diff options
author | Richard Warren <Richard.Warren@hdfgroup.org> | 2019-12-16 21:59:26 (GMT) |
---|---|---|
committer | Richard Warren <Richard.Warren@hdfgroup.org> | 2019-12-16 21:59:26 (GMT) |
commit | 4eeeda3b8669dee21867f6d1246b814b28570e3a (patch) | |
tree | 926f40b116ff5476d50536ff1861c46627ae3009 /testpar | |
parent | f9b1805c6e87fb19c4fee64c4791f25c2587e948 (diff) | |
download | hdf5-4eeeda3b8669dee21867f6d1246b814b28570e3a.zip hdf5-4eeeda3b8669dee21867f6d1246b814b28570e3a.tar.gz hdf5-4eeeda3b8669dee21867f6d1246b814b28570e3a.tar.bz2 |
Merge t_2Gio test into hdf5_1_12. This will eventually be refactored out after merging the test functionality into the testphdf5 test.
Diffstat (limited to 'testpar')
-rw-r--r-- | testpar/t_2Gio.c | 4954 |
1 files changed, 4954 insertions, 0 deletions
diff --git a/testpar/t_2Gio.c b/testpar/t_2Gio.c new file mode 100644 index 0000000..43be819 --- /dev/null +++ b/testpar/t_2Gio.c @@ -0,0 +1,4954 @@ +/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + * Copyright by The HDF Group. * + * All rights reserved. * + * * + * This file is part of HDF5. The full HDF5 copyright notice, including * + * terms governing use, modification, and redistribution, is contained in * + * the COPYING file, which can be found at the root of the source code * + * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. * + * If you do not have access to either file, you may request a copy from * + * help@hdfgroup.org. * + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ + +/* + * Parallel tests for datasets + */ + +/* + * Example of using the parallel HDF5 library to access datasets. + * + * This program contains three major parts. Part 1 tests fixed dimension + * datasets, for both independent and collective transfer modes. + * Part 2 tests extendible datasets, for independent transfer mode + * only. + * Part 3 tests extendible datasets, for collective transfer mode + * only. + */ + +#include <stdio.h> +#include "hdf5.h" +#include "testphdf5.h" + +#include "mpi.h" + + +/* For this test, we don't want to inherit the RANK definition + * from testphdf5.h. We'll define MAX_RANK to accomodate 3D arrays + * and use that definition rather than RANK. + */ +#ifndef MAX_RANK +#define MAX_RANK 2 +#endif + +/* As with RANK vs MAX_RANK, we use BIG_X_FACTOR vs ROW_FACTOR + * and BIG_Y_FACTOR vs COL_FACTOR. We introduce BIG_Z_FACTOR + * for the 3rd dimension. + */ + +#ifndef BIG_X_FACTOR +#define BIG_X_FACTOR 1048576 +#endif +#ifndef BIG_Y_FACTOR +#define BIG_Y_FACTOR 32 +#endif +#ifndef BIG_Z_FACTOR +#define BIG_Z_FACTOR 2048 +#endif + +#ifndef PATH_MAX +#define PATH_MAX 512 +#endif /* !PATH_MAX */ + +/* global variables */ +int dim0; +int dim1; +int dim2; +int chunkdim0; +int chunkdim1; +int nerrors = 0; /* errors count */ +int ndatasets = 300; /* number of datasets to create*/ +int ngroups = 512; /* number of groups to create in root + * group. */ +int facc_type = FACC_MPIO; /*Test file access type */ +int dxfer_coll_type = DXFER_COLLECTIVE_IO; + +H5E_auto2_t old_func; /* previous error handler */ +void *old_client_data; /* previous error handler arg.*/ + +#define NFILENAME 3 +#define PARATESTFILE filenames[0] +const char *FILENAME[NFILENAME]={ + "ParaTest", + "Hugefile", + NULL}; +char filenames[NFILENAME][PATH_MAX]; +hid_t fapl; /* file access property list */ +MPI_Comm test_comm = MPI_COMM_WORLD; + +// static int enable_error_stack = 0; /* enable error stack; disable=0 enable=1 */ +// static const char *TestProgName = NULL; +// static void (*TestPrivateUsage)(void) = NULL; +// static int (*TestPrivateParser)(int ac, char *av[]) = NULL; + +/* + * The following are various utility routines used by the tests. + */ + + +/* + * Show command usage + */ +static void +usage(void) +{ + HDprintf(" [-r] [-w] [-m<n_datasets>] [-n<n_groups>] " + "[-o] [-f <prefix>] [-d <dim0> <dim1>]\n"); + HDprintf("\t-m<n_datasets>" + "\tset number of datasets for the multiple dataset test\n"); + HDprintf("\t-n<n_groups>" + "\tset number of groups for the multiple group test\n"); + HDprintf("\t-f <prefix>\tfilename prefix\n"); + HDprintf("\t-2\t\tuse Split-file together with MPIO\n"); + HDprintf("\t-d <factor0> <factor1>\tdataset dimensions factors. Defaults (%d,%d)\n", + BIG_X_FACTOR, BIG_Y_FACTOR); + HDprintf("\t-c <dim0> <dim1>\tdataset chunk dimensions. Defaults (dim0/10,dim1/10)\n"); + HDprintf("\n"); +} + +/* + * parse the command line options + */ +static int +parse_options(int argc, char **argv) +{ + int mpi_size, mpi_rank; /* mpi variables */ + + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + /* setup default chunk-size. Make sure sizes are > 0 */ + + chunkdim0 = (dim0+9)/10; + chunkdim1 = (dim1+9)/10; + + while (--argc){ + if (**(++argv) != '-'){ + break; + }else{ + switch(*(*argv+1)){ + case 'm': ndatasets = atoi((*argv+1)+1); + if (ndatasets < 0){ + nerrors++; + return(1); + } + break; + case 'n': ngroups = atoi((*argv+1)+1); + if (ngroups < 0){ + nerrors++; + return(1); + } + break; + case 'f': if (--argc < 1) { + nerrors++; + return(1); + } + if (**(++argv) == '-') { + nerrors++; + return(1); + } + paraprefix = *argv; + break; + case '2': /* Use the split-file driver with MPIO access */ + /* Can use $HDF5_METAPREFIX to define the */ + /* meta-file-prefix. */ + facc_type = FACC_MPIO | FACC_SPLIT; + break; + case 'd': /* dimensizes */ + if (--argc < 2){ + nerrors++; + return(1); + } + dim0 = atoi(*(++argv))*mpi_size; + argc--; + dim1 = atoi(*(++argv))*mpi_size; + /* set default chunkdim sizes too */ + chunkdim0 = (dim0+9)/10; + chunkdim1 = (dim1+9)/10; + break; + case 'c': /* chunk dimensions */ + if (--argc < 2){ + nerrors++; + return(1); + } + chunkdim0 = atoi(*(++argv)); + argc--; + chunkdim1 = atoi(*(++argv)); + break; + case 'h': /* print help message--return with nerrors set */ + return(1); + default: HDprintf("Illegal option(%s)\n", *argv); + nerrors++; + return(1); + } + } + } /*while*/ + + /* check validity of dimension and chunk sizes */ + if (dim0 <= 0 || dim1 <= 0){ + HDprintf("Illegal dim sizes (%d, %d)\n", dim0, dim1); + nerrors++; + return(1); + } + if (chunkdim0 <= 0 || chunkdim1 <= 0){ + HDprintf("Illegal chunkdim sizes (%d, %d)\n", chunkdim0, chunkdim1); + nerrors++; + return(1); + } + + /* Make sure datasets can be divided into equal portions by the processes */ + if ((dim0 % mpi_size) || (dim1 % mpi_size)){ + if (MAINPROCESS) + HDprintf("dim0(%d) and dim1(%d) must be multiples of processes(%d)\n", + dim0, dim1, mpi_size); + nerrors++; + return(1); + } + + /* compose the test filenames */ + { + int i, n; + + n = sizeof(FILENAME)/sizeof(FILENAME[0]) - 1; /* exclude the NULL */ + + for (i=0; i < n; i++) + if (h5_fixname(FILENAME[i],fapl,filenames[i],sizeof(filenames[i])) + == NULL){ + HDprintf("h5_fixname failed\n"); + nerrors++; + return(1); + } + + if (MAINPROCESS) { + HDprintf("Test filenames are:\n"); + for (i=0; i < n; i++) + HDprintf(" %s\n", filenames[i]); + } + } + + return(0); +} + +/* + * Create the appropriate File access property list + */ +hid_t +create_faccess_plist(MPI_Comm comm, MPI_Info info, int l_facc_type) +{ + hid_t ret_pl = -1; + herr_t ret; /* generic return value */ + int mpi_rank; /* mpi variables */ + + /* need the rank for error checking macros */ + MPI_Comm_rank(test_comm, &mpi_rank); + + ret_pl = H5Pcreate (H5P_FILE_ACCESS); + VRFY((ret_pl >= 0), "H5P_FILE_ACCESS"); + + if (l_facc_type == FACC_DEFAULT) + return (ret_pl); + + /* set Parallel access with communicator */ + ret = H5Pset_fapl_mpio(ret_pl, comm, info); + VRFY((ret >= 0), ""); + ret = H5Pset_all_coll_metadata_ops(ret_pl, TRUE); + VRFY((ret >= 0), ""); + ret = H5Pset_coll_metadata_write(ret_pl, TRUE); + VRFY((ret >= 0), ""); + + return(ret_pl); +} + + +/* + * Setup the dimensions of the hyperslab. + * Two modes--by rows or by columns. + * Assume dimension rank is 2. + * BYROW divide into slabs of rows + * BYCOL divide into blocks of columns + * ZROW same as BYROW except process 0 gets 0 rows + * ZCOL same as BYCOL except process 0 gets 0 columns + */ +static void +slab_set(int mpi_rank, int mpi_size, hsize_t start[], hsize_t count[], + hsize_t stride[], hsize_t block[], int mode) +{ + switch (mode) { + case BYROW: + /* Each process takes a slabs of rows. */ + block[0] = dim0 / mpi_size; + block[1] = dim1; + stride[0] = block[0]; + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = mpi_rank * block[0]; + start[1] = 0; + if (VERBOSE_MED) + HDprintf("slab_set BYROW\n"); + break; + case BYCOL: + /* Each process takes a block of columns. */ + block[0] = dim0; + block[1] = dim1 / mpi_size; + stride[0] = block[0]; + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = mpi_rank * block[1]; + if (VERBOSE_MED) + HDprintf("slab_set BYCOL\n"); + break; + case ZROW: + /* Similar to BYROW except process 0 gets 0 row */ + block[0] = (mpi_rank ? dim0 / mpi_size : 0); + block[1] = dim1; + stride[0] = (mpi_rank ? block[0] : 1); /* avoid setting stride to 0 */ + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = (mpi_rank ? mpi_rank * block[0] : 0); + start[1] = 0; + if (VERBOSE_MED) + HDprintf("slab_set ZROW\n"); + break; + case ZCOL: + /* Similar to BYCOL except process 0 gets 0 column */ + block[0] = dim0; + block[1] = (mpi_rank ? dim1 / mpi_size : 0); + stride[0] = block[0]; + stride[1] = (mpi_rank ? block[1] : 1); /* avoid setting stride to 0 */ + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = (mpi_rank ? mpi_rank * block[1] : 0); + if (VERBOSE_MED) + HDprintf("slab_set ZCOL\n"); + break; + default: + /* Unknown mode. Set it to cover the whole dataset. */ + HDprintf("unknown slab_set mode (%d)\n", mode); + block[0] = dim0; + block[1] = dim1; + stride[0] = block[0]; + stride[1] = block[1]; + count[0] = 1; + count[1] = 1; + start[0] = 0; + start[1] = 0; + if (VERBOSE_MED) + HDprintf("slab_set wholeset\n"); + break; + } + if (VERBOSE_MED) { + HDprintf( + "start[]=(%lu,%lu), count[]=(%lu,%lu), stride[]=(%lu,%lu), block[]=(%lu,%lu), total datapoints=%lu\n", + (unsigned long) start[0], (unsigned long) start[1], + (unsigned long) count[0], (unsigned long) count[1], + (unsigned long) stride[0], (unsigned long) stride[1], + (unsigned long) block[0], (unsigned long) block[1], + (unsigned long) (block[0] * block[1] * count[0] * count[1])); + } +} + +/* + * Setup the coordinates for point selection. + */ +void point_set(hsize_t start[], + hsize_t count[], + hsize_t stride[], + hsize_t block[], + size_t num_points, + hsize_t coords[], + int order) +{ + hsize_t i,j, k = 0, m ,n, s1 ,s2; + + // HDcompile_assert(MAX_RANK == 3); + HDcompile_assert(MAX_RANK == 2); + + if(OUT_OF_ORDER == order) + k = (num_points * MAX_RANK) - 1; + else if(IN_ORDER == order) + k = 0; + + s1 = start[0]; + s2 = start[1]; + + for(i = 0 ; i < count[0]; i++) + for(j = 0 ; j < count[1]; j++) + for(m = 0 ; m < block[0]; m++) + for(n = 0 ; n < block[1]; n++) + if(OUT_OF_ORDER == order) { + coords[k--] = s2 + (stride[1] * j) + n; + coords[k--] = s1 + (stride[0] * i) + m; + } + else if(IN_ORDER == order) { + coords[k++] = s1 + stride[0] * i + m; + coords[k++] = s2 + stride[1] * j + n; + } + + if(VERBOSE_MED) { + HDprintf("start[]=(%lu, %lu), count[]=(%lu, %lu), stride[]=(%lu, %lu), block[]=(%lu, %lu), total datapoints=%lu\n", + (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], (unsigned long)count[1], + (unsigned long)stride[0], (unsigned long)stride[1], (unsigned long)block[0], (unsigned long)block[1], + (unsigned long)(block[0] * block[1] * count[0] * count[1])); + k = 0; + for(i = 0; i < num_points ; i++) { + HDprintf("(%d, %d)\n", (int)coords[k], (int)coords[k + 1]); + k += 2; + } + } +} + + +/* + * Fill the dataset with trivial data for testing. + * Assume dimension rank is 2 and data is stored contiguous. + */ +static void +dataset_fill(hsize_t start[], hsize_t block[], DATATYPE * dataset) +{ + DATATYPE *dataptr = dataset; + hsize_t i, j; + + /* put some trivial data in the data_array */ + for (i=0; i < block[0]; i++){ + for (j=0; j < block[1]; j++){ + *dataptr = (DATATYPE)((i+start[0])*100 + (j+start[1]+1)); + dataptr++; + } + } +} + + +/* + * Print the content of the dataset. + */ +static void +dataset_print(hsize_t start[], hsize_t block[], DATATYPE * dataset) +{ + DATATYPE *dataptr = dataset; + hsize_t i, j; + + /* print the column heading */ + HDprintf("%-8s", "Cols:"); + for (j=0; j < block[1]; j++){ + HDprintf("%3lu ", (unsigned long)(start[1]+j)); + } + HDprintf("\n"); + + /* print the slab data */ + for (i=0; i < block[0]; i++){ + HDprintf("Row %2lu: ", (unsigned long)(i+start[0])); + for (j=0; j < block[1]; j++){ + HDprintf("%03d ", *dataptr++); + } + HDprintf("\n"); + } +} + + +/* + * Print the content of the dataset. + */ +int +dataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], DATATYPE *dataset, DATATYPE *original) +{ + hsize_t i, j; + int vrfyerrs; + + /* print it if VERBOSE_MED */ + if(VERBOSE_MED) { + HDprintf("dataset_vrfy dumping:::\n"); + HDprintf("start(%lu, %lu), count(%lu, %lu), stride(%lu, %lu), block(%lu, %lu)\n", + (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0], (unsigned long)count[1], + (unsigned long)stride[0], (unsigned long)stride[1], (unsigned long)block[0], (unsigned long)block[1]); + HDprintf("original values:\n"); + dataset_print(start, block, original); + HDprintf("compared values:\n"); + dataset_print(start, block, dataset); + } + + vrfyerrs = 0; + for (i=0; i < block[0]; i++){ + for (j=0; j < block[1]; j++){ + if(*dataset != *original){ + if(vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED){ + HDprintf("Dataset Verify failed at [%lu][%lu](row %lu, col %lu): expect %d, got %d\n", + (unsigned long)i, (unsigned long)j, + (unsigned long)(i+start[0]), (unsigned long)(j+start[1]), + *(original), *(dataset)); + } + dataset++; + original++; + } + } + } + if(vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED) + HDprintf("[more errors ...]