATASET_JUST_CREATED); + + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + + /* Allocate buffer for reading entire dataset */ + read_buf_size = dataset_dims[0] * dataset_dims[1] * sizeof(*read_buf); + + read_buf = HDcalloc(1, read_buf_size); + VRFY((NULL != read_buf), "HDcalloc succeeded"); + + fill_buf = HDcalloc(1, read_buf_size); + VRFY((NULL != fill_buf), "HDcalloc succeeded"); + + /* Read entire dataset and verify that the fill value isn't returned */ + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + for (i = 0; i < read_buf_size / sizeof(*read_buf); i++) + fill_buf[i] = FILL_TIME_NEVER_TEST_FILL_VAL; + + /* + * It should be very unlikely for the dataset's random + * values to all be the fill value, so this should be + * a safe comparison in theory. + */ + VRFY((0 != HDmemcmp(read_buf, fill_buf, read_buf_size)), "Data verification succeeded"); + + /* + * Write to part of the first chunk in the dataset with + * all ranks, then read the whole dataset and ensure that + * the fill value isn't returned for the unwritten part of + * the chunk, as well as for the rest of the dataset that + * hasn't been written to yet. + */ + count[0] = 1; + count[1] = 1; + stride[0] = (hsize_t)FILL_TIME_NEVER_TEST_CH_NROWS; + stride[1] = (hsize_t)FILL_TIME_NEVER_TEST_CH_NCOLS; + block[0] = 1; + block[1] = (hsize_t)(FILL_TIME_NEVER_TEST_CH_NCOLS - 1); + start[0] = (hsize_t)mpi_rank; + start[1] = 0; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + /* Select hyperslab in the file */ + filespace = H5Dget_space(dset_id); + VRFY((filespace >= 0), "File dataspace retrieval succeeded"); + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + /* Fill data buffer */ + data_size = sel_dims[0] * sel_dims[1] * sizeof(*data); + + data = (C_DATATYPE *)HDcalloc(1, data_size); + VRFY((NULL != data), "HDcalloc succeeded"); + + for (i = 0; i < data_size / sizeof(*data); i++) + data[i] = (C_DATATYPE)GEN_DATA(i); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, SOME_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Verify correct data was written */ + dset_id = H5Dopen2(group_id, FILL_TIME_NEVER_TEST_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + /* + * Each MPI rank communicates their written piece of data + * into each other rank's correctness-checking buffer + */ + recvcounts = HDcalloc(1, (size_t)mpi_size * sizeof(*recvcounts)); + VRFY((NULL != recvcounts), "HDcalloc succeeded"); + + displs = HDcalloc(1, (size_t)mpi_size * sizeof(*displs)); + VRFY((NULL != displs), "HDcalloc succeeded"); + + for (i = 0; i < (size_t)mpi_size; i++) { + recvcounts[i] = (int)(count[1] * block[1]); + displs[i] = (int)(i * dataset_dims[1]); + } + + VRFY((MPI_SUCCESS == MPI_Allgatherv(data, recvcounts[mpi_rank], C_DATATYPE_MPI, fill_buf, recvcounts, + displs, C_DATATYPE_MPI, comm)), + "MPI_Allgatherv succeeded"); + + /* + * It should be very unlikely for the dataset's random + * values to all be the fill value, so this should be + * a safe comparison in theory. + */ + VRFY((0 != HDmemcmp(read_buf, fill_buf, read_buf_size)), "Data verification succeeded"); + + /* + * Write to whole dataset and ensure fill value isn't returned + * after reading whole dataset back + */ + + /* Each process defines the dataset selection in memory and writes + * it to the hyperslab in the file + */ + count[0] = (hsize_t)FILL_TIME_NEVER_TEST_NROWS / (hsize_t)FILL_TIME_NEVER_TEST_CH_NROWS; + count[1] = (hsize_t)FILL_TIME_NEVER_TEST_NCOLS / (hsize_t)FILL_TIME_NEVER_TEST_CH_NCOLS; + stride[0] = (hsize_t)FILL_TIME_NEVER_TEST_CH_NROWS; + stride[1] = (hsize_t)FILL_TIME_NEVER_TEST_CH_NCOLS; + block[0] = (hsize_t)FILL_TIME_NEVER_TEST_CH_NROWS / (hsize_t)mpi_size; + block[1] = (hsize_t)FILL_TIME_NEVER_TEST_CH_NCOLS; + start[0] = (hsize_t)mpi_rank * block[0]; + start[1] = 0; + + if (VERBOSE_MED) { + HDprintf("Process %d is writing with count[ %" PRIuHSIZE ", %" PRIuHSIZE " ], stride[ %" PRIuHSIZE + ", %" PRIuHSIZE " ], start[ %" PRIuHSIZE ", %" PRIuHSIZE " ], block size[ %" PRIuHSIZE + ", %" PRIuHSIZE " ]\n", + mpi_rank, count[0], count[1], stride[0], stride[1], start[0], start[1], block[0], block[1]); + HDfflush(stdout); + } + + VRFY((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, start, stride, count, block) >= 0), + "Hyperslab selection succeeded"); + + VRFY((H5Dwrite(dset_id, HDF5_DATATYPE_NAME, H5S_BLOCK, filespace, dxpl_id, data) >= 0), + "Dataset write succeeded"); + + /* Verify space allocation status */ + verify_space_alloc_status(dset_id, plist_id, ALL_CHUNKS_WRITTEN); + + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + + /* Verify correct data was written */ + dset_id = H5Dopen2(group_id, FILL_TIME_NEVER_TEST_DATASET_NAME, H5P_DEFAULT); + VRFY((dset_id >= 0), "Dataset open succeeded"); + + VRFY((H5Dread(dset_id, HDF5_DATATYPE_NAME, H5S_ALL, H5S_ALL, dxpl_id, read_buf) >= 0), + "Dataset read succeeded"); + + for (i = 0; i < read_buf_size / sizeof(*read_buf); i++) + VRFY((read_buf[i] != FILL_TIME_NEVER_TEST_FILL_VAL), "Data verification succeeded"); + + if (displs) + HDfree(displs); + if (recvcounts) + HDfree(recvcounts); + if (data) + HDfree(data); + if (read_buf) + HDfree(read_buf); + if (fill_buf) + HDfree(fill_buf); + + VRFY((H5Pclose(plist_id) >= 0), "DCPL close succeeded"); + VRFY((H5Dclose(dset_id) >= 0), "Dataset close succeeded"); + VRFY((H5Sclose(filespace) >= 0), "File dataspace close succeeded"); + VRFY((H5Gclose(group_id) >= 0), "Group close succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); return; @@ -5941,10 +8648,16 @@ test_shrinking_growing_chunks(void) #endif int -main(int argc, char** argv) +main(int argc, char **argv) { - size_t i; - hid_t file_id = -1, fapl = -1; + size_t cur_filter_idx = 0; + size_t num_filters = 0; + hid_t file_id = H5I_INVALID_HID; + hid_t fcpl_id = H5I_INVALID_HID; + hid_t group_id = H5I_INVALID_HID; + hid_t fapl_id = H5I_INVALID_HID; + hid_t dxpl_id = H5I_INVALID_HID; + hid_t dcpl_id = H5I_INVALID_HID; int mpi_code; /* Initialize MPI */ @@ -5971,91 +8684,198 @@ main(int argc, char** argv) if (MAINPROCESS) { HDprintf("==========================\n"); - HDprintf("Parallel Filters tests\n"); + HDprintf(" Parallel Filters tests\n"); HDprintf("==========================\n\n"); } - if (VERBOSE_MED) h5_show_hostname(); - - ALARM_ON; - - /* Create test file */ - fapl = H5Pcreate(H5P_FILE_ACCESS); - VRFY((fapl >= 0), "FAPL creation succeeded"); - - VRFY((H5Pset_fapl_mpio(fapl, comm, info) >= 0), "Set FAPL MPIO succeeded"); + if (VERBOSE_MED) + h5_show_hostname(); - VRFY((H5Pset_libver_bounds(fapl, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); + TestAlarmOn(); - VRFY((h5_fixname(FILENAME[0], fapl, filenames[0], sizeof(filenames[0])) != NULL), - "Test file name created"); + num_filters = ARRAY_SIZE(filterIDs); - file_id = H5Fcreate(filenames[0], H5F_ACC_TRUNC, H5P_DEFAULT, fapl); - VRFY((file_id >= 0), "Test file creation succeeded"); + /* Set up file access property list with parallel I/O access, + * collective metadata reads/writes and the latest library + * version bounds */ + fapl_id = H5Pcreate(H5P_FILE_ACCESS); + VRFY((fapl_id >= 0), "FAPL creation succeeded"); - VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + VRFY((H5Pset_fapl_mpio(fapl_id, comm, info) >= 0), "Set FAPL MPIO succeeded"); + VRFY((H5Pset_all_coll_metadata_ops(fapl_id, TRUE) >= 0), "H5Pset_all_coll_metadata_ops succeeded"); + VRFY((H5Pset_coll_metadata_write(fapl_id, TRUE) >= 0), "H5Pset_coll_metadata_write succeeded"); - for (i = 0; i < ARRAY_SIZE(tests); i++) { - if (MPI_SUCCESS == (mpi_code = MPI_Barrier(comm))) { - (*tests[i])(); - } - else { - if (MAINPROCESS) MESG("MPI_Barrier failed"); - nerrors++; - } - } + VRFY((H5Pset_libver_bounds(fapl_id, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), + "Set libver bounds succeeded"); /* - * Increment the filter index to switch to the checksum filter - * and re-run the tests. + * Set up Paged and Persistent Free Space Management */ - cur_filter_idx++; - - h5_clean_files(FILENAME, fapl); + fcpl_id = H5Pcreate(H5P_FILE_CREATE); + VRFY((fcpl_id >= 0), "FCPL creation succeeded"); - fapl = H5Pcreate(H5P_FILE_ACCESS); - VRFY((fapl >= 0), "FAPL creation succeeded"); + VRFY((H5Pset_file_space_strategy(fcpl_id, H5F_FSPACE_STRATEGY_PAGE, TRUE, 1) >= 0), + "H5Pset_file_space_strategy succeeded"); - VRFY((H5Pset_fapl_mpio(fapl, comm, info) >= 0), "Set FAPL MPIO succeeded"); + VRFY((h5_fixname(FILENAME[0], fapl_id, filenames[0], sizeof(filenames[0])) != NULL), + "Test file name created"); - VRFY((H5Pset_libver_bounds(fapl, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) >= 0), - "Set libver bounds succeeded"); - - file_id = H5Fcreate(filenames[0], H5F_ACC_TRUNC, H5P_DEFAULT, fapl); + file_id = H5Fcreate(filenames[0], H5F_ACC_TRUNC, fcpl_id, fapl_id); VRFY((file_id >= 0), "Test file creation succeeded"); VRFY((H5Fclose(file_id) >= 0), "File close succeeded"); + file_id = H5I_INVALID_HID; - if (MAINPROCESS) { - HDprintf("\n=================================================================\n"); - HDprintf("Re-running Parallel Filters tests with Fletcher32 checksum filter\n"); - HDprintf("=================================================================\n\n"); - } - - for (i = 0; i < ARRAY_SIZE(tests); i++) { - if (MPI_SUCCESS == (mpi_code = MPI_Barrier(comm))) { - (*tests[i])(); - } - else { - if (MAINPROCESS) MESG("MPI_Barrier failed"); - nerrors++; + /* Create property list for collective dataset write */ + dxpl_id = H5Pcreate(H5P_DATASET_XFER); + VRFY((dxpl_id >= 0), "DXPL creation succeeded"); + + VRFY((H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) >= 0), "H5Pset_dxpl_mpio succeeded"); + + /* Create DCPL for dataset creation */ + dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dcpl_id >= 0), "DCPL creation succeeded"); + + /* Run tests with all available filters */ + for (cur_filter_idx = 0; cur_filter_idx < num_filters; cur_filter_idx++) { + H5FD_mpio_chunk_opt_t chunk_opt; + H5Z_filter_t cur_filter = filterIDs[cur_filter_idx]; + + /* Run tests with both linked-chunk and multi-chunk I/O */ + for (chunk_opt = H5FD_MPIO_CHUNK_ONE_IO; chunk_opt <= H5FD_MPIO_CHUNK_MULTI_IO; chunk_opt++) { + H5D_alloc_time_t space_alloc_time; + + /* Run tests with all available space allocation times */ + for (space_alloc_time = H5D_ALLOC_TIME_EARLY; space_alloc_time <= H5D_ALLOC_TIME_INCR; + space_alloc_time++) { + const char *alloc_time; + unsigned filter_config; + htri_t filter_avail; + size_t i; + char group_name[512]; + + switch (space_alloc_time) { + case H5D_ALLOC_TIME_EARLY: + alloc_time = "Early"; + break; + case H5D_ALLOC_TIME_LATE: + alloc_time = "Late"; + break; + case H5D_ALLOC_TIME_INCR: + alloc_time = "Incremental"; + break; + default: + alloc_time = "Unknown"; + } + + if (MAINPROCESS) + HDprintf("== Running tests with filter '%s' using '%s' and '%s' allocation time ==\n\n", + filterNames[cur_filter_idx], + H5FD_MPIO_CHUNK_ONE_IO == chunk_opt ? "Linked-Chunk I/O" : "Multi-Chunk I/O", + alloc_time); + + /* Make sure current filter is available before testing with it */ + filter_avail = H5Zfilter_avail(cur_filter); + VRFY((filter_avail >= 0), "H5Zfilter_avail succeeded"); + + if (!filter_avail) { + if (MAINPROCESS) + HDprintf(" ** SKIPPED tests with filter '%s' - filter unavailable **\n\n", + filterNames[cur_filter_idx]); + continue; + } + + /* Get the current filter's info */ + VRFY((H5Zget_filter_info(cur_filter, &filter_config) >= 0), "H5Zget_filter_info succeeded"); + + /* Determine if filter is encode-enabled */ + if (0 == (filter_config & H5Z_FILTER_CONFIG_ENCODE_ENABLED)) { + if (MAINPROCESS) + HDprintf(" ** SKIPPED tests with filter '%s' - filter not encode-enabled **\n\n", + filterNames[cur_filter_idx]); + continue; + } + + /* Set space allocation time */ + VRFY((H5Pset_alloc_time(dcpl_id, space_alloc_time) >= 0), "H5Pset_alloc_time succeeded"); + + /* Set chunk I/O optimization method */ + VRFY((H5Pset_dxpl_mpio_chunk_opt(dxpl_id, chunk_opt) >= 0), + "H5Pset_dxpl_mpio_chunk_opt succeeded"); + + /* Create a group to hold all the datasets for this combination + * of filter and chunk optimization mode. Then, close the file + * again since some tests may need to open the file in a special + * way, like on rank 0 only */ + file_id = H5Fopen(filenames[0], H5F_ACC_RDWR, fapl_id); + VRFY((file_id >= 0), "H5Fopen succeeded"); + + HDsnprintf(group_name, sizeof(group_name), "%s_%s_%s", filterNames[cur_filter_idx], + H5FD_MPIO_CHUNK_ONE_IO == chunk_opt ? "linked-chunk-io" : "multi-chunk-io", + alloc_time); + + group_id = H5Gcreate2(file_id, group_name, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((group_id >= 0), "H5Gcreate2 succeeded"); + + VRFY((H5Gclose(group_id) >= 0), "H5Gclose failed"); + group_id = H5I_INVALID_HID; + + VRFY((H5Fclose(file_id) >= 0), "H5Fclose succeeded"); + file_id = H5I_INVALID_HID; + + for (i = 0; i < ARRAY_SIZE(tests); i++) { + test_func func = tests[i]; + + if (MPI_SUCCESS == (mpi_code = MPI_Barrier(comm))) { + func(group_name, cur_filter, fapl_id, dcpl_id, dxpl_id); + } + else { + if (MAINPROCESS) + MESG("MPI_Barrier failed"); + nerrors++; + } + } + + if (MAINPROCESS) + HDputs(""); + } } } - if (nerrors) goto exit; + VRFY((H5Pclose(dcpl_id) >= 0), "DCPL close succeeded"); + dcpl_id = H5I_INVALID_HID; - if (MAINPROCESS) HDputs("All Parallel Filters tests passed\n"); + VRFY((H5Pclose(dxpl_id) >= 0), "DXPL close succeeded"); + dxpl_id = H5I_INVALID_HID; -exit: if (nerrors) - if (MAINPROCESS) - HDprintf("*** %d TEST ERROR%s OCCURRED ***\n", nerrors, - nerrors > 1 ? "S" : ""); + goto exit; - ALARM_OFF; + if (MAINPROCESS) + HDputs("All Parallel Filters tests passed\n"); - h5_clean_files(FILENAME, fapl); +exit: + if (nerrors) + if (MAINPROCESS) + HDprintf("*** %d TEST ERROR%s OCCURRED ***\n", nerrors, nerrors > 1 ? "S" : ""); + + TestAlarmOff(); + + h5_clean_files(FILENAME, fapl_id); + fapl_id = H5I_INVALID_HID; + + if (dcpl_id >= 0) + VRFY((H5Pclose(dcpl_id) >= 0), "H5Pclose succeeded"); + if (dxpl_id >= 0) + VRFY((H5Pclose(dxpl_id) >= 0), "H5Pclose succeeded"); + if (fapl_id >= 0) + VRFY((H5Pclose(fapl_id) >= 0), "H5Pclose succeeded"); + if (fcpl_id >= 0) + VRFY((H5Pclose(fcpl_id) >= 0), "H5Pclose succeeded"); + if (group_id >= 0) + VRFY((H5Gclose(group_id) >= 0), "H5Gclose succeeded"); + if (file_id >= 0) + VRFY((H5Fclose(file_id) >= 0), "H5Fclose succeeded"); H5close(); diff --git a/testpar/t_filters_parallel.h b/testpar/t_filters_parallel.h index 9543508..800604c 100644 --- a/testpar/t_filters_parallel.h +++ b/testpar/t_filters_parallel.h @@ -30,52 +30,56 @@ #include "stdlib.h" #include "testpar.h" +#define ARRAY_SIZE(a) sizeof(a) / sizeof(a[0]) + /* Used to load other filters than GZIP */ /* #define DYNAMIC_FILTER */ /* Uncomment and define the fields below to use a dynamically loaded filter */ -#define FILTER_NUM_CDVALUES 1 -const unsigned int cd_values[FILTER_NUM_CDVALUES] = { 0 }; -H5Z_filter_t filter_id; -unsigned int flags = 0; -size_t cd_nelmts = FILTER_NUM_CDVALUES; -/* Utility Macros */ -#define STRINGIFY(type) #type +#ifdef DYNAMIC_FILTER +#define FILTER_NUM_CDVALUES 1 +const unsigned int cd_values[FILTER_NUM_CDVALUES] = {0}; +unsigned int flags = 0; +size_t cd_nelmts = FILTER_NUM_CDVALUES; +#endif /* Common defines for all tests */ -#define C_DATATYPE long -#define C_DATATYPE_MPI MPI_LONG -#define COMPOUND_C_DATATYPE cmpd_filtered_t -#define C_DATATYPE_STR(type) STRINGIFY(type) -#define HDF5_DATATYPE_NAME H5T_NATIVE_LONG +#define C_DATATYPE long +#define C_DATATYPE_MPI MPI_LONG +#define COMPOUND_C_DATATYPE cmpd_filtered_t +#define HDF5_DATATYPE_NAME H5T_NATIVE_LONG /* Macro used to generate data for datasets for later verification */ -#define GEN_DATA(i) INCREMENTAL_DATA(i) +#define GEN_DATA(i) INCREMENTAL_DATA(i) /* For experimental purposes only, will cause tests to fail data verification phase - JTH */ -/* #define GEN_DATA(i) RANK_DATA(i) */ /* Given an index value i, generates test data based upon selected mode */ +/* #define GEN_DATA(i) RANK_DATA(i) */ /* Given an index value i, generates test data based upon + selected mode */ -#define INCREMENTAL_DATA(i) ((size_t) mpi_rank + i) /* Generates incremental test data */ -#define RANK_DATA(i) (mpi_rank) /* Generates test data to visibly show which rank wrote to which parts of the dataset */ +#define INCREMENTAL_DATA(i) ((size_t)mpi_rank + i) /* Generates incremental test data */ +#define RANK_DATA(i) \ + (mpi_rank) /* Generates test data to visibly show which rank wrote to which parts of the dataset */ -#define DEFAULT_DEFLATE_LEVEL 6 +#define DEFAULT_DEFLATE_LEVEL 9 #define DIM0_SCALE_FACTOR 4 #define DIM1_SCALE_FACTOR 2 /* Struct type for the compound datatype filtered dataset tests */ typedef struct { - short field1; - int field2; - long field3; + short field1; + int field2; + long field3; } COMPOUND_C_DATATYPE; /* Defines for the one-chunk filtered dataset write test */ -#define WRITE_ONE_CHUNK_FILTERED_DATASET_NAME "one_chunk_filtered_dataset_write" -#define WRITE_ONE_CHUNK_FILTERED_DATASET_DIMS 2 -#define WRITE_ONE_CHUNK_FILTERED_DATASET_NROWS (mpi_size * DIM0_SCALE_FACTOR) /* Must be an even multiple of the number of ranks to avoid issues */ -#define WRITE_ONE_CHUNK_FILTERED_DATASET_NCOLS (mpi_size * DIM1_SCALE_FACTOR) /* Must be an even multiple of the number of ranks to avoid issues */ -#define WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NROWS WRITE_ONE_CHUNK_FILTERED_DATASET_NROWS -#define WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS WRITE_ONE_CHUNK_FILTERED_DATASET_NCOLS +#define WRITE_ONE_CHUNK_FILTERED_DATASET_NAME "one_chunk_filtered_dataset_write" +#define WRITE_ONE_CHUNK_FILTERED_DATASET_DIMS 2 +#define WRITE_ONE_CHUNK_FILTERED_DATASET_NROWS \ + (mpi_size * DIM0_SCALE_FACTOR) /* Must be an even multiple of the number of ranks to avoid issues */ +#define WRITE_ONE_CHUNK_FILTERED_DATASET_NCOLS \ + (mpi_size * DIM1_SCALE_FACTOR) /* Must be an even multiple of the number of ranks to avoid issues */ +#define WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NROWS WRITE_ONE_CHUNK_FILTERED_DATASET_NROWS +#define WRITE_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS WRITE_ONE_CHUNK_FILTERED_DATASET_NCOLS /* Defines for the unshared filtered chunks write test */ #define WRITE_UNSHARED_FILTERED_CHUNKS_DATASET_NAME "unshared_filtered_chunks_write" @@ -85,6 +89,14 @@ typedef struct { #define WRITE_UNSHARED_FILTERED_CHUNKS_CH_NROWS (WRITE_UNSHARED_FILTERED_CHUNKS_NROWS / mpi_size) #define WRITE_UNSHARED_FILTERED_CHUNKS_CH_NCOLS (WRITE_UNSHARED_FILTERED_CHUNKS_NCOLS / mpi_size) +/* Defines for the unshared filtered chunks partial write test */ +#define WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_DATASET_NAME "unshared_filtered_chunks_partial_write" +#define WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_DATASET_DIMS 2 +#define WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_NROWS (mpi_size * DIM0_SCALE_FACTOR) +#define WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_NCOLS (mpi_size * DIM1_SCALE_FACTOR) +#define WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NROWS (DIM0_SCALE_FACTOR) +#define WRITE_UNSHARED_FILTERED_CHUNKS_PARTIAL_CH_NCOLS (DIM1_SCALE_FACTOR) + /* Defines for the shared filtered chunks write test */ #define WRITE_SHARED_FILTERED_CHUNKS_DATASET_NAME "shared_filtered_chunks_write" #define WRITE_SHARED_FILTERED_CHUNKS_DATASET_DIMS 2 @@ -93,56 +105,116 @@ typedef struct { #define WRITE_SHARED_FILTERED_CHUNKS_NROWS (WRITE_SHARED_FILTERED_CHUNKS_CH_NROWS * DIM0_SCALE_FACTOR) #define WRITE_SHARED_FILTERED_CHUNKS_NCOLS (WRITE_SHARED_FILTERED_CHUNKS_CH_NCOLS * DIM1_SCALE_FACTOR) +/* Defines for the unshared filtered chunks w/ single unlim. dimension write test */ +#define WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_NAME "unshared_filtered_chunks_single_unlim_dim_write" +#define WRITE_UNSHARED_ONE_UNLIM_DIM_DATASET_DIMS 2 +#define WRITE_UNSHARED_ONE_UNLIM_DIM_NROWS (mpi_size * DIM0_SCALE_FACTOR) +#define WRITE_UNSHARED_ONE_UNLIM_DIM_NCOLS (mpi_size * DIM1_SCALE_FACTOR) +#define WRITE_UNSHARED_ONE_UNLIM_DIM_CH_NROWS (WRITE_UNSHARED_ONE_UNLIM_DIM_NROWS / mpi_size) +#define WRITE_UNSHARED_ONE_UNLIM_DIM_CH_NCOLS (WRITE_UNSHARED_ONE_UNLIM_DIM_NCOLS / mpi_size) +#define WRITE_UNSHARED_ONE_UNLIM_DIM_NLOOPS 5 + +/* Defines for the shared filtered chunks w/ single unlim. dimension write test */ +#define WRITE_SHARED_ONE_UNLIM_DIM_DATASET_NAME "shared_filtered_chunks_single_unlim_dim_write" +#define WRITE_SHARED_ONE_UNLIM_DIM_DATASET_DIMS 2 +#define WRITE_SHARED_ONE_UNLIM_DIM_CH_NROWS (mpi_size) +#define WRITE_SHARED_ONE_UNLIM_DIM_CH_NCOLS (mpi_size) +#define WRITE_SHARED_ONE_UNLIM_DIM_NROWS (WRITE_SHARED_ONE_UNLIM_DIM_CH_NROWS * DIM0_SCALE_FACTOR) +#define WRITE_SHARED_ONE_UNLIM_DIM_NCOLS (WRITE_SHARED_ONE_UNLIM_DIM_CH_NCOLS * DIM1_SCALE_FACTOR) +#define WRITE_SHARED_ONE_UNLIM_DIM_NLOOPS 5 + +/* Defines for the unshared filtered chunks w/ two unlim. dimension write test */ +#define WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_NAME "unshared_filtered_chunks_two_unlim_dim_write" +#define WRITE_UNSHARED_TWO_UNLIM_DIM_DATASET_DIMS 2 +#define WRITE_UNSHARED_TWO_UNLIM_DIM_NROWS (mpi_size * DIM0_SCALE_FACTOR) +#define WRITE_UNSHARED_TWO_UNLIM_DIM_NCOLS (DIM1_SCALE_FACTOR) +#define WRITE_UNSHARED_TWO_UNLIM_DIM_CH_NROWS (DIM0_SCALE_FACTOR) +#define WRITE_UNSHARED_TWO_UNLIM_DIM_CH_NCOLS (DIM1_SCALE_FACTOR) +#define WRITE_UNSHARED_TWO_UNLIM_DIM_NLOOPS 5 + +/* Defines for the shared filtered chunks w/ two unlim. dimension write test */ +#define WRITE_SHARED_TWO_UNLIM_DIM_DATASET_NAME "shared_filtered_chunks_two_unlim_dim_write" +#define WRITE_SHARED_TWO_UNLIM_DIM_DATASET_DIMS 2 +#define WRITE_SHARED_TWO_UNLIM_DIM_CH_NROWS (mpi_size) +#define WRITE_SHARED_TWO_UNLIM_DIM_CH_NCOLS (mpi_size) +#define WRITE_SHARED_TWO_UNLIM_DIM_NROWS (mpi_size) +#define WRITE_SHARED_TWO_UNLIM_DIM_NCOLS (mpi_size) +#define WRITE_SHARED_TWO_UNLIM_DIM_NLOOPS 5 + /* Defines for the filtered chunks write test where a process has no selection */ -#define WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME "single_no_selection_filtered_chunks_write" -#define WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS 2 -#define WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS (DIM0_SCALE_FACTOR) -#define WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS (DIM1_SCALE_FACTOR) -#define WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NROWS (WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * mpi_size) -#define WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS (WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS * mpi_size) +#define WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME "single_no_selection_filtered_chunks_write" +#define WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS 2 +#define WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS (DIM0_SCALE_FACTOR) +#define WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS (DIM1_SCALE_FACTOR) +#define WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NROWS \ + (WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * mpi_size) +#define WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS \ + (WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS * mpi_size) #define WRITE_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NO_SELECT_PROC (mpi_size - 1) /* Defines for the filtered chunks write test where no process has a selection */ -#define WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME "all_no_selection_filtered_chunks_write" -#define WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS 2 -#define WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS (DIM0_SCALE_FACTOR) -#define WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS (DIM1_SCALE_FACTOR) -#define WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_NROWS (WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * mpi_size) -#define WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_NCOLS (WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS * mpi_size) +#define WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME "all_no_selection_filtered_chunks_write" +#define WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS 2 +#define WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS (DIM0_SCALE_FACTOR) +#define WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS (DIM1_SCALE_FACTOR) +#define WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_NROWS \ + (WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * mpi_size) +#define WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_NCOLS \ + (WRITE_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS * mpi_size) /* Defines for the filtered chunks write test with a point selection */ #define WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_NAME "point_selection_filtered_chunks_write" #define WRITE_POINT_SELECTION_FILTERED_CHUNKS_DATASET_DIMS 2 #define WRITE_POINT_SELECTION_FILTERED_CHUNKS_CH_NROWS (DIM0_SCALE_FACTOR) #define WRITE_POINT_SELECTION_FILTERED_CHUNKS_CH_NCOLS (DIM1_SCALE_FACTOR) -#define WRITE_POINT_SELECTION_FILTERED_CHUNKS_NROWS (WRITE_POINT_SELECTION_FILTERED_CHUNKS_CH_NROWS * mpi_size) -#define WRITE_POINT_SELECTION_FILTERED_CHUNKS_NCOLS (WRITE_POINT_SELECTION_FILTERED_CHUNKS_CH_NCOLS * mpi_size) +#define WRITE_POINT_SELECTION_FILTERED_CHUNKS_NROWS \ + (WRITE_POINT_SELECTION_FILTERED_CHUNKS_CH_NROWS * mpi_size) +#define WRITE_POINT_SELECTION_FILTERED_CHUNKS_NCOLS \ + (WRITE_POINT_SELECTION_FILTERED_CHUNKS_CH_NCOLS * mpi_size) /* Defines for the filtered dataset interleaved write test */ -#define INTERLEAVED_WRITE_FILTERED_DATASET_NAME "filtered_dataset_interleaved_write" -#define INTERLEAVED_WRITE_FILTERED_DATASET_DIMS 2 -#define INTERLEAVED_WRITE_FILTERED_DATASET_CH_NROWS (mpi_size) -#define INTERLEAVED_WRITE_FILTERED_DATASET_CH_NCOLS (DIM1_SCALE_FACTOR) -#define INTERLEAVED_WRITE_FILTERED_DATASET_NROWS (INTERLEAVED_WRITE_FILTERED_DATASET_CH_NROWS * DIM0_SCALE_FACTOR) -#define INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS (INTERLEAVED_WRITE_FILTERED_DATASET_CH_NCOLS * DIM1_SCALE_FACTOR) +#define INTERLEAVED_WRITE_FILTERED_DATASET_NAME "filtered_dataset_interleaved_write" +#define INTERLEAVED_WRITE_FILTERED_DATASET_DIMS 2 +#define INTERLEAVED_WRITE_FILTERED_DATASET_CH_NROWS (mpi_size) +#define INTERLEAVED_WRITE_FILTERED_DATASET_CH_NCOLS (DIM1_SCALE_FACTOR) +#define INTERLEAVED_WRITE_FILTERED_DATASET_NROWS \ + (INTERLEAVED_WRITE_FILTERED_DATASET_CH_NROWS * DIM0_SCALE_FACTOR) +#define INTERLEAVED_WRITE_FILTERED_DATASET_NCOLS \ + (INTERLEAVED_WRITE_FILTERED_DATASET_CH_NCOLS * DIM1_SCALE_FACTOR) + +/* Defines for the unshared transformed and filtered chunks write test */ +#define WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_NAME "unshared_transformed_filtered_chunks_write" +#define WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS 2 +#define WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NROWS (mpi_size * DIM0_SCALE_FACTOR) +#define WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NCOLS (mpi_size * DIM1_SCALE_FACTOR) +#define WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NROWS \ + (WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NROWS / mpi_size) +#define WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NCOLS \ + (WRITE_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NCOLS / mpi_size) /* Defines for the 3D unshared filtered dataset separate page write test */ -#define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_NAME "3D_unshared_filtered_chunks_separate_pages_write" +#define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_NAME \ + "3D_unshared_filtered_chunks_separate_pages_write" #define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS 3 #define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS (mpi_size * DIM0_SCALE_FACTOR) #define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS (mpi_size * DIM1_SCALE_FACTOR) #define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DEPTH (mpi_size) -#define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS (WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS / mpi_size) -#define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS (WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS / mpi_size) +#define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS \ + (WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS / mpi_size) +#define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS \ + (WRITE_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS / mpi_size) /* Defines for the 3D unshared filtered dataset same page write test */ -#define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_NAME "3D_unshared_filtered_chunks_same_pages_write" +#define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_NAME \ + "3D_unshared_filtered_chunks_same_pages_write" #define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_DIMS 3 #define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NROWS (mpi_size * DIM0_SCALE_FACTOR) #define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS (mpi_size * DIM1_SCALE_FACTOR) #define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DEPTH (mpi_size) -#define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS (WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NROWS / mpi_size) -#define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS (WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS / mpi_size) +#define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS \ + (WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NROWS / mpi_size) +#define WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS \ + (WRITE_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS / mpi_size) /* Defines for the 3d shared filtered dataset write test */ #define WRITE_SHARED_FILTERED_CHUNKS_3D_DATASET_NAME "3D_shared_filtered_chunks_write" @@ -154,48 +226,58 @@ typedef struct { #define WRITE_SHARED_FILTERED_CHUNKS_3D_DEPTH (mpi_size) /* Defines for the compound datatype filtered dataset no conversion write test with unshared chunks */ -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_NAME "compound_unshared_filtered_chunks_no_conversion_write" -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS 2 -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NROWS 1 -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NCOLS mpi_size -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS 1 -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS 1 -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC (WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NCOLS / mpi_size) +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_NAME \ + "compound_unshared_filtered_chunks_no_conversion_write" +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS 2 +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NROWS 1 +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NCOLS mpi_size +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS 1 +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS 1 +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC \ + (WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NCOLS / mpi_size) /* Defines for the compound datatype filtered dataset no conversion write test with shared chunks */ -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_NAME "compound_shared_filtered_chunks_no_conversion_write" -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS 2 -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NROWS mpi_size -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NCOLS mpi_size -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS mpi_size -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS 1 -#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NCOLS +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_NAME \ + "compound_shared_filtered_chunks_no_conversion_write" +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS 2 +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NROWS mpi_size +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NCOLS mpi_size +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS mpi_size +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS 1 +#define WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC \ + WRITE_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NCOLS /* Defines for the compound datatype filtered dataset type conversion write test with unshared chunks */ -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_NAME "compound_unshared_filtered_chunks_type_conversion_write" -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS 2 -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NROWS 1 -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NCOLS mpi_size -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS 1 -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS 1 -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC (WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NCOLS / mpi_size) +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_NAME \ + "compound_unshared_filtered_chunks_type_conversion_write" +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS 2 +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NROWS 1 +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NCOLS mpi_size +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS 1 +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS 1 +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC \ + (WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NCOLS / mpi_size) /* Defines for the compound datatype filtered dataset type conversion write test with shared chunks */ -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_NAME "compound_shared_filtered_chunks_type_conversion_write" -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS 2 -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NROWS mpi_size -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NCOLS mpi_size -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS mpi_size -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS 1 -#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NCOLS +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_NAME \ + "compound_shared_filtered_chunks_type_conversion_write" +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS 2 +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NROWS mpi_size +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NCOLS mpi_size +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS mpi_size +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS 1 +#define WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC \ + WRITE_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NCOLS /* Defines for the one-chunk filtered dataset read test */ -#define READ_ONE_CHUNK_FILTERED_DATASET_NAME "one_chunk_filtered_dataset_read" -#define READ_ONE_CHUNK_FILTERED_DATASET_DIMS 2 -#define READ_ONE_CHUNK_FILTERED_DATASET_NROWS (mpi_size * DIM0_SCALE_FACTOR) /* Must be an even multiple of the number of ranks to avoid issues */ -#define READ_ONE_CHUNK_FILTERED_DATASET_NCOLS (mpi_size * DIM1_SCALE_FACTOR) /* Must be an even multiple of the number of ranks to avoid issues */ -#define READ_ONE_CHUNK_FILTERED_DATASET_CH_NROWS READ_ONE_CHUNK_FILTERED_DATASET_NROWS -#define READ_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS READ_ONE_CHUNK_FILTERED_DATASET_NCOLS +#define READ_ONE_CHUNK_FILTERED_DATASET_NAME "one_chunk_filtered_dataset_read" +#define READ_ONE_CHUNK_FILTERED_DATASET_DIMS 2 +#define READ_ONE_CHUNK_FILTERED_DATASET_NROWS \ + (mpi_size * DIM0_SCALE_FACTOR) /* Must be an even multiple of the number of ranks to avoid issues */ +#define READ_ONE_CHUNK_FILTERED_DATASET_NCOLS \ + (mpi_size * DIM1_SCALE_FACTOR) /* Must be an even multiple of the number of ranks to avoid issues */ +#define READ_ONE_CHUNK_FILTERED_DATASET_CH_NROWS READ_ONE_CHUNK_FILTERED_DATASET_NROWS +#define READ_ONE_CHUNK_FILTERED_DATASET_CH_NCOLS READ_ONE_CHUNK_FILTERED_DATASET_NCOLS /* Defines for the unshared filtered chunks read test */ #define READ_UNSHARED_FILTERED_CHUNKS_DATASET_NAME "unshared_filtered_chunks_read" @@ -214,21 +296,25 @@ typedef struct { #define READ_SHARED_FILTERED_CHUNKS_NCOLS (READ_SHARED_FILTERED_CHUNKS_CH_NCOLS * DIM1_SCALE_FACTOR) /* Defines for the filtered chunks read test where a process has no selection */ -#define READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME "single_no_selection_filtered_chunks_read" -#define READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS 2 -#define READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS (DIM0_SCALE_FACTOR) -#define READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS (DIM1_SCALE_FACTOR) -#define READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NROWS (READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * mpi_size) -#define READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS (READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS * mpi_size) +#define READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME "single_no_selection_filtered_chunks_read" +#define READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS 2 +#define READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS (DIM0_SCALE_FACTOR) +#define READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS (DIM1_SCALE_FACTOR) +#define READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NROWS \ + (READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * mpi_size) +#define READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NCOLS \ + (READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS * mpi_size) #define READ_SINGLE_NO_SELECTION_FILTERED_CHUNKS_NO_SELECT_PROC (mpi_size - 1) /* Defines for the filtered chunks read test where no process has a selection */ -#define READ_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME "all_no_selection_filtered_chunks_read" -#define READ_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS 2 -#define READ_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS (DIM0_SCALE_FACTOR) -#define READ_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS (DIM1_SCALE_FACTOR) -#define READ_ALL_NO_SELECTION_FILTERED_CHUNKS_NROWS (READ_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * mpi_size) -#define READ_ALL_NO_SELECTION_FILTERED_CHUNKS_NCOLS (READ_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS * mpi_size) +#define READ_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_NAME "all_no_selection_filtered_chunks_read" +#define READ_ALL_NO_SELECTION_FILTERED_CHUNKS_DATASET_DIMS 2 +#define READ_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS (DIM0_SCALE_FACTOR) +#define READ_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS (DIM1_SCALE_FACTOR) +#define READ_ALL_NO_SELECTION_FILTERED_CHUNKS_NROWS \ + (READ_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NROWS * mpi_size) +#define READ_ALL_NO_SELECTION_FILTERED_CHUNKS_NCOLS \ + (READ_ALL_NO_SELECTION_FILTERED_CHUNKS_CH_NCOLS * mpi_size) /* Defines for the filtered chunks read test with a point selection */ #define READ_POINT_SELECTION_FILTERED_CHUNKS_DATASET_NAME "point_selection_filtered_chunks_read" @@ -239,21 +325,36 @@ typedef struct { #define READ_POINT_SELECTION_FILTERED_CHUNKS_NCOLS (READ_POINT_SELECTION_FILTERED_CHUNKS_CH_NCOLS * mpi_size) /* Defines for the filtered dataset interleaved read test */ -#define INTERLEAVED_READ_FILTERED_DATASET_NAME "filtered_dataset_interleaved_read" -#define INTERLEAVED_READ_FILTERED_DATASET_DIMS 2 -#define INTERLEAVED_READ_FILTERED_DATASET_CH_NROWS (mpi_size) -#define INTERLEAVED_READ_FILTERED_DATASET_CH_NCOLS (DIM1_SCALE_FACTOR) -#define INTERLEAVED_READ_FILTERED_DATASET_NROWS (INTERLEAVED_READ_FILTERED_DATASET_CH_NROWS * DIM0_SCALE_FACTOR) -#define INTERLEAVED_READ_FILTERED_DATASET_NCOLS (INTERLEAVED_READ_FILTERED_DATASET_CH_NCOLS * DIM1_SCALE_FACTOR) +#define INTERLEAVED_READ_FILTERED_DATASET_NAME "filtered_dataset_interleaved_read" +#define INTERLEAVED_READ_FILTERED_DATASET_DIMS 2 +#define INTERLEAVED_READ_FILTERED_DATASET_CH_NROWS (mpi_size) +#define INTERLEAVED_READ_FILTERED_DATASET_CH_NCOLS (DIM1_SCALE_FACTOR) +#define INTERLEAVED_READ_FILTERED_DATASET_NROWS \ + (INTERLEAVED_READ_FILTERED_DATASET_CH_NROWS * DIM0_SCALE_FACTOR) +#define INTERLEAVED_READ_FILTERED_DATASET_NCOLS \ + (INTERLEAVED_READ_FILTERED_DATASET_CH_NCOLS * DIM1_SCALE_FACTOR) + +/* Defines for the unshared transformed and filtered chunks read test */ +#define READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_NAME "unshared_transformed_filtered_chunks_read" +#define READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_DATASET_DIMS 2 +#define READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NROWS (mpi_size * DIM0_SCALE_FACTOR) +#define READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NCOLS (mpi_size * DIM1_SCALE_FACTOR) +#define READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NROWS \ + (READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NROWS / mpi_size) +#define READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_CH_NCOLS \ + (READ_UNSHARED_TRANSFORMED_FILTERED_CHUNKS_NCOLS / mpi_size) /* Defines for the 3D unshared filtered dataset separate page read test */ -#define READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_NAME "3D_unshared_filtered_chunks_separate_pages_read" +#define READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_NAME \ + "3D_unshared_filtered_chunks_separate_pages_read" #define READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DATASET_DIMS 3 #define READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS (mpi_size * DIM0_SCALE_FACTOR) #define READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS (mpi_size * DIM1_SCALE_FACTOR) #define READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_DEPTH (mpi_size) -#define READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS (READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS / mpi_size) -#define READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS (READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS / mpi_size) +#define READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NROWS \ + (READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NROWS / mpi_size) +#define READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_CH_NCOLS \ + (READ_UNSHARED_FILTERED_CHUNKS_3D_SEP_PAGE_NCOLS / mpi_size) /* Defines for the 3D unshared filtered dataset same page read test */ #define READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DATASET_NAME "3D_unshared_filtered_chunks_same_pages_read" @@ -261,8 +362,10 @@ typedef struct { #define READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NROWS (mpi_size * DIM0_SCALE_FACTOR) #define READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS (mpi_size * DIM1_SCALE_FACTOR) #define READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_DEPTH (mpi_size) -#define READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS (READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NROWS / mpi_size) -#define READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS (READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS / mpi_size) +#define READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NROWS \ + (READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NROWS / mpi_size) +#define READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_CH_NCOLS \ + (READ_UNSHARED_FILTERED_CHUNKS_3D_SAME_PAGE_NCOLS / mpi_size) /* Defines for the 3d shared filtered dataset read test */ #define READ_SHARED_FILTERED_CHUNKS_3D_DATASET_NAME "3D_shared_filtered_chunks_read" @@ -274,40 +377,48 @@ typedef struct { #define READ_SHARED_FILTERED_CHUNKS_3D_DEPTH (mpi_size) /* Defines for the compound datatype filtered dataset no conversion read test with unshared chunks */ -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_NAME "compound_unshared_filtered_chunks_no_conversion_read" -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS 2 -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NROWS 1 -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NCOLS mpi_size -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS 1 -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS 1 -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC (READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NCOLS / mpi_size) +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_NAME \ + "compound_unshared_filtered_chunks_no_conversion_read" +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_DATASET_DIMS 2 +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NROWS 1 +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NCOLS mpi_size +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NROWS 1 +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_CH_NCOLS 1 +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_ENTRIES_PER_PROC \ + (READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_UNSHARED_NCOLS / mpi_size) /* Defines for the compound datatype filtered dataset no conversion read test with shared chunks */ -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_NAME "compound_shared_filtered_chunks_no_conversion_read" -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS 2 -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NROWS mpi_size -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NCOLS mpi_size -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS mpi_size -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS 1 -#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NCOLS +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_NAME \ + "compound_shared_filtered_chunks_no_conversion_read" +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_DATASET_DIMS 2 +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NROWS mpi_size +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NCOLS mpi_size +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NROWS mpi_size +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_CH_NCOLS 1 +#define READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_ENTRIES_PER_PROC \ + READ_COMPOUND_FILTERED_CHUNKS_NO_CONVERSION_SHARED_NCOLS /* Defines for the compound datatype filtered dataset type conversion read test with unshared chunks */ -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_NAME "compound_unshared_filtered_chunks_type_conversion_read" -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS 2 -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NROWS 1 -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NCOLS mpi_size -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS 1 -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS 1 -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC (READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NCOLS / mpi_size) +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_NAME \ + "compound_unshared_filtered_chunks_type_conversion_read" +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_DATASET_DIMS 2 +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NROWS 1 +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NCOLS mpi_size +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NROWS 1 +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_CH_NCOLS 1 +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_ENTRIES_PER_PROC \ + (READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_UNSHARED_NCOLS / mpi_size) /* Defines for the compound datatype filtered dataset type conversion read test with shared chunks */ -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_NAME "compound_shared_filtered_chunks_type_conversion_read" -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS 2 -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NROWS mpi_size -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NCOLS mpi_size -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS mpi_size -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS 1 -#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NCOLS +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_NAME \ + "compound_shared_filtered_chunks_type_conversion_read" +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_DATASET_DIMS 2 +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NROWS mpi_size +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NCOLS mpi_size +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NROWS mpi_size +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_CH_NCOLS 1 +#define READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_ENTRIES_PER_PROC \ + READ_COMPOUND_FILTERED_CHUNKS_TYPE_CONVERSION_SHARED_NCOLS /* Defines for the write file serially/read in parallel test */ #define WRITE_SERIAL_READ_PARALLEL_DATASET_NAME "write_serial_read_parallel" @@ -336,4 +447,53 @@ typedef struct { #define SHRINKING_GROWING_CHUNKS_CH_NCOLS (SHRINKING_GROWING_CHUNKS_NCOLS / mpi_size) #define SHRINKING_GROWING_CHUNKS_NLOOPS 20 +/* Defines for the unshared filtered edge chunks write test */ +#define WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_NAME "unshared_filtered_edge_chunks_write" +#define WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_NAME2 "unshared_filtered_edge_chunks_no_filter_write" +#define WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS 2 +#define WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NROWS (DIM0_SCALE_FACTOR) +#define WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS (DIM1_SCALE_FACTOR) +#define WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_NROWS (mpi_size * DIM0_SCALE_FACTOR) +#define WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_NCOLS \ + (mpi_size * DIM1_SCALE_FACTOR) + (WRITE_UNSHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS - 1) + +/* Defines for the shared filtered edge chunks write test */ +#define WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_NAME "shared_filtered_edge_chunks_write" +#define WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_NAME2 "shared_filtered_edge_chunks_no_filter_write" +#define WRITE_SHARED_FILTERED_EDGE_CHUNKS_DATASET_DIMS 2 +#define WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NROWS (mpi_size) +#define WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS (mpi_size) +#define WRITE_SHARED_FILTERED_EDGE_CHUNKS_NROWS \ + (WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NROWS * DIM0_SCALE_FACTOR) +#define WRITE_SHARED_FILTERED_EDGE_CHUNKS_NCOLS \ + ((WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS * DIM1_SCALE_FACTOR) + \ + (WRITE_SHARED_FILTERED_EDGE_CHUNKS_CH_NCOLS - 1)) + +/* Defines for the fill values test */ +#define FILL_VALUES_TEST_DATASET_NAME "fill_value_test" +#define FILL_VALUES_TEST_DATASET_NAME2 "fill_value_alloc_test" +#define FILL_VALUES_TEST_DATASET_DIMS 2 +#define FILL_VALUES_TEST_FILL_VAL (-1) +#define FILL_VALUES_TEST_CH_NROWS (mpi_size) +#define FILL_VALUES_TEST_CH_NCOLS (mpi_size + 1) +#define FILL_VALUES_TEST_NROWS (FILL_VALUES_TEST_CH_NROWS * DIM0_SCALE_FACTOR) +#define FILL_VALUES_TEST_NCOLS (FILL_VALUES_TEST_CH_NCOLS * DIM1_SCALE_FACTOR) + +/* Defines for the undefined fill value test */ +#define FILL_VALUE_UNDEFINED_TEST_DATASET_NAME "fill_value_undefined_test" +#define FILL_VALUE_UNDEFINED_TEST_DATASET_DIMS 2 +#define FILL_VALUE_UNDEFINED_TEST_CH_NROWS (mpi_size) +#define FILL_VALUE_UNDEFINED_TEST_CH_NCOLS (mpi_size + 1) +#define FILL_VALUE_UNDEFINED_TEST_NROWS (FILL_VALUE_UNDEFINED_TEST_CH_NROWS * DIM0_SCALE_FACTOR) +#define FILL_VALUE_UNDEFINED_TEST_NCOLS (FILL_VALUE_UNDEFINED_TEST_CH_NCOLS * DIM1_SCALE_FACTOR) + +/* Defines for the fill time of 'never' test */ +#define FILL_TIME_NEVER_TEST_DATASET_NAME "fill_time_never_test" +#define FILL_TIME_NEVER_TEST_DATASET_DIMS 2 +#define FILL_TIME_NEVER_TEST_FILL_VAL (-1) +#define FILL_TIME_NEVER_TEST_CH_NROWS (mpi_size) +#define FILL_TIME_NEVER_TEST_CH_NCOLS (mpi_size + 1) +#define FILL_TIME_NEVER_TEST_NROWS (FILL_TIME_NEVER_TEST_CH_NROWS * DIM0_SCALE_FACTOR) +#define FILL_TIME_NEVER_TEST_NCOLS (FILL_TIME_NEVER_TEST_CH_NCOLS * DIM1_SCALE_FACTOR) + #endif /* TEST_PARALLEL_FILTERS_H_ */ diff --git a/testpar/t_init_term.c b/testpar/t_init_term.c index 933fbd2..1533765 100644 --- a/testpar/t_init_term.c +++ b/testpar/t_init_term.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -21,26 +21,23 @@ #include "testphdf5.h" -int nerrors = 0; /* errors count */ +int nerrors = 0; /* errors count */ -const char *FILENAME[] = { - "after_mpi_fin", - NULL -}; +const char *FILENAME[] = {"after_mpi_fin", NULL}; int -main (int argc, char **argv) +main(int argc, char **argv) { - int mpi_size, mpi_rank; - MPI_Comm comm = MPI_COMM_WORLD; + int mpi_size, mpi_rank; + MPI_Comm comm = MPI_COMM_WORLD; /* Initialize and finalize MPI */ MPI_Init(&argc, &argv); MPI_Comm_size(comm, &mpi_size); - MPI_Comm_rank(comm, &mpi_rank); + MPI_Comm_rank(comm, &mpi_rank); - if(MAINPROCESS) - TESTING("Usage of Serial HDF5 after MPI_Finalize() is called"); + if (MAINPROCESS) + TESTING("Usage of Serial HDF5 after MPI_Finalize() is called"); MPI_Finalize(); @@ -50,9 +47,9 @@ main (int argc, char **argv) and create a file serially */ H5open(); - if(mpi_rank == 0) { - char filename[1024]; - hid_t file_id; + if (mpi_rank == 0) { + char filename[1024]; + hid_t file_id; h5_fixname(FILENAME[0], H5P_DEFAULT, filename, sizeof filename); file_id = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); @@ -63,12 +60,12 @@ main (int argc, char **argv) H5close(); - if(MAINPROCESS) { - if(0 == nerrors) - PASSED() + if (MAINPROCESS) { + if (0 == nerrors) + PASSED(); else - H5_FAILED() + H5_FAILED() } - return (nerrors!=0); + return (nerrors != 0); } diff --git a/testpar/t_mdset.c b/testpar/t_mdset.c index 63ac8d3..97d5966 100644 --- a/testpar/t_mdset.c +++ b/testpar/t_mdset.c @@ -6,21 +6,21 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ #include "testphdf5.h" #include "H5Dprivate.h" +#include "H5private.h" -#define DIM 2 -#define SIZE 32 -#define NDATASET 4 +#define DIM 2 +#define SIZE 32 +#define NDATASET 4 #define GROUP_DEPTH 128 enum obj_type { is_group, is_dset }; - static int get_size(void); static void write_dataset(hid_t, hid_t, hid_t); static int read_dataset(hid_t, hid_t, hid_t); @@ -32,7 +32,6 @@ static int read_attribute(hid_t, int, int); static int check_value(DATATYPE *, DATATYPE *, int); static void get_slab(hsize_t[], hsize_t[], hsize_t[], hsize_t[], int); - /* * The size value computed by this function is used extensively in * configuring tests for the current number of processes. @@ -53,10 +52,11 @@ get_size(void) MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* needed for VRFY */ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); - if(mpi_size > size ) { - if((mpi_size % 2) == 0 ) { + if (mpi_size > size) { + if ((mpi_size % 2) == 0) { size = mpi_size; - } else { + } + else { size = mpi_size + 1; } } @@ -64,7 +64,7 @@ get_size(void) VRFY((mpi_size <= size), "mpi_size <= size"); VRFY(((size % 2) == 0), "size isn't even"); - return(size); + return (size); } /* get_size() */ @@ -72,14 +72,15 @@ get_size(void) * Example of using PHDF5 to create a zero sized dataset. * */ -void zero_dim_dset(void) +void +zero_dim_dset(void) { - int mpi_size, mpi_rank; - const char *filename; - hid_t fid, plist, dcpl, dsid, sid; - hsize_t dim, chunk_dim; - herr_t ret; - int data[1]; + int mpi_size, mpi_rank; + const char *filename; + hid_t fid, plist, dcpl, dsid, sid; + hsize_t dim, chunk_dim; + herr_t ret; + int data[1]; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); @@ -87,37 +88,37 @@ void zero_dim_dset(void) filename = GetTestParameters(); plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); - VRFY((plist>=0), "create_faccess_plist succeeded"); + VRFY((plist >= 0), "create_faccess_plist succeeded"); fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist); - VRFY((fid>=0), "H5Fcreate succeeded"); + VRFY((fid >= 0), "H5Fcreate succeeded"); ret = H5Pclose(plist); - VRFY((ret>=0), "H5Pclose succeeded"); + VRFY((ret >= 0), "H5Pclose succeeded"); dcpl = H5Pcreate(H5P_DATASET_CREATE); - VRFY((dcpl>=0), "failed H5Pcreate"); + VRFY((dcpl >= 0), "failed H5Pcreate"); /* Set 1 chunk size */ chunk_dim = 1; - ret = H5Pset_chunk(dcpl, 1, &chunk_dim); - VRFY((ret>=0), "failed H5Pset_chunk"); + ret = H5Pset_chunk(dcpl, 1, &chunk_dim); + VRFY((ret >= 0), "failed H5Pset_chunk"); /* Create 1D dataspace with 0 dim size */ dim = 0; sid = H5Screate_simple(1, &dim, NULL); - VRFY((sid>=0), "failed H5Screate_simple"); + VRFY((sid >= 0), "failed H5Screate_simple"); /* Create chunked dataset */ dsid = H5Dcreate2(fid, "dset", H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); - VRFY((dsid>=0), "failed H5Dcreate2"); + VRFY((dsid >= 0), "failed H5Dcreate2"); /* write 0 elements from dataset */ ret = H5Dwrite(dsid, H5T_NATIVE_INT, sid, sid, H5P_DEFAULT, data); - VRFY((ret>=0), "failed H5Dwrite"); + VRFY((ret >= 0), "failed H5Dwrite"); /* Read 0 elements from dataset */ ret = H5Dread(dsid, H5T_NATIVE_INT, sid, sid, H5P_DEFAULT, data); - VRFY((ret>=0), "failed H5Dread"); + VRFY((ret >= 0), "failed H5Dread"); H5Pclose(dcpl); H5Dclose(dsid); @@ -128,81 +129,77 @@ void zero_dim_dset(void) /* * Example of using PHDF5 to create ndatasets datasets. Each process write * a slab of array to the file. - * - * Changes: Updated function to use a dynamically calculated size, - * instead of the old SIZE #define. This should allow it - * to function with an arbitrary number of processors. - * - * JRM - 8/11/04 */ -void multiple_dset_write(void) +void +multiple_dset_write(void) { - int i, j, n, mpi_size, mpi_rank, size; - hid_t iof, plist, dataset, memspace, filespace; - hid_t dcpl; /* Dataset creation property list */ - hsize_t chunk_origin [DIM]; - hsize_t chunk_dims [DIM], file_dims [DIM]; - hsize_t count[DIM]={1,1}; - double *outme = NULL; - double fill=1.0; /* Fill value */ - char dname [100]; - herr_t ret; - const H5Ptest_param_t *pt; - char *filename; - int ndatasets; - - pt = GetTestParameters(); - filename = pt->name; + int i, j, n, mpi_size, mpi_rank, size; + hid_t iof, plist, dataset, memspace, filespace; + hid_t dcpl; /* Dataset creation property list */ + hsize_t chunk_origin[DIM]; + hsize_t chunk_dims[DIM], file_dims[DIM]; + hsize_t count[DIM] = {1, 1}; + double * outme = NULL; + double fill = 1.0; /* Fill value */ + char dname[100]; + herr_t ret; + const H5Ptest_param_t *pt; + char * filename; + int ndatasets; + + pt = GetTestParameters(); + filename = pt->name; ndatasets = pt->count; size = get_size(); + H5_CHECK_OVERFLOW(size, int, size_t); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); - outme = HDmalloc((size_t)(size * size * sizeof(double))); + outme = HDmalloc((size_t)size * (size_t)size * sizeof(double)); VRFY((outme != NULL), "HDmalloc succeeded for outme"); plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); - VRFY((plist>=0), "create_faccess_plist succeeded"); + VRFY((plist >= 0), "create_faccess_plist succeeded"); iof = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist); - VRFY((iof>=0), "H5Fcreate succeeded"); + VRFY((iof >= 0), "H5Fcreate succeeded"); ret = H5Pclose(plist); - VRFY((ret>=0), "H5Pclose succeeded"); + VRFY((ret >= 0), "H5Pclose succeeded"); /* decide the hyperslab according to process number. */ get_slab(chunk_origin, chunk_dims, count, file_dims, size); - memspace = H5Screate_simple(DIM, chunk_dims, NULL); + memspace = H5Screate_simple(DIM, chunk_dims, NULL); filespace = H5Screate_simple(DIM, file_dims, NULL); - ret = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); - VRFY((ret>=0), "mdata hyperslab selection"); + ret = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); + VRFY((ret >= 0), "mdata hyperslab selection"); /* Create a dataset creation property list */ dcpl = H5Pcreate(H5P_DATASET_CREATE); - VRFY((dcpl>=0), "dataset creation property list succeeded"); + VRFY((dcpl >= 0), "dataset creation property list succeeded"); ret = H5Pset_fill_value(dcpl, H5T_NATIVE_DOUBLE, &fill); - VRFY((ret>=0), "set fill-value succeeded"); + VRFY((ret >= 0), "set fill-value succeeded"); - for(n = 0; n < ndatasets; n++) { - HDsprintf(dname, "dataset %d", n); - dataset = H5Dcreate2(iof, dname, H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT, dcpl, H5P_DEFAULT); - VRFY((dataset > 0), dname); + for (n = 0; n < ndatasets; n++) { + HDsprintf(dname, "dataset %d", n); + dataset = H5Dcreate2(iof, dname, H5T_NATIVE_DOUBLE, filespace, H5P_DEFAULT, dcpl, H5P_DEFAULT); + VRFY((dataset > 0), dname); - /* calculate data to write */ - for(i = 0; i < size; i++) - for(j = 0; j < size; j++) - outme [(i * size) + j] = n*1000 + mpi_rank; + /* calculate data to write */ + for (i = 0; i < size; i++) + for (j = 0; j < size; j++) + outme[(i * size) + j] = n * 1000 + mpi_rank; - H5Dwrite(dataset, H5T_NATIVE_DOUBLE, memspace, filespace, H5P_DEFAULT, outme); + H5Dwrite(dataset, H5T_NATIVE_DOUBLE, memspace, filespace, H5P_DEFAULT, outme); - H5Dclose(dataset); + H5Dclose(dataset); #ifdef BARRIER_CHECKS - if(!((n+1) % 10)) { - HDprintf("created %d datasets\n", n+1); - MPI_Barrier(MPI_COMM_WORLD); - } + if (!((n + 1) % 10)) { + HDprintf("created %d datasets\n", n + 1); + MPI_Barrier(MPI_COMM_WORLD); + } #endif /* BARRIER_CHECKS */ } @@ -214,52 +211,49 @@ void multiple_dset_write(void) HDfree(outme); } - /* Example of using PHDF5 to create, write, and read compact dataset. - * - * Changes: Updated function to use a dynamically calculated size, - * instead of the old SIZE #define. This should allow it - * to function with an arbitrary number of processors. - * - * JRM - 8/11/04 */ -void compact_dataset(void) +void +compact_dataset(void) { - int i, j, mpi_size, mpi_rank, size, err_num=0; - hid_t iof, plist, dcpl, dxpl, dataset, filespace; - hsize_t file_dims [DIM]; - double *outme; - double *inme; - char dname[]="dataset"; - herr_t ret; + int i, j, mpi_size, mpi_rank, size, err_num = 0; + hid_t iof, plist, dcpl, dxpl, dataset, filespace; + hsize_t file_dims[DIM]; + double * outme; + double * inme; + char dname[] = "dataset"; + herr_t ret; const char *filename; +#ifdef H5_HAVE_INSTRUMENTED_LIBRARY + hbool_t prop_value; +#endif size = get_size(); - for(i = 0; i < DIM; i++ ) - file_dims[i] = size; + for (i = 0; i < DIM; i++) + file_dims[i] = (hsize_t)size; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); - outme = HDmalloc((size_t)(size * size * sizeof(double))); + outme = HDmalloc((size_t)((size_t)size * (size_t)size * sizeof(double))); VRFY((outme != NULL), "HDmalloc succeeded for outme"); - inme = HDmalloc((size_t)(size * size * sizeof(double))); + inme = HDmalloc((size_t)size * (size_t)size * sizeof(double)); VRFY((outme != NULL), "HDmalloc succeeded for inme"); filename = GetTestParameters(); VRFY((mpi_size <= size), "mpi_size <= size"); plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); - iof = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist); + iof = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist); /* Define data space */ filespace = H5Screate_simple(DIM, file_dims, NULL); /* Create a compact dataset */ dcpl = H5Pcreate(H5P_DATASET_CREATE); - VRFY((dcpl>=0), "dataset creation property list succeeded"); + VRFY((dcpl >= 0), "dataset creation property list succeeded"); ret = H5Pset_layout(dcpl, H5D_COMPACT); VRFY((dcpl >= 0), "set property list for compact dataset"); ret = H5Pset_alloc_time(dcpl, H5D_ALLOC_TIME_EARLY); @@ -273,16 +267,15 @@ void compact_dataset(void) VRFY((dxpl >= 0), ""); ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { ret = H5Pset_dxpl_mpio_collective_opt(dxpl, H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - /* Recalculate data to write. Each process writes the same data. */ - for(i = 0; i < size; i++) - for(j = 0; j < size; j++) - outme[(i * size) + j] =(i + j) * 1000; + for (i = 0; i < size; i++) + for (j = 0; j < size; j++) + outme[(i * size) + j] = (i + j) * 1000; ret = H5Dwrite(dataset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, dxpl, outme); VRFY((ret >= 0), "H5Dwrite succeeded"); @@ -295,7 +288,7 @@ void compact_dataset(void) /* Open the file and dataset, read and compare the data. */ plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); - iof = H5Fopen(filename, H5F_ACC_RDONLY, plist); + iof = H5Fopen(filename, H5F_ACC_RDONLY, plist); VRFY((iof >= 0), "H5Fopen succeeded"); /* set up the collective transfer properties list */ @@ -303,19 +296,18 @@ void compact_dataset(void) VRFY((dxpl >= 0), ""); ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(dxpl,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(dxpl, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } dataset = H5Dopen2(iof, dname, H5P_DEFAULT); VRFY((dataset >= 0), "H5Dopen2 succeeded"); #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - hbool_t prop_value; prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF; - ret = H5Pinsert2(dxpl, H5D_XFER_COLL_RANK0_BCAST_NAME, H5D_XFER_COLL_RANK0_BCAST_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); + ret = H5Pinsert2(dxpl, H5D_XFER_COLL_RANK0_BCAST_NAME, H5D_XFER_COLL_RANK0_BCAST_SIZE, &prop_value, NULL, + NULL, NULL, NULL, NULL, NULL); VRFY((ret >= 0), "H5Pinsert2() succeeded"); #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ @@ -324,17 +316,19 @@ void compact_dataset(void) #ifdef H5_HAVE_INSTRUMENTED_LIBRARY prop_value = FALSE; - ret = H5Pget(dxpl, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value); + ret = H5Pget(dxpl, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value); VRFY((ret >= 0), "H5Pget succeeded"); - VRFY((prop_value == FALSE && dxfer_coll_type == DXFER_COLLECTIVE_IO),"rank 0 Bcast optimization was performed for a compact dataset"); + VRFY((prop_value == FALSE && dxfer_coll_type == DXFER_COLLECTIVE_IO), + "rank 0 Bcast optimization was performed for a compact dataset"); #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ /* Verify data value */ - for(i = 0; i < size; i++) - for(j = 0; j < size; j++) - if(inme[(i * size) + j] != outme[(i * size) + j]) - if(err_num++ < MAX_ERR_REPORT || VERBOSE_MED) - HDprintf("Dataset Verify failed at [%d][%d]: expect %f, got %f\n", i, j, outme[(i * size) + j], inme[(i * size) + j]); + for (i = 0; i < size; i++) + for (j = 0; j < size; j++) + if (!H5_DBL_ABS_EQUAL(inme[(i * size) + j], outme[(i * size) + j])) + if (err_num++ < MAX_ERR_REPORT || VERBOSE_MED) + HDprintf("Dataset Verify failed at [%d][%d]: expect %f, got %f\n", i, j, + outme[(i * size) + j], inme[(i * size) + j]); H5Pclose(plist); H5Pclose(dxpl); @@ -347,25 +341,18 @@ void compact_dataset(void) /* * Example of using PHDF5 to create, write, and read dataset and attribute * of Null dataspace. - * - * Changes: Removed the assert that mpi_size <= the SIZE #define. - * As best I can tell, this assert isn't needed here, - * and in any case, the SIZE #define is being removed - * in an update of the functions in this file to run - * with an arbitrary number of processes. - * - * JRM - 8/24/04 */ -void null_dataset(void) +void +null_dataset(void) { - int mpi_size, mpi_rank; - hid_t iof, plist, dxpl, dataset, attr, sid; - unsigned uval=2; /* Buffer for writing to dataset */ - int val=1; /* Buffer for writing to attribute */ - int nelem; - char dname[]="dataset"; - char attr_name[]="attribute"; - herr_t ret; + int mpi_size, mpi_rank; + hid_t iof, plist, dxpl, dataset, attr, sid; + unsigned uval = 2; /* Buffer for writing to dataset */ + int val = 1; /* Buffer for writing to attribute */ + hssize_t nelem; + char dname[] = "dataset"; + char attr_name[] = "attribute"; + herr_t ret; const char *filename; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); @@ -374,7 +361,7 @@ void null_dataset(void) filename = GetTestParameters(); plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); - iof = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist); + iof = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist); /* Define data space */ sid = H5Screate(H5S_NULL); @@ -392,12 +379,11 @@ void null_dataset(void) VRFY((dxpl >= 0), ""); ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { ret = H5Pset_dxpl_mpio_collective_opt(dxpl, H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - /* Write "nothing" to the dataset(with type conversion) */ ret = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, dxpl, &uval); VRFY((ret >= 0), "H5Dwrite succeeded"); @@ -418,7 +404,7 @@ void null_dataset(void) /* Open the file and dataset, read and compare the data. */ plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); - iof = H5Fopen(filename, H5F_ACC_RDONLY, plist); + iof = H5Fopen(filename, H5F_ACC_RDONLY, plist); VRFY((iof >= 0), "H5Fopen succeeded"); /* set up the collective transfer properties list */ @@ -426,27 +412,27 @@ void null_dataset(void) VRFY((dxpl >= 0), ""); ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(dxpl,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(dxpl, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - dataset = H5Dopen2(iof, dname, H5P_DEFAULT); VRFY((dataset >= 0), "H5Dopen2 succeeded"); /* Try reading from the dataset(make certain our buffer is unmodified) */ ret = H5Dread(dataset, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, dxpl, &uval); - VRFY((ret>=0), "H5Dread"); - VRFY((uval==2), "H5Dread"); + VRFY((ret >= 0), "H5Dread"); + VRFY((uval == 2), "H5Dread"); /* Open the attribute for the dataset */ attr = H5Aopen(dataset, attr_name, H5P_DEFAULT); VRFY((attr >= 0), "H5Aopen"); - /* Try reading from the attribute(make certain our buffer is unmodified) */ ret = H5Aread(attr, H5T_NATIVE_INT, &val); - VRFY((ret>=0), "H5Aread"); - VRFY((val==1), "H5Aread"); + /* Try reading from the attribute(make certain our buffer is unmodified) */ ret = + H5Aread(attr, H5T_NATIVE_INT, &val); + VRFY((ret >= 0), "H5Aread"); + VRFY((val == 1), "H5Aread"); H5Pclose(plist); H5Pclose(dxpl); @@ -459,26 +445,19 @@ void null_dataset(void) * Actual data is _not_ written to these datasets. Dataspaces are exact * sizes(2GB, 4GB, etc.), but the metadata for the file pushes the file over * the boundary of interest. - * - * Changes: Removed the assert that mpi_size <= the SIZE #define. - * As best I can tell, this assert isn't needed here, - * and in any case, the SIZE #define is being removed - * in an update of the functions in this file to run - * with an arbitrary number of processes. - * - * JRM - 8/11/04 */ -void big_dataset(void) +void +big_dataset(void) { - int mpi_size, mpi_rank; /* MPI info */ - hid_t iof, /* File ID */ - fapl, /* File access property list ID */ - dataset, /* Dataset ID */ - filespace; /* Dataset's dataspace ID */ - hsize_t file_dims [4]; /* Dimensions of dataspace */ - char dname[]="dataset"; /* Name of dataset */ - MPI_Offset file_size; /* Size of file on disk */ - herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; /* MPI info */ + hid_t iof, /* File ID */ + fapl, /* File access property list ID */ + dataset, /* Dataset ID */ + filespace; /* Dataset's dataspace ID */ + hsize_t file_dims[4]; /* Dimensions of dataspace */ + char dname[] = "dataset"; /* Name of dataset */ + MPI_Offset file_size; /* Size of file on disk */ + herr_t ret; /* Generic return value */ const char *filename; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); @@ -499,11 +478,11 @@ void big_dataset(void) VRFY((iof >= 0), "H5Fcreate succeeded"); /* Define dataspace for 2GB dataspace */ - file_dims[0]= 2; - file_dims[1]= 1024; - file_dims[2]= 1024; - file_dims[3]= 1024; - filespace = H5Screate_simple(4, file_dims, NULL); + file_dims[0] = 2; + file_dims[1] = 1024; + file_dims[2] = 1024; + file_dims[3] = 1024; + filespace = H5Screate_simple(4, file_dims, NULL); VRFY((filespace >= 0), "H5Screate_simple succeeded"); dataset = H5Dcreate2(iof, dname, H5T_NATIVE_UCHAR, filespace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -528,11 +507,11 @@ void big_dataset(void) VRFY((iof >= 0), "H5Fcreate succeeded"); /* Define dataspace for 4GB dataspace */ - file_dims[0]= 4; - file_dims[1]= 1024; - file_dims[2]= 1024; - file_dims[3]= 1024; - filespace = H5Screate_simple(4, file_dims, NULL); + file_dims[0] = 4; + file_dims[1] = 1024; + file_dims[2] = 1024; + file_dims[3] = 1024; + filespace = H5Screate_simple(4, file_dims, NULL); VRFY((filespace >= 0), "H5Screate_simple succeeded"); dataset = H5Dcreate2(iof, dname, H5T_NATIVE_UCHAR, filespace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -557,11 +536,11 @@ void big_dataset(void) VRFY((iof >= 0), "H5Fcreate succeeded"); /* Define dataspace for 8GB dataspace */ - file_dims[0]= 8; - file_dims[1]= 1024; - file_dims[2]= 1024; - file_dims[3]= 1024; - filespace = H5Screate_simple(4, file_dims, NULL); + file_dims[0] = 8; + file_dims[1] = 1024; + file_dims[2] = 1024; + file_dims[3] = 1024; + filespace = H5Screate_simple(4, file_dims, NULL); VRFY((filespace >= 0), "H5Screate_simple succeeded"); dataset = H5Dcreate2(iof, dname, H5T_NATIVE_UCHAR, filespace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -587,37 +566,31 @@ void big_dataset(void) /* Example of using PHDF5 to read a partial written dataset. The dataset does * not have actual data written to the entire raw data area and relies on the * default fill value of zeros to work correctly. - * - * Changes: Removed the assert that mpi_size <= the SIZE #define. - * As best I can tell, this assert isn't needed here, - * and in any case, the SIZE #define is being removed - * in an update of the functions in this file to run - * with an arbitrary number of processes. - * - * Also added code to free dynamically allocated buffers. - * - * JRM - 8/11/04 */ -void dataset_fillvalue(void) +void +dataset_fillvalue(void) { - int mpi_size, mpi_rank; /* MPI info */ - int err_num; /* Number of errors */ - hid_t iof, /* File ID */ - fapl, /* File access property list ID */ - dxpl, /* Data transfer property list ID */ - dataset, /* Dataset ID */ - memspace, /* Memory dataspace ID */ - filespace; /* Dataset's dataspace ID */ - char dname[]="dataset"; /* Name of dataset */ + int mpi_size, mpi_rank; /* MPI info */ + int err_num; /* Number of errors */ + hid_t iof, /* File ID */ + fapl, /* File access property list ID */ + dxpl, /* Data transfer property list ID */ + dataset, /* Dataset ID */ + memspace, /* Memory dataspace ID */ + filespace; /* Dataset's dataspace ID */ + char dname[] = "dataset"; /* Name of dataset */ hsize_t dset_dims[4] = {0, 6, 7, 8}; hsize_t req_start[4] = {0, 0, 0, 0}; hsize_t req_count[4] = {1, 6, 7, 8}; - hsize_t dset_size; /* Dataset size */ - int *rdata, *wdata; /* Buffers for data to read and write */ - int *twdata, *trdata; /* Temporary pointer into buffer */ - int acc, i, ii, j, k, l; /* Local index variables */ - herr_t ret; /* Generic return value */ + hsize_t dset_size; /* Dataset size */ + int * rdata, *wdata; /* Buffers for data to read and write */ + int * twdata, *trdata; /* Temporary pointer into buffer */ + int acc, i, ii, j, k, l; /* Local index variables */ + herr_t ret; /* Generic return value */ const char *filename; +#ifdef H5_HAVE_INSTRUMENTED_LIBRARY + hbool_t prop_value; +#endif MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); @@ -626,13 +599,13 @@ void dataset_fillvalue(void) /* Set the dataset dimension to be one row more than number of processes */ /* and calculate the actual dataset size. */ - dset_dims[0]=mpi_size+1; - dset_size=dset_dims[0]*dset_dims[1]*dset_dims[2]*dset_dims[3]; + dset_dims[0] = (hsize_t)(mpi_size + 1); + dset_size = dset_dims[0] * dset_dims[1] * dset_dims[2] * dset_dims[3]; /* Allocate space for the buffers */ - rdata=HDmalloc((size_t)(dset_size*sizeof(int))); + rdata = HDmalloc((size_t)(dset_size * sizeof(int))); VRFY((rdata != NULL), "HDcalloc succeeded for read buffer"); - wdata=HDmalloc((size_t)(dset_size*sizeof(int))); + wdata = HDmalloc((size_t)(dset_size * sizeof(int))); VRFY((wdata != NULL), "HDmalloc succeeded for write buffer"); fapl = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); @@ -662,54 +635,55 @@ void dataset_fillvalue(void) VRFY((dxpl >= 0), "H5Pcreate succeeded"); #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - hbool_t prop_value; - prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF; - ret = H5Pinsert2(dxpl, H5D_XFER_COLL_RANK0_BCAST_NAME, H5D_XFER_COLL_RANK0_BCAST_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL); - VRFY((ret >= 0),"testing property list inserted succeeded"); + prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF; + ret = H5Pinsert2(dxpl, H5D_XFER_COLL_RANK0_BCAST_NAME, H5D_XFER_COLL_RANK0_BCAST_SIZE, &prop_value, NULL, + NULL, NULL, NULL, NULL, NULL); + VRFY((ret >= 0), "testing property list inserted succeeded"); #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ - for(ii = 0; ii < 2; ii++) { + for (ii = 0; ii < 2; ii++) { - if(ii == 0) - ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_INDEPENDENT); - else - ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if (ii == 0) + ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_INDEPENDENT); + else + ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - /* set entire read buffer with the constant 2 */ - HDmemset(rdata,2,(size_t)(dset_size*sizeof(int))); + /* set entire read buffer with the constant 2 */ + HDmemset(rdata, 2, (size_t)(dset_size * sizeof(int))); - /* Read the entire dataset back */ - ret = H5Dread(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, dxpl, rdata); - VRFY((ret >= 0), "H5Dread succeeded"); + /* Read the entire dataset back */ + ret = H5Dread(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, dxpl, rdata); + VRFY((ret >= 0), "H5Dread succeeded"); #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - prop_value = FALSE; - ret = H5Pget(dxpl, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value); - VRFY((ret >= 0), "testing property list get succeeded"); - if(ii == 0) - VRFY((prop_value == FALSE), "correctly handled rank 0 Bcast"); - else - VRFY((prop_value == TRUE), "correctly handled rank 0 Bcast"); + prop_value = FALSE; + ret = H5Pget(dxpl, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value); + VRFY((ret >= 0), "testing property list get succeeded"); + if (ii == 0) + VRFY((prop_value == FALSE), "correctly handled rank 0 Bcast"); + else + VRFY((prop_value == TRUE), "correctly handled rank 0 Bcast"); #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ - /* Verify all data read are the fill value 0 */ - trdata = rdata; - err_num = 0; - for(i = 0; i < (int)dset_dims[0]; i++) - for(j = 0; j < (int)dset_dims[1]; j++) - for(k = 0; k < (int)dset_dims[2]; k++) - for(l = 0; l < (int)dset_dims[3]; l++, twdata++, trdata++) - if(*trdata != 0) - if(err_num++ < MAX_ERR_REPORT || VERBOSE_MED) - HDprintf("Dataset Verify failed at [%d][%d][%d][%d]: expect 0, got %d\n", i, j, k, l, *trdata); - if(err_num > MAX_ERR_REPORT && !VERBOSE_MED) - HDprintf("[more errors ...]\n"); - if(err_num) { - HDprintf("%d errors found in check_value\n", err_num); - nerrors++; - } + /* Verify all data read are the fill value 0 */ + trdata = rdata; + err_num = 0; + for (i = 0; i < (int)dset_dims[0]; i++) + for (j = 0; j < (int)dset_dims[1]; j++) + for (k = 0; k < (int)dset_dims[2]; k++) + for (l = 0; l < (int)dset_dims[3]; l++, trdata++) + if (*trdata != 0) + if (err_num++ < MAX_ERR_REPORT || VERBOSE_MED) + HDprintf( + "Rank %d: Dataset Verify failed at [%d][%d][%d][%d]: expect 0, got %d\n", + mpi_rank, i, j, k, l, *trdata); + if (err_num > MAX_ERR_REPORT && !VERBOSE_MED) + HDprintf("Rank %d: [more errors ...]\n", mpi_rank); + if (err_num) { + HDprintf("Rank %d: %d errors found in check_value\n", mpi_rank, err_num); + nerrors++; + } } /* Barrier to ensure all processes have completed the above test. */ @@ -719,26 +693,25 @@ void dataset_fillvalue(void) * Each process writes 1 row of data. Thus last row is not written. */ /* Create hyperslabs in memory and file dataspaces */ - req_start[0]=mpi_rank; - ret = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, req_start, NULL, req_count, NULL); + req_start[0] = (hsize_t)mpi_rank; + ret = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, req_start, NULL, req_count, NULL); VRFY((ret >= 0), "H5Sselect_hyperslab succeeded on memory dataspace"); ret = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, req_start, NULL, req_count, NULL); VRFY((ret >= 0), "H5Sselect_hyperslab succeeded on memory dataspace"); ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(dxpl,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(dxpl, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - /* Fill write buffer with some values */ - twdata=wdata; - for(i=0, acc=0; i<(int)dset_dims[0]; i++) - for(j=0; j<(int)dset_dims[1]; j++) - for(k=0; k<(int)dset_dims[2]; k++) - for(l=0; l<(int)dset_dims[3]; l++) + twdata = wdata; + for (i = 0, acc = 0; i < (int)dset_dims[0]; i++) + for (j = 0; j < (int)dset_dims[1]; j++) + for (k = 0; k < (int)dset_dims[2]; k++) + for (l = 0; l < (int)dset_dims[3]; l++) *twdata++ = acc++; /* Collectively write a hyperslab of data to the dataset */ @@ -753,60 +726,62 @@ void dataset_fillvalue(void) */ #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF; - ret = H5Pset(dxpl, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value); - VRFY((ret >= 0), " H5Pset succeeded"); + prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF; + ret = H5Pset(dxpl, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value); + VRFY((ret >= 0), " H5Pset succeeded"); #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ - for(ii = 0; ii < 2; ii++) { + for (ii = 0; ii < 2; ii++) { - if(ii == 0) - ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_INDEPENDENT); - else - ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if (ii == 0) + ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_INDEPENDENT); + else + ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - /* set entire read buffer with the constant 2 */ - HDmemset(rdata,2,(size_t)(dset_size*sizeof(int))); + /* set entire read buffer with the constant 2 */ + HDmemset(rdata, 2, (size_t)(dset_size * sizeof(int))); - /* Read the entire dataset back */ - ret = H5Dread(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, dxpl, rdata); - VRFY((ret >= 0), "H5Dread succeeded"); + /* Read the entire dataset back */ + ret = H5Dread(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, dxpl, rdata); + VRFY((ret >= 0), "H5Dread succeeded"); #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - prop_value = FALSE; - ret = H5Pget(dxpl, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value); - VRFY((ret >= 0), "testing property list get succeeded"); - if(ii == 0) - VRFY((prop_value == FALSE), "correctly handled rank 0 Bcast"); - else - VRFY((prop_value == TRUE), "correctly handled rank 0 Bcast"); + prop_value = FALSE; + ret = H5Pget(dxpl, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value); + VRFY((ret >= 0), "testing property list get succeeded"); + if (ii == 0) + VRFY((prop_value == FALSE), "correctly handled rank 0 Bcast"); + else + VRFY((prop_value == TRUE), "correctly handled rank 0 Bcast"); #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ - /* Verify correct data read */ - twdata=wdata; - trdata=rdata; - err_num=0; - for(i=0; i<(int)dset_dims[0]; i++) - for(j=0; j<(int)dset_dims[1]; j++) - for(k=0; k<(int)dset_dims[2]; k++) - for(l=0; l<(int)dset_dims[3]; l++, twdata++, trdata++) - if(i<mpi_size) { - if(*twdata != *trdata ) - if(err_num++ < MAX_ERR_REPORT || VERBOSE_MED) - HDprintf("Dataset Verify failed at [%d][%d][%d][%d]: expect %d, got %d\n", i,j,k,l, *twdata, *trdata); - } /* end if */ - else { - if(*trdata != 0) - if(err_num++ < MAX_ERR_REPORT || VERBOSE_MED) - HDprintf("Dataset Verify failed at [%d][%d][%d][%d]: expect 0, got %d\n", i,j,k,l, *trdata); - } /* end else */ - if(err_num > MAX_ERR_REPORT && !VERBOSE_MED) - HDprintf("[more errors ...]\n"); - if(err_num){ - HDprintf("%d errors found in check_value\n", err_num); - nerrors++; - } + /* Verify correct data read */ + twdata = wdata; + trdata = rdata; + err_num = 0; + for (i = 0; i < (int)dset_dims[0]; i++) + for (j = 0; j < (int)dset_dims[1]; j++) + for (k = 0; k < (int)dset_dims[2]; k++) + for (l = 0; l < (int)dset_dims[3]; l++, twdata++, trdata++) + if (i < mpi_size) { + if (*twdata != *trdata) + if (err_num++ < MAX_ERR_REPORT || VERBOSE_MED) + HDprintf("Dataset Verify failed at [%d][%d][%d][%d]: expect %d, got %d\n", + i, j, k, l, *twdata, *trdata); + } /* end if */ + else { + if (*trdata != 0) + if (err_num++ < MAX_ERR_REPORT || VERBOSE_MED) + HDprintf("Dataset Verify failed at [%d][%d][%d][%d]: expect 0, got %d\n", + i, j, k, l, *trdata); + } /* end else */ + if (err_num > MAX_ERR_REPORT && !VERBOSE_MED) + HDprintf("[more errors ...]\n"); + if (err_num) { + HDprintf("%d errors found in check_value\n", err_num); + nerrors++; + } } /* Close all file objects */ @@ -835,7 +810,8 @@ void dataset_fillvalue(void) } /* combined cngrpw and ingrpr tests because ingrpr reads file created by cngrpw. */ -void collective_group_write_independent_group_read(void) +void +collective_group_write_independent_group_read(void) { collective_group_write(); independent_group_read(); @@ -843,45 +819,41 @@ void collective_group_write_independent_group_read(void) /* Write multiple groups with a chunked dataset in each group collectively. * These groups and datasets are for testing independent read later. - * - * Changes: Updated function to use a dynamically calculated size, - * instead of the old SIZE #define. This should allow it - * to function with an arbitrary number of processors. - * - * JRM - 8/16/04 */ -void collective_group_write(void) +void +collective_group_write(void) { - int mpi_rank, mpi_size, size; - int i, j, m; - char gname[64], dname[32]; - hid_t fid, gid, did, plist, dcpl, memspace, filespace; - DATATYPE *outme = NULL; - hsize_t chunk_origin[DIM]; - hsize_t chunk_dims[DIM], file_dims[DIM], count[DIM]; - hsize_t chunk_size[2]; /* Chunk dimensions - computed shortly */ - herr_t ret1, ret2; + int mpi_rank, mpi_size, size; + int i, j, m; + char gname[64], dname[32]; + hid_t fid, gid, did, plist, dcpl, memspace, filespace; + DATATYPE * outme = NULL; + hsize_t chunk_origin[DIM]; + hsize_t chunk_dims[DIM], file_dims[DIM], count[DIM]; + hsize_t chunk_size[2]; /* Chunk dimensions - computed shortly */ + herr_t ret1, ret2; const H5Ptest_param_t *pt; - char *filename; - int ngroups; + char * filename; + int ngroups; - pt = GetTestParameters(); + pt = GetTestParameters(); filename = pt->name; - ngroups = pt->count; + ngroups = pt->count; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); size = get_size(); - chunk_size[0] =(hsize_t)(size / 2); - chunk_size[1] =(hsize_t)(size / 2); + chunk_size[0] = (hsize_t)(size / 2); + chunk_size[1] = (hsize_t)(size / 2); - outme = HDmalloc((size_t)(size * size * sizeof(DATATYPE))); + outme = HDmalloc((size_t)size * (size_t)size * sizeof(DATATYPE)); VRFY((outme != NULL), "HDmalloc succeeded for outme"); plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); - fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist); + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist); + VRFY((fid >= 0), "H5Fcreate"); H5Pclose(plist); /* decide the hyperslab according to process number. */ @@ -890,24 +862,22 @@ void collective_group_write(void) /* select hyperslab in memory and file spaces. These two operations are * identical since the datasets are the same. */ memspace = H5Screate_simple(DIM, file_dims, NULL); - ret1 = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, chunk_origin, - chunk_dims, count, chunk_dims); - filespace = H5Screate_simple(DIM, file_dims, NULL); - ret2 = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, chunk_origin, - chunk_dims, count, chunk_dims); - VRFY((memspace>=0), "memspace"); - VRFY((filespace>=0), "filespace"); - VRFY((ret1>=0), "mgroup memspace selection"); - VRFY((ret2>=0), "mgroup filespace selection"); + ret1 = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); + filespace = H5Screate_simple(DIM, file_dims, NULL); + ret2 = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); + VRFY((memspace >= 0), "memspace"); + VRFY((filespace >= 0), "filespace"); + VRFY((ret1 == 0), "mgroup memspace selection"); + VRFY((ret2 == 0), "mgroup filespace selection"); dcpl = H5Pcreate(H5P_DATASET_CREATE); ret1 = H5Pset_chunk(dcpl, 2, chunk_size); - VRFY((dcpl>=0), "dataset creation property"); - VRFY((ret1>=0), "set chunk for dataset creation property"); + VRFY((dcpl >= 0), "dataset creation property"); + VRFY((ret1 == 0), "set chunk for dataset creation property"); /* creates ngroups groups under the root group, writes chunked * datasets in parallel. */ - for(m = 0; m < ngroups; m++) { + for (m = 0; m < ngroups; m++) { HDsprintf(gname, "group%d", m); gid = H5Gcreate2(fid, gname, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((gid > 0), gname); @@ -916,18 +886,22 @@ void collective_group_write(void) did = H5Dcreate2(gid, dname, H5T_NATIVE_INT, filespace, H5P_DEFAULT, dcpl, H5P_DEFAULT); VRFY((did > 0), dname); - for(i = 0; i < size; i++) - for(j = 0; j < size; j++) - outme[(i * size) + j] =(i + j) * 1000 + mpi_rank; + for (i = 0; i < size; i++) + for (j = 0; j < size; j++) + outme[(i * size) + j] = (i + j) * 1000 + mpi_rank; - H5Dwrite(did, H5T_NATIVE_INT, memspace, filespace, H5P_DEFAULT, outme); + ret1 = H5Dwrite(did, H5T_NATIVE_INT, memspace, filespace, H5P_DEFAULT, outme); + VRFY((ret1 == 0), "H5Dwrite"); - H5Dclose(did); - H5Gclose(gid); + ret1 = H5Dclose(did); + VRFY((ret1 == 0), "H5Dclose"); + + ret1 = H5Gclose(gid); + VRFY((ret1 == 0), "H5Gclose"); #ifdef BARRIER_CHECKS - if(!