\n"); + if(vrfyerrs) + HDprintf("%d errors found in dataset_vrfy\n", vrfyerrs); + return(vrfyerrs); +} + +/* NOTE: This is a memory intensive test and is only run + * with 2 MPI ranks and with $HDF5TestExpress == 0 + * i.e. Exhaustive test run is allowed. Otherwise + * the test is skipped. + * + * Thanks to l.ferraro@cineca.it for the following test:: + * + * This is a simple test case to reproduce a problem + * occurring on LUSTRE filesystem with the creation + * of a 4GB dataset using chunking with parallel HDF5. + * The test works correctly if disabling chunking or + * when the bytes assigned to each process is less + * that 4GB. if equal or more, either hangs or results + * in a PMPI_Waitall error. + * + * $> mpirun -genv I_MPI_EXTRA_FILESYSTEM on + * -genv I_MPI_EXTRA_FILESYSTEM_LIST gpfs + * -n 1 ./h5_mpi_big_dataset.x 1024 1024 1024 + */ + +#define H5FILE_NAME "hugefile.h5" +#define DATASETNAME "dataset" + +int MpioTest2G( MPI_Comm comm, int mpi_rank ) +{ + /* + * HDF5 APIs definitions + */ + herr_t status; + hid_t dcpl_id; + hid_t filedataspace; + hid_t memorydataspace; + hid_t file_id, dset_id; /* file and dataset identifiers */ + hid_t plist_id; /* property list identifier */ + hid_t filespace; /* file and memory dataspace identifiers */ + int *data; /* pointer to data buffer to write */ + + hsize_t shape[3] = {1024, 1024, 1152}; + size_t slice_per_process, data_size, data_size_bytes; + size_t tot_size_bytes = sizeof(int); + hsize_t chunk[3] = {4, shape[1], shape[2]}; + hsize_t h5_counts[3] = { slice_per_process, shape[1], shape[2] }; + hsize_t h5_offsets[3] = { mpi_rank * slice_per_process, 0, 0}; + + + /* + * MPI variables + */ + int mpi_size; + MPI_Info info = MPI_INFO_NULL; + + MPI_Comm_size(comm, &mpi_size); + + if(mpi_rank == 0) { + HDprintf("Using %d process on dataset shape [%llu, %llu, %llu]\n", + mpi_size, shape[0], shape[1], shape[2]); + } + + /* + * Set up file access property list with parallel I/O access + */ + plist_id = H5Pcreate(H5P_FILE_ACCESS); + VRFY((plist_id >= 0), "H5Pcreate file_access succeeded"); + status = H5Pset_fapl_mpio(plist_id, comm, info); + VRFY((status >= 0), "H5Pset_dxpl_mpio succeeded"); + + /* + * Create a new file collectively and release property list identifier. + */ + file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id); + VRFY((file_id >= 0), "H5Fcreate succeeded"); + + H5Pclose(plist_id); + + /* + * Create the dataspace for the dataset. + */ + for (int i = 0; i < 3; i++) { + tot_size_bytes *= shape[i]; + } + if(mpi_rank == 0) { + HDprintf("Dataset of %llu bytes\n", tot_size_bytes); + } + filespace = H5Screate_simple(3, shape, NULL); + VRFY((filespace >= 0), "H5Screate_simple succeeded"); + + /* + * Select chunking + */ + dcpl_id = H5Pcreate (H5P_DATASET_CREATE); + VRFY((dcpl_id >= 0), "H5P_DATASET_CREATE"); + status = H5Pset_chunk(dcpl_id, 3, chunk); + VRFY((status >= 0), "H5Pset_chunk succeeded"); + + /* + * Create the dataset with default properties and close filespace. + */ + dset_id = H5Dcreate(file_id, DATASETNAME, + H5T_NATIVE_INT, filespace, + H5P_DEFAULT, dcpl_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "H5Dcreate succeeded"); + H5Sclose(filespace); + + /* + * Create property list for collective dataset write. + */ + plist_id = H5Pcreate(H5P_DATASET_XFER); + VRFY((plist_id >= 0), "H5P_DATASET_XFER"); + status = H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE); + VRFY((status >= 0), ""); + + slice_per_process = (shape[0] + mpi_size - 1) / mpi_size; + data_size = slice_per_process * shape[1] * shape[2]; + data_size_bytes = sizeof(int) * data_size; + data = HDmalloc(data_size_bytes); + VRFY((data != NULL), "data HDmalloc succeeded"); + + for (size_t i = 0; i < data_size; i++) { + data[i] = mpi_rank; + } + + filedataspace = H5Screate_simple(3, shape, NULL); + VRFY((filedataspace >= 0), "H5Screate_simple succeeded"); + + // fix reminder along first dimension multiple of chunk[0] + if ( h5_offsets[0] + h5_counts[0] > shape[0]) { + h5_counts[0] = shape[0] - h5_offsets[0]; + } + + status = H5Sselect_hyperslab(filedataspace, H5S_SELECT_SET, + h5_offsets, NULL, h5_counts, NULL); + VRFY((status >= 0), "H5Sselect_hyperslab succeeded"); + + memorydataspace = H5Screate_simple(3, h5_counts, NULL); + VRFY((memorydataspace >= 0), "H5Screate_simple succeeded"); + + status = H5Dwrite(dset_id, H5T_NATIVE_INT, + memorydataspace, filedataspace, plist_id, data); + VRFY((status >= 0), "H5Dwrite succeeded"); + H5Pclose(plist_id); + + /* + * Close/release resources. + */ + H5Sclose(filedataspace); + H5Sclose(memorydataspace); + H5Dclose(dset_id); + H5Fclose(file_id); + + free(data); + HDprintf("Proc %d - MpioTest2G test succeeded\n", mpi_rank, data_size_bytes); + + if (mpi_rank == 0) + HDremove(FILENAME[1]); + return 0; +} + + +/* + * Part 1.a--Independent read/write for fixed dimension datasets. + */ + +/* + * Example of using the parallel HDF5 library to create two datasets + * in one HDF5 files with parallel MPIO access support. + * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. + * Each process controls only a slab of size dim0 x dim1 within each + * dataset. + */ + +void +dataset_writeInd(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + hsize_t dims[MAX_RANK] = {1,}; /* dataset dim sizes */ + hsize_t data_size; + DATATYPE *data_array1 = NULL; /* data buffer */ + const char *filename; + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK]; + hsize_t stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if(VERBOSE_MED) + HDprintf("Independent write test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm,&mpi_size); + MPI_Comm_rank(test_comm,&mpi_rank); + + /* allocate memory for data buffer */ + data_size = sizeof(DATATYPE); + data_size *= (hsize_t)dim0 * (hsize_t)dim1; + data_array1 = (DATATYPE *)HDmalloc(data_size); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + + /* ---------------------------------------- + * CREATE AN HDF5 FILE WITH PARALLEL ACCESS + * ---------------------------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + + /* --------------------------------------------- + * Define the dimensions of the overall datasets + * and the slabs local to the MPI process. + * ------------------------------------------- */ + /* setup dimensionality object */ + dims[0] = dim0; + dims[1] = dim1; + sid = H5Screate_simple (MAX_RANK, dims, NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + + /* create a dataset collectively */ + dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, + H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); + + /* create another dataset collectively */ + dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid, + H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dcreate2 succeeded"); + + + /* + * To test the independent orders of writes between processes, all + * even number processes write to dataset1 first, then dataset2. + * All odd number processes write to dataset2 first, then dataset1. + */ + + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* put some trivial data in the data_array */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* write data independently */ + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); + /* write data independently */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); + + /* setup dimensions again to write with zero rows for process 0 */ + if(VERBOSE_MED) + HDprintf("writeInd by some with zero row\n"); + slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + /* need to make mem_dataspace to match for process 0 */ + if(MAINPROCESS){ + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + } + MESG("writeInd by some with zero row"); +if((mpi_rank/2)*2 != mpi_rank){ + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset1 by ZROW succeeded"); +} +#ifdef BARRIER_CHECKS +MPI_Barrier(test_comm); +#endif /* BARRIER_CHECKS */ + + /* release dataspace ID */ + H5Sclose(file_dataspace); + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose1 succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose2 succeeded"); + + /* release all IDs created */ + H5Sclose(sid); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if(data_array1) HDfree(data_array1); +} + +/* Example of using the parallel HDF5 library to read a dataset */ +void +dataset_readInd(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + DATATYPE *data_array1 = NULL; /* data buffer */ + DATATYPE *data_origin1 = NULL; /* expected data buffer */ + const char *filename; + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK], stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if(VERBOSE_MED) + HDprintf("Independent read test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm,&mpi_size); + MPI_Comm_rank(test_comm,&mpi_rank); + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + data_origin1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_origin1 != NULL), "data_origin1 HDmalloc succeeded"); + + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* open the file collectively */ + fid = H5Fopen(filename, H5F_ACC_RDONLY, acc_tpl); + VRFY((fid >= 0), ""); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* open the dataset1 collectively */ + dataset1 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset1 >= 0), ""); + + /* open another dataset collectively */ + dataset2 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset2 >= 0), ""); + + + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset1); + VRFY((file_dataspace >= 0), ""); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), ""); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + + /* read data independently */ + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, data_array1); + VRFY((ret >= 0), ""); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if(ret) nerrors++; + + /* read data independently */ + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, data_array1); + VRFY((ret >= 0), ""); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if(ret) nerrors++; + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), ""); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), ""); + + /* release all IDs created */ + H5Sclose(file_dataspace); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if(data_array1) HDfree(data_array1); + if(data_origin1) HDfree(data_origin1); +} + + +/* + * Part 1.b--Collective read/write for fixed dimension datasets. + */ + +/* + * Example of using the parallel HDF5 library to create two datasets + * in one HDF5 file with collective parallel access support. + * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. + * Each process controls only a slab of size dim0 x dim1 within each + * dataset. [Note: not so yet. Datasets are of sizes dim0xdim1 and + * each process controls a hyperslab within.] + */ + +void +dataset_writeAll(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2, dataset3, dataset4; /* Dataset ID */ + hid_t dataset5, dataset6, dataset7; /* Dataset ID */ + hid_t datatype; /* Datatype ID */ + hsize_t dims[MAX_RANK] = {1,}; /* dataset dim sizes */ + DATATYPE *data_array1 = NULL; /* data buffer */ + const char *filename; + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK]; + hsize_t stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + size_t num_points; /* for point selection */ + hsize_t *coords = NULL; /* for point selection */ + hsize_t current_dims; /* for point selection */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if(VERBOSE_MED) + HDprintf("Collective write test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm,&mpi_size); + MPI_Comm_rank(test_comm,&mpi_rank); + + /* set up the coords array selection */ + num_points = dim1; + coords = (hsize_t *)HDmalloc(dim1 * MAX_RANK * sizeof(hsize_t)); + VRFY((coords != NULL), "coords malloc succeeded"); + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + + /* ------------------- + * START AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + + /* -------------------------- + * Define the dimensions of the overall datasets + * and create the dataset + * ------------------------- */ + /* setup 2-D dimensionality object */ + dims[0] = dim0; + dims[1] = dim1; + sid = H5Screate_simple (MAX_RANK, dims, NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + + /* create a dataset collectively */ + dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); + + /* create another dataset collectively */ + datatype = H5Tcopy(H5T_NATIVE_INT); + ret = H5Tset_order(datatype, H5T_ORDER_LE); + VRFY((ret >= 0), "H5Tset_order succeeded"); + + dataset2 = H5Dcreate2(fid, DATASETNAME2, datatype, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dcreate2 2 succeeded"); + + /* create a third dataset collectively */ + dataset3 = H5Dcreate2(fid, DATASETNAME3, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset3 >= 0), "H5Dcreate2 succeeded"); + + dataset5 = H5Dcreate2(fid, DATASETNAME7, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset5 >= 0), "H5Dcreate2 succeeded"); + dataset6 = H5Dcreate2(fid, DATASETNAME8, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset6 >= 0), "H5Dcreate2 succeeded"); + dataset7 = H5Dcreate2(fid, DATASETNAME9, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset7 >= 0), "H5Dcreate2 succeeded"); + + /* release 2-D space ID created */ + H5Sclose(sid); + + /* setup scalar dimensionality object */ + sid = H5Screate(H5S_SCALAR); + VRFY((sid >= 0), "H5Screate succeeded"); + + /* create a fourth dataset collectively */ + dataset4 = H5Dcreate2(fid, DATASETNAME4, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset4 >= 0), "H5Dcreate2 succeeded"); + + /* release scalar space ID created */ + H5Sclose(sid); + + /* + * Set up dimensions of the slab this process accesses. + */ + + /* Dataset1: each process takes a block of rows. */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill the local slab with some trivial data */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + + /* write data collectively */ + MESG("writeAll by Row"); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); + + /* setup dimensions again to writeAll with zero rows for process 0 */ + if(VERBOSE_MED) + HDprintf("writeAll by some with zero row\n"); + slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + /* need to make mem_dataspace to match for process 0 */ + if(MAINPROCESS){ + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + } + MESG("writeAll by some with zero row"); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset1 by ZROW succeeded"); + + /* release all temporary handles. */ + /* Could have used them for dataset2 but it is cleaner */ + /* to create them again.*/ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* Dataset2: each process takes a block of columns. */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + /* put some trivial data in the data_array */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill the local slab with some trivial data */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + + /* write data independently */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); + + /* setup dimensions again to writeAll with zero columns for process 0 */ + if(VERBOSE_MED) + HDprintf("writeAll by some with zero col\n"); + slab_set(mpi_rank, mpi_size, start, count, stride, block, ZCOL); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + /* need to make mem_dataspace to match for process 0 */ + if(MAINPROCESS){ + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + } + MESG("writeAll by some with zero col"); + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset1 by ZCOL succeeded"); + + /* release all temporary handles. */ + /* Could have used them for dataset3 but it is cleaner */ + /* to create them again.*/ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + + /* Dataset3: each process takes a block of rows, except process zero uses "none" selection. */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset3); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + if(MAINPROCESS) { + ret = H5Sselect_none(file_dataspace); + VRFY((ret >= 0), "H5Sselect_none file_dataspace succeeded"); + } /* end if */ + else { + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sselect_hyperslab succeeded"); + } /* end else */ + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + if(MAINPROCESS) { + ret = H5Sselect_none(mem_dataspace); + VRFY((ret >= 0), "H5Sselect_none mem_dataspace succeeded"); + } /* end if */ + + /* fill the local slab with some trivial data */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if(VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } /* end if */ + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + + /* write data collectively */ + MESG("writeAll with none"); + ret = H5Dwrite(dataset3, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset3 succeeded"); + + /* write data collectively (with datatype conversion) */ + MESG("writeAll with none"); + ret = H5Dwrite(dataset3, H5T_NATIVE_UCHAR, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset3 succeeded"); + + /* release all temporary handles. */ + /* Could have used them for dataset4 but it is cleaner */ + /* to create them again.*/ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* Dataset4: each process writes no data, except process zero uses "all" selection. */ + /* Additionally, these are in a scalar dataspace */ + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset4); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + if(MAINPROCESS) { + ret = H5Sselect_none(file_dataspace); + VRFY((ret >= 0), "H5Sselect_all file_dataspace succeeded"); + } /* end if */ + else { + ret = H5Sselect_all(file_dataspace); + VRFY((ret >= 0), "H5Sselect_none succeeded"); + } /* end else */ + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate(H5S_SCALAR); + VRFY((mem_dataspace >= 0), ""); + if(MAINPROCESS) { + ret = H5Sselect_none(mem_dataspace); + VRFY((ret >= 0), "H5Sselect_all mem_dataspace succeeded"); + } /* end if */ + else { + ret = H5Sselect_all(mem_dataspace); + VRFY((ret >= 0), "H5Sselect_none succeeded"); + } /* end else */ + + /* fill the local slab with some trivial data */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if(VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } /* end if */ + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + /* write data collectively */ + MESG("writeAll with scalar dataspace"); + ret = H5Dwrite(dataset4, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset4 succeeded"); + + /* write data collectively (with datatype conversion) */ + MESG("writeAll with scalar dataspace"); + ret = H5Dwrite(dataset4, H5T_NATIVE_UCHAR, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset4 succeeded"); + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + + if(data_array1) free(data_array1); + data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); + + block[0] = 1; + block[1] = dim1; + stride[0] = 1; + stride[1] = dim1; + count[0] = 1; + count[1] = 1; + start[0] = dim0/mpi_size * mpi_rank; + start[1] = 0; + + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* Dataset5: point selection in File - Hyperslab selection in Memory*/ + /* create a file dataspace independently */ + point_set (start, count, stride, block, num_points, coords, OUT_OF_ORDER); + file_dataspace = H5Dget_space (dataset5); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + start[0] = 0; + start[1] = 0; + mem_dataspace = H5Dget_space (dataset5); + VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + /* write data collectively */ + ret = H5Dwrite(dataset5, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset5 succeeded"); + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* Dataset6: point selection in File - Point selection in Memory*/ + /* create a file dataspace independently */ + start[0] = dim0/mpi_size * mpi_rank; + start[1] = 0; + point_set (start, count, stride, block, num_points, coords, OUT_OF_ORDER); + file_dataspace = H5Dget_space (dataset6); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + start[0] = 0; + start[1] = 0; + point_set (start, count, stride, block, num_points, coords, IN_ORDER); + mem_dataspace = H5Dget_space (dataset6); + VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + /* write data collectively */ + ret = H5Dwrite(dataset6, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset6 succeeded"); + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* Dataset7: point selection in File - All selection in Memory*/ + /* create a file dataspace independently */ + start[0] = dim0/mpi_size * mpi_rank; + start[1] = 0; + point_set (start, count, stride, block, num_points, coords, IN_ORDER); + file_dataspace = H5Dget_space (dataset7); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + current_dims = num_points; + mem_dataspace = H5Screate_simple (1, ¤t_dims, NULL); + VRFY((mem_dataspace >= 0), "mem_dataspace create succeeded"); + + ret = H5Sselect_all(mem_dataspace); + VRFY((ret >= 0), "H5Sselect_all succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + /* write data collectively */ + ret = H5Dwrite(dataset7, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite dataset7 succeeded"); + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* + * All writes completed. Close datasets collectively + */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose1 succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose2 succeeded"); + ret = H5Dclose(dataset3); + VRFY((ret >= 0), "H5Dclose3 succeeded"); + ret = H5Dclose(dataset4); + VRFY((ret >= 0), "H5Dclose4 succeeded"); + ret = H5Dclose(dataset5); + VRFY((ret >= 0), "H5Dclose5 succeeded"); + ret = H5Dclose(dataset6); + VRFY((ret >= 0), "H5Dclose6 succeeded"); + ret = H5Dclose(dataset7); + VRFY((ret >= 0), "H5Dclose7 succeeded"); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if(coords) HDfree(coords); + if(data_array1) HDfree(data_array1); +} + +/* + * Example of using the parallel HDF5 library to read two datasets + * in one HDF5 file with collective parallel access support. + * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. + * Each process controls only a slab of size dim0 x dim1 within each + * dataset. [Note: not so yet. Datasets are of sizes dim0xdim1 and + * each process controls a hyperslab within.] + */ + +void +dataset_readAll(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2, dataset5, dataset6, dataset7; /* Dataset ID */ + DATATYPE *data_array1 = NULL; /* data buffer */ + DATATYPE *data_origin1 = NULL; /* expected data buffer */ + const char *filename; + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK], stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + size_t num_points; /* for point selection */ + hsize_t *coords = NULL; /* for point selection */ + int i,j,k; + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if(VERBOSE_MED) + HDprintf("Collective read test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm,&mpi_size); + MPI_Comm_rank(test_comm,&mpi_rank); + + /* set up the coords array selection */ + num_points = dim1; + coords = (hsize_t *)HDmalloc(dim0 * dim1 * MAX_RANK * sizeof(hsize_t)); + VRFY((coords != NULL), "coords malloc succeeded"); + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + data_origin1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_origin1 != NULL), "data_origin1 HDmalloc succeeded"); + + /* ------------------- + * OPEN AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* open the file collectively */ + fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl); + VRFY((fid >= 0), "H5Fopen succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + + /* -------------------------- + * Open the datasets in it + * ------------------------- */ + /* open the dataset1 collectively */ + dataset1 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dopen2 succeeded"); + + /* open another dataset collectively */ + dataset2 = H5Dopen2(fid, DATASETNAME2, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dopen2 2 succeeded"); + + /* open another dataset collectively */ + dataset5 = H5Dopen2(fid, DATASETNAME7, H5P_DEFAULT); + VRFY((dataset5 >= 0), "H5Dopen2 5 succeeded"); + dataset6 = H5Dopen2(fid, DATASETNAME8, H5P_DEFAULT); + VRFY((dataset6 >= 0), "H5Dopen2 6 succeeded"); + dataset7 = H5Dopen2(fid, DATASETNAME9, H5P_DEFAULT); + VRFY((dataset7 >= 0), "H5Dopen2 7 succeeded"); + + /* + * Set up dimensions of the slab this process accesses. + */ + + /* Dataset1: each process takes a block of columns. */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + MESG("data_array initialized"); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(start, block, data_origin1); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + + /* read data collectively */ + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset1 succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if(ret) nerrors++; + + /* setup dimensions again to readAll with zero columns for process 0 */ + if(VERBOSE_MED) + HDprintf("readAll by some with zero col\n"); + slab_set(mpi_rank, mpi_size, start, count, stride, block, ZCOL); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + /* need to make mem_dataspace to match for process 0 */ + if(MAINPROCESS){ + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + } + MESG("readAll by some with zero col"); + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset1 by ZCOL succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if(ret) nerrors++; + + /* release all temporary handles. */ + /* Could have used them for dataset2 but it is cleaner */ + /* to create them again.*/ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* Dataset2: each process takes a block of rows. */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + MESG("data_array initialized"); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(start, block, data_origin1); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + + /* read data collectively */ + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset2 succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if(ret) nerrors++; + + /* setup dimensions again to readAll with zero rows for process 0 */ + if(VERBOSE_MED) + HDprintf("readAll by some with zero row\n"); + slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + /* need to make mem_dataspace to match for process 0 */ + if(MAINPROCESS){ + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); + } + MESG("readAll by some with zero row"); + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset1 by ZROW succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if(ret) nerrors++; + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + if(data_array1) free(data_array1); + if(data_origin1) free(data_origin1); + data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); + data_origin1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_origin1 != NULL), "data_origin1 malloc succeeded"); + + block[0] = 1; + block[1] = dim1; + stride[0] = 1; + stride[1] = dim1; + count[0] = 1; + count[1] = 1; + start[0] = dim0/mpi_size * mpi_rank; + start[1] = 0; + + dataset_fill(start, block, data_origin1); + MESG("data_array initialized"); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(start, block, data_origin1); + } + + /* Dataset5: point selection in memory - Hyperslab selection in file*/ + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset5); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + start[0] = 0; + start[1] = 0; + point_set (start, count, stride, block, num_points, coords, OUT_OF_ORDER); + mem_dataspace = H5Dget_space (dataset5); + VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + /* read data collectively */ + ret = H5Dread(dataset5, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset5 succeeded"); + + + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if(ret) nerrors++; + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + if(data_array1) free(data_array1); + data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); + + /* Dataset6: point selection in File - Point selection in Memory*/ + /* create a file dataspace independently */ + start[0] = dim0/mpi_size * mpi_rank; + start[1] = 0; + point_set (start, count, stride, block, num_points, coords, IN_ORDER); + file_dataspace = H5Dget_space (dataset6); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + start[0] = 0; + start[1] = 0; + point_set (start, count, stride, block, num_points, coords, OUT_OF_ORDER); + mem_dataspace = H5Dget_space (dataset6); + VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + /* read data collectively */ + ret = H5Dread(dataset6, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset6 succeeded"); + + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + if(ret) nerrors++; + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + if(data_array1) free(data_array1); + data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); + + /* Dataset7: point selection in memory - All selection in file*/ + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset7); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_all(file_dataspace); + VRFY((ret >= 0), "H5Sselect_all succeeded"); + + num_points = dim0 * dim1; + k=0; + for (i=0 ; i<dim0; i++) { + for (j=0 ; j<dim1; j++) { + coords[k++] = i; + coords[k++] = j; + } + } + mem_dataspace = H5Dget_space (dataset7); + VRFY((mem_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords); + VRFY((ret >= 0), "H5Sselect_elements succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), ""); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pcreate xfer succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + /* read data collectively */ + ret = H5Dread(dataset7, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread dataset7 succeeded"); + + start[0] = dim0/mpi_size * mpi_rank; + start[1] = 0; + ret = dataset_vrfy(start, count, stride, block, data_array1+(dim0/mpi_size * dim1 * mpi_rank), data_origin1); + if(ret) nerrors++; + + /* release all temporary handles. */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + /* + * All reads completed. Close datasets collectively + */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose1 succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose2 succeeded"); + ret = H5Dclose(dataset5); + VRFY((ret >= 0), "H5Dclose5 succeeded"); + ret = H5Dclose(dataset6); + VRFY((ret >= 0), "H5Dclose6 succeeded"); + ret = H5Dclose(dataset7); + VRFY((ret >= 0), "H5Dclose7 succeeded"); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if(coords) HDfree(coords); + if(data_array1) HDfree(data_array1); + if(data_origin1) HDfree(data_origin1); +} + + +/* + * Part 2--Independent read/write for extendible datasets. + */ + +/* + * Example of using the parallel HDF5 library to create two extendible + * datasets in one HDF5 file with independent parallel MPIO access support. + * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. + * Each process controls only a slab of size dim0 x dim1 within each + * dataset. + */ + +void +extend_writeInd(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + const char *filename; + hsize_t dims[MAX_RANK]; /* dataset dim sizes */ + hsize_t max_dims[MAX_RANK] = + {H5S_UNLIMITED, H5S_UNLIMITED}; /* dataset maximum dim sizes */ + DATATYPE *data_array1 = NULL; /* data buffer */ + hsize_t chunk_dims[MAX_RANK]; /* chunk sizes */ + hid_t dataset_pl; /* dataset create prop. list */ + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK]; /* for hyperslab setting */ + hsize_t stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if(VERBOSE_MED) + HDprintf("Extend independent write test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm,&mpi_size); + MPI_Comm_rank(test_comm,&mpi_rank); + + /* setup chunk-size. Make sure sizes are > 0 */ + chunk_dims[0] = chunkdim0; + chunk_dims[1] = chunkdim1; + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + + /* ------------------- + * START AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + +/* Reduce the number of metadata cache slots, so that there are cache + * collisions during the raw data I/O on the chunked dataset. This stresses + * the metadata cache and tests for cache bugs. -QAK + */ +{ + int mdc_nelmts; + size_t rdcc_nelmts; + size_t rdcc_nbytes; + double rdcc_w0; + + ret = H5Pget_cache(acc_tpl,&mdc_nelmts,&rdcc_nelmts,&rdcc_nbytes,&rdcc_w0); + VRFY((ret >= 0), "H5Pget_cache succeeded"); + mdc_nelmts=4; + ret = H5Pset_cache(acc_tpl,mdc_nelmts,rdcc_nelmts,rdcc_nbytes,rdcc_w0); + VRFY((ret >= 0), "H5Pset_cache succeeded"); +} + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + + /* -------------------------------------------------------------- + * Define the dimensions of the overall datasets and create them. + * ------------------------------------------------------------- */ + + /* set up dataset storage chunk sizes and creation property list */ + if(VERBOSE_MED) + HDprintf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]); + dataset_pl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dataset_pl >= 0), "H5Pcreate succeeded"); + ret = H5Pset_chunk(dataset_pl, MAX_RANK, chunk_dims); + VRFY((ret >= 0), "H5Pset_chunk succeeded"); + + /* setup dimensionality object */ + /* start out with no rows, extend it later. */ + dims[0] = dims[1] = 0; + sid = H5Screate_simple (MAX_RANK, dims, max_dims); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + /* create an extendible dataset collectively */ + dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); + + /* create another extendible dataset collectively */ + dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dcreate2 succeeded"); + + /* release resource */ + H5Sclose(sid); + H5Pclose(dataset_pl); + + + + /* ------------------------- + * Test writing to dataset1 + * -------------------------*/ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* put some trivial data in the data_array */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if(VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* Extend its current dim sizes before writing */ + dims[0] = dim0; + dims[1] = dim1; + ret = H5Dset_extent(dataset1, dims); + VRFY((ret >= 0), "H5Dset_extent succeeded"); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* write data independently */ + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* release resource */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + + + /* ------------------------- + * Test writing to dataset2 + * -------------------------*/ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + /* put some trivial data in the data_array */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* Try write to dataset2 beyond its current dim sizes. Should fail. */ + /* Temporary turn off auto error reporting */ + H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data); + H5Eset_auto2(H5E_DEFAULT, NULL, NULL); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset2); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* write data independently. Should fail. */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, data_array1); + VRFY((ret < 0), "H5Dwrite failed as expected"); + + /* restore auto error reporting */ + H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data); + H5Sclose(file_dataspace); + + /* Extend dataset2 and try again. Should succeed. */ + dims[0] = dim0; + dims[1] = dim1; + ret = H5Dset_extent(dataset2, dims); + VRFY((ret >= 0), "H5Dset_extent succeeded"); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset2); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* write data independently */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* release resource */ + ret = H5Sclose(file_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Sclose(mem_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose1 succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose2 succeeded"); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if(data_array1) HDfree(data_array1); +} + +/* + * Example of using the parallel HDF5 library to create an extendable dataset + * and perform I/O on it in a way that verifies that the chunk cache is + * bypassed for parallel I/O. + */ + +void +extend_writeInd2(void) +{ + const char *filename; + hid_t fid; /* HDF5 file ID */ + hid_t fapl; /* File access templates */ + hid_t fs; /* File dataspace ID */ + hid_t ms; /* Memory dataspace ID */ + hid_t dataset; /* Dataset ID */ + hsize_t orig_size=10; /* Original dataset dim size */ + hsize_t new_size=20; /* Extended dataset dim size */ + hsize_t one=1; + hsize_t max_size = H5S_UNLIMITED; /* dataset maximum dim size */ + hsize_t chunk_size = 16384; /* chunk size */ + hid_t dcpl; /* dataset create prop. list */ + int written[10], /* Data to write */ + retrieved[10]; /* Data read in */ + int mpi_size, mpi_rank; /* MPI settings */ + int i; /* Local index variable */ + herr_t ret; /* Generic return value */ + + filename = GetTestParameters(); + if(VERBOSE_MED) + HDprintf("Extend independent write test #2 on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm,&mpi_size); + MPI_Comm_rank(test_comm,&mpi_rank); + + /* ------------------- + * START AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + fapl = create_faccess_plist(test_comm, MPI_INFO_NULL, facc_type); + VRFY((fapl >= 0), "create_faccess_plist succeeded"); + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(fapl); + VRFY((ret >= 0), "H5Pclose succeeded"); + + + /* -------------------------------------------------------------- + * Define the dimensions of the overall datasets and create them. + * ------------------------------------------------------------- */ + + /* set up dataset storage chunk sizes and creation property list */ + dcpl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dcpl >= 0), "H5Pcreate succeeded"); + ret = H5Pset_chunk(dcpl, 1, &chunk_size); + VRFY((ret >= 0), "H5Pset_chunk succeeded"); + + /* setup dimensionality object */ + fs = H5Screate_simple (1, &orig_size, &max_size); + VRFY((fs >= 0), "H5Screate_simple succeeded"); + + /* create an extendible dataset collectively */ + dataset = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, fs, H5P_DEFAULT, dcpl, H5P_DEFAULT); + VRFY((dataset >= 0), "H5Dcreat2e succeeded"); + + /* release resource */ + ret = H5Pclose(dcpl); + VRFY((ret >= 0), "H5Pclose succeeded"); + + + /* ------------------------- + * Test writing to dataset + * -------------------------*/ + /* create a memory dataspace independently */ + ms = H5Screate_simple(1, &orig_size, &max_size); + VRFY((ms >= 0), "H5Screate_simple succeeded"); + + /* put some trivial data in the data_array */ + for(i = 0; i < (int)orig_size; i++) + written[i] = i; + MESG("data array initialized"); + if(VERBOSE_MED) { + MESG("writing at offset zero: "); + for(i = 0; i < (int)orig_size; i++) + HDprintf("%s%d", i?", ":"", written[i]); + HDprintf("\n"); + } + ret = H5Dwrite(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, written); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* ------------------------- + * Read initial data from dataset. + * -------------------------*/ + ret = H5Dread(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, retrieved); + VRFY((ret >= 0), "H5Dread succeeded"); + for (i=0; i<(int)orig_size; i++) + if(written[i]!=retrieved[i]) { + HDprintf("Line #%d: written!=retrieved: written[%d]=%d, retrieved[%d]=%d\n",__LINE__, + i,written[i], i,retrieved[i]); + nerrors++; + } + if(VERBOSE_MED){ + MESG("read at offset zero: "); + for (i=0; i<(int)orig_size; i++) + HDprintf("%s%d", i?", ":"", retrieved[i]); + HDprintf("\n"); + } + + /* ------------------------- + * Extend the dataset & retrieve new dataspace + * -------------------------*/ + ret = H5Dset_extent(dataset, &new_size); + VRFY((ret >= 0), "H5Dset_extent succeeded"); + ret = H5Sclose(fs); + VRFY((ret >= 0), "H5Sclose succeeded"); + fs = H5Dget_space(dataset); + VRFY((fs >= 0), "H5Dget_space succeeded"); + + /* ------------------------- + * Write to the second half of the dataset + * -------------------------*/ + for (i=0; i<(int)orig_size; i++) + written[i] = orig_size + i; + MESG("data array re-initialized"); + if(VERBOSE_MED) { + MESG("writing at offset 10: "); + for (i=0; i<(int)orig_size; i++) + HDprintf("%s%d", i?", ":"", written[i]); + HDprintf("\n"); + } + ret = H5Sselect_hyperslab(fs, H5S_SELECT_SET, &orig_size, NULL, &one, &orig_size); + VRFY((ret >= 0), "H5Sselect_hyperslab succeeded"); + ret = H5Dwrite(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, written); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* ------------------------- + * Read the new data + * -------------------------*/ + ret = H5Dread(dataset, H5T_NATIVE_INT, ms, fs, H5P_DEFAULT, retrieved); + VRFY((ret >= 0), "H5Dread succeeded"); + for (i=0; i<(int)orig_size; i++) + if(written[i]!=retrieved[i]) { + HDprintf("Line #%d: written!=retrieved: written[%d]=%d, retrieved[%d]=%d\n",__LINE__, + i,written[i], i,retrieved[i]); + nerrors++; + } + if(VERBOSE_MED){ + MESG("read at offset 10: "); + for (i=0; i<(int)orig_size; i++) + HDprintf("%s%d", i?", ":"", retrieved[i]); + HDprintf("\n"); + } + + + /* Close dataset collectively */ + ret = H5Dclose(dataset); + VRFY((ret >= 0), "H5Dclose succeeded"); + + /* Close the file collectively */ + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); +} + +/* Example of using the parallel HDF5 library to read an extendible dataset */ +void +extend_readInd(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + hsize_t dims[MAX_RANK]; /* dataset dim sizes */ + DATATYPE *data_array1 = NULL; /* data buffer */ + DATATYPE *data_array2 = NULL; /* data buffer */ + DATATYPE *data_origin1 = NULL; /* expected data buffer */ + const char *filename; + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK], stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if(VERBOSE_MED) + HDprintf("Extend independent read test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm,&mpi_size); + MPI_Comm_rank(test_comm,&mpi_rank); + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + data_array2 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_array2 != NULL), "data_array2 HDmalloc succeeded"); + data_origin1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_origin1 != NULL), "data_origin1 HDmalloc succeeded"); + + /* ------------------- + * OPEN AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* open the file collectively */ + fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl); + VRFY((fid >= 0), ""); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* open the dataset1 collectively */ + dataset1 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset1 >= 0), ""); + + /* open another dataset collectively */ + dataset2 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset2 >= 0), ""); + + /* Try extend dataset1 which is open RDONLY. Should fail. */ + /* first turn off auto error reporting */ + H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data); + H5Eset_auto2(H5E_DEFAULT, NULL, NULL); + + file_dataspace = H5Dget_space (dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sget_simple_extent_dims(file_dataspace, dims, NULL); + VRFY((ret > 0), "H5Sget_simple_extent_dims succeeded"); + dims[0]++; + ret = H5Dset_extent(dataset1, dims); + VRFY((ret < 0), "H5Dset_extent failed as expected"); + + /* restore auto error reporting */ + H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data); + H5Sclose(file_dataspace); + + + /* Read dataset1 using BYROW pattern */ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset1); + VRFY((file_dataspace >= 0), ""); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), ""); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* read data independently */ + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dread succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + VRFY((ret == 0), "dataset1 read verified correct"); + if(ret) nerrors++; + + H5Sclose(mem_dataspace); + H5Sclose(file_dataspace); + + + /* Read dataset2 using BYCOL pattern */ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset2); + VRFY((file_dataspace >= 0), ""); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), ""); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* read data independently */ + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, data_array1); + VRFY((ret >= 0), "H5Dread succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + VRFY((ret == 0), "dataset2 read verified correct"); + if(ret) nerrors++; + + H5Sclose(mem_dataspace); + H5Sclose(file_dataspace); + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), ""); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), ""); + + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if(data_array1) HDfree(data_array1); + if(data_array2) HDfree(data_array2); + if(data_origin1) HDfree(data_origin1); +} + +/* + * Part 3--Collective read/write for extendible datasets. + */ + +/* + * Example of using the parallel HDF5 library to create two extendible + * datasets in one HDF5 file with collective parallel MPIO access support. + * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. + * Each process controls only a slab of size dim0 x dim1 within each + * dataset. + */ + +void +extend_writeAll(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + const char *filename; + hsize_t dims[MAX_RANK]; /* dataset dim sizes */ + hsize_t max_dims[MAX_RANK] = + {H5S_UNLIMITED, H5S_UNLIMITED}; /* dataset maximum dim sizes */ + DATATYPE *data_array1 = NULL; /* data buffer */ + hsize_t chunk_dims[MAX_RANK]; /* chunk sizes */ + hid_t dataset_pl; /* dataset create prop. list */ + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK]; /* for hyperslab setting */ + hsize_t stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if(VERBOSE_MED) + HDprintf("Extend independent write test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm,&mpi_size); + MPI_Comm_rank(test_comm,&mpi_rank); + + /* setup chunk-size. Make sure sizes are > 0 */ + chunk_dims[0] = chunkdim0; + chunk_dims[1] = chunkdim1; + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + + /* ------------------- + * START AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + +/* Reduce the number of metadata cache slots, so that there are cache + * collisions during the raw data I/O on the chunked dataset. This stresses + * the metadata cache and tests for cache bugs. -QAK + */ +{ + int mdc_nelmts; + size_t rdcc_nelmts; + size_t rdcc_nbytes; + double rdcc_w0; + + ret = H5Pget_cache(acc_tpl,&mdc_nelmts,&rdcc_nelmts,&rdcc_nbytes,&rdcc_w0); + VRFY((ret >= 0), "H5Pget_cache succeeded"); + mdc_nelmts=4; + ret = H5Pset_cache(acc_tpl,mdc_nelmts,rdcc_nelmts,rdcc_nbytes,rdcc_w0); + VRFY((ret >= 0), "H5Pset_cache succeeded"); +} + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + + /* -------------------------------------------------------------- + * Define the dimensions of the overall datasets and create them. + * ------------------------------------------------------------- */ + + /* set up dataset storage chunk sizes and creation property list */ + if(VERBOSE_MED) + HDprintf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]); + dataset_pl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dataset_pl >= 0), "H5Pcreate succeeded"); + ret = H5Pset_chunk(dataset_pl, MAX_RANK, chunk_dims); + VRFY((ret >= 0), "H5Pset_chunk succeeded"); + + /* setup dimensionality object */ + /* start out with no rows, extend it later. */ + dims[0] = dims[1] = 0; + sid = H5Screate_simple (MAX_RANK, dims, max_dims); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + /* create an extendible dataset collectively */ + dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); + + /* create another extendible dataset collectively */ + dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dcreate2 succeeded"); + + /* release resource */ + H5Sclose(sid); + H5Pclose(dataset_pl); + + + + /* ------------------------- + * Test