((m+1) % 10)) { - HDprintf("created %d groups\n", m+1); + if (!((m + 1) % 10)) { + HDprintf("created %d groups\n", m + 1); MPI_Barrier(MPI_COMM_WORLD); } #endif /* BARRIER_CHECKS */ @@ -936,7 +910,9 @@ void collective_group_write(void) H5Pclose(dcpl); H5Sclose(filespace); H5Sclose(memspace); - H5Fclose(fid); + + ret1 = H5Fclose(fid); + VRFY((ret1 == 0), "H5Fclose"); HDfree(outme); } @@ -944,17 +920,19 @@ void collective_group_write(void) /* Let two sets of processes open and read different groups and chunked * datasets independently. */ -void independent_group_read(void) +void +independent_group_read(void) { - int mpi_rank, m; - hid_t plist, fid; + int mpi_rank, m; + hid_t plist, fid; const H5Ptest_param_t *pt; - char *filename; - int ngroups; + char * filename; + int ngroups; + herr_t ret; - pt = GetTestParameters(); + pt = GetTestParameters(); filename = pt->name; - ngroups = pt->count; + ngroups = pt->count; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); @@ -962,49 +940,42 @@ void independent_group_read(void) H5Pset_all_coll_metadata_ops(plist, FALSE); fid = H5Fopen(filename, H5F_ACC_RDONLY, plist); + VRFY((fid > 0), "H5Fopen"); H5Pclose(plist); /* open groups and read datasets. Odd number processes read even number * groups from the end; even number processes read odd number groups * from the beginning. */ - if(mpi_rank%2==0) { - for(m=ngroups-1; m==0; m-=2) + if (mpi_rank % 2 == 0) { + for (m = ngroups - 1; m == 0; m -= 2) group_dataset_read(fid, mpi_rank, m); - } else { - for(m=0; m<ngroups; m+=2) + } + else { + for (m = 0; m < ngroups; m += 2) group_dataset_read(fid, mpi_rank, m); } - H5Fclose(fid); + ret = H5Fclose(fid); + VRFY((ret == 0), "H5Fclose"); } /* Open and read datasets and compare data - * - * Changes: Updated function to use a dynamically calculated size, - * instead of the old SIZE #define. This should allow it - * to function with an arbitrary number of processors. - * - * Also added code to verify the results of dynamic memory - * allocations, and to free dynamically allocated memeory - * when we are done with it. - * - * JRM - 8/16/04 */ static void group_dataset_read(hid_t fid, int mpi_rank, int m) { - int ret, i, j, size; - char gname[64], dname[32]; - hid_t gid, did; + int ret, i, j, size; + char gname[64], dname[32]; + hid_t gid, did; DATATYPE *outdata = NULL; - DATATYPE *indata = NULL; + DATATYPE *indata = NULL; size = get_size(); - indata =(DATATYPE*)HDmalloc((size_t)(size * size * sizeof(DATATYPE))); + indata = (DATATYPE *)HDmalloc((size_t)size * (size_t)size * sizeof(DATATYPE)); VRFY((indata != NULL), "HDmalloc succeeded for indata"); - outdata =(DATATYPE*)HDmalloc((size_t)(size * size * sizeof(DATATYPE))); + outdata = (DATATYPE *)HDmalloc((size_t)size * (size_t)size * sizeof(DATATYPE)); VRFY((outdata != NULL), "HDmalloc succeeded for outdata"); /* open every group under root group. */ @@ -1015,22 +986,23 @@ group_dataset_read(hid_t fid, int mpi_rank, int m) /* check the data. */ HDsprintf(dname, "dataset%d", m); did = H5Dopen2(gid, dname, H5P_DEFAULT); - VRFY((did>0), dname); + VRFY((did > 0), dname); H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, indata); /* this is the original value */ - for(i=0; i<size; i++) - for(j=0; j<size; j++) { - outdata[(i * size) + j] =(i+j)*1000 + mpi_rank; - } + for (i = 0; i < size; i++) + for (j = 0; j < size; j++) + outdata[(i * size) + j] = (i + j) * 1000 + mpi_rank; /* compare the original value(outdata) to the value in file(indata).*/ ret = check_value(indata, outdata, size); - VRFY((ret==0), "check the data"); + VRFY((ret == 0), "check the data"); - H5Dclose(did); - H5Gclose(gid); + ret = H5Dclose(did); + VRFY((ret == 0), "H5Dclose"); + ret = H5Gclose(gid); + VRFY((ret == 0), "H5Gclose"); HDfree(indata); HDfree(outdata); @@ -1062,28 +1034,24 @@ group_dataset_read(hid_t fid, int mpi_rank, int m) * + means the group has attribute(s). * ' means the datasets in the groups have attribute(s). * - * Changes: Updated function to use a dynamically calculated size, - * instead of the old SIZE #define. This should allow it - * to function with an arbitrary number of processors. - * - * JRM - 8/16/04 */ -void multiple_group_write(void) +void +multiple_group_write(void) { - int mpi_rank, mpi_size, size; - int m; - char gname[64]; - hid_t fid, gid, plist, memspace, filespace; - hsize_t chunk_origin[DIM]; - hsize_t chunk_dims[DIM], file_dims[DIM], count[DIM]; - herr_t ret; + int mpi_rank, mpi_size, size; + int m; + char gname[64]; + hid_t fid, gid, plist, memspace, filespace; + hsize_t chunk_origin[DIM]; + hsize_t chunk_dims[DIM], file_dims[DIM], count[DIM]; + herr_t ret; const H5Ptest_param_t *pt; - char *filename; - int ngroups; + char * filename; + int ngroups; - pt = GetTestParameters(); + pt = GetTestParameters(); filename = pt->name; - ngroups = pt->count; + ngroups = pt->count; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); @@ -1091,7 +1059,7 @@ void multiple_group_write(void) size = get_size(); plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); - fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist); + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist); H5Pclose(plist); /* decide the hyperslab according to process number. */ @@ -1099,38 +1067,36 @@ void multiple_group_write(void) /* select hyperslab in memory and file spaces. These two operations are * identical since the datasets are the same. */ - memspace = H5Screate_simple(DIM, file_dims, NULL); - VRFY((memspace>=0), "memspace"); - ret = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, chunk_origin, - chunk_dims, count, chunk_dims); - VRFY((ret>=0), "mgroup memspace selection"); + memspace = H5Screate_simple(DIM, file_dims, NULL); + VRFY((memspace >= 0), "memspace"); + ret = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); + VRFY((ret >= 0), "mgroup memspace selection"); - filespace = H5Screate_simple(DIM, file_dims, NULL); - VRFY((filespace>=0), "filespace"); - ret = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, chunk_origin, - chunk_dims, count, chunk_dims); - VRFY((ret>=0), "mgroup filespace selection"); + filespace = H5Screate_simple(DIM, file_dims, NULL); + VRFY((filespace >= 0), "filespace"); + ret = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); + VRFY((ret >= 0), "mgroup filespace selection"); /* creates ngroups groups under the root group, writes datasets in * parallel. */ - for(m = 0; m < ngroups; m++) { + for (m = 0; m < ngroups; m++) { HDsprintf(gname, "group%d", m); gid = H5Gcreate2(fid, gname, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((gid > 0), gname); /* create attribute for these groups. */ - write_attribute(gid, is_group, m); + write_attribute(gid, is_group, m); - if(m != 0) - write_dataset(memspace, filespace, gid); + if (m != 0) + write_dataset(memspace, filespace, gid); H5Gclose(gid); #ifdef BARRIER_CHECKS - if(!((m+1) % 10)) { - HDprintf("created %d groups\n", m+1); + if (!((m + 1) % 10)) { + HDprintf("created %d groups\n", m + 1); MPI_Barrier(MPI_COMM_WORLD); - } + } #endif /* BARRIER_CHECKS */ } @@ -1138,25 +1104,19 @@ void multiple_group_write(void) gid = H5Gopen2(fid, "group0", H5P_DEFAULT); create_group_recursive(memspace, filespace, gid, 0); ret = H5Gclose(gid); - VRFY((ret>=0), "H5Gclose"); + VRFY((ret >= 0), "H5Gclose"); ret = H5Sclose(filespace); - VRFY((ret>=0), "H5Sclose"); + VRFY((ret >= 0), "H5Sclose"); ret = H5Sclose(memspace); - VRFY((ret>=0), "H5Sclose"); + VRFY((ret >= 0), "H5Sclose"); ret = H5Fclose(fid); - VRFY((ret>=0), "H5Fclose"); + VRFY((ret >= 0), "H5Fclose"); } /* * In a group, creates NDATASETS datasets. Each process writes a hyperslab * of a data array to the file. - * - * Changes: Updated function to use a dynamically calculated size, - * instead of the old SIZE #define. This should allow it - * to function with an arbitrary number of processors. - * - * JRM - 8/16/04 */ static void write_dataset(hid_t memspace, hid_t filespace, hid_t gid) @@ -1172,24 +1132,24 @@ write_dataset(hid_t memspace, hid_t filespace, hid_t gid) size = get_size(); - outme = HDmalloc((size_t)(size * size * sizeof(double))); + outme = HDmalloc((size_t)size * (size_t)size * sizeof(double)); VRFY((outme != NULL), "HDmalloc succeeded for outme"); - for(n = 0; n < NDATASET; n++) { - HDsprintf(dname, "dataset%d", n); - did = H5Dcreate2(gid, dname, H5T_NATIVE_INT, filespace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); - VRFY((did > 0), dname); + for (n = 0; n < NDATASET; n++) { + HDsprintf(dname, "dataset%d", n); + did = H5Dcreate2(gid, dname, H5T_NATIVE_INT, filespace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((did > 0), dname); - for(i = 0; i < size; i++) - for(j = 0; j < size; j++) + for (i = 0; i < size; i++) + for (j = 0; j < size; j++) outme[(i * size) + j] = n * 1000 + mpi_rank; - H5Dwrite(did, H5T_NATIVE_INT, memspace, filespace, H5P_DEFAULT, outme); + H5Dwrite(did, H5T_NATIVE_INT, memspace, filespace, H5P_DEFAULT, outme); - /* create attribute for these datasets.*/ - write_attribute(did, is_dset, n); + /* create attribute for these datasets.*/ + write_attribute(did, is_dset, n); - H5Dclose(did); + H5Dclose(did); } HDfree(outme); } @@ -1201,57 +1161,52 @@ write_dataset(hid_t memspace, hid_t filespace, hid_t gid) static void create_group_recursive(hid_t memspace, hid_t filespace, hid_t gid, int counter) { - hid_t child_gid; - int mpi_rank; - char gname[64]; + hid_t child_gid; + int mpi_rank; + char gname[64]; - MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); #ifdef BARRIER_CHECKS - if(!((counter+1) % 10)) { - HDprintf("created %dth child groups\n", counter+1); + if (!((counter + 1) % 10)) { + HDprintf("created %dth child groups\n", counter + 1); MPI_Barrier(MPI_COMM_WORLD); - } + } #endif /* BARRIER_CHECKS */ - HDsprintf(gname, "%dth_child_group", counter+1); - child_gid = H5Gcreate2(gid, gname, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); - VRFY((child_gid > 0), gname); + HDsprintf(gname, "%dth_child_group", counter + 1); + child_gid = H5Gcreate2(gid, gname, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((child_gid > 0), gname); - /* write datasets in parallel. */ - write_dataset(memspace, filespace, gid); + /* write datasets in parallel. */ + write_dataset(memspace, filespace, gid); - if(counter < GROUP_DEPTH ) - create_group_recursive(memspace, filespace, child_gid, counter+1); + if (counter < GROUP_DEPTH) + create_group_recursive(memspace, filespace, child_gid, counter + 1); - H5Gclose(child_gid); + H5Gclose(child_gid); } /* * This function is to verify the data from multiple group testing. It opens * every dataset in every group and check their correctness. - * - * Changes: Updated function to use a dynamically calculated size, - * instead of the old SIZE #define. This should allow it - * to function with an arbitrary number of processors. - * - * JRM - 8/11/04 */ -void multiple_group_read(void) +void +multiple_group_read(void) { - int mpi_rank, mpi_size, error_num, size; - int m; - char gname[64]; - hid_t plist, fid, gid, memspace, filespace; - hsize_t chunk_origin[DIM]; - hsize_t chunk_dims[DIM], file_dims[DIM], count[DIM]; + int mpi_rank, mpi_size, error_num, size; + int m; + char gname[64]; + hid_t plist, fid, gid, memspace, filespace; + hsize_t chunk_origin[DIM]; + hsize_t chunk_dims[DIM], file_dims[DIM], count[DIM]; const H5Ptest_param_t *pt; - char *filename; - int ngroups; + char * filename; + int ngroups; - pt = GetTestParameters(); + pt = GetTestParameters(); filename = pt->name; - ngroups = pt->count; + ngroups = pt->count; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); @@ -1259,70 +1214,61 @@ void multiple_group_read(void) size = get_size(); plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); - fid = H5Fopen(filename, H5F_ACC_RDONLY, plist); + fid = H5Fopen(filename, H5F_ACC_RDONLY, plist); H5Pclose(plist); /* decide hyperslab for each process */ get_slab(chunk_origin, chunk_dims, count, file_dims, size); /* select hyperslab for memory and file space */ - memspace = H5Screate_simple(DIM, file_dims, NULL); - H5Sselect_hyperslab(memspace, H5S_SELECT_SET, chunk_origin, chunk_dims, - count, chunk_dims); + memspace = H5Screate_simple(DIM, file_dims, NULL); + H5Sselect_hyperslab(memspace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); filespace = H5Screate_simple(DIM, file_dims, NULL); - H5Sselect_hyperslab(filespace, H5S_SELECT_SET, chunk_origin, chunk_dims, - count, chunk_dims); + H5Sselect_hyperslab(filespace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); /* open every group under root group. */ - for(m=0; m<ngroups; m++) { + for (m = 0; m < ngroups; m++) { HDsprintf(gname, "group%d", m); gid = H5Gopen2(fid, gname, H5P_DEFAULT); VRFY((gid > 0), gname); /* check the data. */ - if(m != 0) - if((error_num = read_dataset(memspace, filespace, gid))>0) - nerrors += error_num; + if (m != 0) + if ((error_num = read_dataset(memspace, filespace, gid)) > 0) + nerrors += error_num; /* check attribute.*/ error_num = 0; - if((error_num = read_attribute(gid, is_group, m))>0 ) - nerrors += error_num; + if ((error_num = read_attribute(gid, is_group, m)) > 0) + nerrors += error_num; H5Gclose(gid); #ifdef BARRIER_CHECKS - if(!((m+1)%10)) + if (!((m + 1) % 10)) MPI_Barrier(MPI_COMM_WORLD); #endif /* BARRIER_CHECKS */ } /* open all the groups in vertical direction. */ gid = H5Gopen2(fid, "group0", H5P_DEFAULT); - VRFY((gid>0), "group0"); + VRFY((gid > 0), "group0"); recursive_read_group(memspace, filespace, gid, 0); H5Gclose(gid); H5Sclose(filespace); H5Sclose(memspace); H5Fclose(fid); - } /* * This function opens all the datasets in a certain, checks the data using * dataset_vrfy function. - * - * Changes: Updated function to use a dynamically calculated size, - * instead of the old SIZE #define. This should allow it - * to function with an arbitrary number of processors. - * - * JRM - 8/11/04 */ static int read_dataset(hid_t memspace, hid_t filespace, hid_t gid) { - int i, j, n, mpi_rank, mpi_size, size, attr_errors=0, vrfy_errors=0; + int i, j, n, mpi_rank, mpi_size, size, attr_errors = 0, vrfy_errors = 0; char dname[32]; DATATYPE *outdata = NULL, *indata = NULL; hid_t did; @@ -1332,32 +1278,32 @@ read_dataset(hid_t memspace, hid_t filespace, hid_t gid) size = get_size(); - indata =(DATATYPE*)HDmalloc((size_t)(size * size * sizeof(DATATYPE))); + indata = (DATATYPE *)HDmalloc((size_t)size * (size_t)size * sizeof(DATATYPE)); VRFY((indata != NULL), "HDmalloc succeeded for indata"); - outdata =(DATATYPE*)HDmalloc((size_t)(size * size * sizeof(DATATYPE))); + outdata = (DATATYPE *)HDmalloc((size_t)size * (size_t)size * sizeof(DATATYPE)); VRFY((outdata != NULL), "HDmalloc succeeded for outdata"); - for(n=0; n<NDATASET; n++) { + for (n = 0; n < NDATASET; n++) { HDsprintf(dname, "dataset%d", n); did = H5Dopen2(gid, dname, H5P_DEFAULT); - VRFY((did>0), dname); + VRFY((did > 0), dname); H5Dread(did, H5T_NATIVE_INT, memspace, filespace, H5P_DEFAULT, indata); /* this is the original value */ - for(i=0; i<size; i++) - for(j=0; j<size; j++) { - *outdata = n*1000 + mpi_rank; - outdata++; - } + for (i = 0; i < size; i++) + for (j = 0; j < size; j++) { + *outdata = n * 1000 + mpi_rank; + outdata++; + } outdata -= size * size; /* compare the original value(outdata) to the value in file(indata).*/ vrfy_errors = check_value(indata, outdata, size); /* check attribute.*/ - if((attr_errors = read_attribute(did, is_dset, n))>0 ) + if ((attr_errors = read_attribute(did, is_dset, n)) > 0) vrfy_errors += attr_errors; H5Dclose(did); @@ -1377,23 +1323,23 @@ static void recursive_read_group(hid_t memspace, hid_t filespace, hid_t gid, int counter) { hid_t child_gid; - int mpi_rank, err_num=0; + int mpi_rank, err_num = 0; char gname[64]; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); #ifdef BARRIER_CHECKS - if((counter+1) % 10) + if ((counter + 1) % 10) MPI_Barrier(MPI_COMM_WORLD); #endif /* BARRIER_CHECKS */ - if((err_num = read_dataset(memspace, filespace, gid)) ) + if ((err_num = read_dataset(memspace, filespace, gid))) nerrors += err_num; - if(counter < GROUP_DEPTH ) { - HDsprintf(gname, "%dth_child_group", counter+1); + if (counter < GROUP_DEPTH) { + HDsprintf(gname, "%dth_child_group", counter + 1); child_gid = H5Gopen2(gid, gname, H5P_DEFAULT); - VRFY((child_gid>0), gname); - recursive_read_group(memspace, filespace, child_gid, counter+1); + VRFY((child_gid > 0), gname); + recursive_read_group(memspace, filespace, child_gid, counter + 1); H5Gclose(child_gid); } } @@ -1405,23 +1351,23 @@ static void write_attribute(hid_t obj_id, int this_type, int num) { hid_t sid, aid; - hsize_t dspace_dims[1]={8}; - int i, mpi_rank, attr_data[8], dspace_rank=1; + hsize_t dspace_dims[1] = {8}; + int i, mpi_rank, attr_data[8], dspace_rank = 1; char attr_name[32]; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - if(this_type == is_group) { + if (this_type == is_group) { HDsprintf(attr_name, "Group Attribute %d", num); sid = H5Screate(H5S_SCALAR); aid = H5Acreate2(obj_id, attr_name, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT); - H5Awrite(aid, H5T_NATIVE_INT, &num); + H5Awrite(aid, H5T_NATIVE_INT, &num); H5Aclose(aid); H5Sclose(sid); } /* end if */ - else if(this_type == is_dset) { + else if (this_type == is_dset) { HDsprintf(attr_name, "Dataset Attribute %d", num); - for(i=0; i<8; i++) + for (i = 0; i < 8; i++) attr_data[i] = i; sid = H5Screate_simple(dspace_rank, dspace_dims, NULL); aid = H5Acreate2(obj_id, attr_name, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT); @@ -1429,38 +1375,33 @@ write_attribute(hid_t obj_id, int this_type, int num) H5Aclose(aid); H5Sclose(sid); } /* end else-if */ - } /* Read and verify attribute for group or dataset. */ static int read_attribute(hid_t obj_id, int this_type, int num) { - hid_t aid; - hsize_t group_block[2]={1,1}, dset_block[2]={1, 8}; - int i, mpi_rank, in_num, in_data[8], out_data[8], vrfy_errors = 0; - char attr_name[32]; + hid_t aid; + hsize_t group_block[2] = {1, 1}, dset_block[2] = {1, 8}; + int i, mpi_rank, in_num, in_data[8], out_data[8], vrfy_errors = 0; + char attr_name[32]; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - if(this_type == is_group) { + if (this_type == is_group) { HDsprintf(attr_name, "Group Attribute %d", num); aid = H5Aopen(obj_id, attr_name, H5P_DEFAULT); - if(MAINPROCESS) { - H5Aread(aid, H5T_NATIVE_INT, &in_num); - vrfy_errors = dataset_vrfy(NULL, NULL, NULL, group_block, &in_num, &num); - } + H5Aread(aid, H5T_NATIVE_INT, &in_num); + vrfy_errors = dataset_vrfy(NULL, NULL, NULL, group_block, &in_num, &num); H5Aclose(aid); } - else if(this_type == is_dset) { + else if (this_type == is_dset) { HDsprintf(attr_name, "Dataset Attribute %d", num); - for(i=0; i<8; i++) + for (i = 0; i < 8; i++) out_data[i] = i; aid = H5Aopen(obj_id, attr_name, H5P_DEFAULT); - if(MAINPROCESS) { - H5Aread(aid, H5T_NATIVE_INT, in_data); - vrfy_errors = dataset_vrfy(NULL, NULL, NULL, dset_block, in_data, out_data); - } + H5Aread(aid, H5T_NATIVE_INT, in_data); + vrfy_errors = dataset_vrfy(NULL, NULL, NULL, dset_block, in_data, out_data); H5Aclose(aid); } @@ -1469,70 +1410,59 @@ read_attribute(hid_t obj_id, int this_type, int num) /* This functions compares the original data with the read-in data for its * hyperslab part only by process ID. - * - * Changes: Modified function to use a passed in size parameter - * instead of the old SIZE #define. This should let us - * run with an arbitrary number of processes. - * - * JRM - 8/16/04 */ static int check_value(DATATYPE *indata, DATATYPE *outdata, int size) { - int mpi_rank, mpi_size, err_num=0; - hsize_t i, j; - hsize_t chunk_origin[DIM]; - hsize_t chunk_dims[DIM], count[DIM]; + int mpi_rank, mpi_size, err_num = 0; + hsize_t i, j; + hsize_t chunk_origin[DIM]; + hsize_t chunk_dims[DIM], count[DIM]; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); get_slab(chunk_origin, chunk_dims, count, NULL, size); - indata += chunk_origin[0]*size; - outdata += chunk_origin[0]*size; - for(i=chunk_origin[0]; i<(chunk_origin[0]+chunk_dims[0]); i++) - for(j=chunk_origin[1]; j<(chunk_origin[1]+chunk_dims[1]); j++) { - if(*indata != *outdata ) - if(err_num++ < MAX_ERR_REPORT || VERBOSE_MED) - HDprintf("Dataset Verify failed at [%lu][%lu](row %lu, col%lu): expect %d, got %d\n",(unsigned long)i,(unsigned long)j,(unsigned long)i,(unsigned long)j, *outdata, *indata); + indata += chunk_origin[0] * (hsize_t)size; + outdata += chunk_origin[0] * (hsize_t)size; + for (i = chunk_origin[0]; i < (chunk_origin[0] + chunk_dims[0]); i++) + for (j = chunk_origin[1]; j < (chunk_origin[1] + chunk_dims[1]); j++) { + if (*indata != *outdata) + if (err_num++ < MAX_ERR_REPORT || VERBOSE_MED) + HDprintf("Dataset Verify failed at [%lu][%lu](row %lu, col%lu): expect %d, got %d\n", + (unsigned long)i, (unsigned long)j, (unsigned long)i, (unsigned long)j, *outdata, + *indata); } - if(err_num > MAX_ERR_REPORT && !VERBOSE_MED) + if (err_num > MAX_ERR_REPORT && !VERBOSE_MED) HDprintf("[more errors ...]\n"); - if(err_num) + if (err_num) HDprintf("%d errors found in check_value\n", err_num); return err_num; } /* Decide the portion of data chunk in dataset by process ID. - * - * Changes: Modified function to use a passed in size parameter - * instead of the old SIZE #define. This should let us - * run with an arbitrary number of processes. - * - * JRM - 8/11/04 */ static void -get_slab(hsize_t chunk_origin[], hsize_t chunk_dims[], hsize_t count[], - hsize_t file_dims[], int size) +get_slab(hsize_t chunk_origin[], hsize_t chunk_dims[], hsize_t count[], hsize_t file_dims[], int size) { int mpi_rank, mpi_size; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); - if(chunk_origin != NULL) { - chunk_origin[0] = mpi_rank *(size/mpi_size); + if (chunk_origin != NULL) { + chunk_origin[0] = (hsize_t)mpi_rank * (hsize_t)(size / mpi_size); chunk_origin[1] = 0; } - if(chunk_dims != NULL) { - chunk_dims[0] = size/mpi_size; - chunk_dims[1] = size; + if (chunk_dims != NULL) { + chunk_dims[0] = (hsize_t)(size / mpi_size); + chunk_dims[1] = (hsize_t)size; } - if(file_dims != NULL) - file_dims[0] = file_dims[1] = size; - if(count != NULL) + if (file_dims != NULL) + file_dims[0] = file_dims[1] = (hsize_t)size; + if (count != NULL) count[0] = count[1] = 1; } @@ -1553,30 +1483,28 @@ get_slab(hsize_t chunk_origin[], hsize_t chunk_dims[], hsize_t count[], * This function reproduces this situation. At present the test hangs * on failure. * JRM - 9/13/04 - * - * Changes: None. */ #define N 4 -void io_mode_confusion(void) +void +io_mode_confusion(void) { /* * HDF5 APIs definitions */ - const int rank = 1; + const int rank = 1; const char *dataset_name = "IntArray"; - hid_t file_id, dset_id; /* file and dataset identifiers */ - hid_t filespace, memspace; /* file and memory dataspace */ - /* identifiers */ - hsize_t dimsf[1]; /* dataset dimensions */ - int data[N] = {1}; /* pointer to data buffer to write */ - hsize_t coord[N] = {0L,1L,2L,3L}; - hid_t plist_id; /* property list identifier */ - herr_t status; - + hid_t file_id, dset_id; /* file and dataset identifiers */ + hid_t filespace, memspace; /* file and memory dataspace */ + /* identifiers */ + hsize_t dimsf[1]; /* dataset dimensions */ + int data[N] = {1}; /* pointer to data buffer to write */ + hsize_t coord[N] = {0L, 1L, 2L, 3L}; + hid_t plist_id; /* property list identifier */ + herr_t status; /* * MPI variables @@ -1584,18 +1512,16 @@ void io_mode_confusion(void) int mpi_size, mpi_rank; - /* * test bed related variables */ - const char * fcn_name = "io_mode_confusion"; - const hbool_t verbose = FALSE; - const H5Ptest_param_t * pt; - char * filename; - + const char * fcn_name = "io_mode_confusion"; + const hbool_t verbose = FALSE; + const H5Ptest_param_t *pt; + char * filename; - pt = GetTestParameters(); + pt = GetTestParameters(); filename = pt->name; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); @@ -1605,183 +1531,154 @@ void io_mode_confusion(void) * Set up file access property list with parallel I/O access */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: Setting up property list.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: Setting up property list.\n", mpi_rank, fcn_name); plist_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((plist_id != -1), "H5Pcreate() failed"); status = H5Pset_fapl_mpio(plist_id, MPI_COMM_WORLD, MPI_INFO_NULL); - VRFY((status >= 0 ), "H5Pset_fapl_mpio() failed"); - + VRFY((status >= 0), "H5Pset_fapl_mpio() failed"); /* * Create a new file collectively and release property list identifier. */ - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: Creating new file.\n", mpi_rank, fcn_name); file_id = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id); - VRFY((file_id >= 0 ), "H5Fcreate() failed"); + VRFY((file_id >= 0), "H5Fcreate() failed"); status = H5Pclose(plist_id); - VRFY((status >= 0 ), "H5Pclose() failed"); - + VRFY((status >= 0), "H5Pclose() failed"); /* * Create the dataspace for the dataset. */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: Creating the dataspace for the dataset.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: Creating the dataspace for the dataset.\n", mpi_rank, fcn_name); - dimsf[0] = N; + dimsf[0] = N; filespace = H5Screate_simple(rank, dimsf, NULL); - VRFY((filespace >= 0 ), "H5Screate_simple() failed."); - + VRFY((filespace >= 0), "H5Screate_simple() failed."); /* * Create the dataset with default properties and close filespace. */ - if(verbose ) - HDfprintf(stdout, - "%0d:%s: Creating the dataset, and closing filespace.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: Creating the dataset, and closing filespace.\n", mpi_rank, fcn_name); - dset_id = H5Dcreate2(file_id, dataset_name, H5T_NATIVE_INT, filespace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); - VRFY((dset_id >= 0 ), "H5Dcreate2() failed"); + dset_id = + H5Dcreate2(file_id, dataset_name, H5T_NATIVE_INT, filespace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dset_id >= 0), "H5Dcreate2() failed"); status = H5Sclose(filespace); - VRFY((status >= 0 ), "H5Sclose() failed"); + VRFY((status >= 0), "H5Sclose() failed"); - - if(verbose ) - HDfprintf(stdout, "%0d:%s: Calling H5Screate_simple().\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: Calling H5Screate_simple().\n", mpi_rank, fcn_name); memspace = H5Screate_simple(rank, dimsf, NULL); - VRFY((memspace >= 0 ), "H5Screate_simple() failed."); - + VRFY((memspace >= 0), "H5Screate_simple() failed."); - if(mpi_rank == 0 ) { - if(verbose ) - HDfprintf(stdout, "%0d:%s: Calling H5Sselect_all(memspace).\n", - mpi_rank, fcn_name); + if (mpi_rank == 0) { + if (verbose) + HDfprintf(stdout, "%0d:%s: Calling H5Sselect_all(memspace).\n", mpi_rank, fcn_name); status = H5Sselect_all(memspace); - VRFY((status >= 0 ), "H5Sselect_all() failed"); - } else { - if(verbose ) - HDfprintf(stdout, "%0d:%s: Calling H5Sselect_none(memspace).\n", - mpi_rank, fcn_name); + VRFY((status >= 0), "H5Sselect_all() failed"); + } + else { + if (verbose) + HDfprintf(stdout, "%0d:%s: Calling H5Sselect_none(memspace).\n", mpi_rank, fcn_name); status = H5Sselect_none(memspace); - VRFY((status >= 0 ), "H5Sselect_none() failed"); + VRFY((status >= 0), "H5Sselect_none() failed"); } - - if(verbose ) - HDfprintf(stdout, "%0d:%s: Calling MPI_Barrier().\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: Calling MPI_Barrier().\n", mpi_rank, fcn_name); MPI_Barrier(MPI_COMM_WORLD); - - if(verbose ) - HDfprintf(stdout, "%0d:%s: Calling H5Dget_space().\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: Calling H5Dget_space().\n", mpi_rank, fcn_name); filespace = H5Dget_space(dset_id); - VRFY((filespace >= 0 ), "H5Dget_space() failed"); - + VRFY((filespace >= 0), "H5Dget_space() failed"); /* select all */ - if(mpi_rank == 0 ) { - if(verbose ) - HDfprintf(stdout, - "%0d:%s: Calling H5Sselect_elements() -- set up hang?\n", - mpi_rank, fcn_name); + if (mpi_rank == 0) { + if (verbose) + HDfprintf(stdout, "%0d:%s: Calling H5Sselect_elements() -- set up hang?\n", mpi_rank, fcn_name); status = H5Sselect_elements(filespace, H5S_SELECT_SET, N, (const hsize_t *)&coord); - VRFY((status >= 0 ), "H5Sselect_elements() failed"); - } else { /* select nothing */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: Calling H5Sselect_none().\n", - mpi_rank, fcn_name); + VRFY((status >= 0), "H5Sselect_elements() failed"); + } + else { /* select nothing */ + if (verbose) + HDfprintf(stdout, "%0d:%s: Calling H5Sselect_none().\n", mpi_rank, fcn_name); status = H5Sselect_none(filespace); - VRFY((status >= 0 ), "H5Sselect_none() failed"); + VRFY((status >= 0), "H5Sselect_none() failed"); } - if(verbose ) - HDfprintf(stdout, "%0d:%s: Calling MPI_Barrier().\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: Calling MPI_Barrier().\n", mpi_rank, fcn_name); MPI_Barrier(MPI_COMM_WORLD); - - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: Calling H5Pcreate().\n", mpi_rank, fcn_name); plist_id = H5Pcreate(H5P_DATASET_XFER); - VRFY((plist_id != -1 ), "H5Pcreate() failed"); - + VRFY((plist_id != -1), "H5Pcreate() failed"); - if(verbose ) - HDfprintf(stdout, "%0d:%s: Calling H5Pset_dxpl_mpio().\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: Calling H5Pset_dxpl_mpio().\n", mpi_rank, fcn_name); status = H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE); - VRFY((status >= 0 ), "H5Pset_dxpl_mpio() failed"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + VRFY((status >= 0), "H5Pset_dxpl_mpio() failed"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { status = H5Pset_dxpl_mpio_collective_opt(plist_id, H5FD_MPIO_INDIVIDUAL_IO); - VRFY((status>= 0),"set independent IO collectively succeeded"); + VRFY((status >= 0), "set independent IO collectively succeeded"); } + if (verbose) + HDfprintf(stdout, "%0d:%s: Calling H5Dwrite() -- hang here?.\n", mpi_rank, fcn_name); + status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace, filespace, plist_id, data); - - if(verbose ) - HDfprintf(stdout, "%0d:%s: Calling H5Dwrite() -- hang here?.\n", - mpi_rank, fcn_name); - - status = H5Dwrite(dset_id, H5T_NATIVE_INT, memspace, filespace, - plist_id, data); - - if(verbose ) - HDfprintf(stdout, "%0d:%s: Returned from H5Dwrite(), status=%d.\n", - mpi_rank, fcn_name, status); - VRFY((status >= 0 ), "H5Dwrite() failed"); + if (verbose) + HDfprintf(stdout, "%0d:%s: Returned from H5Dwrite(), status=%d.\n", mpi_rank, fcn_name, status); + VRFY((status >= 0), "H5Dwrite() failed"); /* * Close/release resources. */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: Cleaning up from test.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: Cleaning up from test.\n", mpi_rank, fcn_name); status = H5Dclose(dset_id); - VRFY((status >= 0 ), "H5Dclose() failed"); + VRFY((status >= 0), "H5Dclose() failed"); status = H5Sclose(filespace); - VRFY((status >= 0 ), "H5Dclose() failed"); + VRFY((status >= 0), "H5Dclose() failed"); status = H5Sclose(memspace); - VRFY((status >= 0 ), "H5Sclose() failed"); + VRFY((status >= 0), "H5Sclose() failed"); status = H5Pclose(plist_id); - VRFY((status >= 0 ), "H5Pclose() failed"); + VRFY((status >= 0), "H5Pclose() failed"); status = H5Fclose(file_id); - VRFY((status >= 0 ), "H5Fclose() failed"); - + VRFY((status >= 0), "H5Fclose() failed"); - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: Done.\n", mpi_rank, fcn_name); return; @@ -1824,73 +1721,53 @@ void io_mode_confusion(void) * Open the each of the data sets in turn. If all opens are successful, * the test passes. Otherwise the test fails. * - * Note that this test will probably become irrelevent shortly, when we + * Note that this test will probably become irrelevant shortly, when we * land the journaling modifications on the trunk -- at which point all * cache clients will have to construct on disk images on demand. * * JRM -- 10/13/10 - * - * Changes: - * Break it into two parts, a writer to write the file and a reader - * the correctness of the writer. AKC -- 2010/10/27 */ -#define NUM_DATA_SETS 4 -#define LOCAL_DATA_SIZE 4 -#define LARGE_ATTR_SIZE 256 +#define NUM_DATA_SETS 4 +#define LOCAL_DATA_SIZE 4 +#define LARGE_ATTR_SIZE 256 /* Since all even and odd processes are split into writer and reader comm * respectively, process 0 and 1 in COMM_WORLD become the root process of * the writer and reader comm respectively. */ -#define Writer_Root 0 -#define Reader_Root 1 -#define Reader_wait(mpi_err, xsteps) \ - mpi_err = MPI_Bcast(&xsteps, 1, MPI_INT, Writer_Root, MPI_COMM_WORLD) -#define Reader_result(mpi_err, xsteps_done) \ +#define Writer_Root 0 +#define Reader_Root 1 +#define Reader_wait(mpi_err, xsteps) mpi_err = MPI_Bcast(&xsteps, 1, MPI_INT, Writer_Root, MPI_COMM_WORLD) +#define Reader_result(mpi_err, xsteps_done) \ mpi_err = MPI_Bcast(&xsteps_done, 1, MPI_INT, Reader_Root, MPI_COMM_WORLD) -#define Reader_check(mpi_err, xsteps, xsteps_done) \ - { Reader_wait(mpi_err, xsteps); \ - Reader_result(mpi_err, xsteps_done);} +#define Reader_check(mpi_err, xsteps, xsteps_done) \ + { \ + Reader_wait(mpi_err, xsteps); \ + Reader_result(mpi_err, xsteps_done); \ + } /* object names used by both rr_obj_hdr_flush_confusion and * rr_obj_hdr_flush_confusion_reader. */ -const char * dataset_name[NUM_DATA_SETS] = - { - "dataset_0", - "dataset_1", - "dataset_2", - "dataset_3" - }; -const char * att_name[NUM_DATA_SETS] = - { - "attribute_0", - "attribute_1", - "attribute_2", - "attribute_3" - }; -const char * lg_att_name[NUM_DATA_SETS] = - { - "large_attribute_0", - "large_attribute_1", - "large_attribute_2", - "large_attribute_3" - }; - -void rr_obj_hdr_flush_confusion(void) +const char *dataset_name[NUM_DATA_SETS] = {"dataset_0", "dataset_1", "dataset_2", "dataset_3"}; +const char *att_name[NUM_DATA_SETS] = {"attribute_0", "attribute_1", "attribute_2", "attribute_3"}; +const char *lg_att_name[NUM_DATA_SETS] = {"large_attribute_0", "large_attribute_1", "large_attribute_2", + "large_attribute_3"}; + +void +rr_obj_hdr_flush_confusion(void) { /* MPI variables */ /* private communicator size and rank */ - int mpi_size; - int mpi_rank; - int mrc; /* mpi error code */ - int is_reader; /* 1 for reader process; 0 for writer process. */ + int mpi_size; + int mpi_rank; + int mrc; /* mpi error code */ + int is_reader; /* 1 for reader process; 0 for writer process. */ MPI_Comm comm; - /* test bed related variables */ - const char * fcn_name = "rr_obj_hdr_flush_confusion"; - const hbool_t verbose = FALSE; + const char * fcn_name = "rr_obj_hdr_flush_confusion"; + const hbool_t verbose = FALSE; /* Create two new private communicators from MPI_COMM_WORLD. * Even and odd ranked processes go to comm_writers and comm_readers @@ -1902,10 +1779,10 @@ void rr_obj_hdr_flush_confusion(void) HDassert(mpi_size > 2); is_reader = mpi_rank % 2; - mrc = MPI_Comm_split(MPI_COMM_WORLD, is_reader, mpi_rank, &comm); - VRFY((mrc==MPI_SUCCESS), "MPI_Comm_split"); + mrc = MPI_Comm_split(MPI_COMM_WORLD, is_reader, mpi_rank, &comm); + VRFY((mrc == MPI_SUCCESS), "MPI_Comm_split"); - /* The reader proocesses branches off to do reading + /* The reader processes branches off to do reading * while the writer processes continues to do writing * Whenever writers finish one writing step, including a H5Fflush, * they inform the readers, via MPI_COMM_WORLD, to verify. @@ -1913,32 +1790,33 @@ void rr_obj_hdr_flush_confusion(void) * step. When all steps are done, they inform readers to end. */ if (is_reader) - rr_obj_hdr_flush_confusion_reader(comm); + rr_obj_hdr_flush_confusion_reader(comm); else - rr_obj_hdr_flush_confusion_writer(comm); + rr_obj_hdr_flush_confusion_writer(comm); MPI_Comm_free(&comm); - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: Done.\n", mpi_rank, fcn_name); return; } /* rr_obj_hdr_flush_confusion() */ -void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) +void +rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) { - int i; - int j; - hid_t file_id = -1; - hid_t fapl_id = -1; - hid_t dxpl_id = -1; - hid_t att_id[NUM_DATA_SETS]; - hid_t att_space[NUM_DATA_SETS]; - hid_t lg_att_id[NUM_DATA_SETS]; - hid_t lg_att_space[NUM_DATA_SETS]; - hid_t disk_space[NUM_DATA_SETS]; - hid_t mem_space[NUM_DATA_SETS]; - hid_t dataset[NUM_DATA_SETS]; + int i; + int j; + hid_t file_id = -1; + hid_t fapl_id = -1; + hid_t dxpl_id = -1; + hid_t att_id[NUM_DATA_SETS]; + hid_t att_space[NUM_DATA_SETS]; + hid_t lg_att_id[NUM_DATA_SETS]; + hid_t lg_att_space[NUM_DATA_SETS]; + hid_t disk_space[NUM_DATA_SETS]; + hid_t mem_space[NUM_DATA_SETS]; + hid_t dataset[NUM_DATA_SETS]; hsize_t att_size[1]; hsize_t lg_att_size[1]; hsize_t disk_count[1]; @@ -1947,10 +1825,10 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) hsize_t mem_count[1]; hsize_t mem_size[1]; hsize_t mem_start[1]; - herr_t err; - double data[LOCAL_DATA_SIZE]; - double att[LOCAL_DATA_SIZE]; - double lg_att[LARGE_ATTR_SIZE]; + herr_t err; + double data[LOCAL_DATA_SIZE]; + double att[LOCAL_DATA_SIZE]; + double lg_att[LARGE_ATTR_SIZE]; /* MPI variables */ /* world communication size and rank */ @@ -1959,22 +1837,22 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) /* private communicator size and rank */ int mpi_size; int mpi_rank; - int mrc; /* mpi error code */ + int mrc; /* mpi error code */ /* steps to verify and have been verified */ - int steps = 0; + int steps = 0; int steps_done = 0; /* test bed related variables */ - const char *fcn_name = "rr_obj_hdr_flush_confusion_writer"; - const hbool_t verbose = FALSE; + const char * fcn_name = "rr_obj_hdr_flush_confusion_writer"; + const hbool_t verbose = FALSE; const H5Ptest_param_t *pt; - char *filename; + char * filename; /* * setup test bed related variables: */ - pt = (const H5Ptest_param_t *)GetTestParameters(); + pt = (const H5Ptest_param_t *)GetTestParameters(); filename = pt->name; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_world_rank); @@ -1986,50 +1864,45 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) * Set up file access property list with parallel I/O access */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: Setting up property list.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: Setting up property list.\n", mpi_rank, fcn_name); fapl_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((fapl_id != -1), "H5Pcreate(H5P_FILE_ACCESS) failed"); err = H5Pset_fapl_mpio(fapl_id, comm, MPI_INFO_NULL); - VRFY((err >= 0 ), "H5Pset_fapl_mpio() failed"); - + VRFY((err >= 0), "H5Pset_fapl_mpio() failed"); /* * Create a new file collectively and release property list identifier. */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: Creating new file \"%s\".\n", - mpi_rank, fcn_name, filename); + if (verbose) + HDfprintf(stdout, "%0d:%s: Creating new file \"%s\".\n", mpi_rank, fcn_name, filename); file_id = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); - VRFY((file_id >= 0 ), "H5Fcreate() failed"); + VRFY((file_id >= 0), "H5Fcreate() failed"); err = H5Pclose(fapl_id); - VRFY((err >= 0 ), "H5Pclose(fapl_id) failed"); - + VRFY((err >= 0), "H5Pclose(fapl_id) failed"); /* * Step 1: create the data sets and write data. */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: Creating the datasets.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: Creating the datasets.\n", mpi_rank, fcn_name); disk_size[0] = (hsize_t)(LOCAL_DATA_SIZE * mpi_size); - mem_size[0] = (hsize_t)(LOCAL_DATA_SIZE); + mem_size[0] = (hsize_t)(LOCAL_DATA_SIZE); - for ( i = 0; i < NUM_DATA_SETS; i++ ) { + for (i = 0; i < NUM_DATA_SETS; i++) { disk_space[i] = H5Screate_simple(1, disk_size, NULL); - VRFY((disk_space[i] >= 0), "H5Screate_simple(1) failed.\n"); + VRFY((disk_space[i] >= 0), "H5Screate_simple(1) failed.\n"); - dataset[i] = H5Dcreate2(file_id, dataset_name[i], H5T_NATIVE_DOUBLE, - disk_space[i], H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + dataset[i] = H5Dcreate2(file_id, dataset_name[i], H5T_NATIVE_DOUBLE, disk_space[i], H5P_DEFAULT, + H5P_DEFAULT, H5P_DEFAULT); VRFY((dataset[i] >= 0), "H5Dcreate(1) failed.\n"); } @@ -2038,45 +1911,41 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) * setup data transfer property list */ - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: Setting up dxpl.\n", mpi_rank, fcn_name); dxpl_id = H5Pcreate(H5P_DATASET_XFER); VRFY((dxpl_id != -1), "H5Pcreate(H5P_DATASET_XFER) failed.\n"); err = H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE); - VRFY((err >= 0), - "H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) failed.\n"); + VRFY((err >= 0), "H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) failed.\n"); /* * write data to the data sets */ - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: Writing datasets.\n", mpi_rank, fcn_name); disk_count[0] = (hsize_t)(LOCAL_DATA_SIZE); disk_start[0] = (hsize_t)(LOCAL_DATA_SIZE * mpi_rank); - mem_count[0] = (hsize_t)(LOCAL_DATA_SIZE); - mem_start[0] = (hsize_t)(0); + mem_count[0] = (hsize_t)(LOCAL_DATA_SIZE); + mem_start[0] = (hsize_t)(0); - for ( j = 0; j < LOCAL_DATA_SIZE; j++ ) { + for (j = 0; j < LOCAL_DATA_SIZE; j++) { data[j] = (double)(mpi_rank + 1); } - for ( i = 0; i < NUM_DATA_SETS; i++ ) { - err = H5Sselect_hyperslab(disk_space[i], H5S_SELECT_SET, disk_start, - NULL, disk_count, NULL); + for (i = 0; i < NUM_DATA_SETS; i++) { + err = H5Sselect_hyperslab(disk_space[i], H5S_SELECT_SET, disk_start, NULL, disk_count, NULL); VRFY((err >= 0), "H5Sselect_hyperslab(1) failed.\n"); mem_space[i] = H5Screate_simple(1, mem_size, NULL); VRFY((mem_space[i] >= 0), "H5Screate_simple(2) failed.\n"); - err = H5Sselect_hyperslab(mem_space[i], H5S_SELECT_SET, - mem_start, NULL, mem_count, NULL); + err = H5Sselect_hyperslab(mem_space[i], H5S_SELECT_SET, mem_start, NULL, mem_count, NULL); VRFY((err >= 0), "H5Sselect_hyperslab(2) failed.\n"); - err = H5Dwrite(dataset[i], H5T_NATIVE_DOUBLE, mem_space[i], - disk_space[i], dxpl_id, data); + err = H5Dwrite(dataset[i], H5T_NATIVE_DOUBLE, mem_space[i], disk_space[i], dxpl_id, data); VRFY((err >= 0), "H5Dwrite(1) failed.\n"); - for ( j = 0; j < LOCAL_DATA_SIZE; j++ ) + for (j = 0; j < LOCAL_DATA_SIZE; j++) data[j] *= 10.0; } @@ -2084,10 +1953,10 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) * close the data spaces */ - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: closing dataspaces.\n", mpi_rank, fcn_name); - for ( i = 0; i < NUM_DATA_SETS; i++ ) { + for (i = 0; i < NUM_DATA_SETS; i++) { err = H5Sclose(disk_space[i]); VRFY((err >= 0), "H5Sclose(disk_space[i]) failed.\n"); err = H5Sclose(mem_space[i]); @@ -2100,9 +1969,8 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) * flush the metadata cache */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: flushing metadata cache.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: flushing metadata cache.\n", mpi_rank, fcn_name); err = H5Fflush(file_id, H5F_SCOPE_GLOBAL); VRFY((err >= 0), "H5Fflush(1) failed.\n"); @@ -2114,23 +1982,23 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) * Step 2: write attributes to each dataset */ - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: writing attributes.\n", mpi_rank, fcn_name); att_size[0] = (hsize_t)(LOCAL_DATA_SIZE); - for ( j = 0; j < LOCAL_DATA_SIZE; j++ ) { + for (j = 0; j < LOCAL_DATA_SIZE; j++) { att[j] = (double)(j + 1); } - for ( i = 0; i < NUM_DATA_SETS; i++ ) { + for (i = 0; i < NUM_DATA_SETS; i++) { att_space[i] = H5Screate_simple(1, att_size, NULL); VRFY((att_space[i] >= 0), "H5Screate_simple(3) failed.\n"); - att_id[i] = H5Acreate2(dataset[i], att_name[i], H5T_NATIVE_DOUBLE, - att_space[i], H5P_DEFAULT, H5P_DEFAULT); + att_id[i] = + H5Acreate2(dataset[i], att_name[i], H5T_NATIVE_DOUBLE, att_space[i], H5P_DEFAULT, H5P_DEFAULT); VRFY((att_id[i] >= 0), "H5Acreate(1) failed.\n"); err = H5Awrite(att_id[i], H5T_NATIVE_DOUBLE, att); VRFY((err >= 0), "H5Awrite(1) failed.\n"); - for ( j = 0; j < LOCAL_DATA_SIZE; j++ ) { + for (j = 0; j < LOCAL_DATA_SIZE; j++) { att[j] /= 10.0; } } @@ -2139,11 +2007,10 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) * close attribute IDs and spaces */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: closing attr ids and spaces .\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: closing attr ids and spaces .\n", mpi_rank, fcn_name); - for ( i = 0; i < NUM_DATA_SETS; i++ ) { + for (i = 0; i < NUM_DATA_SETS; i++) { err = H5Sclose(att_space[i]); VRFY((err >= 0), "H5Sclose(att_space[i]) failed.\n"); err = H5Aclose(att_id[i]); @@ -2156,9 +2023,8 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) * flush the metadata cache again */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: flushing metadata cache.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: flushing metadata cache.\n", mpi_rank, fcn_name); err = H5Fflush(file_id, H5F_SCOPE_GLOBAL); VRFY((err >= 0), "H5Fflush(2) failed.\n"); @@ -2170,25 +2036,24 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) * Step 3: write large attributes to each dataset */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: writing large attributes.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: writing large attributes.\n", mpi_rank, fcn_name); lg_att_size[0] = (hsize_t)(LARGE_ATTR_SIZE); - for ( j = 0; j < LARGE_ATTR_SIZE; j++ ) { + for (j = 0; j < LARGE_ATTR_SIZE; j++) { lg_att[j] = (double)(j + 1); } - for ( i = 0; i < NUM_DATA_SETS; i++ ) { + for (i = 0; i < NUM_DATA_SETS; i++) { lg_att_space[i] = H5Screate_simple(1, lg_att_size, NULL); VRFY((lg_att_space[i] >= 0), "H5Screate_simple(4) failed.\n"); - lg_att_id[i] = H5Acreate2(dataset[i], lg_att_name[i], H5T_NATIVE_DOUBLE, - lg_att_space[i], H5P_DEFAULT, H5P_DEFAULT); + lg_att_id[i] = H5Acreate2(dataset[i], lg_att_name[i], H5T_NATIVE_DOUBLE, lg_att_space[i], H5P_DEFAULT, + H5P_DEFAULT); VRFY((lg_att_id[i] >= 0), "H5Acreate(2) failed.\n"); err = H5Awrite(lg_att_id[i], H5T_NATIVE_DOUBLE, lg_att); VRFY((err >= 0), "H5Awrite(2) failed.\n"); - for ( j = 0; j < LARGE_ATTR_SIZE; j++ ) { + for (j = 0; j < LARGE_ATTR_SIZE; j++) { lg_att[j] /= 10.0; } } @@ -2198,16 +2063,15 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) /* * flush the metadata cache yet again to clean the object headers. * - * This is an attempt to crate a situation where we have dirty + * This is an attempt to create a situation where we have dirty * object header continuation chunks, but clean opject headers * to verify a speculative bug fix -- it doesn't seem to work, * but I will leave the code in anyway, as the object header * code is going to change a lot in the near future. */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: flushing metadata cache.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: flushing metadata cache.\n", mpi_rank, fcn_name); err = H5Fflush(file_id, H5F_SCOPE_GLOBAL); VRFY((err >= 0), "H5Fflush(3) failed.\n"); @@ -2219,18 +2083,17 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) * Step 4: write different large attributes to each dataset */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: writing different large attributes.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: writing different large attributes.\n", mpi_rank, fcn_name); - for ( j = 0; j < LARGE_ATTR_SIZE; j++ ) { + for (j = 0; j < LARGE_ATTR_SIZE; j++) { lg_att[j] = (double)(j + 2); } - for ( i = 0; i < NUM_DATA_SETS; i++ ) { + for (i = 0; i < NUM_DATA_SETS; i++) { err = H5Awrite(lg_att_id[i], H5T_NATIVE_DOUBLE, lg_att); VRFY((err >= 0), "H5Awrite(2) failed.\n"); - for ( j = 0; j < LARGE_ATTR_SIZE; j++ ) { + for (j = 0; j < LARGE_ATTR_SIZE; j++) { lg_att[j] /= 10.0; } } @@ -2240,9 +2103,8 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) /* * flush the metadata cache again */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: flushing metadata cache.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: flushing metadata cache.\n", mpi_rank, fcn_name); err = H5Fflush(file_id, H5F_SCOPE_GLOBAL); VRFY((err >= 0), "H5Fflush(3) failed.\n"); @@ -2256,11 +2118,10 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) * close large attribute IDs and spaces */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: closing large attr ids and spaces .\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: closing large attr ids and spaces .\n", mpi_rank, fcn_name); - for ( i = 0; i < NUM_DATA_SETS; i++ ) { + for (i = 0; i < NUM_DATA_SETS; i++) { err = H5Sclose(lg_att_space[i]); VRFY((err >= 0), "H5Sclose(lg_att_space[i]) failed.\n"); @@ -2268,15 +2129,14 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) VRFY((err >= 0), "H5Aclose(lg_att_id[i]) failed.\n"); } - /* * close the data sets */ - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: closing datasets .\n", mpi_rank, fcn_name); - for ( i = 0; i < NUM_DATA_SETS; i++ ) { + for (i = 0; i < NUM_DATA_SETS; i++) { err = H5Dclose(dataset[i]); VRFY((err >= 0), "H5Dclose(dataset[i])1 failed.\n"); } @@ -2285,88 +2145,87 @@ void rr_obj_hdr_flush_confusion_writer(MPI_Comm comm) * close the data transfer property list. */ - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: closing dxpl .\n", mpi_rank, fcn_name); err = H5Pclose(dxpl_id); VRFY((err >= 0), "H5Pclose(dxpl_id) failed.\n"); - /* * Close file. */ - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: closing file.\n", mpi_rank, fcn_name); err = H5Fclose(file_id); - VRFY((err >= 0 ), "H5Fclose(1) failed"); + VRFY((err >= 0), "H5Fclose(1) failed"); /* End of Step 5: Close all objects and the file */ /* Tell the reader to check the file up to steps. */ steps++; Reader_check(mrc, steps, steps_done); - /* All done. Inform reader to end. */ - steps=0; + steps = 0; Reader_check(mrc, steps, steps_done); - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: Done.\n", mpi_rank, fcn_name); return; } /* rr_obj_hdr_flush_confusion_writer() */ -void rr_obj_hdr_flush_confusion_reader(MPI_Comm comm) +void +rr_obj_hdr_flush_confusion_reader(MPI_Comm comm) { - int i; - int j; - hid_t file_id = -1; - hid_t fapl_id = -1; - hid_t dxpl_id = -1; - hid_t lg_att_id[NUM_DATA_SETS]; - hid_t lg_att_type[NUM_DATA_SETS]; - hid_t disk_space[NUM_DATA_SETS]; - hid_t mem_space[NUM_DATA_SETS]; - hid_t dataset[NUM_DATA_SETS]; + int i; + int j; + hid_t file_id = -1; + hid_t fapl_id = -1; + hid_t dxpl_id = -1; + hid_t lg_att_id[NUM_DATA_SETS]; + hid_t lg_att_type[NUM_DATA_SETS]; + hid_t disk_space[NUM_DATA_SETS]; + hid_t mem_space[NUM_DATA_SETS]; + hid_t dataset[NUM_DATA_SETS]; hsize_t disk_count[1]; hsize_t disk_start[1]; hsize_t mem_count[1]; hsize_t mem_size[1]; hsize_t mem_start[1]; - herr_t err; - htri_t tri_err; - double data[LOCAL_DATA_SIZE]; - double data_read[LOCAL_DATA_SIZE]; - double att[LOCAL_DATA_SIZE]; - double att_read[LOCAL_DATA_SIZE]; - double lg_att[LARGE_ATTR_SIZE]; - double lg_att_read[LARGE_ATTR_SIZE]; + herr_t err; + htri_t tri_err; + double data[LOCAL_DATA_SIZE]; + double data_read[LOCAL_DATA_SIZE]; + double att[LOCAL_DATA_SIZE]; + double att_read[LOCAL_DATA_SIZE]; + double lg_att[LARGE_ATTR_SIZE]; + double lg_att_read[LARGE_ATTR_SIZE]; /* MPI variables */ /* world communication size and rank */ - int mpi_world_size; - int mpi_world_rank; + int mpi_world_size; + int mpi_world_rank; /* private communicator size and rank */ - int mpi_size; - int mpi_rank; - int mrc; /* mpi error code */ - int steps = -1; /* How far (steps) to verify the file */ - int steps_done = -1; /* How far (steps) have been verified */ + int mpi_size; + int mpi_rank; + int mrc; /* mpi error code */ + int steps = -1; /* How far (steps) to verify the file */ + int steps_done = -1; /* How far (steps) have been verified */ /* test bed related variables */ - const char *fcn_name = "rr_obj_hdr_flush_confusion_reader"; - const hbool_t verbose = FALSE; + const char * fcn_name = "rr_obj_hdr_flush_confusion_reader"; + const hbool_t verbose = FALSE; const H5Ptest_param_t *pt; - char *filename; + char * filename; /* * setup test bed related variables: */ - pt = (const H5Ptest_param_t *)GetTestParameters(); + pt = (const H5Ptest_param_t *)GetTestParameters(); filename = pt->name; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_world_rank); @@ -2376,53 +2235,50 @@ void rr_obj_hdr_flush_confusion_reader(MPI_Comm comm) /* Repeatedly re-open the file and verify its contents until it is */ /* told to end (when steps=0). */ - while (steps_done != 0){ + while (steps_done != 0) { Reader_wait(mrc, steps); VRFY((mrc >= 0), "Reader_wait failed"); steps_done = 0; - if (steps > 0 ){ + if (steps > 0) { /* - * Set up file access property list with parallel I/O access - */ + * Set up file access property list with parallel I/O access + */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: Setting up property list.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: Setting up property list.\n", mpi_rank, fcn_name); fapl_id = H5Pcreate(H5P_FILE_ACCESS); VRFY((fapl_id != -1), "H5Pcreate(H5P_FILE_ACCESS) failed"); err = H5Pset_fapl_mpio(fapl_id, comm, MPI_INFO_NULL); - VRFY((err >= 0 ), "H5Pset_fapl_mpio() failed"); + VRFY((err >= 0), "H5Pset_fapl_mpio() failed"); /* - * Create a new file collectively and release property list identifier. - */ + * Create a new file collectively and release property list identifier. + */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: Re-open file \"%s\".\n", - mpi_rank, fcn_name, filename); + if (verbose) + HDfprintf(stdout, "%0d:%s: Re-open file \"%s\".\n", mpi_rank, fcn_name, filename); file_id = H5Fopen(filename, H5F_ACC_RDONLY, fapl_id); - VRFY((file_id >= 0 ), "H5Fopen() failed"); + VRFY((file_id >= 0), "H5Fopen() failed"); err = H5Pclose(fapl_id); - VRFY((err >= 0 ), "H5Pclose(fapl_id) failed"); + VRFY((err >= 0), "H5Pclose(fapl_id) failed"); #if 1 - if (steps >= 1){ + if (steps >= 1) { /*=====================================================* - * Step 1: open the data sets and read data. - *=====================================================*/ + * Step 1: open the data sets and read data. + *=====================================================*/ - if(verbose ) - HDfprintf(stdout, "%0d:%s: opening the datasets.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: opening the datasets.\n", mpi_rank, fcn_name); - for ( i = 0; i < NUM_DATA_SETS; i++ ) { + for (i = 0; i < NUM_DATA_SETS; i++) { dataset[i] = -1; } - for ( i = 0; i < NUM_DATA_SETS; i++ ) { + for (i = 0; i < NUM_DATA_SETS; i++) { dataset[i] = H5Dopen2(file_id, dataset_name[i], H5P_DEFAULT); VRFY((dataset[i] >= 0), "H5Dopen(1) failed.\n"); disk_space[i] = H5Dget_space(dataset[i]); @@ -2430,23 +2286,22 @@ void rr_obj_hdr_flush_confusion_reader(MPI_Comm comm) } /* - * setup data transfer property list - */ + * setup data transfer property list + */ - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: Setting up dxpl.\n", mpi_rank, fcn_name); dxpl_id = H5Pcreate(H5P_DATASET_XFER); VRFY((dxpl_id != -1), "H5Pcreate(H5P_DATASET_XFER) failed.\n"); err = H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE); - VRFY((err >= 0), - "H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) failed.\n"); + VRFY((err >= 0), "H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) failed.\n"); /* - * read data from the data sets - */ + * read data from the data sets + */ - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: Reading datasets.\n", mpi_rank, fcn_name); disk_count[0] = (hsize_t)(LOCAL_DATA_SIZE); @@ -2458,44 +2313,43 @@ void rr_obj_hdr_flush_confusion_reader(MPI_Comm comm) mem_start[0] = (hsize_t)(0); /* set up expected data for verification */ - for ( j = 0; j < LOCAL_DATA_SIZE; j++ ) { + for (j = 0; j < LOCAL_DATA_SIZE; j++) { data[j] = (double)(mpi_rank + 1); } - for ( i = 0; i < NUM_DATA_SETS; i++ ) { - err = H5Sselect_hyperslab(disk_space[i], H5S_SELECT_SET, disk_start, - NULL, disk_count, NULL); + for (i = 0; i < NUM_DATA_SETS; i++) { + err = H5Sselect_hyperslab(disk_space[i], H5S_SELECT_SET, disk_start, NULL, disk_count, + NULL); VRFY((err >= 0), "H5Sselect_hyperslab(1) failed.\n"); mem_space[i] = H5Screate_simple(1, mem_size, NULL); VRFY((mem_space[i] >= 0), "H5Screate_simple(2) failed.\n"); - err = H5Sselect_hyperslab(mem_space[i], H5S_SELECT_SET, - mem_start, NULL, mem_count, NULL); + err = H5Sselect_hyperslab(mem_space[i], H5S_SELECT_SET, mem_start, NULL, mem_count, NULL); VRFY((err >= 0), "H5Sselect_hyperslab(2) failed.\n"); - err = H5Dread(dataset[i], H5T_NATIVE_DOUBLE, mem_space[i], - disk_space[i], dxpl_id, data_read); + err = H5Dread(dataset[i], H5T_NATIVE_DOUBLE, mem_space[i], disk_space[i], dxpl_id, + data_read); VRFY((err >= 0), "H5Dread(1) failed.\n"); /* compare read data with expected data */ - for ( j = 0; j < LOCAL_DATA_SIZE; j++ ) - if (data_read[j] != data[j]){ + for (j = 0; j < LOCAL_DATA_SIZE; j++) + if (!H5_DBL_ABS_EQUAL(data_read[j], data[j])) { HDfprintf(stdout, - "%0d:%s: Reading datasets value failed in " - "Dataset %d, at position %d: expect %f, got %f.\n", - mpi_rank, fcn_name, i, j, data[j], data_read[j]); + "%0d:%s: Reading datasets value failed in " + "Dataset %d, at position %d: expect %f, got %f.\n", + mpi_rank, fcn_name, i, j, data[j], data_read[j]); nerrors++; } - for ( j = 0; j < LOCAL_DATA_SIZE; j++ ) + for (j = 0; j < LOCAL_DATA_SIZE; j++) data[j] *= 10.0; } /* - * close the data spaces - */ + * close the data spaces + */ - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: closing dataspaces.\n", mpi_rank, fcn_name); - for ( i = 0; i < NUM_DATA_SETS; i++ ) { + for (i = 0; i < NUM_DATA_SETS; i++) { err = H5Sclose(disk_space[i]); VRFY((err >= 0), "H5Sclose(disk_space[i]) failed.\n"); err = H5Sclose(mem_space[i]); @@ -2508,18 +2362,18 @@ void rr_obj_hdr_flush_confusion_reader(MPI_Comm comm) #if 1 /*=====================================================* - * Step 2: reading attributes from each dataset - *=====================================================*/ + * Step 2: reading attributes from each dataset + *=====================================================*/ - if (steps >= 2){ - if(verbose ) + if (steps >= 2) { + if (verbose) HDfprintf(stdout, "%0d:%s: reading attributes.\n", mpi_rank, fcn_name); - for ( j = 0; j < LOCAL_DATA_SIZE; j++ ) { + for (j = 0; j < LOCAL_DATA_SIZE; j++) { att[j] = (double)(j + 1); } - for ( i = 0; i < NUM_DATA_SETS; i++ ) { + for (i = 0; i < NUM_DATA_SETS; i++) { hid_t att_id, att_type; att_id = H5Aopen(dataset[i], att_name[i], H5P_DEFAULT); @@ -2528,10 +2382,9 @@ void rr_obj_hdr_flush_confusion_reader(MPI_Comm comm) VRFY((att_type >= 0), "H5Aget_type failed.\n"); tri_err = H5Tequal(att_type, H5T_NATIVE_DOUBLE); VRFY((tri_err >= 0), "H5Tequal failed.\n"); - if (tri_err==0){ - HDfprintf(stdout, - "%0d:%s: Mismatched Attribute type of Dataset %d.\n", - mpi_rank, fcn_name, i); + if (tri_err == 0) { + HDfprintf(stdout, "%0d:%s: Mismatched Attribute type of Dataset %d.\n", mpi_rank, + fcn_name, i); nerrors++; } else { @@ -2539,14 +2392,15 @@ void rr_obj_hdr_flush_confusion_reader(MPI_Comm comm) err = H5Aread(att_id, H5T_NATIVE_DOUBLE, att_read); VRFY((err >= 0), "H5Aread failed.\n"); /* compare read attribute data with expected data */ - for ( j = 0; j < LOCAL_DATA_SIZE; j++ ) - if (att_read[j] != att[j]){ + for (j = 0; j < LOCAL_DATA_SIZE; j++) + if (!H5_DBL_ABS_EQUAL(att_read[j], att[j])) { HDfprintf(stdout, - "%0d:%s: Mismatched attribute data read in Dataset %d, at position %d: expect %f, got %f.\n", - mpi_rank, fcn_name, i, j, att[j], att_read[j]); + "%0d:%s: Mismatched attribute data read in Dataset %d, at position " + "%d: expect %f, got %f.\n", + mpi_rank, fcn_name, i, j, att[j], att_read[j]); nerrors++; } - for ( j = 0; j < LOCAL_DATA_SIZE; j++ ) { + for (j = 0; j < LOCAL_DATA_SIZE; j++) { att[j] /= 10.0; } } @@ -2558,47 +2412,46 @@ void rr_obj_hdr_flush_confusion_reader(MPI_Comm comm) /* End of Step 2: reading attributes from each dataset */ #endif - #if 1 /*=====================================================* - * Step 3 or 4: read large attributes from each dataset. - * Step 4 has different attribute value from step 3. - *=====================================================*/ + * Step 3 or 4: read large attributes from each dataset. + * Step 4 has different attribute value from step 3. + *=====================================================*/ - if (steps >= 3){ - if(verbose ) + if (steps >= 3) { + if (verbose) HDfprintf(stdout, "%0d:%s: reading large attributes.\n", mpi_rank, fcn_name); - for ( j = 0; j < LARGE_ATTR_SIZE; j++ ) { - lg_att[j] = (steps==3) ? (double)(j + 1) : (double)(j+2); + for (j = 0; j < LARGE_ATTR_SIZE; j++) { + lg_att[j] = (steps == 3) ? (double)(j + 1) : (double)(j + 2); } - for ( i = 0; i < NUM_DATA_SETS; i++ ) { + for (i = 0; i < NUM_DATA_SETS; i++) { lg_att_id[i] = H5Aopen(dataset[i], lg_att_name[i], H5P_DEFAULT); VRFY((lg_att_id[i] >= 0), "H5Aopen(2) failed.\n"); lg_att_type[i] = H5Aget_type(lg_att_id[i]); VRFY((err >= 0), "H5Aget_type failed.\n"); tri_err = H5Tequal(lg_att_type[i], H5T_NATIVE_DOUBLE); VRFY((tri_err >= 0), "H5Tequal failed.\n"); - if (tri_err==0){ - HDfprintf(stdout, - "%0d:%s: Mismatched Large attribute type of Dataset %d.\n", - mpi_rank, fcn_name, i); + if (tri_err == 0) { + HDfprintf(stdout, "%0d:%s: Mismatched Large attribute type of Dataset %d.\n", + mpi_rank, fcn_name, i); nerrors++; } - else{ + else { /* should verify large attribute size before H5Aread */ err = H5Aread(lg_att_id[i], H5T_NATIVE_DOUBLE, lg_att_read); VRFY((err >= 0), "H5Aread failed.\n"); /* compare read attribute data with expected data */ - for ( j = 0; j < LARGE_ATTR_SIZE; j++ ) - if (lg_att_read[j] != lg_att[j]){ + for (j = 0; j < LARGE_ATTR_SIZE; j++) + if (!H5_DBL_ABS_EQUAL(lg_att_read[j], lg_att[j])) { HDfprintf(stdout, - "%0d:%s: Mismatched large attribute data read in Dataset %d, at position %d: expect %f, got %f.\n", - mpi_rank, fcn_name, i, j, lg_att[j], lg_att_read[j]); + "%0d:%s: Mismatched large attribute data read in Dataset %d, at " + "position %d: expect %f, got %f.\n", + mpi_rank, fcn_name, i, j, lg_att[j], lg_att_read[j]); nerrors++; } - for ( j = 0; j < LARGE_ATTR_SIZE; j++ ) { + for (j = 0; j < LARGE_ATTR_SIZE; j++) { lg_att[j] /= 10.0; } @@ -2609,61 +2462,58 @@ void rr_obj_hdr_flush_confusion_reader(MPI_Comm comm) VRFY((err >= 0), "H5Aclose failed.\n"); } /* Both step 3 and 4 use this same read checking code. */ - steps_done = (steps==3) ? 3 : 4; + steps_done = (steps == 3) ? 3 : 4; } /* End of Step 3 or 4: read large attributes from each dataset */ #endif - /*=====================================================* - * Step 5: read all objects from the file - *=====================================================*/ - if (steps>=5){ + * Step 5: read all objects from the file + *=====================================================*/ + if (steps >= 5) { /* nothing extra to verify. The file is closed normally. */ /* Just increment steps_done */ steps_done++; } /* - * Close the data sets - */ + * Close the data sets + */ - if(verbose ) - HDfprintf(stdout, "%0d:%s: closing datasets again.\n", - mpi_rank, fcn_name); + if (verbose) + HDfprintf(stdout, "%0d:%s: closing datasets again.\n", mpi_rank, fcn_name); - for ( i = 0; i < NUM_DATA_SETS; i++ ) { - if ( dataset[i] >= 0 ) { + for (i = 0; i < NUM_DATA_SETS; i++) { + if (dataset[i] >= 0) { err = H5Dclose(dataset[i]); VRFY((err >= 0), "H5Dclose(dataset[i])1 failed.\n"); } } /* - * close the data transfer property list. - */ + * close the data transfer property list. + */ - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: closing dxpl .\n", mpi_rank, fcn_name); err = H5Pclose(dxpl_id); VRFY((err >= 0), "H5Pclose(dxpl_id) failed.\n"); /* - * Close the file - */ - if(verbose) - HDfprintf(stdout, "%0d:%s: closing file again.\n", - mpi_rank, fcn_name); + * Close the file + */ + if (verbose) + HDfprintf(stdout, "%0d:%s: closing file again.\n", mpi_rank, fcn_name); err = H5Fclose(file_id); - VRFY((err >= 0 ), "H5Fclose(1) failed"); + VRFY((err >= 0), "H5Fclose(1) failed"); } /* else if (steps_done==0) */ Reader_result(mrc, steps_done); } /* end while(1) */ - if(verbose ) + if (verbose) HDfprintf(stdout, "%0d:%s: Done.\n", mpi_rank, fcn_name); return; @@ -2678,27 +2528,27 @@ void rr_obj_hdr_flush_confusion_reader(MPI_Comm comm) #undef Writer_Root #undef Reader_Root - /* * Test creating a chunked dataset in parallel in a file with an alignment set * and an alignment threshold large enough to avoid aligning the chunks but * small enough that the raw data aggregator will be aligned if it is treated as * an object that must be aligned by the library */ -#define CHUNK_SIZE 72 -#define NCHUNKS 32 -#define AGGR_SIZE 2048 +#define CHUNK_SIZE 72 +#define NCHUNKS 32 +#define AGGR_SIZE 2048 #define EXTRA_ALIGN 100 - void chunk_align_bug_1(void) - { - int mpi_rank; - hid_t file_id, dset_id, fapl_id, dcpl_id, space_id; - hsize_t dims = CHUNK_SIZE * NCHUNKS, cdims = CHUNK_SIZE; - h5_stat_size_t file_size; - hsize_t align; - herr_t ret; - const char *filename; +void +chunk_align_bug_1(void) +{ + int mpi_rank; + hid_t file_id, dset_id, fapl_id, dcpl_id, space_id; + hsize_t dims = CHUNK_SIZE * NCHUNKS, cdims = CHUNK_SIZE; + h5_stat_size_t file_size; + hsize_t align; + herr_t ret; + const char * filename; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); @@ -2763,8 +2613,6 @@ void rr_obj_hdr_flush_confusion_reader(MPI_Comm comm) return; } /* end chunk_align_bug_1() */ - /*============================================================================= * End of t_mdset.c *===========================================================================*/ - diff --git a/testpar/t_mpi.c b/testpar/t_mpi.c index 890a918..96cbc4b 100644 --- a/testpar/t_mpi.c +++ b/testpar/t_mpi.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -28,33 +28,34 @@ #include "testpar.h" /* FILENAME and filenames must have the same number of names */ -const char *FILENAME[2] = { "MPItest", NULL }; -char filenames[2][200]; -int nerrors = 0; -hid_t fapl; /* file access property list */ +const char *FILENAME[2] = {"MPItest", NULL}; +char filenames[2][200]; +int nerrors = 0; +hid_t fapl; /* file access property list */ /* protocols */ static int errors_sum(int nerrs); -#define MPIO_TEST_WRITE_SIZE 1024*1024 /* 1 MB */ - -static int test_mpio_overlap_writes(char *filename) { - int mpi_size, mpi_rank; - MPI_Comm comm; - MPI_Info info = MPI_INFO_NULL; - int color, mrc; - MPI_File fh; - int i; - int vrfyerrs, nerrs; +#define MPIO_TEST_WRITE_SIZE 1024 * 1024 /* 1 MB */ + +static int +test_mpio_overlap_writes(char *filename) +{ + int mpi_size, mpi_rank; + MPI_Comm comm; + MPI_Info info = MPI_INFO_NULL; + int color, mrc; + MPI_File fh; + int i; + int vrfyerrs, nerrs; unsigned char buf[4093]; /* use some prime number for size */ - int bufsize = sizeof(buf); - MPI_Offset stride; - MPI_Offset mpi_off; - MPI_Status mpi_stat; + int bufsize = sizeof(buf); + MPI_Offset stride; + MPI_Offset mpi_off; + MPI_Status mpi_stat; if (VERBOSE_MED) - HDprintf("MPIO independent overlapping writes test on file %s\n", - filename); + HDprintf("MPIO independent overlapping writes test on file %s\n", filename); nerrs = 0; /* set up MPI parameters */ @@ -71,16 +72,15 @@ static int test_mpio_overlap_writes(char *filename) { /* splits processes 0 to n-2 into one comm. and the last one into another */ color = ((mpi_rank < (mpi_size - 1)) ? 0 : 1); - mrc = MPI_Comm_split(MPI_COMM_WORLD, color, mpi_rank, &comm); + mrc = MPI_Comm_split(MPI_COMM_WORLD, color, mpi_rank, &comm); VRFY((mrc == MPI_SUCCESS), "Comm_split succeeded"); if (color == 0) { /* First n-1 processes (color==0) open a file and write it */ - mrc = MPI_File_open(comm, filename, MPI_MODE_CREATE | MPI_MODE_RDWR, - info, &fh); + mrc = MPI_File_open(comm, filename, MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh); VRFY((mrc == MPI_SUCCESS), ""); - stride = 1; + stride = 1; mpi_off = mpi_rank * stride; while (mpi_off < MPIO_TEST_WRITE_SIZE) { /* make sure the write does not exceed the TEST_WRITE_SIZE */ @@ -89,9 +89,8 @@ static int test_mpio_overlap_writes(char *filename) { /* set data to some trivial pattern for easy verification */ for (i = 0; i < stride; i++) - buf[i] = (unsigned char) (mpi_off + i); - mrc = MPI_File_write_at(fh, mpi_off, buf, (int) stride, MPI_BYTE, - &mpi_stat); + buf[i] = (unsigned char)(mpi_off + i); + mrc = MPI_File_write_at(fh, mpi_off, buf, (int)stride, MPI_BYTE, &mpi_stat); VRFY((mrc == MPI_SUCCESS), ""); /* move the offset pointer to last byte written by all processes */ @@ -114,10 +113,11 @@ static int test_mpio_overlap_writes(char *filename) { /* sync with the other waiting processes */ mrc = MPI_Barrier(MPI_COMM_WORLD); VRFY((mrc == MPI_SUCCESS), "Sync after writes"); - } else { + } + else { /* last process waits till writes are done, - * then opens file to verify data. - */ + * then opens file to verify data. + */ mrc = MPI_Barrier(MPI_COMM_WORLD); VRFY((mrc == MPI_SUCCESS), "Sync after writes"); @@ -129,18 +129,15 @@ static int test_mpio_overlap_writes(char *filename) { /* make sure it does not read beyond end of data */ if (mpi_off + stride > MPIO_TEST_WRITE_SIZE) stride = MPIO_TEST_WRITE_SIZE - mpi_off; - mrc = MPI_File_read_at(fh, mpi_off, buf, (int) stride, MPI_BYTE, - &mpi_stat); + mrc = MPI_File_read_at(fh, mpi_off, buf, (int)stride, MPI_BYTE, &mpi_stat); VRFY((mrc == MPI_SUCCESS), ""); vrfyerrs = 0; for (i = 0; i < stride; i++) { unsigned char expected; - expected = (unsigned char) (mpi_off + i); - if ((expected != buf[i]) - && (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED)) { - HDprintf( - "proc %d: found data error at [%ld], expect %u, got %u\n", - mpi_rank, (long) (mpi_off + i), expected, buf[i]); + expected = (unsigned char)(mpi_off + i); + if ((expected != buf[i]) && (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED)) { + HDprintf("proc %d: found data error at [%ld], expect %u, got %u\n", mpi_rank, + (long)(mpi_off + i), expected, buf[i]); } } if (vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED) @@ -157,18 +154,18 @@ static int test_mpio_overlap_writes(char *filename) { } /* - * one more sync to ensure all processes have done reading - * before ending this test. - */ + * one more sync to ensure all processes have done reading + * before ending this test. + */ mrc = MPI_Barrier(MPI_COMM_WORLD); VRFY((mrc == MPI_SUCCESS), "Sync before leaving test"); return (nerrs); } -#define MB 1048576 /* 1024*1024 == 2**20 */ -#define GB 1073741824 /* 1024**3 == 2**30 */ -#define TWO_GB_LESS1 2147483647 /* 2**31 - 1 */ -#define FOUR_GB_LESS1 4294967295L /* 2**32 - 1 */ +#define MB 1048576 /* 1024*1024 == 2**20 */ +#define GB 1073741824 /* 1024**3 == 2**30 */ +#define TWO_GB_LESS1 2147483647 /* 2**31 - 1 */ +#define FOUR_GB_LESS1 4294967295L /* 2**32 - 1 */ /* * Verify that MPI_Offset exceeding 2**31 can be computed correctly. * Print any failure as information only, not as an error so that this @@ -180,23 +177,25 @@ static int test_mpio_overlap_writes(char *filename) { * Then reads the file back in by reverse order, that is process 0 * reads the data of process n-1 and vice versa. */ -static int test_mpio_gb_file(char *filename) { - int mpi_size, mpi_rank; - MPI_Info info = MPI_INFO_NULL; - int mrc; - MPI_File fh; - int i, j, n; - int vrfyerrs; - int writerrs; /* write errors */ - int nerrs; - int ntimes; /* how many times */ - char *buf = NULL; - char expected; +static int +test_mpio_gb_file(char *filename) +{ + int mpi_size, mpi_rank; + MPI_Info info = MPI_INFO_NULL; + int mrc; + MPI_File fh; + int i, j, n; + int vrfyerrs; + int writerrs; /* write errors */ + int nerrs; + int ntimes; /* how many times */ + char * buf = NULL; + char expected; MPI_Offset size; MPI_Offset mpi_off; MPI_Offset mpi_off_old; MPI_Status mpi_stat; - int is_signed, sizeof_mpi_offset; + int is_signed, sizeof_mpi_offset; nerrs = 0; /* set up MPI parameters */ @@ -207,73 +206,74 @@ static int test_mpio_gb_file(char *filename) { HDprintf("MPI_Offset range test\n"); /* figure out the signness and sizeof MPI_Offset */ - mpi_off = 0; - is_signed = ((MPI_Offset)(mpi_off - 1)) < 0; - sizeof_mpi_offset = (int) (sizeof(MPI_Offset)); + mpi_off = 0; + is_signed = ((MPI_Offset)(mpi_off - 1)) < 0; + sizeof_mpi_offset = (int)(sizeof(MPI_Offset)); /* - * Verify the sizeof MPI_Offset and correctness of handling multiple GB - * sizes. - */ + * Verify the sizeof MPI_Offset and correctness of handling multiple GB + * sizes. + */ if (MAINPROCESS) { /* only process 0 needs to check it*/ - HDprintf("MPI_Offset is %s %d bytes integeral type\n", - is_signed ? "signed" : "unsigned", (int) sizeof(MPI_Offset)); + HDprintf("MPI_Offset is %s %d bytes integral type\n", is_signed ? "signed" : "unsigned", + (int)sizeof(MPI_Offset)); if (sizeof_mpi_offset <= 4 && is_signed) { HDprintf("Skipped 2GB range test " - "because MPI_Offset cannot support it\n"); - } else { + "because MPI_Offset cannot support it\n"); + } + else { /* verify correctness of assigning 2GB sizes */ - mpi_off = 2 * 1024 * (MPI_Offset) MB; + mpi_off = 2 * 1024 * (MPI_Offset)MB; INFO((mpi_off > 0), "2GB OFFSET assignment no overflow"); - INFO((mpi_off-1)==TWO_GB_LESS1, "2GB OFFSET assignment succeed"); + INFO((mpi_off - 1) == TWO_GB_LESS1, "2GB OFFSET assignment succeed"); /* verify correctness of increasing from below 2 GB to above 2GB */ mpi_off = TWO_GB_LESS1; for (i = 0; i < 3; i++) { mpi_off_old = mpi_off; - mpi_off = mpi_off + 1; + mpi_off = mpi_off + 1; /* no overflow */ INFO((mpi_off > 0), "2GB OFFSET increment no overflow"); /* correct inc. */ - INFO((mpi_off - 1) == mpi_off_old, - "2GB OFFSET increment succeed"); + INFO((mpi_off - 1) == mpi_off_old, "2GB OFFSET increment succeed"); } } if (sizeof_mpi_offset <= 4) { HDprintf("Skipped 4GB range test " - "because MPI_Offset cannot support it\n"); - } else { + "because MPI_Offset cannot support it\n"); + } + else { /* verify correctness of assigning 4GB sizes */ - mpi_off = 4 * 1024 * (MPI_Offset) MB; + mpi_off = 4 * 1024 * (MPI_Offset)MB; INFO((mpi_off > 0), "4GB OFFSET assignment no overflow"); - INFO((mpi_off-1)==FOUR_GB_LESS1, "4GB OFFSET assignment succeed"); + INFO((mpi_off - 1) == FOUR_GB_LESS1, "4GB OFFSET assignment succeed"); /* verify correctness of increasing from below 4 GB to above 4 GB */ mpi_off = FOUR_GB_LESS1; for (i = 0; i < 3; i++) { mpi_off_old = mpi_off; - mpi_off = mpi_off + 1; + mpi_off = mpi_off + 1; /* no overflow */ INFO((mpi_off > 0), "4GB OFFSET increment no overflow"); /* correct inc. */ - INFO((mpi_off - 1) == mpi_off_old, - "4GB OFFSET increment succeed"); + INFO((mpi_off - 1) == mpi_off_old, "4GB OFFSET increment succeed"); } } } /* - * Verify if we can write to a file of multiple GB sizes. - */ + * Verify if we can write to a file of multiple GB sizes. + */ if (VERBOSE_MED) HDprintf("MPIO GB file test %s\n", filename); if (sizeof_mpi_offset <= 4) { HDprintf("Skipped GB file range test " - "because MPI_Offset cannot support it\n"); - } else { - buf = (char *) HDmalloc(MB); + "because MPI_Offset cannot support it\n"); + } + else { + buf = (char *)HDmalloc(MB); VRFY((buf != NULL), "malloc succeed"); /* open a new file. Remove it first in case it exists. */ @@ -282,34 +282,29 @@ static int test_mpio_gb_file(char *filename) { MPI_File_delete(filename, MPI_INFO_NULL); MPI_Barrier(MPI_COMM_WORLD); /* prevent racing condition */ - mrc = MPI_File_open(MPI_COMM_WORLD, filename, - MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh); + mrc = MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh); VRFY((mrc == MPI_SUCCESS), "MPI_FILE_OPEN"); HDprintf("MPIO GB file write test %s\n", filename); /* instead of writing every bytes of the file, we will just write - * some data around the 2 and 4 GB boundaries. That should cover - * potential integer overflow and filesystem size limits. - */ + * some data around the 2 and 4 GB boundaries. That should cover + * potential integer overflow and filesystem size limits. + */ writerrs = 0; for (n = 2; n <= 4; n += 2) { ntimes = GB / MB * n / mpi_size + 1; for (i = ntimes - 2; i <= ntimes; i++) { - mpi_off = (i * mpi_size + mpi_rank) * (MPI_Offset) MB; + mpi_off = (i * mpi_size + mpi_rank) * (MPI_Offset)MB; if (VERBOSE_MED) - HDfprintf(stdout, - "proc %d: write to mpi_off=%016llx, %lld\n", - mpi_rank, mpi_off, mpi_off); + HDfprintf(stdout, "proc %d: write to mpi_off=%016llx, %lld\n", mpi_rank, mpi_off, + mpi_off); /* set data to some trivial pattern for easy verification */ for (j = 0; j < MB; j++) - *(buf + j) = i * mpi_size + mpi_rank; + *(buf + j) = (int8_t)(i * mpi_size + mpi_rank); if (VERBOSE_MED) - HDfprintf(stdout, - "proc %d: writing %d bytes at offset %lld\n", - mpi_rank, MB, mpi_off); - mrc = MPI_File_write_at(fh, mpi_off, buf, MB, MPI_BYTE, - &mpi_stat); + HDfprintf(stdout, "proc %d: writing %d bytes at offset %lld\n", mpi_rank, MB, mpi_off); + mrc = MPI_File_write_at(fh, mpi_off, buf, MB, MPI_BYTE, &mpi_stat); INFO((mrc == MPI_SUCCESS), "GB size file write"); if (mrc != MPI_SUCCESS) writerrs++; @@ -324,42 +319,34 @@ static int test_mpio_gb_file(char *filename) { VRFY((mrc == MPI_SUCCESS), "Sync after writes"); /* - * Verify if we can read the multiple GB file just created. - */ + * Verify if we can read the multiple GB file just created. + */ /* open it again to verify the data written */ /* but only if there was no write errors */ HDprintf("MPIO GB file read test %s\n", filename); if (errors_sum(writerrs) > 0) { - HDprintf("proc %d: Skip read test due to previous write errors\n", - mpi_rank); + HDprintf("proc %d: Skip read test due to previous write errors\n", mpi_rank); goto finish; } - mrc = MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_RDONLY, info, - &fh); + mrc = MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_RDONLY, info, &fh); VRFY((mrc == MPI_SUCCESS), ""); /* Only read back parts of the file that have been written. */ for (n = 2; n <= 4; n += 2) { ntimes = GB / MB * n / mpi_size + 1; for (i = ntimes - 2; i <= ntimes; i++) { - mpi_off = (i * mpi_size + (mpi_size - mpi_rank - 1)) - * (MPI_Offset) MB; + mpi_off = (i * mpi_size + (mpi_size - mpi_rank - 1)) * (MPI_Offset)MB; if (VERBOSE_MED) - HDfprintf(stdout, - "proc %d: read from mpi_off=%016llx, %lld\n", - mpi_rank, mpi_off, mpi_off); - mrc = MPI_File_read_at(fh, mpi_off, buf, MB, MPI_BYTE, - &mpi_stat); + HDfprintf(stdout, "proc %d: read from mpi_off=%016llx, %lld\n", mpi_rank, mpi_off, + mpi_off); + mrc = MPI_File_read_at(fh, mpi_off, buf, MB, MPI_BYTE, &mpi_stat); INFO((mrc == MPI_SUCCESS), "GB size file read"); - expected = i * mpi_size + (mpi_size - mpi_rank - 1); + expected = (int8_t)(i * mpi_size + (mpi_size - mpi_rank - 1)); vrfyerrs = 0; for (j = 0; j < MB; j++) { - if ((*(buf + j) != expected) - && (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED)) { - HDprintf( - "proc %d: found data error at [%ld+%d], expect %d, got %d\n", - mpi_rank, (long) mpi_off, j, expected, - *(buf + j)); + if ((*(buf + j) != expected) && (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED)) { + HDprintf("proc %d: found data error at [%ld+%d], expect %d, got %d\n", mpi_rank, + (long)mpi_off, j, expected, *(buf + j)); } } if (vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED) @@ -374,23 +361,21 @@ static int test_mpio_gb_file(char *filename) { VRFY((mrc == MPI_SUCCESS), "MPI_FILE_CLOSE"); /* - * one more sync to ensure all processes have done reading - * before ending this test. - */ + * one more sync to ensure all processes have done reading + * before ending this test. + */ mrc = MPI_Barrier(MPI_COMM_WORLD); VRFY((mrc == MPI_SUCCESS), "Sync before leaving test"); HDprintf("Test if MPI_File_get_size works correctly with %s\n", filename); - mrc = MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_RDONLY, info, - &fh); + mrc = MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_RDONLY, info, &fh); VRFY((mrc == MPI_SUCCESS), ""); if (MAINPROCESS) { /* only process 0 needs to check it*/ mrc = MPI_File_get_size(fh, &size); VRFY((mrc == MPI_SUCCESS), ""); - VRFY((size == mpi_off+MB), - "MPI_File_get_size doesn't return correct file size."); + VRFY((size == mpi_off + MB), "MPI_File_get_size doesn't return correct file size."); } /* close file and free the communicator */ @@ -398,14 +383,15 @@ static int test_mpio_gb_file(char *filename) { VRFY((mrc == MPI_SUCCESS), "MPI_FILE_CLOSE"); /* - * one more sync to ensure all processes have done reading - * before ending this test. - */ + * one more sync to ensure all processes have done reading + * before ending this test. + */ mrc = MPI_Barrier(MPI_COMM_WORLD); VRFY((mrc == MPI_SUCCESS), "Sync before leaving test"); } - finish: if (buf) +finish: + if (buf) HDfree(buf); return (nerrs); } @@ -414,7 +400,7 @@ static int test_mpio_gb_file(char *filename) { * MPI-IO Test: One writes, Many reads. * Verify if only one process writes some data and then all other * processes can read them back correctly. This tests if the - * underlaying parallel I/O and file system supports parallel I/O + * underlying parallel I/O and file system supports parallel I/O * correctly. * * Algorithm: Only one process (e.g., process 0) writes some data. @@ -427,26 +413,28 @@ static int test_mpio_gb_file(char *filename) { * Each process writes something, then reads all data back. */ -#define DIMSIZE 32 /* Dimension size. */ -#define PRINTID HDprintf("Proc %d: ", mpi_rank) -#define USENONE 0 -#define USEATOM 1 /* request atomic I/O */ -#define USEFSYNC 2 /* request file_sync */ - -static int test_mpio_1wMr(char *filename, int special_request) { - char hostname[128]; - int mpi_size, mpi_rank; - MPI_File fh; - char mpi_err_str[MPI_MAX_ERROR_STRING]; - int mpi_err_strlen; - int mpi_err; +#define DIMSIZE 32 /* Dimension size. */ +#define PRINTID HDprintf("Proc %d: ", mpi_rank) +#define USENONE 0 +#define USEATOM 1 /* request atomic I/O */ +#define USEFSYNC 2 /* request file_sync */ + +static int +test_mpio_1wMr(char *filename, int special_request) +{ + char hostname[128]; + int mpi_size, mpi_rank; + MPI_File fh; + char mpi_err_str[MPI_MAX_ERROR_STRING]; + int mpi_err_strlen; + int mpi_err; unsigned char writedata[DIMSIZE], readdata[DIMSIZE]; unsigned char expect_val; - int i, irank; - int nerrs = 0; /* number of errors */ - int atomicity; - MPI_Offset mpi_off; - MPI_Status mpi_stat; + int i, irank; + int nerrs = 0; /* number of errors */ + int atomicity; + MPI_Offset mpi_off; + MPI_Status mpi_stat; MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); @@ -460,7 +448,7 @@ static int test_mpio_1wMr(char *filename, int special_request) { /* show the hostname so that we can tell where the processes are running */ if (VERBOSE_DEF) { #ifdef H5_HAVE_GETHOSTNAME - if(HDgethostname(hostname, sizeof(hostname)) < 0) { + if (HDgethostname(hostname, sizeof(hostname)) < 0) { HDprintf("gethostname failed\n"); hostname[0] = '\0'; } @@ -478,9 +466,8 @@ static int test_mpio_1wMr(char *filename, int special_request) { MPI_File_delete(filename, MPI_INFO_NULL); MPI_Barrier(MPI_COMM_WORLD); /* prevent racing condition */ - if ((mpi_err = MPI_File_open(MPI_COMM_WORLD, filename, - MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh)) - != MPI_SUCCESS) { + if ((mpi_err = MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, + &fh)) != MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); PRINTID; HDprintf("MPI_File_open failed (%s)\n", mpi_err_str); @@ -489,9 +476,9 @@ static int test_mpio_1wMr(char *filename, int special_request) { if (special_request & USEATOM) { /* ================================================== - * Set atomcity to true (1). A POSIX compliant filesystem - * should not need this. - * ==================================================*/ + * Set atomcity to true (1). A POSIX compliant filesystem + * should not need this. + * ==================================================*/ if ((mpi_err = MPI_File_get_atomicity(fh, &atomicity)) != MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); PRINTID; @@ -521,26 +508,26 @@ static int test_mpio_1wMr(char *filename, int special_request) { } /* ================================================== - * Each process calculates what to write but - * only process irank(0) writes. - * ==================================================*/ + * Each process calculates what to write but + * only process irank(0) writes. + * ==================================================*/ irank = 0; for (i = 0; i < DIMSIZE; i++) - writedata[i] = irank * DIMSIZE + i; + writedata[i] = (uint8_t)(irank * DIMSIZE + i); mpi_off = irank * DIMSIZE; /* Only one process writes */ if (mpi_rank == irank) { if (VERBOSE_HI) { PRINTID; - HDprintf("wrote %d bytes at %ld\n", DIMSIZE, (long) mpi_off); + HDprintf("wrote %d bytes at %ld\n", DIMSIZE, (long)mpi_off); } - if ((mpi_err = MPI_File_write_at(fh, mpi_off, writedata, DIMSIZE, - MPI_BYTE, &mpi_stat)) != MPI_SUCCESS) { + if ((mpi_err = MPI_File_write_at(fh, mpi_off, writedata, DIMSIZE, MPI_BYTE, &mpi_stat)) != + MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); PRINTID; - HDprintf("MPI_File_write_at offset(%ld), bytes (%d), failed (%s)\n", - (long) mpi_off, DIMSIZE, mpi_err_str); + HDprintf("MPI_File_write_at offset(%ld), bytes (%d), failed (%s)\n", (long)mpi_off, DIMSIZE, + mpi_err_str); return 1; }; }; @@ -555,9 +542,9 @@ static int test_mpio_1wMr(char *filename, int special_request) { if (special_request & USEFSYNC) { /* ================================================== - * Do a file sync. A POSIX compliant filesystem - * should not need this. - * ==================================================*/ + * Do a file sync. A POSIX compliant filesystem + * should not need this. + * ==================================================*/ if (VERBOSE_HI) HDprintf("Apply MPI_File_sync\n"); /* call file_sync to force the write out */ @@ -584,24 +571,22 @@ static int test_mpio_1wMr(char *filename, int special_request) { } /* ================================================== - * Each process reads what process 0 wrote and verify. - * ==================================================*/ - irank = 0; + * Each process reads what process 0 wrote and verify. + * ==================================================*/ + irank = 0; mpi_off = irank * DIMSIZE; - if ((mpi_err = MPI_File_read_at(fh, mpi_off, readdata, DIMSIZE, MPI_BYTE, - &mpi_stat)) != MPI_SUCCESS) { + if ((mpi_err = MPI_File_read_at(fh, mpi_off, readdata, DIMSIZE, MPI_BYTE, &mpi_stat)) != MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); PRINTID; - HDprintf("MPI_File_read_at offset(%ld), bytes (%d), failed (%s)\n", - (long) mpi_off, DIMSIZE, mpi_err_str); + HDprintf("MPI_File_read_at offset(%ld), bytes (%d), failed (%s)\n", (long)mpi_off, DIMSIZE, + mpi_err_str); return 1; }; for (i = 0; i < DIMSIZE; i++) { - expect_val = irank * DIMSIZE + i; + expect_val = (uint8_t)(irank * DIMSIZE + i); if (readdata[i] != expect_val) { PRINTID; - HDprintf("read data[%d:%d] got %02x, expect %02x\n", irank, i, - readdata[i], expect_val); + HDprintf("read data[%d:%d] got %02x, expect %02x\n", irank, i, readdata[i], expect_val); nerrs++; } } @@ -657,65 +642,66 @@ static int test_mpio_1wMr(char *filename, int special_request) { the following values were obtained: 1,2,0 - The problem is that the displacement of the second derived datatype(datatype2) which formed the final derived datatype(advtype) - has been put after the basic datatype(MPI_BYTE) of datatype2. This is a bug. + The problem is that the displacement of the second derived datatype(datatype2) which formed the final derived + datatype(advtype) has been put after the basic datatype(MPI_BYTE) of datatype2. This is a bug. 2. This test will verify whether the complicated derived datatype is working on the current platform. - If this bug has been fixed in the previous not-working package, this test will issue a HDprintf message to tell the developer to change - the configuration specific file of HDF5 so that we can change our configurationsetting to support collective IO for irregular selections. + If this bug has been fixed in the previous not-working package, this test will issue a HDprintf message to + tell the developer to change the configuration specific file of HDF5 so that we can change our + configurationsetting to support collective IO for irregular selections. - If it turns out that the previous working MPI-IO package no longer works, this test will also issue a message to inform the corresponding failure so that - we can turn off collective IO support for irregular selections. + If it turns out that the previous working MPI-IO package no longer works, this test will also issue a message + to inform the corresponding failure so that we can turn off collective IO support for irregular selections. */ -static int test_mpio_derived_dtype(char *filename) { +static int +test_mpio_derived_dtype(char *filename) +{ - MPI_File fh; - char mpi_err_str[MPI_MAX_ERROR_STRING]; - int mpi_err_strlen; - int mpi_err; - int i; + MPI_File fh; + char mpi_err_str[MPI_MAX_ERROR_STRING]; + int mpi_err_strlen; + int mpi_err; + int i; MPI_Datatype etype, filetype; MPI_Datatype adv_filetype, bas_filetype[2]; MPI_Datatype filetypenew; - MPI_Offset disp; - MPI_Status Status; - MPI_Aint adv_disp[2]; - MPI_Aint offsets[1]; - int blocklens[1], adv_blocklens[2]; - int count, outcount; - int retcode; + MPI_Offset disp; + MPI_Status Status; + MPI_Aint adv_disp[2]; + MPI_Aint offsets[1]; + int blocklens[1], adv_blocklens[2]; + int count, outcount; + int retcode; int mpi_rank, mpi_size; - char buf[3], outbuf[3] = { 0 }; + char buf[3], outbuf[3] = {0}; MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); retcode = 0; for (i = 0; i < 3; i++) - buf[i] = i + 1; + buf[i] = (char)(i + 1); - if ((mpi_err = MPI_File_open(MPI_COMM_WORLD, filename, - MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh)) - != MPI_SUCCESS) { + if ((mpi_err = MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, + &fh)) != MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); HDprintf("MPI_File_open failed (%s)\n", mpi_err_str); return 1; } - disp = 0; + disp = 0; etype = MPI_BYTE; - count = 1; + count = 1; blocklens[0] = 1; - offsets[0] = 0; + offsets[0] = 0; - if ((mpi_err = MPI_Type_create_hindexed(count, blocklens, offsets, MPI_BYTE, - &filetype)) != MPI_SUCCESS) { + if ((mpi_err = MPI_Type_create_hindexed(count, blocklens, offsets, MPI_BYTE, &filetype)) != MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); HDprintf("MPI_Type_contiguous failed (%s)\n", mpi_err_str); return 1; @@ -727,11 +713,11 @@ static int test_mpio_derived_dtype(char *filename) { return 1; } - count = 1; + count = 1; blocklens[0] = 1; - offsets[0] = 1; - if ((mpi_err = MPI_Type_create_hindexed(count, blocklens, offsets, MPI_BYTE, - &filetypenew)) != MPI_SUCCESS) { + offsets[0] = 1; + if ((mpi_err = MPI_Type_create_hindexed(count, blocklens, offsets, MPI_BYTE, &filetypenew)) != + MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); HDprintf("MPI_Type_contiguous failed (%s)\n", mpi_err_str); return 1; @@ -743,16 +729,16 @@ static int test_mpio_derived_dtype(char *filename) { return 1; } - outcount = 2; + outcount = 2; adv_blocklens[0] = 1; adv_blocklens[1] = 1; - adv_disp[0] = 0; - adv_disp[1] = 1; - bas_filetype[0] = filetype; - bas_filetype[1] = filetypenew; + adv_disp[0] = 0; + adv_disp[1] = 1; + bas_filetype[0] = filetype; + bas_filetype[1] = filetypenew; - if ((mpi_err = MPI_Type_create_struct(outcount, adv_blocklens, adv_disp, - bas_filetype, &adv_filetype)) != MPI_SUCCESS) { + if ((mpi_err = MPI_Type_create_struct(outcount, adv_blocklens, adv_disp, bas_filetype, &adv_filetype)) != + MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); HDprintf("MPI_Type_create_struct failed (%s)\n", mpi_err_str); return 1; @@ -763,15 +749,14 @@ static int test_mpio_derived_dtype(char *filename) { return 1; } - if ((mpi_err = MPI_File_set_view(fh, disp, etype, adv_filetype, "native", - MPI_INFO_NULL)) != MPI_SUCCESS) { + if ((mpi_err = MPI_File_set_view(fh, disp, etype, adv_filetype, "native", MPI_INFO_NULL)) != + MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); HDprintf("MPI_File_set_view failed (%s)\n", mpi_err_str); return 1; } - if ((mpi_err = MPI_File_write(fh, buf, 3, MPI_BYTE, &Status)) - != MPI_SUCCESS) { + if ((mpi_err = MPI_File_write(fh, buf, 3, MPI_BYTE, &Status)) != MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); HDprintf("MPI_File_write failed (%s)\n", mpi_err_str); return 1; @@ -783,21 +768,19 @@ static int test_mpio_derived_dtype(char *filename) { return 1; } - if ((mpi_err = MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_RDONLY, - MPI_INFO_NULL, &fh)) != MPI_SUCCESS) { + if ((mpi_err = MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_RDONLY, MPI_INFO_NULL, &fh)) != + MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); HDprintf("MPI_File_open failed (%s)\n", mpi_err_str); return 1; } - if ((mpi_err = MPI_File_set_view(fh, 0, MPI_BYTE, MPI_BYTE, "native", - MPI_INFO_NULL)) != MPI_SUCCESS) { + if ((mpi_err = MPI_File_set_view(fh, 0, MPI_BYTE, MPI_BYTE, "native", MPI_INFO_NULL)) != MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); HDprintf("MPI_File_set_view failed (%s)\n", mpi_err_str); return 1; } - if ((mpi_err = MPI_File_read(fh, outbuf, 3, MPI_BYTE, &Status)) - != MPI_SUCCESS) { + if ((mpi_err = MPI_File_read(fh, outbuf, 3, MPI_BYTE, &Status)) != MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); HDprintf("MPI_File_read failed (%s)\n", mpi_err_str); return 1; @@ -805,7 +788,8 @@ static int test_mpio_derived_dtype(char *filename) { if (outbuf[2] == 2) { retcode = 0; - } else { + } + else { /* if(mpi_rank == 0) { HDprintf("complicated derived datatype is NOT working at this platform\n"); HDprintf("go back to hdf5/config and find the corresponding\n"); @@ -824,8 +808,7 @@ static int test_mpio_derived_dtype(char *filename) { mpi_err = MPI_Barrier(MPI_COMM_WORLD); if (retcode == -1) { if (mpi_rank == 0) { - HDprintf( - "Complicated derived datatype is NOT working at this platform\n"); + HDprintf("Complicated derived datatype is NOT working at this platform\n"); HDprintf(" Please report to help@hdfgroup.org about this problem.