writing to dataset1 + * -------------------------*/ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* put some trivial data in the data_array */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if(VERBOSE_MED) { + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* Extend its current dim sizes before writing */ + dims[0] = dim0; + dims[1] = dim1; + ret = H5Dset_extent(dataset1, dims); + VRFY((ret >= 0), "H5Dset_extent succeeded"); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + + /* write data collectively */ + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* release resource */ + H5Sclose(file_dataspace); + H5Sclose(mem_dataspace); + H5Pclose(xfer_plist); + + + /* ------------------------- + * Test writing to dataset2 + * -------------------------*/ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + /* put some trivial data in the data_array */ + dataset_fill(start, block, data_array1); + MESG("data_array initialized"); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + + /* Try write to dataset2 beyond its current dim sizes. Should fail. */ + /* Temporary turn off auto error reporting */ + H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data); + H5Eset_auto2(H5E_DEFAULT, NULL, NULL); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset2); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* write data independently. Should fail. */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret < 0), "H5Dwrite failed as expected"); + + /* restore auto error reporting */ + H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data); + H5Sclose(file_dataspace); + + /* Extend dataset2 and try again. Should succeed. */ + dims[0] = dim0; + dims[1] = dim1; + ret = H5Dset_extent(dataset2, dims); + VRFY((ret >= 0), "H5Dset_extent succeeded"); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset2); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* write data independently */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* release resource */ + ret = H5Sclose(file_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Sclose(mem_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Pclose(xfer_plist); + VRFY((ret >= 0), "H5Pclose succeeded"); + + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose1 succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose2 succeeded"); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if(data_array1) HDfree(data_array1); +} + +/* Example of using the parallel HDF5 library to read an extendible dataset */ +void +extend_readAll(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + const char *filename; + hsize_t dims[MAX_RANK]; /* dataset dim sizes */ + DATATYPE *data_array1 = NULL; /* data buffer */ + DATATYPE *data_array2 = NULL; /* data buffer */ + DATATYPE *data_origin1 = NULL; /* expected data buffer */ + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK], stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if(VERBOSE_MED) + HDprintf("Extend independent read test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm,&mpi_size); + MPI_Comm_rank(test_comm,&mpi_rank); + + /* allocate memory for data buffer */ + data_array1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_array1 != NULL), "data_array1 HDmalloc succeeded"); + data_array2 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_array2 != NULL), "data_array2 HDmalloc succeeded"); + data_origin1 = (DATATYPE *)HDmalloc(dim0*dim1*sizeof(DATATYPE)); + VRFY((data_origin1 != NULL), "data_origin1 HDmalloc succeeded"); + + /* ------------------- + * OPEN AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* open the file collectively */ + fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl); + VRFY((fid >= 0), ""); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* open the dataset1 collectively */ + dataset1 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset1 >= 0), ""); + + /* open another dataset collectively */ + dataset2 = H5Dopen2(fid, DATASETNAME1, H5P_DEFAULT); + VRFY((dataset2 >= 0), ""); + + /* Try extend dataset1 which is open RDONLY. Should fail. */ + /* first turn off auto error reporting */ + H5Eget_auto2(H5E_DEFAULT, &old_func, &old_client_data); + H5Eset_auto2(H5E_DEFAULT, NULL, NULL); + + file_dataspace = H5Dget_space (dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sget_simple_extent_dims(file_dataspace, dims, NULL); + VRFY((ret > 0), "H5Sget_simple_extent_dims succeeded"); + dims[0]++; + ret = H5Dset_extent(dataset1, dims); + VRFY((ret < 0), "H5Dset_extent failed as expected"); + + /* restore auto error reporting */ + H5Eset_auto2(H5E_DEFAULT, old_func, old_client_data); + H5Sclose(file_dataspace); + + + /* Read dataset1 using BYROW pattern */ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset1); + VRFY((file_dataspace >= 0), ""); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), ""); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + + /* read data collectively */ + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + VRFY((ret == 0), "dataset1 read verified correct"); + if(ret) nerrors++; + + H5Sclose(mem_dataspace); + H5Sclose(file_dataspace); + H5Pclose(xfer_plist); + + + /* Read dataset2 using BYCOL pattern */ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset2); + VRFY((file_dataspace >= 0), ""); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), ""); + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* fill dataset with test data */ + dataset_fill(start, block, data_origin1); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(start, block, data_array1); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + + /* read data collectively */ + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_array1); + VRFY((ret >= 0), "H5Dread succeeded"); + + /* verify the read data with original expected data */ + ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); + VRFY((ret == 0), "dataset2 read verified correct"); + if(ret) nerrors++; + + H5Sclose(mem_dataspace); + H5Sclose(file_dataspace); + H5Pclose(xfer_plist); + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), ""); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), ""); + + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if(data_array1) HDfree(data_array1); + if(data_array2) HDfree(data_array2); + if(data_origin1) HDfree(data_origin1); +} + +/* + * Example of using the parallel HDF5 library to read a compressed + * dataset in an HDF5 file with collective parallel access support. + */ +#ifdef H5_HAVE_FILTER_DEFLATE +void +compress_readAll(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t dcpl; /* Dataset creation property list */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t dataspace; /* Dataspace ID */ + hid_t dataset; /* Dataset ID */ + int rank=1; /* Dataspace rank */ + hsize_t dim=dim0; /* Dataspace dimensions */ + unsigned u; /* Local index variable */ + unsigned chunk_opts; /* Chunk options */ + unsigned disable_partial_chunk_filters; /* Whether filters are disabled on partial chunks */ + DATATYPE *data_read = NULL; /* data buffer */ + DATATYPE *data_orig = NULL; /* expected data buffer */ + const char *filename; + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + int mpi_size, mpi_rank; + herr_t ret; /* Generic return value */ + + filename = GetTestParameters(); + if(VERBOSE_MED) + HDprintf("Collective chunked dataset read test on file %s\n", filename); + + /* Retrieve MPI parameters */ + MPI_Comm_size(comm,&mpi_size); + MPI_Comm_rank(comm,&mpi_rank); + + /* Allocate data buffer */ + data_orig = (DATATYPE *)HDmalloc((size_t)dim*sizeof(DATATYPE)); + VRFY((data_orig != NULL), "data_origin1 HDmalloc succeeded"); + data_read = (DATATYPE *)HDmalloc((size_t)dim*sizeof(DATATYPE)); + VRFY((data_read != NULL), "data_array1 HDmalloc succeeded"); + + /* Initialize data buffers */ + for(u=0; u<dim;u++) + data_orig[u]=u; + + /* Run test both with and without filters disabled on partial chunks */ + for(disable_partial_chunk_filters = 0; disable_partial_chunk_filters <= 1; + disable_partial_chunk_filters++) { + /* Process zero creates the file with a compressed, chunked dataset */ + if(mpi_rank==0) { + hsize_t chunk_dim; /* Chunk dimensions */ + + /* Create the file */ + fid = H5Fcreate(h5_rmprefix(filename), H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + VRFY((fid > 0), "H5Fcreate succeeded"); + + /* Create property list for chunking and compression */ + dcpl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dcpl > 0), "H5Pcreate succeeded"); + + ret = H5Pset_layout(dcpl, H5D_CHUNKED); + VRFY((ret >= 0), "H5Pset_layout succeeded"); + + /* Use eight chunks */ + chunk_dim = dim / 8; + ret = H5Pset_chunk(dcpl, rank, &chunk_dim); + VRFY((ret >= 0), "H5Pset_chunk succeeded"); + + /* Set chunk options appropriately */ + if(disable_partial_chunk_filters) { + ret = H5Pget_chunk_opts(dcpl, &chunk_opts); + VRFY((ret>=0),"H5Pget_chunk_opts succeeded"); + + chunk_opts |= H5D_CHUNK_DONT_FILTER_PARTIAL_CHUNKS; + + ret = H5Pset_chunk_opts(dcpl, chunk_opts); + VRFY((ret>=0),"H5Pset_chunk_opts succeeded"); + } /* end if */ + + ret = H5Pset_deflate(dcpl, 9); + VRFY((ret >= 0), "H5Pset_deflate succeeded"); + + /* Create dataspace */ + dataspace = H5Screate_simple(rank, &dim, NULL); + VRFY((dataspace > 0), "H5Screate_simple succeeded"); + + /* Create dataset */ + dataset = H5Dcreate2(fid, "compressed_data", H5T_NATIVE_INT, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT); + VRFY((dataset > 0), "H5Dcreate2 succeeded"); + + /* Write compressed data */ + ret = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_orig); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* Close objects */ + ret = H5Pclose(dcpl); + VRFY((ret >= 0), "H5Pclose succeeded"); + ret = H5Sclose(dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Dclose(dataset); + VRFY((ret >= 0), "H5Dclose succeeded"); + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); + } + + /* Wait for file to be created */ + MPI_Barrier(comm); + + /* ------------------- + * OPEN AN HDF5 FILE + * -------------------*/ + + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* open the file collectively */ + fid=H5Fopen(filename,H5F_ACC_RDWR,acc_tpl); + VRFY((fid > 0), "H5Fopen succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), "H5Pclose succeeded"); + + + /* Open dataset with compressed chunks */ + dataset = H5Dopen2(fid, "compressed_data", H5P_DEFAULT); + VRFY((dataset > 0), "H5Dopen2 succeeded"); + + /* Try reading & writing data */ + if(dataset>0) { + /* Create dataset transfer property list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist > 0), "H5Pcreate succeeded"); + + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + if(dxfer_coll_type == DXFER_INDEPENDENT_IO) { + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0),"set independent IO collectively succeeded"); + } + + + /* Try reading the data */ + ret = H5Dread(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, xfer_plist, data_read); + VRFY((ret >= 0), "H5Dread succeeded"); + + /* Verify data read */ + for(u=0; u<dim; u++) + if(data_orig[u]!=data_read[u]) { + HDprintf("Line #%d: written!=retrieved: data_orig[%u]=%d, data_read[%u]=%d\n",__LINE__, + (unsigned)u,data_orig[u],(unsigned)u,data_read[u]); + nerrors++; + } + +#if MPI_VERSION >= 3 + ret = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, xfer_plist, data_read); + VRFY((ret >= 0), "H5Dwrite succeeded"); +#endif + + ret = H5Pclose(xfer_plist); + VRFY((ret >= 0), "H5Pclose succeeded"); + ret = H5Dclose(dataset); + VRFY((ret >= 0), "H5Dclose succeeded"); + } /* end if */ + + /* Close file */ + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); + } /* end for */ + + /* release data buffers */ + if(data_read) HDfree(data_read); + if(data_orig) HDfree(data_orig); +} +#endif /* H5_HAVE_FILTER_DEFLATE */ + +/* + * Part 4--Non-selection for chunked dataset + */ + +/* + * Example of using the parallel HDF5 library to create chunked + * dataset in one HDF5 file with collective and independent parallel + * MPIO access support. The Datasets are of sizes dim0 x dim1. + * Each process controls only a slab of size dim0 x dim1 within the + * dataset with the exception that one processor selects no element. + */ + +void +none_selection_chunk(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist; /* Dataset transfer properties list */ + hid_t sid; /* Dataspace ID */ + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* memory dataspace ID */ + hid_t dataset1, dataset2; /* Dataset ID */ + const char *filename; + hsize_t dims[MAX_RANK]; /* dataset dim sizes */ + DATATYPE *data_origin = NULL; /* data buffer */ + DATATYPE *data_array = NULL; /* data buffer */ + hsize_t chunk_dims[MAX_RANK]; /* chunk sizes */ + hid_t dataset_pl; /* dataset create prop. list */ + + hsize_t start[MAX_RANK]; /* for hyperslab setting */ + hsize_t count[MAX_RANK]; /* for hyperslab setting */ + hsize_t stride[MAX_RANK]; /* for hyperslab setting */ + hsize_t block[MAX_RANK]; /* for hyperslab setting */ + hsize_t mstart[MAX_RANK]; /* for data buffer in memory */ + + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + filename = GetTestParameters(); + if(VERBOSE_MED) + HDprintf("Extend independent write test on file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm,&mpi_size); + MPI_Comm_rank(test_comm,&mpi_rank); + + /* setup chunk-size. Make sure sizes are > 0 */ + chunk_dims[0] = chunkdim0; + chunk_dims[1] = chunkdim1; + + /* ------------------- + * START AN HDF5 FILE + * -------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), ""); + + /* -------------------------------------------------------------- + * Define the dimensions of the overall datasets and create them. + * ------------------------------------------------------------- */ + + /* set up dataset storage chunk sizes and creation property list */ + if(VERBOSE_MED) + HDprintf("chunks[]=%lu,%lu\n", (unsigned long)chunk_dims[0], (unsigned long)chunk_dims[1]); + dataset_pl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dataset_pl >= 0), "H5Pcreate succeeded"); + ret = H5Pset_chunk(dataset_pl, MAX_RANK, chunk_dims); + VRFY((ret >= 0), "H5Pset_chunk succeeded"); + + /* setup dimensionality object */ + dims[0] = dim0; + dims[1] = dim1; + sid = H5Screate_simple(MAX_RANK, dims, NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + /* create an extendible dataset collectively */ + dataset1 = H5Dcreate2(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); + + /* create another extendible dataset collectively */ + dataset2 = H5Dcreate2(fid, DATASETNAME2, H5T_NATIVE_INT, sid, H5P_DEFAULT, dataset_pl, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dcreate2 succeeded"); + + /* release resource */ + H5Sclose(sid); + H5Pclose(dataset_pl); + + /* ------------------------- + * Test collective writing to dataset1 + * -------------------------*/ + /* set up dimensions of the slab this process accesses */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + /* allocate memory for data buffer. Only allocate enough buffer for + * each processor's data. */ + if(mpi_rank) { + data_origin = (DATATYPE *)HDmalloc(block[0]*block[1]*sizeof(DATATYPE)); + VRFY((data_origin != NULL), "data_origin HDmalloc succeeded"); + + data_array = (DATATYPE *)HDmalloc(block[0]*block[1]*sizeof(DATATYPE)); + VRFY((data_array != NULL), "data_array HDmalloc succeeded"); + + /* put some trivial data in the data_array */ + mstart[0] = mstart[1] = 0; + dataset_fill(mstart, block, data_origin); + MESG("data_array initialized"); + if(VERBOSE_MED){ + MESG("data_array created"); + dataset_print(mstart, block, data_origin); + } + } + + /* create a memory dataspace independently */ + mem_dataspace = H5Screate_simple (MAX_RANK, block, NULL); + VRFY((mem_dataspace >= 0), ""); + + /* Process 0 has no selection */ + if(!mpi_rank) { + ret = H5Sselect_none(mem_dataspace); + VRFY((ret >= 0), "H5Sselect_none succeeded"); + } + + /* create a file dataspace independently */ + file_dataspace = H5Dget_space (dataset1); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* Process 0 has no selection */ + if(!mpi_rank) { + ret = H5Sselect_none(file_dataspace); + VRFY((ret >= 0), "H5Sselect_none succeeded"); + } + + /* set up the collective transfer properties list */ + xfer_plist = H5Pcreate (H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate xfer succeeded"); + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + /* write data collectively */ + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_origin); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* read data independently */ + ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, data_array); + VRFY((ret >= 0), ""); + + /* verify the read data with original expected data */ + if(mpi_rank) { + ret = dataset_vrfy(mstart, count, stride, block, data_array, data_origin); + if(ret) nerrors++; + } + + /* ------------------------- + * Test independent writing to dataset2 + * -------------------------*/ + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_INDEPENDENT); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + /* write data collectively */ + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + xfer_plist, data_origin); + VRFY((ret >= 0), "H5Dwrite succeeded"); + + /* read data independently */ + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, data_array); + VRFY((ret >= 0), ""); + + /* verify the read data with original expected data */ + if(mpi_rank) { + ret = dataset_vrfy(mstart, count, stride, block, data_array, data_origin); + if(ret) nerrors++; + } + + /* release resource */ + ret = H5Sclose(file_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Sclose(mem_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Pclose(xfer_plist); + VRFY((ret >= 0), "H5Pclose succeeded"); + + + /* close dataset collectively */ + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose1 succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose2 succeeded"); + + /* close the file collectively */ + H5Fclose(fid); + + /* release data buffers */ + if(data_origin) HDfree(data_origin); + if(data_array) HDfree(data_array); +} + + +/* Function: test_actual_io_mode + * + * Purpose: tests one specific case of collective I/O and checks that the + * actual_chunk_opt_mode property and the actual_io_mode + * properties in the DXPL have the correct values. + * + * Input: selection_mode: changes the way processes select data from the space, as well + * as some dxpl flags to get collective I/O to break in different ways. + * + * The relevant I/O function and expected response for each mode: + * TEST_ACTUAL_IO_MULTI_CHUNK_IND: + * H5D_mpi_chunk_collective_io, each process reports independent I/O + * + * TEST_ACTUAL_IO_MULTI_CHUNK_COL: + * H5D_mpi_chunk_collective_io, each process reports collective I/O + * + * TEST_ACTUAL_IO_MULTI_CHUNK_MIX: + * H5D_mpi_chunk_collective_io, each process reports mixed I/O + * + * TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE: + * H5D_mpi_chunk_collective_io, processes disagree. The root reports + * collective, the rest report independent I/O + * + * TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND: + * Same test TEST_ACTUAL_IO_MULTI_CHUNK_IND. + * Set directly go to multi-chunk-io without num threshold calc. + * TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL: + * Same test TEST_ACTUAL_IO_MULTI_CHUNK_COL. + * Set directly go to multi-chunk-io without num threshold calc. + * + * TEST_ACTUAL_IO_LINK_CHUNK: + * H5D_link_chunk_collective_io, processes report linked chunk I/O + * + * TEST_ACTUAL_IO_CONTIGUOUS: + * H5D__contig_collective_write or H5D__contig_collective_read + * each process reports contiguous collective I/O + * + * TEST_ACTUAL_IO_NO_COLLECTIVE: + * Simple independent I/O. This tests that the defaults are properly set. + * + * TEST_ACTUAL_IO_RESET: + * Perfroms collective and then independent I/O wit hthe same dxpl to + * make sure the peroperty is correctly reset to the default on each use. + * Specifically, this test runs TEST_ACTUAL_IO_MULTI_CHUNK_NO_OPT_MIX_DISAGREE + * (The most complex case that works on all builds) and then performs + * an independent read and write with the same dxpls. + * + * Note: DIRECT_MULTI_CHUNK_MIX and DIRECT_MULTI_CHUNK_MIX_DISAGREE + * is not needed as they are covered by DIRECT_CHUNK_MIX and + * MULTI_CHUNK_MIX_DISAGREE cases. _DIRECT_ cases are only for testing + * path way to multi-chunk-io by H5FD_MPIO_CHUNK_MULTI_IO insted of num-threshold. + * + * Modification: + * - Refctore to remove multi-chunk-without-opimization test and update for + * testing direct to multi-chunk-io + * Programmer: Jonathan Kim + * Date: 2012-10-10 + * + * + * Programmer: Jacob Gruber + * Date: 2011-04-06 + */ +static void +test_actual_io_mode(int selection_mode) { + H5D_mpio_actual_chunk_opt_mode_t actual_chunk_opt_mode_write = -1; + H5D_mpio_actual_chunk_opt_mode_t actual_chunk_opt_mode_read = -1; + H5D_mpio_actual_chunk_opt_mode_t actual_chunk_opt_mode_expected = -1; + H5D_mpio_actual_io_mode_t actual_io_mode_write = -1; + H5D_mpio_actual_io_mode_t actual_io_mode_read = -1; + H5D_mpio_actual_io_mode_t actual_io_mode_expected = -1; + const char * filename; + const char * test_name; + hbool_t direct_multi_chunk_io; + hbool_t multi_chunk_io; + hbool_t is_chunked; + hbool_t is_collective; + int mpi_size = -1; + int mpi_rank = -1; + int length; + int * buffer; + int i; + MPI_Comm mpi_comm = MPI_COMM_NULL; + MPI_Info mpi_info = MPI_INFO_NULL; + hid_t fid = -1; + hid_t sid = -1; + hid_t dataset = -1; + hid_t data_type = H5T_NATIVE_INT; + hid_t fapl = -1; + hid_t mem_space = -1; + hid_t file_space = -1; + hid_t dcpl = -1; + hid_t dxpl_write = -1; + hid_t dxpl_read = -1; + hsize_t dims[MAX_RANK]; + hsize_t chunk_dims[MAX_RANK]; + hsize_t start[MAX_RANK]; + hsize_t stride[MAX_RANK]; + hsize_t count[MAX_RANK]; + hsize_t block[MAX_RANK]; + char message[256]; + herr_t ret; + + /* Set up some flags to make some future if statements slightly more readable */ + direct_multi_chunk_io = ( + selection_mode == TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND || + selection_mode == TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL ); + + /* Note: RESET performs the same tests as MULTI_CHUNK_MIX_DISAGREE and then + * tests independent I/O + */ + multi_chunk_io = ( + selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_IND || + selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_COL || + selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_MIX || + selection_mode == TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE || + selection_mode == TEST_ACTUAL_IO_RESET ); + + is_chunked = ( + selection_mode != TEST_ACTUAL_IO_CONTIGUOUS && + selection_mode != TEST_ACTUAL_IO_NO_COLLECTIVE); + + is_collective = selection_mode != TEST_ACTUAL_IO_NO_COLLECTIVE; + + /* Set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + MPI_Barrier(test_comm); + + HDassert(mpi_size >= 1); + + mpi_comm = test_comm; + mpi_info = MPI_INFO_NULL; + + filename = (const char *)GetTestParameters(); + HDassert(filename != NULL); + + /* Setup the file access template */ + fapl = create_faccess_plist(mpi_comm, mpi_info, facc_type); + VRFY((fapl >= 0), "create_faccess_plist() succeeded"); + + /* Create the file */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Create the basic Space */ + dims[0] = dim0; + dims[1] = dim1; + sid = H5Screate_simple (MAX_RANK, dims, NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + /* Create the dataset creation plist */ + dcpl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dcpl >= 0), "dataset creation plist created successfully"); + + /* If we are not testing contiguous datasets */ + if(is_chunked) { + /* Set up chunk information. */ + chunk_dims[0] = dims[0]/mpi_size; + chunk_dims[1] = dims[1]; + ret = H5Pset_chunk(dcpl, 2, chunk_dims); + VRFY((ret >= 0),"chunk creation property list succeeded"); + } + + /* Create the dataset */ + dataset = H5Dcreate2(fid, "actual_io", data_type, sid, H5P_DEFAULT, + dcpl, H5P_DEFAULT); + VRFY((dataset >= 0), "H5Dcreate2() dataset succeeded"); + + /* Create the file dataspace */ + file_space = H5Dget_space(dataset); + VRFY((file_space >= 0), "H5Dget_space succeeded"); + + /* Choose a selection method based on the type of I/O we want to occur, + * and also set up some selection-dependeent test info. */ + switch(selection_mode) { + + /* Independent I/O with optimization */ + case TEST_ACTUAL_IO_MULTI_CHUNK_IND: + case TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND: + /* Since the dataset is chunked by row and each process selects a row, + * each process writes to a different chunk. This forces all I/O to be + * independent. + */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + test_name = "Multi Chunk - Independent"; + actual_chunk_opt_mode_expected = H5D_MPIO_MULTI_CHUNK; + actual_io_mode_expected = H5D_MPIO_CHUNK_INDEPENDENT; + break; + + /* Collective I/O with optimization */ + case TEST_ACTUAL_IO_MULTI_CHUNK_COL: + case TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL: + /* The dataset is chunked by rows, so each process takes a column which + * spans all chunks. Since the processes write non-overlapping regular + * selections to each chunk, the operation is purely collective. + */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + + test_name = "Multi Chunk - Collective"; + actual_chunk_opt_mode_expected = H5D_MPIO_MULTI_CHUNK; + if(mpi_size > 1) + actual_io_mode_expected = H5D_MPIO_CHUNK_COLLECTIVE; + else + actual_io_mode_expected = H5D_MPIO_CHUNK_INDEPENDENT; + break; + + /* Mixed I/O with optimization */ + case TEST_ACTUAL_IO_MULTI_CHUNK_MIX: + /* A chunk will be assigned collective I/O only if it is selected by each + * process. To get mixed I/O, have the root select all chunks and each + * subsequent process select the first and nth chunk. The first chunk, + * accessed by all, will be assigned collective I/O while each other chunk + * will be accessed only by the root and the nth procecess and will be + * assigned independent I/O. Each process will access one chunk collectively + * and at least one chunk independently, reporting mixed I/O. + */ + + if(mpi_rank == 0) { + /* Select the first column */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + } else { + /* Select the first and the nth chunk in the nth column */ + block[0] = dim0 / mpi_size; + block[1] = dim1 / mpi_size; + count[0] = 2; + count[1] = 1; + stride[0] = mpi_rank * block[0]; + stride[1] = 1; + start[0] = 0; + start[1] = mpi_rank*block[1]; + } + + test_name = "Multi Chunk - Mixed"; + actual_chunk_opt_mode_expected = H5D_MPIO_MULTI_CHUNK; + actual_io_mode_expected = H5D_MPIO_CHUNK_MIXED; + break; + + /* RESET tests that the properties are properly reset to defaults each time I/O is + * performed. To acheive this, we have RESET perform collective I/O (which would change + * the values from the defaults) followed by independent I/O (which should report the + * default values). RESET doesn't need to have a unique selection, so we reuse + * MULTI_CHUMK_MIX_DISAGREE, which was chosen because it is a complex case that works + * on all builds. The independent section of RESET can be found at the end of this function. + */ + case TEST_ACTUAL_IO_RESET: + + /* Mixed I/O with optimization and internal disagreement */ + case TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE: + /* A chunk will be assigned collective I/O only if it is selected by each + * process. To get mixed I/O with disagreement, assign process n to the + * first chunk and the nth chunk. The first chunk, selected by all, is + * assgigned collective I/O, while each other process gets independent I/O. + * Since the root process with only access the first chunk, it will report + * collective I/O. The subsequent processes will access the first chunk + * collectively, and their other chunk indpendently, reporting mixed I/O. + */ + + if(mpi_rank == 0) { + /* Select the first chunk in the first column */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); + block[0] = block[0] / mpi_size; + } else { + /* Select the first and the nth chunk in the nth column */ + block[0] = dim0 / mpi_size; + block[1] = dim1 / mpi_size; + count[0] = 2; + count[1] = 1; + stride[0] = mpi_rank * block[0]; + stride[1] = 1; + start[0] = 0; + start[1] = mpi_rank*block[1]; + } + + /* If the testname was not already set by the RESET case */ + if (selection_mode == TEST_ACTUAL_IO_RESET) + test_name = "RESET"; + else + test_name = "Multi Chunk - Mixed (Disagreement)"; + + actual_chunk_opt_mode_expected = H5D_MPIO_MULTI_CHUNK; + if(mpi_size > 1) { + if(mpi_rank == 0) + actual_io_mode_expected = H5D_MPIO_CHUNK_COLLECTIVE; + else + actual_io_mode_expected = H5D_MPIO_CHUNK_MIXED; + } + else + actual_io_mode_expected = H5D_MPIO_CHUNK_INDEPENDENT; + + break; + + /* Linked Chunk I/O */ + case TEST_ACTUAL_IO_LINK_CHUNK: + /* Nothing special; link chunk I/O is forced in the dxpl settings. */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + test_name = "Link Chunk"; + actual_chunk_opt_mode_expected = H5D_MPIO_LINK_CHUNK; + actual_io_mode_expected = H5D_MPIO_CHUNK_COLLECTIVE; + break; + + /* Contiguous Dataset */ + case TEST_ACTUAL_IO_CONTIGUOUS: + /* A non overlapping, regular selection in a contiguous dataset leads to + * collective I/O */ + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + test_name = "Contiguous"; + actual_chunk_opt_mode_expected = H5D_MPIO_NO_CHUNK_OPTIMIZATION; + actual_io_mode_expected = H5D_MPIO_CONTIGUOUS_COLLECTIVE; + break; + + case TEST_ACTUAL_IO_NO_COLLECTIVE: + slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); + + test_name = "Independent"; + actual_chunk_opt_mode_expected = H5D_MPIO_NO_CHUNK_OPTIMIZATION; + actual_io_mode_expected = H5D_MPIO_NO_COLLECTIVE; + break; + + default: + test_name = "Undefined Selection Mode"; + actual_chunk_opt_mode_expected = -1; + actual_io_mode_expected = -1; + break; + } + + ret = H5Sselect_hyperslab(file_space, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* Create a memory dataspace mirroring the dataset and select the same hyperslab + * as in the file space. + */ + mem_space = H5Screate_simple (MAX_RANK, dims, NULL); + VRFY((mem_space >= 0), "mem_space created"); + + ret = H5Sselect_hyperslab(mem_space, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* Get the number of elements in the selection */ + length = dim0 * dim1; + + /* Allocate and initialize the buffer */ + buffer = (int *)HDmalloc(sizeof(int) * length); + VRFY((buffer != NULL), "HDmalloc of buffer succeeded"); + for(i = 0; i < length; i++) + buffer[i] = i; + + /* Set up the dxpl for the write */ + dxpl_write = H5Pcreate(H5P_DATASET_XFER); + VRFY((dxpl_write >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); + + /* Set collective I/O properties in