\n"); } retcode = 1; @@ -851,29 +834,33 @@ static int test_mpio_derived_dtype(char *filename) { 2. This test will fail with the MPI-IO package that doesn't support this. For example, mpich 1.2.6. - If this bug has been fixed in the previous not-working package, this test will issue a HDprintf message to tell the developer to change - the configuration specific file of HDF5 so that we can change our configurationsetting to support special collective IO; currently only special collective IO. + If this bug has been fixed in the previous not-working package, this test will issue a HDprintf message to + tell the developer to change the configuration specific file of HDF5 so that we can change our + configurationsetting to support special collective IO; currently only special collective IO. - If it turns out that the previous working MPI-IO package no longer works, this test will also issue a message to inform the corresponding failure so that - we can turn off the support for special collective IO; currently only special collective IO. + If it turns out that the previous working MPI-IO package no longer works, this test will also issue a message + to inform the corresponding failure so that we can turn off the support for special collective IO; currently + only special collective IO. */ -static int test_mpio_special_collective(char *filename) { - int mpi_size, mpi_rank; - MPI_File fh; +static int +test_mpio_special_collective(char *filename) +{ + int mpi_size, mpi_rank; + MPI_File fh; MPI_Datatype etype, buftype, filetype; - char mpi_err_str[MPI_MAX_ERROR_STRING]; - int mpi_err_strlen; - int mpi_err; - char writedata[2 * DIMSIZE]; - char filerep[7] = "native"; - int i; - int count, bufcount; - int blocklens[2]; - MPI_Aint offsets[2]; - MPI_Offset mpi_off = 0; - MPI_Status mpi_stat; - int retcode = 0; + char mpi_err_str[MPI_MAX_ERROR_STRING]; + int mpi_err_strlen; + int mpi_err; + char writedata[2 * DIMSIZE]; + char filerep[7] = "native"; + int i; + int count, bufcount; + int blocklens[2]; + MPI_Aint offsets[2]; + MPI_Offset mpi_off = 0; + MPI_Status mpi_stat; + int retcode = 0; MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); @@ -881,22 +868,21 @@ static int test_mpio_special_collective(char *filename) { /* create MPI data type */ etype = MPI_BYTE; if (mpi_rank == 0 || mpi_rank == 1) { - count = DIMSIZE; + count = DIMSIZE; bufcount = 1; } /* end if */ else { - count = 0; + count = 0; bufcount = 0; } /* end else */ blocklens[0] = count; - offsets[0] = mpi_rank * count; + offsets[0] = mpi_rank * count; blocklens[1] = count; - offsets[1] = (mpi_size + mpi_rank) * count; + offsets[1] = (mpi_size + mpi_rank) * count; if (count != 0) { - if ((mpi_err = MPI_Type_create_hindexed(2, blocklens, offsets, etype, - &filetype)) != MPI_SUCCESS) { + if ((mpi_err = MPI_Type_create_hindexed(2, blocklens, offsets, etype, &filetype)) != MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); HDprintf("MPI_Type_contiguous failed (%s)\n", mpi_err_str); return 1; @@ -908,8 +894,7 @@ static int test_mpio_special_collective(char *filename) { return 1; } /* end if */ - if ((mpi_err = MPI_Type_create_hindexed(2, blocklens, offsets, etype, - &buftype)) != MPI_SUCCESS) { + if ((mpi_err = MPI_Type_create_hindexed(2, blocklens, offsets, etype, &buftype)) != MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); HDprintf("MPI_Type_contiguous failed (%s)\n", mpi_err_str); return 1; @@ -920,16 +905,15 @@ static int test_mpio_special_collective(char *filename) { HDprintf("MPI_Type_commit failed (%s)\n", mpi_err_str); return 1; } /* end if */ - } /* end if */ + } /* end if */ else { filetype = MPI_BYTE; - buftype = MPI_BYTE; + buftype = MPI_BYTE; } /* end else */ /* Open a file */ - if ((mpi_err = MPI_File_open(MPI_COMM_WORLD, filename, - MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh)) - != MPI_SUCCESS) { + if ((mpi_err = MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, + &fh)) != MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); HDprintf("MPI_File_open failed (%s)\n", mpi_err_str); return 1; @@ -937,22 +921,22 @@ static int test_mpio_special_collective(char *filename) { /* each process writes some data */ for (i = 0; i < 2 * DIMSIZE; i++) - writedata[i] = (char) (mpi_rank * DIMSIZE + i); + writedata[i] = (char)(mpi_rank * DIMSIZE + i); /* Set the file view */ - if ((mpi_err = MPI_File_set_view(fh, mpi_off, MPI_BYTE, filetype, filerep, - MPI_INFO_NULL)) != MPI_SUCCESS) { + if ((mpi_err = MPI_File_set_view(fh, mpi_off, MPI_BYTE, filetype, filerep, MPI_INFO_NULL)) != + MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); HDprintf("MPI_File_set_view failed (%s)\n", mpi_err_str); return 1; } /* end if */ /* Collectively write into the file */ - if ((mpi_err = MPI_File_write_at_all(fh, mpi_off, writedata, bufcount, - buftype, &mpi_stat)) != MPI_SUCCESS) { + if ((mpi_err = MPI_File_write_at_all(fh, mpi_off, writedata, bufcount, buftype, &mpi_stat)) != + MPI_SUCCESS) { MPI_Error_string(mpi_err, mpi_err_str, &mpi_err_strlen); - HDprintf("MPI_File_write_at offset(%ld), bytes (%d), failed (%s)\n", - (long) mpi_off, bufcount, mpi_err_str); + HDprintf("MPI_File_write_at offset(%ld), bytes (%d), failed (%s)\n", (long)mpi_off, bufcount, + mpi_err_str); return 1; } /* end if */ @@ -980,41 +964,44 @@ static int test_mpio_special_collective(char *filename) { /* * parse the command line options */ -static int parse_options(int argc, char **argv) { +static int +parse_options(int argc, char **argv) +{ while (--argc) { if (**(++argv) != '-') { break; - } else { + } + else { switch (*(*argv + 1)) { - case 'v': - if (*((*argv + 1) + 1)) - ParseTestVerbosity((*argv + 1) + 1); - else - SetTestVerbosity(VERBO_MED); - break; - case 'f': - if (--argc < 1) { - nerrors++; + case 'v': + if (*((*argv + 1) + 1)) + ParseTestVerbosity((*argv + 1) + 1); + else + SetTestVerbosity(VERBO_MED); + break; + case 'f': + if (--argc < 1) { + nerrors++; + return (1); + } + if (**(++argv) == '-') { + nerrors++; + return (1); + } + paraprefix = *argv; + break; + case 'h': /* print help message--return with nerrors set */ return (1); - } - if (**(++argv) == '-') { + default: nerrors++; return (1); - } - paraprefix = *argv; - break; - case 'h': /* print help message--return with nerrors set */ - return (1); - default: - nerrors++; - return (1); } } } /*while*/ /* compose the test filenames */ { - int i, n; + int i, n; hid_t plist; plist = H5Pcreate(H5P_FILE_ACCESS); @@ -1022,8 +1009,7 @@ static int parse_options(int argc, char **argv) { n = sizeof(FILENAME) / sizeof(FILENAME[0]) - 1; /* exclude the NULL */ for (i = 0; i < n; i++) - if (h5_fixname(FILENAME[i], plist, filenames[i], - sizeof(filenames[i])) == NULL) { + if (h5_fixname(FILENAME[i], plist, filenames[i], sizeof(filenames[i])) == NULL) { HDprintf("h5_fixname failed\n"); nerrors++; return (1); @@ -1042,7 +1028,9 @@ static int parse_options(int argc, char **argv) { /* * Show command usage */ -static void usage(void) { +static void +usage(void) +{ HDprintf("Usage: t_mpi [-v<verbosity>] [-f <prefix>]\n"); HDprintf("\t-v<verbosity>\tset verbose level (0-9,l,m,h)\n"); HDprintf("\t-f <prefix>\tfilename prefix\n"); @@ -1052,13 +1040,17 @@ static void usage(void) { /* * return the sum of all errors. */ -static int errors_sum(int nerrs) { +static int +errors_sum(int nerrs) +{ int temp; MPI_Allreduce(&nerrs, &temp, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); return (temp); } -int main(int argc, char **argv) { +int +main(int argc, char **argv) +{ int mpi_size, mpi_rank; /* mpi variables */ int ret_code; @@ -1067,10 +1059,10 @@ int main(int argc, char **argv) { MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* Attempt to turn off atexit post processing so that in case errors - * happen during the test and the process is aborted, it will not get - * hang in the atexit post processing in which it may try to make MPI - * calls. By then, MPI calls may not work. - */ + * happen during the test and the process is aborted, it will not get + * hang in the atexit post processing in which it may try to make MPI + * calls. By then, MPI calls may not work. + */ if (H5dont_atexit() < 0) { HDprintf("Failed to turn off atexit processing. Continue.\n"); }; @@ -1094,11 +1086,11 @@ int main(int argc, char **argv) { H5Pset_fapl_mpio(fapl, MPI_COMM_WORLD, MPI_INFO_NULL); /* set alarm. */ - ALARM_ON; + TestAlarmOn(); /*======================================= - * MPIO 1 write Many read test - *=======================================*/ + * MPIO 1 write Many read test + *=======================================*/ MPI_BANNER("MPIO 1 write Many read test..."); ret_code = test_mpio_1wMr(filenames[0], USENONE); ret_code = errors_sum(ret_code); @@ -1128,8 +1120,8 @@ int main(int argc, char **argv) { } /*======================================= - * MPIO MPIO File size range test - *=======================================*/ + * MPIO MPIO File size range test + *=======================================*/ MPI_BANNER("MPIO File size range test..."); #ifndef H5_HAVE_WIN32_API ret_code = test_mpio_gb_file(filenames[0]); @@ -1139,13 +1131,13 @@ int main(int argc, char **argv) { nerrors += ret_code; } #else - if (mpi_rank==0) + if (mpi_rank == 0) HDprintf(" will be skipped on Windows (JIRA HDDFV-8064)\n"); #endif /*======================================= - * MPIO independent overlapping writes - *=======================================*/ + * MPIO independent overlapping writes + *=======================================*/ MPI_BANNER("MPIO independent overlapping writes..."); ret_code = test_mpio_overlap_writes(filenames[0]); ret_code = errors_sum(ret_code); @@ -1155,8 +1147,8 @@ int main(int argc, char **argv) { } /*======================================= - * MPIO complicated derived datatype test - *=======================================*/ + * MPIO complicated derived datatype test + *=======================================*/ MPI_BANNER("MPIO complicated derived datatype test..."); ret_code = test_mpio_derived_dtype(filenames[0]); ret_code = errors_sum(ret_code); @@ -1166,8 +1158,8 @@ int main(int argc, char **argv) { } /*======================================= - * MPIO special collective IO test - *=======================================*/ + * MPIO special collective IO test + *=======================================*/ if (mpi_size < 4) { MPI_BANNER("MPIO special collective io test SKIPPED."); if (mpi_rank == 0) @@ -1179,16 +1171,17 @@ int main(int argc, char **argv) { MPI_BANNER("MPIO special collective io test..."); ret_code = test_mpio_special_collective(filenames[0]); - sc_finish: ret_code = errors_sum(ret_code); +sc_finish: + ret_code = errors_sum(ret_code); if (mpi_rank == 0 && ret_code > 0) { HDprintf("***FAILED with %d total errors\n", ret_code); nerrors += ret_code; } - finish: +finish: /* make sure all processes are finished before final report, cleanup - * and exit. - */ + * and exit. + */ MPI_Barrier(MPI_COMM_WORLD); if (MAINPROCESS) { /* only process 0 reports */ HDprintf("===================================\n"); @@ -1202,7 +1195,7 @@ int main(int argc, char **argv) { } /* turn off alarm */ - ALARM_OFF; + TestAlarmOff(); h5_clean_files(FILENAME, fapl); H5close(); @@ -1213,4 +1206,3 @@ int main(int argc, char **argv) { /* cannot just return (nerrors) because exit code is limited to 1byte */ return (nerrors != 0); } - diff --git a/testpar/t_pflush1.c b/testpar/t_pflush1.c index 27b561b..0500a2d 100644 --- a/testpar/t_pflush1.c +++ b/testpar/t_pflush1.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -23,17 +23,12 @@ */ #include "h5test.h" -const char *FILENAME[] = { - "flush", - "noflush", - NULL -}; +const char *FILENAME[] = {"flush", "noflush", NULL}; -static int data_g[100][100]; +static int data_g[100][100]; -#define N_GROUPS 100 +#define N_GROUPS 100 - /*------------------------------------------------------------------------- * Function: create_test_file * @@ -48,53 +43,53 @@ static int data_g[100][100]; *------------------------------------------------------------------------- */ static hid_t -create_test_file(char *name, hid_t fapl_id) +create_test_file(char *name, size_t name_length, hid_t fapl_id) { - hid_t fid = H5I_INVALID_HID; - hid_t dcpl_id = H5I_INVALID_HID; - hid_t sid = H5I_INVALID_HID; - hid_t did = H5I_INVALID_HID; - hid_t top_level_gid = H5I_INVALID_HID; - hid_t gid = H5I_INVALID_HID; - hid_t dxpl_id = H5I_INVALID_HID; - hsize_t dims[2] = {100, 100}; - hsize_t chunk_dims[2] = {5, 5}; - hsize_t i, j; + hid_t fid = H5I_INVALID_HID; + hid_t dcpl_id = H5I_INVALID_HID; + hid_t sid = H5I_INVALID_HID; + hid_t did = H5I_INVALID_HID; + hid_t top_level_gid = H5I_INVALID_HID; + hid_t gid = H5I_INVALID_HID; + hid_t dxpl_id = H5I_INVALID_HID; + hsize_t dims[2] = {100, 100}; + hsize_t chunk_dims[2] = {5, 5}; + hsize_t i, j; - if((fid = H5Fcreate(name, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) < 0) + if ((fid = H5Fcreate(name, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) < 0) goto error; /* Create a chunked dataset */ - if((dcpl_id = H5Pcreate(H5P_DATASET_CREATE)) < 0) + if ((dcpl_id = H5Pcreate(H5P_DATASET_CREATE)) < 0) goto error; - if(H5Pset_chunk(dcpl_id, 2, chunk_dims) < 0) + if (H5Pset_chunk(dcpl_id, 2, chunk_dims) < 0) goto error; - if((sid = H5Screate_simple(2, dims, NULL)) < 0) + if ((sid = H5Screate_simple(2, dims, NULL)) < 0) goto error; - if((did = H5Dcreate2(fid, "dset", H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0) + if ((did = H5Dcreate2(fid, "dset", H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0) goto error; - if((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) + if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) goto error; - if(H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) < 0) + if (H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) < 0) goto error; /* Write some data */ - for(i = 0; i < dims[0]; i++) - for(j = 0; j < dims[1]; j++) + for (i = 0; i < dims[0]; i++) + for (j = 0; j < dims[1]; j++) data_g[i][j] = (int)(i + (i * j) + j); - if(H5Dwrite(did, H5T_NATIVE_INT, sid, sid, dxpl_id, data_g) < 0) + if (H5Dwrite(did, H5T_NATIVE_INT, sid, sid, dxpl_id, data_g) < 0) goto error; /* Create some groups */ - if((top_level_gid = H5Gcreate2(fid, "some_groups", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0) + if ((top_level_gid = H5Gcreate2(fid, "some_groups", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0) goto error; - for(i = 0; i < N_GROUPS; i++) { - HDsprintf(name, "grp%02u", (unsigned)i); - if((gid = H5Gcreate2(top_level_gid, name, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0) + for (i = 0; i < N_GROUPS; i++) { + HDsnprintf(name, name_length, "grp%02u", (unsigned)i); + if ((gid = H5Gcreate2(top_level_gid, name, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0) goto error; - if(H5Gclose(gid) < 0) + if (H5Gclose(gid) < 0) goto error; } @@ -104,7 +99,6 @@ error: return H5I_INVALID_HID; } /* end create_test_file() */ - /*------------------------------------------------------------------------- * Function: main * @@ -118,33 +112,33 @@ error: *------------------------------------------------------------------------- */ int -main(int argc, char* argv[]) +main(int argc, char *argv[]) { - hid_t fid1 = H5I_INVALID_HID; - hid_t fid2 = H5I_INVALID_HID; - hid_t fapl_id = H5I_INVALID_HID; - MPI_File *mpifh_p = NULL; + hid_t fid1 = H5I_INVALID_HID; + hid_t fid2 = H5I_INVALID_HID; + hid_t fapl_id = H5I_INVALID_HID; + MPI_File * mpifh_p = NULL; char name[1024]; - const char *envval = NULL; + const char *envval = NULL; int mpi_size; int mpi_rank; - MPI_Comm comm = MPI_COMM_WORLD; - MPI_Info info = MPI_INFO_NULL; + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; MPI_Init(&argc, &argv); MPI_Comm_size(comm, &mpi_size); MPI_Comm_rank(comm, &mpi_rank); - if(mpi_rank == 0) + if (mpi_rank == 0) TESTING("H5Fflush (part1)"); /* Don't run using the split VFD */ - envval = HDgetenv("HDF5_DRIVER"); - if(envval == NULL) + envval = HDgetenv(HDF5_DRIVER); + if (envval == NULL) envval = "nomatch"; - if(!HDstrcmp(envval, "split")) { - if(mpi_rank == 0) { + if (!HDstrcmp(envval, "split")) { + if (mpi_rank == 0) { SKIPPED(); HDputs(" Test not compatible with current Virtual File Driver"); } @@ -152,25 +146,25 @@ main(int argc, char* argv[]) HDexit(EXIT_FAILURE); } - if((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) + if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) goto error; - if(H5Pset_fapl_mpio(fapl_id, comm, info) < 0) + if (H5Pset_fapl_mpio(fapl_id, comm, info) < 0) goto error; /* Create the file */ h5_fixname(FILENAME[0], fapl_id, name, sizeof(name)); - if((fid1 = create_test_file(name, fapl_id)) < 0) + if ((fid1 = create_test_file(name, sizeof(name), fapl_id)) < 0) goto error; /* Flush and exit without closing the library */ - if(H5Fflush(fid1, H5F_SCOPE_GLOBAL) < 0) + if (H5Fflush(fid1, H5F_SCOPE_GLOBAL) < 0) goto error; /* Create the other file which will not be flushed */ h5_fixname(FILENAME[1], fapl_id, name, sizeof(name)); - if((fid2 = create_test_file(name, fapl_id)) < 0) + if ((fid2 = create_test_file(name, sizeof(name), fapl_id)) < 0) goto error; - if(mpi_rank == 0) + if (mpi_rank == 0) PASSED(); HDfflush(stdout); @@ -184,15 +178,15 @@ main(int argc, char* argv[]) */ /* Close file 1 */ - if(H5Fget_vfd_handle(fid1, fapl_id, (void **)&mpifh_p) < 0) + if (H5Fget_vfd_handle(fid1, fapl_id, (void **)&mpifh_p) < 0) goto error; - if(MPI_File_close(mpifh_p) != MPI_SUCCESS) + if (MPI_File_close(mpifh_p) != MPI_SUCCESS) goto error; /* Close file 2 */ - if(H5Fget_vfd_handle(fid2, fapl_id, (void **)&mpifh_p) < 0) + if (H5Fget_vfd_handle(fid2, fapl_id, (void **)&mpifh_p) < 0) goto error; - if(MPI_File_close(mpifh_p) != MPI_SUCCESS) + if (MPI_File_close(mpifh_p) != MPI_SUCCESS) goto error; HDfflush(stdout); @@ -213,6 +207,7 @@ error: HDfflush(stderr); HDprintf("*** ERROR ***\n"); HDprintf("THERE WAS A REAL ERROR IN t_pflush1.\n"); + HDfflush(stdout); + HD_exit(EXIT_FAILURE); } /* end main() */ - diff --git a/testpar/t_pflush2.c b/testpar/t_pflush2.c index f58e5a5..8cf40d0 100644 --- a/testpar/t_pflush2.c +++ b/testpar/t_pflush2.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -24,15 +24,11 @@ #include "h5test.h" -const char *FILENAME[] = { - "flush", - "noflush", - NULL -}; +const char *FILENAME[] = {"flush", "noflush", NULL}; -static int data_g[100][100]; +static int data_g[100][100]; -#define N_GROUPS 100 +#define N_GROUPS 100 /*------------------------------------------------------------------------- * Function: check_test_file @@ -47,41 +43,41 @@ static int data_g[100][100]; *------------------------------------------------------------------------- */ static herr_t -check_test_file(char* name, hid_t fapl_id) +check_test_file(char *name, size_t name_length, hid_t fapl_id) { - hid_t fid = H5I_INVALID_HID; - hid_t sid = H5I_INVALID_HID; - hid_t did = H5I_INVALID_HID; - hid_t top_level_gid = H5I_INVALID_HID; - hid_t gid = H5I_INVALID_HID; - hid_t dxpl_id = H5I_INVALID_HID; - hsize_t dims[2]; - int val; - hsize_t i, j; + hid_t fid = H5I_INVALID_HID; + hid_t sid = H5I_INVALID_HID; + hid_t did = H5I_INVALID_HID; + hid_t top_level_gid = H5I_INVALID_HID; + hid_t gid = H5I_INVALID_HID; + hid_t dxpl_id = H5I_INVALID_HID; + hsize_t dims[2]; + int val; + hsize_t i, j; - if((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) + if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) goto error; - if(H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) < 0) + if (H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE) < 0) goto error; - if((fid = H5Fopen(name, H5F_ACC_RDONLY, fapl_id)) < 0) + if ((fid = H5Fopen(name, H5F_ACC_RDONLY, fapl_id)) < 0) goto error; /* Open the dataset */ - if((did = H5Dopen2(fid, "dset", H5P_DEFAULT)) < 0) + if ((did = H5Dopen2(fid, "dset", H5P_DEFAULT)) < 0) goto error; - if((sid = H5Dget_space(did)) < 0) + if ((sid = H5Dget_space(did)) < 0) goto error; - if(H5Sget_simple_extent_dims(sid, dims, NULL) < 0) + if (H5Sget_simple_extent_dims(sid, dims, NULL) < 0) goto error; HDassert(100 == dims[0] && 100 == dims[1]); /* Read some data */ - if(H5Dread(did, H5T_NATIVE_INT, sid, sid, dxpl_id, data_g) < 0) + if (H5Dread(did, H5T_NATIVE_INT, sid, sid, dxpl_id, data_g) < 0) goto error; - for(i = 0; i < dims[0]; i++) { - for(j = 0; j < dims[1]; j++) { + for (i = 0; i < dims[0]; i++) { + for (j = 0; j < dims[1]; j++) { val = (int)(i + (i * j) + j); - if(data_g[i][j] != val) { + if (data_g[i][j] != val) { H5_FAILED(); HDprintf(" data_g[%lu][%lu] = %d\n", (unsigned long)i, (unsigned long)j, data_g[i][j]); HDprintf(" should be %d\n", val); @@ -90,38 +86,40 @@ check_test_file(char* name, hid_t fapl_id) } /* Open some groups */ - if((top_level_gid = H5Gopen2(fid, "some_groups", H5P_DEFAULT)) < 0) + if ((top_level_gid = H5Gopen2(fid, "some_groups", H5P_DEFAULT)) < 0) goto error; - for(i = 0; i < N_GROUPS; i++) { - HDsprintf(name, "grp%02u", (unsigned)i); - if((gid = H5Gopen2(top_level_gid, name, H5P_DEFAULT)) < 0) + for (i = 0; i < N_GROUPS; i++) { + HDsnprintf(name, name_length, "grp%02u", (unsigned)i); + if ((gid = H5Gopen2(top_level_gid, name, H5P_DEFAULT)) < 0) goto error; - if(H5Gclose(gid) < 0) + if (H5Gclose(gid) < 0) goto error; } - if(H5Gclose(top_level_gid) < 0) + if (H5Gclose(top_level_gid) < 0) goto error; - if(H5Dclose(did) < 0) + if (H5Dclose(did) < 0) goto error; - if(H5Fclose(fid) < 0) + if (H5Fclose(fid) < 0) goto error; - if(H5Pclose(dxpl_id) < 0) + if (H5Pclose(dxpl_id) < 0) goto error; - if(H5Sclose(sid) < 0) + if (H5Sclose(sid) < 0) goto error; return SUCCEED; error: - H5E_BEGIN_TRY { + H5E_BEGIN_TRY + { H5Pclose(dxpl_id); H5Gclose(top_level_gid); H5Dclose(did); H5Fclose(fid); H5Sclose(sid); H5Gclose(gid); - } H5E_END_TRY; + } + H5E_END_TRY; return FAIL; } /* end check_test_file() */ @@ -140,70 +138,70 @@ error: int main(int argc, char *argv[]) { - hid_t fapl_id1 = H5I_INVALID_HID; - hid_t fapl_id2 = H5I_INVALID_HID; + hid_t fapl_id1 = H5I_INVALID_HID; + hid_t fapl_id2 = H5I_INVALID_HID; H5E_auto2_t func; char name[1024]; const char *envval = NULL; - int mpi_size; - int mpi_rank; - MPI_Comm comm = MPI_COMM_WORLD; - MPI_Info info = MPI_INFO_NULL; + int mpi_size; + int mpi_rank; + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; MPI_Init(&argc, &argv); MPI_Comm_size(comm, &mpi_size); MPI_Comm_rank(comm, &mpi_rank); - if(mpi_rank == 0) + if (mpi_rank == 0) TESTING("H5Fflush (part2 with flush)"); /* Don't run using the split VFD */ - envval = HDgetenv("HDF5_DRIVER"); - if(envval == NULL) + envval = HDgetenv(HDF5_DRIVER); + if (envval == NULL) envval = "nomatch"; - if(!HDstrcmp(envval, "split")) { - if(mpi_rank == 0) { + if (!HDstrcmp(envval, "split")) { + if (mpi_rank == 0) { SKIPPED(); HDputs(" Test not compatible with current Virtual File Driver"); } MPI_Finalize(); - HDexit(EXIT_FAILURE); + HDexit(EXIT_SUCCESS); } - if((fapl_id1 = H5Pcreate(H5P_FILE_ACCESS)) < 0) + if ((fapl_id1 = H5Pcreate(H5P_FILE_ACCESS)) < 0) goto error; - if(H5Pset_fapl_mpio(fapl_id1, comm, info) < 0) + if (H5Pset_fapl_mpio(fapl_id1, comm, info) < 0) goto error; - if((fapl_id2 = H5Pcreate(H5P_FILE_ACCESS)) < 0) + if ((fapl_id2 = H5Pcreate(H5P_FILE_ACCESS)) < 0) goto error; - if(H5Pset_fapl_mpio(fapl_id2, comm, info) < 0) + if (H5Pset_fapl_mpio(fapl_id2, comm, info) < 0) goto error; /* Check the case where the file was flushed */ h5_fixname(FILENAME[0], fapl_id1, name, sizeof(name)); - if(check_test_file(name, fapl_id1)) { + if (check_test_file(name, sizeof(name), fapl_id1)) { H5_FAILED() goto error; } - else if(mpi_rank == 0) { - PASSED() + else if (mpi_rank == 0) { + PASSED(); } /* Check the case where the file was not flushed. This should give an error * so we turn off the error stack temporarily. */ - if(mpi_rank == 0) + if (mpi_rank == 0) TESTING("H5Fflush (part2 without flush)"); - H5Eget_auto2(H5E_DEFAULT,&func, NULL); + H5Eget_auto2(H5E_DEFAULT, &func, NULL); H5Eset_auto2(H5E_DEFAULT, NULL, NULL); h5_fixname(FILENAME[1], fapl_id2, name, sizeof(name)); - if(check_test_file(name, fapl_id2)) { - if(mpi_rank == 0) - PASSED() + if (check_test_file(name, sizeof(name), fapl_id2)) { + if (mpi_rank == 0) + PASSED(); } else { H5_FAILED() @@ -222,4 +220,3 @@ main(int argc, char *argv[]) error: HDexit(EXIT_FAILURE); } /* end main() */ - diff --git a/testpar/t_ph5basic.c b/testpar/t_ph5basic.c index 73d262e..59f14cb 100644 --- a/testpar/t_ph5basic.c +++ b/testpar/t_ph5basic.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -17,7 +17,6 @@ #include "testphdf5.h" - /*------------------------------------------------------------------------- * Function: test_fapl_mpio_dup * @@ -36,28 +35,28 @@ void test_fapl_mpio_dup(void) { - int mpi_size, mpi_rank; + int mpi_size, mpi_rank; MPI_Comm comm, comm_tmp; - int mpi_size_old, mpi_rank_old; - int mpi_size_tmp, mpi_rank_tmp; - MPI_Info info = MPI_INFO_NULL; + int mpi_size_old, mpi_rank_old; + int mpi_size_tmp, mpi_rank_tmp; + MPI_Info info = MPI_INFO_NULL; MPI_Info info_tmp = MPI_INFO_NULL; - int mrc; /* MPI return value */ - hid_t acc_pl; /* File access properties */ - herr_t ret; /* HDF5 return value */ - int nkeys, nkeys_tmp; + int mrc; /* MPI return value */ + hid_t acc_pl; /* File access properties */ + herr_t ret; /* HDF5 return value */ + int nkeys, nkeys_tmp; if (VERBOSE_MED) HDprintf("Verify fapl_mpio duplicates communicator and INFO objects\n"); /* set up MPI parameters */ - MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); - MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); if (VERBOSE_MED) HDprintf("rank/size of MPI_COMM_WORLD are %d/%d\n", mpi_rank, mpi_size); /* Create a new communicator that has the same processes as MPI_COMM_WORLD. - * Use MPI_Comm_split because it is simplier than MPI_Comm_create + * Use MPI_Comm_split because it is simpler than MPI_Comm_create */ mrc = MPI_Comm_split(MPI_COMM_WORLD, 0, 0, &comm); VRFY((mrc == MPI_SUCCESS), "MPI_Comm_split"); @@ -148,8 +147,7 @@ test_fapl_mpio_dup(void) MPI_Comm_size(comm_tmp, &mpi_size_tmp); MPI_Comm_rank(comm_tmp, &mpi_rank_tmp); if (VERBOSE_MED) - HDprintf("After second H5Pget_fapl_mpio: rank/size of comm are %d/%d\n", - mpi_rank_tmp, mpi_size_tmp); + HDprintf("After second H5Pget_fapl_mpio: rank/size of comm are %d/%d\n", mpi_rank_tmp, mpi_size_tmp); VRFY((mpi_size_tmp == mpi_size), "MPI_Comm_size"); VRFY((mpi_rank_tmp == mpi_rank), "MPI_Comm_rank"); if (MPI_INFO_NULL != info_tmp) { @@ -168,8 +166,7 @@ test_fapl_mpio_dup(void) MPI_Comm_size(comm_tmp, &mpi_size_tmp); MPI_Comm_rank(comm_tmp, &mpi_rank_tmp); if (VERBOSE_MED) - HDprintf("After Property list closed: rank/size of comm are %d/%d\n", - mpi_rank_tmp, mpi_size_tmp); + HDprintf("After Property list closed: rank/size of comm are %d/%d\n", mpi_rank_tmp, mpi_size_tmp); if (MPI_INFO_NULL != info_tmp) { mrc = MPI_Info_get_nkeys(info_tmp, &nkeys_tmp); VRFY((mrc == MPI_SUCCESS), "MPI_Info_get_nkeys"); @@ -185,4 +182,3 @@ test_fapl_mpio_dup(void) VRFY((mrc == MPI_SUCCESS), "MPI_Info_free"); } } /* end test_fapl_mpio_dup() */ - diff --git a/testpar/t_pread.c b/testpar/t_pread.c index 74feeb6..d79130b 100644 --- a/testpar/t_pread.c +++ b/testpar/t_pread.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -27,24 +27,20 @@ * or to read and validate. */ #define NFILENAME 3 -const char *FILENAMES[NFILENAME + 1]={"reloc_t_pread_data_file", - "reloc_t_pread_group_0_file", - "reloc_t_pread_group_1_file", - NULL}; +const char *FILENAMES[NFILENAME + 1] = {"reloc_t_pread_data_file", "reloc_t_pread_group_0_file", + "reloc_t_pread_group_1_file", NULL}; #define FILENAME_BUF_SIZE 1024 #define COUNT 1000 #define LIMIT_NPROC 6 -hbool_t pass = true; -static const char *random_hdf5_text = -"Now is the time for all first-time-users of HDF5 to read their \ +hbool_t pass = TRUE; +static const char *random_hdf5_text = "Now is the time for all first-time-users of HDF5 to read their \ manual or go thru the tutorials!\n\ While you\'re at it, now is also the time to read up on MPI-IO."; -static const char *hitchhiker_quote = -"A common mistake that people make when trying to design something\n\ +static const char *hitchhiker_quote = "A common mistake that people make when trying to design something\n\ completely foolproof is to underestimate the ingenuity of complete\n\ fools.\n"; @@ -53,7 +49,6 @@ static int test_parallel_read(MPI_Comm comm, int mpi_rank, int mpi_size, int gro static char *test_argv0 = NULL; - /*------------------------------------------------------------------------- * Function: generate_test_file * @@ -73,7 +68,7 @@ static char *test_argv0 = NULL; * more or less in half. Each sub group will operate * collectively on their assigned file. This split into * subgroups validates that parallel groups can successfully - * open and read data independantly from the other parallel + * open and read data independently from the other parallel * operations taking place. * * Return: Success: 0 @@ -88,69 +83,69 @@ static char *test_argv0 = NULL; *------------------------------------------------------------------------- */ static int -generate_test_file( MPI_Comm comm, int mpi_rank, int group_id ) +generate_test_file(MPI_Comm comm, int mpi_rank, int group_id) { - int header = -1; - const char *fcn_name = "generate_test_file()"; - const char *failure_mssg = NULL; + int header = -1; + const char *fcn_name = "generate_test_file()"; + const char *failure_mssg = NULL; const char *group_filename = NULL; - char data_filename[FILENAME_BUF_SIZE]; - int file_index = 0; - int group_size; - int group_rank; - int local_failure = 0; - int global_failures = 0; - hsize_t count = COUNT; - hsize_t i; - hsize_t offset; - hsize_t dims[1] = {0}; - hid_t file_id = -1; - hid_t memspace = -1; - hid_t filespace = -1; - hid_t fctmpl = -1; - hid_t fapl_id = -1; - hid_t dxpl_id = -1; - hid_t dset_id = -1; - hid_t dset_id_ch = -1; - hid_t dcpl_id = H5P_DEFAULT; - hsize_t chunk[1]; - float nextValue; - float *data_slice = NULL; - - pass = true; + char data_filename[FILENAME_BUF_SIZE]; + int file_index = 0; + int group_size; + int group_rank; + int local_failure = 0; + int global_failures = 0; + hsize_t count = COUNT; + hsize_t i; + hsize_t offset; + hsize_t dims[1] = {0}; + hid_t file_id = -1; + hid_t memspace = -1; + hid_t filespace = -1; + hid_t fctmpl = -1; + hid_t fapl_id = -1; + hid_t dxpl_id = -1; + hid_t dset_id = -1; + hid_t dset_id_ch = -1; + hid_t dcpl_id = H5P_DEFAULT; + hsize_t chunk[1]; + float nextValue; + float * data_slice = NULL; + + pass = TRUE; HDassert(comm != MPI_COMM_NULL); - if ( (MPI_Comm_rank(comm, &group_rank)) != MPI_SUCCESS) { - pass = FALSE; + if ((MPI_Comm_rank(comm, &group_rank)) != MPI_SUCCESS) { + pass = FALSE; failure_mssg = "generate_test_file: MPI_Comm_rank failed.\n"; } - if ( (MPI_Comm_size(comm, &group_size)) != MPI_SUCCESS) { - pass = FALSE; + if ((MPI_Comm_size(comm, &group_size)) != MPI_SUCCESS) { + pass = FALSE; failure_mssg = "generate_test_file: MPI_Comm_size failed.\n"; } - if ( mpi_rank == 0 ) { + if (mpi_rank == 0) { HDfprintf(stdout, "Constructing test files..."); } /* Setup the file names - * The test specfic filenames are stored as consecutive + * The test specific filenames are stored as consecutive * array entries in the global 'FILENAMES' array above. * Here, we simply decide on the starting index for * file construction. The reading portion of the test * will have a similar setup process... */ - if ( pass ) { - if ( comm == MPI_COMM_WORLD ) { /* Test 1 */ + if (pass) { + if (comm == MPI_COMM_WORLD) { /* Test 1 */ file_index = 0; } - else if ( group_id == 0 ) { /* Test 2 group 0 */ + else if (group_id == 0) { /* Test 2 group 0 */ file_index = 1; } - else { /* Test 2 group 1 */ + else { /* Test 2 group 1 */ file_index = 2; } @@ -159,220 +154,212 @@ generate_test_file( MPI_Comm comm, int mpi_rank, int group_id ) * need to worry that we reassign it for each file! */ group_filename = FILENAMES[file_index]; - HDassert( group_filename ); + HDassert(group_filename); /* Assign the 'data_filename' */ - if ( h5_fixname(group_filename, H5P_DEFAULT, data_filename, - sizeof(data_filename)) == NULL ) { - pass = FALSE; + if (h5_fixname(group_filename, H5P_DEFAULT, data_filename, sizeof(data_filename)) == NULL) { + pass = FALSE; failure_mssg = "h5_fixname(0) failed.\n"; } } /* setup data to write */ - if ( pass ) { - if ( (data_slice = (float *)HDmalloc(COUNT * sizeof(float))) == NULL ) { - pass = FALSE; + if (pass) { + if ((data_slice = (float *)HDmalloc(COUNT * sizeof(float))) == NULL) { + pass = FALSE; failure_mssg = "malloc of data_slice failed.\n"; } } - if ( pass ) { + if (pass) { nextValue = (float)(mpi_rank * COUNT); - for(i=0; i<COUNT; i++) { + for (i = 0; i < COUNT; i++) { data_slice[i] = nextValue; nextValue += 1; } } - /* Initialize a file creation template */ - if (pass) { - if ((fctmpl = H5Pcreate(H5P_FILE_CREATE)) < 0) { - pass = FALSE; - failure_mssg = "H5Pcreate(H5P_FILE_CREATE) failed.\n"; - } - else if (H5Pset_userblock(fctmpl, 512) != SUCCEED) { - pass = FALSE; - failure_mssg = "H5Pset_userblock(,size) failed.\n"; - } - } + /* Initialize a file creation template */ + if (pass) { + if ((fctmpl = H5Pcreate(H5P_FILE_CREATE)) < 0) { + pass = FALSE; + failure_mssg = "H5Pcreate(H5P_FILE_CREATE) failed.\n"; + } + else if (H5Pset_userblock(fctmpl, 512) != SUCCEED) { + pass = FALSE; + failure_mssg = "H5Pset_userblock(,size) failed.\n"; + } + } /* setup FAPL */ - if ( pass ) { - if ( (fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0 ) { - pass = FALSE; + if (pass) { + if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) { + pass = FALSE; failure_mssg = "H5Pcreate(H5P_FILE_ACCESS) failed.\n"; } } - if ( pass ) { - if ( (H5Pset_fapl_mpio(fapl_id, comm, MPI_INFO_NULL)) < 0 ) { - pass = FALSE; + if (pass) { + if ((H5Pset_fapl_mpio(fapl_id, comm, MPI_INFO_NULL)) < 0) { + pass = FALSE; failure_mssg = "H5Pset_fapl_mpio() failed\n"; } } /* create the data file */ - if ( pass ) { - if ( (file_id = H5Fcreate(data_filename, H5F_ACC_TRUNC, - fctmpl, fapl_id)) < 0 ) { - pass = FALSE; + if (pass) { + if ((file_id = H5Fcreate(data_filename, H5F_ACC_TRUNC, fctmpl, fapl_id)) < 0) { + pass = FALSE; failure_mssg = "H5Fcreate() failed.\n"; } } /* create and write the dataset */ - if ( pass ) { - if ( (dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0 ) { - pass = FALSE; + if (pass) { + if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) { + pass = FALSE; failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed.\n"; } } - if ( pass ) { - if ( (H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE)) < 0 ) { - pass = FALSE; + if (pass) { + if ((H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE)) < 0) { + pass = FALSE; failure_mssg = "H5Pset_dxpl_mpio() failed.\n"; } } - if ( pass ) { + if (pass) { dims[0] = COUNT; - if ( (memspace = H5Screate_simple(1, dims, NULL)) < 0 ) { - pass = FALSE; + if ((memspace = H5Screate_simple(1, dims, NULL)) < 0) { + pass = FALSE; failure_mssg = "H5Screate_simple(1, dims, NULL) failed (1).\n"; } } - if ( pass ) { + if (pass) { dims[0] *= (hsize_t)group_size; - if ( (filespace = H5Screate_simple(1, dims, NULL)) < 0 ) { - pass = FALSE; + if ((filespace = H5Screate_simple(1, dims, NULL)) < 0) { + pass = FALSE; failure_mssg = "H5Screate_simple(1, dims, NULL) failed (2).\n"; } } - if ( pass ) { + if (pass) { offset = (hsize_t)group_rank * (hsize_t)COUNT; - if ( (H5Sselect_hyperslab(filespace, H5S_SELECT_SET, &offset, - NULL, &count, NULL)) < 0 ) { - pass = FALSE; + if ((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, &offset, NULL, &count, NULL)) < 0) { + pass = FALSE; failure_mssg = "H5Sselect_hyperslab() failed.\n"; } } - if ( pass ) { - if ( (dset_id = H5Dcreate2(file_id, "dataset0", H5T_NATIVE_FLOAT, - filespace, H5P_DEFAULT, H5P_DEFAULT, - H5P_DEFAULT)) < 0 ) { - pass = false; + if (pass) { + if ((dset_id = H5Dcreate2(file_id, "dataset0", H5T_NATIVE_FLOAT, filespace, H5P_DEFAULT, H5P_DEFAULT, + H5P_DEFAULT)) < 0) { + pass = FALSE; failure_mssg = "H5Dcreate2() failed.\n"; } } - if ( pass ) { - if ( (H5Dwrite(dset_id, H5T_NATIVE_FLOAT, memspace, - filespace, dxpl_id, data_slice)) < 0 ) { - pass = false; + if (pass) { + if ((H5Dwrite(dset_id, H5T_NATIVE_FLOAT, memspace, filespace, dxpl_id, data_slice)) < 0) { + pass = FALSE; failure_mssg = "H5Dwrite() failed.\n"; } } - /* create a chunked dataset */ - chunk[0] = COUNT/8; - - if ( pass ) { - if ( (dcpl_id = H5Pcreate (H5P_DATASET_CREATE)) < 0 ) { - pass = false; - failure_mssg = "H5Pcreate() failed.\n"; - } - } - - if ( pass ) { - if ( (H5Pset_chunk (dcpl_id, 1, chunk) ) < 0 ) { - pass = false; - failure_mssg = "H5Pset_chunk() failed.\n"; - } - } - - if ( pass ) { - - if ( (dset_id_ch = H5Dcreate2(file_id, "dataset0_chunked", H5T_NATIVE_FLOAT, - filespace, H5P_DEFAULT, dcpl_id, - H5P_DEFAULT)) < 0 ) { - pass = false; - failure_mssg = "H5Dcreate2() failed.\n"; - } - } - - if ( pass ) { - if ( (H5Dwrite(dset_id_ch, H5T_NATIVE_FLOAT, memspace, - filespace, dxpl_id, data_slice)) < 0 ) { - pass = false; - failure_mssg = "H5Dwrite() failed.\n"; - } - } - if ( pass || (dcpl_id != -1)) { - if ( H5Pclose(dcpl_id) < 0 ) { - pass = false; - failure_mssg = "H5Pclose(dcpl_id) failed.\n"; - } - } - - if ( pass || (dset_id_ch != -1)) { - if ( H5Dclose(dset_id_ch) < 0 ) { - pass = false; - failure_mssg = "H5Dclose(dset_id_ch) failed.\n"; - } + chunk[0] = COUNT / 8; + + if (pass) { + if ((dcpl_id = H5Pcreate(H5P_DATASET_CREATE)) < 0) { + pass = FALSE; + failure_mssg = "H5Pcreate() failed.\n"; + } + } + + if (pass) { + if ((H5Pset_chunk(dcpl_id, 1, chunk)) < 0) { + pass = FALSE; + failure_mssg = "H5Pset_chunk() failed.\n"; + } + } + + if (pass) { + + if ((dset_id_ch = H5Dcreate2(file_id, "dataset0_chunked", H5T_NATIVE_FLOAT, filespace, H5P_DEFAULT, + dcpl_id, H5P_DEFAULT)) < 0) { + pass = FALSE; + failure_mssg = "H5Dcreate2() failed.\n"; + } + } + + if (pass) { + if ((H5Dwrite(dset_id_ch, H5T_NATIVE_FLOAT, memspace, filespace, dxpl_id, data_slice)) < 0) { + pass = FALSE; + failure_mssg = "H5Dwrite() failed.\n"; + } + } + if (pass || (dcpl_id != -1)) { + if (H5Pclose(dcpl_id) < 0) { + pass = FALSE; + failure_mssg = "H5Pclose(dcpl_id) failed.\n"; + } + } + + if (pass || (dset_id_ch != -1)) { + if (H5Dclose(dset_id_ch) < 0) { + pass = FALSE; + failure_mssg = "H5Dclose(dset_id_ch) failed.\n"; + } } /* close file, etc. */ - if ( pass || (dset_id != -1)) { - if ( H5Dclose(dset_id) < 0 ) { - pass = false; + if (pass || (dset_id != -1)) { + if (H5Dclose(dset_id) < 0) { + pass = FALSE; failure_mssg = "H5Dclose(dset_id) failed.\n"; } } - if ( pass || (memspace != -1) ) { - if ( H5Sclose(memspace) < 0 ) { - pass = false; + if (pass || (memspace != -1)) { + if (H5Sclose(memspace) < 0) { + pass = FALSE; failure_mssg = "H5Sclose(memspace) failed.\n"; } } - if ( pass || (filespace != -1) ) { - if ( H5Sclose(filespace) < 0 ) { - pass = false; + if (pass || (filespace != -1)) { + if (H5Sclose(filespace) < 0) { + pass = FALSE; failure_mssg = "H5Sclose(filespace) failed.\n"; } } - if ( pass || (file_id != -1) ) { - if ( H5Fclose(file_id) < 0 ) { - pass = false; + if (pass || (file_id != -1)) { + if (H5Fclose(file_id) < 0) { + pass = FALSE; failure_mssg = "H5Fclose(file_id) failed.\n"; } } - if ( pass || (dxpl_id != -1) ) { - if ( H5Pclose(dxpl_id) < 0 ) { - pass = false; + if (pass || (dxpl_id != -1)) { + if (H5Pclose(dxpl_id) < 0) { + pass = FALSE; failure_mssg = "H5Pclose(dxpl_id) failed.\n"; } } - if ( pass || (fapl_id != -1) ) { - if ( H5Pclose(fapl_id) < 0 ) { - pass = false; + if (pass || (fapl_id != -1)) { + if (H5Pclose(fapl_id) < 0) { + pass = FALSE; failure_mssg = "H5Pclose(fapl_id) failed.\n"; } } if (pass || (fctmpl != -1)) { if (H5Pclose(fctmpl) < 0) { - pass = false; + pass = FALSE; failure_mssg = "H5Pclose(fctmpl) failed.\n"; } } @@ -392,7 +379,7 @@ generate_test_file( MPI_Comm comm, int mpi_rank, int group_id ) */ if (group_rank == 0) { const char *text_to_write; - size_t bytes_to_write; + size_t bytes_to_write; if (group_id == 0) text_to_write = random_hdf5_text; @@ -402,8 +389,8 @@ generate_test_file( MPI_Comm comm, int mpi_rank, int group_id ) bytes_to_write = HDstrlen(text_to_write); if (pass) { - if ((header = HDopen(data_filename, O_WRONLY)) < 0) { - pass = FALSE; + if ((header = HDopen(data_filename, O_WRONLY)) < 0) { + pass = FALSE; failure_mssg = "HDopen(data_filename, O_WRONLY) failed.\n"; } } @@ -411,14 +398,14 @@ generate_test_file( MPI_Comm comm, int mpi_rank, int group_id ) if (pass) { HDlseek(header, 0, SEEK_SET); if (HDwrite(header, text_to_write, bytes_to_write) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "Unable to write user text into file.\n"; - } + } } if (pass || (header > 0)) { if (HDclose(header) < 0) { - pass = FALSE; + pass = FALSE; failure_mssg = "HDclose() failed.\n"; } } @@ -428,42 +415,41 @@ generate_test_file( MPI_Comm comm, int mpi_rank, int group_id ) * Only overwrite the failure message if no previous error * has been detected */ - local_failure = ( pass ? 0 : 1 ); + local_failure = (pass ? 0 : 1); /* This is a global all reduce (NOT group specific) */ - if ( MPI_Allreduce(&local_failure, &global_failures, 1, - MPI_INT, MPI_SUM, MPI_COMM_WORLD) != MPI_SUCCESS ) { - if ( pass ) { - pass = FALSE; + if (MPI_Allreduce(&local_failure, &global_failures, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD) != MPI_SUCCESS) { + if (pass) { + pass = FALSE; failure_mssg = "MPI_Allreduce() failed.\n"; } - } else if ( ( pass ) && ( global_failures > 0 ) ) { - pass = FALSE; + } + else if ((pass) && (global_failures > 0)) { + pass = FALSE; failure_mssg = "One or more processes report failure.\n"; } /* report results */ - if ( mpi_rank == 0 ) { - if ( pass ) { + if (mpi_rank == 0) { + if (pass) { HDfprintf(stdout, "Done.\n"); - } else { + } + else { HDfprintf(stdout, "FAILED.\n"); - HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", - fcn_name, failure_mssg); + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); } } /* free data_slice if it has been allocated */ - if ( data_slice != NULL ) { + if (data_slice != NULL) { HDfree(data_slice); data_slice = NULL; } - return(! pass); + return (!pass); } /* generate_test_file() */ - /*------------------------------------------------------------------------- * Function: test_parallel_read * @@ -506,46 +492,46 @@ static int test_parallel_read(MPI_Comm comm, int mpi_rank, int mpi_size, int group_id) { const char *failure_mssg; - const char *fcn_name = "test_parallel_read()"; + const char *fcn_name = "test_parallel_read()"; const char *group_filename = NULL; - char reloc_data_filename[FILENAME_BUF_SIZE]; - int local_failure = 0; - int global_failures = 0; - int group_size; - int group_rank; - hid_t fapl_id = -1; - hid_t file_id = -1; - hid_t dset_id = -1; - hid_t dset_id_ch = -1; - hid_t dxpl_id = H5P_DEFAULT; - hid_t memspace = -1; - hid_t filespace = -1; - hid_t filetype = -1; - size_t filetype_size; - hssize_t dset_size; - hsize_t i; - hsize_t offset; - hsize_t count = COUNT; - hsize_t dims[1] = {0}; - float nextValue; - float *data_slice = NULL; + char reloc_data_filename[FILENAME_BUF_SIZE]; + int local_failure = 0; + int global_failures = 0; + int group_size; + int group_rank; + hid_t fapl_id = -1; + hid_t file_id = -1; + hid_t dset_id = -1; + hid_t dset_id_ch = -1; + hid_t dxpl_id = H5P_DEFAULT; + hid_t memspace = -1; + hid_t filespace = -1; + hid_t filetype = -1; + size_t filetype_size; + hssize_t dset_size; + hsize_t i; + hsize_t offset; + hsize_t count = COUNT; + hsize_t dims[1] = {0}; + float nextValue; + float * data_slice = NULL; pass = TRUE; HDassert(comm != MPI_COMM_NULL); - if ( (MPI_Comm_rank(comm, &group_rank)) != MPI_SUCCESS) { - pass = FALSE; + if ((MPI_Comm_rank(comm, &group_rank)) != MPI_SUCCESS) { + pass = FALSE; failure_mssg = "test_parallel_read: MPI_Comm_rank failed.\n"; } - if ( (MPI_Comm_size(comm, &group_size)) != MPI_SUCCESS) { - pass = FALSE; + if ((MPI_Comm_size(comm, &group_size)) != MPI_SUCCESS) { + pass = FALSE; failure_mssg = "test_parallel_read: MPI_Comm_size failed.\n"; } - if ( mpi_rank == 0 ) { - if ( comm == MPI_COMM_WORLD ) { + if (mpi_rank == 0) { + if (comm == MPI_COMM_WORLD) { TESTING("parallel file open test 1"); } else { @@ -554,123 +540,118 @@ test_parallel_read(MPI_Comm comm, int mpi_rank, int mpi_size, int group_id) } /* allocate space for the data_slice array */ - if ( pass ) { - if ( (data_slice = (float *)HDmalloc(COUNT * sizeof(float))) == NULL ) { - pass = FALSE; + if (pass) { + if ((data_slice = (float *)HDmalloc(COUNT * sizeof(float))) == NULL) { + pass = FALSE; failure_mssg = "malloc of data_slice failed.\n"; } } - /* Select the file file name to read * Please see the comments in the 'generate_test_file' function * for more details... */ - if ( pass ) { + if (pass) { - if ( comm == MPI_COMM_WORLD ) /* test 1 */ + if (comm == MPI_COMM_WORLD) /* test 1 */ group_filename = FILENAMES[0]; - else if ( group_id == 0 ) /* test 2 group 0 */ + else if (group_id == 0) /* test 2 group 0 */ group_filename = FILENAMES[1]; - else /* test 2 group 1 */ + else /* test 2 group 1 */ group_filename = FILENAMES[2]; HDassert(group_filename); - if ( h5_fixname(group_filename, H5P_DEFAULT, reloc_data_filename, - sizeof(reloc_data_filename)) == NULL ) { + if (h5_fixname(group_filename, H5P_DEFAULT, reloc_data_filename, sizeof(reloc_data_filename)) == + NULL) { - pass = FALSE; + pass = FALSE; failure_mssg = "h5_fixname(1) failed.\n"; } } /* setup FAPL */ - if ( pass ) { - if ( (fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0 ) { - pass = FALSE; + if (pass) { + if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) { + pass = FALSE; failure_mssg = "H5Pcreate(H5P_FILE_ACCESS) failed.\n"; } } - if ( pass ) { - if ( (H5Pset_fapl_mpio(fapl_id, comm, MPI_INFO_NULL)) < 0 ) { - pass = FALSE; + if (pass) { + if ((H5Pset_fapl_mpio(fapl_id, comm, MPI_INFO_NULL)) < 0) { + pass = FALSE; failure_mssg = "H5Pset_fapl_mpio() failed\n"; } } /* open the file -- should have user block, exercising the optimization */ - if ( pass ) { - if ( (file_id = H5Fopen(reloc_data_filename, - H5F_ACC_RDONLY, fapl_id)) < 0 ) { - pass = FALSE; + if (pass) { + if ((file_id = H5Fopen(reloc_data_filename, H5F_ACC_RDONLY, fapl_id)) < 0) { + pass = FALSE; failure_mssg = "H5Fopen() failed\n"; } } /* open the data set */ - if ( pass ) { - if ( (dset_id = H5Dopen2(file_id, "dataset0", H5P_DEFAULT)) < 0 ) { - pass = FALSE; + if (pass) { + if ((dset_id = H5Dopen2(file_id, "dataset0", H5P_DEFAULT)) < 0) { + pass = FALSE; failure_mssg = "H5Dopen2() failed\n"; } } /* open the chunked data set */ - if ( pass ) { - if ( (dset_id_ch = H5Dopen2(file_id, "dataset0_chunked", H5P_DEFAULT)) < 0 ) { - pass = FALSE; - failure_mssg = "H5Dopen2() failed\n"; - } + if (pass) { + if ((dset_id_ch = H5Dopen2(file_id, "dataset0_chunked", H5P_DEFAULT)) < 0) { + pass = FALSE; + failure_mssg = "H5Dopen2() failed\n"; + } } /* setup memspace */ - if ( pass ) { + if (pass) { dims[0] = count; - if ( (memspace = H5Screate_simple(1, dims, NULL)) < 0 ) { - pass = FALSE; + if ((memspace = H5Screate_simple(1, dims, NULL)) < 0) { + pass = FALSE; failure_mssg = "H5Screate_simple(1, dims, NULL) failed\n"; } } /* setup filespace */ - if ( pass ) { - if ( (filespace = H5Dget_space(dset_id)) < 0 ) { - pass = FALSE; + if (pass) { + if ((filespace = H5Dget_space(dset_id)) < 0) { + pass = FALSE; failure_mssg = "H5Dget_space(dataset) failed\n"; } } - if ( pass ) { + if (pass) { offset = (hsize_t)group_rank * count; - if ( (H5Sselect_hyperslab(filespace, H5S_SELECT_SET, - &offset, NULL, &count, NULL)) < 0 ) { - pass = FALSE; + if ((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, &offset, NULL, &count, NULL)) < 0) { + pass = FALSE; failure_mssg = "H5Sselect_hyperslab() failed\n"; } } /* read this processes section of the data */ - if ( pass ) { - if ( (H5Dread(dset_id, H5T_NATIVE_FLOAT, memspace, - filespace, H5P_DEFAULT, data_slice)) < 0 ) { - pass = FALSE; + if (pass) { + if ((H5Dread(dset_id, H5T_NATIVE_FLOAT, memspace, filespace, H5P_DEFAULT, data_slice)) < 0) { + pass = FALSE; failure_mssg = "H5Dread() failed\n"; } } /* verify the data */ - if ( pass ) { + if (pass) { nextValue = (float)((hsize_t)mpi_rank * count); - i = 0; - while ( ( pass ) && ( i < count ) ) { + i = 0; + while ((pass) && (i < count)) { /* what we really want is data_slice[i] != nextValue -- * the following is a circumlocution to shut up the * the compiler. */ - if ( ( data_slice[i] > nextValue ) || - ( data_slice[i] < nextValue ) ) { - pass = FALSE; + if ((data_slice[i] > nextValue) || (data_slice[i] < nextValue)) { + pass = FALSE; failure_mssg = "Unexpected dset contents.\n"; } nextValue += 1; @@ -678,354 +659,347 @@ test_parallel_read(MPI_Comm comm, int mpi_rank, int mpi_size, int group_id) } } - if ( pass || (memspace != -1) ) { - if ( H5Sclose(memspace) < 0 ) { - pass = false; + if (pass || (memspace != -1)) { + if (H5Sclose(memspace) < 0) { + pass = FALSE; failure_mssg = "H5Sclose(memspace) failed.\n"; } } - if ( pass || (filespace != -1) ) { - if ( H5Sclose(filespace) < 0 ) { - pass = false; + if (pass || (filespace != -1)) { + if (H5Sclose(filespace) < 0) { + pass = FALSE; failure_mssg = "H5Sclose(filespace) failed.\n"; } } /* free data_slice if it has been allocated */ - if ( data_slice != NULL ) { + if (data_slice != NULL) { HDfree(data_slice); data_slice = NULL; } - /* - * Test reading proc0-read-and-bcast with sub-communicators + /* + * Test reading proc0-read-and-bcast with sub-communicators */ /* Don't test with more than LIMIT_NPROC processes to avoid memory issues */ - if( group_size <= LIMIT_NPROC ) { + if (group_size <= LIMIT_NPROC) { #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - hbool_t prop_value; + hbool_t prop_value; #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ - if ( (filespace = H5Dget_space(dset_id )) < 0 ) { - pass = FALSE; - failure_mssg = "H5Dget_space failed.\n"; - } + if ((filespace = H5Dget_space(dset_id)) < 0) { + pass = FALSE; + failure_mssg = "H5Dget_space failed.\n"; + } - if ( (dset_size = H5Sget_simple_extent_npoints(filespace)) < 0 ) { - pass = FALSE; - failure_mssg = "H5Sget_simple_extent_npoints failed.\n"; - } + if ((dset_size = H5Sget_simple_extent_npoints(filespace)) < 0) { + pass = FALSE; + failure_mssg = "H5Sget_simple_extent_npoints failed.\n"; + } - if ( (filetype = H5Dget_type(dset_id)) < 0 ) { - pass = FALSE; - failure_mssg = "H5Dget_type failed.\n"; - } + if ((filetype = H5Dget_type(dset_id)) < 0) { + pass = FALSE; + failure_mssg = "H5Dget_type failed.\n"; + } - if ( (filetype_size = H5Tget_size(filetype)) == 0 ) { - pass = FALSE; - failure_mssg = "H5Tget_size failed.\n"; - } + if ((filetype_size = H5Tget_size(filetype)) == 0) { + pass = FALSE; + failure_mssg = "H5Tget_size failed.\n"; + } - if ( H5Tclose(filetype) < 0 ) { - pass = FALSE; - failure_mssg = "H5Tclose failed.\n"; - }; + if (H5Tclose(filetype) < 0) { + pass = FALSE; + failure_mssg = "H5Tclose failed.\n"; + }; - if ( (data_slice = (float *)HDmalloc((size_t)dset_size*filetype_size)) == NULL ) { - pass = FALSE; - failure_mssg = "malloc of data_slice failed.\n"; - } + if ((data_slice = (float *)HDmalloc((size_t)dset_size * filetype_size)) == NULL) { + pass = FALSE; + failure_mssg = "malloc of data_slice failed.\n"; + } - if ( pass ) { - if ( (dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0 ) { - pass = FALSE; - failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed.\n"; + if (pass) { + if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) { + pass = FALSE; + failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed.\n"; + } } - } - if ( pass ) { - if ( (H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE)) < 0 ) { - pass = FALSE; - failure_mssg = "H5Pset_dxpl_mpio() failed.\n"; + if (pass) { + if ((H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE)) < 0) { + pass = FALSE; + failure_mssg = "H5Pset_dxpl_mpio() failed.\n"; + } } - } #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - if ( pass ) { - prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF; - if(H5Pinsert2(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, H5D_XFER_COLL_RANK0_BCAST_SIZE, &prop_value, - NULL, NULL, NULL, NULL, NULL, NULL) < 0) { - pass = FALSE; - failure_mssg = "H5Pinsert2() failed\n"; - } - } + if (pass) { + prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF; + if (H5Pinsert2(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, H5D_XFER_COLL_RANK0_BCAST_SIZE, + &prop_value, NULL, NULL, NULL, NULL, NULL, NULL) < 0) { + pass = FALSE; + failure_mssg = "H5Pinsert2() failed\n"; + } + } #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ - /* read H5S_ALL section */ - if ( pass ) { - if ( (H5Dread(dset_id, H5T_NATIVE_FLOAT, H5S_ALL, - H5S_ALL, dxpl_id, data_slice)) < 0 ) { - pass = FALSE; - failure_mssg = "H5Dread() failed\n"; + /* read H5S_ALL section */ + if (pass) { + if ((H5Dread(dset_id, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, dxpl_id, data_slice)) < 0) { + pass = FALSE; + failure_mssg = "H5Dread() failed\n"; + } } - } #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - if ( pass ) { - prop_value = FALSE; - if(H5Pget(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) { - pass = FALSE; - failure_mssg = "H5Pget() failed\n"; - } if (pass) { - if(prop_value != TRUE) { - pass = FALSE; - failure_mssg = "rank 0 Bcast optimization was mistakenly not performed\n"; - } + prop_value = FALSE; + if (H5Pget(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) { + pass = FALSE; + failure_mssg = "H5Pget() failed\n"; + } + if (pass) { + if (prop_value != TRUE) { + pass = FALSE; + failure_mssg = "rank 0 Bcast optimization was mistakenly not performed\n"; + } + } } - } #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ - /* verify the data */ - if ( pass ) { - - if ( comm == MPI_COMM_WORLD ) /* test 1 */ - nextValue = 0; - else if ( group_id == 0 ) /* test 2 group 0 */ - nextValue = 0; - else /* test 2 group 1 */ - nextValue = (float)((hsize_t)( mpi_size / 2 )*count); - - i = 0; - while ( ( pass ) && ( i < (hsize_t)dset_size ) ) { - /* what we really want is data_slice[i] != nextValue -- - * the following is a circumlocution to shut up the - * the compiler. - */ - if ( ( data_slice[i] > nextValue ) || - ( data_slice[i] < nextValue ) ) { - pass = FALSE; - failure_mssg = "Unexpected dset contents.\n"; - } - nextValue += 1; - i++; - } - } - - /* read H5S_ALL section for the chunked dataset */ + /* verify the data */ + if (pass) { + + if (comm == MPI_COMM_WORLD) /* test 1 */ + nextValue = 0; + else if (group_id == 0) /* test 2 group 0 */ + nextValue = 0; + else /* test 2 group 1 */ + nextValue = (float)((hsize_t)(mpi_size / 2) * count); + + i = 0; + while ((pass) && (i < (hsize_t)dset_size)) { + /* what we really want is data_slice[i] != nextValue -- + * the following is a circumlocution to shut up the + * the compiler. + */ + if ((data_slice[i] > nextValue) || (data_slice[i] < nextValue)) { + pass = FALSE; + failure_mssg = "Unexpected dset contents.\n"; + } + nextValue += 1; + i++; + } + } + + /* read H5S_ALL section for the chunked dataset */ #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - if ( pass ) { - prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF; - if(H5Pset(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) { - pass = FALSE; - failure_mssg = "H5Pset() failed\n"; + if (pass) { + prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF; + if (H5Pset(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) { + pass = FALSE; + failure_mssg = "H5Pset() failed\n"; + } } - } #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ - for ( i = 0; i < (hsize_t)dset_size; i++) { - data_slice[i] = 0; - } - if ( pass ) { - if ( (H5Dread(dset_id_ch, H5T_NATIVE_FLOAT, H5S_ALL, - H5S_ALL, dxpl_id, data_slice)) < 0 ) { - pass = FALSE; - failure_mssg = "H5Dread() failed\n"; + for (i = 0; i < (hsize_t)dset_size; i++) { + data_slice[i] = 0; + } + if (pass) { + if ((H5Dread(dset_id_ch, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, dxpl_id, data_slice)) < 0) { + pass = FALSE; + failure_mssg = "H5Dread() failed\n"; + } } - } #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - if ( pass ) { - prop_value = FALSE; - if(H5Pget(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) { - pass = FALSE; - failure_mssg = "H5Pget() failed\n"; - } if (pass) { - if(prop_value == TRUE) { - pass = FALSE; - failure_mssg = "rank 0 Bcast optimization was mistakenly performed for chunked dataset\n"; - } + prop_value = FALSE; + if (H5Pget(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) { + pass = FALSE; + failure_mssg = "H5Pget() failed\n"; + } + if (pass) { + if (prop_value == TRUE) { + pass = FALSE; + failure_mssg = "rank 0 Bcast optimization was mistakenly performed for chunked dataset\n"; + } + } } - } #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ - /* verify the data */ - if ( pass ) { - - if ( comm == MPI_COMM_WORLD ) /* test 1 */ - nextValue = 0; - else if ( group_id == 0 ) /* test 2 group 0 */ - nextValue = 0; - else /* test 2 group 1 */ - nextValue = (float)((hsize_t)( mpi_size / 2 )*count); - - i = 0; - while ( ( pass ) && ( i < (hsize_t)dset_size ) ) { - /* what we really want is data_slice[i] != nextValue -- - * the following is a circumlocution to shut up the - * the compiler. - */ - if ( ( data_slice[i] > nextValue ) || - ( data_slice[i] < nextValue ) ) { - pass = FALSE; - failure_mssg = "Unexpected chunked dset contents.\n"; - } - nextValue += 1; - i++; - } - } - - if ( pass || (filespace != -1) ) { - if ( H5Sclose(filespace) < 0 ) { - pass = false; - failure_mssg = "H5Sclose(filespace) failed.\n"; - } - } - - /* free data_slice if it has been allocated */ - if ( data_slice != NULL ) { - HDfree(data_slice); - data_slice = NULL; - } - - /* - * Read an H5S_ALL filespace into a hyperslab defined memory space - */ - - if ( (data_slice = (float *)HDmalloc((size_t)(dset_size*2)*filetype_size)) == NULL ) { - pass = FALSE; - failure_mssg = "malloc of data_slice failed.\n"; - } - - /* setup memspace */ - if ( pass ) { - dims[0] = (hsize_t)dset_size*2; - if ( (memspace = H5Screate_simple(1, dims, NULL)) < 0 ) { - pass = FALSE; - failure_mssg = "H5Screate_simple(1, dims, NULL) failed\n"; - } - } - if ( pass ) { - offset = (hsize_t)dset_size; - if ( (H5Sselect_hyperslab(memspace, H5S_SELECT_SET, - &offset, NULL, &offset, NULL)) < 0 ) { - pass = FALSE; - failure_mssg = "H5Sselect_hyperslab() failed\n"; - } - } + /* verify the data */ + if (pass) { + + if (comm == MPI_COMM_WORLD) /* test 1 */ + nextValue = 0; + else if (group_id == 0) /* test 2 group 0 */ + nextValue = 0; + else /* test 2 group 1 */ + nextValue = (float)((hsize_t)(mpi_size / 2) * count); + + i = 0; + while ((pass) && (i < (hsize_t)dset_size)) { + /* what we really want is data_slice[i] != nextValue -- + * the following is a circumlocution to shut up the + * the compiler. + */ + if ((data_slice[i] > nextValue) || (data_slice[i] < nextValue)) { + pass = FALSE; + failure_mssg = "Unexpected chunked dset contents.\n"; + } + nextValue += 1; + i++; + } + } + + if (pass || (filespace != -1)) { + if (H5Sclose(filespace) < 0) { + pass = FALSE; + failure_mssg = "H5Sclose(filespace) failed.\n"; + } + } + + /* free data_slice if it has been allocated */ + if (data_slice != NULL) { + HDfree(data_slice); + data_slice = NULL; + } + + /* + * Read an H5S_ALL filespace into a hyperslab defined memory space + */ + + if ((data_slice = (float *)HDmalloc((size_t)(dset_size * 2) * filetype_size)) == NULL) { + pass = FALSE; + failure_mssg = "malloc of data_slice failed.\n"; + } + + /* setup memspace */ + if (pass) { + dims[0] = (hsize_t)dset_size * 2; + if ((memspace = H5Screate_simple(1, dims, NULL)) < 0) { + pass = FALSE; + failure_mssg = "H5Screate_simple(1, dims, NULL) failed\n"; + } + } + if (pass) { + offset = (hsize_t)dset_size; + if ((H5Sselect_hyperslab(memspace, H5S_SELECT_SET, &offset, NULL, &offset, NULL)) < 0) { + pass = FALSE; + failure_mssg = "H5Sselect_hyperslab() failed\n"; + } + } #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - if ( pass ) { - prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF; - if(H5Pset(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) { - pass = FALSE; - failure_mssg = "H5Pset() failed\n"; + if (pass) { + prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF; + if (H5Pset(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) { + pass = FALSE; + failure_mssg = "H5Pset() failed\n"; + } } - } #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ - /* read this processes section of the data */ - if ( pass ) { - if ( (H5Dread(dset_id, H5T_NATIVE_FLOAT, memspace, - H5S_ALL, dxpl_id, data_slice)) < 0 ) { - pass = FALSE; - failure_mssg = "H5Dread() failed\n"; + /* read this processes section of the data */ + if (pass) { + if ((H5Dread(dset_id, H5T_NATIVE_FLOAT, memspace, H5S_ALL, dxpl_id, data_slice)) < 0) { + pass = FALSE; + failure_mssg = "H5Dread() failed\n"; + } } - } #ifdef H5_HAVE_INSTRUMENTED_LIBRARY - if ( pass ) { - prop_value = FALSE; - if(H5Pget(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) { - pass = FALSE; - failure_mssg = "H5Pget() failed\n"; - } if (pass) { - if(prop_value != TRUE) { - pass = FALSE; - failure_mssg = "rank 0 Bcast optimization was mistakenly not performed\n"; - } + prop_value = FALSE; + if (H5Pget(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) { + pass = FALSE; + failure_mssg = "H5Pget() failed\n"; + } + if (pass) { + if (prop_value != TRUE) { + pass = FALSE; + failure_mssg = "rank 0 Bcast optimization was mistakenly not performed\n"; + } + } } - } #endif /* H5_HAVE_INSTRUMENTED_LIBRARY */ - /* verify the data */ - if ( pass ) { - - if ( comm == MPI_COMM_WORLD ) /* test 1 */ - nextValue = 0; - else if ( group_id == 0 ) /* test 2 group 0 */ - nextValue = 0; - else /* test 2 group 1 */ - nextValue = (float)((hsize_t)(mpi_size / 2)*count); - - i = (hsize_t)dset_size; - while ( ( pass ) && ( i < (hsize_t)dset_size ) ) { - /* what we really want is data_slice[i] != nextValue -- - * the following is a circumlocution to shut up the - * the compiler. - */ - if ( ( data_slice[i] > nextValue ) || - ( data_slice[i] < nextValue ) ) { - pass = FALSE; - failure_mssg = "Unexpected dset contents.\n"; - } - nextValue += 1; - i++; - } - } - - if ( pass || (memspace != -1) ) { - if ( H5Sclose(memspace) < 0 ) { - pass = false; - failure_mssg = "H5Sclose(memspace) failed.\n"; - } - } - - /* free data_slice if it has been allocated */ - if ( data_slice != NULL ) { - HDfree(data_slice); - data_slice = NULL; - } + /* verify the data */ + if (pass) { - if ( pass || (dxpl_id != -1) ) { - if ( H5Pclose(dxpl_id) < 0 ) { - pass = false; - failure_mssg = "H5Pclose(dxpl_id) failed.\n"; + if (comm == MPI_COMM_WORLD) /* test 1 */ + nextValue = 0; + else if (group_id == 0) /* test 2 group 0 */ + nextValue = 0; + else /* test 2 group 1 */ + nextValue = (float)((hsize_t)(mpi_size / 2) * count); + + i = (hsize_t)dset_size; + while ((pass) && (i < (hsize_t)dset_size)) { + /* what we really want is data_slice[i] != nextValue -- + * the following is a circumlocution to shut up the + * the compiler. + */ + if ((data_slice[i] > nextValue) || (data_slice[i] < nextValue)) { + pass = FALSE; + failure_mssg = "Unexpected dset contents.\n"; + } + nextValue += 1; + i++; + } + } + + if (pass || (memspace != -1)) { + if (H5Sclose(memspace) < 0) { + pass = FALSE; + failure_mssg = "H5Sclose(memspace) failed.\n"; + } + } + + /* free data_slice if it has been allocated */ + if (data_slice != NULL) { + HDfree(data_slice); + data_slice = NULL; + } + + if (pass || (dxpl_id != -1)) { + if (H5Pclose(dxpl_id) < 0) { + pass = FALSE; + failure_mssg = "H5Pclose(dxpl_id) failed.\n"; + } } - } } /* close file, etc. */ - if ( pass || (dset_id != -1) ) { - if ( H5Dclose(dset_id) < 0 ) { - pass = false; + if (pass || (dset_id != -1)) { + if (H5Dclose(dset_id) < 0) { + pass = FALSE; failure_mssg = "H5Dclose(dset_id) failed.\n"; } } - if ( pass || (dset_id_ch != -1) ) { - if ( H5Dclose(dset_id_ch) < 0 ) { - pass = false; + if (pass || (dset_id_ch != -1)) { + if (H5Dclose(dset_id_ch) < 0) { + pass = FALSE; failure_mssg = "H5Dclose(dset_id_ch) failed.\n"; } } - if ( pass || (file_id != -1) ) { - if ( H5Fclose(file_id) < 0 ) { - pass = false; + if (pass || (file_id != -1)) { + if (H5Fclose(file_id) < 0) { + pass = FALSE; failure_mssg = "H5Fclose(file_id) failed.\n"; } } - if ( pass || (fapl_id != -1) ) { - if ( H5Pclose(fapl_id) < 0 ) { - pass = false; + if (pass || (fapl_id != -1)) { + if (H5Pclose(fapl_id) < 0) { + pass = FALSE; failure_mssg = "H5Pclose(fapl_id) failed.\n"; } } @@ -1034,47 +1008,46 @@ test_parallel_read(MPI_Comm comm, int mpi_rank, int mpi_size, int group_id) * Only overwrite the failure message if no previous error * has been detected */ - local_failure = ( pass ? 0 : 1 ); + local_failure = (pass ? 0 : 1); - if ( MPI_Allreduce( &local_failure, &global_failures, 1, - MPI_INT, MPI_SUM, MPI_COMM_WORLD) != MPI_SUCCESS ) { - if ( pass ) { - pass = FALSE; + if (MPI_Allreduce(&local_failure, &global_failures, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD) != MPI_SUCCESS) { + if (pass) { + pass = FALSE; failure_mssg = "MPI_Allreduce() failed.\n"; } - } else if ( ( pass ) && ( global_failures > 0 ) ) { - pass = FALSE; + } + else if ((pass) && (global_failures > 0)) { + pass = FALSE; failure_mssg = "One or more processes report failure.\n"; } /* report results and finish cleanup */ - if ( group_rank == 0 ) { - if ( pass ) { + if (group_rank == 0) { + if (pass) { PASSED(); - } else { + } + else { H5_FAILED(); - HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", - fcn_name, failure_mssg); + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); } HDremove(reloc_data_filename); } - return( ! pass ); + return (!pass); } /* test_parallel_read() */ - /*------------------------------------------------------------------------- * Function: main * * Purpose: To implement a parallel test which validates whether the * new superblock lookup functionality is working correctly. * - * The test consists of creating two seperate HDF datasets + * The test consists of creating two separate HDF datasets * in which random text is inserted at the start of each * file using the 'j5jam' application. This forces the * HDF5 file superblock to a non-zero offset. - * Having created the two independant files, we create two + * Having created the two independent files, we create two * non-overlapping MPI groups, each of which is then tasked * with the opening and validation of the data contained * therein. @@ -1088,13 +1061,13 @@ test_parallel_read(MPI_Comm comm, int mpi_rank, int mpi_size, int group_id) */ int -main( int argc, char **argv) +main(int argc, char **argv) { - int nerrs = 0; - int which_group = 0; - int mpi_rank; - int mpi_size; - int split_size; + int nerrs = 0; + int which_group = 0; + int mpi_rank; + int mpi_size; + int split_size; MPI_Comm group_comm = MPI_COMM_NULL; /* I don't believe that argv[0] can ever be NULL. @@ -1108,33 +1081,33 @@ main( int argc, char **argv) */ test_argv0 = HDstrdup(argv[0]); - if ( (MPI_Init(&argc, &argv)) != MPI_SUCCESS) { - HDfprintf(stderr, "FATAL: Unable to initialize MPI\n"); - HDexit(EXIT_FAILURE); + if ((MPI_Init(&argc, &argv)) != MPI_SUCCESS) { + HDfprintf(stderr, "FATAL: Unable to initialize MPI\n"); + HDexit(EXIT_FAILURE); } - if ( (MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank)) != MPI_SUCCESS) { + if ((MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank)) != MPI_SUCCESS) { HDfprintf(stderr, "FATAL: MPI_Comm_rank returned an error\n"); HDexit(EXIT_FAILURE); } - if ( (MPI_Comm_size(MPI_COMM_WORLD, &mpi_size)) != MPI_SUCCESS) { + if ((MPI_Comm_size(MPI_COMM_WORLD, &mpi_size)) != MPI_SUCCESS) { HDfprintf(stderr, "FATAL: MPI_Comm_size returned an error\n"); HDexit(EXIT_FAILURE); } H5open(); - if ( mpi_rank == 0 ) { + if (mpi_rank == 0) { HDfprintf(stdout, "========================================\n"); HDfprintf(stdout, "Collective file open optimization tests\n"); HDfprintf(stdout, " mpi_size = %d\n", mpi_size); HDfprintf(stdout, "========================================\n"); } - if ( mpi_size < 3 ) { + if (mpi_size < 3) { - if ( mpi_rank == 0 ) { + if (mpi_rank == 0) { HDprintf(" Need at least 3 processes. Exiting.\n"); } @@ -1148,13 +1121,10 @@ main( int argc, char **argv) * two HDF files which in turn will be opened in parallel and the * contents verified in the second read test below. */ - split_size = mpi_size / 2; + split_size = mpi_size / 2; which_group = (mpi_rank < split_size ? 0 : 1); - if ( (MPI_Comm_split(MPI_COMM_WORLD, - which_group, - 0, - &group_comm)) != MPI_SUCCESS) { + if ((MPI_Comm_split(MPI_COMM_WORLD, which_group, 0, &group_comm)) != MPI_SUCCESS) { HDfprintf(stderr, "FATAL: MPI_Comm_split returned an error\n"); HDexit(EXIT_FAILURE); @@ -1163,37 +1133,37 @@ main( int argc, char **argv) /* ------ Generate all files ------ */ /* We generate the file used for test 1 */ - nerrs += generate_test_file( MPI_COMM_WORLD, mpi_rank, which_group ); + nerrs += generate_test_file(MPI_COMM_WORLD, mpi_rank, which_group); - if ( nerrs > 0 ) { - if ( mpi_rank == 0 ) { + if (nerrs > 0) { + if (mpi_rank == 0) { HDprintf(" Test(1) file construction failed -- skipping tests.\n"); } goto finish; } /* We generate the file used for test 2 */ - nerrs += generate_test_file( group_comm, mpi_rank, which_group ); + nerrs += generate_test_file(group_comm, mpi_rank, which_group); - if ( nerrs > 0 ) { - if ( mpi_rank == 0 ) { + if (nerrs > 0) { + if (mpi_rank == 0) { HDprintf(" Test(2) file construction failed -- skipping tests.\n"); } goto finish; } - /* Now read the generated test file (stil using MPI_COMM_WORLD) */ - nerrs += test_parallel_read( MPI_COMM_WORLD, mpi_rank, mpi_size, which_group); + /* Now read the generated test file (still using MPI_COMM_WORLD) */ + nerrs += test_parallel_read(MPI_COMM_WORLD, mpi_rank, mpi_size, which_group); - if ( nerrs > 0 ) { - if ( mpi_rank == 0 ) { + if (nerrs > 0) { + if (mpi_rank == 0) { HDprintf(" Parallel read test(1) failed -- skipping tests.\n"); } goto finish; } /* Update the user on our progress so far. */ - if ( mpi_rank == 0 ) { + if (mpi_rank == 0) { HDprintf(" Test 1 of 2 succeeded\n"); HDprintf(" -- Starting multi-group parallel read test.\n"); } @@ -1201,21 +1171,20 @@ main( int argc, char **argv) /* run the 2nd set of tests */ nerrs += test_parallel_read(group_comm, mpi_rank, mpi_size, which_group); - if ( nerrs > 0 ) { - if ( mpi_rank == 0 ) { + if (nerrs > 0) { + if (mpi_rank == 0) { HDprintf(" Multi-group read test(2) failed\n"); } goto finish; } - if ( mpi_rank == 0 ) { + if (mpi_rank == 0) { HDprintf(" Test 2 of 2 succeeded\n"); } finish: - if ((group_comm != MPI_COMM_NULL) && - (MPI_Comm_free(&group_comm)) != MPI_SUCCESS) { + if ((group_comm != MPI_COMM_NULL) && (MPI_Comm_free(&group_comm)) != MPI_SUCCESS) { HDfprintf(stderr, "MPI_Comm_free failed!\n"); } @@ -1224,11 +1193,11 @@ finish: */ MPI_Barrier(MPI_COMM_WORLD); - if ( mpi_rank == 0 ) { /* only process 0 reports */ + if (mpi_rank == 0) { /* only process 0 reports */ const char *header = "Collective file open optimization tests"; HDfprintf(stdout, "===================================\n"); - if ( nerrs > 0 ) { + if (nerrs > 0) { HDfprintf(stdout, "***%s detected %d failures***\n", header, nerrs); } else { @@ -1246,6 +1215,6 @@ finish: MPI_Finalize(); /* cannot just return (nerrs) because exit code is limited to 1byte */ - return((nerrs > 0) ? EXIT_FAILURE : EXIT_SUCCESS ); + return ((nerrs > 0) ? EXIT_FAILURE : EXIT_SUCCESS); } /* main() */ diff --git a/testpar/t_prestart.c b/testpar/t_prestart.c index d75e627..384fb1b 100644 --- a/testpar/t_prestart.c +++ b/testpar/t_prestart.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -21,37 +21,35 @@ #include "testphdf5.h" -int nerrors = 0; /* errors count */ +int nerrors = 0; /* errors count */ -const char *FILENAME[] = { - "shutdown", - NULL -}; +const char *FILENAME[] = {"shutdown", NULL}; int -main (int argc, char **argv) +main(int argc, char **argv) { - hid_t file_id, dset_id, grp_id; - hid_t fapl, sid, mem_dataspace; - herr_t ret; - char filename[1024]; - int mpi_size, mpi_rank, ndims, i, j; - MPI_Comm comm = MPI_COMM_WORLD; - MPI_Info info = MPI_INFO_NULL; - hsize_t dims[RANK]; - hsize_t start[RANK]; - hsize_t count[RANK]; - hsize_t stride[RANK]; - hsize_t block[RANK]; - DATATYPE *data_array = NULL, *dataptr; /* data buffer */ + hid_t file_id, dset_id, grp_id; + hid_t fapl, sid, mem_dataspace; + herr_t ret; + char filename[1024]; + int mpi_size, mpi_rank, ndims; + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + hsize_t dims[RANK]; + hsize_t start[RANK]; + hsize_t count[RANK]; + hsize_t stride[RANK]; + hsize_t block[RANK]; + hsize_t i, j; + DATATYPE *data_array = NULL, *dataptr; /* data buffer */ MPI_Init(&argc, &argv); MPI_Comm_size(comm, &mpi_size); - MPI_Comm_rank(comm, &mpi_rank); + MPI_Comm_rank(comm, &mpi_rank); + + if (MAINPROCESS) + TESTING("proper shutdown of HDF5 library"); - if(MAINPROCESS) - TESTING("proper shutdown of HDF5 library"); - /* Set up file access property list with parallel I/O access */ fapl = H5Pcreate(H5P_FILE_ACCESS); VRFY((fapl >= 0), "H5Pcreate succeeded"); @@ -73,64 +71,62 @@ main (int argc, char **argv) ndims = H5Sget_simple_extent_dims(sid, dims, NULL); VRFY((ndims == 2), "H5Sget_simple_extent_dims succeeded"); - VRFY(dims[0] == ROW_FACTOR*mpi_size, "Wrong dataset dimensions"); - VRFY(dims[1] == COL_FACTOR*mpi_size, "Wrong dataset dimensions"); + VRFY(dims[0] == (hsize_t)(ROW_FACTOR * mpi_size), "Wrong dataset dimensions"); + VRFY(dims[1] == (hsize_t)(COL_FACTOR * mpi_size), "Wrong dataset dimensions"); /* allocate memory for data buffer */ - data_array = (DATATYPE *)HDmalloc(dims[0]*dims[1]*sizeof(DATATYPE)); + data_array = (DATATYPE *)HDmalloc(dims[0] * dims[1] * sizeof(DATATYPE)); VRFY((data_array != NULL), "data_array HDmalloc succeeded"); /* Each process takes a slabs of rows. */ - block[0] = dims[0]/mpi_size; - block[1] = dims[1]; + block[0] = dims[0] / (hsize_t)mpi_size; + block[1] = dims[1]; stride[0] = block[0]; stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = mpi_rank*block[0]; - start[1] = 0; + count[0] = 1; + count[1] = 1; + start[0] = (hsize_t)mpi_rank * block[0]; + start[1] = 0; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* write data independently */ - ret = H5Dread(dset_id, H5T_NATIVE_INT, mem_dataspace, sid, - H5P_DEFAULT, data_array); + ret = H5Dread(dset_id, H5T_NATIVE_INT, mem_dataspace, sid, H5P_DEFAULT, data_array); VRFY((ret >= 0), "H5Dwrite succeeded"); dataptr = data_array; - for (i=0; i < block[0]; i++){ - for (j=0; j < block[1]; j++){ - if(*dataptr != mpi_rank+1) { + for (i = 0; i < block[0]; i++) { + for (j = 0; j < block[1]; j++) { + if (*dataptr != mpi_rank + 1) { HDprintf("Dataset Verify failed at [%lu][%lu](row %lu, col %lu): expect %d, got %d\n", - (unsigned long)i, (unsigned long)j, - (unsigned long)(i+start[0]), (unsigned long)(j+start[1]), - mpi_rank+1, *(dataptr)); - nerrors ++; + (unsigned long)i, (unsigned long)j, (unsigned long)((hsize_t)i + start[0]), + (unsigned long)((hsize_t)j + start[1]), mpi_rank + 1, *(dataptr)); + nerrors++; } dataptr++; - } + } } MPI_Finalize(); HDremove(filename); /* release data buffers */ - if(data_array) + if (data_array) HDfree(data_array); nerrors += GetTestNumErrs(); - if(MAINPROCESS) { - if(0 == nerrors) - PASSED() + if (MAINPROCESS) { + if (0 == nerrors) + PASSED(); else - H5_FAILED() + H5_FAILED() } - return (nerrors!=0); + return (nerrors != 0); } diff --git a/testpar/t_prop.c b/testpar/t_prop.c index fd89c6a..606e100 100644 --- a/testpar/t_prop.c +++ b/testpar/t_prop.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -23,13 +23,13 @@ static int test_encode_decode(hid_t orig_pl, int mpi_rank, int recv_proc) { MPI_Request req[2]; - MPI_Status status; - hid_t pl; /* Decoded property list */ - size_t buf_size = 0; - void *sbuf = NULL; - herr_t ret; /* Generic return value */ + MPI_Status status; + hid_t pl; /* Decoded property list */ + size_t buf_size = 0; + void * sbuf = NULL; + herr_t ret; /* Generic return value */ - if(mpi_rank == 0) { + if (mpi_rank == 0) { int send_size = 0; /* first call to encode returns only the size of the buffer needed */ @@ -48,13 +48,13 @@ test_encode_decode(hid_t orig_pl, int mpi_rank, int recv_proc) MPI_Isend(sbuf, send_size, MPI_BYTE, recv_proc, 124, MPI_COMM_WORLD, &req[1]); } /* end if */ - if(mpi_rank == recv_proc) { - int recv_size; + if (mpi_rank == recv_proc) { + int recv_size; void *rbuf; MPI_Recv(&recv_size, 1, MPI_INT, 0, 123, MPI_COMM_WORLD, &status); - buf_size = recv_size; - rbuf = (uint8_t *)HDmalloc(buf_size); + buf_size = (size_t)recv_size; + rbuf = (uint8_t *)HDmalloc(buf_size); MPI_Recv(rbuf, recv_size, MPI_BYTE, 0, 124, MPI_COMM_WORLD, &status); pl = H5Pdecode(rbuf); @@ -65,89 +65,88 @@ test_encode_decode(hid_t orig_pl, int mpi_rank, int recv_proc) ret = H5Pclose(pl); VRFY((ret >= 0), "H5Pclose succeeded"); - if(NULL != rbuf) + if (NULL != rbuf) HDfree(rbuf); } /* end if */ - if(0 == mpi_rank) + if (0 == mpi_rank) MPI_Waitall(2, req, MPI_STATUSES_IGNORE); - if(NULL != sbuf) + if (NULL != sbuf) HDfree(sbuf); MPI_Barrier(MPI_COMM_WORLD); - return(0); + return (0); } void test_plist_ed(void) { - hid_t dcpl; /* dataset create prop. list */ - hid_t dapl; /* dataset access prop. list */ - hid_t dxpl; /* dataset transfer prop. list */ - hid_t gcpl; /* group create prop. list */ - hid_t lcpl; /* link create prop. list */ - hid_t lapl; /* link access prop. list */ - hid_t ocpypl; /* object copy prop. list */ - hid_t ocpl; /* object create prop. list */ - hid_t fapl; /* file access prop. list */ - hid_t fcpl; /* file create prop. list */ - hid_t strcpl; /* string create prop. list */ - hid_t acpl; /* attribute create prop. list */ + hid_t dcpl; /* dataset create prop. list */ + hid_t dapl; /* dataset access prop. list */ + hid_t dxpl; /* dataset transfer prop. list */ + hid_t gcpl; /* group create prop. list */ + hid_t lcpl; /* link create prop. list */ + hid_t lapl; /* link access prop. list */ + hid_t ocpypl; /* object copy prop. list */ + hid_t ocpl; /* object create prop. list */ + hid_t fapl; /* file access prop. list */ + hid_t fcpl; /* file create prop. list */ + hid_t strcpl; /* string create prop. list */ + hid_t acpl; /* attribute create prop. list */ int mpi_size, mpi_rank, recv_proc; - hsize_t chunk_size = 16384; /* chunk size */ - double fill = 2.7f; /* Fill value */ - size_t nslots = 521*2; - size_t nbytes = 1048576 * 10; - double w0 = 0.5f; - unsigned max_compact; - unsigned min_dense; - hsize_t max_size[1]; /*data space maximum size */ - const char* c_to_f = "x+32"; - H5AC_cache_config_t my_cache_config = { - H5AC__CURR_CACHE_CONFIG_VERSION, - TRUE, - FALSE, - FALSE, - "temp", - TRUE, - FALSE, - ( 2 * 2048 * 1024), - 0.3f, - (64 * 1024 * 1024), - (4 * 1024 * 1024), - 60000, - H5C_incr__threshold, - 0.8f, - 3.0f, - TRUE, - (8 * 1024 * 1024), - H5C_flash_incr__add_space, - 2.0f, - 0.25f, - H5C_decr__age_out_with_threshold, - 0.997f, - 0.8f, - TRUE, - (3 * 1024 * 1024), - 3, - FALSE, - 0.2f, - (256 * 2048), - H5AC__DEFAULT_METADATA_WRITE_STRATEGY}; - - herr_t ret; /* Generic return value */ - - if(VERBOSE_MED) - HDprintf("Encode/Decode DCPLs\n"); + hsize_t chunk_size = 16384; /* chunk size */ + double fill = 2.7; /* Fill value */ + size_t nslots = 521 * 2; + size_t nbytes = 1048576 * 10; + double w0 = 0.5; + unsigned max_compact; + unsigned min_dense; + hsize_t max_size[1]; /*data space maximum size */ + const char * c_to_f = "x+32"; + H5AC_cache_config_t my_cache_config = {H5AC__CURR_CACHE_CONFIG_VERSION, + TRUE, + FALSE, + FALSE, + "temp", + TRUE, + FALSE, + (2 * 2048 * 1024), + 0.3, + (64 * 1024 * 1024), + (4 * 1024 * 1024), + 60000, + H5C_incr__threshold, + 0.8, + 3.0, + TRUE, + (8 * 1024 * 1024), + H5C_flash_incr__add_space, + 2.0, + 0.25, + H5C_decr__age_out_with_threshold, + 0.997, + 0.8, + TRUE, + (3 * 1024 * 1024), + 3, + FALSE, + 0.2, + (256 * 2048), + H5AC__DEFAULT_METADATA_WRITE_STRATEGY}; + + herr_t ret; /* Generic return value */ + + if (VERBOSE_MED) + HDprintf("Encode/Decode DCPLs\n"); /* set up MPI parameters */ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - if(mpi_size == 1) + if (mpi_size == 1) recv_proc = 0; else recv_proc = 1; @@ -162,21 +161,17 @@ test_plist_ed(void) VRFY((ret >= 0), "H5Pset_alloc_time succeeded"); ret = H5Pset_fill_value(dcpl, H5T_NATIVE_DOUBLE, &fill); - VRFY((ret>=0), "set fill-value succeeded"); + VRFY((ret >= 0), "set fill-value succeeded"); max_size[0] = 100; - ret = H5Pset_external(dcpl, "ext1.data", (off_t)0, - (hsize_t)(max_size[0] * sizeof(int)/4)); - VRFY((ret>=0), "set external succeeded"); - ret = H5Pset_external(dcpl, "ext2.data", (off_t)0, - (hsize_t)(max_size[0] * sizeof(int)/4)); - VRFY((ret>=0), "set external succeeded"); - ret = H5Pset_external(dcpl, "ext3.data", (off_t)0, - (hsize_t)(max_size[0] * sizeof(int)/4)); - VRFY((ret>=0), "set external succeeded"); - ret = H5Pset_external(dcpl, "ext4.data", (off_t)0, - (hsize_t)(max_size[0] * sizeof(int)/4)); - VRFY((ret>=0), "set external succeeded"); + ret = H5Pset_external(dcpl, "ext1.data", (off_t)0, (hsize_t)(max_size[0] * sizeof(int) / 4)); + VRFY((ret >= 0), "set external succeeded"); + ret = H5Pset_external(dcpl, "ext2.data", (off_t)0, (hsize_t)(max_size[0] * sizeof(int) / 4)); + VRFY((ret >= 0), "set external succeeded"); + ret = H5Pset_external(dcpl, "ext3.data", (off_t)0, (hsize_t)(max_size[0] * sizeof(int) / 4)); + VRFY((ret >= 0), "set external succeeded"); + ret = H5Pset_external(dcpl, "ext4.data", (off_t)0, (hsize_t)(max_size[0] * sizeof(int) / 4)); + VRFY((ret >= 0), "set external succeeded"); ret = test_encode_decode(dcpl, mpi_rank, recv_proc); VRFY((ret >= 0), "test_encode_decode succeeded"); @@ -184,7 +179,6 @@ test_plist_ed(void) ret = H5Pclose(dcpl); VRFY((ret >= 0), "H5Pclose succeeded"); - /******* ENCODE/DECODE DAPLS *****/ dapl = H5Pcreate(H5P_DATASET_ACCESS); VRFY((dapl >= 0), "H5Pcreate succeeded"); @@ -198,7 +192,6 @@ test_plist_ed(void) ret = H5Pclose(dapl); VRFY((ret >= 0), "H5Pclose succeeded"); - /******* ENCODE/DECODE OCPLS *****/ ocpl = H5Pcreate(H5P_OBJECT_CREATE); VRFY((ocpl >= 0), "H5Pcreate succeeded"); @@ -218,12 +211,11 @@ test_plist_ed(void) ret = H5Pclose(ocpl); VRFY((ret >= 0), "H5Pclose succeeded"); - /******* ENCODE/DECODE DXPLS *****/ dxpl = H5Pcreate(H5P_DATASET_XFER); VRFY((dxpl >= 0), "H5Pcreate succeeded"); - ret = H5Pset_btree_ratios(dxpl, 0.2f, 0.6f, 0.2f); + ret = H5Pset_btree_ratios(dxpl, 0.2, 0.6, 0.2); VRFY((ret >= 0), "H5Pset_btree_ratios succeeded"); ret = H5Pset_hyper_vector_size(dxpl, 5); @@ -256,7 +248,6 @@ test_plist_ed(void) ret = H5Pclose(dxpl); VRFY((ret >= 0), "H5Pclose succeeded"); - /******* ENCODE/DECODE GCPLS *****/ gcpl = H5Pcreate(H5P_GROUP_CREATE); VRFY((gcpl >= 0), "H5Pcreate succeeded"); @@ -283,12 +274,11 @@ test_plist_ed(void) ret = H5Pclose(gcpl); VRFY((ret >= 0), "H5Pclose succeeded"); - /******* ENCODE/DECODE LCPLS *****/ lcpl = H5Pcreate(H5P_LINK_CREATE); VRFY((lcpl >= 0), "H5Pcreate succeeded"); - ret= H5Pset_create_intermediate_group(lcpl, TRUE); + ret = H5Pset_create_intermediate_group(lcpl, TRUE); VRFY((ret >= 0), "H5Pset_create_intermediate_group succeeded"); ret = test_encode_decode(lcpl, mpi_rank, recv_proc); @@ -297,7 +287,6 @@ test_plist_ed(void) ret = H5Pclose(lcpl); VRFY((ret >= 0), "H5Pclose succeeded"); - /******* ENCODE/DECODE LAPLS *****/ lapl = H5Pcreate(H5P_LINK_ACCESS); VRFY((lapl >= 0), "H5Pcreate succeeded"); @@ -330,7 +319,6 @@ test_plist_ed(void) ret = H5Pclose(lapl); VRFY((ret >= 0), "H5Pclose succeeded"); - /******* ENCODE/DECODE OCPYPLS *****/ ocpypl = H5Pcreate(H5P_OBJECT_COPY); VRFY((ocpypl >= 0), "H5Pcreate succeeded"); @@ -350,7 +338,6 @@ test_plist_ed(void) ret = H5Pclose(ocpypl); VRFY((ret >= 0), "H5Pclose succeeded"); - /******* ENCODE/DECODE FAPLS *****/ fapl = H5Pcreate(H5P_FILE_ACCESS); VRFY((fapl >= 0), "H5Pcreate succeeded"); @@ -367,7 +354,7 @@ test_plist_ed(void) ret = H5Pset_alignment(fapl, 2, 1024); VRFY((ret >= 0), "H5Pset_alignment succeeded"); - ret = H5Pset_cache(fapl, 1024, 128, 10485760, 0.3f); + ret = H5Pset_cache(fapl, 1024, 128, 10485760, 0.3); VRFY((ret >= 0), "H5Pset_cache succeeded"); ret = H5Pset_elink_file_cache_size(fapl, 10485760); @@ -397,7 +384,6 @@ test_plist_ed(void) ret = H5Pclose(fapl); VRFY((ret >= 0), "H5Pclose succeeded"); - /******* ENCODE/DECODE FCPLS *****/ fcpl = H5Pcreate(H5P_FILE_CREATE); VRFY((fcpl >= 0), "H5Pcreate succeeded"); @@ -414,7 +400,7 @@ test_plist_ed(void) ret = H5Pset_shared_mesg_nindexes(fcpl, 8); VRFY((ret >= 0), "H5Pset_shared_mesg_nindexes succeeded"); - ret = H5Pset_shared_mesg_index(fcpl, 1, H5O_SHMESG_SDSPACE_FLAG, 32); + ret = H5Pset_shared_mesg_index(fcpl, 1, H5O_SHMESG_SDSPACE_FLAG, 32); VRFY((ret >= 0), "H5Pset_shared_mesg_index succeeded"); ret = H5Pset_shared_mesg_phase_change(fcpl, 60, 20); @@ -429,7 +415,6 @@ test_plist_ed(void) ret = H5Pclose(fcpl); VRFY((ret >= 0), "H5Pclose succeeded"); - /******* ENCODE/DECODE STRCPLS *****/ strcpl = H5Pcreate(H5P_STRING_CREATE); VRFY((strcpl >= 0), "H5Pcreate succeeded"); @@ -443,7 +428,6 @@ test_plist_ed(void) ret = H5Pclose(strcpl); VRFY((ret >= 0), "H5Pclose succeeded"); - /******* ENCODE/DECODE ACPLS *****/ acpl = H5Pcreate(H5P_ATTRIBUTE_CREATE); VRFY((acpl >= 0), "H5Pcreate succeeded"); @@ -458,3 +442,191 @@ test_plist_ed(void) VRFY((ret >= 0), "H5Pclose succeeded"); } +void +external_links(void) +{ + hid_t lcpl = H5I_INVALID_HID; /* link create prop. list */ + hid_t lapl = H5I_INVALID_HID; /* link access prop. list */ + hid_t fapl = H5I_INVALID_HID; /* file access prop. list */ + hid_t gapl = H5I_INVALID_HID; /* group access prop. list */ + hid_t fid = H5I_INVALID_HID; /* file id */ + hid_t group = H5I_INVALID_HID; /* group id */ + int mpi_size, mpi_rank; + + MPI_Comm comm; + int doIO; + int i, mrc; + + herr_t ret; /* Generic return value */ + htri_t tri_status; /* tri return value */ + + const char *filename = "HDF5test.h5"; + const char *filename_ext = "HDF5test_ext.h5"; + const char *group_path = "/Base/Block/Step"; + const char *link_name = "link"; /* external link */ + char link_path[50]; + + if (VERBOSE_MED) + HDprintf("Check external links\n"); + + /* set up MPI parameters */ + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); + + /* Check MPI communicator access properties are passed to + linked external files */ + + if (mpi_rank == 0) { + + lcpl = H5Pcreate(H5P_LINK_CREATE); + VRFY((lcpl >= 0), "H5Pcreate succeeded"); + + ret = H5Pset_create_intermediate_group(lcpl, 1); + VRFY((ret >= 0), "H5Pset_create_intermediate_group succeeded"); + + /* Create file to serve as target for external link.*/ + fid = H5Fcreate(filename_ext, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + group = H5Gcreate2(fid, group_path, lcpl, H5P_DEFAULT, H5P_DEFAULT); + VRFY((group >= 0), "H5Gcreate succeeded"); + + ret = H5Gclose(group); + VRFY((ret >= 0), "H5Gclose succeeded"); + + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); + + fapl = H5Pcreate(H5P_FILE_ACCESS); + VRFY((fapl >= 0), "H5Pcreate succeeded"); + + /* Create a new file using the file access property list. */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + ret = H5Pclose(fapl); + VRFY((ret >= 0), "H5Pclose succeeded"); + + group = H5Gcreate2(fid, group_path, lcpl, H5P_DEFAULT, H5P_DEFAULT); + VRFY((group >= 0), "H5Gcreate succeeded"); + + /* Create external links to the target files. */ + ret = H5Lcreate_external(filename_ext, group_path, group, link_name, H5P_DEFAULT, H5P_DEFAULT); + VRFY((ret >= 0), "H5Lcreate_external succeeded"); + + /* Close and release resources. */ + ret = H5Pclose(lcpl); + VRFY((ret >= 0), "H5Pclose succeeded"); + ret = H5Gclose(group); + VRFY((ret >= 0), "H5Gclose succeeded"); + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); + } + + MPI_Barrier(MPI_COMM_WORLD); + + /* + * For the first case, use all the processes. For the second case + * use a sub-communicator to verify the correct communicator is + * being used for the externally linked files. + * There is no way to determine if MPI info is being used for the + * externally linked files. + */ + + for (i = 0; i < 2; i++) { + + if (i == 0) { + doIO = 1; + comm = MPI_COMM_WORLD; + } + else { + doIO = mpi_rank % 2; + mrc = MPI_Comm_split(MPI_COMM_WORLD, doIO, mpi_rank, &comm); + VRFY((mrc == MPI_SUCCESS), ""); + } + + if (doIO) { + fapl = H5Pcreate(H5P_FILE_ACCESS); + VRFY((fapl >= 0), "H5Pcreate succeeded"); + ret = H5Pset_fapl_mpio(fapl, comm, MPI_INFO_NULL); + VRFY((fapl >= 0), "H5Pset_fapl_mpio succeeded"); + + fid = H5Fopen(filename, H5F_ACC_RDWR, fapl); + VRFY((fid >= 0), "H5Fopen succeeded"); + + /* test opening a group that is to an external link, the external linked + file should inherit the source file's access properties */ + HDsnprintf(link_path, sizeof(link_path), "%s%s%s", group_path, "/", link_name); + group = H5Gopen2(fid, link_path, H5P_DEFAULT); + VRFY((group >= 0), "H5Gopen succeeded"); + ret = H5Gclose(group); + VRFY((ret >= 0), "H5Gclose succeeded"); + + /* test opening a group that is external link by setting group + creation property */ + gapl = H5Pcreate(H5P_GROUP_ACCESS); + VRFY((gapl >= 0), "H5Pcreate succeeded"); + + ret = H5Pset_elink_fapl(gapl, fapl); + VRFY((ret >= 0), "H5Pset_elink_fapl succeeded"); + + group = H5Gopen2(fid, link_path, gapl); + VRFY((group >= 0), "H5Gopen succeeded"); + + ret = H5Gclose(group); + VRFY((ret >= 0), "H5Gclose succeeded"); + + ret = H5Pclose(gapl); + VRFY((ret >= 0), "H5Pclose succeeded"); + + /* test link APIs */ + lapl = H5Pcreate(H5P_LINK_ACCESS); + VRFY((lapl >= 0), "H5Pcreate succeeded"); + + ret = H5Pset_elink_fapl(lapl, fapl); + VRFY((ret >= 0), "H5Pset_elink_fapl succeeded"); + + tri_status = H5Lexists(fid, link_path, H5P_DEFAULT); + VRFY((tri_status == TRUE), "H5Lexists succeeded"); + + tri_status = H5Lexists(fid, link_path, lapl); + VRFY((tri_status == TRUE), "H5Lexists succeeded"); + + group = H5Oopen(fid, link_path, H5P_DEFAULT); + VRFY((group >= 0), "H5Oopen succeeded"); + + ret = H5Oclose(group); + VRFY((ret >= 0), "H5Oclose succeeded"); + + group = H5Oopen(fid, link_path, lapl); + VRFY((group >= 0), "H5Oopen succeeded"); + + ret = H5Oclose(group); + VRFY((ret >= 0), "H5Oclose succeeded"); + + ret = H5Pclose(lapl); + VRFY((ret >= 0), "H5Pclose succeeded"); + + /* close the remaining resources */ + + ret = H5Pclose(fapl); + VRFY((ret >= 0), "H5Pclose succeeded"); + + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); + + if (i == 1) { + mrc = MPI_Comm_free(&comm); + VRFY((mrc == MPI_SUCCESS), "MPI_Comm_free succeeded"); + } + } + } + + MPI_Barrier(MPI_COMM_WORLD); + + /* delete the test files */ + if (mpi_rank == 0) { + MPI_File_delete(filename, MPI_INFO_NULL); + MPI_File_delete(filename_ext, MPI_INFO_NULL); + } +} diff --git a/testpar/t_pshutdown.c b/testpar/t_pshutdown.c index def7071..b8028a4 100644 --- a/testpar/t_pshutdown.c +++ b/testpar/t_pshutdown.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -25,37 +25,34 @@ #include "testphdf5.h" -int nerrors = 0; /* errors count */ +int nerrors = 0; /* errors count */ -const char *FILENAME[] = { - "shutdown", - NULL -}; +const char *FILENAME[] = {"shutdown", NULL}; int -main (int argc, char **argv) +main(int argc, char **argv) { - hid_t file_id, dset_id, grp_id; - hid_t fapl, sid, mem_dataspace; - hsize_t dims[RANK], i; - herr_t ret; - char filename[1024]; - int mpi_size, mpi_rank; - MPI_Comm comm = MPI_COMM_WORLD; - MPI_Info info = MPI_INFO_NULL; - hsize_t start[RANK]; - hsize_t count[RANK]; - hsize_t stride[RANK]; - hsize_t block[RANK]; - DATATYPE *data_array = NULL; /* data buffer */ + hid_t file_id, dset_id, grp_id; + hid_t fapl, sid, mem_dataspace; + hsize_t dims[RANK], i; + herr_t ret; + char filename[1024]; + int mpi_size, mpi_rank; + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + hsize_t start[RANK]; + hsize_t count[RANK]; + hsize_t stride[RANK]; + hsize_t block[RANK]; + DATATYPE *data_array = NULL; /* data buffer */ MPI_Init(&argc, &argv); MPI_Comm_size(comm, &mpi_size); - MPI_Comm_rank(comm, &mpi_rank); + MPI_Comm_rank(comm, &mpi_rank); + + if (MAINPROCESS) + TESTING("proper shutdown of HDF5 library"); - if(MAINPROCESS) - TESTING("proper shutdown of HDF5 library"); - /* Set up file access property list with parallel I/O access */ fapl = H5Pcreate(H5P_FILE_ACCESS); VRFY((fapl >= 0), "H5Pcreate succeeded"); @@ -68,58 +65,57 @@ main (int argc, char **argv) grp_id = H5Gcreate2(file_id, "Group", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((grp_id >= 0), "H5Gcreate succeeded"); - dims[0] = ROW_FACTOR*mpi_size; - dims[1] = COL_FACTOR*mpi_size; - sid = H5Screate_simple (RANK, dims, NULL); + dims[0] = (hsize_t)ROW_FACTOR * (hsize_t)mpi_size; + dims[1] = (hsize_t)COL_FACTOR * (hsize_t)mpi_size; + sid = H5Screate_simple(RANK, dims, NULL); VRFY((sid >= 0), "H5Screate_simple succeeded"); dset_id = H5Dcreate2(grp_id, "Dataset", H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); VRFY((dset_id >= 0), "H5Dcreate succeeded"); /* allocate memory for data buffer */ - data_array = (DATATYPE *)HDmalloc(dims[0]*dims[1]*sizeof(DATATYPE)); + data_array = (DATATYPE *)HDmalloc(dims[0] * dims[1] * sizeof(DATATYPE)); VRFY((data_array != NULL), "data_array HDmalloc succeeded"); /* Each process takes a slabs of rows. */ - block[0] = dims[0]/mpi_size; - block[1] = dims[1]; + block[0] = dims[0] / (hsize_t)mpi_size; + block[1] = dims[1]; stride[0] = block[0]; stride[1] = block[1]; - count[0] = 1; - count[1] = 1; - start[0] = mpi_rank*block[0]; - start[1] = 0; + count[0] = 1; + count[1] = 1; + start[0] = (hsize_t)mpi_rank * block[0]; + start[1] = 0; /* put some trivial data in the data_array */ - for(i=0 ; i<dims[0]*dims[1]; i++) + for (i = 0; i < dims[0] * dims[1]; i++) data_array[i] = mpi_rank + 1; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ - mem_dataspace = H5Screate_simple (RANK, block, NULL); + mem_dataspace = H5Screate_simple(RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* write data independently */ - ret = H5Dwrite(dset_id, H5T_NATIVE_INT, mem_dataspace, sid, - H5P_DEFAULT, data_array); + ret = H5Dwrite(dset_id, H5T_NATIVE_INT, mem_dataspace, sid, H5P_DEFAULT, data_array); VRFY((ret >= 0), "H5Dwrite succeeded"); /* release data buffers */ - if(data_array) + if (data_array) HDfree(data_array); MPI_Finalize(); nerrors += GetTestNumErrs(); - if(MAINPROCESS) { - if(0 == nerrors) - PASSED() + if (MAINPROCESS) { + if (0 == nerrors) + PASSED(); else - H5_FAILED() + H5_FAILED() } - return (nerrors!=0); + return (nerrors != 0); } diff --git a/testpar/t_shapesame.c b/testpar/t_shapesame.c index abbfbb3..0a18781 100644 --- a/testpar/t_shapesame.c +++ b/testpar/t_shapesame.c @@ -5,27 +5,25 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /* - This program will test independant and collective reads and writes between + This program will test independent and collective reads and writes between selections of different rank that non-the-less are deemed as having the same shape by H5Sselect_shape_same(). */ -#define H5S_FRIEND /*suppress error about including H5Spkg */ +#define H5S_FRIEND /*suppress error about including H5Spkg */ /* Define this macro to indicate that the testing APIs should be available */ #define H5S_TESTING - -#include "H5Spkg.h" /* Dataspaces */ +#include "H5Spkg.h" /* Dataspaces */ #include "testphdf5.h" - /* On Lustre (and perhaps other parallel file systems?), we have severe * slow downs if two or more processes attempt to access the same file system * block. To minimize this problem, we set alignment in the shape same tests @@ -33,71 +31,69 @@ * the chunked dataset case. */ -#define SHAPE_SAME_TEST_ALIGNMENT ((hsize_t)(4 * 1024 * 1024)) - - -#define PAR_SS_DR_MAX_RANK 5 /* must update code if this changes */ - -struct hs_dr_pio_test_vars_t -{ - int mpi_size; - int mpi_rank; - MPI_Comm mpi_comm; - MPI_Info mpi_info; - int test_num; - int edge_size; - int checker_edge_size; - int chunk_edge_size; - int small_rank; - int large_rank; - hid_t dset_type; - uint32_t * small_ds_buf_0; - uint32_t * small_ds_buf_1; - uint32_t * small_ds_buf_2; - uint32_t * small_ds_slice_buf; - uint32_t * large_ds_buf_0; - uint32_t * large_ds_buf_1; - uint32_t * large_ds_buf_2; - uint32_t * large_ds_slice_buf; - int small_ds_offset; - int large_ds_offset; - hid_t fid; /* HDF5 file ID */ - hid_t xfer_plist; - hid_t full_mem_small_ds_sid; - hid_t full_file_small_ds_sid; - hid_t mem_small_ds_sid; - hid_t file_small_ds_sid_0; - hid_t file_small_ds_sid_1; - hid_t small_ds_slice_sid; - hid_t full_mem_large_ds_sid; - hid_t full_file_large_ds_sid; - hid_t mem_large_ds_sid; - hid_t file_large_ds_sid_0; - hid_t file_large_ds_sid_1; - hid_t file_large_ds_process_slice_sid; - hid_t mem_large_ds_process_slice_sid; - hid_t large_ds_slice_sid; - hid_t small_dataset; /* Dataset ID */ - hid_t large_dataset; /* Dataset ID */ - size_t small_ds_size; - size_t small_ds_slice_size; - size_t large_ds_size; - size_t large_ds_slice_size; - hsize_t dims[PAR_SS_DR_MAX_RANK]; - hsize_t chunk_dims[PAR_SS_DR_MAX_RANK]; - hsize_t start[PAR_SS_DR_MAX_RANK]; - hsize_t stride[PAR_SS_DR_MAX_RANK]; - hsize_t count[PAR_SS_DR_MAX_RANK]; - hsize_t block[PAR_SS_DR_MAX_RANK]; - hsize_t * start_ptr; - hsize_t * stride_ptr; - hsize_t * count_ptr; - hsize_t * block_ptr; - int skips; - int max_skips; - int64_t total_tests; - int64_t tests_run; - int64_t tests_skipped; +#define SHAPE_SAME_TEST_ALIGNMENT ((hsize_t)(4 * 1024 * 1024)) + +#define PAR_SS_DR_MAX_RANK 5 /* must update code if this changes */ + +struct hs_dr_pio_test_vars_t { + int mpi_size; + int mpi_rank; + MPI_Comm mpi_comm; + MPI_Info mpi_info; + int test_num; + int edge_size; + int checker_edge_size; + int chunk_edge_size; + int small_rank; + int large_rank; + hid_t dset_type; + uint32_t *small_ds_buf_0; + uint32_t *small_ds_buf_1; + uint32_t *small_ds_buf_2; + uint32_t *small_ds_slice_buf; + uint32_t *large_ds_buf_0; + uint32_t *large_ds_buf_1; + uint32_t *large_ds_buf_2; + uint32_t *large_ds_slice_buf; + int small_ds_offset; + int large_ds_offset; + hid_t fid; /* HDF5 file ID */ + hid_t xfer_plist; + hid_t full_mem_small_ds_sid; + hid_t full_file_small_ds_sid; + hid_t mem_small_ds_sid; + hid_t file_small_ds_sid_0; + hid_t file_small_ds_sid_1; + hid_t small_ds_slice_sid; + hid_t full_mem_large_ds_sid; + hid_t full_file_large_ds_sid; + hid_t mem_large_ds_sid; + hid_t file_large_ds_sid_0; + hid_t file_large_ds_sid_1; + hid_t file_large_ds_process_slice_sid; + hid_t mem_large_ds_process_slice_sid; + hid_t large_ds_slice_sid; + hid_t small_dataset; /* Dataset ID */ + hid_t large_dataset; /* Dataset ID */ + size_t small_ds_size; + size_t small_ds_slice_size; + size_t large_ds_size; + size_t large_ds_slice_size; + hsize_t dims[PAR_SS_DR_MAX_RANK]; + hsize_t chunk_dims[PAR_SS_DR_MAX_RANK]; + hsize_t start[PAR_SS_DR_MAX_RANK]; + hsize_t stride[PAR_SS_DR_MAX_RANK]; + hsize_t count[PAR_SS_DR_MAX_RANK]; + hsize_t block[PAR_SS_DR_MAX_RANK]; + hsize_t * start_ptr; + hsize_t * stride_ptr; + hsize_t * count_ptr; + hsize_t * block_ptr; + int skips; + int max_skips; + int64_t total_tests; + int64_t tests_run; + int64_t tests_skipped; }; /*------------------------------------------------------------------------- @@ -116,60 +112,53 @@ struct hs_dr_pio_test_vars_t #define CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG 0 static void -hs_dr_pio_test__setup(const int test_num, - const int edge_size, - const int checker_edge_size, - const int chunk_edge_size, - const int small_rank, - const int large_rank, - const hbool_t use_collective_io, - const hid_t dset_type, - const int express_test, - struct hs_dr_pio_test_vars_t * tv_ptr) +hs_dr_pio_test__setup(const int test_num, const int edge_size, const int checker_edge_size, + const int chunk_edge_size, const int small_rank, const int large_rank, + const hbool_t use_collective_io, const hid_t dset_type, const int express_test, + struct hs_dr_pio_test_vars_t *tv_ptr) { #if CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG const char *fcnName = "hs_dr_pio_test__setup()"; #endif /* CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG */ const char *filename; - hbool_t mis_match = FALSE; - int i; + hbool_t mis_match = FALSE; + int i; int mrc; - int mpi_rank; /* needed by the VRFY macro */ + int mpi_rank; /* needed by the VRFY macro */ uint32_t expected_value; - uint32_t * ptr_0; - uint32_t * ptr_1; - hid_t acc_tpl; /* File access templates */ + uint32_t * ptr_0; + uint32_t * ptr_1; + hid_t acc_tpl; /* File access templates */ hid_t small_ds_dcpl_id = H5P_DEFAULT; hid_t large_ds_dcpl_id = H5P_DEFAULT; - herr_t ret; /* Generic return value */ + herr_t ret; /* Generic return value */ - HDassert( edge_size >= 6 ); - HDassert( edge_size >= chunk_edge_size ); - HDassert( ( chunk_edge_size == 0 ) || ( chunk_edge_size >= 3 ) ); - HDassert( 1 < small_rank ); - HDassert( small_rank < large_rank ); - HDassert( large_rank <= PAR_SS_DR_MAX_RANK ); + HDassert(edge_size >= 6); + HDassert(edge_size >= chunk_edge_size); + HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3)); + HDassert(1 < small_rank); + HDassert(small_rank < large_rank); + HDassert(large_rank <= PAR_SS_DR_MAX_RANK); - tv_ptr->test_num = test_num; - tv_ptr->edge_size = edge_size; + tv_ptr->test_num = test_num; + tv_ptr->edge_size = edge_size; tv_ptr->checker_edge_size = checker_edge_size; - tv_ptr->chunk_edge_size = chunk_edge_size; - tv_ptr->small_rank = small_rank; - tv_ptr->large_rank = large_rank; - tv_ptr->dset_type = dset_type; + tv_ptr->chunk_edge_size = chunk_edge_size; + tv_ptr->small_rank = small_rank; + tv_ptr->large_rank = large_rank; + tv_ptr->dset_type = dset_type; MPI_Comm_size(MPI_COMM_WORLD, &(tv_ptr->mpi_size)); MPI_Comm_rank(MPI_COMM_WORLD, &(tv_ptr->mpi_rank)); /* the VRFY() macro needs the local variable mpi_rank -- set it up now */ mpi_rank = tv_ptr->mpi_rank; - HDassert( tv_ptr->mpi_size >= 1 ); + HDassert(tv_ptr->mpi_size >= 1); tv_ptr->mpi_comm = MPI_COMM_WORLD; tv_ptr->mpi_info = MPI_INFO_NULL; - for ( i = 0; i < tv_ptr->small_rank - 1; i++ ) - { + for (i = 0; i < tv_ptr->small_rank - 1; i++) { tv_ptr->small_ds_size *= (size_t)(tv_ptr->edge_size); tv_ptr->small_ds_slice_size *= (size_t)(tv_ptr->edge_size); } @@ -178,10 +167,10 @@ hs_dr_pio_test__setup(const int test_num, /* used by checker board tests only */ tv_ptr->small_ds_offset = PAR_SS_DR_MAX_RANK - tv_ptr->small_rank; - HDassert( 0 < tv_ptr->small_ds_offset ); - HDassert( tv_ptr->small_ds_offset < PAR_SS_DR_MAX_RANK ); + HDassert(0 < tv_ptr->small_ds_offset); + HDassert(tv_ptr->small_ds_offset < PAR_SS_DR_MAX_RANK); - for ( i = 0; i < tv_ptr->large_rank - 1; i++ ) { + for (i = 0; i < tv_ptr->large_rank - 1; i++) { tv_ptr->large_ds_size *= (size_t)(tv_ptr->edge_size); tv_ptr->large_ds_slice_size *= (size_t)(tv_ptr->edge_size); @@ -191,9 +180,8 @@ hs_dr_pio_test__setup(const int test_num, /* used by checker board tests only */ tv_ptr->large_ds_offset = PAR_SS_DR_MAX_RANK - tv_ptr->large_rank; - HDassert( 0 <= tv_ptr->large_ds_offset ); - HDassert( tv_ptr->large_ds_offset < PAR_SS_DR_MAX_RANK ); - + HDassert(0 <= tv_ptr->large_ds_offset); + HDassert(tv_ptr->large_ds_offset < PAR_SS_DR_MAX_RANK); /* set up the start, stride, count, and block pointers */ /* used by contiguous tests only */ @@ -202,7 +190,6 @@ hs_dr_pio_test__setup(const int test_num, tv_ptr->count_ptr = &(tv_ptr->count[PAR_SS_DR_MAX_RANK - tv_ptr->large_rank]); tv_ptr->block_ptr = &(tv_ptr->block[PAR_SS_DR_MAX_RANK - tv_ptr->large_rank]); - /* Allocate buffers */ tv_ptr->small_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->small_ds_size); VRFY((tv_ptr->small_ds_buf_0 != NULL), "malloc of small_ds_buf_0 succeeded"); @@ -213,8 +200,7 @@ hs_dr_pio_test__setup(const int test_num, tv_ptr->small_ds_buf_2 = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->small_ds_size); VRFY((tv_ptr->small_ds_buf_2 != NULL), "malloc of small_ds_buf_2 succeeded"); - tv_ptr->small_ds_slice_buf = - (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->small_ds_slice_size); + tv_ptr->small_ds_slice_buf = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->small_ds_slice_size); VRFY((tv_ptr->small_ds_slice_buf != NULL), "malloc of small_ds_slice_buf succeeded"); tv_ptr->large_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->large_ds_size); @@ -226,14 +212,13 @@ hs_dr_pio_test__setup(const int test_num, tv_ptr->large_ds_buf_2 = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->large_ds_size); VRFY((tv_ptr->large_ds_buf_2 != NULL), "malloc of large_ds_buf_2 succeeded"); - tv_ptr->large_ds_slice_buf = - (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->large_ds_slice_size); + tv_ptr->large_ds_slice_buf = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->large_ds_slice_size); VRFY((tv_ptr->large_ds_slice_buf != NULL), "malloc of large_ds_slice_buf succeeded"); /* initialize the buffers */ ptr_0 = tv_ptr->small_ds_buf_0; - for(i = 0; i < (int)(tv_ptr->small_ds_size); i++) + for (i = 0; i < (int)(tv_ptr->small_ds_size); i++) *ptr_0++ = (uint32_t)i; HDmemset(tv_ptr->small_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->small_ds_size); HDmemset(tv_ptr->small_ds_buf_2, 0, sizeof(uint32_t) * tv_ptr->small_ds_size); @@ -241,7 +226,7 @@ hs_dr_pio_test__setup(const int test_num, HDmemset(tv_ptr->small_ds_slice_buf, 0, sizeof(uint32_t) * tv_ptr->small_ds_slice_size); ptr_0 = tv_ptr->large_ds_buf_0; - for(i = 0; i < (int)(tv_ptr->large_ds_size); i++) + for (i = 0; i < (int)(tv_ptr->large_ds_size); i++) *ptr_0++ = (uint32_t)i; HDmemset(tv_ptr->large_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->large_ds_size); HDmemset(tv_ptr->large_ds_buf_2, 0, sizeof(uint32_t) * tv_ptr->large_ds_size); @@ -249,23 +234,19 @@ hs_dr_pio_test__setup(const int test_num, HDmemset(tv_ptr->large_ds_slice_buf, 0, sizeof(uint32_t) * tv_ptr->large_ds_slice_size); filename = (const char *)GetTestParameters(); - HDassert( filename != NULL ); + HDassert(filename != NULL); #if CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG - if ( MAINPROCESS ) { + if (MAINPROCESS) { HDfprintf(stdout, "%d: test num = %d.\n", tv_ptr->mpi_rank, tv_ptr->test_num); HDfprintf(stdout, "%d: mpi_size = %d.\n", tv_ptr->mpi_rank, tv_ptr->mpi_size); - HDfprintf(stdout, - "%d: small/large rank = %d/%d, use_collective_io = %d.\n", - tv_ptr->mpi_rank, tv_ptr->small_rank, tv_ptr->large_rank, - (int)use_collective_io); - HDfprintf(stdout, "%d: edge_size = %d, chunk_edge_size = %d.\n", - tv_ptr->mpi_rank, tv_ptr->edge_size, tv_ptr->chunk_edge_size); - HDfprintf(stdout, "%d: checker_edge_size = %d.\n", - tv_ptr->mpi_rank, tv_ptr->checker_edge_size); - HDfprintf(stdout, "%d: small_ds_size = %d, large_ds_size = %d.\n", - tv_ptr->mpi_rank, (int)(tv_ptr->small_ds_size), - (int)(tv_ptr->large_ds_size)); + HDfprintf(stdout, "%d: small/large rank = %d/%d, use_collective_io = %d.\n", tv_ptr->mpi_rank, + tv_ptr->small_rank, tv_ptr->large_rank, (int)use_collective_io); + HDfprintf(stdout, "%d: edge_size = %d, chunk_edge_size = %d.\n", tv_ptr->mpi_rank, tv_ptr->edge_size, + tv_ptr->chunk_edge_size); + HDfprintf(stdout, "%d: checker_edge_size = %d.\n", tv_ptr->mpi_rank, tv_ptr->checker_edge_size); + HDfprintf(stdout, "%d: small_ds_size = %d, large_ds_size = %d.\n", tv_ptr->mpi_rank, + (int)(tv_ptr->small_ds_size), (int)(tv_ptr->large_ds_size)); HDfprintf(stdout, "%d: filename = %s.\n", tv_ptr->mpi_rank, filename); } #endif /* CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG */ @@ -280,7 +261,7 @@ hs_dr_pio_test__setup(const int test_num, * the same file system block. Do this only if express_test is greater * than zero. */ - if ( express_test > 0 ) { + if (express_test > 0) { ret = H5Pset_alignment(acc_tpl, (hsize_t)0, SHAPE_SAME_TEST_ALIGNMENT); VRFY((ret != FAIL), "H5Pset_alignment() succeeded"); @@ -296,89 +277,63 @@ hs_dr_pio_test__setup(const int test_num, ret = H5Pclose(acc_tpl); VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded"); - /* setup dims: */ tv_ptr->dims[0] = (hsize_t)(tv_ptr->mpi_size + 1); - tv_ptr->dims[1] = tv_ptr->dims[2] = - tv_ptr->dims[3] = tv_ptr->dims[4] = (hsize_t)(tv_ptr->edge_size); - + tv_ptr->dims[1] = tv_ptr->dims[2] = tv_ptr->dims[3] = tv_ptr->dims[4] = (hsize_t)(tv_ptr->edge_size); /* Create small ds dataspaces */ - tv_ptr->full_mem_small_ds_sid = - H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL); - VRFY((tv_ptr->full_mem_small_ds_sid != 0), - "H5Screate_simple() full_mem_small_ds_sid succeeded"); + tv_ptr->full_mem_small_ds_sid = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL); + VRFY((tv_ptr->full_mem_small_ds_sid != 0), "H5Screate_simple() full_mem_small_ds_sid succeeded"); - tv_ptr->full_file_small_ds_sid = - H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL); - VRFY((tv_ptr->full_file_small_ds_sid != 0), - "H5Screate_simple() full_file_small_ds_sid succeeded"); + tv_ptr->full_file_small_ds_sid = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL); + VRFY((tv_ptr->full_file_small_ds_sid != 0), "H5Screate_simple() full_file_small_ds_sid succeeded"); tv_ptr->mem_small_ds_sid = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL); - VRFY((tv_ptr->mem_small_ds_sid != 0), - "H5Screate_simple() mem_small_ds_sid succeeded"); + VRFY((tv_ptr->mem_small_ds_sid != 0), "H5Screate_simple() mem_small_ds_sid succeeded"); tv_ptr->file_small_ds_sid_0 = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL); - VRFY((tv_ptr->file_small_ds_sid_0 != 0), - "H5Screate_simple() file_small_ds_sid_0 succeeded"); + VRFY((tv_ptr->file_small_ds_sid_0 != 0), "H5Screate_simple() file_small_ds_sid_0 succeeded"); /* used by checker board tests only */ tv_ptr->file_small_ds_sid_1 = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL); - VRFY((tv_ptr->file_small_ds_sid_1 != 0), - "H5Screate_simple() file_small_ds_sid_1 succeeded"); - - tv_ptr->small_ds_slice_sid = - H5Screate_simple(tv_ptr->small_rank - 1, &(tv_ptr->dims[1]), NULL); - VRFY((tv_ptr->small_ds_slice_sid != 0), - "H5Screate_simple() small_ds_slice_sid succeeded"); + VRFY((tv_ptr->file_small_ds_sid_1 != 0), "H5Screate_simple() file_small_ds_sid_1 succeeded"); + tv_ptr->small_ds_slice_sid = H5Screate_simple(tv_ptr->small_rank - 1, &(tv_ptr->dims[1]), NULL); + VRFY((tv_ptr->small_ds_slice_sid != 0), "H5Screate_simple() small_ds_slice_sid succeeded"); /* Create large ds dataspaces */ - tv_ptr->full_mem_large_ds_sid = - H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL); - VRFY((tv_ptr->full_mem_large_ds_sid != 0), - "H5Screate_simple() full_mem_large_ds_sid succeeded"); + tv_ptr->full_mem_large_ds_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL); + VRFY((tv_ptr->full_mem_large_ds_sid != 0), "H5Screate_simple() full_mem_large_ds_sid succeeded"); - tv_ptr->full_file_large_ds_sid = - H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL); - VRFY((tv_ptr->full_file_large_ds_sid != FAIL), - "H5Screate_simple() full_file_large_ds_sid succeeded"); + tv_ptr->full_file_large_ds_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL); + VRFY((tv_ptr->full_file_large_ds_sid != FAIL), "H5Screate_simple() full_file_large_ds_sid succeeded"); tv_ptr->mem_large_ds_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL); - VRFY((tv_ptr->mem_large_ds_sid != FAIL), - "H5Screate_simple() mem_large_ds_sid succeeded"); + VRFY((tv_ptr->mem_large_ds_sid != FAIL), "H5Screate_simple() mem_large_ds_sid succeeded"); tv_ptr->file_large_ds_sid_0 = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL); - VRFY((tv_ptr->file_large_ds_sid_0 != FAIL), - "H5Screate_simple() file_large_ds_sid_0 succeeded"); + VRFY((tv_ptr->file_large_ds_sid_0 != FAIL), "H5Screate_simple() file_large_ds_sid_0 succeeded"); /* used by checker board tests only */ tv_ptr->file_large_ds_sid_1 = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL); - VRFY((tv_ptr->file_large_ds_sid_1 != FAIL), - "H5Screate_simple() file_large_ds_sid_1 succeeded"); + VRFY((tv_ptr->file_large_ds_sid_1 != FAIL), "H5Screate_simple() file_large_ds_sid_1 succeeded"); - tv_ptr->mem_large_ds_process_slice_sid = - H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL); + tv_ptr->mem_large_ds_process_slice_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL); VRFY((tv_ptr->mem_large_ds_process_slice_sid != FAIL), "H5Screate_simple() mem_large_ds_process_slice_sid succeeded"); - tv_ptr->file_large_ds_process_slice_sid = - H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL); + tv_ptr->file_large_ds_process_slice_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL); VRFY((tv_ptr->file_large_ds_process_slice_sid != FAIL), "H5Screate_simple() file_large_ds_process_slice_sid succeeded"); - - tv_ptr->large_ds_slice_sid = - H5Screate_simple(tv_ptr->large_rank - 1, &(tv_ptr->dims[1]), NULL); - VRFY((tv_ptr->large_ds_slice_sid != 0), - "H5Screate_simple() large_ds_slice_sid succeeded"); - + tv_ptr->large_ds_slice_sid = H5Screate_simple(tv_ptr->large_rank - 1, &(tv_ptr->dims[1]), NULL); + VRFY((tv_ptr->large_ds_slice_sid != 0), "H5Screate_simple() large_ds_slice_sid succeeded"); /* if chunk edge size is greater than zero, set up the small and * large data set creation property lists to specify chunked * datasets. */ - if ( tv_ptr->chunk_edge_size > 0 ) { + if (tv_ptr->chunk_edge_size > 0) { /* Under Lustre (and perhaps other parallel file systems?) we get * locking delays when two or more processes attempt to access the @@ -397,17 +352,11 @@ hs_dr_pio_test__setup(const int test_num, * * JRM -- 9/16/10 */ - if ( express_test == 0 ) { - - tv_ptr->chunk_dims[0] = 1; - } else { + tv_ptr->chunk_dims[0] = 1; - tv_ptr->chunk_dims[0] = 1; - } - tv_ptr->chunk_dims[1] = tv_ptr->chunk_dims[2] = - tv_ptr->chunk_dims[3] = - tv_ptr->chunk_dims[4] = (hsize_t)(tv_ptr->chunk_edge_size); + tv_ptr->chunk_dims[1] = tv_ptr->chunk_dims[2] = tv_ptr->chunk_dims[3] = tv_ptr->chunk_dims[4] = + (hsize_t)(tv_ptr->chunk_edge_size); small_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); VRFY((ret != FAIL), "H5Pcreate() small_ds_dcpl_id succeeded"); @@ -418,7 +367,6 @@ hs_dr_pio_test__setup(const int test_num, ret = H5Pset_chunk(small_ds_dcpl_id, tv_ptr->small_rank, tv_ptr->chunk_dims); VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded"); - large_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); VRFY((ret != FAIL), "H5Pcreate() large_ds_dcpl_id succeeded"); @@ -430,79 +378,61 @@ hs_dr_pio_test__setup(const int test_num, } /* create the small dataset */ - tv_ptr->small_dataset = H5Dcreate2(tv_ptr->fid, "small_dataset", tv_ptr->dset_type, - tv_ptr->file_small_ds_sid_0, H5P_DEFAULT, - small_ds_dcpl_id, H5P_DEFAULT); + tv_ptr->small_dataset = + H5Dcreate2(tv_ptr->fid, "small_dataset", tv_ptr->dset_type, tv_ptr->file_small_ds_sid_0, H5P_DEFAULT, + small_ds_dcpl_id, H5P_DEFAULT); VRFY((ret != FAIL), "H5Dcreate2() small_dataset succeeded"); /* create the large dataset */ - tv_ptr->large_dataset = H5Dcreate2(tv_ptr->fid, "large_dataset", tv_ptr->dset_type, - tv_ptr->file_large_ds_sid_0, H5P_DEFAULT, - large_ds_dcpl_id, H5P_DEFAULT); + tv_ptr->large_dataset = + H5Dcreate2(tv_ptr->fid, "large_dataset", tv_ptr->dset_type, tv_ptr->file_large_ds_sid_0, H5P_DEFAULT, + large_ds_dcpl_id, H5P_DEFAULT); VRFY((ret != FAIL), "H5Dcreate2() large_dataset succeeded"); - /* setup xfer property list */ tv_ptr->xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((tv_ptr->xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); - if(use_collective_io) { + if (use_collective_io) { ret = H5Pset_dxpl_mpio(tv_ptr->xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); } /* setup selection to write initial data to the small and large data sets */ - tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank); + tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank); tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1)); - tv_ptr->count[0] = 1; - tv_ptr->block[0] = 1; + tv_ptr->count[0] = 1; + tv_ptr->block[0] = 1; - for ( i = 1; i < tv_ptr->large_rank; i++ ) { + for (i = 1; i < tv_ptr->large_rank; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); + tv_ptr->count[i] = 1; + tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } /* setup selections for writing initial data to the small data set */ - ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded"); - - ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) suceeded"); - - if ( MAINPROCESS ) { /* add an additional slice to the selections */ + ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded"); + + ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) succeeded"); + + if (MAINPROCESS) { /* add an additional slice to the selections */ tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_size); - ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, - H5S_SELECT_OR, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret>= 0), "H5Sselect_hyperslab(mem_small_ds_sid, or) suceeded"); - - ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, - H5S_SELECT_OR, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret>= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, or) suceeded"); - } + ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_OR, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, or) succeeded"); + ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_OR, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, or) succeeded"); + } /* write the initial value of the small data set to file */ ret = H5Dwrite(tv_ptr->small_dataset, tv_ptr->dset_type, tv_ptr->mem_small_ds_sid, @@ -510,167 +440,114 @@ hs_dr_pio_test__setup(const int test_num, VRFY((ret >= 0), "H5Dwrite() small_dataset initial write succeeded"); - /* sync with the other processes before checking data */ - if ( ! use_collective_io ) { - - mrc = MPI_Barrier(MPI_COMM_WORLD); - VRFY((mrc==MPI_SUCCESS), "Sync after small dataset writes"); - } + mrc = MPI_Barrier(MPI_COMM_WORLD); + VRFY((mrc == MPI_SUCCESS), "Sync after small dataset writes"); /* read the small data set back to verify that it contains the * expected data. Note that each process reads in the entire * data set and verifies it. */ - ret = H5Dread(tv_ptr->small_dataset, - H5T_NATIVE_UINT32, - tv_ptr->full_mem_small_ds_sid, - tv_ptr->full_file_small_ds_sid, - tv_ptr->xfer_plist, - tv_ptr->small_ds_buf_1); + ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->full_mem_small_ds_sid, + tv_ptr->full_file_small_ds_sid, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_1); VRFY((ret >= 0), "H5Dread() small_dataset initial read succeeded"); - /* verify that the correct data was written to the small data set */ expected_value = 0; - mis_match = FALSE; - ptr_1 = tv_ptr->small_ds_buf_1; + mis_match = FALSE; + ptr_1 = tv_ptr->small_ds_buf_1; i = 0; - for ( i = 0; i < (int)(tv_ptr->small_ds_size); i++ ) { + for (i = 0; i < (int)(tv_ptr->small_ds_size); i++) { - if ( *ptr_1 != expected_value ) { + if (*ptr_1 != expected_value) { mis_match = TRUE; } ptr_1++; expected_value++; } - VRFY( (mis_match == FALSE), "small ds init data good."); - + VRFY((mis_match == FALSE), "small ds init data good."); /* setup selections for writing initial data to the large data set */ tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank); - ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, set) suceeded"); - - ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, set) suceeded"); + ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, set) succeeded"); + + ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, set) succeeded"); /* In passing, setup the process slice dataspaces as well */ - ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_process_slice_sid, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), - "H5Sselect_hyperslab(mem_large_ds_process_slice_sid, set) suceeded"); - - ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_process_slice_sid, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), - "H5Sselect_hyperslab(file_large_ds_process_slice_sid, set) suceeded"); - - if ( MAINPROCESS ) { /* add an additional slice to the selections */ + ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_process_slice_sid, H5S_SELECT_SET, tv_ptr->start, + tv_ptr->stride, tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_process_slice_sid, set) succeeded"); + + ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_process_slice_sid, H5S_SELECT_SET, tv_ptr->start, + tv_ptr->stride, tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_process_slice_sid, set) succeeded"); + + if (MAINPROCESS) { /* add an additional slice to the selections */ tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_size); - ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, - H5S_SELECT_OR, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret>= 0), "H5Sselect_hyperslab(mem_large_ds_sid, or) suceeded"); - - ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, - H5S_SELECT_OR, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret>= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, or) suceeded"); - } + ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_OR, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, or) succeeded"); + ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_OR, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, or) succeeded"); + } /* write the initial value of the large data set to file */ - ret = H5Dwrite(tv_ptr->large_dataset, tv_ptr->dset_type, - tv_ptr->mem_large_ds_sid, tv_ptr->file_large_ds_sid_0, - tv_ptr->xfer_plist, tv_ptr->large_ds_buf_0); - if ( ret < 0 ) H5Eprint2(H5E_DEFAULT, stderr); + ret = H5Dwrite(tv_ptr->large_dataset, tv_ptr->dset_type, tv_ptr->mem_large_ds_sid, + tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_0); + if (ret < 0) + H5Eprint2(H5E_DEFAULT, stderr); VRFY((ret >= 0), "H5Dwrite() large_dataset initial write succeeded"); - /* sync with the other processes before checking data */ - if ( ! use_collective_io ) { - - mrc = MPI_Barrier(MPI_COMM_WORLD); - VRFY((mrc==MPI_SUCCESS), "Sync after large dataset writes"); - } - + mrc = MPI_Barrier(MPI_COMM_WORLD); + VRFY((mrc == MPI_SUCCESS), "Sync after large dataset writes"); /* read the large data set back to verify that it contains the * expected data. Note that each process reads in the entire * data set. */ - ret = H5Dread(tv_ptr->large_dataset, - H5T_NATIVE_UINT32, - tv_ptr->full_mem_large_ds_sid, - tv_ptr->full_file_large_ds_sid, - tv_ptr->xfer_plist, - tv_ptr->large_ds_buf_1); + ret = H5Dread(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->full_mem_large_ds_sid, + tv_ptr->full_file_large_ds_sid, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1); VRFY((ret >= 0), "H5Dread() large_dataset initial read succeeded"); - /* verify that the correct data was written to the large data set */ expected_value = 0; - mis_match = FALSE; - ptr_1 = tv_ptr->large_ds_buf_1; + mis_match = FALSE; + ptr_1 = tv_ptr->large_ds_buf_1; i = 0; - for ( i = 0; i < (int)(tv_ptr->large_ds_size); i++ ) { + for (i = 0; i < (int)(tv_ptr->large_ds_size); i++) { - if ( *ptr_1 != expected_value ) { + if (*ptr_1 != expected_value) { mis_match = TRUE; } ptr_1++; expected_value++; } - VRFY( (mis_match == FALSE), "large ds init data good."); - + VRFY((mis_match == FALSE), "large ds init data good."); /* sync with the other processes before changing data */ - - if ( ! use_collective_io ) { - - mrc = MPI_Barrier(MPI_COMM_WORLD); - VRFY((mrc==MPI_SUCCESS), "Sync initial values check"); - } + mrc = MPI_Barrier(MPI_COMM_WORLD); + VRFY((mrc == MPI_SUCCESS), "Sync initial values check"); return; } /* hs_dr_pio_test__setup() */ - /*------------------------------------------------------------------------- * Function: hs_dr_pio_test__takedown() * @@ -687,19 +564,19 @@ hs_dr_pio_test__setup(const int test_num, #define HS_DR_PIO_TEST__TAKEDOWN__DEBUG 0 static void -hs_dr_pio_test__takedown( struct hs_dr_pio_test_vars_t * tv_ptr) +hs_dr_pio_test__takedown(struct hs_dr_pio_test_vars_t *tv_ptr) { #if HS_DR_PIO_TEST__TAKEDOWN__DEBUG const char *fcnName = "hs_dr_pio_test__takedown()"; -#endif /* HS_DR_PIO_TEST__TAKEDOWN__DEBUG */ - int mpi_rank; /* needed by the VRFY macro */ - herr_t ret; /* Generic return value */ +#endif /* HS_DR_PIO_TEST__TAKEDOWN__DEBUG */ + int mpi_rank; /* needed by the VRFY macro */ + herr_t ret; /* Generic return value */ /* initialize the local copy of mpi_rank */ mpi_rank = tv_ptr->mpi_rank; /* Close property lists */ - if ( tv_ptr->xfer_plist != H5P_DEFAULT ) { + if (tv_ptr->xfer_plist != H5P_DEFAULT) { ret = H5Pclose(tv_ptr->xfer_plist); VRFY((ret != FAIL), "H5Pclose(xfer_plist) succeeded"); } @@ -761,21 +638,28 @@ hs_dr_pio_test__takedown( struct hs_dr_pio_test_vars_t * tv_ptr) /* Free memory buffers */ - if ( tv_ptr->small_ds_buf_0 != NULL ) HDfree(tv_ptr->small_ds_buf_0); - if ( tv_ptr->small_ds_buf_1 != NULL ) HDfree(tv_ptr->small_ds_buf_1); - if ( tv_ptr->small_ds_buf_2 != NULL ) HDfree(tv_ptr->small_ds_buf_2); - if ( tv_ptr->small_ds_slice_buf != NULL ) HDfree(tv_ptr->small_ds_slice_buf); - - if ( tv_ptr->large_ds_buf_0 != NULL ) HDfree(tv_ptr->large_ds_buf_0); - if ( tv_ptr->large_ds_buf_1 != NULL ) HDfree(tv_ptr->large_ds_buf_1); - if ( tv_ptr->large_ds_buf_2 != NULL ) HDfree(tv_ptr->large_ds_buf_2); - if ( tv_ptr->large_ds_slice_buf != NULL ) HDfree(tv_ptr->large_ds_slice_buf); + if (tv_ptr->small_ds_buf_0 != NULL) + HDfree(tv_ptr->small_ds_buf_0); + if (tv_ptr->small_ds_buf_1 != NULL) + HDfree(tv_ptr->small_ds_buf_1); + if (tv_ptr->small_ds_buf_2 != NULL) + HDfree(tv_ptr->small_ds_buf_2); + if (tv_ptr->small_ds_slice_buf != NULL) + HDfree(tv_ptr->small_ds_slice_buf); + + if (tv_ptr->large_ds_buf_0 != NULL) + HDfree(tv_ptr->large_ds_buf_0); + if (tv_ptr->large_ds_buf_1 != NULL) + HDfree(tv_ptr->large_ds_buf_1); + if (tv_ptr->large_ds_buf_2 != NULL) + HDfree(tv_ptr->large_ds_buf_2); + if (tv_ptr->large_ds_slice_buf != NULL) + HDfree(tv_ptr->large_ds_slice_buf); return; } /* hs_dr_pio_test__takedown() */ - /*------------------------------------------------------------------------- * Function: contig_hs_dr_pio_test__d2m_l2s() * @@ -801,24 +685,23 @@ hs_dr_pio_test__takedown( struct hs_dr_pio_test_vars_t * tv_ptr) #define CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG 0 static void -contig_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) +contig_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t *tv_ptr) { #if CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG const char *fcnName = "contig_hs_dr_pio_test__run_test()"; #endif /* CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG */ - hbool_t mis_match = FALSE; - int i, j, k, l; + hbool_t mis_match = FALSE; + int i, j, k, l; size_t n; - int mpi_rank; /* needed by the VRFY macro */ - uint32_t expected_value; - uint32_t * ptr_1; - htri_t check; /* Shape comparison return value */ - herr_t ret; /* Generic return value */ + int mpi_rank; /* needed by the VRFY macro */ + uint32_t expected_value; + uint32_t *ptr_1; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ /* initialize the local copy of mpi_rank */ mpi_rank = tv_ptr->mpi_rank; - /* We have already done a H5Sselect_all() on the dataspace * small_ds_slice_sid in the initialization phase, so no need to * call H5Sselect_all() again. @@ -827,16 +710,16 @@ contig_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) /* set up start, stride, count, and block -- note that we will * change start[] so as to read slices of the large cube. */ - for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - if ( (PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1) ) { + tv_ptr->count[i] = 1; + if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) { tv_ptr->block[i] = 1; - - } else { + } + else { tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } @@ -846,9 +729,7 @@ contig_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) HDmemset(tv_ptr->small_ds_slice_buf, 0, sizeof(uint32_t) * tv_ptr->small_ds_slice_size); #if CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG - HDfprintf(stdout, - "%s reading slices from big cube on disk into small cube slice.\n", - fcnName); + HDfprintf(stdout, "%s reading slices from big cube on disk into small cube slice.\n", fcnName); #endif /* CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG */ /* in serial versions of this test, we loop through all the dimensions @@ -858,11 +739,11 @@ contig_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) * mpi_rank, and don't itterate over it. */ - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) { i = tv_ptr->mpi_rank; - - } else { + } + else { i = 0; } @@ -873,21 +754,21 @@ contig_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) * test. */ - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) { j = tv_ptr->mpi_rank; - - } else { + } + else { j = 0; } do { - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) { k = tv_ptr->mpi_rank; - - } else { + } + else { k = 0; } @@ -905,11 +786,11 @@ contig_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) l = 0; do { - if ( (tv_ptr->skips)++ < tv_ptr->max_skips ) { /* skip the test */ + if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */ - (tv_ptr->tests_skipped)++; - - } else { /* run the test */ + (tv_ptr->tests_skipped)++; + } + else { /* run the test */ tv_ptr->skips = 0; /* reset the skips counter */ @@ -923,15 +804,9 @@ contig_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) tv_ptr->start[3] = (hsize_t)l; tv_ptr->start[4] = 0; - ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, - H5S_SELECT_SET, - tv_ptr->start_ptr, - tv_ptr->stride_ptr, - tv_ptr->count_ptr, - tv_ptr->block_ptr); - VRFY((ret != FAIL), - "H5Sselect_hyperslab(file_large_cube_sid) succeeded"); - + ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_SET, tv_ptr->start_ptr, + tv_ptr->stride_ptr, tv_ptr->count_ptr, tv_ptr->block_ptr); + VRFY((ret != FAIL), "H5Sselect_hyperslab(file_large_cube_sid) succeeded"); /* verify that H5Sselect_shape_same() reports the two * selections as having the same shape. @@ -939,42 +814,32 @@ contig_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) check = H5Sselect_shape_same(tv_ptr->small_ds_slice_sid, tv_ptr->file_large_ds_sid_0); VRFY((check == TRUE), "H5Sselect_shape_same passed"); - /* Read selection from disk */ #if CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG - HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", - fcnName, (int)(tv_ptr->mpi_rank), - (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), - (int)(tv_ptr->start[2]), (int)(tv_ptr->start[3]), - (int)(tv_ptr->start[4])); - HDfprintf(stdout, "%s slice/file extent dims = %d/%d.\n", - fcnName, + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, (int)(tv_ptr->mpi_rank), + (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), (int)(tv_ptr->start[2]), + (int)(tv_ptr->start[3]), (int)(tv_ptr->start[4])); + HDfprintf(stdout, "%s slice/file extent dims = %d/%d.\n", fcnName, H5Sget_simple_extent_ndims(tv_ptr->small_ds_slice_sid), H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_0)); #endif /* CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG */ - ret = H5Dread(tv_ptr->large_dataset, - H5T_NATIVE_UINT32, - tv_ptr->small_ds_slice_sid, - tv_ptr->file_large_ds_sid_0, - tv_ptr->xfer_plist, - tv_ptr->small_ds_slice_buf); + ret = + H5Dread(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->small_ds_slice_sid, + tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_slice_buf); VRFY((ret >= 0), "H5Dread() slice from large ds succeeded."); - /* verify that expected data is retrieved */ - mis_match = FALSE; - ptr_1 = tv_ptr->small_ds_slice_buf; + mis_match = FALSE; + ptr_1 = tv_ptr->small_ds_slice_buf; expected_value = (uint32_t)( - (i * tv_ptr->edge_size * tv_ptr->edge_size * - tv_ptr->edge_size * tv_ptr->edge_size) + + (i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + - (k * tv_ptr->edge_size * tv_ptr->edge_size) + - (l * tv_ptr->edge_size)); + (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size)); - for ( n = 0; n < tv_ptr->small_ds_slice_size; n++ ) { + for (n = 0; n < tv_ptr->small_ds_slice_size; n++) { - if ( *ptr_1 != expected_value ) { + if (*ptr_1 != expected_value) { mis_match = TRUE; } @@ -985,33 +850,25 @@ contig_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) expected_value++; } - VRFY((mis_match == FALSE), - "small slice read from large ds data good."); + VRFY((mis_match == FALSE), "small slice read from large ds data good."); - (tv_ptr->tests_run)++; + (tv_ptr->tests_run)++; } l++; (tv_ptr->total_tests)++; - } while ( ( tv_ptr->large_rank > 2 ) && - ( (tv_ptr->small_rank - 1) <= 1 ) && - ( l < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size)); k++; - } while ( ( tv_ptr->large_rank > 3 ) && - ( (tv_ptr->small_rank - 1) <= 2 ) && - ( k < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size)); j++; - } while ( ( tv_ptr->large_rank > 4 ) && - ( (tv_ptr->small_rank - 1) <= 3 ) && - ( j < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size)); return; } /* contig_hs_dr_pio_test__d2m_l2s() */ - /*------------------------------------------------------------------------- * Function: contig_hs_dr_pio_test__d2m_s2l() * @@ -1037,21 +894,21 @@ contig_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) #define CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG 0 static void -contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) +contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t *tv_ptr) { #if CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG const char *fcnName = "contig_hs_dr_pio_test__d2m_s2l()"; #endif /* CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG */ - hbool_t mis_match = FALSE; - int i, j, k, l; + hbool_t mis_match = FALSE; + int i, j, k, l; size_t n; - int mpi_rank; /* needed by the VRFY macro */ - size_t start_index; - size_t stop_index; - uint32_t expected_value; - uint32_t * ptr_1; - htri_t check; /* Shape comparison return value */ - herr_t ret; /* Generic return value */ + int mpi_rank; /* needed by the VRFY macro */ + size_t start_index; + size_t stop_index; + uint32_t expected_value; + uint32_t *ptr_1; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ /* initialize the local copy of mpi_rank */ mpi_rank = tv_ptr->mpi_rank; @@ -1061,32 +918,25 @@ contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) * data (and only the correct data) is read. */ - tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank); + tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank); tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1)); - tv_ptr->count[0] = 1; - tv_ptr->block[0] = 1; + tv_ptr->count[0] = 1; + tv_ptr->block[0] = 1; - for ( i = 1; i < tv_ptr->large_rank; i++ ) { + for (i = 1; i < tv_ptr->large_rank; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); + tv_ptr->count[i] = 1; + tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } - ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) suceeded"); - + ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) succeeded"); #if CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG - HDfprintf(stdout, - "%s reading slices of on disk small data set into slices of big data set.\n", - fcnName); + HDfprintf(stdout, "%s reading slices of on disk small data set into slices of big data set.\n", fcnName); #endif /* CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG */ /* zero out the in memory large ds */ @@ -1095,22 +945,21 @@ contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) /* set up start, stride, count, and block -- note that we will * change start[] so as to read slices of the large cube. */ - for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - if ( (PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1) ) { + tv_ptr->count[i] = 1; + if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) { tv_ptr->block[i] = 1; - - } else { + } + else { tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } } - /* in serial versions of this test, we loop through all the dimensions * of the large data set that don't appear in the small data set. * @@ -1120,12 +969,11 @@ contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) * over it. */ - - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) { i = tv_ptr->mpi_rank; - - } else { + } + else { i = 0; } @@ -1136,21 +984,21 @@ contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) * test. */ - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) { j = tv_ptr->mpi_rank; - - } else { + } + else { j = 0; } do { - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) { k = tv_ptr->mpi_rank; - - } else { + } + else { k = 0; } @@ -1168,11 +1016,11 @@ contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) l = 0; do { - if ( (tv_ptr->skips)++ < tv_ptr->max_skips ) { /* skip the test */ + if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */ (tv_ptr->tests_skipped)++; - - } else { /* run the test */ + } + else { /* run the test */ tv_ptr->skips = 0; /* reset the skips counter */ @@ -1186,15 +1034,9 @@ contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) tv_ptr->start[3] = (hsize_t)l; tv_ptr->start[4] = 0; - ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, - H5S_SELECT_SET, - tv_ptr->start_ptr, - tv_ptr->stride_ptr, - tv_ptr->count_ptr, - tv_ptr->block_ptr); - VRFY((ret != FAIL), - "H5Sselect_hyperslab(mem_large_ds_sid) succeeded"); - + ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_SET, tv_ptr->start_ptr, + tv_ptr->stride_ptr, tv_ptr->count_ptr, tv_ptr->block_ptr); + VRFY((ret != FAIL), "H5Sselect_hyperslab(mem_large_ds_sid) succeeded"); /* verify that H5Sselect_shape_same() reports the two * selections as having the same shape. @@ -1202,57 +1044,46 @@ contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) check = H5Sselect_shape_same(tv_ptr->file_small_ds_sid_0, tv_ptr->mem_large_ds_sid); VRFY((check == TRUE), "H5Sselect_shape_same passed"); - /* Read selection from disk */ #if CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG - HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", - fcnName, (int)(tv_ptr->mpi_rank), - (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), - (int)(tv_ptr->start[2]), (int)(tv_ptr->start[3]), - (int)(tv_ptr->start[4])); - HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", - fcnName, tv_ptr->mpi_rank, + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, (int)(tv_ptr->mpi_rank), + (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), (int)(tv_ptr->start[2]), + (int)(tv_ptr->start[3]), (int)(tv_ptr->start[4])); + HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank, H5Sget_simple_extent_ndims(tv_ptr->mem_large_ds_sid), H5Sget_simple_extent_ndims(tv_ptr->file_small_ds_sid_0)); #endif /* CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG */ - ret = H5Dread(tv_ptr->small_dataset, - H5T_NATIVE_UINT32, - tv_ptr->mem_large_ds_sid, - tv_ptr->file_small_ds_sid_0, - tv_ptr->xfer_plist, - tv_ptr->large_ds_buf_1); + ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid, + tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1); VRFY((ret >= 0), "H5Dread() slice from small ds succeeded."); /* verify that the expected data and only the * expected data was read. */ - ptr_1 = tv_ptr->large_ds_buf_1; - expected_value = (uint32_t) - ((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size); - start_index = (size_t)( - (i * tv_ptr->edge_size * tv_ptr->edge_size * - tv_ptr->edge_size * tv_ptr->edge_size) + + ptr_1 = tv_ptr->large_ds_buf_1; + expected_value = (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size); + start_index = (size_t)( + (i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + - (k * tv_ptr->edge_size * tv_ptr->edge_size) + - (l * tv_ptr->edge_size)); + (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size)); stop_index = start_index + tv_ptr->small_ds_slice_size - 1; - HDassert( start_index < stop_index ); - HDassert( stop_index <= tv_ptr->large_ds_size ); + HDassert(start_index < stop_index); + HDassert(stop_index <= tv_ptr->large_ds_size); - for ( n = 0; n < tv_ptr->large_ds_size; n++ ) { + for (n = 0; n < tv_ptr->large_ds_size; n++) { - if ( ( n >= start_index ) && ( n <= stop_index ) ) { + if ((n >= start_index) && (n <= stop_index)) { - if ( *ptr_1 != expected_value ) { + if (*ptr_1 != expected_value) { mis_match = TRUE; } expected_value++; + } + else { - } else { - - if ( *ptr_1 != 0 ) { + if (*ptr_1 != 0) { mis_match = TRUE; } @@ -1263,8 +1094,7 @@ contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) ptr_1++; } - VRFY((mis_match == FALSE), - "small slice read from large ds data good."); + VRFY((mis_match == FALSE), "small slice read from large ds data good."); (tv_ptr->tests_run)++; } @@ -1273,23 +1103,16 @@ contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) (tv_ptr->total_tests)++; - } while ( ( tv_ptr->large_rank > 2 ) && - ( (tv_ptr->small_rank - 1) <= 1 ) && - ( l < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size)); k++; - } while ( ( tv_ptr->large_rank > 3 ) && - ( (tv_ptr->small_rank - 1) <= 2 ) && - ( k < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size)); j++; - } while ( ( tv_ptr->large_rank > 4 ) && - ( (tv_ptr->small_rank - 1) <= 3 ) && - ( j < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size)); return; } /* contig_hs_dr_pio_test__d2m_s2l() */ - /*------------------------------------------------------------------------- * Function: contig_hs_dr_pio_test__m2d_l2s() * @@ -1317,26 +1140,25 @@ contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) #define CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG 0 static void -contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) +contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t *tv_ptr) { #if CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG const char *fcnName = "contig_hs_dr_pio_test__m2d_l2s()"; #endif /* CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG */ - hbool_t mis_match = FALSE; - int i, j, k, l; + hbool_t mis_match = FALSE; + int i, j, k, l; size_t n; - int mpi_rank; /* needed by the VRFY macro */ - size_t start_index; - size_t stop_index; - uint32_t expected_value; - uint32_t * ptr_1; - htri_t check; /* Shape comparison return value */ - herr_t ret; /* Generic return value */ + int mpi_rank; /* needed by the VRFY macro */ + size_t start_index; + size_t stop_index; + uint32_t expected_value; + uint32_t *ptr_1; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ /* initialize the local copy of mpi_rank */ mpi_rank = tv_ptr->mpi_rank; - /* now we go in the opposite direction, verifying that we can write * from memory to file using selections of different rank that * H5Sselect_shape_same() views as being of the same shape. @@ -1348,49 +1170,40 @@ contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) * the memory and file selections. */ - tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank); + tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank); tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1)); - tv_ptr->count[0] = 1; - tv_ptr->block[0] = 1; + tv_ptr->count[0] = 1; + tv_ptr->block[0] = 1; - for ( i = 1; i < tv_ptr->large_rank; i++ ) { + for (i = 1; i < tv_ptr->large_rank; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); + tv_ptr->count[i] = 1; + tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } - ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) suceeded"); - - ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded"); + ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) succeeded"); + ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded"); /* set up start, stride, count, and block -- note that we will * change start[] so as to read slices of the large cube. */ - for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - if ( (PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1) ) { + tv_ptr->count[i] = 1; + if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) { tv_ptr->block[i] = 1; - - } else { + } + else { tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } @@ -1399,11 +1212,8 @@ contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) /* zero out the in memory small ds */ HDmemset(tv_ptr->small_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->small_ds_size); - #if CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG - HDfprintf(stdout, - "%s writing slices from big ds to slices of small ds on disk.\n", - fcnName); + HDfprintf(stdout, "%s writing slices from big ds to slices of small ds on disk.\n", fcnName); #endif /* CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG */ /* in serial versions of this test, we loop through all the dimensions @@ -1415,12 +1225,11 @@ contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) * over it. */ - - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) { i = tv_ptr->mpi_rank; - - } else { + } + else { i = 0; } @@ -1431,22 +1240,22 @@ contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) * test. */ - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) { j = tv_ptr->mpi_rank; - - } else { + } + else { j = 0; } j = 0; do { - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) { k = tv_ptr->mpi_rank; - - } else { + } + else { k = 0; } @@ -1464,11 +1273,11 @@ contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) l = 0; do { - if ( (tv_ptr->skips)++ < tv_ptr->max_skips ) { /* skip the test */ + if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */ (tv_ptr->tests_skipped)++; - - } else { /* run the test */ + } + else { /* run the test */ tv_ptr->skips = 0; /* reset the skips counter */ @@ -1478,12 +1287,8 @@ contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) */ /* zero out this rank's slice of the on disk small data set */ - ret = H5Dwrite(tv_ptr->small_dataset, - H5T_NATIVE_UINT32, - tv_ptr->mem_small_ds_sid, - tv_ptr->file_small_ds_sid_0, - tv_ptr->xfer_plist, - tv_ptr->small_ds_buf_2); + ret = H5Dwrite(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid, + tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_2); VRFY((ret >= 0), "H5Dwrite() zero slice to small ds succeeded."); /* select the portion of the in memory large cube from which we @@ -1495,15 +1300,9 @@ contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) tv_ptr->start[3] = (hsize_t)l; tv_ptr->start[4] = 0; - ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, - H5S_SELECT_SET, - tv_ptr->start_ptr, - tv_ptr->stride_ptr, - tv_ptr->count_ptr, - tv_ptr->block_ptr); - VRFY((ret >= 0), - "H5Sselect_hyperslab() mem_large_ds_sid succeeded."); - + ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_SET, tv_ptr->start_ptr, + tv_ptr->stride_ptr, tv_ptr->count_ptr, tv_ptr->block_ptr); + VRFY((ret >= 0), "H5Sselect_hyperslab() mem_large_ds_sid succeeded."); /* verify that H5Sselect_shape_same() reports the in * memory slice through the cube selection and the @@ -1512,70 +1311,54 @@ contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) check = H5Sselect_shape_same(tv_ptr->file_small_ds_sid_0, tv_ptr->mem_large_ds_sid); VRFY((check == TRUE), "H5Sselect_shape_same passed."); - /* write the slice from the in memory large data set to the * slice of the on disk small dataset. */ #if CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG - HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", - fcnName, (int)(tv_ptr->mpi_rank), - (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), - (int)(tv_ptr->start[2]), (int)(tv_ptr->start[3]), - (int)(tv_ptr->start[4])); - HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", - fcnName, tv_ptr->mpi_rank, + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, (int)(tv_ptr->mpi_rank), + (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), (int)(tv_ptr->start[2]), + (int)(tv_ptr->start[3]), (int)(tv_ptr->start[4])); + HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank, H5Sget_simple_extent_ndims(tv_ptr->mem_large_ds_sid), H5Sget_simple_extent_ndims(tv_ptr->file_small_ds_sid_0)); #endif /* CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG */ - ret = H5Dwrite(tv_ptr->small_dataset, - H5T_NATIVE_UINT32, - tv_ptr->mem_large_ds_sid, - tv_ptr->file_small_ds_sid_0, - tv_ptr->xfer_plist, - tv_ptr->large_ds_buf_0); + ret = H5Dwrite(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid, + tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_0); VRFY((ret >= 0), "H5Dwrite() slice to large ds succeeded."); - /* read the on disk square into memory */ - ret = H5Dread(tv_ptr->small_dataset, - H5T_NATIVE_UINT32, - tv_ptr->mem_small_ds_sid, - tv_ptr->file_small_ds_sid_0, - tv_ptr->xfer_plist, - tv_ptr->small_ds_buf_1); + ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid, + tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_1); VRFY((ret >= 0), "H5Dread() slice from small ds succeeded."); - /* verify that expected data is retrieved */ mis_match = FALSE; - ptr_1 = tv_ptr->small_ds_buf_1; + ptr_1 = tv_ptr->small_ds_buf_1; expected_value = (uint32_t)( - (i * tv_ptr->edge_size * tv_ptr->edge_size * - tv_ptr->edge_size * tv_ptr->edge_size) + + (i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + - (k * tv_ptr->edge_size * tv_ptr->edge_size) + - (l * tv_ptr->edge_size)); + (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size)); start_index = (size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size; - stop_index = start_index + tv_ptr->small_ds_slice_size - 1; + stop_index = start_index + tv_ptr->small_ds_slice_size - 1; - HDassert( start_index < stop_index ); - HDassert( stop_index <= tv_ptr->small_ds_size ); + HDassert(start_index < stop_index); + HDassert(stop_index <= tv_ptr->small_ds_size); - for ( n = 0; n < tv_ptr->small_ds_size; n++ ) { + for (n = 0; n < tv_ptr->small_ds_size; n++) { - if ( ( n >= start_index ) && ( n <= stop_index ) ) { + if ((n >= start_index) && (n <= stop_index)) { - if ( *ptr_1 != expected_value ) { + if (*ptr_1 != expected_value) { mis_match = TRUE; } expected_value++; + } + else { - } else { - - if ( *ptr_1 != 0 ) { + if (*ptr_1 != 0) { mis_match = TRUE; } @@ -1586,33 +1369,25 @@ contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) ptr_1++; } - VRFY((mis_match == FALSE), - "small slice write from large ds data good."); + VRFY((mis_match == FALSE), "small slice write from large ds data good."); (tv_ptr->tests_run)++; } l++; - (tv_ptr->total_tests)++; + (tv_ptr->total_tests)++; - } while ( ( tv_ptr->large_rank > 2 ) && - ( (tv_ptr->small_rank - 1) <= 1 ) && - ( l < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size)); k++; - } while ( ( tv_ptr->large_rank > 3 ) && - ( (tv_ptr->small_rank - 1) <= 2 ) && - ( k < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size)); j++; - } while ( ( tv_ptr->large_rank > 4 ) && - ( (tv_ptr->small_rank - 1) <= 3 ) && - ( j < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size)); return; } /* contig_hs_dr_pio_test__m2d_l2s() */ - /*------------------------------------------------------------------------- * Function: contig_hs_dr_pio_test__m2d_s2l() * @@ -1642,21 +1417,21 @@ contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) #define CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG 0 static void -contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) +contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t *tv_ptr) { #if CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG const char *fcnName = "contig_hs_dr_pio_test__m2d_s2l()"; #endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */ - hbool_t mis_match = FALSE; - int i, j, k, l; + hbool_t mis_match = FALSE; + int i, j, k, l; size_t n; - int mpi_rank; /* needed by the VRFY macro */ - size_t start_index; - size_t stop_index; - uint32_t expected_value; - uint32_t * ptr_1; - htri_t check; /* Shape comparison return value */ - herr_t ret; /* Generic return value */ + int mpi_rank; /* needed by the VRFY macro */ + size_t start_index; + size_t stop_index; + uint32_t expected_value; + uint32_t *ptr_1; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ /* initialize the local copy of mpi_rank */ mpi_rank = tv_ptr->mpi_rank; @@ -1672,42 +1447,37 @@ contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) /* select the slice of the in memory small data set associated with * the process's mpi rank. */ - tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank); + tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank); tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1)); - tv_ptr->count[0] = 1; - tv_ptr->block[0] = 1; + tv_ptr->count[0] = 1; + tv_ptr->block[0] = 1; - for ( i = 1; i < tv_ptr->large_rank; i++ ) { + for (i = 1; i < tv_ptr->large_rank; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); + tv_ptr->count[i] = 1; + tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } - ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded"); - + ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded"); /* set up start, stride, count, and block -- note that we will * change start[] so as to write slices of the small data set to * slices of the large data set. */ - for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - if ( (PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1) ) { + tv_ptr->count[i] = 1; + if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) { tv_ptr->block[i] = 1; - - } else { + } + else { tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } @@ -1717,16 +1487,14 @@ contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) HDmemset(tv_ptr->large_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->large_ds_size); #if CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG - HDfprintf(stdout, - "%s writing process slices of small ds to slices of large ds on disk.\n", - fcnName); + HDfprintf(stdout, "%s writing process slices of small ds to slices of large ds on disk.\n", fcnName); #endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */ - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) { i = tv_ptr->mpi_rank; - - } else { + } + else { i = 0; } @@ -1737,21 +1505,21 @@ contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) * test. */ - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) { j = tv_ptr->mpi_rank; - - } else { + } + else { j = 0; } do { - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) { k = tv_ptr->mpi_rank; - - } else { + } + else { k = 0; } @@ -1769,7 +1537,7 @@ contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) l = 0; do { - if ( (tv_ptr->skips)++ < tv_ptr->max_skips ) { /* skip the test */ + if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */ (tv_ptr->tests_skipped)++; @@ -1780,18 +1548,15 @@ contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) tv_ptr->start[3] = (hsize_t)l; tv_ptr->start[4] = 0; - HDfprintf(stdout, - "%s:%d: skipping test with start = %d %d %d %d %d.\n", - fcnName, (int)(tv_ptr->mpi_rank), - (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), - (int)(tv_ptr->start[2]), (int)(tv_ptr->start[3]), - (int)(tv_ptr->start[4])); - HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", - fcnName, tv_ptr->mpi_rank, + HDfprintf(stdout, "%s:%d: skipping test with start = %d %d %d %d %d.\n", fcnName, + (int)(tv_ptr->mpi_rank), (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), + (int)(tv_ptr->start[2]), (int)(tv_ptr->start[3]), (int)(tv_ptr->start[4])); + HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank, H5Sget_simple_extent_ndims(tv_ptr->mem_small_ds_sid), H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_0)); #endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */ - } else { /* run the test */ + } + else { /* run the test */ tv_ptr->skips = 0; /* reset the skips counter */ @@ -1804,14 +1569,10 @@ contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) * Note that this will leave one slice with its original data * as there is one more slice than processes. */ - ret = H5Dwrite(tv_ptr->large_dataset, - H5T_NATIVE_UINT32, - tv_ptr->large_ds_slice_sid, - tv_ptr->file_large_ds_process_slice_sid, - tv_ptr->xfer_plist, + ret = H5Dwrite(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->large_ds_slice_sid, + tv_ptr->file_large_ds_process_slice_sid, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_2); - VRFY((ret != FAIL), "H5Dwrite() to zero large ds suceeded"); - + VRFY((ret != FAIL), "H5Dwrite() to zero large ds succeeded"); /* select the portion of the in memory large cube to which we * are going to write data. @@ -1822,15 +1583,9 @@ contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) tv_ptr->start[3] = (hsize_t)l; tv_ptr->start[4] = 0; - ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, - H5S_SELECT_SET, - tv_ptr->start_ptr, - tv_ptr->stride_ptr, - tv_ptr->count_ptr, - tv_ptr->block_ptr); - VRFY((ret != FAIL), - "H5Sselect_hyperslab() target large ds slice succeeded"); - + ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_SET, tv_ptr->start_ptr, + tv_ptr->stride_ptr, tv_ptr->count_ptr, tv_ptr->block_ptr); + VRFY((ret != FAIL), "H5Sselect_hyperslab() target large ds slice succeeded"); /* verify that H5Sselect_shape_same() reports the in * memory small data set slice selection and the @@ -1840,78 +1595,59 @@ contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) check = H5Sselect_shape_same(tv_ptr->mem_small_ds_sid, tv_ptr->file_large_ds_sid_0); VRFY((check == TRUE), "H5Sselect_shape_same passed"); - /* write the small data set slice from memory to the * target slice of the disk data set */ #if CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG - HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", - fcnName, (int)(tv_ptr->mpi_rank), - (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), - (int)(tv_ptr->start[2]), (int)(tv_ptr->start[3]), - (int)(tv_ptr->start[4])); - HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", - fcnName, tv_ptr->mpi_rank, + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, (int)(tv_ptr->mpi_rank), + (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), (int)(tv_ptr->start[2]), + (int)(tv_ptr->start[3]), (int)(tv_ptr->start[4])); + HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank, H5Sget_simple_extent_ndims(tv_ptr->mem_small_ds_sid), H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_0)); #endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */ - ret = H5Dwrite(tv_ptr->large_dataset, - H5T_NATIVE_UINT32, - tv_ptr->mem_small_ds_sid, - tv_ptr->file_large_ds_sid_0, - tv_ptr->xfer_plist, - tv_ptr->small_ds_buf_0); - VRFY((ret != FAIL), - "H5Dwrite of small ds slice to large ds succeeded"); - + ret = H5Dwrite(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid, + tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_0); + VRFY((ret != FAIL), "H5Dwrite of small ds slice to large ds succeeded"); /* read this processes slice on the on disk large * data set into memory. */ - ret = H5Dread(tv_ptr->large_dataset, - H5T_NATIVE_UINT32, - tv_ptr->mem_large_ds_process_slice_sid, - tv_ptr->file_large_ds_process_slice_sid, - tv_ptr->xfer_plist, - tv_ptr->large_ds_buf_1); - VRFY((ret != FAIL), - "H5Dread() of process slice of large ds succeeded"); - + ret = H5Dread( + tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_process_slice_sid, + tv_ptr->file_large_ds_process_slice_sid, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1); + VRFY((ret != FAIL), "H5Dread() of process slice of large ds succeeded"); /* verify that the expected data and only the * expected data was read. */ - ptr_1 = tv_ptr->large_ds_buf_1; - expected_value = (uint32_t) - ((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size); - - start_index = (size_t) - ((i * tv_ptr->edge_size * tv_ptr->edge_size * - tv_ptr->edge_size * tv_ptr->edge_size) + - (j * tv_ptr->edge_size * tv_ptr->edge_size * - tv_ptr->edge_size) + - (k * tv_ptr->edge_size * tv_ptr->edge_size) + - (l * tv_ptr->edge_size)); + ptr_1 = tv_ptr->large_ds_buf_1; + expected_value = (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size); + + start_index = (size_t)( + (i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + + (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + + (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size)); stop_index = start_index + tv_ptr->small_ds_slice_size - 1; - HDassert( start_index < stop_index ); - HDassert( stop_index < tv_ptr->large_ds_size ); + HDassert(start_index < stop_index); + HDassert(stop_index < tv_ptr->large_ds_size); - for ( n = 0; n < tv_ptr->large_ds_size; n++ ) { + for (n = 0; n < tv_ptr->large_ds_size; n++) { - if ( ( n >= start_index ) && ( n <= stop_index ) ) { + if ((n >= start_index) && (n <= stop_index)) { - if ( *ptr_1 != expected_value ) { + if (*ptr_1 != expected_value) { mis_match = TRUE; } expected_value++; + } + else { - } else { - - if ( *ptr_1 != 0 ) { + if (*ptr_1 != 0) { mis_match = TRUE; } @@ -1921,8 +1657,7 @@ contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) ptr_1++; } - VRFY((mis_match == FALSE), - "small ds slice write to large ds slice data good."); + VRFY((mis_match == FALSE), "small ds slice write to large ds slice data good."); (tv_ptr->tests_run)++; } @@ -1931,23 +1666,16 @@ contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) (tv_ptr->total_tests)++; - } while ( ( tv_ptr->large_rank > 2 ) && - ( (tv_ptr->small_rank - 1) <= 1 ) && - ( l < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size)); k++; - } while ( ( tv_ptr->large_rank > 3 ) && - ( (tv_ptr->small_rank - 1) <= 2 ) && - ( k < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size)); j++; - } while ( ( tv_ptr->large_rank > 4 ) && - ( (tv_ptr->small_rank - 1) <= 3 ) && - ( j < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size)); return; } /* contig_hs_dr_pio_test__m2d_s2l() */ - /*------------------------------------------------------------------------- * Function: contig_hs_dr_pio_test__run_test() * @@ -1964,26 +1692,15 @@ contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) #define CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG 0 static void -contig_hs_dr_pio_test__run_test(const int test_num, - const int edge_size, - const int chunk_edge_size, - const int small_rank, - const int large_rank, - const hbool_t use_collective_io, - const hid_t dset_type, - int express_test, - int * skips_ptr, - int max_skips, - int64_t * total_tests_ptr, - int64_t * tests_run_ptr, - int64_t * tests_skipped_ptr) +contig_hs_dr_pio_test__run_test(const int test_num, const int edge_size, const int chunk_edge_size, + const int small_rank, const int large_rank, const hbool_t use_collective_io, + const hid_t dset_type, int express_test, int *skips_ptr, int max_skips, + int64_t *total_tests_ptr, int64_t *tests_run_ptr, int64_t *tests_skipped_ptr) { #if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG const char *fcnName = "contig_hs_dr_pio_test__run_test()"; #endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */ - int mpi_rank; - struct hs_dr_pio_test_vars_t test_vars = - { + struct hs_dr_pio_test_vars_t test_vars = { /* int mpi_size = */ -1, /* int mpi_rank = */ -1, /* MPI_Comm mpi_comm = */ MPI_COMM_NULL, @@ -2005,7 +1722,7 @@ contig_hs_dr_pio_test__run_test(const int test_num, /* uint32_t * large_ds_slice_buf = */ NULL, /* int small_ds_offset = */ -1, /* int large_ds_offset = */ -1, - /* hid_t fid = */ -1, /* HDF5 file ID */ + /* hid_t fid = */ -1, /* HDF5 file ID */ /* hid_t xfer_plist = */ H5P_DEFAULT, /* hid_t full_mem_small_ds_sid = */ -1, /* hid_t full_file_small_ds_sid = */ -1, @@ -2021,18 +1738,18 @@ contig_hs_dr_pio_test__run_test(const int test_num, /* hid_t file_large_ds_process_slice_sid = */ -1, /* hid_t mem_large_ds_process_slice_sid = */ -1, /* hid_t large_ds_slice_sid = */ -1, - /* hid_t small_dataset = */ -1, /* Dataset ID */ - /* hid_t large_dataset = */ -1, /* Dataset ID */ + /* hid_t small_dataset = */ -1, /* Dataset ID */ + /* hid_t large_dataset = */ -1, /* Dataset ID */ /* size_t small_ds_size = */ 1, /* size_t small_ds_slice_size = */ 1, /* size_t large_ds_size = */ 1, /* size_t large_ds_slice_size = */ 1, - /* hsize_t dims[PAR_SS_DR_MAX_RANK] = */ {0,0,0,0,0}, - /* hsize_t chunk_dims[PAR_SS_DR_MAX_RANK] = */ {0,0,0,0,0}, - /* hsize_t start[PAR_SS_DR_MAX_RANK] = */ {0,0,0,0,0}, - /* hsize_t stride[PAR_SS_DR_MAX_RANK] = */ {0,0,0,0,0}, - /* hsize_t count[PAR_SS_DR_MAX_RANK] = */ {0,0,0,0,0}, - /* hsize_t block[PAR_SS_DR_MAX_RANK] = */ {0,0,0,0,0}, + /* hsize_t dims[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0}, + /* hsize_t chunk_dims[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0}, + /* hsize_t start[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0}, + /* hsize_t stride[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0}, + /* hsize_t count[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0}, + /* hsize_t block[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0}, /* hsize_t * start_ptr = */ NULL, /* hsize_t * stride_ptr = */ NULL, /* hsize_t * count_ptr = */ NULL, @@ -2041,25 +1758,19 @@ contig_hs_dr_pio_test__run_test(const int test_num, /* int max_skips = */ 0, /* int64_t total_tests = */ 0, /* int64_t tests_run = */ 0, - /* int64_t tests_skipped = */ 0 - }; - struct hs_dr_pio_test_vars_t * tv_ptr = &test_vars; + /* int64_t tests_skipped = */ 0}; + struct hs_dr_pio_test_vars_t *tv_ptr = &test_vars; - hs_dr_pio_test__setup(test_num, edge_size, -1, chunk_edge_size, - small_rank, large_rank, use_collective_io, + hs_dr_pio_test__setup(test_num, edge_size, -1, chunk_edge_size, small_rank, large_rank, use_collective_io, dset_type, express_test, tv_ptr); - /* initialize the local copy of mpi_rank */ - mpi_rank = tv_ptr->mpi_rank; - /* initialize skips & max_skips */ - tv_ptr->skips = *skips_ptr; + tv_ptr->skips = *skips_ptr; tv_ptr->max_skips = max_skips; #if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG - if ( MAINPROCESS ) { - HDfprintf(stdout, "test %d: small rank = %d, large rank = %d.\n", - test_num, small_rank, large_rank); + if (MAINPROCESS) { + HDfprintf(stdout, "test %d: small rank = %d, large rank = %d.\n", test_num, small_rank, large_rank); HDfprintf(stdout, "test %d: Initialization complete.\n", test_num); } #endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */ @@ -2074,26 +1785,24 @@ contig_hs_dr_pio_test__run_test(const int test_num, */ #if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG - if ( MAINPROCESS ) { + if (MAINPROCESS) { HDfprintf(stdout, "test %d: running contig_hs_dr_pio_test__d2m_l2s.