the dxpl. */ + if(is_collective) { + /* Request collective I/O */ + ret = H5Pset_dxpl_mpio(dxpl_write, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + /* Set the threshold number of processes per chunk to twice mpi_size. + * This will prevent the threshold from ever being met, thus forcing + * multi chunk io instead of link chunk io. + * This is via deault. + */ + if(multi_chunk_io) { + /* force multi-chunk-io by threshold */ + ret = H5Pset_dxpl_mpio_chunk_opt_num(dxpl_write, (unsigned) mpi_size*2); + VRFY((ret >= 0), "H5Pset_dxpl_mpio_chunk_opt_num succeeded"); + + /* set this to manipulate testing senario about allocating processes + * to chunks */ + ret = H5Pset_dxpl_mpio_chunk_opt_ratio(dxpl_write, (unsigned) 99); + VRFY((ret >= 0), "H5Pset_dxpl_mpio_chunk_opt_ratio succeeded"); + } + + /* Set directly go to multi-chunk-io without threshold calc. */ + if(direct_multi_chunk_io) { + /* set for multi chunk io by property*/ + ret = H5Pset_dxpl_mpio_chunk_opt(dxpl_write, H5FD_MPIO_CHUNK_MULTI_IO); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + } + } + + /* Make a copy of the dxpl to test the read operation */ + dxpl_read = H5Pcopy(dxpl_write); + VRFY((dxpl_read >= 0), "H5Pcopy succeeded"); + + /* Write */ + ret = H5Dwrite(dataset, data_type, mem_space, file_space, dxpl_write, buffer); + if(ret < 0) H5Eprint2(H5E_DEFAULT, stdout); + VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); + + /* Retreive Actual io valuess */ + ret = H5Pget_mpio_actual_io_mode(dxpl_write, &actual_io_mode_write); + VRFY((ret >= 0), "retriving actual io mode suceeded" ); + + ret = H5Pget_mpio_actual_chunk_opt_mode(dxpl_write, &actual_chunk_opt_mode_write); + VRFY((ret >= 0), "retriving actual chunk opt mode succeeded" ); + + /* Read */ + ret = H5Dread(dataset, data_type, mem_space, file_space, dxpl_read, buffer); + if(ret < 0) H5Eprint2(H5E_DEFAULT, stdout); + VRFY((ret >= 0), "H5Dread() dataset multichunk read succeeded"); + + /* Retreive Actual io values */ + ret = H5Pget_mpio_actual_io_mode(dxpl_read, &actual_io_mode_read); + VRFY((ret >= 0), "retriving actual io mode succeeded" ); + + ret = H5Pget_mpio_actual_chunk_opt_mode(dxpl_read, &actual_chunk_opt_mode_read); + VRFY((ret >= 0), "retriving actual chunk opt mode succeeded" ); + + /* Check write vs read */ + VRFY((actual_io_mode_read == actual_io_mode_write), + "reading and writing are the same for actual_io_mode"); + VRFY((actual_chunk_opt_mode_read == actual_chunk_opt_mode_write), + "reading and writing are the same for actual_chunk_opt_mode"); + + /* Test values */ + if(actual_chunk_opt_mode_expected != (H5D_mpio_actual_chunk_opt_mode_t) -1 && actual_io_mode_expected != (H5D_mpio_actual_io_mode_t) -1) { + HDsprintf(message, "Actual Chunk Opt Mode has the correct value for %s.\n",test_name); + VRFY((actual_chunk_opt_mode_write == actual_chunk_opt_mode_expected), message); + HDsprintf(message, "Actual IO Mode has the correct value for %s.\n",test_name); + VRFY((actual_io_mode_write == actual_io_mode_expected), message); + } else { + HDfprintf(stderr, "%s %d -> (%d,%d)\n", test_name, mpi_rank, + actual_chunk_opt_mode_write, actual_io_mode_write); + } + + /* To test that the property is succesfully reset to the default, we perform some + * independent I/O after the collective I/O + */ + if (selection_mode == TEST_ACTUAL_IO_RESET) { + if (mpi_rank == 0) { + /* Switch to independent io */ + ret = H5Pset_dxpl_mpio(dxpl_write, H5FD_MPIO_INDEPENDENT); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + ret = H5Pset_dxpl_mpio(dxpl_read, H5FD_MPIO_INDEPENDENT); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + /* Write */ + ret = H5Dwrite(dataset, data_type, H5S_ALL, H5S_ALL, dxpl_write, buffer); + VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); + + /* Check Properties */ + ret = H5Pget_mpio_actual_io_mode(dxpl_write, &actual_io_mode_write); + VRFY( (ret >= 0), "retriving actual io mode succeeded" ); + ret = H5Pget_mpio_actual_chunk_opt_mode(dxpl_write, &actual_chunk_opt_mode_write); + VRFY( (ret >= 0), "retriving actual chunk opt mode succeeded" ); + + VRFY(actual_chunk_opt_mode_write == H5D_MPIO_NO_CHUNK_OPTIMIZATION, + "actual_chunk_opt_mode has correct value for reset write (independent)"); + VRFY(actual_io_mode_write == H5D_MPIO_NO_COLLECTIVE, + "actual_io_mode has correct value for reset write (independent)"); + + /* Read */ + ret = H5Dread(dataset, data_type, H5S_ALL, H5S_ALL, dxpl_read, buffer); + VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); + + /* Check Properties */ + ret = H5Pget_mpio_actual_io_mode(dxpl_read, &actual_io_mode_read); + VRFY( (ret >= 0), "retriving actual io mode succeeded" ); + ret = H5Pget_mpio_actual_chunk_opt_mode(dxpl_read, &actual_chunk_opt_mode_read); + VRFY( (ret >= 0), "retriving actual chunk opt mode succeeded" ); + + VRFY(actual_chunk_opt_mode_read == H5D_MPIO_NO_CHUNK_OPTIMIZATION, + "actual_chunk_opt_mode has correct value for reset read (independent)"); + VRFY(actual_io_mode_read == H5D_MPIO_NO_COLLECTIVE, + "actual_io_mode has correct value for reset read (independent)"); + } + } + + /* Release some resources */ + ret = H5Sclose(sid); + ret = H5Pclose(fapl); + ret = H5Pclose(dcpl); + ret = H5Pclose(dxpl_write); + ret = H5Pclose(dxpl_read); + ret = H5Dclose(dataset); + ret = H5Sclose(mem_space); + ret = H5Sclose(file_space); + ret = H5Fclose(fid); + HDfree(buffer); + return; +} + + +/* Function: actual_io_mode_tests + * + * Purpose: Tests all possible cases of the actual_io_mode property. + * + * Programmer: Jacob Gruber + * Date: 2011-04-06 + */ +void +actual_io_mode_tests(void) { + int mpi_size = -1; + int mpi_rank = -1; + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_size(test_comm, &mpi_rank); + + test_actual_io_mode(TEST_ACTUAL_IO_NO_COLLECTIVE); + + /* + * Test multi-chunk-io via proc_num threshold + */ + test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_IND); + test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_COL); + + /* The Multi Chunk Mixed test requires atleast three processes. */ + if (mpi_size > 2) + test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_MIX); + else + HDfprintf(stdout, "Multi Chunk Mixed test requires 3 proceses minimum\n"); + + test_actual_io_mode(TEST_ACTUAL_IO_MULTI_CHUNK_MIX_DISAGREE); + + /* + * Test multi-chunk-io via setting direct property + */ + test_actual_io_mode(TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_IND); + test_actual_io_mode(TEST_ACTUAL_IO_DIRECT_MULTI_CHUNK_COL); + + test_actual_io_mode(TEST_ACTUAL_IO_LINK_CHUNK); + test_actual_io_mode(TEST_ACTUAL_IO_CONTIGUOUS); + + test_actual_io_mode(TEST_ACTUAL_IO_RESET); + return; +} + +/* + * Function: test_no_collective_cause_mode + * + * Purpose: + * tests cases for broken collective I/O and checks that the + * H5Pget_mpio_no_collective_cause properties in the DXPL have the correct values. + * + * Input: + * selection_mode: various mode to cause broken collective I/O + * Note: Originally, each TEST case is supposed to be used alone. + * After some discussion, this is updated to take multiple TEST cases + * with '|'. However there is no error check for any of combined + * test cases, so a tester is responsible to understand and feed + * proper combination of TESTs if needed. + * + * + * TEST_COLLECTIVE: + * Test for regular collective I/O without cause of breaking. + * Just to test normal behavior. + * + * TEST_SET_INDEPENDENT: + * Test for Independent I/O as the cause of breaking collective I/O. + * + * TEST_DATATYPE_CONVERSION: + * Test for Data Type Conversion as the cause of breaking collective I/O. + * + * TEST_DATA_TRANSFORMS: + * Test for Data Transfrom feature as the cause of breaking collective I/O. + * + * TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES: + * Test for NULL dataspace as the cause of breaking collective I/O. + * + * TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT: + * Test for Compact layout as the cause of breaking collective I/O. + * + * TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL: + * Test for Externl-File storage as the cause of breaking collective I/O. + * + * TEST_FILTERS: + * Test for using filter (checksum) as the cause of breaking collective I/O. + * Note: TEST_FILTERS mode will not work until H5Dcreate and H5write is supported for mpio and filter feature. Use test_no_collective_cause_mode_filter() function instead. + * + * + * Programmer: Jonathan Kim + * Date: Aug, 2012 + */ +#define DSET_NOCOLCAUSE "nocolcause" +#define NELM 2 +#define FILE_EXTERNAL "nocolcause_extern.data" +static void +test_no_collective_cause_mode(int selection_mode) +{ + uint32_t no_collective_cause_local_write = 0; + uint32_t no_collective_cause_local_read = 0; + uint32_t no_collective_cause_local_expected = 0; + uint32_t no_collective_cause_global_write = 0; + uint32_t no_collective_cause_global_read = 0; + uint32_t no_collective_cause_global_expected = 0; + // hsize_t coord[NELM][MAX_RANK]; + + const char * filename; + const char * test_name; + hbool_t is_chunked=1; + hbool_t is_independent=0; + int mpi_size = -1; + int mpi_rank = -1; + int length; + int * buffer; + int i; + MPI_Comm mpi_comm; + MPI_Info mpi_info; + hid_t fid = -1; + hid_t sid = -1; + hid_t dataset = -1; + hid_t data_type = H5T_NATIVE_INT; + hid_t fapl = -1; + hid_t dcpl = -1; + hid_t dxpl_write = -1; + hid_t dxpl_read = -1; + hsize_t dims[MAX_RANK]; + hid_t mem_space = -1; + hid_t file_space = -1; + hsize_t chunk_dims[MAX_RANK]; + herr_t ret; +#ifdef LATER /* fletcher32 */ + H5Z_filter_t filter_info; +#endif /* LATER */ + /* set to global value as default */ + int l_facc_type = facc_type; + char message[256]; + + /* Set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + MPI_Barrier(test_comm); + + HDassert(mpi_size >= 1); + + mpi_comm = test_comm; + mpi_info = MPI_INFO_NULL; + + /* Create the dataset creation plist */ + dcpl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dcpl >= 0), "dataset creation plist created successfully"); + + if (selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT) { + ret = H5Pset_layout (dcpl, H5D_COMPACT); + VRFY((ret >= 0),"set COMPACT layout succeeded"); + is_chunked = 0; + } + + if (selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL) { + ret = H5Pset_external (dcpl, FILE_EXTERNAL, (off_t) 0, H5F_UNLIMITED); + VRFY((ret >= 0),"set EXTERNAL file layout succeeded"); + is_chunked = 0; + } + +#ifdef LATER /* fletcher32 */ + if (selection_mode & TEST_FILTERS) { + ret = H5Zfilter_avail(H5Z_FILTER_FLETCHER32); + VRFY ((ret >=0 ), "Fletcher32 filter is available.\n"); + + ret = H5Zget_filter_info (H5Z_FILTER_FLETCHER32, &filter_info); + VRFY ( ( (filter_info & H5Z_FILTER_CONFIG_ENCODE_ENABLED) || (filter_info & H5Z_FILTER_CONFIG_DECODE_ENABLED) ) , "Fletcher32 filter encoding and decoding available.\n"); + + ret = H5Pset_fletcher32(dcpl); + VRFY((ret >= 0),"set filter (flecher32) succeeded"); + } +#endif /* LATER */ + + if (selection_mode & TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES) { + sid = H5Screate(H5S_NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + is_chunked = 0; + } + else { + /* Create the basic Space */ + /* if this is a compact dataset, create a small dataspace that does not exceed 64K */ + if (selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT) { + dims[0] = BIG_X_FACTOR * 6; + dims[1] = BIG_Y_FACTOR * 6; + } + else { + dims[0] = dim0; + dims[1] = dim1; + } + sid = H5Screate_simple (MAX_RANK, dims, NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + } + + + filename = (const char *)GetTestParameters(); + HDassert(filename != NULL); + + /* Setup the file access template */ + fapl = create_faccess_plist(mpi_comm, mpi_info, l_facc_type); + VRFY((fapl >= 0), "create_faccess_plist() succeeded"); + + /* Create the file */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); + + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* If we are not testing contiguous datasets */ + if(is_chunked) { + /* Set up chunk information. */ + chunk_dims[0] = dims[0]/mpi_size; + chunk_dims[1] = dims[1]; + ret = H5Pset_chunk(dcpl, 2, chunk_dims); + VRFY((ret >= 0),"chunk creation property list succeeded"); + } + + + /* Create the dataset */ + dataset = H5Dcreate2(fid, "nocolcause", data_type, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); + VRFY((dataset >= 0), "H5Dcreate2() dataset succeeded"); + + + /* + * Set expected causes and some tweaks based on the type of test + */ + if (selection_mode & TEST_DATATYPE_CONVERSION) { + test_name = "Broken Collective I/O - Datatype Conversion"; + no_collective_cause_local_expected |= H5D_MPIO_DATATYPE_CONVERSION; + no_collective_cause_global_expected |= H5D_MPIO_DATATYPE_CONVERSION; + /* set different sign to trigger type conversion */ + data_type = H5T_NATIVE_UINT; + } + + if (selection_mode & TEST_DATA_TRANSFORMS) { + test_name = "Broken Collective I/O - DATA Transfroms"; + no_collective_cause_local_expected |= H5D_MPIO_DATA_TRANSFORMS; + no_collective_cause_global_expected |= H5D_MPIO_DATA_TRANSFORMS; + } + + if (selection_mode & TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES) { + test_name = "Broken Collective I/O - No Simple or Scalar DataSpace"; + no_collective_cause_local_expected |= H5D_MPIO_NOT_SIMPLE_OR_SCALAR_DATASPACES; + no_collective_cause_global_expected |= H5D_MPIO_NOT_SIMPLE_OR_SCALAR_DATASPACES; + } + + if (selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT || + selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL) { + test_name = "Broken Collective I/O - No CONTI or CHUNKED Dataset"; + no_collective_cause_local_expected |= H5D_MPIO_NOT_CONTIGUOUS_OR_CHUNKED_DATASET; + no_collective_cause_global_expected |= H5D_MPIO_NOT_CONTIGUOUS_OR_CHUNKED_DATASET; + } + +#ifdef LATER /* fletcher32 */ + if (selection_mode & TEST_FILTERS) { + test_name = "Broken Collective I/O - Filter is required"; + no_collective_cause_local_expected |= H5D_MPIO_FILTERS; + no_collective_cause_global_expected |= H5D_MPIO_FILTERS; + } +#endif /* LATER */ + + if (selection_mode & TEST_COLLECTIVE) { + test_name = "Broken Collective I/O - Not Broken"; + no_collective_cause_local_expected = H5D_MPIO_COLLECTIVE; + no_collective_cause_global_expected = H5D_MPIO_COLLECTIVE; + } + + if (selection_mode & TEST_SET_INDEPENDENT) { + test_name = "Broken Collective I/O - Independent"; + no_collective_cause_local_expected = H5D_MPIO_SET_INDEPENDENT; + no_collective_cause_global_expected = H5D_MPIO_SET_INDEPENDENT; + /* switch to independent io */ + is_independent = 1; + } + + /* use all spaces for certain tests */ + if (selection_mode & TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES || + selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL) { + file_space = H5S_ALL; + mem_space = H5S_ALL; + } + else { + /* Get the file dataspace */ + file_space = H5Dget_space(dataset); + VRFY((file_space >= 0), "H5Dget_space succeeded"); + + /* Create the memory dataspace */ + mem_space = H5Screate_simple (MAX_RANK, dims, NULL); + VRFY((mem_space >= 0), "mem_space created"); + } + + /* Get the number of elements in the selection */ + length = dims[0] * dims[1]; + + /* Allocate and initialize the buffer */ + buffer = (int *)HDmalloc(sizeof(int) * length); + VRFY((buffer != NULL), "HDmalloc of buffer succeeded"); + for(i = 0; i < length; i++) + buffer[i] = i; + + /* Set up the dxpl for the write */ + dxpl_write = H5Pcreate(H5P_DATASET_XFER); + VRFY((dxpl_write >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); + + if(is_independent) { + /* Set Independent I/O */ + ret = H5Pset_dxpl_mpio(dxpl_write, H5FD_MPIO_INDEPENDENT); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + } + else { + /* Set Collective I/O */ + ret = H5Pset_dxpl_mpio(dxpl_write, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + } + + if (selection_mode & TEST_DATA_TRANSFORMS) { + ret = H5Pset_data_transform (dxpl_write, "x+1"); + VRFY((ret >= 0), "H5Pset_data_transform succeeded"); + } + + /*--------------------- + * Test Write access + *---------------------*/ + + /* Write */ + ret = H5Dwrite(dataset, data_type, mem_space, file_space, dxpl_write, buffer); + if(ret < 0) H5Eprint2(H5E_DEFAULT, stdout); + VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); + + + /* Get the cause of broken collective I/O */ + ret = H5Pget_mpio_no_collective_cause (dxpl_write, &no_collective_cause_local_write, &no_collective_cause_global_write); + VRFY((ret >= 0), "retriving no collective cause succeeded" ); + + + /*--------------------- + * Test Read access + *---------------------*/ + + /* Make a copy of the dxpl to test the read operation */ + dxpl_read = H5Pcopy(dxpl_write); + VRFY((dxpl_read >= 0), "H5Pcopy succeeded"); + + /* Read */ + ret = H5Dread(dataset, data_type, mem_space, file_space, dxpl_read, buffer); + + if(ret < 0) H5Eprint2(H5E_DEFAULT, stdout); + VRFY((ret >= 0), "H5Dread() dataset multichunk read succeeded"); + + /* Get the cause of broken collective I/O */ + ret = H5Pget_mpio_no_collective_cause (dxpl_read, &no_collective_cause_local_read, &no_collective_cause_global_read); + VRFY((ret >= 0), "retriving no collective cause succeeded" ); + + /* Check write vs read */ + VRFY((no_collective_cause_local_read == no_collective_cause_local_write), + "reading and writing are the same for local cause of Broken Collective I/O"); + VRFY((no_collective_cause_global_read == no_collective_cause_global_write), + "reading and writing are the same for global cause of Broken Collective I/O"); + + /* Test values */ + HDmemset (message, 0, sizeof (message)); + HDsprintf(message, "Local cause of Broken Collective I/O has the correct value for %s.