\n", test_num); } #endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */ contig_hs_dr_pio_test__d2m_l2s(tv_ptr); - /* Second, read slices of the on disk small data set into slices * through the in memory large data set, and verify that the correct * data (and only the correct data) is read. */ #if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG - if ( MAINPROCESS ) { + if (MAINPROCESS) { HDfprintf(stdout, "test %d: running contig_hs_dr_pio_test__d2m_s2l.\n", test_num); } #endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */ contig_hs_dr_pio_test__d2m_s2l(tv_ptr); - /* now we go in the opposite direction, verifying that we can write * from memory to file using selections of different rank that * H5Sselect_shape_same() views as being of the same shape. @@ -2106,13 +1815,12 @@ contig_hs_dr_pio_test__run_test(const int test_num, */ #if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG - if ( MAINPROCESS ) { + if (MAINPROCESS) { HDfprintf(stdout, "test %d: running contig_hs_dr_pio_test__m2d_l2s.\n", test_num); } #endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */ contig_hs_dr_pio_test__m2d_l2s(tv_ptr); - /* Now write the contents of the process's slice of the in memory * small data set to slices of the on disk large data set. After * each write, read the process's slice of the large data set back @@ -2122,25 +1830,24 @@ contig_hs_dr_pio_test__run_test(const int test_num, */ #if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG - if ( MAINPROCESS ) { + if (MAINPROCESS) { HDfprintf(stdout, "test %d: running contig_hs_dr_pio_test__m2d_s2l.\n", test_num); } #endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */ contig_hs_dr_pio_test__m2d_s2l(tv_ptr); #if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG - if ( MAINPROCESS ) { - HDfprintf(stdout, - "test %d: Subtests complete -- tests run/skipped/total = %lld/%lld/%lld.\n", - test_num, (long long)(tv_ptr->tests_run), (long long)(tv_ptr->tests_skipped), - (long long)(tv_ptr->total_tests)); + if (MAINPROCESS) { + HDfprintf(stdout, "test %d: Subtests complete -- tests run/skipped/total = %lld/%lld/%lld.\n", + test_num, (long long)(tv_ptr->tests_run), (long long)(tv_ptr->tests_skipped), + (long long)(tv_ptr->total_tests)); } #endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */ hs_dr_pio_test__takedown(tv_ptr); #if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG - if ( MAINPROCESS ) { + if (MAINPROCESS) { HDfprintf(stdout, "test %d: Takedown complete.\n", test_num); } #endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */ @@ -2154,7 +1861,6 @@ contig_hs_dr_pio_test__run_test(const int test_num, } /* contig_hs_dr_pio_test__run_test() */ - /*------------------------------------------------------------------------- * Function: contig_hs_dr_pio_test(ShapeSameTestMethods sstest_type) * @@ -2173,28 +1879,28 @@ contig_hs_dr_pio_test__run_test(const int test_num, static void contig_hs_dr_pio_test(ShapeSameTestMethods sstest_type) { - int express_test; - int local_express_test; - int mpi_rank = -1; - int mpi_size; - int test_num = 0; - int edge_size; - int chunk_edge_size = 0; - int small_rank; - int large_rank; - int mpi_result; - int skips = 0; - int max_skips = 0; + int express_test; + int local_express_test; + int mpi_rank = -1; + int mpi_size; + int test_num = 0; + int edge_size; + int chunk_edge_size = 0; + int small_rank; + int large_rank; + int mpi_result; + int skips = 0; + int max_skips = 0; /* The following table list the number of sub-tests skipped between * each test that is actually executed as a function of the express * test level. Note that any value in excess of 4880 will cause all * sub tests to be skipped. */ - int max_skips_tbl[4] = {0, 4, 64, 1024}; - hid_t dset_type = H5T_NATIVE_UINT; - int64_t total_tests = 0; - int64_t tests_run = 0; - int64_t tests_skipped = 0; + int max_skips_tbl[4] = {0, 4, 64, 1024}; + hid_t dset_type = H5T_NATIVE_UINT; + int64_t total_tests = 0; + int64_t tests_run = 0; + int64_t tests_skipped = 0; HDcompile_assert(sizeof(uint32_t) == sizeof(unsigned)); @@ -2205,45 +1911,33 @@ contig_hs_dr_pio_test(ShapeSameTestMethods sstest_type) local_express_test = GetTestExpress(); - mpi_result = MPI_Allreduce((void *)&local_express_test, - (void *)&express_test, - 1, - MPI_INT, - MPI_MAX, + mpi_result = MPI_Allreduce((void *)&local_express_test, (void *)&express_test, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD); - VRFY((mpi_result == MPI_SUCCESS ), "MPI_Allreduce(0) succeeded"); + VRFY((mpi_result == MPI_SUCCESS), "MPI_Allreduce(0) succeeded"); - if ( local_express_test < 0 ) { + if (local_express_test < 0) { max_skips = max_skips_tbl[0]; - } else if ( local_express_test > 3 ) { + } + else if (local_express_test > 3) { max_skips = max_skips_tbl[3]; - } else { + } + else { max_skips = max_skips_tbl[local_express_test]; } - for ( large_rank = 3; large_rank <= PAR_SS_DR_MAX_RANK; large_rank++ ) { + for (large_rank = 3; large_rank <= PAR_SS_DR_MAX_RANK; large_rank++) { - for ( small_rank = 2; small_rank < large_rank; small_rank++ ) { + for (small_rank = 2; small_rank < large_rank; small_rank++) { - switch(sstest_type){ + switch (sstest_type) { case IND_CONTIG: /* contiguous data set, independent I/O */ chunk_edge_size = 0; - contig_hs_dr_pio_test__run_test(test_num, - edge_size, - chunk_edge_size, - small_rank, - large_rank, - FALSE, - dset_type, - express_test, - &skips, - max_skips, - &total_tests, - &tests_run, - &tests_skipped); + contig_hs_dr_pio_test__run_test(test_num, edge_size, chunk_edge_size, small_rank, + large_rank, FALSE, dset_type, express_test, &skips, + max_skips, &total_tests, &tests_run, &tests_skipped); test_num++; break; /* end of case IND_CONTIG */ @@ -2252,19 +1946,9 @@ contig_hs_dr_pio_test(ShapeSameTestMethods sstest_type) /* contiguous data set, collective I/O */ chunk_edge_size = 0; - contig_hs_dr_pio_test__run_test(test_num, - edge_size, - chunk_edge_size, - small_rank, - large_rank, - TRUE, - dset_type, - express_test, - &skips, - max_skips, - &total_tests, - &tests_run, - &tests_skipped); + contig_hs_dr_pio_test__run_test(test_num, edge_size, chunk_edge_size, small_rank, + large_rank, TRUE, dset_type, express_test, &skips, + max_skips, &total_tests, &tests_run, &tests_skipped); test_num++; break; /* end of case COL_CONTIG */ @@ -2273,19 +1957,9 @@ contig_hs_dr_pio_test(ShapeSameTestMethods sstest_type) /* chunked data set, independent I/O */ chunk_edge_size = 5; - contig_hs_dr_pio_test__run_test(test_num, - edge_size, - chunk_edge_size, - small_rank, - large_rank, - FALSE, - dset_type, - express_test, - &skips, - max_skips, - &total_tests, - &tests_run, - &tests_skipped); + contig_hs_dr_pio_test__run_test(test_num, edge_size, chunk_edge_size, small_rank, + large_rank, FALSE, dset_type, express_test, &skips, + max_skips, &total_tests, &tests_run, &tests_skipped); test_num++; break; /* end of case IND_CHUNKED */ @@ -2294,19 +1968,9 @@ contig_hs_dr_pio_test(ShapeSameTestMethods sstest_type) /* chunked data set, collective I/O */ chunk_edge_size = 5; - contig_hs_dr_pio_test__run_test(test_num, - edge_size, - chunk_edge_size, - small_rank, - large_rank, - TRUE, - dset_type, - express_test, - &skips, - max_skips, - &total_tests, - &tests_run, - &tests_skipped); + contig_hs_dr_pio_test__run_test(test_num, edge_size, chunk_edge_size, small_rank, + large_rank, TRUE, dset_type, express_test, &skips, + max_skips, &total_tests, &tests_run, &tests_skipped); test_num++; break; /* end of case COL_CHUNKED */ @@ -2317,16 +1981,16 @@ contig_hs_dr_pio_test(ShapeSameTestMethods sstest_type) } /* end of switch(sstest_type) */ #if CONTIG_HS_DR_PIO_TEST__DEBUG - if ( ( MAINPROCESS ) && ( tests_skipped > 0 ) ) { - HDfprintf(stdout, " run/skipped/total = %lld/%lld/%lld.\n", - tests_run, tests_skipped, total_tests); + if ((MAINPROCESS) && (tests_skipped > 0)) { + HDfprintf(stdout, " run/skipped/total = %lld/%lld/%lld.\n", tests_run, tests_skipped, + total_tests); } #endif /* CONTIG_HS_DR_PIO_TEST__DEBUG */ } } - if ( ( MAINPROCESS ) && ( tests_skipped > 0 ) ) { - HDfprintf(stdout, " %lld of %lld subtests skipped to expedite testing.\n", + if ((MAINPROCESS) && (tests_skipped > 0)) { + HDfprintf(stdout, " %" PRId64 " of %" PRId64 " subtests skipped to expedite testing.\n", tests_skipped, total_tests); } @@ -2334,7 +1998,6 @@ contig_hs_dr_pio_test(ShapeSameTestMethods sstest_type) } /* contig_hs_dr_pio_test() */ - /**************************************************************** ** ** ckrbrd_hs_dr_pio_test__slct_ckrbrd(): @@ -2345,8 +2008,8 @@ contig_hs_dr_pio_test(ShapeSameTestMethods sstest_type) ** edge_size, and a checker_edge_size, select a checker ** board selection of a sel_rank (sel_rank < tgt_rank) ** dimensional slice through the dataspace parallel to the -** sel_rank fastest changing indicies, with origin (in the -** higher indicies) as indicated by the start array. +** sel_rank fastest changing indices, with origin (in the +** higher indices) as indicated by the start array. ** ** Note that this function, like all its relatives, is ** hard coded to presume a maximum dataspace rank of 5. @@ -2361,53 +2024,47 @@ contig_hs_dr_pio_test(ShapeSameTestMethods sstest_type) #define CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG 0 static void -ckrbrd_hs_dr_pio_test__slct_ckrbrd(const int mpi_rank, - const hid_t tgt_sid, - const int tgt_rank, - const int edge_size, - const int checker_edge_size, - const int sel_rank, +ckrbrd_hs_dr_pio_test__slct_ckrbrd(const int mpi_rank, const hid_t tgt_sid, const int tgt_rank, + const int edge_size, const int checker_edge_size, const int sel_rank, hsize_t sel_start[]) { #if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG - const char * fcnName = "ckrbrd_hs_dr_pio_test__slct_ckrbrd():"; + const char *fcnName = "ckrbrd_hs_dr_pio_test__slct_ckrbrd():"; #endif - hbool_t first_selection = TRUE; - int i, j, k, l, m; - int n_cube_offset; - int sel_offset; - const int test_max_rank = PAR_SS_DR_MAX_RANK; /* must update code if */ - /* this changes */ - hsize_t base_count; - hsize_t offset_count; - hsize_t start[PAR_SS_DR_MAX_RANK]; - hsize_t stride[PAR_SS_DR_MAX_RANK]; - hsize_t count[PAR_SS_DR_MAX_RANK]; - hsize_t block[PAR_SS_DR_MAX_RANK]; - herr_t ret; /* Generic return value */ - - HDassert( edge_size >= 6 ); - HDassert( 0 < checker_edge_size ); - HDassert( checker_edge_size <= edge_size ); - HDassert( 0 < sel_rank ); - HDassert( sel_rank <= tgt_rank ); - HDassert( tgt_rank <= test_max_rank ); - HDassert( test_max_rank <= PAR_SS_DR_MAX_RANK ); + hbool_t first_selection = TRUE; + int i, j, k, l, m; + int n_cube_offset; + int sel_offset; + const int test_max_rank = PAR_SS_DR_MAX_RANK; /* must update code if */ + /* this changes */ + hsize_t base_count; + hsize_t offset_count; + hsize_t start[PAR_SS_DR_MAX_RANK]; + hsize_t stride[PAR_SS_DR_MAX_RANK]; + hsize_t count[PAR_SS_DR_MAX_RANK]; + hsize_t block[PAR_SS_DR_MAX_RANK]; + herr_t ret; /* Generic return value */ + + HDassert(edge_size >= 6); + HDassert(0 < checker_edge_size); + HDassert(checker_edge_size <= edge_size); + HDassert(0 < sel_rank); + HDassert(sel_rank <= tgt_rank); + HDassert(tgt_rank <= test_max_rank); + HDassert(test_max_rank <= PAR_SS_DR_MAX_RANK); sel_offset = test_max_rank - sel_rank; - HDassert( sel_offset >= 0 ); + HDassert(sel_offset >= 0); n_cube_offset = test_max_rank - tgt_rank; - HDassert( n_cube_offset >= 0 ); - HDassert( n_cube_offset <= sel_offset ); + HDassert(n_cube_offset >= 0); + HDassert(n_cube_offset <= sel_offset); #if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG - HDfprintf(stdout, "%s:%d: edge_size/checker_edge_size = %d/%d\n", - fcnName, mpi_rank, edge_size, checker_edge_size); - HDfprintf(stdout, "%s:%d: sel_rank/sel_offset = %d/%d.\n", - fcnName, mpi_rank, sel_rank, sel_offset); - HDfprintf(stdout, "%s:%d: tgt_rank/n_cube_offset = %d/%d.\n", - fcnName, mpi_rank, tgt_rank, n_cube_offset); + HDfprintf(stdout, "%s:%d: edge_size/checker_edge_size = %d/%d\n", fcnName, mpi_rank, edge_size, + checker_edge_size); + HDfprintf(stdout, "%s:%d: sel_rank/sel_offset = %d/%d.\n", fcnName, mpi_rank, sel_rank, sel_offset); + HDfprintf(stdout, "%s:%d: tgt_rank/n_cube_offset = %d/%d.\n", fcnName, mpi_rank, tgt_rank, n_cube_offset); #endif /* CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */ /* First, compute the base count (which assumes start == 0 @@ -2425,14 +2082,14 @@ ckrbrd_hs_dr_pio_test__slct_ckrbrd(const int mpi_rank, base_count = (hsize_t)(edge_size / (checker_edge_size * 2)); - if ( (edge_size % (checker_edge_size * 2)) > 0 ) { + if ((edge_size % (checker_edge_size * 2)) > 0) { base_count++; } offset_count = (hsize_t)((edge_size - checker_edge_size) / (checker_edge_size * 2)); - if ( ((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0 ) { + if (((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0) { offset_count++; } @@ -2442,217 +2099,187 @@ ckrbrd_hs_dr_pio_test__slct_ckrbrd(const int mpi_rank, * the checker board. */ i = 0; - while ( i < n_cube_offset ) { + while (i < n_cube_offset) { /* these values should never be used */ - start[i] = 0; + start[i] = 0; stride[i] = 0; - count[i] = 0; - block[i] = 0; + count[i] = 0; + block[i] = 0; i++; } - while ( i < sel_offset ) { + while (i < sel_offset) { - start[i] = sel_start[i]; + start[i] = sel_start[i]; stride[i] = (hsize_t)(2 * edge_size); - count[i] = 1; - block[i] = 1; + count[i] = 1; + block[i] = 1; i++; } - while ( i < test_max_rank ) { + while (i < test_max_rank) { stride[i] = (hsize_t)(2 * checker_edge_size); - block[i] = (hsize_t)checker_edge_size; + block[i] = (hsize_t)checker_edge_size; i++; } i = 0; do { - if ( 0 >= sel_offset ) { + if (0 >= sel_offset) { - if ( i == 0 ) { + if (i == 0) { start[0] = 0; count[0] = base_count; - - } else { + } + else { start[0] = (hsize_t)checker_edge_size; count[0] = offset_count; - } } j = 0; do { - if ( 1 >= sel_offset ) { + if (1 >= sel_offset) { - if ( j == 0 ) { + if (j == 0) { start[1] = 0; count[1] = base_count; - - } else { + } + else { start[1] = (hsize_t)checker_edge_size; count[1] = offset_count; - } } k = 0; do { - if ( 2 >= sel_offset ) { + if (2 >= sel_offset) { - if ( k == 0 ) { + if (k == 0) { start[2] = 0; count[2] = base_count; - - } else { + } + else { start[2] = (hsize_t)checker_edge_size; count[2] = offset_count; - } } l = 0; do { - if ( 3 >= sel_offset ) { + if (3 >= sel_offset) { - if ( l == 0 ) { + if (l == 0) { start[3] = 0; count[3] = base_count; - - } else { + } + else { start[3] = (hsize_t)checker_edge_size; count[3] = offset_count; - } } m = 0; do { - if ( 4 >= sel_offset ) { + if (4 >= sel_offset) { - if ( m == 0 ) { + if (m == 0) { start[4] = 0; count[4] = base_count; - - } else { + } + else { start[4] = (hsize_t)checker_edge_size; count[4] = offset_count; - } } - if ( ((i + j + k + l + m) % 2) == 0 ) { + if (((i + j + k + l + m) % 2) == 0) { #if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG - HDfprintf(stdout, "%s%d: *** first_selection = %d ***\n", - fcnName, mpi_rank, (int)first_selection); - HDfprintf(stdout, "%s:%d: i/j/k/l/m = %d/%d/%d/%d/%d\n", - fcnName, mpi_rank, i, j, k, l, m); - HDfprintf(stdout, - "%s:%d: start = %d %d %d %d %d.\n", - fcnName, mpi_rank, (int)start[0], (int)start[1], - (int)start[2], (int)start[3], (int)start[4]); - HDfprintf(stdout, - "%s:%d: stride = %d %d %d %d %d.\n", - fcnName, mpi_rank, (int)stride[0], (int)stride[1], - (int)stride[2], (int)stride[3], (int)stride[4]); - HDfprintf(stdout, - "%s:%d: count = %d %d %d %d %d.\n", - fcnName, mpi_rank, (int)count[0], (int)count[1], - (int)count[2], (int)count[3], (int)count[4]); - HDfprintf(stdout, - "%s:%d: block = %d %d %d %d %d.\n", - fcnName, mpi_rank, (int)block[0], (int)block[1], - (int)block[2], (int)block[3], (int)block[4]); - HDfprintf(stdout, "%s:%d: n-cube extent dims = %d.\n", - fcnName, mpi_rank, + HDfprintf(stdout, "%s%d: *** first_selection = %d ***\n", fcnName, mpi_rank, + (int)first_selection); + HDfprintf(stdout, "%s:%d: i/j/k/l/m = %d/%d/%d/%d/%d\n", fcnName, mpi_rank, i, j, + k, l, m); + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, mpi_rank, + (int)start[0], (int)start[1], (int)start[2], (int)start[3], + (int)start[4]); + HDfprintf(stdout, "%s:%d: stride = %d %d %d %d %d.\n", fcnName, mpi_rank, + (int)stride[0], (int)stride[1], (int)stride[2], (int)stride[3], + (int)stride[4]); + HDfprintf(stdout, "%s:%d: count = %d %d %d %d %d.\n", fcnName, mpi_rank, + (int)count[0], (int)count[1], (int)count[2], (int)count[3], + (int)count[4]); + HDfprintf(stdout, "%s:%d: block = %d %d %d %d %d.\n", fcnName, mpi_rank, + (int)block[0], (int)block[1], (int)block[2], (int)block[3], + (int)block[4]); + HDfprintf(stdout, "%s:%d: n-cube extent dims = %d.\n", fcnName, mpi_rank, H5Sget_simple_extent_ndims(tgt_sid)); - HDfprintf(stdout, "%s:%d: selection rank = %d.\n", - fcnName, mpi_rank, sel_rank); + HDfprintf(stdout, "%s:%d: selection rank = %d.\n", fcnName, mpi_rank, sel_rank); #endif - if ( first_selection ) { + if (first_selection) { first_selection = FALSE; - ret = H5Sselect_hyperslab - ( - tgt_sid, - H5S_SELECT_SET, - &(start[n_cube_offset]), - &(stride[n_cube_offset]), - &(count[n_cube_offset]), - &(block[n_cube_offset]) - ); + ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_SET, &(start[n_cube_offset]), + &(stride[n_cube_offset]), &(count[n_cube_offset]), + &(block[n_cube_offset])); VRFY((ret != FAIL), "H5Sselect_hyperslab(SET) succeeded"); + } + else { - } else { - - ret = H5Sselect_hyperslab - ( - tgt_sid, - H5S_SELECT_OR, - &(start[n_cube_offset]), - &(stride[n_cube_offset]), - &(count[n_cube_offset]), - &(block[n_cube_offset]) - ); + ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_OR, &(start[n_cube_offset]), + &(stride[n_cube_offset]), &(count[n_cube_offset]), + &(block[n_cube_offset])); VRFY((ret != FAIL), "H5Sselect_hyperslab(OR) succeeded"); - } } m++; - } while ( ( m <= 1 ) && - ( 4 >= sel_offset ) ); + } while ((m <= 1) && (4 >= sel_offset)); l++; - } while ( ( l <= 1 ) && - ( 3 >= sel_offset ) ); + } while ((l <= 1) && (3 >= sel_offset)); k++; - } while ( ( k <= 1 ) && - ( 2 >= sel_offset ) ); + } while ((k <= 1) && (2 >= sel_offset)); j++; - } while ( ( j <= 1 ) && - ( 1 >= sel_offset ) ); - + } while ((j <= 1) && (1 >= sel_offset)); i++; - } while ( ( i <= 1 ) && - ( 0 >= sel_offset ) ); + } while ((i <= 1) && (0 >= sel_offset)); #if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG - HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", - fcnName, mpi_rank, (int)H5Sget_select_npoints(tgt_sid)); + HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", fcnName, mpi_rank, + (int)H5Sget_select_npoints(tgt_sid)); #endif /* CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */ /* Clip the selection back to the dataspace proper. */ - for ( i = 0; i < test_max_rank; i++ ) { + for (i = 0; i < test_max_rank; i++) { start[i] = 0; stride[i] = (hsize_t)edge_size; @@ -2660,14 +2287,13 @@ ckrbrd_hs_dr_pio_test__slct_ckrbrd(const int mpi_rank, block[i] = (hsize_t)edge_size; } - ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_AND, - start, stride, count, block); + ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_AND, start, stride, count, block); VRFY((ret != FAIL), "H5Sselect_hyperslab(AND) succeeded"); #if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG - HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", - fcnName, mpi_rank, (int)H5Sget_select_npoints(tgt_sid)); + HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", fcnName, mpi_rank, + (int)H5Sget_select_npoints(tgt_sid)); HDfprintf(stdout, "%s%d: done.\n", fcnName, mpi_rank); #endif /* CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */ @@ -2675,7 +2301,6 @@ ckrbrd_hs_dr_pio_test__slct_ckrbrd(const int mpi_rank, } /* ckrbrd_hs_dr_pio_test__slct_ckrbrd() */ - /**************************************************************** ** ** ckrbrd_hs_dr_pio_test__verify_data(): @@ -2693,7 +2318,7 @@ ckrbrd_hs_dr_pio_test__slct_ckrbrd(const int mpi_rank, ** or writing a checker board selection of an m (1 <= m < ** rank) dimensional slice through this processes slice ** of the target data set. Also, this slice must be parallel -** to the fastest changing indicies. +** to the fastest changing indices. ** ** It is further presumed that the buffer was zeroed before ** the read/write, and that the full target data set (i.e. @@ -2728,43 +2353,40 @@ ckrbrd_hs_dr_pio_test__slct_ckrbrd(const int mpi_rank, ** of the buffer resides either at the origin of either ** a selected or an unselected checker. (Translation: ** if partial checkers appear in the buffer, they will -** intersect the edges of the n-cube oposite the origin.) +** intersect the edges of the n-cube opposite the origin.) ** ****************************************************************/ #define CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG 0 static hbool_t -ckrbrd_hs_dr_pio_test__verify_data(uint32_t * buf_ptr, - const int rank, - const int edge_size, - const int checker_edge_size, - uint32_t first_expected_val, +ckrbrd_hs_dr_pio_test__verify_data(uint32_t *buf_ptr, const int rank, const int edge_size, + const int checker_edge_size, uint32_t first_expected_val, hbool_t buf_starts_in_checker) { #if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG - const char * fcnName = "ckrbrd_hs_dr_pio_test__verify_data():"; + const char *fcnName = "ckrbrd_hs_dr_pio_test__verify_data():"; #endif - hbool_t good_data = TRUE; - hbool_t in_checker; - hbool_t start_in_checker[5]; - uint32_t expected_value; - uint32_t * val_ptr; - int i, j, k, l, m; /* to track position in n-cube */ - int v, w, x, y, z; /* to track position in checker */ + hbool_t good_data = TRUE; + hbool_t in_checker; + hbool_t start_in_checker[5]; + uint32_t expected_value; + uint32_t *val_ptr; + int i, j, k, l, m; /* to track position in n-cube */ + int v, w, x, y, z; /* to track position in checker */ const int test_max_rank = 5; /* code changes needed if this is increased */ - HDassert( buf_ptr != NULL ); - HDassert( 0 < rank ); - HDassert( rank <= test_max_rank ); - HDassert( edge_size >= 6 ); - HDassert( 0 < checker_edge_size ); - HDassert( checker_edge_size <= edge_size ); - HDassert( test_max_rank <= PAR_SS_DR_MAX_RANK ); + HDassert(buf_ptr != NULL); + HDassert(0 < rank); + HDassert(rank <= test_max_rank); + HDassert(edge_size >= 6); + HDassert(0 < checker_edge_size); + HDassert(checker_edge_size <= edge_size); + HDassert(test_max_rank <= PAR_SS_DR_MAX_RANK); #if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG - int mpi_rank; + int mpi_rank; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); HDfprintf(stdout, "%s mpi_rank = %d.\n", fcnName, mpi_rank); @@ -2776,121 +2398,109 @@ ckrbrd_hs_dr_pio_test__verify_data(uint32_t * buf_ptr, } #endif - val_ptr = buf_ptr; - expected_value = first_expected_val; +val_ptr = buf_ptr; +expected_value = first_expected_val; - i = 0; - v = 0; - start_in_checker[0] = buf_starts_in_checker; - do - { - if ( v >= checker_edge_size ) { +i = 0; +v = 0; +start_in_checker[0] = buf_starts_in_checker; +do { + if (v >= checker_edge_size) { + + start_in_checker[0] = !start_in_checker[0]; + v = 0; + } + + j = 0; + w = 0; + start_in_checker[1] = start_in_checker[0]; + do { + if (w >= checker_edge_size) { - start_in_checker[0] = ! start_in_checker[0]; - v = 0; + start_in_checker[1] = !start_in_checker[1]; + w = 0; } - j = 0; - w = 0; - start_in_checker[1] = start_in_checker[0]; - do - { - if ( w >= checker_edge_size ) { - - start_in_checker[1] = ! start_in_checker[1]; - w = 0; + k = 0; + x = 0; + start_in_checker[2] = start_in_checker[1]; + do { + if (x >= checker_edge_size) { + + start_in_checker[2] = !start_in_checker[2]; + x = 0; } - k = 0; - x = 0; - start_in_checker[2] = start_in_checker[1]; - do - { - if ( x >= checker_edge_size ) { - - start_in_checker[2] = ! start_in_checker[2]; - x = 0; - } + l = 0; + y = 0; + start_in_checker[3] = start_in_checker[2]; + do { + if (y >= checker_edge_size) { - l = 0; - y = 0; - start_in_checker[3] = start_in_checker[2]; - do - { - if ( y >= checker_edge_size ) { - - start_in_checker[3] = ! start_in_checker[3]; - y = 0; - } + start_in_checker[3] = !start_in_checker[3]; + y = 0; + } - m = 0; - z = 0; + m = 0; + z = 0; #if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG - HDfprintf(stdout, "%d, %d, %d, %d, %d:", i, j, k, l, m); + HDfprintf(stdout, "%d, %d, %d, %d, %d:", i, j, k, l, m); #endif - in_checker = start_in_checker[3]; - do - { + in_checker = start_in_checker[3]; + do { #if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG - HDfprintf(stdout, " %d", (int)(*val_ptr)); + HDfprintf(stdout, " %d", (int)(*val_ptr)); #endif - if ( z >= checker_edge_size ) { + if (z >= checker_edge_size) { - in_checker = ! in_checker; - z = 0; - } - - if ( in_checker ) { - - if ( *val_ptr != expected_value ) { - - good_data = FALSE; - } + in_checker = !in_checker; + z = 0; + } - /* zero out buffer for re-use */ - *val_ptr = 0; + if (in_checker) { - } else if ( *val_ptr != 0 ) { + if (*val_ptr != expected_value) { good_data = FALSE; + } - /* zero out buffer for re-use */ - *val_ptr = 0; + /* zero out buffer for re-use */ + *val_ptr = 0; + } + else if (*val_ptr != 0) { - } + good_data = FALSE; - val_ptr++; - expected_value++; - m++; - z++; + /* zero out buffer for re-use */ + *val_ptr = 0; + } + + val_ptr++; + expected_value++; + m++; + z++; - } while ( ( rank >= (test_max_rank - 4) ) && - ( m < edge_size ) ); + } while ((rank >= (test_max_rank - 4)) && (m < edge_size)); #if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG - HDfprintf(stdout, "\n"); + HDfprintf(stdout, "\n"); #endif - l++; - y++; - } while ( ( rank >= (test_max_rank - 3) ) && - ( l < edge_size ) ); - k++; - x++; - } while ( ( rank >= (test_max_rank - 2) ) && - ( k < edge_size ) ); - j++; - w++; - } while ( ( rank >= (test_max_rank - 1) ) && - ( j < edge_size ) ); - i++; - v++; - } while ( ( rank >= test_max_rank ) && - ( i < edge_size ) ); + l++; + y++; + } while ((rank >= (test_max_rank - 3)) && (l < edge_size)); + k++; + x++; + } while ((rank >= (test_max_rank - 2)) && (k < edge_size)); + j++; + w++; + } while ((rank >= (test_max_rank - 1)) && (j < edge_size)); + i++; + v++; +} while ((rank >= test_max_rank) && (i < edge_size)); - return(good_data); +return (good_data); } /* ckrbrd_hs_dr_pio_test__verify_data() */ - /*------------------------------------------------------------------------- * Function: ckrbrd_hs_dr_pio_test__d2m_l2s() * @@ -2917,24 +2527,23 @@ ckrbrd_hs_dr_pio_test__verify_data(uint32_t * buf_ptr, #define CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG 0 static void -ckrbrd_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) +ckrbrd_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t *tv_ptr) { #if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG const char *fcnName = "ckrbrd_hs_dr_pio_test__d2m_l2s()"; - uint32_t * ptr_0; + uint32_t * ptr_0; #endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */ - hbool_t data_ok = FALSE; - int i, j, k, l; - uint32_t expected_value; - int mpi_rank; /* needed by VRFY */ - hsize_t sel_start[PAR_SS_DR_MAX_RANK]; - htri_t check; /* Shape comparison return value */ - herr_t ret; /* Generic return value */ + hbool_t data_ok = FALSE; + int i, j, k, l; + uint32_t expected_value; + int mpi_rank; /* needed by VRFY */ + hsize_t sel_start[PAR_SS_DR_MAX_RANK]; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ /* initialize the local copy of mpi_rank */ mpi_rank = tv_ptr->mpi_rank; - /* first, verify that we can read from disk correctly using selections * of different rank that H5Sselect_shape_same() views as being of the * same shape. @@ -2949,24 +2558,19 @@ ckrbrd_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) */ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; - sel_start[tv_ptr->small_ds_offset] = (hsize_t)(tv_ptr->mpi_rank); - - ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, - tv_ptr->small_ds_slice_sid, - tv_ptr->small_rank - 1, - tv_ptr->edge_size, - tv_ptr->checker_edge_size, - tv_ptr->small_rank - 1, + sel_start[tv_ptr->small_ds_offset] = (hsize_t)(tv_ptr->mpi_rank); + + ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, tv_ptr->small_ds_slice_sid, tv_ptr->small_rank - 1, + tv_ptr->edge_size, tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, sel_start); /* zero out the buffer we will be reading into */ HDmemset(tv_ptr->small_ds_slice_buf, 0, sizeof(uint32_t) * tv_ptr->small_ds_slice_size); #if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG - HDfprintf(stdout, "%s:%d: initial small_ds_slice_buf = ", - fcnName, tv_ptr->mpi_rank); + HDfprintf(stdout, "%s:%d: initial small_ds_slice_buf = ", fcnName, tv_ptr->mpi_rank); ptr_0 = tv_ptr->small_ds_slice_buf; - for ( i = 0; i < (int)(tv_ptr->small_ds_slice_size); i++ ) { + for (i = 0; i < (int)(tv_ptr->small_ds_slice_size); i++) { HDfprintf(stdout, "%d ", (int)(*ptr_0)); ptr_0++; } @@ -2976,25 +2580,24 @@ ckrbrd_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) /* set up start, stride, count, and block -- note that we will * change start[] so as to read slices of the large cube. */ - for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - if ( (PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1) ) { + tv_ptr->count[i] = 1; + if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) { tv_ptr->block[i] = 1; - - } else { + } + else { tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } } #if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG - HDfprintf(stdout, - "%s:%d: reading slice from big ds on disk into small ds slice.\n", - fcnName, tv_ptr->mpi_rank); + HDfprintf(stdout, "%s:%d: reading slice from big ds on disk into small ds slice.\n", fcnName, + tv_ptr->mpi_rank); #endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */ /* in serial versions of this test, we loop through all the dimensions * of the large data set. However, in the parallel version, each @@ -3003,11 +2606,11 @@ ckrbrd_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) * mpi_rank, and don't itterate over it. */ - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) { i = tv_ptr->mpi_rank; - - } else { + } + else { i = 0; } @@ -3018,21 +2621,21 @@ ckrbrd_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) * test. */ - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) { j = tv_ptr->mpi_rank; - - } else { + } + else { j = 0; } do { - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) { k = tv_ptr->mpi_rank; - - } else { + } + else { k = 0; } @@ -3050,11 +2653,11 @@ ckrbrd_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) l = 0; do { - if ( (tv_ptr->skips)++ < tv_ptr->max_skips ) { /* skip the test */ + if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */ (tv_ptr->tests_skipped)++; - - } else { /* run the test */ + } + else { /* run the test */ tv_ptr->skips = 0; /* reset the skips counter */ @@ -3068,22 +2671,15 @@ ckrbrd_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) tv_ptr->start[3] = (hsize_t)l; tv_ptr->start[4] = 0; - HDassert((tv_ptr->start[0] == 0)||(0 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[1] == 0)||(1 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[2] == 0)||(2 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[3] == 0)||(3 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[4] == 0)||(4 < tv_ptr->small_ds_offset + 1)); - - ckrbrd_hs_dr_pio_test__slct_ckrbrd - ( - tv_ptr->mpi_rank, - tv_ptr->file_large_ds_sid_0, - tv_ptr->large_rank, - tv_ptr->edge_size, - tv_ptr->checker_edge_size, - tv_ptr->small_rank - 1, - tv_ptr->start - ); + HDassert((tv_ptr->start[0] == 0) || (0 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[1] == 0) || (1 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[2] == 0) || (2 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[3] == 0) || (3 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[4] == 0) || (4 < tv_ptr->small_ds_offset + 1)); + + ckrbrd_hs_dr_pio_test__slct_ckrbrd( + tv_ptr->mpi_rank, tv_ptr->file_large_ds_sid_0, tv_ptr->large_rank, tv_ptr->edge_size, + tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, tv_ptr->start); /* verify that H5Sselect_shape_same() reports the two * selections as having the same shape. @@ -3091,52 +2687,37 @@ ckrbrd_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) check = H5Sselect_shape_same(tv_ptr->small_ds_slice_sid, tv_ptr->file_large_ds_sid_0); VRFY((check == TRUE), "H5Sselect_shape_same passed"); - /* Read selection from disk */ #if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG - HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, - tv_ptr->mpi_rank, tv_ptr->start[0], tv_ptr->start[1], - tv_ptr->start[2], tv_ptr->start[3], tv_ptr->start[4]); - HDfprintf(stdout, "%s slice/file extent dims = %d/%d.\n", - fcnName, + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, tv_ptr->mpi_rank, + tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], tv_ptr->start[3], + tv_ptr->start[4]); + HDfprintf(stdout, "%s slice/file extent dims = %d/%d.\n", fcnName, H5Sget_simple_extent_ndims(tv_ptr->small_ds_slice_sid), H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_0)); #endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */ - ret = H5Dread(tv_ptr->large_dataset, - H5T_NATIVE_UINT32, - tv_ptr->small_ds_slice_sid, - tv_ptr->file_large_ds_sid_0, - tv_ptr->xfer_plist, - tv_ptr->small_ds_slice_buf); + ret = + H5Dread(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->small_ds_slice_sid, + tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_slice_buf); VRFY((ret >= 0), "H5Dread() slice from large ds succeeded."); #if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG - HDfprintf(stdout, "%s:%d: H5Dread() returns.\n", - fcnName, tv_ptr->mpi_rank); + HDfprintf(stdout, "%s:%d: H5Dread() returns.\n", fcnName, tv_ptr->mpi_rank); #endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */ /* verify that expected data is retrieved */ - expected_value = (uint32_t) - ((i * tv_ptr->edge_size * tv_ptr->edge_size * - tv_ptr->edge_size * tv_ptr->edge_size) + - (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + - (k * tv_ptr->edge_size * tv_ptr->edge_size) + - (l * tv_ptr->edge_size)); - - data_ok = ckrbrd_hs_dr_pio_test__verify_data - ( - tv_ptr->small_ds_slice_buf, - tv_ptr->small_rank - 1, - tv_ptr->edge_size, - tv_ptr->checker_edge_size, - expected_value, - (hbool_t)TRUE - ); - - VRFY((data_ok == TRUE), - "small slice read from large ds data good."); + expected_value = (uint32_t)( + (i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + + (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + + (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size)); + + data_ok = ckrbrd_hs_dr_pio_test__verify_data( + tv_ptr->small_ds_slice_buf, tv_ptr->small_rank - 1, tv_ptr->edge_size, + tv_ptr->checker_edge_size, expected_value, (hbool_t)TRUE); + + VRFY((data_ok == TRUE), "small slice read from large ds data good."); (tv_ptr->tests_run)++; } @@ -3145,23 +2726,16 @@ ckrbrd_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) (tv_ptr->total_tests)++; - } while ( ( tv_ptr->large_rank > 2 ) && - ( (tv_ptr->small_rank - 1) <= 1 ) && - ( l < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size)); k++; - } while ( ( tv_ptr->large_rank > 3 ) && - ( (tv_ptr->small_rank - 1) <= 2 ) && - ( k < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size)); j++; - } while ( ( tv_ptr->large_rank > 4 ) && - ( (tv_ptr->small_rank - 1) <= 3 ) && - ( j < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size)); return; } /* ckrbrd_hs_dr_pio_test__d2m_l2s() */ - /*------------------------------------------------------------------------- * Function: ckrbrd_hs_dr_pio_test__d2m_s2l() * @@ -3187,47 +2761,40 @@ ckrbrd_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) #define CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG 0 static void -ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) +ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t *tv_ptr) { #if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG const char *fcnName = "ckrbrd_hs_dr_pio_test__d2m_s2l()"; #endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG */ - hbool_t data_ok = FALSE; - int i, j, k, l; - size_t u; - size_t start_index; - size_t stop_index; - uint32_t expected_value; - uint32_t * ptr_1; - int mpi_rank; /* needed by VRFY */ - hsize_t sel_start[PAR_SS_DR_MAX_RANK]; - htri_t check; /* Shape comparison return value */ - herr_t ret; /* Generic return value */ + hbool_t data_ok = FALSE; + int i, j, k, l; + size_t u; + size_t start_index; + size_t stop_index; + uint32_t expected_value; + uint32_t *ptr_1; + int mpi_rank; /* needed by VRFY */ + hsize_t sel_start[PAR_SS_DR_MAX_RANK]; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ /* initialize the local copy of mpi_rank */ mpi_rank = tv_ptr->mpi_rank; - /* similarly, read slices of the on disk small data set into slices * through the in memory large data set, and verify that the correct * data (and only the correct data) is read. */ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; - sel_start[tv_ptr->small_ds_offset] = (hsize_t)(tv_ptr->mpi_rank); - - ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, - tv_ptr->file_small_ds_sid_0, - tv_ptr->small_rank, - tv_ptr->edge_size, - tv_ptr->checker_edge_size, - tv_ptr->small_rank - 1, + sel_start[tv_ptr->small_ds_offset] = (hsize_t)(tv_ptr->mpi_rank); + + ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, tv_ptr->file_small_ds_sid_0, tv_ptr->small_rank, + tv_ptr->edge_size, tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, sel_start); #if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG - HDfprintf(stdout, - "%s reading slices of on disk small data set into slices of big data set.\n", - fcnName); + HDfprintf(stdout, "%s reading slices of on disk small data set into slices of big data set.\n", fcnName); #endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG */ /* zero out the buffer we will be reading into */ @@ -3238,16 +2805,16 @@ ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) * into different slices of the process slice of the large data * set. */ - for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - if ( (PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1) ) { + tv_ptr->count[i] = 1; + if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) { tv_ptr->block[i] = 1; - - } else { + } + else { tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } @@ -3262,12 +2829,11 @@ ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) * over it. */ - - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) { i = tv_ptr->mpi_rank; - - } else { + } + else { i = 0; } @@ -3278,21 +2844,21 @@ ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) * test. */ - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) { j = tv_ptr->mpi_rank; - - } else { + } + else { j = 0; } do { - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) { k = tv_ptr->mpi_rank; - - } else { + } + else { k = 0; } @@ -3310,11 +2876,11 @@ ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) l = 0; do { - if ( (tv_ptr->skips)++ < tv_ptr->max_skips ) { /* skip the test */ + if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */ (tv_ptr->tests_skipped)++; - - } else { /* run the test */ + } + else { /* run the test */ tv_ptr->skips = 0; /* reset the skips counter */ @@ -3328,23 +2894,15 @@ ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) tv_ptr->start[3] = (hsize_t)l; tv_ptr->start[4] = 0; - HDassert((tv_ptr->start[0] == 0)||(0 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[1] == 0)||(1 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[2] == 0)||(2 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[3] == 0)||(3 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[4] == 0)||(4 < tv_ptr->small_ds_offset + 1)); - - ckrbrd_hs_dr_pio_test__slct_ckrbrd - ( - tv_ptr->mpi_rank, - tv_ptr->mem_large_ds_sid, - tv_ptr->large_rank, - tv_ptr->edge_size, - tv_ptr->checker_edge_size, - tv_ptr->small_rank - 1, - tv_ptr->start - ); + HDassert((tv_ptr->start[0] == 0) || (0 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[1] == 0) || (1 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[2] == 0) || (2 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[3] == 0) || (3 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[4] == 0) || (4 < tv_ptr->small_ds_offset + 1)); + ckrbrd_hs_dr_pio_test__slct_ckrbrd( + tv_ptr->mpi_rank, tv_ptr->mem_large_ds_sid, tv_ptr->large_rank, tv_ptr->edge_size, + tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, tv_ptr->start); /* verify that H5Sselect_shape_same() reports the two * selections as having the same shape. @@ -3352,55 +2910,45 @@ ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) check = H5Sselect_shape_same(tv_ptr->file_small_ds_sid_0, tv_ptr->mem_large_ds_sid); VRFY((check == TRUE), "H5Sselect_shape_same passed"); - /* Read selection from disk */ #if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG - HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", - fcnName, tv_ptr->mpi_rank, - tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], - tv_ptr->start[3], tv_ptr->start[4]); - HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", - fcnName, tv_ptr->mpi_rank, + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, tv_ptr->mpi_rank, + tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], tv_ptr->start[3], + tv_ptr->start[4]); + HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank, H5Sget_simple_extent_ndims(tv_ptr->large_ds_slice_sid), H5Sget_simple_extent_ndims(tv_ptr->file_small_ds_sid_0)); #endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG */ - ret = H5Dread(tv_ptr->small_dataset, - H5T_NATIVE_UINT32, - tv_ptr->mem_large_ds_sid, - tv_ptr->file_small_ds_sid_0, - tv_ptr->xfer_plist, - tv_ptr->large_ds_buf_1); + ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid, + tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1); VRFY((ret >= 0), "H5Dread() slice from small ds succeeded."); /* verify that the expected data and only the * expected data was read. */ - data_ok = TRUE; - ptr_1 = tv_ptr->large_ds_buf_1; - expected_value = - (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size); - start_index = (size_t)( - (i * tv_ptr->edge_size * tv_ptr->edge_size * - tv_ptr->edge_size * tv_ptr->edge_size) + + data_ok = TRUE; + ptr_1 = tv_ptr->large_ds_buf_1; + expected_value = (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size); + start_index = (size_t)( + (i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + - (k * tv_ptr->edge_size * tv_ptr->edge_size) + - (l * tv_ptr->edge_size)); + (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size)); stop_index = start_index + tv_ptr->small_ds_slice_size - 1; #if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG { int m, n; - HDfprintf(stdout, "%s:%d: expected_value = %d.\n", - fcnName, tv_ptr->mpi_rank, expected_value); - HDfprintf(stdout, "%s:%d: start/stop index = %d/%d.\n", - fcnName, tv_ptr->mpi_rank, start_index, stop_index); + HDfprintf(stdout, "%s:%d: expected_value = %d.\n", fcnName, tv_ptr->mpi_rank, + expected_value); + HDfprintf(stdout, "%s:%d: start/stop index = %d/%d.\n", fcnName, tv_ptr->mpi_rank, + start_index, stop_index); n = 0; - for ( m = 0; (unsigned)m < tv_ptr->large_ds_size; m ++ ) { + for (m = 0; (unsigned)m < tv_ptr->large_ds_size; m++) { HDfprintf(stdout, "%d ", (int)(*ptr_1)); ptr_1++; n++; - if ( n >= tv_ptr->edge_size ) { + if (n >= tv_ptr->edge_size) { HDfprintf(stdout, "\n"); n = 0; } @@ -3410,12 +2958,12 @@ ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) } #endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG */ - HDassert( start_index < stop_index ); - HDassert( stop_index <= tv_ptr->large_ds_size ); + HDassert(start_index < stop_index); + HDassert(stop_index <= tv_ptr->large_ds_size); - for ( u = 0; u < start_index; u++ ) { + for (u = 0; u < start_index; u++) { - if ( *ptr_1 != 0 ) { + if (*ptr_1 != 0) { data_ok = FALSE; } @@ -3426,28 +2974,19 @@ ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) ptr_1++; } - VRFY((data_ok == TRUE), - "slice read from small to large ds data good(1)."); - - data_ok = ckrbrd_hs_dr_pio_test__verify_data - ( - ptr_1, - tv_ptr->small_rank - 1, - tv_ptr->edge_size, - tv_ptr->checker_edge_size, - expected_value, - (hbool_t)TRUE - ); + VRFY((data_ok == TRUE), "slice read from small to large ds data good(1)."); - VRFY((data_ok == TRUE), - "slice read from small to large ds data good(2)."); + data_ok = ckrbrd_hs_dr_pio_test__verify_data(ptr_1, tv_ptr->small_rank - 1, + tv_ptr->edge_size, tv_ptr->checker_edge_size, + expected_value, (hbool_t)TRUE); + VRFY((data_ok == TRUE), "slice read from small to large ds data good(2)."); ptr_1 = tv_ptr->large_ds_buf_1 + stop_index + 1; - for ( u = stop_index + 1; u < tv_ptr->large_ds_size; u++ ) { + for (u = stop_index + 1; u < tv_ptr->large_ds_size; u++) { - if ( *ptr_1 != 0 ) { + if (*ptr_1 != 0) { data_ok = FALSE; } @@ -3458,8 +2997,7 @@ ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) ptr_1++; } - VRFY((data_ok == TRUE), - "slice read from small to large ds data good(3)."); + VRFY((data_ok == TRUE), "slice read from small to large ds data good(3)."); (tv_ptr->tests_run)++; } @@ -3468,23 +3006,16 @@ ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) (tv_ptr->total_tests)++; - } while ( ( tv_ptr->large_rank > 2 ) && - ( (tv_ptr->small_rank - 1) <= 1 ) && - ( l < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size)); k++; - } while ( ( tv_ptr->large_rank > 3 ) && - ( (tv_ptr->small_rank - 1) <= 2 ) && - ( k < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size)); j++; - } while ( ( tv_ptr->large_rank > 4 ) && - ( (tv_ptr->small_rank - 1) <= 3 ) && - ( j < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size)); return; } /* ckrbrd_hs_dr_pio_test__d2m_s2l() */ - /*------------------------------------------------------------------------- * Function: ckrbrd_hs_dr_pio_test__m2d_l2s() * @@ -3514,28 +3045,26 @@ ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) #define CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG 0 static void -ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) +ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t *tv_ptr) { #if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG const char *fcnName = "ckrbrd_hs_dr_pio_test__m2d_l2s()"; #endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG */ - hbool_t data_ok = FALSE; - hbool_t mis_match = FALSE; - int i, j, k, l; - size_t u; - size_t start_index; - size_t stop_index; - uint32_t expected_value; - uint32_t * ptr_1; - int mpi_rank; /* needed by VRFY */ - hsize_t sel_start[PAR_SS_DR_MAX_RANK]; - htri_t check; /* Shape comparison return value */ - herr_t ret; /* Generic return value */ + hbool_t data_ok = FALSE; + int i, j, k, l; + size_t u; + size_t start_index; + size_t stop_index; + uint32_t expected_value; + uint32_t *ptr_1; + int mpi_rank; /* needed by VRFY */ + hsize_t sel_start[PAR_SS_DR_MAX_RANK]; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ /* initialize the local copy of mpi_rank */ mpi_rank = tv_ptr->mpi_rank; - /* now we go in the opposite direction, verifying that we can write * from memory to file using selections of different rank that * H5Sselect_shape_same() views as being of the same shape. @@ -3547,61 +3076,47 @@ ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) * the memory and file selections. */ - tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank); + tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank); tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1)); - tv_ptr->count[0] = 1; - tv_ptr->block[0] = 1; + tv_ptr->count[0] = 1; + tv_ptr->block[0] = 1; - for ( i = 1; i < tv_ptr->large_rank; i++ ) { + for (i = 1; i < tv_ptr->large_rank; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); + tv_ptr->count[i] = 1; + tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } - ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) suceeded"); - - ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded"); + ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) succeeded"); + ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded"); sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; - sel_start[tv_ptr->small_ds_offset] = (hsize_t)(tv_ptr->mpi_rank); - - ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, - tv_ptr->file_small_ds_sid_1, - tv_ptr->small_rank, - tv_ptr->edge_size, - tv_ptr->checker_edge_size, - tv_ptr->small_rank - 1, - sel_start); + sel_start[tv_ptr->small_ds_offset] = (hsize_t)(tv_ptr->mpi_rank); + ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, tv_ptr->file_small_ds_sid_1, tv_ptr->small_rank, + tv_ptr->edge_size, tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, + sel_start); /* set up start, stride, count, and block -- note that we will * change start[] so as to read slices of the large cube. */ - for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - if ( (PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1) ) { + tv_ptr->count[i] = 1; + if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) { tv_ptr->block[i] = 1; - - } else { + } + else { tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } @@ -3610,11 +3125,10 @@ ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) /* zero out the in memory small ds */ HDmemset(tv_ptr->small_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->small_ds_size); - #if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG HDfprintf(stdout, - "%s writing checker boards selections of slices from big ds to slices of small ds on disk.\n", - fcnName); + "%s writing checker boards selections of slices from big ds to slices of small ds on disk.\n", + fcnName); #endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG */ /* in serial versions of this test, we loop through all the dimensions @@ -3626,12 +3140,11 @@ ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) * over it. */ - - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) { i = tv_ptr->mpi_rank; - - } else { + } + else { i = 0; } @@ -3642,22 +3155,22 @@ ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) * test. */ - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) { j = tv_ptr->mpi_rank; - - } else { + } + else { j = 0; } j = 0; do { - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) { k = tv_ptr->mpi_rank; - - } else { + } + else { k = 0; } @@ -3675,11 +3188,11 @@ ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) l = 0; do { - if ( (tv_ptr->skips)++ < tv_ptr->max_skips ) { /* skip the test */ + if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */ (tv_ptr->tests_skipped)++; - - } else { /* run the test */ + } + else { /* run the test */ tv_ptr->skips = 0; /* reset the skips counter */ @@ -3689,12 +3202,8 @@ ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) */ /* zero out this rank's slice of the on disk small data set */ - ret = H5Dwrite(tv_ptr->small_dataset, - H5T_NATIVE_UINT32, - tv_ptr->mem_small_ds_sid, - tv_ptr->file_small_ds_sid_0, - tv_ptr->xfer_plist, - tv_ptr->small_ds_buf_2); + ret = H5Dwrite(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid, + tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_2); VRFY((ret >= 0), "H5Dwrite() zero slice to small ds succeeded."); /* select the portion of the in memory large cube from which we @@ -3706,23 +3215,15 @@ ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) tv_ptr->start[3] = (hsize_t)l; tv_ptr->start[4] = 0; - HDassert((tv_ptr->start[0] == 0)||(0 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[1] == 0)||(1 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[2] == 0)||(2 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[3] == 0)||(3 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[4] == 0)||(4 < tv_ptr->small_ds_offset + 1)); - - ckrbrd_hs_dr_pio_test__slct_ckrbrd - ( - tv_ptr->mpi_rank, - tv_ptr->mem_large_ds_sid, - tv_ptr->large_rank, - tv_ptr->edge_size, - tv_ptr->checker_edge_size, - tv_ptr->small_rank - 1, - tv_ptr->start - ); + HDassert((tv_ptr->start[0] == 0) || (0 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[1] == 0) || (1 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[2] == 0) || (2 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[3] == 0) || (3 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[4] == 0) || (4 < tv_ptr->small_ds_offset + 1)); + ckrbrd_hs_dr_pio_test__slct_ckrbrd( + tv_ptr->mpi_rank, tv_ptr->mem_large_ds_sid, tv_ptr->large_rank, tv_ptr->edge_size, + tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, tv_ptr->start); /* verify that H5Sselect_shape_same() reports the in * memory checkerboard selection of the slice through the @@ -3732,92 +3233,67 @@ ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) check = H5Sselect_shape_same(tv_ptr->file_small_ds_sid_1, tv_ptr->mem_large_ds_sid); VRFY((check == TRUE), "H5Sselect_shape_same passed."); - /* write the checker board selection of the slice from the in * memory large data set to the slice of the on disk small * dataset. */ #if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG - HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", - fcnName, tv_ptr->mpi_rank, - tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], - tv_ptr->start[3], tv_ptr->start[4]); - HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", - fcnName, tv_ptr->mpi_rank, + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, tv_ptr->mpi_rank, + tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], tv_ptr->start[3], + tv_ptr->start[4]); + HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank, H5Sget_simple_extent_ndims(tv_ptr->mem_large_ds_sid), H5Sget_simple_extent_ndims(tv_ptr->file_small_ds_sid_1)); #endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG */ - ret = H5Dwrite(tv_ptr->small_dataset, - H5T_NATIVE_UINT32, - tv_ptr->mem_large_ds_sid, - tv_ptr->file_small_ds_sid_1, - tv_ptr->xfer_plist, - tv_ptr->large_ds_buf_0); + ret = H5Dwrite(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid, + tv_ptr->file_small_ds_sid_1, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_0); VRFY((ret >= 0), "H5Dwrite() slice to large ds succeeded."); - /* read the on disk process slice of the small dataset into memory */ - ret = H5Dread(tv_ptr->small_dataset, - H5T_NATIVE_UINT32, - tv_ptr->mem_small_ds_sid, - tv_ptr->file_small_ds_sid_0, - tv_ptr->xfer_plist, - tv_ptr->small_ds_buf_1); + ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid, + tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_1); VRFY((ret >= 0), "H5Dread() slice from small ds succeeded."); - /* verify that expected data is retrieved */ - mis_match = FALSE; - expected_value = (uint32_t)( - (i * tv_ptr->edge_size * tv_ptr->edge_size * - tv_ptr->edge_size * tv_ptr->edge_size) + + (i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + - (k * tv_ptr->edge_size * tv_ptr->edge_size) + - (l * tv_ptr->edge_size)); + (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size)); start_index = (size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size; - stop_index = start_index + tv_ptr->small_ds_slice_size - 1; + stop_index = start_index + tv_ptr->small_ds_slice_size - 1; - HDassert( start_index < stop_index ); - HDassert( stop_index <= tv_ptr->small_ds_size ); + HDassert(start_index < stop_index); + HDassert(stop_index <= tv_ptr->small_ds_size); data_ok = TRUE; ptr_1 = tv_ptr->small_ds_buf_1; - for ( u = 0; u < start_index; u++, ptr_1++ ) { + for (u = 0; u < start_index; u++, ptr_1++) { - if ( *ptr_1 != 0 ) { + if (*ptr_1 != 0) { data_ok = FALSE; - *ptr_1 = 0; + *ptr_1 = 0; } } - data_ok &= ckrbrd_hs_dr_pio_test__verify_data - ( - tv_ptr->small_ds_buf_1 + start_index, - tv_ptr->small_rank - 1, - tv_ptr->edge_size, - tv_ptr->checker_edge_size, - expected_value, - (hbool_t)TRUE - ); - + data_ok &= ckrbrd_hs_dr_pio_test__verify_data( + tv_ptr->small_ds_buf_1 + start_index, tv_ptr->small_rank - 1, tv_ptr->edge_size, + tv_ptr->checker_edge_size, expected_value, (hbool_t)TRUE); ptr_1 = tv_ptr->small_ds_buf_1; - for ( u = stop_index; u < tv_ptr->small_ds_size; u++, ptr_1++ ) { + for (u = stop_index; u < tv_ptr->small_ds_size; u++, ptr_1++) { - if ( *ptr_1 != 0 ) { + if (*ptr_1 != 0) { data_ok = FALSE; - *ptr_1 = 0; + *ptr_1 = 0; } } - VRFY((data_ok == TRUE), - "large slice write slice to small slice data good."); + VRFY((data_ok == TRUE), "large slice write slice to small slice data good."); (tv_ptr->tests_run)++; } @@ -3826,23 +3302,16 @@ ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) (tv_ptr->total_tests)++; - } while ( ( tv_ptr->large_rank > 2 ) && - ( (tv_ptr->small_rank - 1) <= 1 ) && - ( l < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size)); k++; - } while ( ( tv_ptr->large_rank > 3 ) && - ( (tv_ptr->small_rank - 1) <= 2 ) && - ( k < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size)); j++; - } while ( ( tv_ptr->large_rank > 4 ) && - ( (tv_ptr->small_rank - 1) <= 3 ) && - ( j < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size)); return; } /* ckrbrd_hs_dr_pio_test__m2d_l2s() */ - /*------------------------------------------------------------------------- * Function: ckrbrd_hs_dr_pio_test__m2d_s2l() * @@ -3872,28 +3341,26 @@ ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t * tv_ptr) #define CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG 0 static void -ckrbrd_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) +ckrbrd_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t *tv_ptr) { #if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG const char *fcnName = "ckrbrd_hs_dr_pio_test__m2d_s2l()"; #endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */ - hbool_t data_ok = FALSE; - hbool_t mis_match = FALSE; - int i, j, k, l; - size_t u; - size_t start_index; - size_t stop_index; - uint32_t expected_value; - uint32_t * ptr_1; - int mpi_rank; /* needed by VRFY */ - hsize_t sel_start[PAR_SS_DR_MAX_RANK]; - htri_t check; /* Shape comparison return value */ - herr_t ret; /* Generic return value */ + hbool_t data_ok = FALSE; + int i, j, k, l; + size_t u; + size_t start_index; + size_t stop_index; + uint32_t expected_value; + uint32_t *ptr_1; + int mpi_rank; /* needed by VRFY */ + hsize_t sel_start[PAR_SS_DR_MAX_RANK]; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ /* initialize the local copy of mpi_rank */ mpi_rank = tv_ptr->mpi_rank; - /* Now write the contents of the process's slice of the in memory * small data set to slices of the on disk large data set. After * each write, read the process's slice of the large data set back @@ -3902,64 +3369,52 @@ ckrbrd_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) * and file selections. */ - tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank); + tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank); tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1)); - tv_ptr->count[0] = 1; - tv_ptr->block[0] = 1; + tv_ptr->count[0] = 1; + tv_ptr->block[0] = 1; - for ( i = 1; i < tv_ptr->large_rank; i++ ) { + for (i = 1; i < tv_ptr->large_rank; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); + tv_ptr->count[i] = 1; + tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } - ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, set) suceeded"); - - ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, - H5S_SELECT_SET, - tv_ptr->start, - tv_ptr->stride, - tv_ptr->count, - tv_ptr->block); - VRFY((ret >= 0), "H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, set) suceeded"); + ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, set) succeeded"); + + ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride, + tv_ptr->count, tv_ptr->block); + VRFY((ret >= 0), "H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, set) succeeded"); /* setup a checkerboard selection of the slice of the in memory small * data set associated with the process's mpi rank. */ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; - sel_start[tv_ptr->small_ds_offset] = (hsize_t)(tv_ptr->mpi_rank); - - ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, - tv_ptr->mem_small_ds_sid, - tv_ptr->small_rank, - tv_ptr->edge_size, - tv_ptr->checker_edge_size, - tv_ptr->small_rank - 1, + sel_start[tv_ptr->small_ds_offset] = (hsize_t)(tv_ptr->mpi_rank); + + ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, tv_ptr->mem_small_ds_sid, tv_ptr->small_rank, + tv_ptr->edge_size, tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, sel_start); /* set up start, stride, count, and block -- note that we will * change start[] so as to write checkerboard selections of slices * of the small data set to slices of the large data set. */ - for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) { - tv_ptr->start[i] = 0; + tv_ptr->start[i] = 0; tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size); - tv_ptr->count[i] = 1; - if ( (PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1) ) { + tv_ptr->count[i] = 1; + if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) { tv_ptr->block[i] = 1; - - } else { + } + else { tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size); } @@ -3970,15 +3425,16 @@ ckrbrd_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) #if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG HDfprintf(stdout, - "%s writing process checkerboard selections of slices of small ds to process slices of large ds on disk.\n", - fcnName); + "%s writing process checkerboard selections of slices of small ds to process slices of large " + "ds on disk.\n", + fcnName); #endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG */ - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) { i = tv_ptr->mpi_rank; - - } else { + } + else { i = 0; } @@ -3989,21 +3445,21 @@ ckrbrd_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) * test. */ - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) { j = tv_ptr->mpi_rank; - - } else { + } + else { j = 0; } do { - if ( PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2 ) { + if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) { k = tv_ptr->mpi_rank; - - } else { + } + else { k = 0; } @@ -4021,11 +3477,11 @@ ckrbrd_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) l = 0; do { - if ( (tv_ptr->skips)++ < tv_ptr->max_skips ) { /* skip the test */ + if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */ (tv_ptr->tests_skipped)++; - - } else { /* run the test */ + } + else { /* run the test */ tv_ptr->skips = 0; /* reset the skips counter */ @@ -4038,14 +3494,9 @@ ckrbrd_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) * Note that this will leave one slice with its original data * as there is one more slice than processes. */ - ret = H5Dwrite(tv_ptr->large_dataset, - H5T_NATIVE_UINT32, - tv_ptr->mem_large_ds_sid, - tv_ptr->file_large_ds_sid_0, - tv_ptr->xfer_plist, - tv_ptr->large_ds_buf_2); - VRFY((ret != FAIL), "H5Dwrite() to zero large ds suceeded"); - + ret = H5Dwrite(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid, + tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_2); + VRFY((ret != FAIL), "H5Dwrite() to zero large ds succeeded"); /* select the portion of the in memory large cube to which we * are going to write data. @@ -4056,23 +3507,15 @@ ckrbrd_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) tv_ptr->start[3] = (hsize_t)l; tv_ptr->start[4] = 0; - HDassert((tv_ptr->start[0] == 0)||(0 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[1] == 0)||(1 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[2] == 0)||(2 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[3] == 0)||(3 < tv_ptr->small_ds_offset + 1)); - HDassert((tv_ptr->start[4] == 0)||(4 < tv_ptr->small_ds_offset + 1)); - - ckrbrd_hs_dr_pio_test__slct_ckrbrd - ( - tv_ptr->mpi_rank, - tv_ptr->file_large_ds_sid_1, - tv_ptr->large_rank, - tv_ptr->edge_size, - tv_ptr->checker_edge_size, - tv_ptr->small_rank - 1, - tv_ptr->start - ); + HDassert((tv_ptr->start[0] == 0) || (0 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[1] == 0) || (1 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[2] == 0) || (2 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[3] == 0) || (3 < tv_ptr->small_ds_offset + 1)); + HDassert((tv_ptr->start[4] == 0) || (4 < tv_ptr->small_ds_offset + 1)); + ckrbrd_hs_dr_pio_test__slct_ckrbrd( + tv_ptr->mpi_rank, tv_ptr->file_large_ds_sid_1, tv_ptr->large_rank, tv_ptr->edge_size, + tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, tv_ptr->start); /* verify that H5Sselect_shape_same() reports the in * memory small data set slice selection and the @@ -4082,99 +3525,70 @@ ckrbrd_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) check = H5Sselect_shape_same(tv_ptr->mem_small_ds_sid, tv_ptr->file_large_ds_sid_1); VRFY((check == TRUE), "H5Sselect_shape_same passed"); - /* write the small data set slice from memory to the * target slice of the disk data set */ #if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG - HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", - fcnName, tv_ptr->mpi_rank, - tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], - tv_ptr->start[3], tv_ptr->start[4]); - HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", - fcnName, tv_ptr->mpi_rank, + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, tv_ptr->mpi_rank, + tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], tv_ptr->start[3], + tv_ptr->start[4]); + HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank, H5Sget_simple_extent_ndims(tv_ptr->mem_small_ds_sid), H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_1)); #endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG */ - ret = H5Dwrite(tv_ptr->large_dataset, - H5T_NATIVE_UINT32, - tv_ptr->mem_small_ds_sid, - tv_ptr->file_large_ds_sid_1, - tv_ptr->xfer_plist, - tv_ptr->small_ds_buf_0); - VRFY((ret != FAIL), - "H5Dwrite of small ds slice to large ds succeeded"); - + ret = H5Dwrite(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid, + tv_ptr->file_large_ds_sid_1, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_0); + VRFY((ret != FAIL), "H5Dwrite of small ds slice to large ds succeeded"); /* read this processes slice on the on disk large * data set into memory. */ - ret = H5Dread(tv_ptr->large_dataset, - H5T_NATIVE_UINT32, - tv_ptr->mem_large_ds_sid, - tv_ptr->file_large_ds_sid_0, - tv_ptr->xfer_plist, - tv_ptr->large_ds_buf_1); - VRFY((ret != FAIL), - "H5Dread() of process slice of large ds succeeded"); - + ret = H5Dread(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid, + tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1); + VRFY((ret != FAIL), "H5Dread() of process slice of large ds succeeded"); /* verify that the expected data and only the * expected data was read. */ - expected_value = - (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size); - - start_index = (size_t) - ((i * tv_ptr->edge_size * tv_ptr->edge_size * - tv_ptr->edge_size * tv_ptr->edge_size) + - (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + - (k * tv_ptr->edge_size * tv_ptr->edge_size) + - (l * tv_ptr->edge_size)); - stop_index = start_index + tv_ptr->small_ds_slice_size - 1; - - HDassert( start_index < stop_index ); - HDassert( stop_index < tv_ptr->large_ds_size ); + expected_value = (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size); + start_index = (size_t)( + (i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + + (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) + + (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size)); + stop_index = start_index + tv_ptr->small_ds_slice_size - 1; - mis_match = FALSE; + HDassert(start_index < stop_index); + HDassert(stop_index < tv_ptr->large_ds_size); data_ok = TRUE; ptr_1 = tv_ptr->large_ds_buf_1; - for ( u = 0; u < start_index; u++, ptr_1++ ) { + for (u = 0; u < start_index; u++, ptr_1++) { - if ( *ptr_1 != 0 ) { + if (*ptr_1 != 0) { data_ok = FALSE; - *ptr_1 = 0; + *ptr_1 = 0; } } - data_ok &= ckrbrd_hs_dr_pio_test__verify_data - ( - tv_ptr->large_ds_buf_1 + start_index, - tv_ptr->small_rank - 1, - tv_ptr->edge_size, - tv_ptr->checker_edge_size, - expected_value, - (hbool_t)TRUE - ); - + data_ok &= ckrbrd_hs_dr_pio_test__verify_data( + tv_ptr->large_ds_buf_1 + start_index, tv_ptr->small_rank - 1, tv_ptr->edge_size, + tv_ptr->checker_edge_size, expected_value, (hbool_t)TRUE); ptr_1 = tv_ptr->large_ds_buf_1; - for ( u = stop_index; u < tv_ptr->small_ds_size; u++, ptr_1++ ) { + for (u = stop_index; u < tv_ptr->small_ds_size; u++, ptr_1++) { - if ( *ptr_1 != 0 ) { + if (*ptr_1 != 0) { data_ok = FALSE; - *ptr_1 = 0; + *ptr_1 = 0; } } - VRFY((data_ok == TRUE), - "small ds cb slice write to large ds slice data good."); + VRFY((data_ok == TRUE), "small ds cb slice write to large ds slice data good."); (tv_ptr->tests_run)++; } @@ -4183,23 +3597,16 @@ ckrbrd_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) (tv_ptr->total_tests)++; - } while ( ( tv_ptr->large_rank > 2 ) && - ( (tv_ptr->small_rank - 1) <= 1 ) && - ( l < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size)); k++; - } while ( ( tv_ptr->large_rank > 3 ) && - ( (tv_ptr->small_rank - 1) <= 2 ) && - ( k < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size)); j++; - } while ( ( tv_ptr->large_rank > 4 ) && - ( (tv_ptr->small_rank - 1) <= 3 ) && - ( j < tv_ptr->edge_size ) ); + } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size)); return; } /* ckrbrd_hs_dr_pio_test__m2d_s2l() */ - /*------------------------------------------------------------------------- * Function: ckrbrd_hs_dr_pio_test__run_test() * @@ -4216,28 +3623,17 @@ ckrbrd_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t * tv_ptr) #define CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG 0 static void -ckrbrd_hs_dr_pio_test__run_test(const int test_num, - const int edge_size, - const int checker_edge_size, - const int chunk_edge_size, - const int small_rank, - const int large_rank, - const hbool_t use_collective_io, - const hid_t dset_type, - const int express_test, - int * skips_ptr, - int max_skips, - int64_t * total_tests_ptr, - int64_t * tests_run_ptr, - int64_t * tests_skipped_ptr) +ckrbrd_hs_dr_pio_test__run_test(const int test_num, const int edge_size, const int checker_edge_size, + const int chunk_edge_size, const int small_rank, const int large_rank, + const hbool_t use_collective_io, const hid_t dset_type, + const int express_test, int *skips_ptr, int max_skips, + int64_t *total_tests_ptr, int64_t *tests_run_ptr, int64_t *tests_skipped_ptr) { #if CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG const char *fcnName = "ckrbrd_hs_dr_pio_test__run_test()"; #endif /* CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG */ - int mpi_rank; /* needed by VRFY */ - struct hs_dr_pio_test_vars_t test_vars = - { + struct hs_dr_pio_test_vars_t test_vars = { /* int mpi_size = */ -1, /* int mpi_rank = */ -1, /* MPI_Comm mpi_comm = */ MPI_COMM_NULL, @@ -4259,7 +3655,7 @@ ckrbrd_hs_dr_pio_test__run_test(const int test_num, /* uint32_t * large_ds_slice_buf = */ NULL, /* int small_ds_offset = */ -1, /* int large_ds_offset = */ -1, - /* hid_t fid = */ -1, /* HDF5 file ID */ + /* hid_t fid = */ -1, /* HDF5 file ID */ /* hid_t xfer_plist = */ H5P_DEFAULT, /* hid_t full_mem_small_ds_sid = */ -1, /* hid_t full_file_small_ds_sid = */ -1, @@ -4275,18 +3671,18 @@ ckrbrd_hs_dr_pio_test__run_test(const int test_num, /* hid_t file_large_ds_process_slice_sid = */ -1, /* hid_t mem_large_ds_process_slice_sid = */ -1, /* hid_t large_ds_slice_sid = */ -1, - /* hid_t small_dataset = */ -1, /* Dataset ID */ - /* hid_t large_dataset = */ -1, /* Dataset ID */ + /* hid_t small_dataset = */ -1, /* Dataset ID */ + /* hid_t large_dataset = */ -1, /* Dataset ID */ /* size_t small_ds_size = */ 1, /* size_t small_ds_slice_size = */ 1, /* size_t large_ds_size = */ 1, /* size_t large_ds_slice_size = */ 1, - /* hsize_t dims[PAR_SS_DR_MAX_RANK] = */ {0,0,0,0,0}, - /* hsize_t chunk_dims[PAR_SS_DR_MAX_RANK] = */ {0,0,0,0,0}, - /* hsize_t start[PAR_SS_DR_MAX_RANK] = */ {0,0,0,0,0}, - /* hsize_t stride[PAR_SS_DR_MAX_RANK] = */ {0,0,0,0,0}, - /* hsize_t count[PAR_SS_DR_MAX_RANK] = */ {0,0,0,0,0}, - /* hsize_t block[PAR_SS_DR_MAX_RANK] = */ {0,0,0,0,0}, + /* hsize_t dims[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0}, + /* hsize_t chunk_dims[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0}, + /* hsize_t start[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0}, + /* hsize_t stride[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0}, + /* hsize_t count[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0}, + /* hsize_t block[PAR_SS_DR_MAX_RANK] = */ {0, 0, 0, 0, 0}, /* hsize_t * start_ptr = */ NULL, /* hsize_t * stride_ptr = */ NULL, /* hsize_t * count_ptr = */ NULL, @@ -4295,34 +3691,23 @@ ckrbrd_hs_dr_pio_test__run_test(const int test_num, /* int max_skips = */ 0, /* int64_t total_tests = */ 0, /* int64_t tests_run = */ 0, - /* int64_t tests_skipped = */ 0 - }; - struct hs_dr_pio_test_vars_t * tv_ptr = &test_vars; - - hs_dr_pio_test__setup(test_num, edge_size, checker_edge_size, - chunk_edge_size, small_rank, large_rank, - use_collective_io, dset_type, express_test, - tv_ptr); - - - /* initialize the local copy of mpi_rank */ - mpi_rank = tv_ptr->mpi_rank; + /* int64_t tests_skipped = */ 0}; + struct hs_dr_pio_test_vars_t *tv_ptr = &test_vars; + hs_dr_pio_test__setup(test_num, edge_size, checker_edge_size, chunk_edge_size, small_rank, large_rank, + use_collective_io, dset_type, express_test, tv_ptr); /* initialize skips & max_skips */ - tv_ptr->skips = *skips_ptr; + tv_ptr->skips = *skips_ptr; tv_ptr->max_skips = max_skips; - #if CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG - if ( MAINPROCESS ) { - HDfprintf(stdout, "test %d: small rank = %d, large rank = %d.\n", - test_num, small_rank, large_rank); + if (MAINPROCESS) { + HDfprintf(stdout, "test %d: small rank = %d, large rank = %d.\n", test_num, small_rank, large_rank); HDfprintf(stdout, "test %d: Initialization complete.\n", test_num); } #endif /* CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG */ - /* first, verify that we can read from disk correctly using selections * of different rank that H5Sselect_shape_same() views as being of the * same shape. @@ -4338,7 +3723,6 @@ ckrbrd_hs_dr_pio_test__run_test(const int test_num, ckrbrd_hs_dr_pio_test__d2m_l2s(tv_ptr); - /* similarly, read slices of the on disk small data set into slices * through the in memory large data set, and verify that the correct * data (and only the correct data) is read. @@ -4346,7 +3730,6 @@ ckrbrd_hs_dr_pio_test__run_test(const int test_num, ckrbrd_hs_dr_pio_test__d2m_s2l(tv_ptr); - /* now we go in the opposite direction, verifying that we can write * from memory to file using selections of different rank that * H5Sselect_shape_same() views as being of the same shape. @@ -4360,7 +3743,6 @@ ckrbrd_hs_dr_pio_test__run_test(const int test_num, ckrbrd_hs_dr_pio_test__m2d_l2s(tv_ptr); - /* Now write the contents of the process's slice of the in memory * small data set to slices of the on disk large data set. After * each write, read the process's slice of the large data set back @@ -4371,20 +3753,18 @@ ckrbrd_hs_dr_pio_test__run_test(const int test_num, ckrbrd_hs_dr_pio_test__m2d_s2l(tv_ptr); - #if CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG - if ( MAINPROCESS ) { - HDfprintf(stdout, - "test %d: Subtests complete -- tests run/skipped/total = %lld/%lld/%lld.\n", - test_num, (long long)(tv_ptr->tests_run), (long long)(tv_ptr->tests_skipped), - (long long)(tv_ptr->total_tests)); + if (MAINPROCESS) { + HDfprintf(stdout, "test %d: Subtests complete -- tests run/skipped/total = %lld/%lld/%lld.\n", + test_num, (long long)(tv_ptr->tests_run), (long long)(tv_ptr->tests_skipped), + (long long)(tv_ptr->total_tests)); } #endif /* CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG */ hs_dr_pio_test__takedown(tv_ptr); #if CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG - if ( MAINPROCESS ) { + if (MAINPROCESS) { HDfprintf(stdout, "test %d: Takedown complete.\n", test_num); } #endif /* CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG */ @@ -4398,7 +3778,6 @@ ckrbrd_hs_dr_pio_test__run_test(const int test_num, } /* ckrbrd_hs_dr_pio_test__run_test() */ - /*------------------------------------------------------------------------- * Function: ckrbrd_hs_dr_pio_test() * @@ -4415,29 +3794,29 @@ ckrbrd_hs_dr_pio_test__run_test(const int test_num, static void ckrbrd_hs_dr_pio_test(ShapeSameTestMethods sstest_type) { - int express_test; - int local_express_test; - int mpi_size = -1; - int mpi_rank = -1; - int test_num = 0; - int edge_size; - int checker_edge_size = 3; - int chunk_edge_size = 0; - int small_rank = 3; - int large_rank = 4; - int mpi_result; - hid_t dset_type = H5T_NATIVE_UINT; - int skips = 0; - int max_skips = 0; + int express_test; + int local_express_test; + int mpi_size = -1; + int mpi_rank = -1; + int test_num = 0; + int edge_size; + int checker_edge_size = 3; + int chunk_edge_size = 0; + int small_rank = 3; + int large_rank = 4; + int mpi_result; + hid_t dset_type = H5T_NATIVE_UINT; + int skips = 0; + int max_skips = 0; /* The following table list the number of sub-tests skipped between * each test that is actually executed as a function of the express * test level. Note that any value in excess of 4880 will cause all * sub tests to be skipped. */ - int max_skips_tbl[4] = {0, 4, 64, 1024}; - int64_t total_tests = 0; - int64_t tests_run = 0; - int64_t tests_skipped = 0; + int max_skips_tbl[4] = {0, 4, 64, 1024}; + int64_t total_tests = 0; + int64_t tests_run = 0; + int64_t tests_skipped = 0; MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); @@ -4448,20 +3827,18 @@ ckrbrd_hs_dr_pio_test(ShapeSameTestMethods sstest_type) HDcompile_assert(sizeof(uint32_t) == sizeof(unsigned)); - mpi_result = MPI_Allreduce((void *)&local_express_test, - (void *)&express_test, - 1, - MPI_INT, - MPI_MAX, + mpi_result = MPI_Allreduce((void *)&local_express_test, (void *)&express_test, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD); - VRFY((mpi_result == MPI_SUCCESS ), "MPI_Allreduce(0) succeeded"); + VRFY((mpi_result == MPI_SUCCESS), "MPI_Allreduce(0) succeeded"); - if ( local_express_test < 0 ) { + if (local_express_test < 0) { max_skips = max_skips_tbl[0]; - } else if ( local_express_test > 3 ) { + } + else if (local_express_test > 3) { max_skips = max_skips_tbl[3]; - } else { + } + else { max_skips = max_skips_tbl[local_express_test]; } @@ -4473,48 +3850,27 @@ ckrbrd_hs_dr_pio_test(ShapeSameTestMethods sstest_type) } #endif - for ( large_rank = 3; large_rank <= PAR_SS_DR_MAX_RANK; large_rank++ ) { + for (large_rank = 3; large_rank <= PAR_SS_DR_MAX_RANK; large_rank++) { - for ( small_rank = 2; small_rank < large_rank; small_rank++ ) { - switch(sstest_type){ + for (small_rank = 2; small_rank < large_rank; small_rank++) { + switch (sstest_type) { case IND_CONTIG: /* contiguous data set, independent I/O */ chunk_edge_size = 0; - ckrbrd_hs_dr_pio_test__run_test(test_num, - edge_size, - checker_edge_size, - chunk_edge_size, - small_rank, - large_rank, - FALSE, - dset_type, - express_test, - &skips, - max_skips, - &total_tests, - &tests_run, + ckrbrd_hs_dr_pio_test__run_test(test_num, edge_size, checker_edge_size, chunk_edge_size, + small_rank, large_rank, FALSE, dset_type, express_test, + &skips, max_skips, &total_tests, &tests_run, &tests_skipped); test_num++; break; /* end of case IND_CONTIG */ - case COL_CONTIG: + case COL_CONTIG: /* contiguous data set, collective I/O */ chunk_edge_size = 0; - ckrbrd_hs_dr_pio_test__run_test(test_num, - edge_size, - checker_edge_size, - chunk_edge_size, - small_rank, - large_rank, - TRUE, - dset_type, - express_test, - &skips, - max_skips, - &total_tests, - &tests_run, - &tests_skipped); + ckrbrd_hs_dr_pio_test__run_test( + test_num, edge_size, checker_edge_size, chunk_edge_size, small_rank, large_rank, TRUE, + dset_type, express_test, &skips, max_skips, &total_tests, &tests_run, &tests_skipped); test_num++; break; /* end of case COL_CONTIG */ @@ -4522,19 +3878,9 @@ ckrbrd_hs_dr_pio_test(ShapeSameTestMethods sstest_type) case IND_CHUNKED: /* chunked data set, independent I/O */ chunk_edge_size = 5; - ckrbrd_hs_dr_pio_test__run_test(test_num, - edge_size, - checker_edge_size, - chunk_edge_size, - small_rank, - large_rank, - FALSE, - dset_type, - express_test, - &skips, - max_skips, - &total_tests, - &tests_run, + ckrbrd_hs_dr_pio_test__run_test(test_num, edge_size, checker_edge_size, chunk_edge_size, + small_rank, large_rank, FALSE, dset_type, express_test, + &skips, max_skips, &total_tests, &tests_run, &tests_skipped); test_num++; break; @@ -4543,20 +3889,9 @@ ckrbrd_hs_dr_pio_test(ShapeSameTestMethods sstest_type) case COL_CHUNKED: /* chunked data set, collective I/O */ chunk_edge_size = 5; - ckrbrd_hs_dr_pio_test__run_test(test_num, - edge_size, - checker_edge_size, - chunk_edge_size, - small_rank, - large_rank, - TRUE, - dset_type, - express_test, - &skips, - max_skips, - &total_tests, - &tests_run, - &tests_skipped); + ckrbrd_hs_dr_pio_test__run_test( + test_num, edge_size, checker_edge_size, chunk_edge_size, small_rank, large_rank, TRUE, + dset_type, express_test, &skips, max_skips, &total_tests, &tests_run, &tests_skipped); test_num++; break; /* end of case COL_CHUNKED */ @@ -4567,16 +3902,16 @@ ckrbrd_hs_dr_pio_test(ShapeSameTestMethods sstest_type) } /* end of switch(sstest_type) */ #if CONTIG_HS_DR_PIO_TEST__DEBUG - if ( ( MAINPROCESS ) && ( tests_skipped > 0 ) ) { - HDfprintf(stdout, " run/skipped/total = %lld/%lld/%lld.\n", + if ((MAINPROCESS) && (tests_skipped > 0)) { + HDfprintf(stdout, " run/skipped/total = %" PRId64 "/%" PRId64 "/%" PRId64 ".\n", tests_run, tests_skipped, total_tests); } #endif /* CONTIG_HS_DR_PIO_TEST__DEBUG */ } } - if ( ( MAINPROCESS ) && ( tests_skipped > 0 ) ) { - HDfprintf(stdout, " %lld of %lld subtests skipped to expedite testing.\n", + if ((MAINPROCESS) && (tests_skipped > 0)) { + HDfprintf(stdout, " %" PRId64 " of %" PRId64 " subtests skipped to expedite testing.\n", tests_skipped, total_tests); } @@ -4593,23 +3928,23 @@ ckrbrd_hs_dr_pio_test(ShapeSameTestMethods sstest_type) #include "testphdf5.h" #ifndef PATH_MAX -#define PATH_MAX 512 -#endif /* !PATH_MAX */ +#define PATH_MAX 512 +#endif /* !PATH_MAX */ /* global variables */ int dim0; int dim1; int chunkdim0; int chunkdim1; -int nerrors = 0; /* errors count */ -int ndatasets = 300; /* number of datasets to create*/ -int ngroups = 512; /* number of groups to create in root - * group. */ -int facc_type = FACC_MPIO; /*Test file access type */ +int nerrors = 0; /* errors count */ +int ndatasets = 300; /* number of datasets to create*/ +int ngroups = 512; /* number of groups to create in root + * group. */ +int facc_type = FACC_MPIO; /*Test file access type */ int dxfer_coll_type = DXFER_COLLECTIVE_IO; -H5E_auto2_t old_func; /* previous error handler */ -void *old_client_data; /* previous error handler arg.*/ +H5E_auto2_t old_func; /* previous error handler */ +void * old_client_data; /* previous error handler arg.*/ /* other option flags */ @@ -4618,13 +3953,11 @@ void *old_client_data; /* previous error handler arg.*/ * created in one test is accessed by a different test. * filenames[0] is reserved as the file name for PARATESTFILE. */ -#define NFILENAME 2 +#define NFILENAME 2 #define PARATESTFILE filenames[0] -const char *FILENAME[NFILENAME]={ - "ShapeSameTest", - NULL}; -char filenames[NFILENAME][PATH_MAX]; -hid_t fapl; /* file access property list */ +const char *FILENAME[NFILENAME] = {"ShapeSameTest", NULL}; +char filenames[NFILENAME][PATH_MAX]; +hid_t fapl; /* file access property list */ #ifdef USE_PAUSE /* pause the process for a moment to allow debugger to attach if desired. */ @@ -4633,15 +3966,16 @@ hid_t fapl; /* file access property list */ #include <sys/types.h> #include <sys/stat.h> -void pause_proc(void) +void +pause_proc(void) { - int pid; - h5_stat_t statbuf; - char greenlight[] = "go"; - int maxloop = 10; - int loops = 0; - int time_int = 10; + int pid; + h5_stat_t statbuf; + char greenlight[] = "go"; + int maxloop = 10; + int loops = 0; + int time_int = 10; /* mpi variables */ int mpi_size, mpi_rank; @@ -4654,28 +3988,28 @@ void pause_proc(void) MPI_Get_processor_name(mpi_name, &mpi_namelen); if (MAINPROCESS) - while ((HDstat(greenlight, &statbuf) == -1) && loops < maxloop){ - if (!loops++){ - HDprintf("Proc %d (%*s, %d): to debug, attach %d\n", - mpi_rank, mpi_namelen, mpi_name, pid, pid); - } - HDprintf("waiting(%ds) for file %s ...\n", time_int, greenlight); - fflush(stdout); + while ((HDstat(greenlight, &statbuf) == -1) && loops < maxloop) { + if (!loops++) { + HDprintf("Proc %d (%*s, %d): to debug, attach %d\n", mpi_rank, mpi_namelen, mpi_name, pid, + pid); + } + HDprintf("waiting(%ds) for file %s ...\n", time_int, greenlight); + fflush(stdout); HDsleep(time_int); - } + } MPI_Barrier(MPI_COMM_WORLD); } /* Use the Profile feature of MPI to call the pause_proc() */ -int MPI_Init(int *argc, char ***argv) +int +MPI_Init(int *argc, char ***argv) { int ret_code; - ret_code=PMPI_Init(argc, argv); + ret_code = PMPI_Init(argc, argv); pause_proc(); return (ret_code); } -#endif /* USE_PAUSE */ - +#endif /* USE_PAUSE */ /* * Show command usage @@ -4684,235 +4018,234 @@ static void usage(void) { HDprintf(" [-r] [-w] [-m<n_datasets>] [-n<n_groups>] " - "[-o] [-f <prefix>] [-d <dim0> <dim1>]\n"); + "[-o] [-f <prefix>] [-d <dim0> <dim1>]\n"); HDprintf("\t-m<n_datasets>" - "\tset number of datasets for the multiple dataset test\n"); + "\tset number of datasets for the multiple dataset test\n"); HDprintf("\t-n<n_groups>" - "\tset number of groups for the multiple group test\n"); + "\tset number of groups for the multiple group test\n"); HDprintf("\t-f <prefix>\tfilename prefix\n"); HDprintf("\t-2\t\tuse Split-file together with MPIO\n"); - HDprintf("\t-d <factor0> <factor1>\tdataset dimensions factors. Defaults (%d,%d)\n", - ROW_FACTOR, COL_FACTOR); + HDprintf("\t-d <factor0> <factor1>\tdataset dimensions factors. Defaults (%d,%d)\n", ROW_FACTOR, + COL_FACTOR); HDprintf("\t-c <dim0> <dim1>\tdataset chunk dimensions. Defaults (dim0/10,dim1/10)\n"); HDprintf("\n"); } - /* * parse the command line options */ static int parse_options(int argc, char **argv) { - int mpi_size, mpi_rank; /* mpi variables */ + int mpi_size, mpi_rank; /* mpi variables */ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* setup default chunk-size. Make sure sizes are > 0 */ - chunkdim0 = (dim0+9)/10; - chunkdim1 = (dim1+9)/10; + chunkdim0 = (dim0 + 9) / 10; + chunkdim1 = (dim1 + 9) / 10; - while (--argc){ - if (**(++argv) != '-'){ - break; - }else{ - switch(*(*argv+1)){ - case 'm': ndatasets = atoi((*argv+1)+1); - if (ndatasets < 0){ - nerrors++; - return(1); - } - break; - case 'n': ngroups = atoi((*argv+1)+1); - if (ngroups < 0){ - nerrors++; - return(1); - } - break; - case 'f': if (--argc < 1) { - nerrors++; - return(1); - } - if (**(++argv) == '-') { - nerrors++; - return(1); - } - paraprefix = *argv; - break; - case 'i': /* Collective MPI-IO access with independent IO */ - dxfer_coll_type = DXFER_INDEPENDENT_IO; - break; - case '2': /* Use the split-file driver with MPIO access */ - /* Can use $HDF5_METAPREFIX to define the */ - /* meta-file-prefix. */ - facc_type = FACC_MPIO | FACC_SPLIT; - break; - case 'd': /* dimensizes */ - if (--argc < 2){ - nerrors++; - return(1); - } - dim0 = atoi(*(++argv))*mpi_size; - argc--; - dim1 = atoi(*(++argv))*mpi_size; - /* set default chunkdim sizes too */ - chunkdim0 = (dim0+9)/10; - chunkdim1 = (dim1+9)/10; - break; - case 'c': /* chunk dimensions */ - if (--argc < 2){ - nerrors++; - return(1); - } - chunkdim0 = atoi(*(++argv)); - argc--; - chunkdim1 = atoi(*(++argv)); - break; - case 'h': /* print help message--return with nerrors set */ - return(1); - default: HDprintf("Illegal option(%s)\n", *argv); - nerrors++; - return(1); + while (--argc) { + if (**(++argv) != '-') { + break; + } + else { + switch (*(*argv + 1)) { + case 'm': + ndatasets = atoi((*argv + 1) + 1); + if (ndatasets < 0) { + nerrors++; + return (1); + } + break; + case 'n': + ngroups = atoi((*argv + 1) + 1); + if (ngroups < 0) { + nerrors++; + return (1); + } + break; + case 'f': + if (--argc < 1) { + nerrors++; + return (1); + } + if (**(++argv) == '-') { + nerrors++; + return (1); + } + paraprefix = *argv; + break; + case 'i': /* Collective MPI-IO access with independent IO */ + dxfer_coll_type = DXFER_INDEPENDENT_IO; + break; + case '2': /* Use the split-file driver with MPIO access */ + /* Can use $HDF5_METAPREFIX to define the */ + /* meta-file-prefix. */ + facc_type = FACC_MPIO | FACC_SPLIT; + break; + case 'd': /* dimensizes */ + if (--argc < 2) { + nerrors++; + return (1); + } + dim0 = atoi(*(++argv)) * mpi_size; + argc--; + dim1 = atoi(*(++argv)) * mpi_size; + /* set default chunkdim sizes too */ + chunkdim0 = (dim0 + 9) / 10; + chunkdim1 = (dim1 + 9) / 10; + break; + case 'c': /* chunk dimensions */ + if (--argc < 2) { + nerrors++; + return (1); + } + chunkdim0 = atoi(*(++argv)); + argc--; + chunkdim1 = atoi(*(++argv)); + break; + case 'h': /* print help message--return with nerrors set */ + return (1); + default: + HDprintf("Illegal option(%s)\n", *argv); + nerrors++; + return (1); + } } - } } /*while*/ /* check validity of dimension and chunk sizes */ - if (dim0 <= 0 || dim1 <= 0){ - HDprintf("Illegal dim sizes (%d, %d)\n", dim0, dim1); - nerrors++; - return(1); + if (dim0 <= 0 || dim1 <= 0) { + HDprintf("Illegal dim sizes (%d, %d)\n", dim0, dim1); + nerrors++; + return (1); } - if (chunkdim0 <= 0 || chunkdim1 <= 0){ - HDprintf("Illegal chunkdim sizes (%d, %d)\n", chunkdim0, chunkdim1); - nerrors++; - return(1); + if (chunkdim0 <= 0 || chunkdim1 <= 0) { + HDprintf("Illegal chunkdim sizes (%d, %d)\n", chunkdim0, chunkdim1); + nerrors++; + return (1); } /* Make sure datasets can be divided into equal portions by the processes */ - if ((dim0 % mpi_size) || (dim1 % mpi_size)){ - if (MAINPROCESS) - HDprintf("dim0(%d) and dim1(%d) must be multiples of processes(%d)\n", - dim0, dim1, mpi_size); - nerrors++; - return(1); + if ((dim0 % mpi_size) || (dim1 % mpi_size)) { + if (MAINPROCESS) + HDprintf("dim0(%d) and dim1(%d) must be multiples of processes(%d)\n", dim0, dim1, mpi_size); + nerrors++; + return (1); } /* compose the test filenames */ { - int i, n; + int i, n; - n = sizeof(FILENAME)/sizeof(FILENAME[0]) - 1; /* exclude the NULL */ + n = sizeof(FILENAME) / sizeof(FILENAME[0]) - 1; /* exclude the NULL */ - for (i=0; i < n; i++) - if (h5_fixname(FILENAME[i],fapl,filenames[i],sizeof(filenames[i])) - == NULL){ - HDprintf("h5_fixname failed\n"); - nerrors++; - return(1); - } - HDprintf("Test filenames are:\n"); - for (i=0; i < n; i++) - HDprintf(" %s\n", filenames[i]); + for (i = 0; i < n; i++) + if (h5_fixname(FILENAME[i], fapl, filenames[i], sizeof(filenames[i])) == NULL) { + HDprintf("h5_fixname failed\n"); + nerrors++; + return (1); + } + HDprintf("Test filenames are:\n"); + for (i = 0; i < n; i++) + HDprintf(" %s\n", filenames[i]); } - return(0); + return (0); } - /* * Create the appropriate File access property list */ hid_t create_faccess_plist(MPI_Comm comm, MPI_Info info, int l_facc_type) { - hid_t ret_pl = -1; - herr_t ret; /* generic return value */ - int mpi_rank; /* mpi variables */ + hid_t ret_pl = -1; + herr_t ret; /* generic return value */ + int mpi_rank; /* mpi variables */ /* need the rank for error checking macros */ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - ret_pl = H5Pcreate (H5P_FILE_ACCESS); + ret_pl = H5Pcreate(H5P_FILE_ACCESS); VRFY((ret_pl >= 0), "H5P_FILE_ACCESS"); if (l_facc_type == FACC_DEFAULT) - return (ret_pl); + return (ret_pl); - if (l_facc_type == FACC_MPIO){ - /* set Parallel access with communicator */ - ret = H5Pset_fapl_mpio(ret_pl, comm, info); - VRFY((ret >= 0), ""); + if (l_facc_type == FACC_MPIO) { + /* set Parallel access with communicator */ + ret = H5Pset_fapl_mpio(ret_pl, comm, info); + VRFY((ret >= 0), ""); ret = H5Pset_all_coll_metadata_ops(ret_pl, TRUE); - VRFY((ret >= 0), ""); + VRFY((ret >= 0), ""); ret = H5Pset_coll_metadata_write(ret_pl, TRUE); - VRFY((ret >= 0), ""); - return(ret_pl); + VRFY((ret >= 0), ""); + return (ret_pl); } - if (l_facc_type == (FACC_MPIO | FACC_SPLIT)){ - hid_t mpio_pl; - - mpio_pl = H5Pcreate (H5P_FILE_ACCESS); - VRFY((mpio_pl >= 0), ""); - /* set Parallel access with communicator */ - ret = H5Pset_fapl_mpio(mpio_pl, comm, info); - VRFY((ret >= 0), ""); - - /* setup file access template */ - ret_pl = H5Pcreate (H5P_FILE_ACCESS); - VRFY((ret_pl >= 0), ""); - /* set Parallel access with communicator */ - ret = H5Pset_fapl_split(ret_pl, ".meta", mpio_pl, ".raw", mpio_pl); - VRFY((ret >= 0), "H5Pset_fapl_split succeeded"); - H5Pclose(mpio_pl); - return(ret_pl); + if (l_facc_type == (FACC_MPIO | FACC_SPLIT)) { + hid_t mpio_pl; + + mpio_pl = H5Pcreate(H5P_FILE_ACCESS); + VRFY((mpio_pl >= 0), ""); + /* set Parallel access with communicator */ + ret = H5Pset_fapl_mpio(mpio_pl, comm, info); + VRFY((ret >= 0), ""); + + /* setup file access template */ + ret_pl = H5Pcreate(H5P_FILE_ACCESS); + VRFY((ret_pl >= 0), ""); + /* set Parallel access with communicator */ + ret = H5Pset_fapl_split(ret_pl, ".meta", mpio_pl, ".raw", mpio_pl); + VRFY((ret >= 0), "H5Pset_fapl_split succeeded"); + H5Pclose(mpio_pl); + return (ret_pl); } /* unknown file access types */ return (ret_pl); } - -/* Shape Same test using contigous hyperslab using independent IO on contigous datasets */ +/* Shape Same test using contiguous hyperslab using independent IO on contiguous datasets */ static void sscontig1(void) { contig_hs_dr_pio_test(IND_CONTIG); } -/* Shape Same test using contigous hyperslab using collective IO on contigous datasets */ +/* Shape Same test using contiguous hyperslab using collective IO on contiguous datasets */ static void sscontig2(void) { contig_hs_dr_pio_test(COL_CONTIG); } -/* Shape Same test using contigous hyperslab using independent IO on chunked datasets */ +/* Shape Same test using contiguous hyperslab using independent IO on chunked datasets */ static void sscontig3(void) { contig_hs_dr_pio_test(IND_CHUNKED); } -/* Shape Same test using contigous hyperslab using collective IO on chunked datasets */ +/* Shape Same test using contiguous hyperslab using collective IO on chunked datasets */ static void sscontig4(void) { contig_hs_dr_pio_test(COL_CHUNKED); } - -/* Shape Same test using checker hyperslab using independent IO on contigous datasets */ +/* Shape Same test using checker hyperslab using independent IO on contiguous datasets */ static void sschecker1(void) { ckrbrd_hs_dr_pio_test(IND_CONTIG); } -/* Shape Same test using checker hyperslab using collective IO on contigous datasets */ +/* Shape Same test using checker hyperslab using collective IO on contiguous datasets */ static void sschecker2(void) { @@ -4933,10 +4266,10 @@ sschecker4(void) ckrbrd_hs_dr_pio_test(COL_CHUNKED); } - -int main(int argc, char **argv) +int +main(int argc, char **argv) { - int mpi_size, mpi_rank; /* mpi variables */ + int mpi_size, mpi_rank; /* mpi variables */ #ifndef H5_HAVE_WIN32_API /* Un-buffer the stdout and stderr */ @@ -4948,14 +4281,14 @@ int main(int argc, char **argv) MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - dim0 = ROW_FACTOR*mpi_size; - dim1 = COL_FACTOR*mpi_size; + dim0 = ROW_FACTOR * mpi_size; + dim1 = COL_FACTOR * mpi_size; - if (MAINPROCESS){ - HDprintf("===================================\n"); - HDprintf("Shape Same Tests Start\n"); + if (MAINPROCESS) { + HDprintf("===================================\n"); + HDprintf("Shape Same Tests Start\n"); HDprintf(" express_test = %d.\n", GetTestExpress()); - HDprintf("===================================\n"); + HDprintf("===================================\n"); } /* Attempt to turn off atexit post processing so that in case errors @@ -4963,8 +4296,8 @@ int main(int argc, char **argv) * hang in the atexit post processing in which it may try to make MPI * calls. By then, MPI calls may not work. */ - if (H5dont_atexit() < 0){ - HDprintf("%d: Failed to turn off atexit processing. Continue.\n", mpi_rank); + if (H5dont_atexit() < 0) { + HDprintf("%d: Failed to turn off atexit processing. Continue.\n", mpi_rank); }; H5open(); h5_show_hostname(); @@ -4972,43 +4305,34 @@ int main(int argc, char **argv) /* Initialize testing framework */ TestInit(argv[0], usage, parse_options); - /* Shape Same tests using contigous hyperslab */ - AddTest("sscontig1", sscontig1, NULL, - "Cntg hslab, ind IO, cntg dsets", PARATESTFILE); - AddTest("sscontig2", sscontig2, NULL, - "Cntg hslab, col IO, cntg dsets", PARATESTFILE); - AddTest("sscontig3", sscontig3, NULL, - "Cntg hslab, ind IO, chnk dsets", PARATESTFILE); - AddTest("sscontig4", sscontig4, NULL, - "Cntg hslab, col IO, chnk dsets", PARATESTFILE); + /* Shape Same tests using contiguous hyperslab */ + AddTest("sscontig1", sscontig1, NULL, "Cntg hslab, ind IO, cntg dsets", PARATESTFILE); + AddTest("sscontig2", sscontig2, NULL, "Cntg hslab, col IO, cntg dsets", PARATESTFILE); + AddTest("sscontig3", sscontig3, NULL, "Cntg hslab, ind IO, chnk dsets", PARATESTFILE); + AddTest("sscontig4", sscontig4, NULL, "Cntg hslab, col IO, chnk dsets", PARATESTFILE); /* Shape Same tests using checker board hyperslab */ - AddTest("sschecker1", sschecker1, NULL, - "Check hslab, ind IO, cntg dsets", PARATESTFILE); - AddTest("sschecker2", sschecker2, NULL, - "Check hslab, col IO, cntg dsets", PARATESTFILE); - AddTest("sschecker3", sschecker3, NULL, - "Check hslab, ind IO, chnk dsets", PARATESTFILE); - AddTest("sschecker4", sschecker4, NULL, - "Check hslab, col IO, chnk dsets", PARATESTFILE); + AddTest("sschecker1", sschecker1, NULL, "Check hslab, ind IO, cntg dsets", PARATESTFILE); + AddTest("sschecker2", sschecker2, NULL, "Check hslab, col IO, cntg dsets", PARATESTFILE); + AddTest("sschecker3", sschecker3, NULL, "Check hslab, ind IO, chnk dsets", PARATESTFILE); + AddTest("sschecker4", sschecker4, NULL, "Check hslab, col IO, chnk dsets", PARATESTFILE); /* Display testing information */ TestInfo(argv[0]); /* setup file access property list */ - fapl = H5Pcreate (H5P_FILE_ACCESS); + fapl = H5Pcreate(H5P_FILE_ACCESS); H5Pset_fapl_mpio(fapl, MPI_COMM_WORLD, MPI_INFO_NULL); /* Parse command line arguments */ TestParseCmdLine(argc, argv); - if (dxfer_coll_type == DXFER_INDEPENDENT_IO && MAINPROCESS){ - HDprintf("===================================\n" - " Using Independent I/O with file set view to replace collective I/O \n" - "===================================\n"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO && MAINPROCESS) { + HDprintf("===================================\n" + " Using Independent I/O with file set view to replace collective I/O \n" + "===================================\n"); } - /* Perform requested testing */ PerformTests(); @@ -5030,16 +4354,16 @@ int main(int argc, char **argv) { int temp; MPI_Allreduce(&nerrors, &temp, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD); - nerrors=temp; + nerrors = temp; } - if (MAINPROCESS){ /* only process 0 reports */ - HDprintf("===================================\n"); - if (nerrors) - HDprintf("***Shape Same tests detected %d errors***\n", nerrors); - else - HDprintf("Shape Same tests finished with no errors\n"); - HDprintf("===================================\n"); + if (MAINPROCESS) { /* only process 0 reports */ + HDprintf("===================================\n"); + if (nerrors) + HDprintf("***Shape Same tests detected %d errors***\n", nerrors); + else + HDprintf("Shape Same tests finished with no errors\n"); + HDprintf("===================================\n"); } /* close HDF5 library */ @@ -5051,6 +4375,5 @@ int main(int argc, char **argv) MPI_Finalize(); /* cannot just return (nerrors) because exit code is limited to 1byte */ - return(nerrors!=0); + return (nerrors != 0); } - diff --git a/testpar/t_span_tree.c b/testpar/t_span_tree.c index 9a4ac4d..e624a01 100644 --- a/testpar/t_span_tree.c +++ b/testpar/t_span_tree.c @@ -7,7 +7,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -35,10 +35,10 @@ #include "H5private.h" #include "testphdf5.h" +#define LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG 0 static void coll_write_test(int chunk_factor); -static void coll_read_test(int chunk_factor); - +static void coll_read_test(void); /*------------------------------------------------------------------------- * Function: coll_irregular_cont_write @@ -59,12 +59,9 @@ void coll_irregular_cont_write(void) { - coll_write_test(0); - + coll_write_test(0); } - - /*------------------------------------------------------------------------- * Function: coll_irregular_cont_read * @@ -84,11 +81,9 @@ void coll_irregular_cont_read(void) { - coll_read_test(0); - + coll_read_test(); } - /*------------------------------------------------------------------------- * Function: coll_irregular_simple_chunk_write * @@ -108,12 +103,9 @@ void coll_irregular_simple_chunk_write(void) { - coll_write_test(1); - + coll_write_test(1); } - - /*------------------------------------------------------------------------- * Function: coll_irregular_simple_chunk_read * @@ -133,8 +125,7 @@ void coll_irregular_simple_chunk_read(void) { - coll_read_test(1); - + coll_read_test(); } /*------------------------------------------------------------------------- @@ -156,12 +147,9 @@ void coll_irregular_complex_chunk_write(void) { - coll_write_test(4); - + coll_write_test(4); } - - /*------------------------------------------------------------------------- * Function: coll_irregular_complex_chunk_read * @@ -181,11 +169,9 @@ void coll_irregular_complex_chunk_read(void) { - coll_read_test(4); - + coll_read_test(); } - /*------------------------------------------------------------------------- * Function: coll_write_test * @@ -202,447 +188,445 @@ coll_irregular_complex_chunk_read(void) * *------------------------------------------------------------------------- */ -void coll_write_test(int chunk_factor) +void +coll_write_test(int chunk_factor) { - const char *filename; - hid_t facc_plist,dxfer_plist,dcrt_plist; - hid_t file, datasetc,dataseti; /* File and dataset identifiers */ - hid_t mspaceid1, mspaceid, fspaceid,fspaceid1; /* Dataspace identifiers */ - - hsize_t mdim1[1]; /* Dimension size of the first dataset (in memory) */ - hsize_t fsdim[2]; /* Dimension sizes of the dataset (on disk) */ - hsize_t mdim[2]; /* Dimension sizes of the dataset in memory when we - * read selection from the dataset on the disk - */ - - hsize_t start[2]; /* Start of hyperslab */ - hsize_t stride[2]; /* Stride of hyperslab */ - hsize_t count[2]; /* Block count */ - hsize_t block[2]; /* Block sizes */ - hsize_t chunk_dims[2]; - - herr_t ret; - unsigned i; - int fillvalue = 0; /* Fill value for the dataset */ - - int *matrix_out = NULL; - int *matrix_out1 = NULL; /* Buffer to read from the dataset */ - int *vector = NULL; - - int mpi_size,mpi_rank; - - MPI_Comm comm = MPI_COMM_WORLD; - MPI_Info info = MPI_INFO_NULL; - - /*set up MPI parameters */ - MPI_Comm_size(comm,&mpi_size); - MPI_Comm_rank(comm,&mpi_rank); - - /* Obtain file name */ - filename = GetTestParameters(); - - /* - * Buffers' initialization. - */ - - mdim1[0] = MSPACE1_DIM *mpi_size; - mdim[0] = MSPACE_DIM1; - mdim[1] = MSPACE_DIM2*mpi_size; - fsdim[0] = FSPACE_DIM1; - fsdim[1] = FSPACE_DIM2*mpi_size; - - vector = (int*)HDmalloc(sizeof(int)*mdim1[0]*mpi_size); - matrix_out = (int*)HDmalloc(sizeof(int)*mdim[0]*mdim[1]*mpi_size); - matrix_out1 = (int*)HDmalloc(sizeof(int)*mdim[0]*mdim[1]*mpi_size); - - HDmemset(vector,0,sizeof(int)*mdim1[0]*mpi_size); - vector[0] = vector[MSPACE1_DIM*mpi_size - 1] = -1; - for (i = 1; i < MSPACE1_DIM*mpi_size - 1; i++) vector[i] = i; - - /* Grab file access property list */ - facc_plist = create_faccess_plist(comm, info, facc_type); - VRFY((facc_plist >= 0),""); - - /* - * Create a file. - */ - file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, facc_plist); - VRFY((file >= 0),"H5Fcreate succeeded"); - - /* - * Create property list for a dataset and set up fill values. - */ - dcrt_plist = H5Pcreate(H5P_DATASET_CREATE); - VRFY((dcrt_plist >= 0),""); - - ret = H5Pset_fill_value(dcrt_plist, H5T_NATIVE_INT, &fillvalue); - VRFY((ret >= 0),"Fill value creation property list succeeded"); - - if(chunk_factor != 0) { - chunk_dims[0] = fsdim[0] / chunk_factor; - chunk_dims[1] = fsdim[1] / chunk_factor; - ret = H5Pset_chunk(dcrt_plist, 2, chunk_dims); - VRFY((ret >= 0),"chunk creation property list succeeded"); - } - - /* - * - * Create dataspace for the first dataset in the disk. - * dim1 = 9 - * dim2 = 3600 - * - * - */ - fspaceid = H5Screate_simple(FSPACE_RANK, fsdim, NULL); - VRFY((fspaceid >= 0),"file dataspace created succeeded"); - - /* - * Create dataset in the file. Notice that creation - * property list dcrt_plist is used. - */ - datasetc = H5Dcreate2(file, "collect_write", H5T_NATIVE_INT, fspaceid, H5P_DEFAULT, dcrt_plist, H5P_DEFAULT); - VRFY((datasetc >= 0),"dataset created succeeded"); - - dataseti = H5Dcreate2(file, "independ_write", H5T_NATIVE_INT, fspaceid, H5P_DEFAULT, dcrt_plist, H5P_DEFAULT); - VRFY((dataseti >= 0),"dataset created succeeded"); - - /* The First selection for FILE - * - * block (3,2) - * stride(4,3) - * count (1,768/mpi_size) - * start (0,1+768*3*mpi_rank/mpi_size) - * - */ - - start[0] = FHSTART0; - start[1] = FHSTART1 + mpi_rank * FHSTRIDE1 * FHCOUNT1; - stride[0] = FHSTRIDE0; - stride[1] = FHSTRIDE1; - count[0] = FHCOUNT0; - count[1] = FHCOUNT1; - block[0] = FHBLOCK0; - block[1] = FHBLOCK1; - - ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0),"hyperslab selection succeeded"); - - /* The Second selection for FILE - * - * block (3,768) - * stride (1,1) - * count (1,1) - * start (4,768*mpi_rank/mpi_size) - * - */ - - start[0] = SHSTART0; - start[1] = SHSTART1+SHCOUNT1*SHBLOCK1*mpi_rank; - stride[0] = SHSTRIDE0; - stride[1] = SHSTRIDE1; - count[0] = SHCOUNT0; - count[1] = SHCOUNT1; - block[0] = SHBLOCK0; - block[1] = SHBLOCK1; - - ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_OR, start, stride, count, block); - VRFY((ret >= 0),"hyperslab selection succeeded"); - - /* - * Create dataspace for the first dataset in the memory - * dim1 = 27000 - * - */ - mspaceid1 = H5Screate_simple(MSPACE1_RANK, mdim1, NULL); - VRFY((mspaceid1 >= 0),"memory dataspace created succeeded"); - - /* - * Memory space is 1-D, this is a good test to check - * whether a span-tree derived datatype needs to be built. - * block 1 - * stride 1 - * count 6912/mpi_size - * start 1 - * - */ - start[0] = MHSTART0; - stride[0] = MHSTRIDE0; - count[0] = MHCOUNT0; - block[0] = MHBLOCK0; - - ret = H5Sselect_hyperslab(mspaceid1, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0),"hyperslab selection succeeded"); - - /* independent write */ - ret = H5Dwrite(dataseti, H5T_NATIVE_INT, mspaceid1, fspaceid, H5P_DEFAULT, vector); - VRFY((ret >= 0),"dataset independent write succeed"); - - dxfer_plist = H5Pcreate(H5P_DATASET_XFER); - VRFY((dxfer_plist >= 0),""); - - ret = H5Pset_dxpl_mpio(dxfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0),"MPIO data transfer property list succeed"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(dxfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); - } - - - /* collective write */ - ret = H5Dwrite(datasetc, H5T_NATIVE_INT, mspaceid1, fspaceid, dxfer_plist, vector); - VRFY((ret >= 0),"dataset collective write succeed"); - - ret = H5Sclose(mspaceid1); - VRFY((ret >= 0),""); - - ret = H5Sclose(fspaceid); - VRFY((ret >= 0),""); - - /* - * Close dataset. - */ - ret = H5Dclose(datasetc); - VRFY((ret >= 0),""); - - ret = H5Dclose(dataseti); - VRFY((ret >= 0),""); - - /* - * Close the file. - */ - ret = H5Fclose(file); - VRFY((ret >= 0),""); - /* - * Close property list - */ - - ret = H5Pclose(facc_plist); - VRFY((ret >= 0),""); - ret = H5Pclose(dxfer_plist); - VRFY((ret >= 0),""); - ret = H5Pclose(dcrt_plist); - VRFY((ret >= 0),""); - - /* - * Open the file. - */ - - /*** - - For testing collective hyperslab selection write - In this test, we are using independent read to check - the correctedness of collective write compared with - independent write, - - In order to throughly test this feature, we choose - a different selection set for reading the data out. - - - ***/ - - /* Obtain file access property list with MPI-IO driver */ - facc_plist = create_faccess_plist(comm, info, facc_type); - VRFY((facc_plist >= 0),""); - - file = H5Fopen(filename, H5F_ACC_RDONLY, facc_plist); - VRFY((file >= 0),"H5Fopen succeeded"); - - /* - * Open the dataset. - */ - datasetc = H5Dopen2(file,"collect_write", H5P_DEFAULT); - VRFY((datasetc >= 0),"H5Dopen2 succeeded"); - - dataseti = H5Dopen2(file,"independ_write", H5P_DEFAULT); - VRFY((dataseti >= 0),"H5Dopen2 succeeded"); - - /* - * Get dataspace of the open dataset. - */ - fspaceid = H5Dget_space(datasetc); - VRFY((fspaceid >= 0),"file dataspace obtained succeeded"); - - fspaceid1 = H5Dget_space(dataseti); - VRFY((fspaceid1 >= 0),"file dataspace obtained succeeded"); - - - /* The First selection for FILE to read - * - * block (1,1) - * stride(1.1) - * count (3,768/mpi_size) - * start (1,2+768*mpi_rank/mpi_size) - * - */ - start[0] = RFFHSTART0; - start[1] = RFFHSTART1+mpi_rank*RFFHCOUNT1; - block[0] = RFFHBLOCK0; - block[1] = RFFHBLOCK1; - stride[0] = RFFHSTRIDE0; - stride[1] = RFFHSTRIDE1; - count[0] = RFFHCOUNT0; - count[1] = RFFHCOUNT1; - - - /* The first selection of the dataset generated by collective write */ - ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0),"hyperslab selection succeeded"); - - /* The first selection of the dataset generated by independent write */ - ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0),"hyperslab selection succeeded"); - - /* The Second selection for FILE to read - * - * block (1,1) - * stride(1.1) - * count (3,1536/mpi_size) - * start (2,4+1536*mpi_rank/mpi_size) - * - */ - - start[0] = RFSHSTART0; - start[1] = RFSHSTART1+RFSHCOUNT1*mpi_rank; - block[0] = RFSHBLOCK0; - block[1] = RFSHBLOCK1; - stride[0] = RFSHSTRIDE0; - stride[1] = RFSHSTRIDE0; - count[0] = RFSHCOUNT0; - count[1] = RFSHCOUNT1; - - /* The second selection of the dataset generated by collective write */ - ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_OR, start, stride, count, block); - VRFY((ret >= 0),"hyperslab selection succeeded"); - - /* The second selection of the dataset generated by independent write */ - ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_OR, start, stride, count, block); - VRFY((ret >= 0),"hyperslab selection succeeded"); - - /* - * Create memory dataspace. - * rank = 2 - * mdim1 = 9 - * mdim2 = 3600 - * - */ - mspaceid = H5Screate_simple(MSPACE_RANK, mdim, NULL); - - /* - * Select two hyperslabs in memory. Hyperslabs has the same - * size and shape as the selected hyperslabs for the file dataspace - * Only the starting point is different. - * The first selection - * block (1,1) - * stride(1.1) - * count (3,768/mpi_size) - * start (0,768*mpi_rank/mpi_size) - * - */ - - - start[0] = RMFHSTART0; - start[1] = RMFHSTART1+mpi_rank*RMFHCOUNT1; - block[0] = RMFHBLOCK0; - block[1] = RMFHBLOCK1; - stride[0] = RMFHSTRIDE0; - stride[1] = RMFHSTRIDE1; - count[0] = RMFHCOUNT0; - count[1] = RMFHCOUNT1; - - ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0),"hyperslab selection succeeded"); - - /* - * Select two hyperslabs in memory. Hyperslabs has the same - * size and shape as the selected hyperslabs for the file dataspace - * Only the starting point is different. - * The second selection - * block (1,1) - * stride(1,1) - * count (3,1536/mpi_size) - * start (1,2+1536*mpi_rank/mpi_size) - * - */ - start[0] = RMSHSTART0; - start[1] = RMSHSTART1+mpi_rank*RMSHCOUNT1; - block[0] = RMSHBLOCK0; - block[1] = RMSHBLOCK1; - stride[0] = RMSHSTRIDE0; - stride[1] = RMSHSTRIDE1; - count[0] = RMSHCOUNT0; - count[1] = RMSHCOUNT1; - - ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_OR, start, stride, count, block); - VRFY((ret >= 0),"hyperslab selection succeeded"); - - /* - * Initialize data buffer. - */ - - HDmemset(matrix_out,0,sizeof(int)*MSPACE_DIM1*MSPACE_DIM2*mpi_size); - HDmemset(matrix_out1,0,sizeof(int)*MSPACE_DIM1*MSPACE_DIM2*mpi_size); - /* - * Read data back to the buffer matrix_out. - */ - - ret = H5Dread(datasetc, H5T_NATIVE_INT, mspaceid, fspaceid, - H5P_DEFAULT, matrix_out); - VRFY((ret >= 0),"H5D independent read succeed"); - - - ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid, - H5P_DEFAULT, matrix_out1); - VRFY((ret >= 0),"H5D independent read succeed"); - - ret = 0; - - for (i = 0; i < MSPACE_DIM1*MSPACE_DIM2*mpi_size; i++){ - if(matrix_out[i]!=matrix_out1[i]) ret = -1; - if(ret < 0) break; + const char *filename; + hid_t facc_plist, dxfer_plist, dcrt_plist; + hid_t file, datasetc, dataseti; /* File and dataset identifiers */ + hid_t mspaceid1, mspaceid, fspaceid, fspaceid1; /* Dataspace identifiers */ + + hsize_t mdim1[1]; /* Dimension size of the first dataset (in memory) */ + hsize_t fsdim[2]; /* Dimension sizes of the dataset (on disk) */ + hsize_t mdim[2]; /* Dimension sizes of the dataset in memory when we + * read selection from the dataset on the disk + */ + + hsize_t start[2]; /* Start of hyperslab */ + hsize_t stride[2]; /* Stride of hyperslab */ + hsize_t count[2]; /* Block count */ + hsize_t block[2]; /* Block sizes */ + hsize_t chunk_dims[2]; + + herr_t ret; + int i; + int fillvalue = 0; /* Fill value for the dataset */ + + int *matrix_out = NULL; + int *matrix_out1 = NULL; /* Buffer to read from the dataset */ + int *vector = NULL; + + int mpi_size, mpi_rank; + + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + + /*set up MPI parameters */ + MPI_Comm_size(comm, &mpi_size); + MPI_Comm_rank(comm, &mpi_rank); + + /* Obtain file name */ + filename = GetTestParameters(); + + /* + * Buffers' initialization. + */ + + mdim1[0] = (hsize_t)(MSPACE1_DIM * mpi_size); + mdim[0] = MSPACE_DIM1; + mdim[1] = (hsize_t)(MSPACE_DIM2 * mpi_size); + fsdim[0] = FSPACE_DIM1; + fsdim[1] = (hsize_t)(FSPACE_DIM2 * mpi_size); + + vector = (int *)HDmalloc(sizeof(int) * (size_t)mdim1[0] * (size_t)mpi_size); + matrix_out = (int *)HDmalloc(sizeof(int) * (size_t)mdim[0] * (size_t)mdim[1] * (size_t)mpi_size); + matrix_out1 = (int *)HDmalloc(sizeof(int) * (size_t)mdim[0] * (size_t)mdim[1] * (size_t)mpi_size); + + HDmemset(vector, 0, sizeof(int) * (size_t)mdim1[0] * (size_t)mpi_size); + vector[0] = vector[MSPACE1_DIM * mpi_size - 1] = -1; + for (i = 1; i < MSPACE1_DIM * mpi_size - 1; i++) + H5_CHECKED_ASSIGN(vector[i], int, i, unsigned); + + /* Grab file access property list */ + facc_plist = create_faccess_plist(comm, info, facc_type); + VRFY((facc_plist >= 0), ""); + + /* + * Create a file. + */ + file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, facc_plist); + VRFY((file >= 0), "H5Fcreate succeeded"); + + /* + * Create property list for a dataset and set up fill values. + */ + dcrt_plist = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dcrt_plist >= 0), ""); + + ret = H5Pset_fill_value(dcrt_plist, H5T_NATIVE_INT, &fillvalue); + VRFY((ret >= 0), "Fill value creation property list succeeded"); + + if (chunk_factor != 0) { + chunk_dims[0] = fsdim[0] / (hsize_t)chunk_factor; + chunk_dims[1] = fsdim[1] / (hsize_t)chunk_factor; + ret = H5Pset_chunk(dcrt_plist, 2, chunk_dims); + VRFY((ret >= 0), "chunk creation property list succeeded"); + } + + /* + * + * Create dataspace for the first dataset in the disk. + * dim1 = 9 + * dim2 = 3600 + * + * + */ + fspaceid = H5Screate_simple(FSPACE_RANK, fsdim, NULL); + VRFY((fspaceid >= 0), "file dataspace created succeeded"); + + /* + * Create dataset in the file. Notice that creation + * property list dcrt_plist is used. + */ + datasetc = + H5Dcreate2(file, "collect_write", H5T_NATIVE_INT, fspaceid, H5P_DEFAULT, dcrt_plist, H5P_DEFAULT); + VRFY((datasetc >= 0), "dataset created succeeded"); + + dataseti = + H5Dcreate2(file, "independ_write", H5T_NATIVE_INT, fspaceid, H5P_DEFAULT, dcrt_plist, H5P_DEFAULT); + VRFY((dataseti >= 0), "dataset created succeeded"); + + /* The First selection for FILE + * + * block (3,2) + * stride(4,3) + * count (1,768/mpi_size) + * start (0,1+768*3*mpi_rank/mpi_size) + * + */ + + start[0] = FHSTART0; + start[1] = (hsize_t)(FHSTART1 + mpi_rank * FHSTRIDE1 * FHCOUNT1); + stride[0] = FHSTRIDE0; + stride[1] = FHSTRIDE1; + count[0] = FHCOUNT0; + count[1] = FHCOUNT1; + block[0] = FHBLOCK0; + block[1] = FHBLOCK1; + + ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "hyperslab selection succeeded"); + + /* The Second selection for FILE + * + * block (3,768) + * stride (1,1) + * count (1,1) + * start (4,768*mpi_rank/mpi_size) + * + */ + + start[0] = SHSTART0; + start[1] = (hsize_t)(SHSTART1 + SHCOUNT1 * SHBLOCK1 * mpi_rank); + stride[0] = SHSTRIDE0; + stride[1] = SHSTRIDE1; + count[0] = SHCOUNT0; + count[1] = SHCOUNT1; + block[0] = SHBLOCK0; + block[1] = SHBLOCK1; + + ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0), "hyperslab selection succeeded"); + + /* + * Create dataspace for the first dataset in the memory + * dim1 = 27000 + * + */ + mspaceid1 = H5Screate_simple(MSPACE1_RANK, mdim1, NULL); + VRFY((mspaceid1 >= 0), "memory dataspace created succeeded"); + + /* + * Memory space is 1-D, this is a good test to check + * whether a span-tree derived datatype needs to be built. + * block 1 + * stride 1 + * count 6912/mpi_size + * start 1 + * + */ + start[0] = MHSTART0; + stride[0] = MHSTRIDE0; + count[0] = MHCOUNT0; + block[0] = MHBLOCK0; + + ret = H5Sselect_hyperslab(mspaceid1, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "hyperslab selection succeeded"); + + /* independent write */ + ret = H5Dwrite(dataseti, H5T_NATIVE_INT, mspaceid1, fspaceid, H5P_DEFAULT, vector); + VRFY((ret >= 0), "dataset independent write succeed"); + + dxfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((dxfer_plist >= 0), ""); + + ret = H5Pset_dxpl_mpio(dxfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "MPIO data transfer property list succeed"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(dxfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); } - VRFY((ret >= 0),"H5D irregular collective write succeed"); + /* collective write */ + ret = H5Dwrite(datasetc, H5T_NATIVE_INT, mspaceid1, fspaceid, dxfer_plist, vector); + VRFY((ret >= 0), "dataset collective write succeed"); + + ret = H5Sclose(mspaceid1); + VRFY((ret >= 0), ""); + + ret = H5Sclose(fspaceid); + VRFY((ret >= 0), ""); + + /* + * Close dataset. + */ + ret = H5Dclose(datasetc); + VRFY((ret >= 0), ""); + + ret = H5Dclose(dataseti); + VRFY((ret >= 0), ""); + + /* + * Close the file. + */ + ret = H5Fclose(file); + VRFY((ret >= 0), ""); + /* + * Close property list + */ + + ret = H5Pclose(facc_plist); + VRFY((ret >= 0), ""); + ret = H5Pclose(dxfer_plist); + VRFY((ret >= 0), ""); + ret = H5Pclose(dcrt_plist); + VRFY((ret >= 0), ""); + + /* + * Open the file. + */ + + /*** + + For testing collective hyperslab selection write + In this test, we are using independent read to check + the correctedness of collective write compared with + independent write, + + In order to thoroughly test this feature, we choose + a different selection set for reading the data out. + + + ***/ - /* - * Close memory file and memory dataspaces. - */ - ret = H5Sclose(mspaceid); - VRFY((ret >= 0),""); - ret = H5Sclose(fspaceid); - VRFY((ret >= 0),""); + /* Obtain file access property list with MPI-IO driver */ + facc_plist = create_faccess_plist(comm, info, facc_type); + VRFY((facc_plist >= 0), ""); - /* - * Close dataset. - */ - ret = H5Dclose(dataseti); - VRFY((ret >= 0),""); + file = H5Fopen(filename, H5F_ACC_RDONLY, facc_plist); + VRFY((file >= 0), "H5Fopen succeeded"); - ret = H5Dclose(datasetc); - VRFY((ret >= 0),""); + /* + * Open the dataset. + */ + datasetc = H5Dopen2(file, "collect_write", H5P_DEFAULT); + VRFY((datasetc >= 0), "H5Dopen2 succeeded"); - /* - * Close property list - */ + dataseti = H5Dopen2(file, "independ_write", H5P_DEFAULT); + VRFY((dataseti >= 0), "H5Dopen2 succeeded"); - ret = H5Pclose(facc_plist); - VRFY((ret >= 0),""); + /* + * Get dataspace of the open dataset. + */ + fspaceid = H5Dget_space(datasetc); + VRFY((fspaceid >= 0), "file dataspace obtained succeeded"); + fspaceid1 = H5Dget_space(dataseti); + VRFY((fspaceid1 >= 0), "file dataspace obtained succeeded"); - /* - * Close the file. - */ - ret = H5Fclose(file); - VRFY((ret >= 0),""); + /* The First selection for FILE to read + * + * block (1,1) + * stride(1.1) + * count (3,768/mpi_size) + * start (1,2+768*mpi_rank/mpi_size) + * + */ + start[0] = RFFHSTART0; + start[1] = (hsize_t)(RFFHSTART1 + mpi_rank * RFFHCOUNT1); + block[0] = RFFHBLOCK0; + block[1] = RFFHBLOCK1; + stride[0] = RFFHSTRIDE0; + stride[1] = RFFHSTRIDE1; + count[0] = RFFHCOUNT0; + count[1] = RFFHCOUNT1; + + /* The first selection of the dataset generated by collective write */ + ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "hyperslab selection succeeded"); + + /* The first selection of the dataset generated by independent write */ + ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "hyperslab selection succeeded"); + + /* The Second selection for FILE to read + * + * block (1,1) + * stride(1.1) + * count (3,1536/mpi_size) + * start (2,4+1536*mpi_rank/mpi_size) + * + */ - if (vector) - HDfree(vector); - if (matrix_out) - HDfree(matrix_out); - if (matrix_out1) - HDfree(matrix_out1); + start[0] = RFSHSTART0; + start[1] = (hsize_t)(RFSHSTART1 + RFSHCOUNT1 * mpi_rank); + block[0] = RFSHBLOCK0; + block[1] = RFSHBLOCK1; + stride[0] = RFSHSTRIDE0; + stride[1] = RFSHSTRIDE0; + count[0] = RFSHCOUNT0; + count[1] = RFSHCOUNT1; + + /* The second selection of the dataset generated by collective write */ + ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0), "hyperslab selection succeeded"); + + /* The second selection of the dataset generated by independent write */ + ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0), "hyperslab selection succeeded"); + + /* + * Create memory dataspace. + * rank = 2 + * mdim1 = 9 + * mdim2 = 3600 + * + */ + mspaceid = H5Screate_simple(MSPACE_RANK, mdim, NULL); + + /* + * Select two hyperslabs in memory. Hyperslabs has the same + * size and shape as the selected hyperslabs for the file dataspace + * Only the starting point is different. + * The first selection + * block (1,1) + * stride(1.1) + * count (3,768/mpi_size) + * start (0,768*mpi_rank/mpi_size) + * + */ + + start[0] = RMFHSTART0; + start[1] = (hsize_t)(RMFHSTART1 + mpi_rank * RMFHCOUNT1); + block[0] = RMFHBLOCK0; + block[1] = RMFHBLOCK1; + stride[0] = RMFHSTRIDE0; + stride[1] = RMFHSTRIDE1; + count[0] = RMFHCOUNT0; + count[1] = RMFHCOUNT1; + + ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "hyperslab selection succeeded"); + + /* + * Select two hyperslabs in memory. Hyperslabs has the same + * size and shape as the selected hyperslabs for the file dataspace + * Only the starting point is different. + * The second selection + * block (1,1) + * stride(1,1) + * count (3,1536/mpi_size) + * start (1,2+1536*mpi_rank/mpi_size) + * + */ + start[0] = RMSHSTART0; + start[1] = (hsize_t)(RMSHSTART1 + mpi_rank * RMSHCOUNT1); + block[0] = RMSHBLOCK0; + block[1] = RMSHBLOCK1; + stride[0] = RMSHSTRIDE0; + stride[1] = RMSHSTRIDE1; + count[0] = RMSHCOUNT0; + count[1] = RMSHCOUNT1; + + ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0), "hyperslab selection succeeded"); + + /* + * Initialize data buffer. + */ + + HDmemset(matrix_out, 0, sizeof(int) * (size_t)MSPACE_DIM1 * (size_t)MSPACE_DIM2 * (size_t)mpi_size); + HDmemset(matrix_out1, 0, sizeof(int) * (size_t)MSPACE_DIM1 * (size_t)MSPACE_DIM2 * (size_t)mpi_size); + /* + * Read data back to the buffer matrix_out. + */ + + ret = H5Dread(datasetc, H5T_NATIVE_INT, mspaceid, fspaceid, H5P_DEFAULT, matrix_out); + VRFY((ret >= 0), "H5D independent read succeed"); + + ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid, H5P_DEFAULT, matrix_out1); + VRFY((ret >= 0), "H5D independent read succeed"); + + ret = 0; + + for (i = 0; i < MSPACE_DIM1 * MSPACE_DIM2 * mpi_size; i++) { + if (matrix_out[i] != matrix_out1[i]) + ret = -1; + if (ret < 0) + break; + } + + VRFY((ret >= 0), "H5D irregular collective write succeed"); + + /* + * Close memory file and memory dataspaces. + */ + ret = H5Sclose(mspaceid); + VRFY((ret >= 0), ""); + ret = H5Sclose(fspaceid); + VRFY((ret >= 0), ""); - return ; + /* + * Close dataset. + */ + ret = H5Dclose(dataseti); + VRFY((ret >= 0), ""); + + ret = H5Dclose(datasetc); + VRFY((ret >= 0), ""); + + /* + * Close property list + */ + + ret = H5Pclose(facc_plist); + VRFY((ret >= 0), ""); + + /* + * Close the file. + */ + ret = H5Fclose(file); + VRFY((ret >= 0), ""); + + if (vector) + HDfree(vector); + if (matrix_out) + HDfree(matrix_out); + if (matrix_out1) + HDfree(matrix_out1); + + return; } /*------------------------------------------------------------------------- @@ -662,240 +646,238 @@ void coll_write_test(int chunk_factor) *------------------------------------------------------------------------- */ static void -coll_read_test(int chunk_factor) +coll_read_test(void) { - const char *filename; - hid_t facc_plist,dxfer_plist; - hid_t file, dataseti; /* File and dataset identifiers */ - hid_t mspaceid, fspaceid1; /* Dataspace identifiers */ - - - /* Dimension sizes of the dataset (on disk) */ - hsize_t mdim[2]; /* Dimension sizes of the dataset in memory when we - * read selection from the dataset on the disk - */ - - hsize_t start[2]; /* Start of hyperslab */ - hsize_t stride[2]; /* Stride of hyperslab */ - hsize_t count[2]; /* Block count */ - hsize_t block[2]; /* Block sizes */ - herr_t ret; - - unsigned i; - - int *matrix_out; - int *matrix_out1; /* Buffer to read from the dataset */ - - int mpi_size,mpi_rank; - - MPI_Comm comm = MPI_COMM_WORLD; - MPI_Info info = MPI_INFO_NULL; - - /*set up MPI parameters */ - MPI_Comm_size(comm,&mpi_size); - MPI_Comm_rank(comm,&mpi_rank); - - - /* Obtain file name */ - filename = GetTestParameters(); - - - /* Initialize the buffer */ - - mdim[0] = MSPACE_DIM1; - mdim[1] = MSPACE_DIM2*mpi_size; - matrix_out =(int*)HDmalloc(sizeof(int)*MSPACE_DIM1*MSPACE_DIM2*mpi_size); - matrix_out1=(int*)HDmalloc(sizeof(int)*MSPACE_DIM1*MSPACE_DIM2*mpi_size); - - /*** For testing collective hyperslab selection read ***/ - - /* Obtain file access property list */ - facc_plist = create_faccess_plist(comm, info, facc_type); - VRFY((facc_plist >= 0),""); - - /* - * Open the file. - */ - file = H5Fopen(filename, H5F_ACC_RDONLY, facc_plist); - VRFY((file >= 0),"H5Fopen succeeded"); - - /* - * Open the dataset. - */ - dataseti = H5Dopen2(file,"independ_write", H5P_DEFAULT); - VRFY((dataseti >= 0),"H5Dopen2 succeeded"); - - /* - * Get dataspace of the open dataset. - */ - fspaceid1 = H5Dget_space(dataseti); - VRFY((fspaceid1 >= 0),"file dataspace obtained succeeded"); - - /* The First selection for FILE to read - * - * block (1,1) - * stride(1.1) - * count (3,768/mpi_size) - * start (1,2+768*mpi_rank/mpi_size) - * - */ - start[0] = RFFHSTART0; - start[1] = RFFHSTART1+mpi_rank*RFFHCOUNT1; - block[0] = RFFHBLOCK0; - block[1] = RFFHBLOCK1; - stride[0] = RFFHSTRIDE0; - stride[1] = RFFHSTRIDE1; - count[0] = RFFHCOUNT0; - count[1] = RFFHCOUNT1; - - ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0),"hyperslab selection succeeded"); - - /* The Second selection for FILE to read - * - * block (1,1) - * stride(1.1) - * count (3,1536/mpi_size) - * start (2,4+1536*mpi_rank/mpi_size) - * - */ - start[0] = RFSHSTART0; - start[1] = RFSHSTART1+RFSHCOUNT1*mpi_rank; - block[0] = RFSHBLOCK0; - block[1] = RFSHBLOCK1; - stride[0] = RFSHSTRIDE0; - stride[1] = RFSHSTRIDE0; - count[0] = RFSHCOUNT0; - count[1] = RFSHCOUNT1; - - ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_OR, start, stride, count, block); - VRFY((ret >= 0),"hyperslab selection succeeded"); - - - /* - * Create memory dataspace. - */ - mspaceid = H5Screate_simple(MSPACE_RANK, mdim, NULL); - - /* - * Select two hyperslabs in memory. Hyperslabs has the same - * size and shape as the selected hyperslabs for the file dataspace. - * Only the starting point is different. - * The first selection - * block (1,1) - * stride(1.1) - * count (3,768/mpi_size) - * start (0,768*mpi_rank/mpi_size) - * - */ - - start[0] = RMFHSTART0; - start[1] = RMFHSTART1+mpi_rank*RMFHCOUNT1; - block[0] = RMFHBLOCK0; - block[1] = RMFHBLOCK1; - stride[0] = RMFHSTRIDE0; - stride[1] = RMFHSTRIDE1; - count[0] = RMFHCOUNT0; - count[1] = RMFHCOUNT1; - ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_SET, start, stride, count, block); - VRFY((ret >= 0),"hyperslab selection succeeded"); - - /* - * Select two hyperslabs in memory. Hyperslabs has the same - * size and shape as the selected hyperslabs for the file dataspace - * Only the starting point is different. - * The second selection - * block (1,1) - * stride(1,1) - * count (3,1536/mpi_size) - * start (1,2+1536*mpi_rank/mpi_size) - * - */ - start[0] = RMSHSTART0; - start[1] = RMSHSTART1+mpi_rank*RMSHCOUNT1; - block[0] = RMSHBLOCK0; - block[1] = RMSHBLOCK1; - stride[0] = RMSHSTRIDE0; - stride[1] = RMSHSTRIDE1; - count[0] = RMSHCOUNT0; - count[1] = RMSHCOUNT1; - ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_OR, start, stride, count, block); - VRFY((ret >= 0),"hyperslab selection succeeded"); - - - /* - * Initialize data buffer. - */ - - HDmemset(matrix_out,0,sizeof(int)*MSPACE_DIM1*MSPACE_DIM2*mpi_size); - HDmemset(matrix_out1,0,sizeof(int)*MSPACE_DIM1*MSPACE_DIM2*mpi_size); - - /* - * Read data back to the buffer matrix_out. - */ - - dxfer_plist = H5Pcreate(H5P_DATASET_XFER); - VRFY((dxfer_plist >= 0),""); - - ret = H5Pset_dxpl_mpio(dxfer_plist, H5FD_MPIO_COLLECTIVE); - VRFY((ret >= 0),"MPIO data transfer property list succeed"); - if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { - ret = H5Pset_dxpl_mpio_collective_opt(dxfer_plist,H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0),"set independent IO collectively succeeded"); - } - - - /* Collective read */ - ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid1, - dxfer_plist, matrix_out); - VRFY((ret >= 0),"H5D collecive read succeed"); - - ret = H5Pclose(dxfer_plist); - VRFY((ret >= 0),""); - - /* Independent read */ - ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid1, - H5P_DEFAULT, matrix_out1); - VRFY((ret >= 0),"H5D independent read succeed"); - - ret = 0; - for (i = 0; i < MSPACE_DIM1*MSPACE_DIM2*mpi_size; i++){ - if(matrix_out[i]!=matrix_out1[i])ret = -1; - if(ret < 0) break; - } - VRFY((ret >= 0),"H5D contiguous irregular collective read succeed"); - - /* - * Close memory file and memory dataspaces. - */ - ret = H5Sclose(mspaceid); - VRFY((ret >= 0),""); - ret = H5Sclose(fspaceid1); - VRFY((ret >= 0),""); - - /* - * Close dataset. - */ - ret = H5Dclose(dataseti); - VRFY((ret >= 0),""); - - /* - * Close property list - */ - ret = H5Pclose(facc_plist); - VRFY((ret >= 0),""); - - - /* - * Close the file. - */ - ret = H5Fclose(file); - VRFY((ret >= 0),""); - - return; -} + const char *filename; + hid_t facc_plist, dxfer_plist; + hid_t file, dataseti; /* File and dataset identifiers */ + hid_t mspaceid, fspaceid1; /* Dataspace identifiers */ + + /* Dimension sizes of the dataset (on disk) */ + hsize_t mdim[2]; /* Dimension sizes of the dataset in memory when we + * read selection from the dataset on the disk + */ + + hsize_t start[2]; /* Start of hyperslab */ + hsize_t stride[2]; /* Stride of hyperslab */ + hsize_t count[2]; /* Block count */ + hsize_t block[2]; /* Block sizes */ + herr_t ret; + + int i; + + int *matrix_out; + int *matrix_out1; /* Buffer to read from the dataset */ + + int mpi_size, mpi_rank; + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + + /*set up MPI parameters */ + MPI_Comm_size(comm, &mpi_size); + MPI_Comm_rank(comm, &mpi_rank); + + /* Obtain file name */ + filename = GetTestParameters(); + + /* Initialize the buffer */ + + mdim[0] = MSPACE_DIM1; + mdim[1] = (hsize_t)(MSPACE_DIM2 * mpi_size); + matrix_out = (int *)HDmalloc(sizeof(int) * (size_t)MSPACE_DIM1 * (size_t)MSPACE_DIM2 * (size_t)mpi_size); + matrix_out1 = (int *)HDmalloc(sizeof(int) * (size_t)MSPACE_DIM1 * (size_t)MSPACE_DIM2 * (size_t)mpi_size); + + /*** For testing collective hyperslab selection read ***/ + + /* Obtain file access property list */ + facc_plist = create_faccess_plist(comm, info, facc_type); + VRFY((facc_plist >= 0), ""); + + /* + * Open the file. + */ + file = H5Fopen(filename, H5F_ACC_RDONLY, facc_plist); + VRFY((file >= 0), "H5Fopen succeeded"); + + /* + * Open the dataset. + */ + dataseti = H5Dopen2(file, "independ_write", H5P_DEFAULT); + VRFY((dataseti >= 0), "H5Dopen2 succeeded"); + + /* + * Get dataspace of the open dataset. + */ + fspaceid1 = H5Dget_space(dataseti); + VRFY((fspaceid1 >= 0), "file dataspace obtained succeeded"); + + /* The First selection for FILE to read + * + * block (1,1) + * stride(1.1) + * count (3,768/mpi_size) + * start (1,2+768*mpi_rank/mpi_size) + * + */ + start[0] = RFFHSTART0; + start[1] = (hsize_t)(RFFHSTART1 + mpi_rank * RFFHCOUNT1); + block[0] = RFFHBLOCK0; + block[1] = RFFHBLOCK1; + stride[0] = RFFHSTRIDE0; + stride[1] = RFFHSTRIDE1; + count[0] = RFFHCOUNT0; + count[1] = RFFHCOUNT1; + + ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "hyperslab selection succeeded"); + + /* The Second selection for FILE to read + * + * block (1,1) + * stride(1.1) + * count (3,1536/mpi_size) + * start (2,4+1536*mpi_rank/mpi_size) + * + */ + start[0] = RFSHSTART0; + start[1] = (hsize_t)(RFSHSTART1 + RFSHCOUNT1 * mpi_rank); + block[0] = RFSHBLOCK0; + block[1] = RFSHBLOCK1; + stride[0] = RFSHSTRIDE0; + stride[1] = RFSHSTRIDE0; + count[0] = RFSHCOUNT0; + count[1] = RFSHCOUNT1; + + ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0), "hyperslab selection succeeded"); + + /* + * Create memory dataspace. + */ + mspaceid = H5Screate_simple(MSPACE_RANK, mdim, NULL); + + /* + * Select two hyperslabs in memory. Hyperslabs has the same + * size and shape as the selected hyperslabs for the file dataspace. + * Only the starting point is different. + * The first selection + * block (1,1) + * stride(1.1) + * count (3,768/mpi_size) + * start (0,768*mpi_rank/mpi_size) + * + */ + + start[0] = RMFHSTART0; + start[1] = (hsize_t)(RMFHSTART1 + mpi_rank * RMFHCOUNT1); + block[0] = RMFHBLOCK0; + block[1] = RMFHBLOCK1; + stride[0] = RMFHSTRIDE0; + stride[1] = RMFHSTRIDE1; + count[0] = RMFHCOUNT0; + count[1] = RMFHCOUNT1; + ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "hyperslab selection succeeded"); + + /* + * Select two hyperslabs in memory. Hyperslabs has the same + * size and shape as the selected hyperslabs for the file dataspace + * Only the starting point is different. + * The second selection + * block (1,1) + * stride(1,1) + * count (3,1536/mpi_size) + * start (1,2+1536*mpi_rank/mpi_size) + * + */ + start[0] = RMSHSTART0; + start[1] = (hsize_t)(RMSHSTART1 + mpi_rank * RMSHCOUNT1); + block[0] = RMSHBLOCK0; + block[1] = RMSHBLOCK1; + stride[0] = RMSHSTRIDE0; + stride[1] = RMSHSTRIDE1; + count[0] = RMSHCOUNT0; + count[1] = RMSHCOUNT1; + ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0), "hyperslab selection succeeded"); + + /* + * Initialize data buffer. + */ + + HDmemset(matrix_out, 0, sizeof(int) * (size_t)MSPACE_DIM1 * (size_t)MSPACE_DIM2 * (size_t)mpi_size); + HDmemset(matrix_out1, 0, sizeof(int) * (size_t)MSPACE_DIM1 * (size_t)MSPACE_DIM2 * (size_t)mpi_size); + + /* + * Read data back to the buffer matrix_out. + */ + + dxfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((dxfer_plist >= 0), ""); + + ret = H5Pset_dxpl_mpio(dxfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "MPIO data transfer property list succeed"); + if (dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(dxfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "set independent IO collectively succeeded"); + } + + /* Collective read */ + ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid1, dxfer_plist, matrix_out); + VRFY((ret >= 0), "H5D collecive read succeed"); + + ret = H5Pclose(dxfer_plist); + VRFY((ret >= 0), ""); + + /* Independent read */ + ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid1, H5P_DEFAULT, matrix_out1); + VRFY((ret >= 0), "H5D independent read succeed"); + + ret = 0; + for (i = 0; i < MSPACE_DIM1 * MSPACE_DIM2 * mpi_size; i++) { + if (matrix_out[i] != matrix_out1[i]) + ret = -1; + if (ret < 0) + break; + } + VRFY((ret >= 0), "H5D contiguous irregular collective read succeed"); + + /* + * Free read buffers. + */ + HDfree(matrix_out); + HDfree(matrix_out1); + + /* + * Close memory file and memory dataspaces. + */ + ret = H5Sclose(mspaceid); + VRFY((ret >= 0), ""); + ret = H5Sclose(fspaceid1); + VRFY((ret >= 0), ""); + + /* + * Close dataset. + */ + ret = H5Dclose(dataseti); + VRFY((ret >= 0), ""); + + /* + * Close property list + */ + ret = H5Pclose(facc_plist); + VRFY((ret >= 0), ""); + + /* + * Close the file. + */ + ret = H5Fclose(file); + VRFY((ret >= 0), ""); + + return; +} /**************************************************************** ** @@ -908,8 +890,8 @@ coll_read_test(int chunk_factor) ** edge_size, and a checker_edge_size, select a checker ** board selection of a sel_rank (sel_rank < tgt_rank) ** dimensional slice through the dataspace parallel to the -** sel_rank fastest changing indicies, with origin (in the -** higher indicies) as indicated by the start array. +** sel_rank fastest changing indices, with origin (in the +** higher indices) as indicated by the start array. ** ** Note that this function, is hard coded to presume a ** maximum dataspace rank of 5. @@ -922,70 +904,62 @@ coll_read_test(int chunk_factor) ** ****************************************************************/ -#define LDSCT_DS_RANK 5 +#define LDSCT_DS_RANK 5 +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG #define LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK 0 +#endif #define LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG 0 static void -lower_dim_size_comp_test__select_checker_board( - const int mpi_rank, - const hid_t tgt_sid, - const int tgt_rank, - const hsize_t dims[LDSCT_DS_RANK], - const int checker_edge_size, - const int sel_rank, - hsize_t sel_start[]) +lower_dim_size_comp_test__select_checker_board(const int mpi_rank, const hid_t tgt_sid, const int tgt_rank, + const hsize_t dims[LDSCT_DS_RANK], const int checker_edge_size, + const int sel_rank, hsize_t sel_start[]) { #if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG - const char * fcnName = - "lower_dim_size_comp_test__select_checker_board():"; + const char *fcnName = "lower_dim_size_comp_test__select_checker_board():"; #endif - hbool_t first_selection = TRUE; - int i, j, k, l, m; - int ds_offset; - int sel_offset; - const int test_max_rank = LDSCT_DS_RANK; /* must update code if */ - /* this changes */ - hsize_t base_count; - hsize_t offset_count; - hsize_t start[LDSCT_DS_RANK]; - hsize_t stride[LDSCT_DS_RANK]; - hsize_t count[LDSCT_DS_RANK]; - hsize_t block[LDSCT_DS_RANK]; - herr_t ret; /* Generic return value */ + hbool_t first_selection = TRUE; + int i, j, k, l, m; + int ds_offset; + int sel_offset; + const int test_max_rank = LDSCT_DS_RANK; /* must update code if */ + /* this changes */ + hsize_t base_count; + hsize_t offset_count; + hsize_t start[LDSCT_DS_RANK]; + hsize_t stride[LDSCT_DS_RANK]; + hsize_t count[LDSCT_DS_RANK]; + hsize_t block[LDSCT_DS_RANK]; + herr_t ret; /* Generic return value */ #if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, - "%s:%d: dims/checker_edge_size = %d %d %d %d %d / %d\n", - fcnName, mpi_rank, (int)dims[0], (int)dims[1], (int)dims[2], - (int)dims[3], (int)dims[4], checker_edge_size); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: dims/checker_edge_size = %d %d %d %d %d / %d\n", fcnName, mpi_rank, + (int)dims[0], (int)dims[1], (int)dims[2], (int)dims[3], (int)dims[4], checker_edge_size); } #endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */ - HDassert( 0 < checker_edge_size ); - HDassert( 0 < sel_rank ); - HDassert( sel_rank <= tgt_rank ); - HDassert( tgt_rank <= test_max_rank ); - HDassert( test_max_rank <= LDSCT_DS_RANK ); + HDassert(0 < checker_edge_size); + HDassert(0 < sel_rank); + HDassert(sel_rank <= tgt_rank); + HDassert(tgt_rank <= test_max_rank); + HDassert(test_max_rank <= LDSCT_DS_RANK); sel_offset = test_max_rank - sel_rank; - HDassert( sel_offset >= 0 ); + HDassert(sel_offset >= 0); ds_offset = test_max_rank - tgt_rank; - HDassert( ds_offset >= 0 ); - HDassert( ds_offset <= sel_offset ); + HDassert(ds_offset >= 0); + HDassert(ds_offset <= sel_offset); - HDassert( (hsize_t)checker_edge_size <= dims[sel_offset] ); - HDassert( dims[sel_offset] == 10 ); + HDassert((hsize_t)checker_edge_size <= dims[sel_offset]); + HDassert(dims[sel_offset] == 10); #if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, "%s:%d: sel_rank/sel_offset = %d/%d.\n", - fcnName, mpi_rank, sel_rank, sel_offset); - HDfprintf(stdout, "%s:%d: tgt_rank/ds_offset = %d/%d.\n", - fcnName, mpi_rank, tgt_rank, ds_offset); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: sel_rank/sel_offset = %d/%d.\n", fcnName, mpi_rank, sel_rank, sel_offset); + HDfprintf(stdout, "%s:%d: tgt_rank/ds_offset = %d/%d.\n", fcnName, mpi_rank, tgt_rank, ds_offset); } #endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */ @@ -1002,27 +976,25 @@ lower_dim_size_comp_test__select_checker_board( * pre-C99 compilers again. */ - base_count = dims[sel_offset] / (checker_edge_size * 2); + base_count = dims[sel_offset] / (hsize_t)(checker_edge_size * 2); - if ( (dims[sel_rank] % (checker_edge_size * 2)) > 0 ) { + if ((dims[sel_rank] % (hsize_t)(checker_edge_size * 2)) > 0) { base_count++; } offset_count = - (hsize_t)((dims[sel_offset] - (hsize_t)checker_edge_size) / - ((hsize_t)(checker_edge_size * 2))); + (hsize_t)((dims[sel_offset] - (hsize_t)checker_edge_size) / ((hsize_t)(checker_edge_size * 2))); - if ( ((dims[sel_rank] - (hsize_t)checker_edge_size) % - ((hsize_t)(checker_edge_size * 2))) > 0 ) { + if (((dims[sel_rank] - (hsize_t)checker_edge_size) % ((hsize_t)(checker_edge_size * 2))) > 0) { offset_count++; } #if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, "%s:%d: base_count/offset_count = %d/%d.\n", - fcnName, mpi_rank, base_count, offset_count); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: base_count/offset_count = %d/%d.\n", fcnName, mpi_rank, base_count, + offset_count); } #endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */ @@ -1031,235 +1003,193 @@ lower_dim_size_comp_test__select_checker_board( * the checker board. */ i = 0; - while ( i < ds_offset ) { + while (i < ds_offset) { /* these values should never be used */ - start[i] = 0; + start[i] = 0; stride[i] = 0; - count[i] = 0; - block[i] = 0; + count[i] = 0; + block[i] = 0; i++; } - while ( i < sel_offset ) { + while (i < sel_offset) { - start[i] = sel_start[i]; + start[i] = sel_start[i]; stride[i] = 2 * dims[i]; - count[i] = 1; - block[i] = 1; + count[i] = 1; + block[i] = 1; i++; } - while ( i < test_max_rank ) { + while (i < test_max_rank) { stride[i] = (hsize_t)(2 * checker_edge_size); - block[i] = (hsize_t)checker_edge_size; + block[i] = (hsize_t)checker_edge_size; i++; } i = 0; do { - if ( 0 >= sel_offset ) { + if (0 >= sel_offset) { - if ( i == 0 ) { + if (i == 0) { start[0] = 0; count[0] = base_count; - - } else { + } + else { start[0] = (hsize_t)checker_edge_size; count[0] = offset_count; - } } j = 0; do { - if ( 1 >= sel_offset ) { + if (1 >= sel_offset) { - if ( j == 0 ) { + if (j == 0) { start[1] = 0; count[1] = base_count; - - } else { + } + else { start[1] = (hsize_t)checker_edge_size; count[1] = offset_count; - } } k = 0; do { - if ( 2 >= sel_offset ) { + if (2 >= sel_offset) { - if ( k == 0 ) { + if (k == 0) { start[2] = 0; count[2] = base_count; - - } else { + } + else { start[2] = (hsize_t)checker_edge_size; count[2] = offset_count; - } } l = 0; do { - if ( 3 >= sel_offset ) { + if (3 >= sel_offset) { - if ( l == 0 ) { + if (l == 0) { start[3] = 0; count[3] = base_count; - - } else { + } + else { start[3] = (hsize_t)checker_edge_size; count[3] = offset_count; - } } m = 0; do { - if ( 4 >= sel_offset ) { + if (4 >= sel_offset) { - if ( m == 0 ) { + if (m == 0) { start[4] = 0; count[4] = base_count; - - } else { + } + else { start[4] = (hsize_t)checker_edge_size; count[4] = offset_count; - } } - if ( ((i + j + k + l + m) % 2) == 0 ) { + if (((i + j + k + l + m) % 2) == 0) { #if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG - if ( mpi_rank == - LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - - HDfprintf(stdout, - "%s%d: *** first_selection = %d ***\n", - fcnName, mpi_rank, (int)first_selection); - HDfprintf(stdout, - "%s:%d: i/j/k/l/m = %d/%d/%d/%d/%d\n", - fcnName, mpi_rank, i, j, k, l, m); - HDfprintf(stdout, - "%s:%d: start = %d %d %d %d %d.\n", - fcnName, mpi_rank, - (int)start[0], (int)start[1], - (int)start[2], (int)start[3], - (int)start[4]); - HDfprintf(stdout, - "%s:%d: stride = %d %d %d %d %d.\n", - fcnName, mpi_rank, - (int)stride[0], (int)stride[1], - (int)stride[2], (int)stride[3], - (int)stride[4]); - HDfprintf(stdout, - "%s:%d: count = %d %d %d %d %d.\n", - fcnName, mpi_rank, - (int)count[0], (int)count[1], - (int)count[2], (int)count[3], - (int)count[4]); - HDfprintf(stdout, - "%s:%d: block = %d %d %d %d %d.\n", - fcnName, mpi_rank, - (int)block[0], (int)block[1], - (int)block[2], (int)block[3], - (int)block[4]); - HDfprintf(stdout, - "%s:%d: n-cube extent dims = %d.\n", - fcnName, mpi_rank, - H5Sget_simple_extent_ndims(tgt_sid)); - HDfprintf(stdout, - "%s:%d: selection rank = %d.\n", - fcnName, mpi_rank, sel_rank); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + + HDfprintf(stdout, "%s%d: *** first_selection = %d ***\n", fcnName, mpi_rank, + (int)first_selection); + HDfprintf(stdout, "%s:%d: i/j/k/l/m = %d/%d/%d/%d/%d\n", fcnName, mpi_rank, i, + j, k, l, m); + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, mpi_rank, + (int)start[0], (int)start[1], (int)start[2], (int)start[3], + (int)start[4]); + HDfprintf(stdout, "%s:%d: stride = %d %d %d %d %d.\n", fcnName, mpi_rank, + (int)stride[0], (int)stride[1], (int)stride[2], (int)stride[3], + (int)stride[4]); + HDfprintf(stdout, "%s:%d: count = %d %d %d %d %d.\n", fcnName, mpi_rank, + (int)count[0], (int)count[1], (int)count[2], (int)count[3], + (int)count[4]); + HDfprintf(stdout, "%s:%d: block = %d %d %d %d %d.\n", fcnName, mpi_rank, + (int)block[0], (int)block[1], (int)block[2], (int)block[3], + (int)block[4]); + HDfprintf(stdout, "%s:%d: n-cube extent dims = %d.\n", fcnName, mpi_rank, + H5Sget_simple_extent_ndims(tgt_sid)); + HDfprintf(stdout, "%s:%d: selection rank = %d.\n", fcnName, mpi_rank, + sel_rank); } #endif - if ( first_selection ) { + if (first_selection) { first_selection = FALSE; - ret = H5Sselect_hyperslab - ( - tgt_sid, - H5S_SELECT_SET, - &(start[ds_offset]), - &(stride[ds_offset]), - &(count[ds_offset]), - &(block[ds_offset]) - ); + ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_SET, &(start[ds_offset]), + &(stride[ds_offset]), &(count[ds_offset]), + &(block[ds_offset])); VRFY((ret != FAIL), "H5Sselect_hyperslab(SET) succeeded"); + } + else { - } else { - - ret = H5Sselect_hyperslab - ( - tgt_sid, - H5S_SELECT_OR, - &(start[ds_offset]), - &(stride[ds_offset]), - &(count[ds_offset]), - &(block[ds_offset]) - ); + ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_OR, &(start[ds_offset]), + &(stride[ds_offset]), &(count[ds_offset]), + &(block[ds_offset])); VRFY((ret != FAIL), "H5Sselect_hyperslab(OR) succeeded"); - } } m++; - } while ( ( m <= 1 ) && - ( 4 >= sel_offset ) ); + } while ((m <= 1) && (4 >= sel_offset)); l++; - } while ( ( l <= 1 ) && - ( 3 >= sel_offset ) ); + } while ((l <= 1) && (3 >= sel_offset)); k++; - } while ( ( k <= 1 ) && - ( 2 >= sel_offset ) ); + } while ((k <= 1) && (2 >= sel_offset)); j++; - } while ( ( j <= 1 ) && - ( 1 >= sel_offset ) ); - + } while ((j <= 1) && (1 >= sel_offset)); i++; - } while ( ( i <= 1 ) && - ( 0 >= sel_offset ) ); + } while ((i <= 1) && (0 >= sel_offset)); #if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", - fcnName, mpi_rank, (int)H5Sget_select_npoints(tgt_sid)); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", fcnName, mpi_rank, + (int)H5Sget_select_npoints(tgt_sid)); } #endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */ /* Clip the selection back to the dataspace proper. */ - for ( i = 0; i < test_max_rank; i++ ) { + for (i = 0; i < test_max_rank; i++) { start[i] = 0; stride[i] = dims[i]; @@ -1267,15 +1197,14 @@ lower_dim_size_comp_test__select_checker_board( block[i] = dims[i]; } - ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_AND, - start, stride, count, block); + ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_AND, start, stride, count, block); VRFY((ret != FAIL), "H5Sselect_hyperslab(AND) succeeded"); #if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", - fcnName, mpi_rank, (int)H5Sget_select_npoints(tgt_sid)); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", fcnName, mpi_rank, + (int)H5Sget_select_npoints(tgt_sid)); HDfprintf(stdout, "%s%d: done.\n", fcnName, mpi_rank); } #endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */ @@ -1284,7 +1213,6 @@ lower_dim_size_comp_test__select_checker_board( } /* lower_dim_size_comp_test__select_checker_board() */ - /**************************************************************** ** ** lower_dim_size_comp_test__verify_data(): @@ -1302,7 +1230,7 @@ lower_dim_size_comp_test__select_checker_board( ** or writing a checker board selection of an m (1 <= m < ** rank) dimensional slice through this processes slice ** of the target data set. Also, this slice must be parallel -** to the fastest changing indicies. +** to the fastest changing indices. ** ** It is further presumed that the buffer was zeroed before ** the read/write, and that the full target data set (i.e. @@ -1337,145 +1265,130 @@ lower_dim_size_comp_test__select_checker_board( ** of the buffer resides either at the origin of either ** a selected or an unselected checker. (Translation: ** if partial checkers appear in the buffer, they will -** intersect the edges of the n-cube oposite the origin.) +** intersect the edges of the n-cube opposite the origin.) ** ****************************************************************/ #define LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG 0 static hbool_t -lower_dim_size_comp_test__verify_data(uint32_t * buf_ptr, +lower_dim_size_comp_test__verify_data(uint32_t *buf_ptr, #if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG const int mpi_rank, #endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */ - const int rank, - const int edge_size, - const int checker_edge_size, - uint32_t first_expected_val, - hbool_t buf_starts_in_checker) + const int rank, const int edge_size, const int checker_edge_size, + uint32_t first_expected_val, hbool_t buf_starts_in_checker) { #if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG - const char * fcnName = - "lower_dim_size_comp_test__verify_data():"; + const char *fcnName = "lower_dim_size_comp_test__verify_data():"; #endif - hbool_t good_data = TRUE; - hbool_t in_checker; - hbool_t start_in_checker[5]; - uint32_t expected_value; - uint32_t * val_ptr; - int i, j, k, l, m; /* to track position in n-cube */ - int v, w, x, y, z; /* to track position in checker */ + hbool_t good_data = TRUE; + hbool_t in_checker; + hbool_t start_in_checker[5]; + uint32_t expected_value; + uint32_t *val_ptr; + int i, j, k, l, m; /* to track position in n-cube */ + int v, w, x, y, z; /* to track position in checker */ const int test_max_rank = 5; /* code changes needed if this is increased */ - HDassert( buf_ptr != NULL ); - HDassert( 0 < rank ); - HDassert( rank <= test_max_rank ); - HDassert( edge_size >= 6 ); - HDassert( 0 < checker_edge_size ); - HDassert( checker_edge_size <= edge_size ); - HDassert( test_max_rank <= LDSCT_DS_RANK ); + HDassert(buf_ptr != NULL); + HDassert(0 < rank); + HDassert(rank <= test_max_rank); + HDassert(edge_size >= 6); + HDassert(0 < checker_edge_size); + HDassert(checker_edge_size <= edge_size); + HDassert(test_max_rank <= LDSCT_DS_RANK); #if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { HDfprintf(stdout, "%s mpi_rank = %d.\n", fcnName, mpi_rank); HDfprintf(stdout, "%s rank = %d.\n", fcnName, rank); HDfprintf(stdout, "%s edge_size = %d.\n", fcnName, edge_size); - HDfprintf(stdout, "%s checker_edge_size = %d.\n", - fcnName, checker_edge_size); - HDfprintf(stdout, "%s first_expected_val = %d.\n", - fcnName, (int)first_expected_val); - HDfprintf(stdout, "%s starts_in_checker = %d.\n", - fcnName, (int)buf_starts_in_checker); + HDfprintf(stdout, "%s checker_edge_size = %d.\n", fcnName, checker_edge_size); + HDfprintf(stdout, "%s first_expected_val = %d.\n", fcnName, (int)first_expected_val); + HDfprintf(stdout, "%s starts_in_checker = %d.\n", fcnName, (int)buf_starts_in_checker); } #endif - val_ptr = buf_ptr; + val_ptr = buf_ptr; expected_value = first_expected_val; - i = 0; - v = 0; + i = 0; + v = 0; start_in_checker[0] = buf_starts_in_checker; - do - { - if ( v >= checker_edge_size ) { + do { + if (v >= checker_edge_size) { - start_in_checker[0] = ! start_in_checker[0]; - v = 0; + start_in_checker[0] = !start_in_checker[0]; + v = 0; } - j = 0; - w = 0; + j = 0; + w = 0; start_in_checker[1] = start_in_checker[0]; - do - { - if ( w >= checker_edge_size ) { + do { + if (w >= checker_edge_size) { - start_in_checker[1] = ! start_in_checker[1]; - w = 0; + start_in_checker[1] = !start_in_checker[1]; + w = 0; } - k = 0; - x = 0; + k = 0; + x = 0; start_in_checker[2] = start_in_checker[1]; - do - { - if ( x >= checker_edge_size ) { + do { + if (x >= checker_edge_size) { - start_in_checker[2] = ! start_in_checker[2]; - x = 0; + start_in_checker[2] = !start_in_checker[2]; + x = 0; } - l = 0; - y = 0; + l = 0; + y = 0; start_in_checker[3] = start_in_checker[2]; - do - { - if ( y >= checker_edge_size ) { + do { + if (y >= checker_edge_size) { - start_in_checker[3] = ! start_in_checker[3]; - y = 0; + start_in_checker[3] = !start_in_checker[3]; + y = 0; } m = 0; z = 0; #if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG - if ( mpi_rank == - LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { HDfprintf(stdout, "%d, %d, %d, %d, %d:", i, j, k, l, m); } #endif in_checker = start_in_checker[3]; - do - { + do { #if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG - if ( mpi_rank == - LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { HDfprintf(stdout, " %d", (int)(*val_ptr)); } #endif - if ( z >= checker_edge_size ) { + if (z >= checker_edge_size) { - in_checker = ! in_checker; - z = 0; + in_checker = !in_checker; + z = 0; } - if ( in_checker ) { + if (in_checker) { - if ( *val_ptr != expected_value ) { + if (*val_ptr != expected_value) { good_data = FALSE; } /* zero out buffer for re-use */ *val_ptr = 0; - - } else if ( *val_ptr != 0 ) { + } + else if (*val_ptr != 0) { good_data = FALSE; /* zero out buffer for re-use */ *val_ptr = 0; - } val_ptr++; @@ -1483,36 +1396,29 @@ lower_dim_size_comp_test__verify_data(uint32_t * buf_ptr, m++; z++; - } while ( ( rank >= (test_max_rank - 4) ) && - ( m < edge_size ) ); + } while ((rank >= (test_max_rank - 4)) && (m < edge_size)); #if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG - if ( mpi_rank == - LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { HDfprintf(stdout, "\n"); } #endif l++; y++; - } while ( ( rank >= (test_max_rank - 3) ) && - ( l < edge_size ) ); + } while ((rank >= (test_max_rank - 3)) && (l < edge_size)); k++; x++; - } while ( ( rank >= (test_max_rank - 2) ) && - ( k < edge_size ) ); + } while ((rank >= (test_max_rank - 2)) && (k < edge_size)); j++; w++; - } while ( ( rank >= (test_max_rank - 1) ) && - ( j < edge_size ) ); + } while ((rank >= (test_max_rank - 1)) && (j < edge_size)); i++; v++; - } while ( ( rank >= test_max_rank ) && - ( i < edge_size ) ); + } while ((rank >= test_max_rank) && (i < edge_size)); - return(good_data); + return (good_data); } /* lower_dim_size_comp_test__verify_data() */ - /*------------------------------------------------------------------------- * Function: lower_dim_size_comp_test__run_test() * @@ -1527,100 +1433,96 @@ lower_dim_size_comp_test__verify_data(uint32_t * buf_ptr, *------------------------------------------------------------------------- */ -#define LDSCT_DS_RANK 5 -#define LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG 0 +#define LDSCT_DS_RANK 5 static void -lower_dim_size_comp_test__run_test(const int chunk_edge_size, - const hbool_t use_collective_io, +lower_dim_size_comp_test__run_test(const int chunk_edge_size, const hbool_t use_collective_io, const hid_t dset_type) { #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - const char *fcnName = "lower_dim_size_comp_test__run_test()"; - int rank; - hsize_t dims[32]; - hsize_t max_dims[32]; + const char *fcnName = "lower_dim_size_comp_test__run_test()"; + int rank; + hsize_t dims[32]; + hsize_t max_dims[32]; #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ - const char *filename; - hbool_t data_ok = FALSE; - hbool_t mis_match = FALSE; - int i; - int start_index; - int stop_index; - int mrc; - int mpi_rank; - int mpi_size; - MPI_Comm mpi_comm = MPI_COMM_NULL; - MPI_Info mpi_info = MPI_INFO_NULL; - hid_t fid; /* HDF5 file ID */ - hid_t acc_tpl; /* File access templates */ - hid_t xfer_plist = H5P_DEFAULT; - size_t small_ds_size; - size_t small_ds_slice_size; - size_t large_ds_size; - size_t large_ds_slice_size; - uint32_t expected_value; - uint32_t * small_ds_buf_0 = NULL; - uint32_t * small_ds_buf_1 = NULL; - uint32_t * large_ds_buf_0 = NULL; - uint32_t * large_ds_buf_1 = NULL; - uint32_t * ptr_0; - uint32_t * ptr_1; - hsize_t small_chunk_dims[LDSCT_DS_RANK]; - hsize_t large_chunk_dims[LDSCT_DS_RANK]; - hsize_t small_dims[LDSCT_DS_RANK]; - hsize_t large_dims[LDSCT_DS_RANK]; - hsize_t start[LDSCT_DS_RANK]; - hsize_t stride[LDSCT_DS_RANK]; - hsize_t count[LDSCT_DS_RANK]; - hsize_t block[LDSCT_DS_RANK]; - hsize_t small_sel_start[LDSCT_DS_RANK]; - hsize_t large_sel_start[LDSCT_DS_RANK]; - hid_t full_mem_small_ds_sid; - hid_t full_file_small_ds_sid; - hid_t mem_small_ds_sid; - hid_t file_small_ds_sid; - hid_t full_mem_large_ds_sid; - hid_t full_file_large_ds_sid; - hid_t mem_large_ds_sid; - hid_t file_large_ds_sid; - hid_t small_ds_dcpl_id = H5P_DEFAULT; - hid_t large_ds_dcpl_id = H5P_DEFAULT; - hid_t small_dataset; /* Dataset ID */ - hid_t large_dataset; /* Dataset ID */ - htri_t check; /* Shape comparison return value */ - herr_t ret; /* Generic return value */ + const char *filename; + hbool_t data_ok = FALSE; + hbool_t mis_match = FALSE; + int i; + int start_index; + int stop_index; + int mrc; + int mpi_rank; + int mpi_size; + MPI_Comm mpi_comm = MPI_COMM_NULL; + MPI_Info mpi_info = MPI_INFO_NULL; + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist = H5P_DEFAULT; + size_t small_ds_size; + size_t small_ds_slice_size; + size_t large_ds_size; +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + size_t large_ds_slice_size; +#endif + uint32_t expected_value; + uint32_t *small_ds_buf_0 = NULL; + uint32_t *small_ds_buf_1 = NULL; + uint32_t *large_ds_buf_0 = NULL; + uint32_t *large_ds_buf_1 = NULL; + uint32_t *ptr_0; + uint32_t *ptr_1; + hsize_t small_chunk_dims[LDSCT_DS_RANK]; + hsize_t large_chunk_dims[LDSCT_DS_RANK]; + hsize_t small_dims[LDSCT_DS_RANK]; + hsize_t large_dims[LDSCT_DS_RANK]; + hsize_t start[LDSCT_DS_RANK]; + hsize_t stride[LDSCT_DS_RANK]; + hsize_t count[LDSCT_DS_RANK]; + hsize_t block[LDSCT_DS_RANK]; + hsize_t small_sel_start[LDSCT_DS_RANK]; + hsize_t large_sel_start[LDSCT_DS_RANK]; + hid_t full_mem_small_ds_sid; + hid_t full_file_small_ds_sid; + hid_t mem_small_ds_sid; + hid_t file_small_ds_sid; + hid_t full_mem_large_ds_sid; + hid_t full_file_large_ds_sid; + hid_t mem_large_ds_sid; + hid_t file_large_ds_sid; + hid_t small_ds_dcpl_id = H5P_DEFAULT; + hid_t large_ds_dcpl_id = H5P_DEFAULT; + hid_t small_dataset; /* Dataset ID */ + hid_t large_dataset; /* Dataset ID */ + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - HDassert( mpi_size >= 1 ); + HDassert(mpi_size >= 1); mpi_comm = MPI_COMM_WORLD; mpi_info = MPI_INFO_NULL; #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, "%s:%d: chunk_edge_size = %d.\n", - fcnName, mpi_rank, (int)chunk_edge_size); - HDfprintf(stdout, "%s:%d: use_collective_io = %d.\n", - fcnName, mpi_rank, (int)use_collective_io); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: chunk_edge_size = %d.\n", fcnName, mpi_rank, (int)chunk_edge_size); + HDfprintf(stdout, "%s:%d: use_collective_io = %d.\n", fcnName, mpi_rank, (int)use_collective_io); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ - - small_ds_size = (size_t)((mpi_size + 1) * 1 * 1 * 10 * 10); - small_ds_slice_size = (size_t) ( 1 * 1 * 10 * 10); + small_ds_size = (size_t)((mpi_size + 1) * 1 * 1 * 10 * 10); + small_ds_slice_size = (size_t)(1 * 1 * 10 * 10); large_ds_size = (size_t)((mpi_size + 1) * 10 * 10 * 10 * 10); - large_ds_slice_size = (size_t) (10 * 10 * 10 * 10); #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, "%s:%d: small ds size / slice size = %d / %d.\n", - fcnName, mpi_rank, + large_ds_slice_size = (size_t)(10 * 10 * 10 * 10); + + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: small ds size / slice size = %d / %d.\n", fcnName, mpi_rank, (int)small_ds_size, (int)small_ds_slice_size); - HDfprintf(stdout, "%s:%d: large ds size / slice size = %d / %d.\n", - fcnName, mpi_rank, + HDfprintf(stdout, "%s:%d: large ds size / slice size = %d / %d.\n", fcnName, mpi_rank, (int)large_ds_size, (int)large_ds_slice_size); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ @@ -1638,13 +1540,12 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, large_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size); VRFY((large_ds_buf_1 != NULL), "malloc of large_ds_buf_1 succeeded"); - /* initialize the buffers */ ptr_0 = small_ds_buf_0; ptr_1 = small_ds_buf_1; - for ( i = 0; i < (int)small_ds_size; i++ ) { + for (i = 0; i < (int)small_ds_size; i++) { *ptr_0 = (uint32_t)i; *ptr_1 = 0; @@ -1656,7 +1557,7 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, ptr_0 = large_ds_buf_0; ptr_1 = large_ds_buf_1; - for ( i = 0; i < (int)large_ds_size; i++ ) { + for (i = 0; i < (int)large_ds_size; i++) { *ptr_0 = (uint32_t)i; *ptr_1 = 0; @@ -1665,12 +1566,10 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, ptr_1++; } - /* get the file name */ filename = (const char *)GetTestParameters(); - HDassert( filename != NULL ); - + HDassert(filename != NULL); /* ---------------------------------------- * CREATE AN HDF5 FILE WITH PARALLEL ACCESS @@ -1689,11 +1588,10 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, ret = H5Pclose(acc_tpl); VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded"); - /* setup dims: */ small_dims[0] = (hsize_t)(mpi_size + 1); - small_dims[1] = 1; - small_dims[2] = 1; + small_dims[1] = 1; + small_dims[2] = 1; small_dims[3] = 10; small_dims[4] = 10; @@ -1704,51 +1602,39 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, large_dims[4] = 10; #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, "%s:%d: small_dims[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)small_dims[0], (int)small_dims[1], - (int)small_dims[2], (int)small_dims[3], (int)small_dims[4]); - HDfprintf(stdout, "%s:%d: large_dims[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)large_dims[0], (int)large_dims[1], - (int)large_dims[2], (int)large_dims[3], (int)large_dims[4]); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: small_dims[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)small_dims[0], + (int)small_dims[1], (int)small_dims[2], (int)small_dims[3], (int)small_dims[4]); + HDfprintf(stdout, "%s:%d: large_dims[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)large_dims[0], + (int)large_dims[1], (int)large_dims[2], (int)large_dims[3], (int)large_dims[4]); } #endif /* create dataspaces */ full_mem_small_ds_sid = H5Screate_simple(5, small_dims, NULL); - VRFY((full_mem_small_ds_sid != 0), - "H5Screate_simple() full_mem_small_ds_sid succeeded"); + VRFY((full_mem_small_ds_sid != 0), "H5Screate_simple() full_mem_small_ds_sid succeeded"); full_file_small_ds_sid = H5Screate_simple(5, small_dims, NULL); - VRFY((full_file_small_ds_sid != 0), - "H5Screate_simple() full_file_small_ds_sid succeeded"); + VRFY((full_file_small_ds_sid != 0), "H5Screate_simple() full_file_small_ds_sid succeeded"); mem_small_ds_sid = H5Screate_simple(5, small_dims, NULL); - VRFY((mem_small_ds_sid != 0), - "H5Screate_simple() mem_small_ds_sid succeeded"); + VRFY((mem_small_ds_sid != 0), "H5Screate_simple() mem_small_ds_sid succeeded"); file_small_ds_sid = H5Screate_simple(5, small_dims, NULL); - VRFY((file_small_ds_sid != 0), - "H5Screate_simple() file_small_ds_sid succeeded"); - + VRFY((file_small_ds_sid != 0), "H5Screate_simple() file_small_ds_sid succeeded"); full_mem_large_ds_sid = H5Screate_simple(5, large_dims, NULL); - VRFY((full_mem_large_ds_sid != 0), - "H5Screate_simple() full_mem_large_ds_sid succeeded"); + VRFY((full_mem_large_ds_sid != 0), "H5Screate_simple() full_mem_large_ds_sid succeeded"); full_file_large_ds_sid = H5Screate_simple(5, large_dims, NULL); - VRFY((full_file_large_ds_sid != 0), - "H5Screate_simple() full_file_large_ds_sid succeeded"); + VRFY((full_file_large_ds_sid != 0), "H5Screate_simple() full_file_large_ds_sid succeeded"); mem_large_ds_sid = H5Screate_simple(5, large_dims, NULL); - VRFY((mem_large_ds_sid != 0), - "H5Screate_simple() mem_large_ds_sid succeeded"); + VRFY((mem_large_ds_sid != 0), "H5Screate_simple() mem_large_ds_sid succeeded"); file_large_ds_sid = H5Screate_simple(5, large_dims, NULL); - VRFY((file_large_ds_sid != 0), - "H5Screate_simple() file_large_ds_sid succeeded"); - + VRFY((file_large_ds_sid != 0), "H5Screate_simple() file_large_ds_sid succeeded"); /* Select the entire extent of the full small ds dataspaces */ ret = H5Sselect_all(full_mem_small_ds_sid); @@ -1757,7 +1643,6 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, ret = H5Sselect_all(full_file_small_ds_sid); VRFY((ret != FAIL), "H5Sselect_all(full_file_small_ds_sid) succeeded"); - /* Select the entire extent of the full large ds dataspaces */ ret = H5Sselect_all(full_mem_large_ds_sid); VRFY((ret != FAIL), "H5Sselect_all(full_mem_large_ds_sid) succeeded"); @@ -1765,22 +1650,20 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, ret = H5Sselect_all(full_file_large_ds_sid); VRFY((ret != FAIL), "H5Sselect_all(full_file_large_ds_sid) succeeded"); - /* if chunk edge size is greater than zero, set up the small and * large data set creation property lists to specify chunked * datasets. */ - if ( chunk_edge_size > 0 ) { + if (chunk_edge_size > 0) { small_chunk_dims[0] = (hsize_t)(1); small_chunk_dims[1] = small_chunk_dims[2] = (hsize_t)1; small_chunk_dims[3] = small_chunk_dims[4] = (hsize_t)chunk_edge_size; #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, "%s:%d: small chunk dims[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)small_chunk_dims[0], - (int)small_chunk_dims[1], (int)small_chunk_dims[2], + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: small chunk dims[] = %d %d %d %d %d\n", fcnName, mpi_rank, + (int)small_chunk_dims[0], (int)small_chunk_dims[1], (int)small_chunk_dims[2], (int)small_chunk_dims[3], (int)small_chunk_dims[4]); } #endif @@ -1795,15 +1678,13 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded"); large_chunk_dims[0] = (hsize_t)(1); - large_chunk_dims[1] = large_chunk_dims[2] = - large_chunk_dims[3] = large_chunk_dims[4] = (hsize_t)chunk_edge_size; - + large_chunk_dims[1] = large_chunk_dims[2] = large_chunk_dims[3] = large_chunk_dims[4] = + (hsize_t)chunk_edge_size; #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, "%s:%d: large chunk dims[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)large_chunk_dims[0], - (int)large_chunk_dims[1], (int)large_chunk_dims[2], + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: large chunk dims[] = %d %d %d %d %d\n", fcnName, mpi_rank, + (int)large_chunk_dims[0], (int)large_chunk_dims[1], (int)large_chunk_dims[2], (int)large_chunk_dims[3], (int)large_chunk_dims[4]); } #endif @@ -1818,30 +1699,23 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, VRFY((ret != FAIL), "H5Pset_chunk() large_ds_dcpl_id succeeded"); } - /* create the small dataset */ - small_dataset = H5Dcreate2(fid, "small_dataset", dset_type, - file_small_ds_sid, H5P_DEFAULT, + small_dataset = H5Dcreate2(fid, "small_dataset", dset_type, file_small_ds_sid, H5P_DEFAULT, small_ds_dcpl_id, H5P_DEFAULT); VRFY((ret >= 0), "H5Dcreate2() small_dataset succeeded"); - /* create the large dataset */ - large_dataset = H5Dcreate2(fid, "large_dataset", dset_type, - file_large_ds_sid, H5P_DEFAULT, + large_dataset = H5Dcreate2(fid, "large_dataset", dset_type, file_large_ds_sid, H5P_DEFAULT, large_ds_dcpl_id, H5P_DEFAULT); VRFY((ret >= 0), "H5Dcreate2() large_dataset succeeded"); #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, - "%s:%d: small/large ds id = %d / %d.\n", - fcnName, mpi_rank, (int)small_dataset, + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: small/large ds id = %d / %d.\n", fcnName, mpi_rank, (int)small_dataset, (int)large_dataset); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ - /* setup xfer property list */ xfer_plist = H5Pcreate(H5P_DATASET_XFER); VRFY((xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); @@ -1849,14 +1723,12 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); - if ( ! use_collective_io ) { + if (!use_collective_io) { - ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, - H5FD_MPIO_INDIVIDUAL_IO); - VRFY((ret>= 0), "H5Pset_dxpl_mpio_collective_opt() suceeded"); + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret >= 0), "H5Pset_dxpl_mpio_collective_opt() succeeded"); } - /* setup selection to write initial data to the small data sets */ start[0] = (hsize_t)(mpi_rank + 1); start[1] = start[2] = start[3] = start[4] = 0; @@ -1871,135 +1743,89 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, block[3] = block[4] = 10; #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, - "%s:%d: settings for small data set initialization.\n", - fcnName, mpi_rank); - HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)start[0], (int)start[1], - (int)start[2], (int)start[3], (int)start[4]); - HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)stride[0], (int)stride[1], - (int)stride[2], (int)stride[3], (int)stride[4]); - HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)count[0], (int)count[1], - (int)count[2], (int)count[3], (int)count[4]); - HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)block[0], (int)block[1], - (int)block[2], (int)block[3], (int)block[4]); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: settings for small data set initialization.\n", fcnName, mpi_rank); + HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)start[0], + (int)start[1], (int)start[2], (int)start[3], (int)start[4]); + HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)stride[0], + (int)stride[1], (int)stride[2], (int)stride[3], (int)stride[4]); + HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)count[0], + (int)count[1], (int)count[2], (int)count[3], (int)count[4]); + HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)block[0], + (int)block[1], (int)block[2], (int)block[3], (int)block[4]); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ /* setup selections for writing initial data to the small data set */ - ret = H5Sselect_hyperslab(mem_small_ds_sid, - H5S_SELECT_SET, - start, - stride, - count, - block); - VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded"); - - ret = H5Sselect_hyperslab(file_small_ds_sid, - H5S_SELECT_SET, - start, - stride, - count, - block); - VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid, set) suceeded"); - - if ( MAINPROCESS ) { /* add an additional slice to the selections */ + ret = H5Sselect_hyperslab(mem_small_ds_sid, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded"); + + ret = H5Sselect_hyperslab(file_small_ds_sid, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid, set) succeeded"); + + if (MAINPROCESS) { /* add an additional slice to the selections */ start[0] = 0; #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, - "%s:%d: added settings for main process.\n", - fcnName, mpi_rank); - HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)start[0], (int)start[1], - (int)start[2], (int)start[3], (int)start[4]); - HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)stride[0], (int)stride[1], - (int)stride[2], (int)stride[3], (int)stride[4]); - HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)count[0], (int)count[1], - (int)count[2], (int)count[3], (int)count[4]); - HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)block[0], (int)block[1], - (int)block[2], (int)block[3], (int)block[4]); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: added settings for main process.\n", fcnName, mpi_rank); + HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)start[0], + (int)start[1], (int)start[2], (int)start[3], (int)start[4]); + HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)stride[0], + (int)stride[1], (int)stride[2], (int)stride[3], (int)stride[4]); + HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)count[0], + (int)count[1], (int)count[2], (int)count[3], (int)count[4]); + HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)block[0], + (int)block[1], (int)block[2], (int)block[3], (int)block[4]); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ - ret = H5Sselect_hyperslab(mem_small_ds_sid, - H5S_SELECT_OR, - start, - stride, - count, - block); - VRFY((ret>= 0), "H5Sselect_hyperslab(mem_small_ds_sid, or) suceeded"); - - ret = H5Sselect_hyperslab(file_small_ds_sid, - H5S_SELECT_OR, - start, - stride, - count, - block); - VRFY((ret>= 0), "H5Sselect_hyperslab(file_small_ds_sid, or) suceeded"); - } + ret = H5Sselect_hyperslab(mem_small_ds_sid, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, or) succeeded"); - check = H5Sselect_valid(mem_small_ds_sid); - VRFY((check == TRUE),"H5Sselect_valid(mem_small_ds_sid) returns TRUE"); + ret = H5Sselect_hyperslab(file_small_ds_sid, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid, or) succeeded"); + } - check = H5Sselect_valid(file_small_ds_sid); - VRFY((check == TRUE),"H5Sselect_valid(file_small_ds_sid) returns TRUE"); + check = H5Sselect_valid(mem_small_ds_sid); + VRFY((check == TRUE), "H5Sselect_valid(mem_small_ds_sid) returns TRUE"); + check = H5Sselect_valid(file_small_ds_sid); + VRFY((check == TRUE), "H5Sselect_valid(file_small_ds_sid) returns TRUE"); /* write the initial value of the small data set to file */ #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, "%s:%d: writing init value of small ds to file.\n", - fcnName, mpi_rank); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: writing init value of small ds to file.\n", fcnName, mpi_rank); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ - ret = H5Dwrite(small_dataset, - dset_type, - mem_small_ds_sid, - file_small_ds_sid, - xfer_plist, - small_ds_buf_0); + ret = H5Dwrite(small_dataset, dset_type, mem_small_ds_sid, file_small_ds_sid, xfer_plist, small_ds_buf_0); VRFY((ret >= 0), "H5Dwrite() small_dataset initial write succeeded"); - /* read the small data set back to verify that it contains the * expected data. Note that each process reads in the entire * data set and verifies it. */ - ret = H5Dread(small_dataset, - H5T_NATIVE_UINT32, - full_mem_small_ds_sid, - full_file_small_ds_sid, - xfer_plist, + ret = H5Dread(small_dataset, H5T_NATIVE_UINT32, full_mem_small_ds_sid, full_file_small_ds_sid, xfer_plist, small_ds_buf_1); VRFY((ret >= 0), "H5Dread() small_dataset initial read succeeded"); - /* sync with the other processes before checking data */ mrc = MPI_Barrier(MPI_COMM_WORLD); - VRFY((mrc==MPI_SUCCESS), "Sync after small dataset writes"); - + VRFY((mrc == MPI_SUCCESS), "Sync after small dataset writes"); /* verify that the correct data was written to the small data set, * and reset the buffer to zero in passing. */ expected_value = 0; - mis_match = FALSE; - ptr_1 = small_ds_buf_1; + mis_match = FALSE; + ptr_1 = small_ds_buf_1; i = 0; - for ( i = 0; i < (int)small_ds_size; i++ ) { + for (i = 0; i < (int)small_ds_size; i++) { - if ( *ptr_1 != expected_value ) { + if (*ptr_1 != expected_value) { mis_match = TRUE; } @@ -2009,9 +1835,7 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, ptr_1++; expected_value++; } - VRFY( (mis_match == FALSE), "small ds init data good."); - - + VRFY((mis_match == FALSE), "small ds init data good."); /* setup selections for writing initial data to the large data set */ start[0] = (hsize_t)(mpi_rank + 1); @@ -2026,104 +1850,64 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, block[1] = block[2] = block[3] = block[4] = (hsize_t)10; #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, - "%s:%d: settings for large data set initialization.\n", - fcnName, mpi_rank); - HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)start[0], (int)start[1], - (int)start[2], (int)start[3], (int)start[4]); - HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)stride[0], (int)stride[1], - (int)stride[2], (int)stride[3], (int)stride[4]); - HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)count[0], (int)count[1], - (int)count[2], (int)count[3], (int)count[4]); - HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)block[0], (int)block[1], - (int)block[2], (int)block[3], (int)block[4]); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: settings for large data set initialization.\n", fcnName, mpi_rank); + HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)start[0], + (int)start[1], (int)start[2], (int)start[3], (int)start[4]); + HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)stride[0], + (int)stride[1], (int)stride[2], (int)stride[3], (int)stride[4]); + HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)count[0], + (int)count[1], (int)count[2], (int)count[3], (int)count[4]); + HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)block[0], + (int)block[1], (int)block[2], (int)block[3], (int)block[4]); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ - ret = H5Sselect_hyperslab(mem_large_ds_sid, - H5S_SELECT_SET, - start, - stride, - count, - block); - VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, set) suceeded"); - - ret = H5Sselect_hyperslab(file_large_ds_sid, - H5S_SELECT_SET, - start, - stride, - count, - block); - VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid, set) suceeded"); + ret = H5Sselect_hyperslab(mem_large_ds_sid, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, set) succeeded"); + + ret = H5Sselect_hyperslab(file_large_ds_sid, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid, set) succeeded"); #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, - "%s%d: H5Sget_select_npoints(mem_large_ds_sid) = %d.\n", - fcnName, mpi_rank, - (int)H5Sget_select_npoints(mem_large_ds_sid)); - HDfprintf(stdout, - "%s%d: H5Sget_select_npoints(file_large_ds_sid) = %d.\n", - fcnName, mpi_rank, - (int)H5Sget_select_npoints(file_large_ds_sid)); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s%d: H5Sget_select_npoints(mem_large_ds_sid) = %d.\n", fcnName, mpi_rank, + (int)H5Sget_select_npoints(mem_large_ds_sid)); + HDfprintf(stdout, "%s%d: H5Sget_select_npoints(file_large_ds_sid) = %d.\n", fcnName, mpi_rank, + (int)H5Sget_select_npoints(file_large_ds_sid)); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ - if ( MAINPROCESS ) { /* add an additional slice to the selections */ + if (MAINPROCESS) { /* add an additional slice to the selections */ start[0] = (hsize_t)0; #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, - "%s:%d: added settings for main process.\n", - fcnName, mpi_rank); - HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)start[0], (int)start[1], - (int)start[2], (int)start[3], (int)start[4]); - HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)stride[0], (int)stride[1], - (int)stride[2], (int)stride[3], (int)stride[4]); - HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)count[0], (int)count[1], - (int)count[2], (int)count[3], (int)count[4]); - HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", - fcnName, mpi_rank, (int)block[0], (int)block[1], - (int)block[2], (int)block[3], (int)block[4]); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: added settings for main process.\n", fcnName, mpi_rank); + HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)start[0], + (int)start[1], (int)start[2], (int)start[3], (int)start[4]); + HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)stride[0], + (int)stride[1], (int)stride[2], (int)stride[3], (int)stride[4]); + HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)count[0], + (int)count[1], (int)count[2], (int)count[3], (int)count[4]); + HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)block[0], + (int)block[1], (int)block[2], (int)block[3], (int)block[4]); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ - ret = H5Sselect_hyperslab(mem_large_ds_sid, - H5S_SELECT_OR, - start, - stride, - count, - block); - VRFY((ret>= 0), "H5Sselect_hyperslab(mem_large_ds_sid, or) suceeded"); - - ret = H5Sselect_hyperslab(file_large_ds_sid, - H5S_SELECT_OR, - start, - stride, - count, - block); - VRFY((ret>= 0), "H5Sselect_hyperslab(file_large_ds_sid, or) suceeded"); + ret = H5Sselect_hyperslab(mem_large_ds_sid, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, or) succeeded"); + + ret = H5Sselect_hyperslab(file_large_ds_sid, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid, or) succeeded"); #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, - "%s%d: H5Sget_select_npoints(mem_large_ds_sid) = %d.\n", - fcnName, mpi_rank, - (int)H5Sget_select_npoints(mem_large_ds_sid)); - HDfprintf(stdout, - "%s%d: H5Sget_select_npoints(file_large_ds_sid) = %d.\n", - fcnName, mpi_rank, - (int)H5Sget_select_npoints(file_large_ds_sid)); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s%d: H5Sget_select_npoints(mem_large_ds_sid) = %d.\n", fcnName, mpi_rank, + (int)H5Sget_select_npoints(mem_large_ds_sid)); + HDfprintf(stdout, "%s%d: H5Sget_select_npoints(file_large_ds_sid) = %d.\n", fcnName, mpi_rank, + (int)H5Sget_select_npoints(file_large_ds_sid)); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ } @@ -2139,93 +1923,70 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, block[0] = (hsize_t)(mpi_size + 1); block[1] = block[2] = block[3] = block[4] = (hsize_t)10; - ret = H5Sselect_hyperslab(mem_large_ds_sid, H5S_SELECT_AND, - start, stride, count, block); - VRFY((ret != FAIL),"H5Sselect_hyperslab(mem_large_ds_sid, and) succeeded"); + ret = H5Sselect_hyperslab(mem_large_ds_sid, H5S_SELECT_AND, start, stride, count, block); + VRFY((ret != FAIL), "H5Sselect_hyperslab(mem_large_ds_sid, and) succeeded"); - ret = H5Sselect_hyperslab(file_large_ds_sid, H5S_SELECT_AND, - start, stride, count, block); - VRFY((ret != FAIL),"H5Sselect_hyperslab(file_large_ds_sid, and) succeeded"); + ret = H5Sselect_hyperslab(file_large_ds_sid, H5S_SELECT_AND, start, stride, count, block); + VRFY((ret != FAIL), "H5Sselect_hyperslab(file_large_ds_sid, and) succeeded"); #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { rank = H5Sget_simple_extent_dims(mem_large_ds_sid, dims, max_dims); - HDfprintf(stdout, - "%s:%d: mem_large_ds_sid dims[%d] = %d %d %d %d %d\n", - fcnName, mpi_rank, rank, (int)dims[0], (int)dims[1], - (int)dims[2], (int)dims[3], (int)dims[4]); + HDfprintf(stdout, "%s:%d: mem_large_ds_sid dims[%d] = %d %d %d %d %d\n", fcnName, mpi_rank, rank, + (int)dims[0], (int)dims[1], (int)dims[2], (int)dims[3], (int)dims[4]); rank = H5Sget_simple_extent_dims(file_large_ds_sid, dims, max_dims); - HDfprintf(stdout, - "%s:%d: file_large_ds_sid dims[%d] = %d %d %d %d %d\n", - fcnName, mpi_rank, rank, (int)dims[0], (int)dims[1], - (int)dims[2], (int)dims[3], (int)dims[4]); + HDfprintf(stdout, "%s:%d: file_large_ds_sid dims[%d] = %d %d %d %d %d\n", fcnName, mpi_rank, rank, + (int)dims[0], (int)dims[1], (int)dims[2], (int)dims[3], (int)dims[4]); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ - check = H5Sselect_valid(mem_large_ds_sid); - VRFY((check == TRUE),"H5Sselect_valid(mem_large_ds_sid) returns TRUE"); - - check = H5Sselect_valid(file_large_ds_sid); - VRFY((check == TRUE),"H5Sselect_valid(file_large_ds_sid) returns TRUE"); + check = H5Sselect_valid(mem_large_ds_sid); + VRFY((check == TRUE), "H5Sselect_valid(mem_large_ds_sid) returns TRUE"); + check = H5Sselect_valid(file_large_ds_sid); + VRFY((check == TRUE), "H5Sselect_valid(file_large_ds_sid) returns TRUE"); /* write the initial value of the large data set to file */ #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, "%s:%d: writing init value of large ds to file.\n", - fcnName, mpi_rank); - HDfprintf(stdout, - "%s:%d: large_dataset = %d.\n", - fcnName, mpi_rank, - (int)large_dataset); - HDfprintf(stdout, - "%s:%d: mem_large_ds_sid = %d, file_large_ds_sid = %d.\n", - fcnName, mpi_rank, + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: writing init value of large ds to file.\n", fcnName, mpi_rank); + HDfprintf(stdout, "%s:%d: large_dataset = %d.\n", fcnName, mpi_rank, (int)large_dataset); + HDfprintf(stdout, "%s:%d: mem_large_ds_sid = %d, file_large_ds_sid = %d.\n", fcnName, mpi_rank, (int)mem_large_ds_sid, (int)file_large_ds_sid); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ - ret = H5Dwrite(large_dataset, - dset_type, - mem_large_ds_sid, - file_large_ds_sid, - xfer_plist, - large_ds_buf_0); + ret = H5Dwrite(large_dataset, dset_type, mem_large_ds_sid, file_large_ds_sid, xfer_plist, large_ds_buf_0); - if ( ret < 0 ) H5Eprint2(H5E_DEFAULT, stderr); + if (ret < 0) + H5Eprint2(H5E_DEFAULT, stderr); VRFY((ret >= 0), "H5Dwrite() large_dataset initial write succeeded"); - /* sync with the other processes before checking data */ mrc = MPI_Barrier(MPI_COMM_WORLD); - VRFY((mrc==MPI_SUCCESS), "Sync after large dataset writes"); + VRFY((mrc == MPI_SUCCESS), "Sync after large dataset writes"); /* read the large data set back to verify that it contains the * expected data. Note that each process reads in the entire * data set. */ - ret = H5Dread(large_dataset, - H5T_NATIVE_UINT32, - full_mem_large_ds_sid, - full_file_large_ds_sid, - xfer_plist, + ret = H5Dread(large_dataset, H5T_NATIVE_UINT32, full_mem_large_ds_sid, full_file_large_ds_sid, xfer_plist, large_ds_buf_1); VRFY((ret >= 0), "H5Dread() large_dataset initial read succeeded"); - /* verify that the correct data was written to the large data set. * in passing, reset the buffer to zeros */ expected_value = 0; - mis_match = FALSE; - ptr_1 = large_ds_buf_1; + mis_match = FALSE; + ptr_1 = large_ds_buf_1; i = 0; - for ( i = 0; i < (int)large_ds_size; i++ ) { + for (i = 0; i < (int)large_ds_size; i++) { - if ( *ptr_1 != expected_value ) { + if (*ptr_1 != expected_value) { mis_match = TRUE; } @@ -2235,52 +1996,39 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, ptr_1++; expected_value++; } - VRFY( (mis_match == FALSE), "large ds init data good."); + VRFY((mis_match == FALSE), "large ds init data good."); /***********************************/ /***** INITIALIZATION COMPLETE *****/ /***********************************/ - /* read a checkerboard selection of the process slice of the * small on disk data set into the process slice of the large * in memory data set, and verify the data read. */ small_sel_start[0] = (hsize_t)(mpi_rank + 1); - small_sel_start[1] = small_sel_start[2] = - small_sel_start[3] = small_sel_start[4] = 0; - - lower_dim_size_comp_test__select_checker_board(mpi_rank, - file_small_ds_sid, - /* tgt_rank = */ 5, - small_dims, - /* checker_edge_size = */ 3, - /* sel_rank */ 2, - small_sel_start); - - expected_value = (uint32_t) - ((small_sel_start[0] * small_dims[1] * small_dims[2] * - small_dims[3] * small_dims[4]) + - (small_sel_start[1] * small_dims[2] * small_dims[3] * - small_dims[4]) + - (small_sel_start[2] * small_dims[3] * small_dims[4]) + - (small_sel_start[3] * small_dims[4]) + - (small_sel_start[4])); + small_sel_start[1] = small_sel_start[2] = small_sel_start[3] = small_sel_start[4] = 0; + + lower_dim_size_comp_test__select_checker_board(mpi_rank, file_small_ds_sid, + /* tgt_rank = */ 5, small_dims, + /* checker_edge_size = */ 3, + /* sel_rank */ 2, small_sel_start); + expected_value = + (uint32_t)((small_sel_start[0] * small_dims[1] * small_dims[2] * small_dims[3] * small_dims[4]) + + (small_sel_start[1] * small_dims[2] * small_dims[3] * small_dims[4]) + + (small_sel_start[2] * small_dims[3] * small_dims[4]) + + (small_sel_start[3] * small_dims[4]) + (small_sel_start[4])); large_sel_start[0] = (hsize_t)(mpi_rank + 1); large_sel_start[1] = 5; large_sel_start[2] = large_sel_start[3] = large_sel_start[4] = 0; - lower_dim_size_comp_test__select_checker_board(mpi_rank, - mem_large_ds_sid, - /* tgt_rank = */ 5, - large_dims, - /* checker_edge_size = */ 3, - /* sel_rank = */ 2, - large_sel_start); - + lower_dim_size_comp_test__select_checker_board(mpi_rank, mem_large_ds_sid, + /* tgt_rank = */ 5, large_dims, + /* checker_edge_size = */ 3, + /* sel_rank = */ 2, large_sel_start); /* verify that H5Sselect_shape_same() reports the two * selections as having the same shape. @@ -2288,18 +2036,13 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, check = H5Sselect_shape_same(mem_large_ds_sid, file_small_ds_sid); VRFY((check == TRUE), "H5Sselect_shape_same passed (1)"); - - ret = H5Dread(small_dataset, - H5T_NATIVE_UINT32, - mem_large_ds_sid, - file_small_ds_sid, - xfer_plist, + ret = H5Dread(small_dataset, H5T_NATIVE_UINT32, mem_large_ds_sid, file_small_ds_sid, xfer_plist, large_ds_buf_1); VRFY((ret >= 0), "H5Sread() slice from small ds succeeded."); #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { HDfprintf(stdout, "%s:%d: H5Dread() returns.\n", fcnName, mpi_rank); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ @@ -2308,28 +2051,25 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, data_ok = TRUE; - start_index = (int)((large_sel_start[0] * large_dims[1] * large_dims[2] * - large_dims[3] * large_dims[4]) + - (large_sel_start[1] * large_dims[2] * large_dims[3] * - large_dims[4]) + + start_index = (int)((large_sel_start[0] * large_dims[1] * large_dims[2] * large_dims[3] * large_dims[4]) + + (large_sel_start[1] * large_dims[2] * large_dims[3] * large_dims[4]) + (large_sel_start[2] * large_dims[3] * large_dims[4]) + - (large_sel_start[3] * large_dims[4]) + - (large_sel_start[4])); + (large_sel_start[3] * large_dims[4]) + (large_sel_start[4])); - stop_index = start_index + (int)small_ds_slice_size; + stop_index = start_index + (int)small_ds_slice_size; - HDassert( 0 <= start_index ); - HDassert( start_index < stop_index ); - HDassert( stop_index <= (int)large_ds_size ); + HDassert(0 <= start_index); + HDassert(start_index < stop_index); + HDassert(stop_index <= (int)large_ds_size); ptr_1 = large_ds_buf_1; - for ( i = 0; i < start_index; i++ ) { + for (i = 0; i < start_index; i++) { - if ( *ptr_1 != (uint32_t)0 ) { + if (*ptr_1 != (uint32_t)0) { data_ok = FALSE; - *ptr_1 = (uint32_t)0; + *ptr_1 = (uint32_t)0; } ptr_1++; @@ -2337,16 +2077,14 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, VRFY((data_ok == TRUE), "slice read from small ds data good(1)."); - data_ok = lower_dim_size_comp_test__verify_data(ptr_1, #if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG - mpi_rank, + mpi_rank, #endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */ - /* rank */ 2, - /* edge_size */ 10, - /* checker_edge_size */ 3, - expected_value, - /* buf_starts_in_checker */ TRUE); + /* rank */ 2, + /* edge_size */ 10, + /* checker_edge_size */ 3, expected_value, + /* buf_starts_in_checker */ TRUE); VRFY((data_ok == TRUE), "slice read from small ds data good(2)."); @@ -2354,13 +2092,12 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, ptr_1 += small_ds_slice_size; + for (i = stop_index; i < (int)large_ds_size; i++) { - for ( i = stop_index; i < (int)large_ds_size; i++ ) { - - if ( *ptr_1 != (uint32_t)0 ) { + if (*ptr_1 != (uint32_t)0) { data_ok = FALSE; - *ptr_1 = (uint32_t)0; + *ptr_1 = (uint32_t)0; } ptr_1++; @@ -2368,39 +2105,27 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, VRFY((data_ok == TRUE), "slice read from small ds data good(3)."); - - - - /* read a checkerboard selection of a slice of the process slice of * the large on disk data set into the process slice of the small * in memory data set, and verify the data read. */ small_sel_start[0] = (hsize_t)(mpi_rank + 1); - small_sel_start[1] = small_sel_start[2] = - small_sel_start[3] = small_sel_start[4] = 0; + small_sel_start[1] = small_sel_start[2] = small_sel_start[3] = small_sel_start[4] = 0; - lower_dim_size_comp_test__select_checker_board(mpi_rank, - mem_small_ds_sid, - /* tgt_rank = */ 5, - small_dims, - /* checker_edge_size = */ 3, - /* sel_rank */ 2, - small_sel_start); + lower_dim_size_comp_test__select_checker_board(mpi_rank, mem_small_ds_sid, + /* tgt_rank = */ 5, small_dims, + /* checker_edge_size = */ 3, + /* sel_rank */ 2, small_sel_start); large_sel_start[0] = (hsize_t)(mpi_rank + 1); large_sel_start[1] = 5; large_sel_start[2] = large_sel_start[3] = large_sel_start[4] = 0; - lower_dim_size_comp_test__select_checker_board(mpi_rank, - file_large_ds_sid, - /* tgt_rank = */ 5, - large_dims, - /* checker_edge_size = */ 3, - /* sel_rank = */ 2, - large_sel_start); - + lower_dim_size_comp_test__select_checker_board(mpi_rank, file_large_ds_sid, + /* tgt_rank = */ 5, large_dims, + /* checker_edge_size = */ 3, + /* sel_rank = */ 2, large_sel_start); /* verify that H5Sselect_shape_same() reports the two * selections as having the same shape. @@ -2408,18 +2133,13 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, check = H5Sselect_shape_same(mem_small_ds_sid, file_large_ds_sid); VRFY((check == TRUE), "H5Sselect_shape_same passed (2)"); - - ret = H5Dread(large_dataset, - H5T_NATIVE_UINT32, - mem_small_ds_sid, - file_large_ds_sid, - xfer_plist, + ret = H5Dread(large_dataset, H5T_NATIVE_UINT32, mem_small_ds_sid, file_large_ds_sid, xfer_plist, small_ds_buf_1); VRFY((ret >= 0), "H5Sread() slice from large ds succeeded."); #if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { HDfprintf(stdout, "%s:%d: H5Dread() returns.\n", fcnName, mpi_rank); } #endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ @@ -2428,31 +2148,28 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, data_ok = TRUE; - expected_value = (uint32_t) - ((large_sel_start[0] * large_dims[1] * large_dims[2] * - large_dims[3] * large_dims[4]) + - (large_sel_start[1] * large_dims[2] * large_dims[3] * - large_dims[4]) + - (large_sel_start[2] * large_dims[3] * large_dims[4]) + - (large_sel_start[3] * large_dims[4]) + - (large_sel_start[4])); + expected_value = + (uint32_t)((large_sel_start[0] * large_dims[1] * large_dims[2] * large_dims[3] * large_dims[4]) + + (large_sel_start[1] * large_dims[2] * large_dims[3] * large_dims[4]) + + (large_sel_start[2] * large_dims[3] * large_dims[4]) + + (large_sel_start[3] * large_dims[4]) + (large_sel_start[4])); start_index = (int)(mpi_rank + 1) * (int)small_ds_slice_size; - stop_index = start_index + (int)small_ds_slice_size; + stop_index = start_index + (int)small_ds_slice_size; - HDassert( 0 <= start_index ); - HDassert( start_index < stop_index ); - HDassert( stop_index <= (int)small_ds_size ); + HDassert(0 <= start_index); + HDassert(start_index < stop_index); + HDassert(stop_index <= (int)small_ds_size); ptr_1 = small_ds_buf_1; - for ( i = 0; i < start_index; i++ ) { + for (i = 0; i < start_index; i++) { - if ( *ptr_1 != (uint32_t)0 ) { + if (*ptr_1 != (uint32_t)0) { data_ok = FALSE; - *ptr_1 = (uint32_t)0; + *ptr_1 = (uint32_t)0; } ptr_1++; @@ -2460,15 +2177,13 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, VRFY((data_ok == TRUE), "slice read from large ds data good(1)."); - data_ok = lower_dim_size_comp_test__verify_data(ptr_1, #if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG mpi_rank, #endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */ /* rank */ 2, /* edge_size */ 10, - /* checker_edge_size */ 3, - expected_value, + /* checker_edge_size */ 3, expected_value, /* buf_starts_in_checker */ TRUE); VRFY((data_ok == TRUE), "slice read from large ds data good(2)."); @@ -2477,20 +2192,19 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, ptr_1 += small_ds_slice_size; + for (i = stop_index; i < (int)small_ds_size; i++) { - for ( i = stop_index; i < (int)small_ds_size; i++ ) { - - if ( *ptr_1 != (uint32_t)0 ) { + if (*ptr_1 != (uint32_t)0) { #if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG - if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { - HDfprintf(stdout, "%s:%d: unexpected value at index %d: %d.\n", - fcnName, mpi_rank, (int)i, (int)(*ptr_1)); + if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) { + HDfprintf(stdout, "%s:%d: unexpected value at index %d: %d.\n", fcnName, mpi_rank, (int)i, + (int)(*ptr_1)); } #endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */ data_ok = FALSE; - *ptr_1 = (uint32_t)0; + *ptr_1 = (uint32_t)0; } ptr_1++; @@ -2498,7 +2212,6 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, VRFY((data_ok == TRUE), "slice read from large ds data good(3)."); - /* Close dataspaces */ ret = H5Sclose(full_mem_small_ds_sid); VRFY((ret != FAIL), "H5Sclose(full_mem_small_ds_sid) succeeded"); @@ -2512,7 +2225,6 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, ret = H5Sclose(file_small_ds_sid); VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid) succeeded"); - ret = H5Sclose(full_mem_large_ds_sid); VRFY((ret != FAIL), "H5Sclose(full_mem_large_ds_sid) succeeded"); @@ -2525,7 +2237,6 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, ret = H5Sclose(file_large_ds_sid); VRFY((ret != FAIL), "H5Sclose(file_large_ds_sid) succeeded"); - /* Close Datasets */ ret = H5Dclose(small_dataset); VRFY((ret != FAIL), "H5Dclose(small_dataset) succeeded"); @@ -2533,24 +2244,26 @@ lower_dim_size_comp_test__run_test(const int chunk_edge_size, ret = H5Dclose(large_dataset); VRFY((ret != FAIL), "H5Dclose(large_dataset) succeeded"); - /* close the file collectively */ MESG("about to close file."); ret = H5Fclose(fid); VRFY((ret != FAIL), "file close succeeded"); /* Free memory buffers */ - if ( small_ds_buf_0 != NULL ) HDfree(small_ds_buf_0); - if ( small_ds_buf_1 != NULL ) HDfree(small_ds_buf_1); + if (small_ds_buf_0 != NULL) + HDfree(small_ds_buf_0); + if (small_ds_buf_1 != NULL) + HDfree(small_ds_buf_1); - if ( large_ds_buf_0 != NULL ) HDfree(large_ds_buf_0); - if ( large_ds_buf_1 != NULL ) HDfree(large_ds_buf_1); + if (large_ds_buf_0 != NULL) + HDfree(large_ds_buf_0); + if (large_ds_buf_1 != NULL) + HDfree(large_ds_buf_1); return; } /* lower_dim_size_comp_test__run_test() */ - /*------------------------------------------------------------------------- * Function: lower_dim_size_comp_test() * @@ -2569,26 +2282,21 @@ void lower_dim_size_comp_test(void) { /* const char *fcnName = "lower_dim_size_comp_test()"; */ - int chunk_edge_size = 0; - int use_collective_io; + int chunk_edge_size = 0; + int use_collective_io; HDcompile_assert(sizeof(uint32_t) == sizeof(unsigned)); - for(use_collective_io = 0; use_collective_io <= 1; use_collective_io++) { + for (use_collective_io = 0; use_collective_io <= 1; use_collective_io++) { chunk_edge_size = 0; - lower_dim_size_comp_test__run_test(chunk_edge_size, - (hbool_t)use_collective_io, - H5T_NATIVE_UINT); + lower_dim_size_comp_test__run_test(chunk_edge_size, (hbool_t)use_collective_io, H5T_NATIVE_UINT); chunk_edge_size = 5; - lower_dim_size_comp_test__run_test(chunk_edge_size, - (hbool_t)use_collective_io, - H5T_NATIVE_UINT); + lower_dim_size_comp_test__run_test(chunk_edge_size, (hbool_t)use_collective_io, H5T_NATIVE_UINT); } /* end for */ return; } /* lower_dim_size_comp_test() */ - /*------------------------------------------------------------------------- * Function: link_chunk_collective_io_test() * @@ -2618,48 +2326,48 @@ lower_dim_size_comp_test(void) *------------------------------------------------------------------------- */ -#define LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE 16 +#define LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE 16 void link_chunk_collective_io_test(void) { /* const char *fcnName = "link_chunk_collective_io_test()"; */ const char *filename; - hbool_t mis_match = FALSE; - int i; - int mrc; - int mpi_rank; - int mpi_size; - MPI_Comm mpi_comm = MPI_COMM_WORLD; - MPI_Info mpi_info = MPI_INFO_NULL; - hsize_t count[1] = {1}; - hsize_t stride[1] = {2 * LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE}; - hsize_t block[1] = {LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE}; - hsize_t start[1]; - hsize_t dims[1]; - hsize_t chunk_dims[1] = {LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE}; - herr_t ret; /* Generic return value */ - hid_t file_id; - hid_t acc_tpl; - hid_t dset_id; - hid_t file_ds_sid; - hid_t write_mem_ds_sid; - hid_t read_mem_ds_sid; - hid_t ds_dcpl_id; - hid_t xfer_plist; - double diff; - double expected_value; - double local_data_written[LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE]; - double local_data_read[LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE]; + hbool_t mis_match = FALSE; + int i; + int mrc; + int mpi_rank; + int mpi_size; + MPI_Comm mpi_comm = MPI_COMM_WORLD; + MPI_Info mpi_info = MPI_INFO_NULL; + hsize_t count[1] = {1}; + hsize_t stride[1] = {2 * LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE}; + hsize_t block[1] = {LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE}; + hsize_t start[1]; + hsize_t dims[1]; + hsize_t chunk_dims[1] = {LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE}; + herr_t ret; /* Generic return value */ + hid_t file_id; + hid_t acc_tpl; + hid_t dset_id; + hid_t file_ds_sid; + hid_t write_mem_ds_sid; + hid_t read_mem_ds_sid; + hid_t ds_dcpl_id; + hid_t xfer_plist; + double diff; + double expected_value; + double local_data_written[LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE]; + double local_data_read[LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE]; MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - HDassert( mpi_size > 0 ); + HDassert(mpi_size > 0); /* get the file name */ filename = (const char *)GetTestParameters(); - HDassert( filename != NULL ); + HDassert(filename != NULL); /* setup file access template */ acc_tpl = create_faccess_plist(mpi_comm, mpi_info, facc_type); @@ -2680,16 +2388,13 @@ link_chunk_collective_io_test(void) /* setup mem and file dataspaces */ write_mem_ds_sid = H5Screate_simple(1, chunk_dims, NULL); - VRFY((write_mem_ds_sid != 0), - "H5Screate_simple() write_mem_ds_sid succeeded"); + VRFY((write_mem_ds_sid != 0), "H5Screate_simple() write_mem_ds_sid succeeded"); read_mem_ds_sid = H5Screate_simple(1, chunk_dims, NULL); - VRFY((read_mem_ds_sid != 0), - "H5Screate_simple() read_mem_ds_sid succeeded"); + VRFY((read_mem_ds_sid != 0), "H5Screate_simple() read_mem_ds_sid succeeded"); file_ds_sid = H5Screate_simple(1, dims, NULL); - VRFY((file_ds_sid != 0), - "H5Screate_simple() file_ds_sid succeeded"); + VRFY((file_ds_sid != 0), "H5Screate_simple() file_ds_sid succeeded"); /* setup data set creation property list */ ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); @@ -2702,9 +2407,8 @@ link_chunk_collective_io_test(void) VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded"); /* create the data set */ - dset_id = H5Dcreate2(file_id, "dataset", H5T_NATIVE_DOUBLE, - file_ds_sid, H5P_DEFAULT, - ds_dcpl_id, H5P_DEFAULT); + dset_id = + H5Dcreate2(file_id, "dataset", H5T_NATIVE_DOUBLE, file_ds_sid, H5P_DEFAULT, ds_dcpl_id, H5P_DEFAULT); VRFY((dset_id >= 0), "H5Dcreate2() dataset succeeded"); /* close the dataset creation property list */ @@ -2712,24 +2416,18 @@ link_chunk_collective_io_test(void) VRFY((ret >= 0), "H5Pclose(ds_dcpl_id) succeeded"); /* setup local data */ - expected_value = (double)(LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE) * - (double)(mpi_rank); - for ( i = 0; i < LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE; i++ ) { + expected_value = (double)(LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE) * (double)(mpi_rank); + for (i = 0; i < LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE; i++) { local_data_written[i] = expected_value; - local_data_read[i] = 0.0; - expected_value += 1.0; + local_data_read[i] = 0.0; + expected_value += 1.0; } /* select the file and mem spaces */ start[0] = (hsize_t)(mpi_rank * LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE); - ret = H5Sselect_hyperslab(file_ds_sid, - H5S_SELECT_SET, - start, - stride, - count, - block); - VRFY((ret >= 0), "H5Sselect_hyperslab(file_ds_sid, set) suceeded"); + ret = H5Sselect_hyperslab(file_ds_sid, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_ds_sid, set) succeeded"); ret = H5Sselect_all(write_mem_ds_sid); VRFY((ret != FAIL), "H5Sselect_all(mem_ds_sid) succeeded"); @@ -2744,26 +2442,16 @@ link_chunk_collective_io_test(void) VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); /* write the data set */ - ret = H5Dwrite(dset_id, - H5T_NATIVE_DOUBLE, - write_mem_ds_sid, - file_ds_sid, - xfer_plist, - local_data_written); + ret = H5Dwrite(dset_id, H5T_NATIVE_DOUBLE, write_mem_ds_sid, file_ds_sid, xfer_plist, local_data_written); VRFY((ret >= 0), "H5Dwrite() dataset initial write succeeded"); /* sync with the other processes before checking data */ mrc = MPI_Barrier(MPI_COMM_WORLD); - VRFY((mrc==MPI_SUCCESS), "Sync after dataset write"); + VRFY((mrc == MPI_SUCCESS), "Sync after dataset write"); /* read this processes slice of the dataset back in */ - ret = H5Dread(dset_id, - H5T_NATIVE_DOUBLE, - read_mem_ds_sid, - file_ds_sid, - xfer_plist, - local_data_read); + ret = H5Dread(dset_id, H5T_NATIVE_DOUBLE, read_mem_ds_sid, file_ds_sid, xfer_plist, local_data_read); VRFY((ret >= 0), "H5Dread() dataset read succeeded"); /* close the xfer property list */ @@ -2772,17 +2460,17 @@ link_chunk_collective_io_test(void) /* verify the data */ mis_match = FALSE; - for ( i = 0; i < LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE; i++ ) { + for (i = 0; i < LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE; i++) { diff = local_data_written[i] - local_data_read[i]; diff = fabs(diff); - if ( diff >= 0.001 ) { + if (diff >= 0.001) { mis_match = TRUE; } } - VRFY( (mis_match == FALSE), "dataset data good."); + VRFY((mis_match == FALSE), "dataset data good."); /* Close dataspaces */ ret = H5Sclose(write_mem_ds_sid); @@ -2805,4 +2493,3 @@ link_chunk_collective_io_test(void) return; } /* link_chunk_collective_io_test() */ - diff --git a/testpar/t_vfd.c b/testpar/t_vfd.c new file mode 100644 index 0000000..2072afe --- /dev/null +++ b/testpar/t_vfd.c @@ -0,0 +1,4055 @@ +/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + * Copyright by The HDF Group. * + * All rights reserved. * + * * + * This file is part of HDF5. The full HDF5 copyright notice, including * + * terms governing use, modification, and redistribution, is contained in * + * the COPYING file, which can be found at the root of the source code * + * distribution tree, or in https://www.hdfgroup.org/licenses. * + * If you do not have access to either file, you may request a copy from * + * help@hdfgroup.org. * + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ + +/* Programmer: John Mainzer + * + * This file is a catchall for parallel VFD tests. + */ + +#include "testphdf5.h" + +/* Must be a power of 2. Reducing it below 1024 may cause problems */ +#define INTS_PER_RANK 1024 + +/* global variable declarations: */ + +hbool_t pass = TRUE; /* set to FALSE on error */ +const char *failure_mssg = NULL; + +const char *FILENAMES[] = {"mpio_vfd_test_file_0", /*0*/ + "mpio_vfd_test_file_1", /*1*/ + "mpio_vfd_test_file_2", /*2*/ + "mpio_vfd_test_file_3", /*3*/ + "mpio_vfd_test_file_4", /*4*/ + "mpio_vfd_test_file_5", /*5*/ + NULL}; + +/* File Test Images + * + * Pointers to dynamically allocated buffers of size + * INTS_PER_RANK * sizeof(int32_t) * mpi_size(). These + * buffers are used to put the test file in a known + * state, and to test if the test file contains the + * expected data. + */ + +int32_t *increasing_fi_buf = NULL; +int32_t *decreasing_fi_buf = NULL; +int32_t *negative_fi_buf = NULL; +int32_t *zero_fi_buf = NULL; +int32_t *read_fi_buf = NULL; + +/* local utility function declarations */ + +static unsigned alloc_and_init_file_images(int mpi_size); +static void free_file_images(void); +static void setup_vfd_test_file(int file_name_id, char *file_name, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name, haddr_t eoa, + H5FD_t **lf_ptr, hid_t *fapl_id_ptr, hid_t *dxpl_id_ptr); +static void takedown_vfd_test_file(int mpi_rank, char *filename, H5FD_t **lf_ptr, hid_t *fapl_id_ptr, + hid_t *dxpl_id_ptr); + +/* test functions */ +static unsigned vector_read_test_1(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name); +static unsigned vector_read_test_2(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name); +static unsigned vector_read_test_3(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name); +static unsigned vector_read_test_4(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name); +static unsigned vector_read_test_5(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name); + +static unsigned vector_write_test_1(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name); +static unsigned vector_write_test_2(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name); +static unsigned vector_write_test_3(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name); +static unsigned vector_write_test_4(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name); +static unsigned vector_write_test_5(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name); +static unsigned vector_write_test_6(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name); + +/****************************************************************************/ +/***************************** Utility Functions ****************************/ +/****************************************************************************/ + +/*------------------------------------------------------------------------- + * Function: alloc_and_init_file_images + * + * Purpose: Allocate and initialize the global buffers used to construct, + * load and verify test file contents. + * + * Return: void + * + * Programmer: John Mainzer + * 3/25/26 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static unsigned +alloc_and_init_file_images(int mpi_size) +{ + const char *fcn_name = "alloc_and_init_file_images()"; + int cp = 0; + int buf_len; + size_t buf_size; + int i; + hbool_t show_progress = FALSE; + + pass = TRUE; + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* allocate the file image buffers */ + if (pass) { + + buf_len = INTS_PER_RANK * mpi_size; + buf_size = sizeof(int32_t) * (size_t)INTS_PER_RANK * (size_t)mpi_size; + + increasing_fi_buf = (int32_t *)HDmalloc(buf_size); + decreasing_fi_buf = (int32_t *)HDmalloc(buf_size); + negative_fi_buf = (int32_t *)HDmalloc(buf_size); + zero_fi_buf = (int32_t *)HDmalloc(buf_size); + read_fi_buf = (int32_t *)HDmalloc(buf_size); + + if ((!increasing_fi_buf) || (!decreasing_fi_buf) || (!negative_fi_buf) || (!zero_fi_buf) || + (!read_fi_buf)) { + + pass = FALSE; + failure_mssg = "Can't allocate one or more file image buffers."; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* initialize the file image buffers */ + if (pass) { + + for (i = 0; i < buf_len; i++) { + + increasing_fi_buf[i] = i; + decreasing_fi_buf[i] = buf_len - i; + negative_fi_buf[i] = -i; + zero_fi_buf[i] = 0; + read_fi_buf[i] = 0; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* discard file image buffers if there was an error */ + if (!pass) { + + free_file_images(); + } + + return !pass; + +} /* alloc_and_init_file_images() */ + +/*------------------------------------------------------------------------- + * Function: free_file_images + * + * Purpose: Deallocate any glogal file image buffers that exist, and + * set their associated pointers to NULL. + * + * Return: void + * + * Programmer: John Mainzer + * 1/25/17 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static void +free_file_images(void) +{ + if (increasing_fi_buf) { + + HDfree(increasing_fi_buf); + increasing_fi_buf = NULL; + } + + if (decreasing_fi_buf) { + + HDfree(decreasing_fi_buf); + decreasing_fi_buf = NULL; + } + + if (negative_fi_buf) { + + HDfree(negative_fi_buf); + negative_fi_buf = NULL; + } + + if (zero_fi_buf) { + + HDfree(zero_fi_buf); + zero_fi_buf = NULL; + } + + if (read_fi_buf) { + + HDfree(read_fi_buf); + read_fi_buf = NULL; + } + + return; + +} /* free_file_images() */ + +/*------------------------------------------------------------------------- + * Function: setup_vfd_test_file + * + * Purpose: Create / open the specified test file with the specified + * VFD, and set the EOA to the specified value. + * + * Setup the dxpl for subsequent I/O via the target VFD. + * + * Return a pointer to the instance of H5FD_t created on + * file open in *lf_ptr, and the FAPL and DXPL ids in + * *fapl_id_ptr and *dxpl_id_ptr. Similarly, copy the + * "fixed" file name into file_name on exit. + * + * Return: void + * + * Programmer: John Mainzer + * 3/25/26 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static void +setup_vfd_test_file(int file_name_id, char *file_name, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name, haddr_t eoa, + H5FD_t **lf_ptr, hid_t *fapl_id_ptr, hid_t *dxpl_id_ptr) +{ + const char *fcn_name = "setup_vfd_test_file()"; + char filename[512]; + int cp = 0; + hbool_t show_progress = FALSE; + hid_t fapl_id = -1; /* file access property list ID */ + hid_t dxpl_id = -1; /* data access property list ID */ + unsigned flags = 0; /* file open flags */ + H5FD_t * lf = NULL; /* VFD struct ptr */ + + HDassert(vfd_name); + HDassert(lf_ptr); + HDassert(fapl_id_ptr); + HDassert(dxpl_id_ptr); + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* setupf fapl for target VFD */ + if (pass) { + + if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) { + + pass = FALSE; + failure_mssg = "Can't create fapl."; + } + } + + if (pass) { + + if (strcmp(vfd_name, "mpio") == 0) { + + if (H5Pset_fapl_mpio(fapl_id, MPI_COMM_WORLD, MPI_INFO_NULL) < 0) { + + pass = FALSE; + failure_mssg = "Can't set mpio fapl."; + } + } + else { + + pass = FALSE; + failure_mssg = "un-supported VFD"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* setup the file name */ + if (pass) { + + if (h5_fixname(FILENAMES[file_name_id], H5P_DEFAULT, filename, sizeof(filename)) == NULL) { + + pass = FALSE; + failure_mssg = "h5_fixname() failed.\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* Open the VFD test file with the specified VFD. */ + + if (pass) { + + flags = H5F_ACC_RDWR | H5F_ACC_CREAT | H5F_ACC_TRUNC; + + if (NULL == (lf = H5FDopen(filename, flags, fapl_id, HADDR_UNDEF))) { + + pass = FALSE; + failure_mssg = "H5FDopen() failed.\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* set eoa as specified */ + + if (pass) { + + eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + + if (H5FDset_eoa(lf, H5FD_MEM_DEFAULT, eoa) < 0) { + + pass = FALSE; + failure_mssg = "H5FDset_eoa() failed.\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + if (pass) { /* setup dxpl */ + + dxpl_id = H5Pcreate(H5P_DATASET_XFER); + + if (dxpl_id < 0) { + + pass = FALSE; + failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed."; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + if (pass) { + + if (H5Pset_dxpl_mpio(dxpl_id, xfer_mode) < 0) { + + pass = FALSE; + failure_mssg = "H5Pset_dxpl_mpio() failed."; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + if (pass) { + + if (H5Pset_dxpl_mpio_collective_opt(dxpl_id, coll_opt_mode) < 0) { + + pass = FALSE; + failure_mssg = "H5Pset_dxpl_mpio() failed."; + } + } + + if (pass) { /* setup pointers with return values */ + + strncpy(file_name, filename, 512); + *lf_ptr = lf; + *fapl_id_ptr = fapl_id; + *dxpl_id_ptr = dxpl_id; + } + else { /* tidy up from failure as possible */ + + if (lf) + H5FDclose(lf); + + if (fapl_id != -1) + H5Pclose(fapl_id); + + if (dxpl_id != -1) + H5Pclose(dxpl_id); + } + + return; + +} /* setup_vfd_test_file() */ + +/*------------------------------------------------------------------------- + * Function: takedown_vfd_test_file + * + * Purpose: Close and delete the specified test file. Close the + * FAPL & DXPL. + * + * Return: void + * + * Programmer: John Mainzer + * 3/25/26 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static void +takedown_vfd_test_file(int mpi_rank, char *filename, H5FD_t **lf_ptr, hid_t *fapl_id_ptr, hid_t *dxpl_id_ptr) +{ + const char *fcn_name = "takedown_vfd_test_file()"; + int cp = 0; + hbool_t show_progress = FALSE; + + HDassert(lf_ptr); + HDassert(fapl_id_ptr); + HDassert(dxpl_id_ptr); + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* Close the test file if it is open, regardless of the value of pass. + * This should let the test program shut down more cleanly. + */ + + if (*lf_ptr) { + + if (H5FDclose(*lf_ptr) < 0) { + + pass = FALSE; + failure_mssg = "H5FDclose() failed.\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 6) On rank 0, delete the test file. + */ + + if (pass) { + + /* wait for everyone to close the file */ + MPI_Barrier(MPI_COMM_WORLD); + + if ((mpi_rank == 0) && (HDremove(filename) < 0)) { + + pass = FALSE; + failure_mssg = "HDremove() failed.\n"; + } + + /* wait for the file delete to complete */ + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* Close the fapl */ + if (H5Pclose(*fapl_id_ptr) < 0) { + + pass = FALSE; + failure_mssg = "can't close fapl.\n"; + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* Close the dxpl */ + if (H5Pclose(*dxpl_id_ptr) < 0) { + + pass = FALSE; + failure_mssg = "can't close dxpl.\n"; + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + return; + +} /* takedown_vfd_test_file() */ + +/****************************************************************************/ +/******************************* Test Functions *****************************/ +/****************************************************************************/ + +/*------------------------------------------------------------------------- + * Function: vector_read_test_1() + * + * Purpose: Simple vector read test: + * + * 1) Open the test file with the specified VFD, set the eoa, + * and setup the DXPL. + * + * 2) Using rank zero, write the entire increasing_fi_buf to + * the file. + * + * 3) Barrier + * + * 4) On each rank, zero the read buffer, and then read + * INTS_PER_RANK * sizeof(int32) bytes from the file + * starting at offset mpi_rank * INTS_PER_RANK * + * sizeof(int32_t) in both the file and read_fi_buf. + * Do this with a vector read containing a single + * element. + * + * Verify that read_fi_buf contains zeros for all + * indices less than mpi_rank * INTS_PER_RANK, or + * greater than or equal to (mpi_rank + 1) * INTS_PER_RANK. + * For all other indices, read_fi_buf should equal + * increasing_fi_buf. + * + * 5) Barrier + * + * 6) Close the test file. + * + * 7) On rank 0, delete the test file. + * + * Return: FALSE on success, TRUE if any errors are detected. + * + * Programmer: John Mainzer + * 3/26/21 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static unsigned +vector_read_test_1(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name) +{ + const char *fcn_name = "vector_read_test_1()"; + char test_title[120]; + char filename[512]; + haddr_t eoa; + hbool_t show_progress = FALSE; + hid_t fapl_id = -1; /* file access property list ID */ + hid_t dxpl_id = -1; /* data access property list ID */ + H5FD_t * lf = NULL; /* VFD struct ptr */ + int cp = 0; + int i; + uint32_t count; + H5FD_mem_t types[1]; + haddr_t addrs[1]; + size_t sizes[1]; + void * bufs[1]; + + pass = TRUE; + + if (mpi_rank == 0) { + + if (xfer_mode == H5FD_MPIO_INDEPENDENT) { + + sprintf(test_title, "parallel vector read test 1 -- %s / independent", vfd_name); + } + else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) { + + sprintf(test_title, "parallel vector read test 1 -- %s / col op / ind I/O", vfd_name); + } + else { + + HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO); + + sprintf(test_title, "parallel vector read test 1 -- %s / col op / col I/O", vfd_name); + } + + TESTING(test_title); + } + + show_progress = ((show_progress) && (mpi_rank == 0)); + + if (show_progress) + HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */ + if (pass) { + + eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + + setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf, + &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 2) Using rank zero, write the entire increasing_fi_buf to + * the file. + */ + if (pass) { + + size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t); + + if (mpi_rank == 0) { + + if (H5FDwrite(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)increasing_fi_buf) < + 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite() on rank 0 failed.\n"; + } + } + } + + /* 3) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 4) On each rank, zero the read buffer, and then read + * INTS_PER_RANK * sizeof(int32) bytes from the file + * starting at offset mpi_rank * INTS_PER_RANK * + * sizeof(int32_t) in both the file and read_fi_buf. + * Do this with a vector read containing a single + * element. + * + * Verify that read_fi_buf contains zeros for all + * indices less than mpi_rank * INTS_PER_RANK, or + * greater than or equal to (mpi_rank + 1) * INTS_PER_RANK. + * For all other indices, read_fi_buf should equal + * increasing_fi_buf. + */ + if (pass) { + + for (i = 0; i < mpi_size * INTS_PER_RANK; i++) { + + read_fi_buf[i] = 0; + } + + count = 1; + types[0] = H5FD_MEM_DRAW; + addrs[0] = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + sizes[0] = (size_t)INTS_PER_RANK * sizeof(int32_t); + bufs[0] = (void *)(&(read_fi_buf[mpi_rank * INTS_PER_RANK])); + + if (H5FDread_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDread_vector() failed.\n"; + } + + for (i = 0; i < mpi_size * INTS_PER_RANK; i++) { + + if ((i < mpi_rank * INTS_PER_RANK) || (i >= (mpi_rank + 1) * INTS_PER_RANK)) { + + if (read_fi_buf[i] != 0) { + + pass = FALSE; + failure_mssg = "Unexpected value in read_fi_buf (1).\n"; + break; + } + } + else { + + if (read_fi_buf[i] != increasing_fi_buf[i]) { + + pass = FALSE; + failure_mssg = "Unexpected value in read_fi_buf (2).\n"; + break; + } + } + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 5) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 6) Close the test file and delete it (on rank 0 only). + * Close FAPL and DXPL. + */ + + if (pass) { + + takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* report results */ + if (mpi_rank == 0) { + + if (pass) { + + PASSED(); + } + else { + + H5_FAILED(); + + if (show_progress) { + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); + } + } + } + + return (!pass); + +} /* vector_read_test_1() */ + +/*------------------------------------------------------------------------- + * Function: vector_read_test_2() + * + * Purpose: Simple vector read test with only half of ranks + * participating in each vector read. + * + * 1) Open the test file with the specified VFD, set the eoa, + * and setup the DXPL. + * + * 2) Using rank zero, write the entire decreasing_fi_buf to + * the file. + * + * 3) Barrier + * + * 4) On each rank, zero the read buffer. + * + * 5) On even ranks, read INTS_PER_RANK * sizeof(int32) + * bytes from the file starting at offset mpi_rank * + * INTS_PER_RANK * sizeof(int32_t) in both the file and + * read_fi_buf. Do this with a vector read containing + * a single element. + * + * Odd ranks perform an empty read. + * + * 6) Barrier. + * + * 7) On odd ranks, read INTS_PER_RANK * sizeof(int32) + * bytes from the file starting at offset mpi_rank * + * INTS_PER_RANK * sizeof(int32_t) in both the file and + * read_fi_buf. Do this with a vector read containing + * a single element. + * + * Even ranks perform an empty read. + * + * 8) Verify that read_fi_buf contains zeros for all + * indices less than mpi_rank * INTS_PER_RANK, or + * greater than or equal to (mpi_rank + 1) * INTS_PER_RANK. + * For all other indices, read_fi_buf should equal + * decreasing_fi_buf. + * + * 9) Barrier + * + * 10) Close the test file. + * + * 11) On rank 0, delete the test file. + * + * Return: FALSE on success, TRUE if any errors are detected. + * + * Programmer: John Mainzer + * 3/26/21 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static unsigned +vector_read_test_2(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name) +{ + const char *fcn_name = "vector_read_test_2()"; + char test_title[120]; + char filename[512]; + haddr_t eoa; + hbool_t show_progress = FALSE; + hid_t fapl_id = -1; /* file access property list ID */ + hid_t dxpl_id = -1; /* data access property list ID */ + H5FD_t * lf = NULL; /* VFD struct ptr */ + int cp = 0; + int i; + uint32_t count; + H5FD_mem_t types[1]; + haddr_t addrs[1]; + size_t sizes[1]; + void * bufs[1]; + + pass = TRUE; + + if (mpi_rank == 0) { + + if (xfer_mode == H5FD_MPIO_INDEPENDENT) { + + sprintf(test_title, "parallel vector read test 2 -- %s / independent", vfd_name); + } + else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) { + + sprintf(test_title, "parallel vector read test 2 -- %s / col op / ind I/O", vfd_name); + } + else { + + HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO); + + sprintf(test_title, "parallel vector read test 2 -- %s / col op / col I/O", vfd_name); + } + + TESTING(test_title); + } + + show_progress = ((show_progress) && (mpi_rank == 0)); + + if (show_progress) + HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */ + if (pass) { + + eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + + setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf, + &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 2) Using rank zero, write the entire decreasing_fi_buf to + * the file. + */ + if (pass) { + + size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t); + + if (mpi_rank == 0) { + + if (H5FDwrite(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)decreasing_fi_buf) < + 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite() on rank 0 failed.\n"; + } + } + } + + /* 3) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 4) On each rank, zero the read buffer. */ + if (pass) { + + for (i = 0; i < mpi_size * INTS_PER_RANK; i++) { + + read_fi_buf[i] = 0; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 5) On even ranks, read INTS_PER_RANK * sizeof(int32) + * bytes from the file starting at offset mpi_rank * + * INTS_PER_RANK * sizeof(int32_t) in both the file and + * read_fi_buf. Do this with a vector read containing + * a single element. + * + * Odd ranks perform an empty read. + */ + if (pass) { + + if (mpi_rank % 2 == 0) { + + count = 1; + types[0] = H5FD_MEM_DRAW; + addrs[0] = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + sizes[0] = (size_t)INTS_PER_RANK * sizeof(int32_t); + bufs[0] = (void *)(&(read_fi_buf[mpi_rank * INTS_PER_RANK])); + } + else { + + count = 0; + } + + if (H5FDread_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDread_vector() failed.\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 6) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 7) On odd ranks, read INTS_PER_RANK * sizeof(int32) + * bytes from the file starting at offset mpi_rank * + * INTS_PER_RANK * sizeof(int32_t) in both the file and + * read_fi_buf. Do this with a vector read containing + * a single element. + * + * Even ranks perform an empty read. + */ + if (pass) { + + if (mpi_rank % 2 == 1) { + + count = 1; + types[0] = H5FD_MEM_DRAW; + addrs[0] = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + sizes[0] = (size_t)INTS_PER_RANK * sizeof(int32_t); + bufs[0] = (void *)(&(read_fi_buf[mpi_rank * INTS_PER_RANK])); + } + else { + + count = 0; + } + + if (H5FDread_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDread_vector() failed.\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 8) Verify that read_fi_buf contains zeros for all + * indices less than mpi_rank * INTS_PER_RANK, or + * greater than or equal to (mpi_rank + 1) * INTS_PER_RANK. + * For all other indices, read_fi_buf should equal + * decreasing_fi_buf. + */ + + if (pass) { + + for (i = 0; i < mpi_size * INTS_PER_RANK; i++) { + + if ((i < mpi_rank * INTS_PER_RANK) || (i >= (mpi_rank + 1) * INTS_PER_RANK)) { + + if (read_fi_buf[i] != 0) { + + pass = FALSE; + failure_mssg = "Unexpected value in read_fi_buf (1).\n"; + break; + } + } + else { + + if (read_fi_buf[i] != decreasing_fi_buf[i]) { + + pass = FALSE; + failure_mssg = "Unexpected value in read_fi_buf (2).\n"; + break; + } + } + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 9) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 10) Close the test file and delete it (on rank 0 only). + * Close FAPL and DXPL. + */ + + if (pass) { + + takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* report results */ + if (mpi_rank == 0) { + + if (pass) { + + PASSED(); + } + else { + + H5_FAILED(); + + if (show_progress) { + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); + } + } + } + + return (!pass); + +} /* vector_read_test_2() */ + +/*------------------------------------------------------------------------- + * Function: vector_read_test_3() + * + * Purpose: Verify that vector read works with multiple entries in + * the vector in each read, and that read buffers need not + * be in increasing (memory) address order. + * + * 1) Open the test file with the specified VFD, set the eoa, + * and setup the DXPL. + * + * 2) Using rank zero, write the entire negative_fi_buf to + * the file. + * + * 3) Barrier + * + * 4) On each rank, zero the four read buffers. + * + * 5) On each rank, do a vector read from the file, with + * each rank's vector having four elements, with each + * element reading INTS_PER_RANK / 4 * sizeof(int32) + * bytes, and the reads starting at address: + * + * (mpi_rank * INTS_PER_RANK) * sizeof(int32_t) + * + * (mpi_rank * INTS_PER_RANK + INTS_PER_RANK / 4) * + * sizeof(int32_t) + * + * (mpi_rank * INTS_PER_RANK + INTS_PER_RANK / 2) * + * sizeof(int32_t) + * + * (mpi_rank * INTS_PER_RANK + 3 * INTS_PER_RANK / 2) * + * sizeof(int32_t) + * + * On even ranks, the targets of the reads should be + * buf_0, buf_1, buf_2, and buf_3 respectively. + * + * On odd ranks, the targets of the reads should be + * buf_3, buf_2, buf_1, and buf_0 respectively. + * + * This has the effect of ensuring that on at least + * some ranks, the read buffers are not in increasing + * address order. + * + * 6) Verify that buf_0, buf_1, buf_2, and buf_3 contain + * the expected data. Note that this will be different + * on even vs. odd ranks. + * + * 7) Barrier. + * + * 8) Close the test file. + * + * 9) On rank 0, delete the test file. + * + * Return: FALSE on success, TRUE if any errors are detected. + * + * Programmer: John Mainzer + * 3/26/21 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static unsigned +vector_read_test_3(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name) +{ + const char *fcn_name = "vector_read_test_3()"; + char test_title[120]; + char filename[512]; + int32_t buf_0[(INTS_PER_RANK / 4) + 1]; + int32_t buf_1[(INTS_PER_RANK / 4) + 1]; + int32_t buf_2[(INTS_PER_RANK / 4) + 1]; + int32_t buf_3[(INTS_PER_RANK / 4) + 1]; + haddr_t eoa; + hbool_t show_progress = FALSE; + hid_t fapl_id = -1; /* file access property list ID */ + hid_t dxpl_id = -1; /* data access property list ID */ + H5FD_t * lf = NULL; /* VFD struct ptr */ + int cp = 0; + int i; + uint32_t count; + H5FD_mem_t types[4]; + haddr_t addrs[4]; + size_t sizes[4]; + void * bufs[4]; + + pass = TRUE; + + if (mpi_rank == 0) { + + if (xfer_mode == H5FD_MPIO_INDEPENDENT) { + + sprintf(test_title, "parallel vector read test 3 -- %s / independent", vfd_name); + } + else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) { + + sprintf(test_title, "parallel vector read test 3 -- %s / col op / ind I/O", vfd_name); + } + else { + + HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO); + + sprintf(test_title, "parallel vector read test 3 -- %s / col op / col I/O", vfd_name); + } + + TESTING(test_title); + } + + show_progress = ((show_progress) && (mpi_rank == 0)); + + if (show_progress) + HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */ + if (pass) { + + eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + + setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf, + &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 2) Using rank zero, write the entire negative_fi_buf to + * the file. + */ + if (pass) { + + size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t); + + if (mpi_rank == 0) { + + if (H5FDwrite(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)negative_fi_buf) < + 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite() on rank 0 failed.\n"; + } + } + } + + /* 3) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 4) On each rank, zero the four read buffers. */ + if (pass) { + + for (i = 0; i <= INTS_PER_RANK / 4; i++) { + + buf_0[i] = 0; + buf_1[i] = 0; + buf_2[i] = 0; + buf_3[i] = 0; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 5) On each rank, do a vector read from the file, with + * each rank's vector having four elements, with each + * element reading INTS_PER_RANK / 4 * sizeof(int32) + * bytes, and the reads starting at address: + * + * (mpi_rank * INTS_PER_RANK) * sizeof(int32_t) + * + * (mpi_rank * INTS_PER_RANK + INTS_PER_RANK / 4) * + * sizeof(int32_t) + * + * (mpi_rank * INTS_PER_RANK + INTS_PER_RANK / 2) * + * sizeof(int32_t) + * + * (mpi_rank * INTS_PER_RANK + 3 * INTS_PER_RANK / 2) * + * sizeof(int32_t) + * + * On even ranks, the targets of the reads should be + * buf_0, buf_1, buf_2, and buf_3 respectively. + * + * On odd ranks, the targets of the reads should be + * buf_3, buf_2, buf_1, and buf_0 respectively. + * + * This has the effect of ensuring that on at least + * some ranks, the read buffers are not in increasing + * address order. + */ + if (pass) { + + haddr_t base_addr = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + + count = 4; + + types[0] = H5FD_MEM_DRAW; + addrs[0] = base_addr; + sizes[0] = (size_t)(INTS_PER_RANK / 4) * sizeof(int32_t); + + types[1] = H5FD_MEM_DRAW; + addrs[1] = base_addr + ((haddr_t)(INTS_PER_RANK / 4) * (haddr_t)(sizeof(int32_t))); + sizes[1] = (size_t)(INTS_PER_RANK / 4) * sizeof(int32_t); + + types[2] = H5FD_MEM_DRAW; + addrs[2] = base_addr + ((haddr_t)(INTS_PER_RANK / 2) * (haddr_t)(sizeof(int32_t))); + sizes[2] = (size_t)(INTS_PER_RANK / 4) * sizeof(int32_t); + + types[3] = H5FD_MEM_DRAW; + addrs[3] = base_addr + ((haddr_t)(3 * INTS_PER_RANK / 4) * (haddr_t)(sizeof(int32_t))); + sizes[3] = (size_t)INTS_PER_RANK / 4 * sizeof(int32_t); + + if (mpi_rank % 2 == 0) { + + bufs[0] = (void *)(&(buf_0[0])); + bufs[1] = (void *)(buf_1); + bufs[2] = (void *)(buf_2); + bufs[3] = (void *)(buf_3); + } + else { + + bufs[0] = (void *)(&(buf_3[0])); + bufs[1] = (void *)(buf_2); + bufs[2] = (void *)(buf_1); + bufs[3] = (void *)(buf_0); + } + + if (H5FDread_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDread_vector() failed.\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 6) Verify that buf_0, buf_1, buf_2, and buf_3 contain + * the expected data. Note that this will be different + * on even vs. odd ranks. + */ + if (pass) { + + int base_index = mpi_rank * INTS_PER_RANK; + + for (i = 0; ((pass) && (i < INTS_PER_RANK / 4)); i++) { + + if (((mpi_rank % 2 == 0) && (buf_0[i] != negative_fi_buf[base_index + i])) || + ((mpi_rank % 2 == 1) && (buf_3[i] != negative_fi_buf[base_index + i]))) { + + pass = FALSE; + failure_mssg = "Unexpected value in buf (1).\n"; + } + } + + base_index += INTS_PER_RANK / 4; + + for (i = 0; ((pass) && (i < INTS_PER_RANK / 4)); i++) { + + if (((mpi_rank % 2 == 0) && (buf_1[i] != negative_fi_buf[base_index + i])) || + ((mpi_rank % 2 == 1) && (buf_2[i] != negative_fi_buf[base_index + i]))) { + + pass = FALSE; + failure_mssg = "Unexpected value in buf (2).\n"; + } + } + + base_index += INTS_PER_RANK / 4; + + for (i = 0; ((pass) && (i < INTS_PER_RANK / 4)); i++) { + + if (((mpi_rank % 2 == 0) && (buf_2[i] != negative_fi_buf[base_index + i])) || + ((mpi_rank % 2 == 1) && (buf_1[i] != negative_fi_buf[base_index + i]))) { + + pass = FALSE; + failure_mssg = "Unexpected value in buf (3).\n"; + } + } + + base_index += INTS_PER_RANK / 4; + + for (i = 0; ((pass) && (i < INTS_PER_RANK / 4)); i++) { + + if (((mpi_rank % 2 == 0) && (buf_3[i] != negative_fi_buf[base_index + i])) || + ((mpi_rank % 2 == 1) && (buf_0[i] != negative_fi_buf[base_index + i]))) { + + pass = FALSE; + failure_mssg = "Unexpected value in buf (4).\n"; + } + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 7) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 8) Close the test file and delete it (on rank 0 only). + * Close FAPL and DXPL. + */ + + if (pass) { + + takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* report results */ + if (mpi_rank == 0) { + + if (pass) { + + PASSED(); + } + else { + + H5_FAILED(); + + if (show_progress) { + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); + } + } + } + + return (!pass); + +} /* vector_read_test_3() */ + +/*------------------------------------------------------------------------- + * Function: vector_read_test_4() + * + * Purpose: Test vector I/O reads with vectors of different lengths + * and entry sizes across the ranks. Vectors are not, in + * general, sorted in increasing address order. Further, + * reads are not, in general, contiguous. + * + * 1) Open the test file with the specified VFD, set the eoa. + * and setup the DXPL. + * + * 2) Using rank zero, write the entire increasing_fi_buf to + * the file. + * + * 3) Barrier + * + * 4) Set all cells of read_fi_buf to zero. + * + * 5) For each rank, define base_index equal to: + * + * mpi_rank * INTS_PER_RANK + * + * and define base_addr equal to + * + * base_index * sizeof(int32_t). + * + * Setup a vector read between base_addr and + * base_addr + INTS_PER_RANK * sizeof(int32_t) - 1 + * as follows: + * + * if ( rank % 4 == 0 ) construct a vector that reads: + * + * INTS_PER_RANK / 4 * sizeof(int32_t) bytes + * starting at base_addr + INTS_PER_RANK / 2 * + * sizeof(int32_t), + * + * INTS_PER_RANK / 8 * sizeof(int32_t) bytes + * starting at base_addr + INTS_PER_RANK / 4 * + * sizeof(int32_t), and + * + * INTS_PER_RANK / 16 * sizeof(int32_t) butes + * starting at base_addr + INTS_PER_RANK / 16 * + * sizeof(int32_t) + * + * to the equivalent locations in read_fi_buf + * + * if ( rank % 4 == 1 ) construct a vector that reads: + * + * ((INTS_PER_RANK / 2) - 2) * sizeof(int32_t) + * bytes starting at base_addr + sizeof(int32_t), and + * + * ((INTS_PER_RANK / 2) - 2) * sizeof(int32_t) bytes + * starting at base_addr + (INTS_PER_RANK / 2 + 1) * + * sizeof(int32_t). + * + * to the equivalent locations in read_fi_buf + * + * if ( rank % 4 == 2 ) construct a vector that reads: + * + * sizeof(int32_t) bytes starting at base_index + + * (INTS_PER_RANK / 2) * sizeof int32_t. + * + * to the equivalent locations in read_fi_buf + * + * if ( rank % 4 == 3 ) construct and read the empty vector + * + * 6) On each rank, verify that read_fi_buf contains the + * the expected values -- that is the matching values from + * increasing_fi_buf where ever there was a read, and zero + * otherwise. + * + * 7) Barrier. + * + * 8) Close the test file. + * + * 9) On rank 0, delete the test file. + * + * Return: FALSE on success, TRUE if any errors are detected. + * + * Programmer: John Mainzer + * 3/26/21 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static unsigned +vector_read_test_4(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name) +{ + const char *fcn_name = "vector_read_test_4()"; + char test_title[120]; + char filename[512]; + haddr_t eoa; + haddr_t base_addr; + hbool_t show_progress = FALSE; + hid_t fapl_id = -1; /* file access property list ID */ + hid_t dxpl_id = -1; /* data access property list ID */ + H5FD_t * lf = NULL; /* VFD struct ptr */ + int cp = 0; + int i; + int j; + int k; + int base_index; + uint32_t count = 0; + H5FD_mem_t types[4]; + haddr_t addrs[4]; + size_t sizes[4]; + void * bufs[4]; + + pass = TRUE; + + if (mpi_rank == 0) { + + if (xfer_mode == H5FD_MPIO_INDEPENDENT) { + + sprintf(test_title, "parallel vector read test 4 -- %s / independent", vfd_name); + } + else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) { + + sprintf(test_title, "parallel vector read test 4 -- %s / col op / ind I/O", vfd_name); + } + else { + + HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO); + + sprintf(test_title, "parallel vector read test 4 -- %s / col op / col I/O", vfd_name); + } + + TESTING(test_title); + } + + show_progress = ((show_progress) && (mpi_rank == 0)); + + if (show_progress) + HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */ + if (pass) { + + eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + + setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf, + &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 2) Using rank zero, write the entire negative_fi_buf to + * the file. + */ + if (pass) { + + size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t); + + if (mpi_rank == 0) { + + if (H5FDwrite(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)increasing_fi_buf) < + 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite() on rank 0 failed.\n"; + } + } + } + + /* 3) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 4) Set all cells of read_fi_buf to zero. */ + if (pass) { + + for (i = 0; i < mpi_size * INTS_PER_RANK; i++) { + + read_fi_buf[i] = 0; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 5) For each rank, define base_index equal to: + * + * mpi_rank * INTS_PER_RANK + * + * and define base_addr equal to + * + * base_index * sizeof(int32_t). + * + * Setup a vector read between base_addr and + * base_addr + INTS_PER_RANK * sizeof(int32_t) - 1 + * as follows: + */ + if (pass) { + + base_index = mpi_rank * INTS_PER_RANK; + base_addr = (haddr_t)base_index * (haddr_t)sizeof(int32_t); + + if ((mpi_rank % 4) == 0) { + + /* if ( rank % 4 == 0 ) construct a vector that reads: + * + * INTS_PER_RANK / 4 * sizeof(int32_t) bytes + * starting at base_addr + INTS_PER_RANK / 2 * + * sizeof(int32_t), + * + * INTS_PER_RANK / 8 * sizeof(int32_t) bytes + * starting at base_addr + INTS_PER_RANK / 4 * + * sizeof(int32_t), and + * + * INTS_PER_RANK / 16 * sizeof(int32_t) butes + * starting at base_addr + INTS_PER_RANK / 16 * + * sizeof(int32_t) + * + * to the equivalent locations in read_fi_buf + */ + + count = 3; + + types[0] = H5FD_MEM_DRAW; + addrs[0] = base_addr + (haddr_t)((size_t)(INTS_PER_RANK / 2) * sizeof(int32_t)); + sizes[0] = (size_t)(INTS_PER_RANK / 4) * sizeof(int32_t); + bufs[0] = (void *)(&(read_fi_buf[base_index + (INTS_PER_RANK / 2)])); + + types[1] = H5FD_MEM_DRAW; + addrs[1] = base_addr + (haddr_t)((size_t)(INTS_PER_RANK / 4) * sizeof(int32_t)); + sizes[1] = (size_t)(INTS_PER_RANK / 8) * sizeof(int32_t); + bufs[1] = (void *)(&(read_fi_buf[base_index + (INTS_PER_RANK / 4)])); + + types[2] = H5FD_MEM_DRAW; + addrs[2] = base_addr + (haddr_t)((size_t)(INTS_PER_RANK / 16) * sizeof(int32_t)); + sizes[2] = (size_t)(INTS_PER_RANK / 16) * sizeof(int32_t); + bufs[2] = (void *)(&(read_fi_buf[base_index + (INTS_PER_RANK / 16)])); + } + else if ((mpi_rank % 4) == 1) { + + /* if ( rank % 4 == 1 ) construct a vector that reads: + * + * ((INTS_PER_RANK / 2) - 2) * sizeof(int32_t) + * bytes starting at base_addr + sizeof(int32_t), and + * + * ((INTS_PER_RANK / 2) - 2) * sizeof(int32_t) bytes + * starting at base_addr + (INTS_PER_RANK / 2 + 1) * + * sizeof(int32_t). + * + * to the equivalent locations in read_fi_buf + */ + count = 2; + + types[0] = H5FD_MEM_DRAW; + addrs[0] = base_addr + (haddr_t)(sizeof(int32_t)); + sizes[0] = (size_t)((INTS_PER_RANK / 2) - 2) * sizeof(int32_t); + bufs[0] = (void *)(&(read_fi_buf[base_index + 1])); + + types[1] = H5FD_MEM_DRAW; + addrs[1] = base_addr + (haddr_t)((size_t)((INTS_PER_RANK / 2) + 1) * sizeof(int32_t)); + sizes[1] = (size_t)((INTS_PER_RANK / 2) - 2) * sizeof(int32_t); + bufs[1] = (void *)(&(read_fi_buf[base_index + (INTS_PER_RANK / 2) + 1])); + } + else if ((mpi_rank % 4) == 2) { + + /* if ( rank % 4 == 2 ) construct a vector that reads: + * + * sizeof(int32_t) bytes starting at base_index + + * (INTS_PER_RANK / 2) * sizeof int32_t. + * + * to the equivalent locations in read_fi_buf + */ + count = 1; + + types[0] = H5FD_MEM_DRAW; + addrs[0] = base_addr + (haddr_t)((size_t)(INTS_PER_RANK / 2) * sizeof(int32_t)); + sizes[0] = sizeof(int32_t); + bufs[0] = (void *)(&(read_fi_buf[base_index + (INTS_PER_RANK / 2)])); + } + else if ((mpi_rank % 4) == 3) { + + /* if ( rank % 4 == 3 ) construct and read the empty vector */ + + count = 0; + } + + if (H5FDread_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDread_vector() failed (1).\n"; + } + } + + /* 6) On each rank, verify that read_fi_buf contains the + * the expected values -- that is the matching values from + * increasing_fi_buf where ever there was a read, and zero + * otherwise. + */ + if (pass) { + + for (i = 0; ((pass) && (i < mpi_size)); i++) { + + base_index = i * INTS_PER_RANK; +#if 1 + for (j = base_index; j < base_index + INTS_PER_RANK; j++) { + + k = j - base_index; +#else + for (k = 0; k < INTS_PER_RANK; k++) { + + j = k + base_index; +#endif + + if (i == mpi_rank) { + + switch (i % 4) { + + case 0: + if (((INTS_PER_RANK / 2) <= k) && (k < (3 * (INTS_PER_RANK / 4)))) { + + if (read_fi_buf[j] != increasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (1.1)"; + HDfprintf(stdout, "\nread_fi_buf[%d] = %d, increasing_fi_buf[%d] = %d\n", + j, read_fi_buf[j], j, increasing_fi_buf[j]); + } + } + else if (((INTS_PER_RANK / 4) <= k) && (k < (3 * (INTS_PER_RANK / 8)))) { + + if (read_fi_buf[j] != increasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (1.2)"; + } + } + else if (((INTS_PER_RANK / 16) <= k) && (k < (INTS_PER_RANK / 8))) { + + if (read_fi_buf[j] != increasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (1.3)"; + } + } + else { + + if (read_fi_buf[j] != 0) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (1.4)"; + } + } + break; + + case 1: + if ((1 <= k) && (k <= ((INTS_PER_RANK / 2) - 2))) { + + if (read_fi_buf[j] != increasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (2.1)"; + } + } + else if ((((INTS_PER_RANK / 2) + 1) <= k) && (k <= (INTS_PER_RANK - 2))) { + + if (read_fi_buf[j] != increasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (2.2)"; + } + } + else { + + if (read_fi_buf[j] != 0) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (2.3)"; + } + } + break; + + case 2: + if (k == INTS_PER_RANK / 2) { + + if (read_fi_buf[j] != increasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (3.1)"; + } + } + else { + + if (read_fi_buf[j] != 0) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (3.2)"; + } + } + break; + + case 3: + if (read_fi_buf[j] != 0) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (4)"; + } + break; + + default: + HDassert(FALSE); /* should be un-reachable */ + break; + } + } + else if (read_fi_buf[j] != 0) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (5)"; + } + } /* end for loop */ + } /* end for loop */ + } /* end if */ + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 7) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 8) Close the test file and delete it (on rank 0 only). + * Close FAPL and DXPL. + */ + + if (pass) { + + takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* report results */ + if (mpi_rank == 0) { + + if (pass) { + + PASSED(); + } + else { + + H5_FAILED(); + + if (show_progress) { + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); + } + } + } + + return (!pass); + +} /* vector_read_test_4() */ + +/*------------------------------------------------------------------------- + * Function: vector_read_test_5() + * + * Purpose: Test correct management of the sizes[] array optimization, + * where, if sizes[i] == 0, we use sizes[i - 1] as the value + * of size[j], for j >= i. + * + * 1) Open the test file with the specified VFD, set the eoa. + * and setup the DXPL. + * + * 2) Using rank zero, write the entire increasing_fi_buf to + * the file. + * + * 3) Barrier + * + * 4) Set all cells of read_fi_buf to zero. + * + * 5) For each rank, define base_index equal to: + * + * mpi_rank * INTS_PER_RANK + * + * and define base_addr equal to + * + * base_index * sizeof(int32_t). + * + * Setup a vector read between base_addr and + * base_addr + INTS_PER_RANK * sizeof(int32_t) - 1 + * that reads every 16th integer located in that + * that range starting at base_addr. Use a sizes[] + * array of length 2, with sizes[0] set to sizeof(int32_t), + * and sizes[1] = 0. + * + * Read the integers into the corresponding locations in + * read_fi_buf. + * + * 6) On each rank, verify that read_fi_buf contains the + * the expected values -- that is the matching values from + * increasing_fi_buf where ever there was a read, and zero + * otherwise. + * + * 7) Barrier. + * + * 8) Close the test file. + * + * 9) On rank 0, delete the test file. + * + * Return: FALSE on success, TRUE if any errors are detected. + * + * Programmer: John Mainzer + * 3/26/21 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static unsigned +vector_read_test_5(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name) +{ + const char *fcn_name = "vector_read_test_5()"; + char test_title[120]; + char filename[512]; + haddr_t eoa; + haddr_t base_addr; + hbool_t show_progress = FALSE; + hid_t fapl_id = -1; /* file access property list ID */ + hid_t dxpl_id = -1; /* data access property list ID */ + H5FD_t * lf = NULL; /* VFD struct ptr */ + int cp = 0; + int i; + int j; + int base_index; + uint32_t count = 0; + H5FD_mem_t types[(INTS_PER_RANK / 16) + 1]; + haddr_t addrs[(INTS_PER_RANK / 16) + 1]; + size_t sizes[2]; + void * bufs[(INTS_PER_RANK / 16) + 1]; + + pass = TRUE; + + if (mpi_rank == 0) { + + if (xfer_mode == H5FD_MPIO_INDEPENDENT) { + + sprintf(test_title, "parallel vector read test 5 -- %s / independent", vfd_name); + } + else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) { + + sprintf(test_title, "parallel vector read test 5 -- %s / col op / ind I/O", vfd_name); + } + else { + + HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO); + + sprintf(test_title, "parallel vector read test 5 -- %s / col op / col I/O", vfd_name); + } + + TESTING(test_title); + } + + show_progress = ((show_progress) && (mpi_rank == 0)); + + if (show_progress) + HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */ + if (pass) { + + eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + + setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf, + &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 2) Using rank zero, write the entire negative_fi_buf to + * the file. + */ + if (pass) { + + size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t); + + if (mpi_rank == 0) { + + if (H5FDwrite(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)increasing_fi_buf) < + 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite() on rank 0 failed.\n"; + } + } + } + + /* 3) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 4) Set all cells of read_fi_buf to zero. */ + if (pass) { + + for (i = 0; i < mpi_size * INTS_PER_RANK; i++) { + + read_fi_buf[i] = 0; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 5) For each rank, define base_index equal to: + * + * mpi_rank * INTS_PER_RANK + * + * and define base_addr equal to + * + * base_index * sizeof(int32_t). + * + * Setup a vector read between base_addr and + * base_addr + INTS_PER_RANK * sizeof(int32_t) - 1 + * that reads every 16th integer located in that + * that range starting at base_addr. Use a sizes[] + * array of length 2, with sizes[0] set to sizeof(int32_t), + * and sizes[1] = 0. + * + * Read the integers into the corresponding locations in + * read_fi_buf. + */ + if (pass) { + + base_index = (mpi_rank * INTS_PER_RANK); + base_addr = (haddr_t)base_index * (haddr_t)sizeof(int32_t); + + count = INTS_PER_RANK / 16; + sizes[0] = sizeof(int32_t); + sizes[1] = 0; + + for (i = 0; i < INTS_PER_RANK / 16; i++) { + + types[i] = H5FD_MEM_DRAW; + addrs[i] = base_addr + ((haddr_t)(16 * i) * (haddr_t)sizeof(int32_t)); + bufs[i] = (void *)(&(read_fi_buf[base_index + (i * 16)])); + } + + if (H5FDread_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDread_vector() failed (1).\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 6) On each rank, verify that read_fi_buf contains the + * the expected values -- that is the matching values from + * increasing_fi_buf where ever there was a read, and zero + * otherwise. + */ + if (pass) { + + for (i = 0; ((pass) && (i < mpi_size)); i++) { + + base_index = i * INTS_PER_RANK; + + for (j = base_index; j < base_index + INTS_PER_RANK; j++) { + + if ((i == mpi_rank) && (j % 16 == 0)) { + + if (read_fi_buf[j] != increasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (1)"; + } + } + else if (read_fi_buf[j] != 0) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (2)"; + } + } /* end for loop */ + } /* end for loop */ + } /* end if */ + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 7) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 8) Close the test file and delete it (on rank 0 only). + * Close FAPL and DXPL. + */ + + if (pass) { + + takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* report results */ + if (mpi_rank == 0) { + + if (pass) { + + PASSED(); + } + else { + + H5_FAILED(); + + if (show_progress) { + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); + } + } + } + + return (!pass); + +} /* vector_read_test_5() */ + +/*------------------------------------------------------------------------- + * Function: vector_write_test_1() + * + * Purpose: Simple vector write test: + * + * 1) Open the test file with the specified VFD, set the eoa, + * and setup the DXPL. + * + * 2) Write the entire increasing_fi_buf to the file, with + * exactly one buffer per vector per rank. Use either + * independent or collective I/O as specified. + * + * 3) Barrier + * + * 4) On each rank, read the entire file into the read_fi_buf, + * and compare against increasing_fi_buf. Report failure + * if any differences are detected. + * + * 5) Close the test file. + * + * 6) On rank 0, delete the test file. + * + * Return: FALSE on success, TRUE if any errors are detected. + * + * Programmer: John Mainzer + * 3/26/21 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static unsigned +vector_write_test_1(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name) +{ + const char *fcn_name = "vector_write_test_1()"; + char test_title[120]; + char filename[512]; + haddr_t eoa; + hbool_t show_progress = FALSE; + hid_t fapl_id = -1; /* file access property list ID */ + hid_t dxpl_id = -1; /* data access property list ID */ + H5FD_t * lf = NULL; /* VFD struct ptr */ + int cp = 0; + int i; + uint32_t count; + H5FD_mem_t types[1]; + haddr_t addrs[1]; + size_t sizes[1]; + void * bufs[1]; + + pass = TRUE; + + if (mpi_rank == 0) { + + if (xfer_mode == H5FD_MPIO_INDEPENDENT) { + + sprintf(test_title, "parallel vector write test 1 -- %s / independent", vfd_name); + } + else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) { + + sprintf(test_title, "parallel vector write test 1 -- %s / col op / ind I/O", vfd_name); + } + else { + + HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO); + + sprintf(test_title, "parallel vector write test 1 -- %s / col op / col I/O", vfd_name); + } + + TESTING(test_title); + } + + show_progress = ((show_progress) && (mpi_rank == 0)); + + if (show_progress) + HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */ + if (pass) { + + eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + + setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf, + &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 2) Write the entire increasing_fi_buf to the file, with + * exactly one buffer per vector per rank. Use either + * independent or collective I/O as specified. + */ + + if (pass) { + + count = 1; + types[0] = H5FD_MEM_DRAW; + addrs[0] = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + sizes[0] = (size_t)INTS_PER_RANK * sizeof(int32_t); + bufs[0] = (void *)(&(increasing_fi_buf[mpi_rank * INTS_PER_RANK])); + + if (H5FDwrite_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite_vector() failed.\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 3) Barrier + */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 4) On each rank, read the entire file into the read_fi_buf, + * and compare against increasing_fi_buf. Report failure + * if any differences are detected. + */ + + if (pass) { + + size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t); + + if (H5FDread(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)read_fi_buf) < 0) { + + pass = FALSE; + failure_mssg = "H5FDread() failed.\n"; + } + + for (i = 0; i < mpi_size * INTS_PER_RANK; i++) { + + if (read_fi_buf[i] != increasing_fi_buf[i]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file"; + break; + } + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 5) Close the test file and delete it (on rank 0 only). + * Close FAPL and DXPL. + */ + + if (pass) { + + takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* report results */ + if (mpi_rank == 0) { + + if (pass) { + + PASSED(); + } + else { + + H5_FAILED(); + + if (show_progress) { + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); + } + } + } + + return (!pass); + +} /* vector_write_test_1() */ + +/*------------------------------------------------------------------------- + * Function: vector_write_test_2() + * + * Purpose: Test vector I/O writes in which only some ranks participate. + * Depending on the collective parameter, these writes will + * be either collective or independent. + * + * 1) Open the test file with the specified VFD, and set + * the eoa. + * + * 2) Write the odd blocks of the increasing_fi_buf to the file, + * with the odd ranks writing the odd blocks, and the even + * ranks writing an empty vector. + * + * Here, a "block" of the increasing_fi_buf is a sequence + * of integers in increasing_fi_buf of length INTS_PER_RANK, + * and with start index a multiple of INTS_PER_RANK. + * + * 3) Write the even blocks of the negative_fi_buf to the file, + * with the even ranks writing the even blocks, and the odd + * ranks writing an empty vector. + * + * 4) Barrier + * + * 4) On each rank, read the entire file into the read_fi_buf, + * and compare against increasing_fi_buf and negative_fi_buf + * as appropriate. Report failure if any differences are + * detected. + * + * 5) Close the test file. On rank 0, delete the test file. + * + * Return: FALSE on success, TRUE if any errors are detected. + * + * Programmer: John Mainzer + * 3/28/21 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static unsigned +vector_write_test_2(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name) +{ + const char *fcn_name = "vector_write_test_2()"; + char test_title[120]; + char filename[512]; + haddr_t eoa; + hbool_t show_progress = FALSE; + hid_t fapl_id = -1; /* file access property list ID */ + hid_t dxpl_id = -1; /* data access property list ID */ + H5FD_t * lf = NULL; /* VFD struct ptr */ + int cp = 0; + int i; + int j; + uint32_t count; + H5FD_mem_t types[1]; + haddr_t addrs[1]; + size_t sizes[1]; + void * bufs[1]; + + pass = TRUE; + + if (mpi_rank == 0) { + + if (xfer_mode == H5FD_MPIO_INDEPENDENT) { + + sprintf(test_title, "parallel vector write test 2 -- %s / independent", vfd_name); + } + else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) { + + sprintf(test_title, "parallel vector write test 2 -- %s / col op / ind I/O", vfd_name); + } + else { + + HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO); + + sprintf(test_title, "parallel vector write test 2 -- %s / col op / col I/O", vfd_name); + } + + TESTING(test_title); + } + + show_progress = ((show_progress) && (mpi_rank == 0)); + + if (show_progress) + HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */ + if (pass) { + + eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + + setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf, + &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 2) Write the odd blocks of the increasing_fi_buf to the file, + * with the odd ranks writing the odd blocks, and the even + * ranks writing an empty vector. + * + * Here, a "block" of the increasing_fi_buf is a sequence + * of integers in increasing_fi_buf of length INTS_PER_RANK, + * and with start index a multiple of INTS_PER_RANK. + */ + if (pass) { + + if (mpi_rank % 2 == 1) { /* odd ranks */ + + count = 1; + types[0] = H5FD_MEM_DRAW; + addrs[0] = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + sizes[0] = (size_t)INTS_PER_RANK * sizeof(int32_t); + bufs[0] = (void *)(&(increasing_fi_buf[mpi_rank * INTS_PER_RANK])); + + if (H5FDwrite_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite_vector() failed (1).\n"; + } + } + else { /* even ranks */ + + if (H5FDwrite_vector(lf, dxpl_id, 0, NULL, NULL, NULL, NULL) < 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite_vector() failed (2).\n"; + } + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 3) Write the even blocks of the negative_fi_buf to the file, + * with the even ranks writing the even blocks, and the odd + * ranks writing an empty vector. + */ + if (pass) { + + if (mpi_rank % 2 == 1) { /* odd ranks */ + + if (H5FDwrite_vector(lf, dxpl_id, 0, NULL, NULL, NULL, NULL) < 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite_vector() failed (3).\n"; + } + } + else { /* even ranks */ + + count = 1; + types[0] = H5FD_MEM_DRAW; + addrs[0] = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + sizes[0] = (size_t)INTS_PER_RANK * sizeof(int32_t); + bufs[0] = (void *)(&(negative_fi_buf[mpi_rank * INTS_PER_RANK])); + + if (H5FDwrite_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite_vector() failed (4).\n"; + } + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 4) Barrier + */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 5) On each rank, read the entire file into the read_fi_buf, + * and compare against increasing_fi_buf. Report failure + * if any differences are detected. + */ + + if (pass) { + + size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t); + + if (H5FDread(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)read_fi_buf) < 0) { + + pass = FALSE; + failure_mssg = "H5FDread() failed.\n"; + } + + for (i = 0; ((pass) && (i < mpi_size)); i++) { + + if (i % 2 == 1) { /* odd block */ + + for (j = i * INTS_PER_RANK; ((pass) && (j < (i + 1) * INTS_PER_RANK)); j++) { + + if (read_fi_buf[j] != increasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file"; + break; + } + } + } + else { /* even block */ + + for (j = i * INTS_PER_RANK; ((pass) && (j < (i + 1) * INTS_PER_RANK)); j++) { + + if (read_fi_buf[j] != negative_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file"; + break; + } + } + } + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 6) Close the test file and delete it (on rank 0 only). + * Close FAPL and DXPL. + */ + + if (pass) { + + takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* report results */ + if (mpi_rank == 0) { + + if (pass) { + + PASSED(); + } + else { + + H5_FAILED(); + + if (show_progress) { + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); + } + } + } + + return (!pass); + +} /* vector_write_test_2() */ + +/*------------------------------------------------------------------------- + * Function: vector_write_test_3() + * + * Purpose: Test vector I/O writes with vectors of multiple entries. + * For now, keep the vectors sorted in increasing address + * order. + * + * 1) Open the test file with the specified VFD, and set + * the eoa. + * + * 2) For each rank, construct a vector with base address + * (mpi_rank * INTS_PER_RANK) and writing all bytes from + * that address to ((mpi_rank + 1) * INTS_PER_RANK) - 1. + * Draw equal parts from increasing_fi_buf, + * decreasing_fi_buf, negative_fi_buf, and zero_fi_buf. + * + * Write to file. + * + * 3) Barrier + * + * 4) On each rank, read the entire file into the read_fi_buf, + * and compare against increasing_fi_buf, + * decreasing_fi_buf, negative_fi_buf, and zero_fi_buf as + * appropriate. Report failure if any differences are + * detected. + * + * 5) Close the test file. On rank 0, delete the test file. + * + * Return: FALSE on success, TRUE if any errors are detected. + * + * Programmer: John Mainzer + * 3/31/21 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static unsigned +vector_write_test_3(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name) +{ + const char *fcn_name = "vector_write_test_3()"; + char test_title[120]; + char filename[512]; + haddr_t base_addr; + int base_index; + int ints_per_write; + size_t bytes_per_write; + haddr_t eoa; + hbool_t show_progress = FALSE; + hid_t fapl_id = -1; /* file access property list ID */ + hid_t dxpl_id = -1; /* data access property list ID */ + H5FD_t * lf = NULL; /* VFD struct ptr */ + int cp = 0; + int i; + int j; + uint32_t count; + H5FD_mem_t types[4]; + haddr_t addrs[4]; + size_t sizes[4]; + void * bufs[4]; + + pass = TRUE; + + if (mpi_rank == 0) { + + if (xfer_mode == H5FD_MPIO_INDEPENDENT) { + + sprintf(test_title, "parallel vector write test 3 -- %s / independent", vfd_name); + } + else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) { + + sprintf(test_title, "parallel vector write test 3 -- %s / col op / ind I/O", vfd_name); + } + else { + + HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO); + + sprintf(test_title, "parallel vector write test 3 -- %s / col op / col I/O", vfd_name); + } + + TESTING(test_title); + } + + show_progress = ((show_progress) && (mpi_rank == 0)); + + if (show_progress) + HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */ + if (pass) { + + eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + + setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf, + &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 2) For each rank, construct a vector with base address + * (mpi_rank * INTS_PER_RANK) and writing all bytes from + * that address to ((mpi_rank + 1) * INTS_PER_RANK) - 1. + * Draw equal parts from increasing_fi_buf, + * decreasing_fi_buf, negative_fi_buf, and zero_fi_buf. + * + * Write to file. + */ + if (pass) { + + count = 4; + + base_addr = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + ints_per_write = INTS_PER_RANK / 4; + bytes_per_write = (size_t)(ints_per_write) * sizeof(int32_t); + + types[0] = H5FD_MEM_DRAW; + addrs[0] = base_addr; + sizes[0] = bytes_per_write; + bufs[0] = (void *)(&(increasing_fi_buf[mpi_rank * INTS_PER_RANK])); + + types[1] = H5FD_MEM_DRAW; + addrs[1] = addrs[0] + (haddr_t)(bytes_per_write); + sizes[1] = bytes_per_write; + bufs[1] = (void *)(&(decreasing_fi_buf[(mpi_rank * INTS_PER_RANK) + (INTS_PER_RANK / 4)])); + + types[2] = H5FD_MEM_DRAW; + addrs[2] = addrs[1] + (haddr_t)(bytes_per_write); + sizes[2] = bytes_per_write; + bufs[2] = (void *)(&(negative_fi_buf[(mpi_rank * INTS_PER_RANK) + (INTS_PER_RANK / 2)])); + + types[3] = H5FD_MEM_DRAW; + addrs[3] = addrs[2] + (haddr_t)(bytes_per_write); + sizes[3] = bytes_per_write; + bufs[3] = (void *)(&(zero_fi_buf[(mpi_rank * INTS_PER_RANK) + (3 * (INTS_PER_RANK / 4))])); + +#if 0 /* JRM */ + HDfprintf(stdout, "addrs = { %lld, %lld, %lld, %lld}\n", + (long long)addrs[0], (long long)addrs[1], (long long)addrs[2], (long long)addrs[3]); + HDfprintf(stdout, "sizes = { %lld, %lld, %lld, %lld}\n", + (long long)sizes[0], (long long)sizes[1], (long long)sizes[2], (long long)sizes[3]); + HDfprintf(stdout, "bufs = { 0x%llx, 0x%llx, 0x%llx, 0x%llx}\n", + (unsigned long long)bufs[0], (unsigned long long)bufs[1], + (unsigned long long)bufs[2], (unsigned long long)bufs[3]); +#endif /* JRM */ + + if (H5FDwrite_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite_vector() failed (1).\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 3) Barrier + */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 4) On each rank, read the entire file into the read_fi_buf, + * and compare against increasing_fi_buf, + * decreasing_fi_buf, negative_fi_buf, and zero_fi_buf as + * appropriate. Report failure if any differences are + * detected. + */ + + if (pass) { + + size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t); + + if (H5FDread(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)read_fi_buf) < 0) { + + pass = FALSE; + failure_mssg = "H5FDread() failed.\n"; + } + + for (i = 0; ((pass) && (i < mpi_size)); i++) { + + base_index = i * INTS_PER_RANK; + + for (j = base_index; j < base_index + (INTS_PER_RANK / 4); j++) { + + if (read_fi_buf[j] != increasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (1)"; + break; + } + } + + base_index += (INTS_PER_RANK / 4); + + for (j = base_index; j < base_index + (INTS_PER_RANK / 4); j++) { + + if (read_fi_buf[j] != decreasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (2)"; + break; + } + } + + base_index += (INTS_PER_RANK / 4); + + for (j = base_index; j < base_index + (INTS_PER_RANK / 4); j++) { + + if (read_fi_buf[j] != negative_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (3)"; + break; + } + } + + base_index += (INTS_PER_RANK / 4); + + for (j = base_index; j < base_index + (INTS_PER_RANK / 4); j++) { + + if (read_fi_buf[j] != zero_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (3)"; + break; + } + } + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 5) Close the test file and delete it (on rank 0 only). + * Close FAPL and DXPL. + */ + + if (pass) { + + takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* report results */ + if (mpi_rank == 0) { + + if (pass) { + + PASSED(); + } + else { + + H5_FAILED(); + + if (show_progress) { + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); + } + } + } + + return (!pass); + +} /* vector_write_test_3() */ + +/*------------------------------------------------------------------------- + * Function: vector_write_test_4() + * + * Purpose: Test vector I/O writes with vectors of multiple entries. + * For now, keep the vectors sorted in increasing address + * order. + * + * This test differs from vector_write_test_3() in the order + * in which the file image buffers appear in the vector + * write. This guarantees that at least one of these + * tests will present buffers with non-increasing addresses + * in RAM. + * + * 1) Open the test file with the specified VFD, and set + * the eoa. + * + * 2) For each rank, construct a vector with base address + * (mpi_rank * INTS_PER_RANK) and writing all bytes from + * that address to ((mpi_rank + 1) * INTS_PER_RANK) - 1. + * Draw equal parts from zero_fi_buf, negative_fi_buf, + * decreasing_fi_buf, and increasing_fi_buf. + * + * Write to file. + * + * 3) Barrier + * + * 4) On each rank, read the entire file into the read_fi_buf, + * and compare against zero_fi_buf, negative_fi_buf, + * decreasing_fi_buf, and increasing_fi_buf as + * appropriate. Report failure if any differences are + * detected. + * + * 5) Close the test file. On rank 0, delete the test file. + * + * Return: FALSE on success, TRUE if any errors are detected. + * + * Programmer: John Mainzer + * 3/31/21 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static unsigned +vector_write_test_4(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name) +{ + const char *fcn_name = "vector_write_test_4()"; + char test_title[120]; + char filename[512]; + haddr_t base_addr; + int base_index; + int ints_per_write; + size_t bytes_per_write; + haddr_t eoa; + hbool_t show_progress = FALSE; + hid_t fapl_id = -1; /* file access property list ID */ + hid_t dxpl_id = -1; /* data access property list ID */ + H5FD_t * lf = NULL; /* VFD struct ptr */ + int cp = 0; + int i; + int j; + uint32_t count; + H5FD_mem_t types[4]; + haddr_t addrs[4]; + size_t sizes[4]; + void * bufs[4]; + + pass = TRUE; + + if (mpi_rank == 0) { + + if (xfer_mode == H5FD_MPIO_INDEPENDENT) { + + sprintf(test_title, "parallel vector write test 4 -- %s / independent", vfd_name); + } + else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) { + + sprintf(test_title, "parallel vector write test 4 -- %s / col op / ind I/O", vfd_name); + } + else { + + HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO); + + sprintf(test_title, "parallel vector write test 4 -- %s / col op / col I/O", vfd_name); + } + + TESTING(test_title); + } + + show_progress = ((show_progress) && (mpi_rank == 0)); + + if (show_progress) + HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */ + if (pass) { + + eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + + setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf, + &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 2) For each rank, construct a vector with base address + * (mpi_rank * INTS_PER_RANK) and writing all bytes from + * that address to ((mpi_rank + 1) * INTS_PER_RANK) - 1. + * Draw equal parts from increasing_fi_buf, + * decreasing_fi_buf, negative_fi_buf, and zero_fi_buf. + * + * Write to file. + */ + if (pass) { + + count = 4; + + base_addr = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + ints_per_write = INTS_PER_RANK / 4; + bytes_per_write = (size_t)(ints_per_write) * sizeof(int32_t); + + types[0] = H5FD_MEM_DRAW; + addrs[0] = base_addr; + sizes[0] = bytes_per_write; + bufs[0] = (void *)(&(zero_fi_buf[mpi_rank * INTS_PER_RANK])); + + types[1] = H5FD_MEM_DRAW; + addrs[1] = addrs[0] + (haddr_t)(bytes_per_write); + sizes[1] = bytes_per_write; + bufs[1] = (void *)(&(negative_fi_buf[(mpi_rank * INTS_PER_RANK) + (INTS_PER_RANK / 4)])); + + types[2] = H5FD_MEM_DRAW; + addrs[2] = addrs[1] + (haddr_t)(bytes_per_write); + sizes[2] = bytes_per_write; + bufs[2] = (void *)(&(decreasing_fi_buf[(mpi_rank * INTS_PER_RANK) + (INTS_PER_RANK / 2)])); + + types[3] = H5FD_MEM_DRAW; + addrs[3] = addrs[2] + (haddr_t)(bytes_per_write); + sizes[3] = bytes_per_write; + bufs[3] = (void *)(&(increasing_fi_buf[(mpi_rank * INTS_PER_RANK) + (3 * (INTS_PER_RANK / 4))])); + +#if 0 /* JRM */ + HDfprintf(stdout, "addrs = { %lld, %lld, %lld, %lld}\n", + (long long)addrs[0], (long long)addrs[1], (long long)addrs[2], (long long)addrs[3]); + HDfprintf(stdout, "sizes = { %lld, %lld, %lld, %lld}\n", + (long long)sizes[0], (long long)sizes[1], (long long)sizes[2], (long long)sizes[3]); + HDfprintf(stdout, "bufs = { 0x%llx, 0x%llx, 0x%llx, 0x%llx}\n", + (unsigned long long)bufs[0], (unsigned long long)bufs[1], + (unsigned long long)bufs[2], (unsigned long long)bufs[3]); +#endif /* JRM */ + + if (H5FDwrite_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite_vector() failed (1).\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 3) Barrier + */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 4) On each rank, read the entire file into the read_fi_buf, + * and compare against increasing_fi_buf, + * decreasing_fi_buf, negative_fi_buf, and zero_fi_buf as + * appropriate. Report failure if any differences are + * detected. + */ + + if (pass) { + + size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t); + + if (H5FDread(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)read_fi_buf) < 0) { + + pass = FALSE; + failure_mssg = "H5FDread() failed.\n"; + } + + for (i = 0; ((pass) && (i < mpi_size)); i++) { + + base_index = i * INTS_PER_RANK; + + for (j = base_index; j < base_index + (INTS_PER_RANK / 4); j++) { + + if (read_fi_buf[j] != zero_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (1)"; + break; + } + } + + base_index += (INTS_PER_RANK / 4); + + for (j = base_index; j < base_index + (INTS_PER_RANK / 4); j++) { + + if (read_fi_buf[j] != negative_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (2)"; + break; + } + } + + base_index += (INTS_PER_RANK / 4); + + for (j = base_index; j < base_index + (INTS_PER_RANK / 4); j++) { + + if (read_fi_buf[j] != decreasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (3)"; + break; + } + } + + base_index += (INTS_PER_RANK / 4); + + for (j = base_index; j < base_index + (INTS_PER_RANK / 4); j++) { + + if (read_fi_buf[j] != increasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (3)"; + break; + } + } + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 5) Close the test file and delete it (on rank 0 only). + * Close FAPL and DXPL. + */ + + if (pass) { + + takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* report results */ + if (mpi_rank == 0) { + + if (pass) { + + PASSED(); + } + else { + + H5_FAILED(); + + if (show_progress) { + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); + } + } + } + + return (!pass); + +} /* vector_write_test_4() */ + +/*------------------------------------------------------------------------- + * Function: vector_write_test_5() + * + * Purpose: Test vector I/O writes with vectors of different lengths + * and entry sizes across the ranks. Vectors are not, in + * general, sorted in increasing address order. Further, + * writes are not, in general, contiguous. + * + * 1) Open the test file with the specified VFD, and set + * the eoa. + * + * 2) Set the test file in a known state by writing zeros + * to all bytes in the test file. Since we have already + * tested this, do this via a vector write of zero_fi_buf. + * + * 3) Barrier + * + * 4) For each rank, define base_index equal to: + * + * mpi_rank * INTS_PER_RANK + * + * and define base_addr equal to + * + * base_index * sizeof(int32_t). + * + * Setup a vector write between base_addr and + * base_addr + INTS_PER_RANK * sizeof(int32_t) - 1 + * as follows: + * + * if ( rank % 4 == 0 ) construct a vector that writes: + * + * negative_fi_buf starting at base_index + + * INTS_PER_RANK / 2 and running for INTS_PER_RANK / 4 + * entries, + * + * decreasing_fi_buf starting at base_index + + * INTS_PER_RANK / 4 and running for INTS_PER_RANK / 8 + * entries, and + * + * increasing_fi_buf starting at base_index + + * INTS_PER_RANK / 16 and running for INTS_PER_RANK / 16 + * entries + * + * to the equivalent locations in the file. + * + * if ( rank % 4 == 1 ) construct a vector that writes: + * + * increasing_fi_buf starting at base_index + 1 and + * running for (INTS_PER_RANK / 2) - 2 entries, and + * + * decreasing_fi_buf startomg at base_index + + * INTS_PER_RANK / 2 + 1 and running for (INTS_PER_RANK / 2) + * - 2 entries + * + * if ( rank % 4 == 2 ) construct a vector that writes: + * + * negative_fi_buf starting at base_index + + * INTS_PER_RANK / 2 and running for one entry. + * + * if ( rank % 4 == 3 ) construct and write the empty vector + * + * 5) Barrier + * + * 6) On each rank, read the entire file into the read_fi_buf, + * and compare against zero_fi_buf, negative_fi_buf, + * decreasing_fi_buf, and increasing_fi_buf as + * appropriate. Report failure if any differences are + * detected. + * + * 7) Close the test file. On rank 0, delete the test file. + * + * Return: FALSE on success, TRUE if any errors are detected. + * + * Programmer: John Mainzer + * 3/31/21 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static unsigned +vector_write_test_5(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name) +{ + const char *fcn_name = "vector_write_test_5()"; + char test_title[120]; + char filename[512]; + haddr_t base_addr; + int base_index; + haddr_t eoa; + hbool_t show_progress = FALSE; + hid_t fapl_id = -1; /* file access property list ID */ + hid_t dxpl_id = -1; /* data access property list ID */ + H5FD_t * lf = NULL; /* VFD struct ptr */ + int cp = 0; + int i; + int j; + int k; + uint32_t count; + H5FD_mem_t types[4]; + haddr_t addrs[4]; + size_t sizes[4]; + void * bufs[4]; + + pass = TRUE; + + if (mpi_rank == 0) { + + if (xfer_mode == H5FD_MPIO_INDEPENDENT) { + + sprintf(test_title, "parallel vector write test 5 -- %s / independent", vfd_name); + } + else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) { + + sprintf(test_title, "parallel vector write test 5 -- %s / col op / ind I/O", vfd_name); + } + else { + + HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO); + + sprintf(test_title, "parallel vector write test 5 -- %s / col op / col I/O", vfd_name); + } + + TESTING(test_title); + } + + show_progress = ((show_progress) && (mpi_rank == 0)); + + if (show_progress) + HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */ + if (pass) { + + eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + + setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf, + &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 2) Set the test file in a known state by writing zeros + * to all bytes in the test file. Since we have already + * tested this, do this via a vector write of zero_fi_buf. + */ + if (pass) { + + count = 1; + types[0] = H5FD_MEM_DRAW; + addrs[0] = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + sizes[0] = (size_t)INTS_PER_RANK * sizeof(int32_t); + bufs[0] = (void *)(&(zero_fi_buf[mpi_rank * INTS_PER_RANK])); + + if (H5FDwrite_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite_vector() failed.\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 3) Barrier + */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 4) For each rank, define base_index equal to: + * + * mpi_rank * INTS_PER_RANK + * + * and define base_addr equal to + * + * base_index * sizeof(int32_t). + * + * Setup a vector write between base_addr and + * base_addr + INTS_PER_RANK * sizeof(int32_t) - 1 + * as follows: + */ + if (pass) { + + base_index = mpi_rank * INTS_PER_RANK; + base_addr = (haddr_t)((size_t)base_index * sizeof(int32_t)); + + if ((mpi_rank % 4) == 0) { + + /* if ( rank % 4 == 0 ) construct a vector that writes: + * + * negative_fi_buf starting at base_index + + * INTS_PER_RANK / 2 and running for INTS_PER_RANK / 4 + * entries, + * + * decreasing_fi_buf starting at base_index + + * INTS_PER_RANK / 4 and running for INTS_PER_RANK / 8 + * entries, and + * + * increasing_fi_buf starting at base_index + + * INTS_PER_RANK / 16 and running for INTS_PER_RANK / 16 + * entries + * + * to the equivalent locations in the file. + */ + count = 3; + + types[0] = H5FD_MEM_DRAW; + addrs[0] = base_addr + (haddr_t)((size_t)(INTS_PER_RANK / 2) * sizeof(int32_t)); + sizes[0] = (size_t)(INTS_PER_RANK / 4) * sizeof(int32_t); + bufs[0] = (void *)(&(negative_fi_buf[base_index + (INTS_PER_RANK / 2)])); + + types[1] = H5FD_MEM_DRAW; + addrs[1] = base_addr + (haddr_t)((size_t)(INTS_PER_RANK / 4) * sizeof(int32_t)); + sizes[1] = (size_t)(INTS_PER_RANK / 8) * sizeof(int32_t); + bufs[1] = (void *)(&(decreasing_fi_buf[base_index + (INTS_PER_RANK / 4)])); + + types[2] = H5FD_MEM_DRAW; + addrs[2] = base_addr + (haddr_t)((size_t)(INTS_PER_RANK / 16) * sizeof(int32_t)); + sizes[2] = (size_t)(INTS_PER_RANK / 16) * sizeof(int32_t); + bufs[2] = (void *)(&(increasing_fi_buf[base_index + (INTS_PER_RANK / 16)])); + } + else if ((mpi_rank % 4) == 1) { + + /* if ( rank % 4 == 1 ) construct a vector that writes: + * + * increasing_fi_buf starting at base_index + 1 and + * running for (INTS_PER_RANK / 2) - 2 entries, and + * + * decreasing_fi_buf startomg at base_addr + + * INTS_PER_RANK / 2 + 1 and running for (INTS_PER_RANK / 2) + * - 2 entries + * + * to the equivalent locations in the file. + */ + count = 2; + + types[0] = H5FD_MEM_DRAW; + addrs[0] = base_addr + (haddr_t)(sizeof(int32_t)); + sizes[0] = (size_t)((INTS_PER_RANK / 2) - 2) * sizeof(int32_t); + bufs[0] = (void *)(&(increasing_fi_buf[base_index + 1])); + + types[1] = H5FD_MEM_DRAW; + addrs[1] = base_addr + (haddr_t)((size_t)((INTS_PER_RANK / 2) + 1) * sizeof(int32_t)); + sizes[1] = (size_t)((INTS_PER_RANK / 2) - 2) * sizeof(int32_t); + bufs[1] = (void *)(&(decreasing_fi_buf[base_index + (INTS_PER_RANK / 2) + 1])); + } + else if ((mpi_rank % 4) == 2) { + + /* if ( rank % 4 == 2 ) construct a vector that writes: + * + * negative_fi_buf starting at base_index + + * INTS_PER_RANK / 2 and running for one entry. + * + * to the equivalent location in the file. + */ + count = 1; + + types[0] = H5FD_MEM_DRAW; + addrs[0] = base_addr + (haddr_t)((size_t)(INTS_PER_RANK / 2) * sizeof(int32_t)); + sizes[0] = sizeof(int32_t); + bufs[0] = (void *)(&(negative_fi_buf[base_index + (INTS_PER_RANK / 2)])); + } + else if ((mpi_rank % 4) == 3) { + + /* if ( rank % 4 == 3 ) construct and write the empty vector */ + + count = 0; + } + + if (H5FDwrite_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite_vector() failed (1).\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 5) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 6) On each rank, read the entire file into the read_fi_buf, + * and compare against increasing_fi_buf, + * decreasing_fi_buf, negative_fi_buf, and zero_fi_buf as + * appropriate. Report failure if any differences are + * detected. + */ + + if (pass) { + + size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t); + + if (H5FDread(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)read_fi_buf) < 0) { + + pass = FALSE; + failure_mssg = "H5FDread() failed.\n"; + } + + for (i = 0; ((pass) && (i < mpi_size)); i++) { + + base_index = i * INTS_PER_RANK; + + for (j = base_index; j < base_index + INTS_PER_RANK; j++) { + + k = j - base_index; + + switch (i % 4) { + + case 0: + if (((INTS_PER_RANK / 2) <= k) && (k < (3 * (INTS_PER_RANK / 4)))) { + + if (read_fi_buf[j] != negative_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (1.1)"; + } + } + else if (((INTS_PER_RANK / 4) <= k) && (k < (3 * (INTS_PER_RANK / 8)))) { + + if (read_fi_buf[j] != decreasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (1.2)"; + } + } + else if (((INTS_PER_RANK / 16) <= k) && (k < (INTS_PER_RANK / 8))) { + + if (read_fi_buf[j] != increasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (1.3)"; + } + } + else { + + if (read_fi_buf[j] != 0) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (1.4)"; + } + } + break; + + case 1: + if ((1 <= k) && (k <= ((INTS_PER_RANK / 2) - 2))) { + + if (read_fi_buf[j] != increasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (2.1)"; + } + } + else if ((((INTS_PER_RANK / 2) + 1) <= k) && (k <= (INTS_PER_RANK - 2))) { + + if (read_fi_buf[j] != decreasing_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (2.2)"; + } + } + else { + + if (read_fi_buf[j] != 0) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (2.3)"; + } + } + break; + + case 2: + if (k == INTS_PER_RANK / 2) { + + if (read_fi_buf[j] != negative_fi_buf[j]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (3.1)"; + } + } + else { + + if (read_fi_buf[j] != 0) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (3.2)"; + } + } + break; + + case 3: + if (read_fi_buf[j] != 0) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (4)"; + } + break; + + default: + HDassert(FALSE); /* should be un-reachable */ + break; + } + } + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 7) Close the test file and delete it (on rank 0 only). + * Close FAPL and DXPL. + */ + + if (pass) { + + takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* report results */ + if (mpi_rank == 0) { + + if (pass) { + + PASSED(); + } + else { + + H5_FAILED(); + + if (show_progress) { + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); + } + } + } + + return (!pass); + +} /* vector_write_test_5() */ + +/*------------------------------------------------------------------------- + * Function: vector_write_test_6() + * + * Purpose: Test correct management of the sizes[] array optimization, + * where, if sizes[i] == 0, we use sizes[i - 1] as the value + * of size[j], for j >= i. + * + * 1) Open the test file with the specified VFD, set the eoa. + * and setup the DXPL. + * + * 2) Using rank zero, write the entire zero_fi_buf to + * the file. + * + * 3) Barrier + * + * 4) For each rank, define base_index equal to: + * + * mpi_rank * INTS_PER_RANK + * + * and define base_addr equal to + * + * base_index * sizeof(int32_t). + * + * Setup a vector write from increasing_fi_buf between + * base_addr and base_addr + INTS_PER_RANK * + * sizeof(int32_t) - 1 that writes every 16th integer + * located in that range starting at base_addr. + * Use a sizes[] array of length 2, with sizes[0] set + * to sizeof(int32_t), and sizes[1] = 0. + * + * Write the integers into the corresponding locations in + * the file. + * + * 5) Barrier + * + * 6) On each rank, read the entire file into the read_fi_buf, + * and compare against zero_fi_buf, and increasing_fi_buf + * as appropriate. Report failure if any differences are + * detected. + * + * 7) Barrier. + * + * 8) Close the test file. + * + * 9) On rank 0, delete the test file. + * + * Return: FALSE on success, TRUE if any errors are detected. + * + * Programmer: John Mainzer + * 3/26/21 + * + * Modifications: + * + * None. + * + *------------------------------------------------------------------------- + */ + +static unsigned +vector_write_test_6(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode, + H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name) +{ + const char *fcn_name = "vector_write_test_6()"; + char test_title[120]; + char filename[512]; + haddr_t eoa; + haddr_t base_addr; + hbool_t show_progress = FALSE; + hid_t fapl_id = -1; /* file access property list ID */ + hid_t dxpl_id = -1; /* data access property list ID */ + H5FD_t * lf = NULL; /* VFD struct ptr */ + int cp = 0; + int i; + int base_index; + uint32_t count = 0; + H5FD_mem_t types[(INTS_PER_RANK / 16) + 1]; + haddr_t addrs[(INTS_PER_RANK / 16) + 1]; + size_t sizes[2]; + void * bufs[(INTS_PER_RANK / 16) + 1]; + + pass = TRUE; + + if (mpi_rank == 0) { + + if (xfer_mode == H5FD_MPIO_INDEPENDENT) { + + sprintf(test_title, "parallel vector write test 6 -- %s / independent", vfd_name); + } + else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) { + + sprintf(test_title, "parallel vector write test 6 -- %s / col op / ind I/O", vfd_name); + } + else { + + HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO); + + sprintf(test_title, "parallel vector write test 6 -- %s / col op / col I/O", vfd_name); + } + + TESTING(test_title); + } + + show_progress = ((show_progress) && (mpi_rank == 0)); + + if (show_progress) + HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */ + if (pass) { + + eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t)); + + setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf, + &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 2) Using rank zero, write the entire negative_fi_buf to + * the file. + */ + if (pass) { + + size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t); + + if (mpi_rank == 0) { + + if (H5FDwrite(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)zero_fi_buf) < 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite() on rank 0 failed.\n"; + } + } + } + + /* 3) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 4) For each rank, define base_index equal to: + * + * mpi_rank * INTS_PER_RANK + * + * and define base_addr equal to + * + * base_index * sizeof(int32_t). + * + * Setup a vector write from increasing_fi_buf between + * base_addr and base_addr + INTS_PER_RANK * + * sizeof(int32_t) - 1 that writes every 16th integer + * located in that range starting at base_addr. + * Use a sizes[] array of length 2, with sizes[0] set + * to sizeof(int32_t), and sizes[1] = 0. + * + * Write the integers into the corresponding locations in + * the file. + */ + if (pass) { + + base_index = (mpi_rank * INTS_PER_RANK); + base_addr = (haddr_t)base_index * (haddr_t)sizeof(int32_t); + + count = INTS_PER_RANK / 16; + sizes[0] = sizeof(int32_t); + sizes[1] = 0; + + for (i = 0; i < INTS_PER_RANK / 16; i++) { + + types[i] = H5FD_MEM_DRAW; + addrs[i] = base_addr + ((haddr_t)(16 * i) * (haddr_t)sizeof(int32_t)); + bufs[i] = (void *)(&(increasing_fi_buf[base_index + (i * 16)])); + } + + if (H5FDwrite_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) { + + pass = FALSE; + failure_mssg = "H5FDwrite_vector() failed (1).\n"; + } + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 5) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 6) On each rank, read the entire file into the read_fi_buf, + * and compare against zero_fi_buf, and increasing_fi_buf + * as appropriate. Report failure if any differences are + * detected. + */ + if (pass) { + + size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t); + + if (H5FDread(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)read_fi_buf) < 0) { + + pass = FALSE; + failure_mssg = "H5FDread() failed.\n"; + } + + for (i = 0; ((pass) && (i < mpi_size * INTS_PER_RANK)); i++) { + + if (i % 16 == 0) { + + if (read_fi_buf[i] != increasing_fi_buf[i]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (1)"; + } + } + else if (read_fi_buf[i] != zero_fi_buf[i]) { + + pass = FALSE; + failure_mssg = "unexpected data read from file (2)"; + } + } + } /* end if */ + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 7) Barrier */ + + if (pass) { + + MPI_Barrier(MPI_COMM_WORLD); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* 8) Close the test file and delete it (on rank 0 only). + * Close FAPL and DXPL. + */ + + if (pass) { + + takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id); + } + + if (show_progress) + HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass); + + /* report results */ + if (mpi_rank == 0) { + + if (pass) { + + PASSED(); + } + else { + + H5_FAILED(); + + if (show_progress) { + HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg); + } + } + } + + return (!pass); + +} /* vector_write_test_6() */ + +/*------------------------------------------------------------------------- + * Function: main + * + * Purpose: Run parallel VFD tests. + * + * Return: Success: 0 + * + * Failure: 1 + * + * Programmer: John Mainzer + * 3/2621/ + * + * Modifications: + * + *------------------------------------------------------------------------- + */ + +int +main(int argc, char **argv) +{ + unsigned nerrs = 0; + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + int mpi_size; + int mpi_rank; + + MPI_Init(&argc, &argv); + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); + + /* Attempt to turn off atexit post processing so that in case errors + * occur during the test and the process is aborted, it will not hang + * in the atexit post processing. If it does, it may try to make MPI + * calls which may not work. + */ + if (H5dont_atexit() < 0) + HDprintf("%d:Failed to turn off atexit processing. Continue.\n", mpi_rank); + + H5open(); + + if (mpi_rank == 0) { + HDprintf("=========================================\n"); + HDprintf("Parallel virtual file driver (VFD) tests\n"); + HDprintf(" mpi_size = %d\n", mpi_size); + HDprintf("=========================================\n"); + } + + if (mpi_size < 2) { + if (mpi_rank == 0) + HDprintf(" Need at least 2 processes. Exiting.\n"); + goto finish; + } + + alloc_and_init_file_images(mpi_size); + + if (!pass) { + + HDprintf("\nAllocation and initialize of file image buffers failed. Test aborted.\n"); + } + + MPI_Barrier(MPI_COMM_WORLD); + + // sleep(60); + + nerrs += + vector_read_test_1(0, mpi_rank, mpi_size, H5FD_MPIO_INDEPENDENT, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += vector_read_test_1(0, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += vector_read_test_1(0, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_COLLECTIVE_IO, "mpio"); + + nerrs += + vector_read_test_2(1, mpi_rank, mpi_size, H5FD_MPIO_INDEPENDENT, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += vector_read_test_2(1, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += vector_read_test_2(1, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_COLLECTIVE_IO, "mpio"); + + nerrs += + vector_read_test_3(2, mpi_rank, mpi_size, H5FD_MPIO_INDEPENDENT, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += vector_read_test_3(2, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += vector_read_test_3(2, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_COLLECTIVE_IO, "mpio"); + + nerrs += + vector_read_test_4(3, mpi_rank, mpi_size, H5FD_MPIO_INDEPENDENT, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += vector_read_test_4(3, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += vector_read_test_4(3, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_COLLECTIVE_IO, "mpio"); + + nerrs += + vector_read_test_5(4, mpi_rank, mpi_size, H5FD_MPIO_INDEPENDENT, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += vector_read_test_5(4, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += vector_read_test_5(4, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_COLLECTIVE_IO, "mpio"); + + nerrs += + vector_write_test_1(0, mpi_rank, mpi_size, H5FD_MPIO_INDEPENDENT, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += + vector_write_test_1(0, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += + vector_write_test_1(0, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_COLLECTIVE_IO, "mpio"); + + nerrs += + vector_write_test_2(1, mpi_rank, mpi_size, H5FD_MPIO_INDEPENDENT, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += + vector_write_test_2(1, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += + vector_write_test_2(1, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_COLLECTIVE_IO, "mpio"); + + nerrs += + vector_write_test_3(2, mpi_rank, mpi_size, H5FD_MPIO_INDEPENDENT, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += + vector_write_test_3(2, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += + vector_write_test_3(2, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_COLLECTIVE_IO, "mpio"); + + nerrs += + vector_write_test_4(3, mpi_rank, mpi_size, H5FD_MPIO_INDEPENDENT, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += + vector_write_test_4(3, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += + vector_write_test_4(3, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_COLLECTIVE_IO, "mpio"); + + nerrs += + vector_write_test_5(4, mpi_rank, mpi_size, H5FD_MPIO_INDEPENDENT, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += + vector_write_test_5(4, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += + vector_write_test_5(4, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_COLLECTIVE_IO, "mpio"); + + nerrs += + vector_write_test_6(5, mpi_rank, mpi_size, H5FD_MPIO_INDEPENDENT, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += + vector_write_test_6(5, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_INDIVIDUAL_IO, "mpio"); + nerrs += + vector_write_test_6(5, mpi_rank, mpi_size, H5FD_MPIO_COLLECTIVE, H5FD_MPIO_COLLECTIVE_IO, "mpio"); + +finish: + + /* make sure all processes are finished before final report, cleanup + * and exit. + */ + MPI_Barrier(MPI_COMM_WORLD); + + if (mpi_rank == 0) { /* only process 0 reports */ + HDprintf("===================================\n"); + if (nerrs > 0) + HDprintf("***parallel vfd tests detected %d failures***\n", nerrs); + else + HDprintf("parallel vfd tests finished with no failures\n"); + HDprintf("===================================\n"); + } + + /* discard the file image buffers */ + free_file_images(); + + /* close HDF5 library */ + H5close(); + + /* MPI_Finalize must be called AFTER H5close which may use MPI calls */ + MPI_Finalize(); + + /* cannot just return (nerrs) because exit code is limited to 1byte */ + return (nerrs > 0); + +} /* main() */ diff --git a/testpar/testpar.h b/testpar/testpar.h index 86677d1..bbf9550 100644 --- a/testpar/testpar.h +++ b/testpar/testpar.h @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -22,7 +22,7 @@ #include "h5test.h" /* Constants definitions */ -#define MAX_ERR_REPORT 10 /* Maximum number of errors reported */ +#define MAX_ERR_REPORT 10 /* Maximum number of errors reported */ /* Define some handy debugging shorthands, routines, ... */ /* debugging tools */ @@ -30,11 +30,11 @@ /* Print message mesg if verbose level is at least medium and * mesg is not an empty string. */ -#define MESG(mesg) \ - if (VERBOSE_MED && *mesg != '\0') \ - HDprintf("%s\n", mesg) +#define MESG(mesg) \ + if (VERBOSE_MED && *mesg != '\0') \ + HDprintf("%s\n", mesg) -/* +/* * VRFY: Verify if the condition val is true. * If it is true, then call MESG to print mesg, depending on the verbose * level. @@ -44,57 +44,63 @@ * This will allow program to continue and can be used for debugging. * (The "do {...} while(0)" is to group all the statements as one unit.) */ -#define VRFY(val, mesg) do { \ - if (val) { \ - MESG(mesg); \ - } \ - else { \ - HDprintf("Proc %d: ", mpi_rank); \ - HDprintf("*** Parallel ERROR ***\n"); \ - HDprintf(" VRFY (%s) failed at line %4d in %s\n", \ - mesg, (int)__LINE__, __FILE__); \ - ++nerrors; \ - fflush(stdout); \ - if (!VERBOSE_MED) { \ - HDprintf("aborting MPI processes\n"); \ - MPI_Abort(MPI_COMM_WORLD, 1); \ - } \ - } \ -} while(0) +#define VRFY_IMPL(val, mesg, rankvar) \ + do { \ + if (val) { \ + MESG(mesg); \ + } \ + else { \ + HDprintf("Proc %d: ", rankvar); \ + HDprintf("*** Parallel ERROR ***\n"); \ + HDprintf(" VRFY (%s) failed at line %4d in %s\n", mesg, (int)__LINE__, __FILE__); \ + ++nerrors; \ + fflush(stdout); \ + if (!VERBOSE_MED) { \ + HDprintf("aborting MPI processes\n"); \ + MPI_Abort(MPI_COMM_WORLD, 1); \ + } \ + } \ + } while (0) + +#define VRFY_G(val, mesg) VRFY_IMPL(val, mesg, mpi_rank_g) +#define VRFY(val, mesg) VRFY_IMPL(val, mesg, mpi_rank) /* * Checking for information purpose. * If val is false, print mesg; else nothing. * Either case, no error setting. */ -#define INFO(val, mesg) do { \ - if (val) { \ - MESG(mesg); \ - } else { \ - HDprintf("Proc %d: ", mpi_rank); \ - HDprintf("*** PHDF5 REMARK (not an error) ***\n"); \ - HDprintf(" Condition (%s) failed at line %4d in %s\n", \ - mesg, (int)__LINE__, __FILE__); \ - fflush(stdout); \ - } \ -} while(0) +#define INFO(val, mesg) \ + do { \ + if (val) { \ + MESG(mesg); \ + } \ + else { \ + HDprintf("Proc %d: ", mpi_rank); \ + HDprintf("*** PHDF5 REMARK (not an error) ***\n"); \ + HDprintf(" Condition (%s) failed at line %4d in %s\n", mesg, (int)__LINE__, __FILE__); \ + fflush(stdout); \ + } \ + } while (0) -#define MPI_BANNER(mesg) do { \ - if (VERBOSE_MED || MAINPROCESS){ \ - HDprintf("--------------------------------\n"); \ - HDprintf("Proc %d: ", mpi_rank); \ - HDprintf("*** %s\n", mesg); \ - HDprintf("--------------------------------\n"); \ - } \ -} while(0) +#define MPI_BANNER(mesg) \ + do { \ + if (VERBOSE_MED || MAINPROCESS) { \ + HDprintf("--------------------------------\n"); \ + HDprintf("Proc %d: ", mpi_rank); \ + HDprintf("*** %s\n", mesg); \ + HDprintf("--------------------------------\n"); \ + } \ + } while (0) -#define MAINPROCESS (!mpi_rank) /* define process 0 as main process */ +#define MAINPROCESS (!mpi_rank) /* define process 0 as main process */ -#define SYNC(comm) do { \ - MPI_BANNER("doing a SYNC"); \ - MPI_Barrier(comm); \ - MPI_BANNER("SYNC DONE"); \ -} while(0) +#define SYNC(comm) \ + do { \ + MPI_BANNER("doing a SYNC"); \ + MPI_Barrier(comm); \ + MPI_BANNER("SYNC DONE"); \ + } while (0) /* End of Define some handy debugging shorthands, routines, ... */ diff --git a/testpar/testpflush.sh.in b/testpar/testpflush.sh.in index 02f0e26..b400447 100644 --- a/testpar/testpflush.sh.in +++ b/testpar/testpflush.sh.in @@ -7,7 +7,7 @@ # This file is part of HDF5. The full HDF5 copyright notice, including # terms governing use, modification, and redistribution, is contained in # the COPYING file, which can be found at the root of the source code -# distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. +# distribution tree, or in https://www.hdfgroup.org/licenses. # If you do not have access to either file, you may request a copy from # help@hdfgroup.org. # @@ -50,7 +50,7 @@ RUNPARALLELSCRIPT=`echo "@RUNPARALLEL@" | sed "s/$$/\$/g"` echo "*** NOTE ***********************************************************" echo "You may see complaints from mpiexec et al. that not all processes" echo "called MPI_Finalize(). This is an intended characteristic of the" -echo "test and should not be considered an error." +echo "test and should not be considered an error." echo "********************************************************************" eval ${RUNPARALLELSCRIPT} ./t_pflush1 diff --git a/testpar/testphdf5.c b/testpar/testphdf5.c index b89c790..1ead1b8 100644 --- a/testpar/testphdf5.c +++ b/testpar/testphdf5.c @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -18,24 +18,21 @@ #include "testphdf5.h" #ifndef PATH_MAX -#define PATH_MAX 512 -#endif /* !PATH_MAX */ +#define PATH_MAX 512 +#endif /* !PATH_MAX */ /* global variables */ int dim0; int dim1; int chunkdim0; int chunkdim1; -int nerrors = 0; /* errors count */ -int ndatasets = 300; /* number of datasets to create*/ -int ngroups = 512; /* number of groups to create in root - * group. */ -int facc_type = FACC_MPIO; /*Test file access type */ +int nerrors = 0; /* errors count */ +int ndatasets = 300; /* number of datasets to create*/ +int ngroups = 512; /* number of groups to create in root + * group. */ +int facc_type = FACC_MPIO; /*Test file access type */ int dxfer_coll_type = DXFER_COLLECTIVE_IO; -H5E_auto2_t old_func; /* previous error handler */ -void *old_client_data; /* previous error handler arg.*/ - /* other option flags */ /* FILENAME and filenames must have the same number of names. @@ -43,13 +40,11 @@ void *old_client_data; /* previous error handler arg.*/ * created in one test is accessed by a different test. * filenames[0] is reserved as the file name for PARATESTFILE. */ -#define NFILENAME 2 +#define NFILENAME 2 #define PARATESTFILE filenames[0] -const char *FILENAME[NFILENAME]={ - "ParaTest", - NULL}; -char filenames[NFILENAME][PATH_MAX]; -hid_t fapl; /* file access property list */ +const char *FILENAME[NFILENAME] = {"ParaTest", NULL}; +char filenames[NFILENAME][PATH_MAX]; +hid_t fapl; /* file access property list */ #ifdef USE_PAUSE /* pause the process for a moment to allow debugger to attach if desired. */ @@ -58,15 +53,16 @@ hid_t fapl; /* file access property list */ #include <sys/types.h> #include <sys/stat.h> -void pause_proc(void) +void +pause_proc(void) { - int pid; - h5_stat_t statbuf; - char greenlight[] = "go"; - int maxloop = 10; - int loops = 0; - int time_int = 10; + int pid; + h5_stat_t statbuf; + char greenlight[] = "go"; + int maxloop = 10; + int loops = 0; + int time_int = 10; /* mpi variables */ int mpi_size, mpi_rank; @@ -79,10 +75,10 @@ void pause_proc(void) MPI_Get_processor_name(mpi_name, &mpi_namelen); if (MAINPROCESS) - while ((HDstat(greenlight, &statbuf) == -1) && loops < maxloop){ - if (!loops++){ - HDprintf("Proc %d (%*s, %d): to debug, attach %d\n", - mpi_rank, mpi_namelen, mpi_name, pid, pid); + while ((HDstat(greenlight, &statbuf) == -1) && loops < maxloop) { + if (!loops++) { + HDprintf("Proc %d (%*s, %d): to debug, attach %d\n", mpi_rank, mpi_namelen, mpi_name, pid, + pid); } HDprintf("waiting(%ds) for file %s ...\n", time_int, greenlight); HDfflush(stdout); @@ -92,15 +88,15 @@ void pause_proc(void) } /* Use the Profile feature of MPI to call the pause_proc() */ -int MPI_Init(int *argc, char ***argv) +int +MPI_Init(int *argc, char ***argv) { int ret_code; - ret_code=PMPI_Init(argc, argv); + ret_code = PMPI_Init(argc, argv); pause_proc(); return (ret_code); } -#endif /* USE_PAUSE */ - +#endif /* USE_PAUSE */ /* * Show command usage @@ -109,164 +105,165 @@ static void usage(void) { HDprintf(" [-r] [-w] [-m<n_datasets>] [-n<n_groups>] " - "[-o] [-f <prefix>] [-d <dim0> <dim1>]\n"); + "[-o] [-f <prefix>] [-d <dim0> <dim1>]\n"); HDprintf("\t-m<n_datasets>" - "\tset number of datasets for the multiple dataset test\n"); + "\tset number of datasets for the multiple dataset test\n"); HDprintf("\t-n<n_groups>" - "\tset number of groups for the multiple group test\n"); + "\tset number of groups for the multiple group test\n"); HDprintf("\t-f <prefix>\tfilename prefix\n"); HDprintf("\t-2\t\tuse Split-file together with MPIO\n"); - HDprintf("\t-d <factor0> <factor1>\tdataset dimensions factors. Defaults (%d,%d)\n", - ROW_FACTOR, COL_FACTOR); + HDprintf("\t-d <factor0> <factor1>\tdataset dimensions factors. Defaults (%d,%d)\n", ROW_FACTOR, + COL_FACTOR); HDprintf("\t-c <dim0> <dim1>\tdataset chunk dimensions. Defaults (dim0/10,dim1/10)\n"); HDprintf("\n"); } - /* * parse the command line options */ static int parse_options(int argc, char **argv) { - int mpi_size, mpi_rank; /* mpi variables */ + int mpi_size, mpi_rank; /* mpi variables */ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); /* setup default chunk-size. Make sure sizes are > 0 */ - chunkdim0 = (dim0+9)/10; - chunkdim1 = (dim1+9)/10; + chunkdim0 = (dim0 + 9) / 10; + chunkdim1 = (dim1 + 9) / 10; - while (--argc){ - if (**(++argv) != '-'){ - break; - }else{ - switch(*(*argv+1)){ - case 'm': ndatasets = atoi((*argv+1)+1); - if (ndatasets < 0){ - nerrors++; - return(1); - } + while (--argc) { + if (**(++argv) != '-') { break; - case 'n': ngroups = atoi((*argv+1)+1); - if (ngroups < 0){ - nerrors++; - return(1); - } - break; - case 'f': if (--argc < 1) { - nerrors++; - return(1); - } - if (**(++argv) == '-') { - nerrors++; - return(1); - } - paraprefix = *argv; - break; - case 'i': /* Collective MPI-IO access with independent IO */ - dxfer_coll_type = DXFER_INDEPENDENT_IO; - break; - case '2': /* Use the split-file driver with MPIO access */ - /* Can use $HDF5_METAPREFIX to define the */ - /* meta-file-prefix. */ - facc_type = FACC_MPIO | FACC_SPLIT; - break; - case 'd': /* dimensizes */ - if (--argc < 2){ - nerrors++; - return(1); - } - dim0 = atoi(*(++argv))*mpi_size; - argc--; - dim1 = atoi(*(++argv))*mpi_size; - /* set default chunkdim sizes too */ - chunkdim0 = (dim0+9)/10; - chunkdim1 = (dim1+9)/10; - break; - case 'c': /* chunk dimensions */ - if (--argc < 2){ + } + else { + switch (*(*argv + 1)) { + case 'm': + ndatasets = atoi((*argv + 1) + 1); + if (ndatasets < 0) { + nerrors++; + return (1); + } + break; + case 'n': + ngroups = atoi((*argv + 1) + 1); + if (ngroups < 0) { + nerrors++; + return (1); + } + break; + case 'f': + if (--argc < 1) { + nerrors++; + return (1); + } + if (**(++argv) == '-') { + nerrors++; + return (1); + } + paraprefix = *argv; + break; + case 'i': /* Collective MPI-IO access with independent IO */ + dxfer_coll_type = DXFER_INDEPENDENT_IO; + break; + case '2': /* Use the split-file driver with MPIO access */ + /* Can use $HDF5_METAPREFIX to define the */ + /* meta-file-prefix. */ + facc_type = FACC_MPIO | FACC_SPLIT; + break; + case 'd': /* dimensizes */ + if (--argc < 2) { + nerrors++; + return (1); + } + dim0 = atoi(*(++argv)) * mpi_size; + argc--; + dim1 = atoi(*(++argv)) * mpi_size; + /* set default chunkdim sizes too */ + chunkdim0 = (dim0 + 9) / 10; + chunkdim1 = (dim1 + 9) / 10; + break; + case 'c': /* chunk dimensions */ + if (--argc < 2) { + nerrors++; + return (1); + } + chunkdim0 = atoi(*(++argv)); + argc--; + chunkdim1 = atoi(*(++argv)); + break; + case 'h': /* print help message--return with nerrors set */ + return (1); + default: + HDprintf("Illegal option(%s)\n", *argv); nerrors++; - return(1); - } - chunkdim0 = atoi(*(++argv)); - argc--; - chunkdim1 = atoi(*(++argv)); - break; - case 'h': /* print help message--return with nerrors set */ - return(1); - default: HDprintf("Illegal option(%s)\n", *argv); - nerrors++; - return(1); + return (1); } } } /*while*/ /* check validity of dimension and chunk sizes */ - if (dim0 <= 0 || dim1 <= 0){ + if (dim0 <= 0 || dim1 <= 0) { HDprintf("Illegal dim sizes (%d, %d)\n", dim0, dim1); nerrors++; - return(1); + return (1); } - if (chunkdim0 <= 0 || chunkdim1 <= 0){ + if (chunkdim0 <= 0 || chunkdim1 <= 0) { HDprintf("Illegal chunkdim sizes (%d, %d)\n", chunkdim0, chunkdim1); nerrors++; - return(1); + return (1); } /* Make sure datasets can be divided into equal portions by the processes */ - if ((dim0 % mpi_size) || (dim1 % mpi_size)){ + if ((dim0 % mpi_size) || (dim1 % mpi_size)) { if (MAINPROCESS) - HDprintf("dim0(%d) and dim1(%d) must be multiples of processes(%d)\n", - dim0, dim1, mpi_size); + HDprintf("dim0(%d) and dim1(%d) must be multiples of processes(%d)\n", dim0, dim1, mpi_size); nerrors++; - return(1); + return (1); } /* compose the test filenames */ { int i, n; - n = sizeof(FILENAME)/sizeof(FILENAME[0]) - 1; /* exclude the NULL */ + n = sizeof(FILENAME) / sizeof(FILENAME[0]) - 1; /* exclude the NULL */ - for (i=0; i < n; i++) - if (h5_fixname(FILENAME[i],fapl,filenames[i],sizeof(filenames[i])) - == NULL){ + for (i = 0; i < n; i++) + if (h5_fixname(FILENAME[i], fapl, filenames[i], sizeof(filenames[i])) == NULL) { HDprintf("h5_fixname failed\n"); nerrors++; - return(1); + return (1); } HDprintf("Test filenames are:\n"); - for (i=0; i < n; i++) + for (i = 0; i < n; i++) HDprintf(" %s\n", filenames[i]); } - return(0); + return (0); } - /* * Create the appropriate File access property list */ hid_t create_faccess_plist(MPI_Comm comm, MPI_Info info, int l_facc_type) { - hid_t ret_pl = -1; - herr_t ret; /* generic return value */ - int mpi_rank; /* mpi variables */ + hid_t ret_pl = -1; + herr_t ret; /* generic return value */ + int mpi_rank; /* mpi variables */ /* need the rank for error checking macros */ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - ret_pl = H5Pcreate (H5P_FILE_ACCESS); + ret_pl = H5Pcreate(H5P_FILE_ACCESS); VRFY((ret_pl >= 0), "H5P_FILE_ACCESS"); if (l_facc_type == FACC_DEFAULT) return (ret_pl); - if (l_facc_type == FACC_MPIO){ + if (l_facc_type == FACC_MPIO) { /* set Parallel access with communicator */ ret = H5Pset_fapl_mpio(ret_pl, comm, info); VRFY((ret >= 0), ""); @@ -274,36 +271,36 @@ create_faccess_plist(MPI_Comm comm, MPI_Info info, int l_facc_type) VRFY((ret >= 0), ""); ret = H5Pset_coll_metadata_write(ret_pl, TRUE); VRFY((ret >= 0), ""); - return(ret_pl); + return (ret_pl); } - if (l_facc_type == (FACC_MPIO | FACC_SPLIT)){ + if (l_facc_type == (FACC_MPIO | FACC_SPLIT)) { hid_t mpio_pl; - mpio_pl = H5Pcreate (H5P_FILE_ACCESS); + mpio_pl = H5Pcreate(H5P_FILE_ACCESS); VRFY((mpio_pl >= 0), ""); /* set Parallel access with communicator */ ret = H5Pset_fapl_mpio(mpio_pl, comm, info); VRFY((ret >= 0), ""); /* setup file access template */ - ret_pl = H5Pcreate (H5P_FILE_ACCESS); + ret_pl = H5Pcreate(H5P_FILE_ACCESS); VRFY((ret_pl >= 0), ""); /* set Parallel access with communicator */ ret = H5Pset_fapl_split(ret_pl, ".meta", mpio_pl, ".raw", mpio_pl); VRFY((ret >= 0), "H5Pset_fapl_split succeeded"); H5Pclose(mpio_pl); - return(ret_pl); + return (ret_pl); } /* unknown file access types */ return (ret_pl); } - -int main(int argc, char **argv) +int +main(int argc, char **argv) { - int mpi_size, mpi_rank; /* mpi variables */ + int mpi_size, mpi_rank; /* mpi variables */ H5Ptest_param_t ndsets_params, ngroups_params; H5Ptest_param_t collngroups_params; H5Ptest_param_t io_mode_confusion_params; @@ -319,21 +316,21 @@ int main(int argc, char **argv) MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); - dim0 = ROW_FACTOR*mpi_size; - dim1 = COL_FACTOR*mpi_size; + dim0 = ROW_FACTOR * mpi_size; + dim1 = COL_FACTOR * mpi_size; - if (MAINPROCESS){ + if (MAINPROCESS) { HDprintf("===================================\n"); HDprintf("PHDF5 TESTS START\n"); HDprintf("===================================\n"); } /* Attempt to turn off atexit post processing so that in case errors - * happen during the test and the process is aborted, it will not get - * hang in the atexit post processing in which it may try to make MPI - * calls. By then, MPI calls may not work. - */ - if (H5dont_atexit() < 0){ + * happen during the test and the process is aborted, it will not get + * hang in the atexit post processing in which it may try to make MPI + * calls. By then, MPI calls may not work. + */ + if (H5dont_atexit() < 0) { HDprintf("Failed to turn off atexit processing. Continue.\n"); }; H5open(); @@ -343,209 +340,153 @@ int main(int argc, char **argv) TestInit(argv[0], usage, parse_options); /* Tests are generally arranged from least to most complexity... */ - AddTest("mpiodup", test_fapl_mpio_dup, NULL, - "fapl_mpio duplicate", NULL); + AddTest("mpiodup", test_fapl_mpio_dup, NULL, "fapl_mpio duplicate", NULL); - AddTest("split", test_split_comm_access, NULL, - "dataset using split communicators", PARATESTFILE); + AddTest("split", test_split_comm_access, NULL, "dataset using split communicators", PARATESTFILE); #ifdef PB_OUT /* temporary: disable page buffering when parallel */ - AddTest("page_buffer", test_page_buffer_access, NULL, - "page buffer usage in parallel", PARATESTFILE); + AddTest("page_buffer", test_page_buffer_access, NULL, "page buffer usage in parallel", PARATESTFILE); #endif - AddTest("props", test_file_properties, NULL, - "Coll Metadata file property settings", PARATESTFILE); - - AddTest("idsetw", dataset_writeInd, NULL, - "dataset independent write", PARATESTFILE); - AddTest("idsetr", dataset_readInd, NULL, - "dataset independent read", PARATESTFILE); - - AddTest("cdsetw", dataset_writeAll, NULL, - "dataset collective write", PARATESTFILE); - AddTest("cdsetr", dataset_readAll, NULL, - "dataset collective read", PARATESTFILE); - - AddTest("eidsetw", extend_writeInd, NULL, - "extendible dataset independent write", PARATESTFILE); - AddTest("eidsetr", extend_readInd, NULL, - "extendible dataset independent read", PARATESTFILE); - AddTest("ecdsetw", extend_writeAll, NULL, - "extendible dataset collective write", PARATESTFILE); - AddTest("ecdsetr", extend_readAll, NULL, - "extendible dataset collective read", PARATESTFILE); - AddTest("eidsetw2", extend_writeInd2, NULL, - "extendible dataset independent write #2", PARATESTFILE); - AddTest("selnone", none_selection_chunk, NULL, - "chunked dataset with none-selection", PARATESTFILE); - AddTest("calloc", test_chunk_alloc, NULL, - "parallel extend Chunked allocation on serial file", PARATESTFILE); - AddTest("fltread", test_filter_read, NULL, - "parallel read of dataset written serially with filters", PARATESTFILE); + AddTest("props", test_file_properties, NULL, "Coll Metadata file property settings", PARATESTFILE); + + AddTest("delete", test_delete, NULL, "MPI-IO VFD file delete", PARATESTFILE); + + AddTest("idsetw", dataset_writeInd, NULL, "dataset independent write", PARATESTFILE); + AddTest("idsetr", dataset_readInd, NULL, "dataset independent read", PARATESTFILE); + + AddTest("cdsetw", dataset_writeAll, NULL, "dataset collective write", PARATESTFILE); + AddTest("cdsetr", dataset_readAll, NULL, "dataset collective read", PARATESTFILE); + + AddTest("eidsetw", extend_writeInd, NULL, "extendible dataset independent write", PARATESTFILE); + AddTest("eidsetr", extend_readInd, NULL, "extendible dataset independent read", PARATESTFILE); + AddTest("ecdsetw", extend_writeAll, NULL, "extendible dataset collective write", PARATESTFILE); + AddTest("ecdsetr", extend_readAll, NULL, "extendible dataset collective read", PARATESTFILE); + AddTest("eidsetw2", extend_writeInd2, NULL, "extendible dataset independent write #2", PARATESTFILE); + AddTest("selnone", none_selection_chunk, NULL, "chunked dataset with none-selection", PARATESTFILE); + AddTest("calloc", test_chunk_alloc, NULL, "parallel extend Chunked allocation on serial file", + PARATESTFILE); + AddTest("fltread", test_filter_read, NULL, "parallel read of dataset written serially with filters", + PARATESTFILE); #ifdef H5_HAVE_FILTER_DEFLATE - AddTest("cmpdsetr", compress_readAll, NULL, - "compressed dataset collective read", PARATESTFILE); + AddTest("cmpdsetr", compress_readAll, NULL, "compressed dataset collective read", PARATESTFILE); #endif /* H5_HAVE_FILTER_DEFLATE */ - AddTest("zerodsetr", zero_dim_dset, NULL, - "zero dim dset", PARATESTFILE); + AddTest("zerodsetr", zero_dim_dset, NULL, "zero dim dset", PARATESTFILE); - ndsets_params.name = PARATESTFILE; + ndsets_params.name = PARATESTFILE; ndsets_params.count = ndatasets; - AddTest("ndsetw", multiple_dset_write, NULL, - "multiple datasets write", &ndsets_params); + AddTest("ndsetw", multiple_dset_write, NULL, "multiple datasets write", &ndsets_params); - ngroups_params.name = PARATESTFILE; + ngroups_params.name = PARATESTFILE; ngroups_params.count = ngroups; - AddTest("ngrpw", multiple_group_write, NULL, - "multiple groups write", &ngroups_params); - AddTest("ngrpr", multiple_group_read, NULL, - "multiple groups read", &ngroups_params); + AddTest("ngrpw", multiple_group_write, NULL, "multiple groups write", &ngroups_params); + AddTest("ngrpr", multiple_group_read, NULL, "multiple groups read", &ngroups_params); - AddTest("compact", compact_dataset, NULL, - "compact dataset test", PARATESTFILE); + AddTest("compact", compact_dataset, NULL, "compact dataset test", PARATESTFILE); - collngroups_params.name = PARATESTFILE; + collngroups_params.name = PARATESTFILE; collngroups_params.count = ngroups; /* combined cngrpw and ingrpr tests because ingrpr reads file created by cngrpw. */ AddTest("cngrpw-ingrpr", collective_group_write_independent_group_read, NULL, - "collective grp/dset write - independent grp/dset read", - &collngroups_params); + "collective grp/dset write - independent grp/dset read", &collngroups_params); #ifndef H5_HAVE_WIN32_API - AddTest("bigdset", big_dataset, NULL, - "big dataset test", PARATESTFILE); + AddTest("bigdset", big_dataset, NULL, "big dataset test", PARATESTFILE); #else HDprintf("big dataset test will be skipped on Windows (JIRA HDDFV-8064)\n"); #endif - AddTest("fill", dataset_fillvalue, NULL, - "dataset fill value", PARATESTFILE); - - AddTest("cchunk1", - coll_chunk1,NULL, "simple collective chunk io",PARATESTFILE); - AddTest("cchunk2", - coll_chunk2,NULL, "noncontiguous collective chunk io",PARATESTFILE); - AddTest("cchunk3", - coll_chunk3,NULL, "multi-chunk collective chunk io",PARATESTFILE); - AddTest("cchunk4", - coll_chunk4,NULL, "collective chunk io with partial non-selection ",PARATESTFILE); - - if((mpi_size < 3)&& MAINPROCESS ) { + AddTest("fill", dataset_fillvalue, NULL, "dataset fill value", PARATESTFILE); + + AddTest("cchunk1", coll_chunk1, NULL, "simple collective chunk io", PARATESTFILE); + AddTest("cchunk2", coll_chunk2, NULL, "noncontiguous collective chunk io", PARATESTFILE); + AddTest("cchunk3", coll_chunk3, NULL, "multi-chunk collective chunk io", PARATESTFILE); + AddTest("cchunk4", coll_chunk4, NULL, "collective chunk io with partial non-selection ", PARATESTFILE); + + if ((mpi_size < 3) && MAINPROCESS) { HDprintf("Collective chunk IO optimization APIs "); HDprintf("needs at least 3 processes to participate\n"); HDprintf("Collective chunk IO API tests will be skipped \n"); } - AddTest((mpi_size <3)? "-cchunk5":"cchunk5" , - coll_chunk5,NULL, - "linked chunk collective IO without optimization",PARATESTFILE); - AddTest((mpi_size < 3)? "-cchunk6" : "cchunk6", - coll_chunk6,NULL, - "multi-chunk collective IO with direct request",PARATESTFILE); - AddTest((mpi_size < 3)? "-cchunk7" : "cchunk7", - coll_chunk7,NULL, - "linked chunk collective IO with optimization",PARATESTFILE); - AddTest((mpi_size < 3)? "-cchunk8" : "cchunk8", - coll_chunk8,NULL, - "linked chunk collective IO transferring to multi-chunk",PARATESTFILE); - AddTest((mpi_size < 3)? "-cchunk9" : "cchunk9", - coll_chunk9,NULL, - "multiple chunk collective IO with optimization",PARATESTFILE); - AddTest((mpi_size < 3)? "-cchunk10" : "cchunk10", - coll_chunk10,NULL, - "multiple chunk collective IO transferring to independent IO",PARATESTFILE); - - + AddTest((mpi_size < 3) ? "-cchunk5" : "cchunk5", coll_chunk5, NULL, + "linked chunk collective IO without optimization", PARATESTFILE); + AddTest((mpi_size < 3) ? "-cchunk6" : "cchunk6", coll_chunk6, NULL, + "multi-chunk collective IO with direct request", PARATESTFILE); + AddTest((mpi_size < 3) ? "-cchunk7" : "cchunk7", coll_chunk7, NULL, + "linked chunk collective IO with optimization", PARATESTFILE); + AddTest((mpi_size < 3) ? "-cchunk8" : "cchunk8", coll_chunk8, NULL, + "linked chunk collective IO transferring to multi-chunk", PARATESTFILE); + AddTest((mpi_size < 3) ? "-cchunk9" : "cchunk9", coll_chunk9, NULL, + "multiple chunk collective IO with optimization", PARATESTFILE); + AddTest((mpi_size < 3) ? "-cchunk10" : "cchunk10", coll_chunk10, NULL, + "multiple chunk collective IO transferring to independent IO", PARATESTFILE); /* irregular collective IO tests*/ - AddTest("ccontw", - coll_irregular_cont_write,NULL, - "collective irregular contiguous write",PARATESTFILE); - AddTest("ccontr", - coll_irregular_cont_read,NULL, - "collective irregular contiguous read",PARATESTFILE); - AddTest("cschunkw", - coll_irregular_simple_chunk_write,NULL, - "collective irregular simple chunk write",PARATESTFILE); - AddTest("cschunkr", - coll_irregular_simple_chunk_read,NULL, - "collective irregular simple chunk read",PARATESTFILE); - AddTest("ccchunkw", - coll_irregular_complex_chunk_write,NULL, - "collective irregular complex chunk write",PARATESTFILE); - AddTest("ccchunkr", - coll_irregular_complex_chunk_read,NULL, - "collective irregular complex chunk read",PARATESTFILE); - - AddTest("null", null_dataset, NULL, - "null dataset test", PARATESTFILE); + AddTest("ccontw", coll_irregular_cont_write, NULL, "collective irregular contiguous write", PARATESTFILE); + AddTest("ccontr", coll_irregular_cont_read, NULL, "collective irregular contiguous read", PARATESTFILE); + AddTest("cschunkw", coll_irregular_simple_chunk_write, NULL, "collective irregular simple chunk write", + PARATESTFILE); + AddTest("cschunkr", coll_irregular_simple_chunk_read, NULL, "collective irregular simple chunk read", + PARATESTFILE); + AddTest("ccchunkw", coll_irregular_complex_chunk_write, NULL, "collective irregular complex chunk write", + PARATESTFILE); + AddTest("ccchunkr", coll_irregular_complex_chunk_read, NULL, "collective irregular complex chunk read", + PARATESTFILE); + + AddTest("null", null_dataset, NULL, "null dataset test", PARATESTFILE); io_mode_confusion_params.name = PARATESTFILE; io_mode_confusion_params.count = 0; /* value not used */ - AddTest("I/Omodeconf", io_mode_confusion, NULL, - "I/O mode confusion test -- hangs quickly on failure", + AddTest("I/Omodeconf", io_mode_confusion, NULL, "I/O mode confusion test -- hangs quickly on failure", &io_mode_confusion_params); - if((mpi_size < 3) && MAINPROCESS) { + if ((mpi_size < 3) && MAINPROCESS) { HDprintf("rr_obj_hdr_flush_confusion test needs at least 3 processes.\n"); HDprintf("rr_obj_hdr_flush_confusion test will be skipped \n"); } - if(mpi_size > 2) { - rr_obj_flush_confusion_params.name = PARATESTFILE; + if (mpi_size > 2) { + rr_obj_flush_confusion_params.name = PARATESTFILE; rr_obj_flush_confusion_params.count = 0; /* value not used */ AddTest("rrobjflushconf", rr_obj_hdr_flush_confusion, NULL, - "round robin object header flush confusion test", - &rr_obj_flush_confusion_params); + "round robin object header flush confusion test", &rr_obj_flush_confusion_params); } - AddTest("alnbg1", - chunk_align_bug_1, NULL, - "Chunk allocation with alignment bug.", - PARATESTFILE); + AddTest("alnbg1", chunk_align_bug_1, NULL, "Chunk allocation with alignment bug.", PARATESTFILE); - AddTest("tldsc", - lower_dim_size_comp_test, NULL, - "test lower dim size comp in span tree to mpi derived type", - PARATESTFILE); + AddTest("tldsc", lower_dim_size_comp_test, NULL, + "test lower dim size comp in span tree to mpi derived type", PARATESTFILE); - AddTest("lccio", - link_chunk_collective_io_test, NULL, - "test mpi derived type management", - PARATESTFILE); + AddTest("lccio", link_chunk_collective_io_test, NULL, "test mpi derived type management", PARATESTFILE); - AddTest("actualio", actual_io_mode_tests, NULL, - "test actual io mode proprerty", - PARATESTFILE); + AddTest("actualio", actual_io_mode_tests, NULL, "test actual io mode proprerty", PARATESTFILE); - AddTest("nocolcause", no_collective_cause_tests, NULL, - "test cause for broken collective io", + AddTest("nocolcause", no_collective_cause_tests, NULL, "test cause for broken collective io", PARATESTFILE); - AddTest("edpl", test_plist_ed, NULL, - "encode/decode Property Lists", NULL); + AddTest("edpl", test_plist_ed, NULL, "encode/decode Property Lists", NULL); + + AddTest("extlink", external_links, NULL, "test external links", NULL); - if((mpi_size < 2) && MAINPROCESS) { + if ((mpi_size < 2) && MAINPROCESS) { HDprintf("File Image Ops daisy chain test needs at least 2 processes.\n"); HDprintf("File Image Ops daisy chain test will be skipped \n"); } - AddTest((mpi_size < 2)? "-fiodc" : "fiodc", file_image_daisy_chain_test, NULL, + AddTest((mpi_size < 2) ? "-fiodc" : "fiodc", file_image_daisy_chain_test, NULL, "file image ops daisy chain", NULL); - if((mpi_size < 2)&& MAINPROCESS ) { + if ((mpi_size < 2) && MAINPROCESS) { HDprintf("Atomicity tests need at least 2 processes to participate\n"); HDprintf("8 is more recommended.. Atomicity tests will be skipped \n"); } else if (facc_type != FACC_MPIO && MAINPROCESS) { HDprintf("Atomicity tests will not work with a non MPIO VFD\n"); } - else if(mpi_size >= 2 && facc_type == FACC_MPIO){ - AddTest("atomicity", dataset_atomicity, NULL, - "dataset atomic updates", PARATESTFILE); + else if (mpi_size >= 2 && facc_type == FACC_MPIO) { + AddTest("atomicity", dataset_atomicity, NULL, "dataset atomic updates", PARATESTFILE); } - AddTest("denseattr", test_dense_attr, NULL, - "Store Dense Attributes", PARATESTFILE); + AddTest("denseattr", test_dense_attr, NULL, "Store Dense Attributes", PARATESTFILE); AddTest("noselcollmdread", test_partial_no_selection_coll_md_read, NULL, "Collective Metadata read with some ranks having no selection", PARATESTFILE); @@ -558,25 +499,24 @@ int main(int argc, char **argv) TestInfo(argv[0]); /* setup file access property list */ - fapl = H5Pcreate (H5P_FILE_ACCESS); + fapl = H5Pcreate(H5P_FILE_ACCESS); H5Pset_fapl_mpio(fapl, MPI_COMM_WORLD, MPI_INFO_NULL); /* Parse command line arguments */ TestParseCmdLine(argc, argv); - if (dxfer_coll_type == DXFER_INDEPENDENT_IO && MAINPROCESS){ + if (dxfer_coll_type == DXFER_INDEPENDENT_IO && MAINPROCESS) { HDprintf("===================================\n" - " Using Independent I/O with file set view to replace collective I/O \n" - "===================================\n"); + " Using Independent I/O with file set view to replace collective I/O \n" + "===================================\n"); } - /* Perform requested testing */ PerformTests(); /* make sure all processes are finished before final report, cleanup - * and exit. - */ + * and exit. + */ MPI_Barrier(MPI_COMM_WORLD); /* Display test summary, if requested */ @@ -592,10 +532,10 @@ int main(int argc, char **argv) { int temp; MPI_Allreduce(&nerrors, &temp, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD); - nerrors=temp; + nerrors = temp; } - if (MAINPROCESS){ /* only process 0 reports */ + if (MAINPROCESS) { /* only process 0 reports */ HDprintf("===================================\n"); if (nerrors) HDprintf("***PHDF5 tests detected %d errors***\n", nerrors); @@ -614,6 +554,5 @@ int main(int argc, char **argv) MPI_Finalize(); /* cannot just return (nerrors) because exit code is limited to 1byte */ - return(nerrors!=0); + return (nerrors != 0); } - diff --git a/testpar/testphdf5.h b/testpar/testphdf5.h index cf611b7..16f45d3 100644 --- a/testpar/testphdf5.h +++ b/testpar/testphdf5.h @@ -6,7 +6,7 @@ * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * - * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ @@ -18,164 +18,165 @@ #include "testpar.h" -enum H5TEST_COLL_CHUNK_API {API_NONE=0,API_LINK_HARD, - API_MULTI_HARD,API_LINK_TRUE,API_LINK_FALSE, - API_MULTI_COLL,API_MULTI_IND}; +enum H5TEST_COLL_CHUNK_API { + API_NONE = 0, + API_LINK_HARD, + API_MULTI_HARD, + API_LINK_TRUE, + API_LINK_FALSE, + API_MULTI_COLL, + API_MULTI_IND +}; #ifndef FALSE -#define FALSE 0 +#define FALSE 0 #endif #ifndef TRUE -#define TRUE 1 +#define TRUE 1 #endif - /* Constants definitions */ -#define DIM0 600 /* Default dataset sizes. */ -#define DIM1 1200 /* Values are from a monitor pixel sizes */ -#define ROW_FACTOR 8 /* Nominal row factor for dataset size */ -#define COL_FACTOR 16 /* Nominal column factor for dataset size */ -#define RANK 2 -#define DATASETNAME1 "Data1" -#define DATASETNAME2 "Data2" -#define DATASETNAME3 "Data3" -#define DATASETNAME4 "Data4" -#define DATASETNAME5 "Data5" -#define DATASETNAME6 "Data6" -#define DATASETNAME7 "Data7" -#define DATASETNAME8 "Data8" -#define DATASETNAME9 "Data9" +#define DIM0 600 /* Default dataset sizes. */ +#define DIM1 1200 /* Values are from a monitor pixel sizes */ +#define ROW_FACTOR 8 /* Nominal row factor for dataset size */ +#define COL_FACTOR 16 /* Nominal column factor for dataset size */ +#define RANK 2 +#define DATASETNAME1 "Data1" +#define DATASETNAME2 "Data2" +#define DATASETNAME3 "Data3" +#define DATASETNAME4 "Data4" +#define DATASETNAME5 "Data5" +#define DATASETNAME6 "Data6" +#define DATASETNAME7 "Data7" +#define DATASETNAME8 "Data8" +#define DATASETNAME9 "Data9" /* point selection order */ -#define IN_ORDER 1 +#define IN_ORDER 1 #define OUT_OF_ORDER 2 /* Hyperslab layout styles */ -#define BYROW 1 /* divide into slabs of rows */ -#define BYCOL 2 /* divide into blocks of columns */ -#define ZROW 3 /* same as BYCOL except process 0 gets 0 rows */ -#define ZCOL 4 /* same as BYCOL except process 0 gets 0 columns */ +#define BYROW 1 /* divide into slabs of rows */ +#define BYCOL 2 /* divide into blocks of columns */ +#define ZROW 3 /* same as BYCOL except process 0 gets 0 rows */ +#define ZCOL 4 /* same as BYCOL except process 0 gets 0 columns */ /* File_Access_type bits */ -#define FACC_DEFAULT 0x0 /* default */ -#define FACC_MPIO 0x1 /* MPIO */ -#define FACC_SPLIT 0x2 /* Split File */ +#define FACC_DEFAULT 0x0 /* default */ +#define FACC_MPIO 0x1 /* MPIO */ +#define FACC_SPLIT 0x2 /* Split File */ -#define DXFER_COLLECTIVE_IO 0x1 /* Collective IO*/ +#define DXFER_COLLECTIVE_IO 0x1 /* Collective IO*/ #define DXFER_INDEPENDENT_IO 0x2 /* Independent IO collectively */ /*Constants for collective chunk definitions */ -#define SPACE_DIM1 24 -#define SPACE_DIM2 4 -#define BYROW_CONT 1 -#define BYROW_DISCONT 2 -#define BYROW_SELECTNONE 3 +#define SPACE_DIM1 24 +#define SPACE_DIM2 4 +#define BYROW_CONT 1 +#define BYROW_DISCONT 2 +#define BYROW_SELECTNONE 3 #define BYROW_SELECTUNBALANCE 4 -#define BYROW_SELECTINCHUNK 5 - -#define DIMO_NUM_CHUNK 4 -#define DIM1_NUM_CHUNK 2 -#define LINK_TRUE_NUM_CHUNK 2 -#define LINK_FALSE_NUM_CHUNK 6 -#define MULTI_TRUE_PERCENT 50 -#define LINK_TRUE_CHUNK_NAME "h5_link_chunk_true" +#define BYROW_SELECTINCHUNK 5 + +#define DIMO_NUM_CHUNK 4 +#define DIM1_NUM_CHUNK 2 +#define LINK_TRUE_NUM_CHUNK 2 +#define LINK_FALSE_NUM_CHUNK 6 +#define MULTI_TRUE_PERCENT 50 +#define LINK_TRUE_CHUNK_NAME "h5_link_chunk_true" #define LINK_FALSE_CHUNK_NAME "h5_link_chunk_false" -#define LINK_HARD_CHUNK_NAME "h5_link_chunk_hard" +#define LINK_HARD_CHUNK_NAME "h5_link_chunk_hard" #define MULTI_HARD_CHUNK_NAME "h5_multi_chunk_hard" #define MULTI_COLL_CHUNK_NAME "h5_multi_chunk_coll" #define MULTI_INDP_CHUNK_NAME "h5_multi_chunk_indp" #define DSET_COLLECTIVE_CHUNK_NAME "coll_chunk_name" - /*Constants for MPI derived data type generated from span tree */ -#define MSPACE1_RANK 1 /* Rank of the first dataset in memory */ -#define MSPACE1_DIM 27000 /* Dataset size in memory */ -#define FSPACE_RANK 2 /* Dataset rank as it is stored in the file */ -#define FSPACE_DIM1 9 /* Dimension sizes of the dataset as it is stored in the file */ -#define FSPACE_DIM2 3600 /* We will read dataset back from the file to the dataset in memory with these dataspace parameters. */ -#define MSPACE_RANK 2 -#define MSPACE_DIM1 9 -#define MSPACE_DIM2 3600 -#define FHCOUNT0 1 /* Count of the first dimension of the first hyperslab selection*/ -#define FHCOUNT1 768 /* Count of the second dimension of the first hyperslab selection*/ -#define FHSTRIDE0 4 /* Stride of the first dimension of the first hyperslab selection*/ -#define FHSTRIDE1 3 /* Stride of the second dimension of the first hyperslab selection*/ -#define FHBLOCK0 3 /* Block of the first dimension of the first hyperslab selection*/ -#define FHBLOCK1 2 /* Block of the second dimension of the first hyperslab selection*/ -#define FHSTART0 0 /* start of the first dimension of the first hyperslab selection*/ -#define FHSTART1 1 /* start of the second dimension of the first hyperslab selection*/ - -#define SHCOUNT0 1 /* Count of the first dimension of the first hyperslab selection*/ -#define SHCOUNT1 1 /* Count of the second dimension of the first hyperslab selection*/ -#define SHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ -#define SHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ -#define SHBLOCK0 3 /* Block of the first dimension of the first hyperslab selection*/ -#define SHBLOCK1 768 /* Block of the second dimension of the first hyperslab selection*/ -#define SHSTART0 4 /* start of the first dimension of the first hyperslab selection*/ -#define SHSTART1 0 /* start of the second dimension of the first hyperslab selection*/ - -#define MHCOUNT0 6912 /* Count of the first dimension of the first hyperslab selection*/ -#define MHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ -#define MHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ -#define MHSTART0 1 /* start of the first dimension of the first hyperslab selection*/ - - - -#define RFFHCOUNT0 3 /* Count of the first dimension of the first hyperslab selection*/ -#define RFFHCOUNT1 768 /* Count of the second dimension of the first hyperslab selection*/ -#define RFFHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ -#define RFFHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ -#define RFFHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ -#define RFFHBLOCK1 1 /* Block of the second dimension of the first hyperslab selection*/ -#define RFFHSTART0 1 /* start of the first dimension of the first hyperslab selection*/ -#define RFFHSTART1 2 /* start of the second dimension of the first hyperslab selection*/ - - -#define RFSHCOUNT0 3 /* Count of the first dimension of the first hyperslab selection*/ -#define RFSHCOUNT1 1536 /* Count of the second dimension of the first hyperslab selection*/ -#define RFSHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ -#define RFSHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ -#define RFSHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ -#define RFSHBLOCK1 1 /* Block of the second dimension of the first hyperslab selection*/ -#define RFSHSTART0 2 /* start of the first dimension of the first hyperslab selection*/ -#define RFSHSTART1 4 /* start of the second dimension of the first hyperslab selection*/ - - -#define RMFHCOUNT0 3 /* Count of the first dimension of the first hyperslab selection*/ -#define RMFHCOUNT1 768 /* Count of the second dimension of the first hyperslab selection*/ -#define RMFHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ -#define RMFHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ -#define RMFHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ -#define RMFHBLOCK1 1 /* Block of the second dimension of the first hyperslab selection*/ -#define RMFHSTART0 0 /* start of the first dimension of the first hyperslab selection*/ -#define RMFHSTART1 0 /* start of the second dimension of the first hyperslab selection*/ - -#define RMSHCOUNT0 3 /* Count of the first dimension of the first hyperslab selection*/ -#define RMSHCOUNT1 1536 /* Count of the second dimension of the first hyperslab selection*/ -#define RMSHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ -#define RMSHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ -#define RMSHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ -#define RMSHBLOCK1 1 /* Block of the second dimension of the first hyperslab selection*/ -#define RMSHSTART0 1 /* start of the first dimension of the first hyperslab selection*/ -#define RMSHSTART1 2 /* start of the second dimension of the first hyperslab selection*/ - - -#define NPOINTS 4 /* Number of points that will be selected - and overwritten */ +#define MSPACE1_RANK 1 /* Rank of the first dataset in memory */ +#define MSPACE1_DIM 27000 /* Dataset size in memory */ +#define FSPACE_RANK 2 /* Dataset rank as it is stored in the file */ +#define FSPACE_DIM1 9 /* Dimension sizes of the dataset as it is stored in the file */ +#define FSPACE_DIM2 3600 +/* We will read dataset back from the file to the dataset in memory with these dataspace parameters. */ +#define MSPACE_RANK 2 +#define MSPACE_DIM1 9 +#define MSPACE_DIM2 3600 +#define FHCOUNT0 1 /* Count of the first dimension of the first hyperslab selection*/ +#define FHCOUNT1 768 /* Count of the second dimension of the first hyperslab selection*/ +#define FHSTRIDE0 4 /* Stride of the first dimension of the first hyperslab selection*/ +#define FHSTRIDE1 3 /* Stride of the second dimension of the first hyperslab selection*/ +#define FHBLOCK0 3 /* Block of the first dimension of the first hyperslab selection*/ +#define FHBLOCK1 2 /* Block of the second dimension of the first hyperslab selection*/ +#define FHSTART0 0 /* start of the first dimension of the first hyperslab selection*/ +#define FHSTART1 1 /* start of the second dimension of the first hyperslab selection*/ + +#define SHCOUNT0 1 /* Count of the first dimension of the first hyperslab selection*/ +#define SHCOUNT1 1 /* Count of the second dimension of the first hyperslab selection*/ +#define SHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ +#define SHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ +#define SHBLOCK0 3 /* Block of the first dimension of the first hyperslab selection*/ +#define SHBLOCK1 768 /* Block of the second dimension of the first hyperslab selection*/ +#define SHSTART0 4 /* start of the first dimension of the first hyperslab selection*/ +#define SHSTART1 0 /* start of the second dimension of the first hyperslab selection*/ + +#define MHCOUNT0 6912 /* Count of the first dimension of the first hyperslab selection*/ +#define MHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ +#define MHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ +#define MHSTART0 1 /* start of the first dimension of the first hyperslab selection*/ + +#define RFFHCOUNT0 3 /* Count of the first dimension of the first hyperslab selection*/ +#define RFFHCOUNT1 768 /* Count of the second dimension of the first hyperslab selection*/ +#define RFFHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ +#define RFFHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ +#define RFFHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ +#define RFFHBLOCK1 1 /* Block of the second dimension of the first hyperslab selection*/ +#define RFFHSTART0 1 /* start of the first dimension of the first hyperslab selection*/ +#define RFFHSTART1 2 /* start of the second dimension of the first hyperslab selection*/ + +#define RFSHCOUNT0 3 /* Count of the first dimension of the first hyperslab selection*/ +#define RFSHCOUNT1 1536 /* Count of the second dimension of the first hyperslab selection*/ +#define RFSHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ +#define RFSHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ +#define RFSHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ +#define RFSHBLOCK1 1 /* Block of the second dimension of the first hyperslab selection*/ +#define RFSHSTART0 2 /* start of the first dimension of the first hyperslab selection*/ +#define RFSHSTART1 4 /* start of the second dimension of the first hyperslab selection*/ + +#define RMFHCOUNT0 3 /* Count of the first dimension of the first hyperslab selection*/ +#define RMFHCOUNT1 768 /* Count of the second dimension of the first hyperslab selection*/ +#define RMFHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ +#define RMFHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ +#define RMFHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ +#define RMFHBLOCK1 1 /* Block of the second dimension of the first hyperslab selection*/ +#define RMFHSTART0 0 /* start of the first dimension of the first hyperslab selection*/ +#define RMFHSTART1 0 /* start of the second dimension of the first hyperslab selection*/ + +#define RMSHCOUNT0 3 /* Count of the first dimension of the first hyperslab selection*/ +#define RMSHCOUNT1 1536 /* Count of the second dimension of the first hyperslab selection*/ +#define RMSHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ +#define RMSHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ +#define RMSHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ +#define RMSHBLOCK1 1 /* Block of the second dimension of the first hyperslab selection*/ +#define RMSHSTART0 1 /* start of the first dimension of the first hyperslab selection*/ +#define RMSHSTART1 2 /* start of the second dimension of the first hyperslab selection*/ + +#define NPOINTS \ + 4 /* Number of points that will be selected \ + and overwritten */ /* Definitions of the selection mode for the test_actual_io_function. */ -#define TEST_ACTUAL_IO_NO_COLLECTIVE 0 -#define TEST_ACTUAL_IO_RESET 1 -#define TEST_ACTUAL_IO_MULTI_CHUNK_IND 2 -#define TEST_ACTUAL_IO_MULTI_CHUNK_COL 3 -#define TEST_ACTUAL_IO_MULTI_CHUNK_MIX 4 -#define TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE 5 -#define TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND 6 -#define TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL 7 -#define TEST_ACTUAL_IO_LINK_CHUNK 8 -#define TEST_ACTUAL_IO_CONTIGUOUS 9 +#define TEST_ACTUAL_IO_NO_COLLECTIVE 0 +#define TEST_ACTUAL_IO_RESET 1 +#define TEST_ACTUAL_IO_MULTI_CHUNK_IND 2 +#define TEST_ACTUAL_IO_MULTI_CHUNK_COL 3 +#define TEST_ACTUAL_IO_MULTI_CHUNK_MIX 4 +#define TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE 5 +#define TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND 6 +#define TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL 7 +#define TEST_ACTUAL_IO_LINK_CHUNK 8 +#define TEST_ACTUAL_IO_CONTIGUOUS 9 /* Definitions of the selection mode for the no_collective_cause_tests function. */ #define TEST_COLLECTIVE 0x001 @@ -185,10 +186,6 @@ enum H5TEST_COLL_CHUNK_API {API_NONE=0,API_LINK_HARD, #define TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES 0x010 #define TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT 0x020 #define TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL 0x040 -#define TEST_FILTERS 0x080 -/* TEST_FILTERS will take place of this after supporting mpio + filter for - * H5Dcreate and H5Dwrite */ -#define TEST_FILTERS_READ 0x100 /* Don't erase these lines, they are put here for debugging purposes */ /* @@ -205,12 +202,11 @@ enum H5TEST_COLL_CHUNK_API {API_NONE=0,API_LINK_HARD, #define NPOINTS 4 */ /* end of debugging macro */ - /* type definitions */ -typedef struct H5Ptest_param_t /* holds extra test parameters */ +typedef struct H5Ptest_param_t /* holds extra test parameters */ { - char *name; - int count; + char *name; + int count; } H5Ptest_param_t; /* Dataset data type. Int's can be easily octo dumped. */ @@ -218,25 +214,25 @@ typedef int DATATYPE; /* Shape Same Tests Definitions */ typedef enum { - IND_CONTIG, /* Independent IO on contigous datasets */ - COL_CONTIG, /* Collective IO on contigous datasets */ - IND_CHUNKED, /* Independent IO on chunked datasets */ - COL_CHUNKED /* Collective IO on chunked datasets */ + IND_CONTIG, /* Independent IO on contiguous datasets */ + COL_CONTIG, /* Collective IO on contiguous datasets */ + IND_CHUNKED, /* Independent IO on chunked datasets */ + COL_CHUNKED /* Collective IO on chunked datasets */ } ShapeSameTestMethods; /* Shared global variables */ -extern int dim0, dim1; /*Dataset dimensions */ -extern int chunkdim0, chunkdim1; /*Chunk dimensions */ -extern int nerrors; /*errors count */ -extern H5E_auto2_t old_func; /* previous error handler */ -extern void *old_client_data; /*previous error handler arg.*/ -extern int facc_type; /*Test file access type */ +extern int dim0, dim1; /*Dataset dimensions */ +extern int chunkdim0, chunkdim1; /*Chunk dimensions */ +extern int nerrors; /*errors count */ +extern int facc_type; /*Test file access type */ extern int dxfer_coll_type; /* Test program prototypes */ void test_plist_ed(void); +void external_links(void); void zero_dim_dset(void); void test_file_properties(void); +void test_delete(void); void multiple_dset_write(void); void multiple_group_write(void); void multiple_group_read(void); @@ -300,10 +296,10 @@ void test_multi_chunk_io_addrmap_issue(void); void test_link_chunk_io_sort_chunk_issue(void); /* commonly used prototypes */ -hid_t create_faccess_plist(MPI_Comm comm, MPI_Info info, int l_facc_type); +hid_t create_faccess_plist(MPI_Comm comm, MPI_Info info, int l_facc_type); MPI_Offset h5_mpi_get_file_size(const char *filename, MPI_Comm comm, MPI_Info info); -int dataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], - hsize_t block[], DATATYPE *dataset, DATATYPE *original); -void point_set (hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], - size_t num_points, hsize_t coords[], int order); +int dataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], DATATYPE *dataset, + DATATYPE *original); +void point_set(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], size_t num_points, + hsize_t coords[], int order); #endif /* PHDF5TEST_H */ |