\n",test_name); + VRFY((no_collective_cause_local_write == no_collective_cause_local_expected), message); + HDmemset (message, 0, sizeof (message)); + HDsprintf(message, "Global cause of Broken Collective I/O has the correct value for %s.\n",test_name); + VRFY((no_collective_cause_global_write == no_collective_cause_global_expected), message); + + /* Release some resources */ + if (sid) + H5Sclose(sid); + if (fapl) + H5Pclose(fapl); + if (dcpl) + H5Pclose(dcpl); + if (dxpl_write) + H5Pclose(dxpl_write); + if (dxpl_read) + H5Pclose(dxpl_read); + if (dataset) + H5Dclose(dataset); + if (mem_space) + H5Sclose(mem_space); + if (file_space) + H5Sclose(file_space); + if (fid) + H5Fclose(fid); + HDfree(buffer); + + /* clean up external file */ + if (selection_mode & TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL) + HDremove(FILE_EXTERNAL); + + return; +} + + +#if 0 +/* + * Function: test_no_collective_cause_mode_filter + * + * Purpose: + * Test specific for using filter as a caus of broken collective I/O and + * checks that the H5Pget_mpio_no_collective_cause properties in the DXPL + * have the correct values. + * + * NOTE: + * This is a temporary function. + * test_no_collective_cause_mode(TEST_FILTERS) will replace this when + * H5Dcreate and H5write support for mpio and filter feature. + * + * Input: + * TEST_FILTERS_READ: + * Test for using filter (checksum) as the cause of breaking collective I/O. + * + * Programmer: Jonathan Kim + * Date: Aug, 2012 + */ +static void +test_no_collective_cause_mode_filter(int selection_mode) +{ + uint32_t no_collective_cause_local_read = 0; + uint32_t no_collective_cause_local_expected = 0; + uint32_t no_collective_cause_global_read = 0; + uint32_t no_collective_cause_global_expected = 0; + + const char * filename; + const char * test_name; + hbool_t is_chunked=1; + int mpi_size = -1; + int mpi_rank = -1; + int length; + int * buffer; + int i; + MPI_Comm mpi_comm = MPI_COMM_NULL; + MPI_Info mpi_info = MPI_INFO_NULL; + hid_t fid = -1; + hid_t sid = -1; + hid_t dataset = -1; + hid_t data_type = H5T_NATIVE_INT; + hid_t fapl_write = -1; + hid_t fapl_read = -1; + hid_t dcpl = -1; + hid_t dxpl = -1; + hsize_t dims[MAX_RANK]; + hid_t mem_space = -1; + hid_t file_space = -1; + hsize_t chunk_dims[MAX_RANK]; + herr_t ret; +#ifdef LATER /* fletcher32 */ + H5Z_filter_t filter_info; +#endif /* LATER */ + char message[256]; + + /* Set up MPI parameters */ + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + MPI_Barrier(test_comm); + + HDassert(mpi_size >= 1); + + mpi_comm = test_comm; + mpi_info = MPI_INFO_NULL; + + /* Create the dataset creation plist */ + dcpl = H5Pcreate(H5P_DATASET_CREATE); + VRFY((dcpl >= 0), "dataset creation plist created successfully"); + + if (selection_mode == TEST_FILTERS_READ ) { +#ifdef LATER /* fletcher32 */ + ret = H5Zfilter_avail(H5Z_FILTER_FLETCHER32); + VRFY ((ret >=0 ), "Fletcher32 filter is available.\n"); + + ret = H5Zget_filter_info (H5Z_FILTER_FLETCHER32, (unsigned int *) &filter_info); + VRFY ( ( (filter_info & H5Z_FILTER_CONFIG_ENCODE_ENABLED) || (filter_info & H5Z_FILTER_CONFIG_DECODE_ENABLED) ) , "Fletcher32 filter encoding and decoding available.\n"); + + ret = H5Pset_fletcher32(dcpl); + VRFY((ret >= 0),"set filter (flecher32) succeeded"); +#endif /* LATER */ + } + else { + VRFY(0, "Unexpected mode, only test for TEST_FILTERS_READ."); + } + + /* Create the basic Space */ + dims[0] = dim0; + dims[1] = dim1; + sid = H5Screate_simple (MAX_RANK, dims, NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + + filename = (const char *)GetTestParameters(); + HDassert(filename != NULL); + + /* Setup the file access template */ + fapl_write = create_faccess_plist(mpi_comm, mpi_info, FACC_DEFAULT); + VRFY((fapl_write >= 0), "create_faccess_plist() succeeded"); + + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_write); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* If we are not testing contiguous datasets */ + if(is_chunked) { + /* Set up chunk information. */ + chunk_dims[0] = dims[0]/mpi_size; + chunk_dims[1] = dims[1]; + ret = H5Pset_chunk(dcpl, 2, chunk_dims); + VRFY((ret >= 0),"chunk creation property list succeeded"); + } + + + /* Create the dataset */ + dataset = H5Dcreate2(fid, DSET_NOCOLCAUSE, data_type, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); + VRFY((dataset >= 0), "H5Dcreate2() dataset succeeded"); + +#ifdef LATER /* fletcher32 */ + /* Set expected cause */ + test_name = "Broken Collective I/O - Filter is required"; + no_collective_cause_local_expected = H5D_MPIO_FILTERS; + no_collective_cause_global_expected = H5D_MPIO_FILTERS; +#endif /* LATER */ + + /* Get the file dataspace */ + file_space = H5Dget_space(dataset); + VRFY((file_space >= 0), "H5Dget_space succeeded"); + + /* Create the memory dataspace */ + mem_space = H5Screate_simple (MAX_RANK, dims, NULL); + VRFY((mem_space >= 0), "mem_space created"); + + /* Get the number of elements in the selection */ + length = dim0 * dim1; + + /* Allocate and initialize the buffer */ + buffer = (int *)HDmalloc(sizeof(int) * length); + VRFY((buffer != NULL), "HDmalloc of buffer succeeded"); + for(i = 0; i < length; i++) + buffer[i] = i; + + /* Set up the dxpl for the write */ + dxpl = H5Pcreate(H5P_DATASET_XFER); + VRFY((dxpl >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); + + if (selection_mode == TEST_FILTERS_READ) { + /* To test read in collective I/O mode , write in independent mode + * because write fails with mpio + filter */ + ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_INDEPENDENT); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + } + else { + /* To test write in collective I/O mode. */ + ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + } + + + /* Write */ + ret = H5Dwrite(dataset, data_type, mem_space, file_space, dxpl, buffer); + + if(ret < 0) H5Eprint2(H5E_DEFAULT, stdout); + VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); + + + /* Make a copy of the dxpl to test the read operation */ + dxpl = H5Pcopy(dxpl); + VRFY((dxpl >= 0), "H5Pcopy succeeded"); + + if (dataset) + H5Dclose(dataset); + if (fapl_write) + H5Pclose(fapl_write); + if (fid) + H5Fclose(fid); + + + /*--------------------- + * Test Read access + *---------------------*/ + + /* Setup the file access template */ + fapl_read = create_faccess_plist(mpi_comm, mpi_info, facc_type); + VRFY((fapl_read >= 0), "create_faccess_plist() succeeded"); + + fid = H5Fopen (filename, H5F_ACC_RDONLY, fapl_read); + dataset = H5Dopen2 (fid, DSET_NOCOLCAUSE, H5P_DEFAULT); + + /* Set collective I/O properties in the dxpl. */ + ret = H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + /* Read */ + ret = H5Dread(dataset, data_type, mem_space, file_space, dxpl, buffer); + + if(ret < 0) H5Eprint2(H5E_DEFAULT, stdout); + VRFY((ret >= 0), "H5Dread() dataset multichunk read succeeded"); + + /* Get the cause of broken collective I/O */ + ret = H5Pget_mpio_no_collective_cause (dxpl, &no_collective_cause_local_read, &no_collective_cause_global_read); + VRFY((ret >= 0), "retriving no collective cause succeeded" ); + + /* Test values */ + HDmemset (message, 0, sizeof (message)); + HDsprintf(message, "Local cause of Broken Collective I/O has the correct value for %s.\n",test_name); + VRFY((no_collective_cause_local_read == (uint32_t)no_collective_cause_local_expected), message); + HDmemset (message, 0, sizeof (message)); + HDsprintf(message, "Global cause of Broken Collective I/O has the correct value for %s.\n",test_name); + VRFY((no_collective_cause_global_read == (uint32_t)no_collective_cause_global_expected), message); + + /* Release some resources */ + if (sid) + H5Sclose(sid); + if (fapl_read) + H5Pclose(fapl_read); + if (dcpl) + H5Pclose(dcpl); + if (dxpl) + H5Pclose(dxpl); + if (dataset) + H5Dclose(dataset); + if (mem_space) + H5Sclose(mem_space); + if (file_space) + H5Sclose(file_space); + if (fid) + H5Fclose(fid); + HDfree(buffer); + return; +} +#endif + +/* Function: no_collective_cause_tests + * + * Purpose: Tests cases for broken collective IO. + * + * Programmer: Jonathan Kim + * Date: Aug, 2012 + */ +void +no_collective_cause_tests(void) +{ + /* + * Test individual cause + */ + test_no_collective_cause_mode (TEST_COLLECTIVE); + test_no_collective_cause_mode (TEST_SET_INDEPENDENT); + test_no_collective_cause_mode (TEST_DATATYPE_CONVERSION); + test_no_collective_cause_mode (TEST_DATA_TRANSFORMS); + test_no_collective_cause_mode (TEST_NOT_SIMPLE_OR_SCALAR_DATASPACES); + test_no_collective_cause_mode (TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_COMPACT); + test_no_collective_cause_mode (TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL); +#ifdef LATER /* fletcher32 */ + /* TODO: use this instead of below TEST_FILTERS_READ when H5Dcreate and + * H5Dwrite is ready for mpio + filter feature. + */ + /* test_no_collective_cause_mode (TEST_FILTERS); */ + test_no_collective_cause_mode_filter (TEST_FILTERS_READ); +#endif /* LATER */ + + /* + * Test combined causes + */ + test_no_collective_cause_mode (TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL | TEST_DATATYPE_CONVERSION); + test_no_collective_cause_mode (TEST_DATATYPE_CONVERSION | TEST_DATA_TRANSFORMS); + test_no_collective_cause_mode (TEST_NOT_CONTIGUOUS_OR_CHUNKED_DATASET_EXTERNAL | TEST_DATATYPE_CONVERSION | TEST_DATA_TRANSFORMS); + + return; +} + +/* + * Test consistency semantics of atomic mode + */ + +/* + * Example of using the parallel HDF5 library to create a dataset, + * where process 0 writes and the other processes read at the same + * time. If atomic mode is set correctly, the other processes should + * read the old values in the dataset or the new ones. + */ + +void +dataset_atomicity(void) +{ + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t sid; /* Dataspace ID */ + hid_t dataset1; /* Dataset IDs */ + hsize_t dims[MAX_RANK]; /* dataset dim sizes */ + int *write_buf = NULL; /* data buffer */ + int *read_buf = NULL; /* data buffer */ + int buf_size; + hid_t dataset2; + hid_t file_dataspace; /* File dataspace ID */ + hid_t mem_dataspace; /* Memory dataspace ID */ + hsize_t start[MAX_RANK]; + hsize_t stride[MAX_RANK]; + hsize_t count[MAX_RANK]; + hsize_t block[MAX_RANK]; + const char *filename; + herr_t ret; /* Generic return value */ + int mpi_size, mpi_rank; + int i, j, k; + hbool_t atomicity = FALSE; + MPI_Comm comm = test_comm; + MPI_Info info = MPI_INFO_NULL; + + dim0 = 64; dim1 = 32; + filename = GetTestParameters(); + if (facc_type != FACC_MPIO) { + HDprintf("Atomicity tests will not work without the MPIO VFD\n"); + return; + } + if(VERBOSE_MED) + HDprintf("atomic writes to file %s\n", filename); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm,&mpi_size); + MPI_Comm_rank(test_comm,&mpi_rank); + + buf_size = dim0 * dim1; + /* allocate memory for data buffer */ + write_buf = (int *)HDcalloc(buf_size, sizeof(int)); + VRFY((write_buf != NULL), "write_buf HDcalloc succeeded"); + /* allocate memory for data buffer */ + read_buf = (int *)HDcalloc(buf_size, sizeof(int)); + VRFY((read_buf != NULL), "read_buf HDcalloc succeeded"); + + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), "H5Pclose succeeded"); + + /* setup dimensionality object */ + dims[0] = dim0; + dims[1] = dim1; + sid = H5Screate_simple (MAX_RANK, dims, NULL); + VRFY((sid >= 0), "H5Screate_simple succeeded"); + + /* create datasets */ + dataset1 = H5Dcreate2(fid, DATASETNAME5, H5T_NATIVE_INT, sid, + H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dcreate2 succeeded"); + + dataset2 = H5Dcreate2(fid, DATASETNAME6, H5T_NATIVE_INT, sid, + H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dcreate2 succeeded"); + + /* initialize datasets to 0s */ + if (0 == mpi_rank) { + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, + H5P_DEFAULT, write_buf); + VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); + + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, + H5P_DEFAULT, write_buf); + VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); + } + + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5Dclose succeeded"); + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose succeeded"); + ret = H5Sclose(sid); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); + + MPI_Barrier (comm); + + /* make sure setting atomicity fails on a serial file ID */ + /* file locking allows only one file open (serial) for writing */ + if(MAINPROCESS){ + fid=H5Fopen(filename,H5F_ACC_RDWR,H5P_DEFAULT); + VRFY((fid >= 0), "H5Fopen succeeed"); + } + + /* should fail */ + ret = H5Fset_mpi_atomicity(fid , TRUE); + VRFY((ret == FAIL), "H5Fset_mpi_atomicity failed"); + + if(MAINPROCESS){ + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); + } + + MPI_Barrier (comm); + + /* setup file access template */ + acc_tpl = create_faccess_plist(comm, info, facc_type); + VRFY((acc_tpl >= 0), ""); + + /* open the file collectively */ + fid=H5Fopen(filename,H5F_ACC_RDWR,acc_tpl); + VRFY((fid >= 0), "H5Fopen succeeded"); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), "H5Pclose succeeded"); + + ret = H5Fset_mpi_atomicity(fid , TRUE); + VRFY((ret >= 0), "H5Fset_mpi_atomicity succeeded"); + + /* open dataset1 (contiguous case) */ + dataset1 = H5Dopen2(fid, DATASETNAME5, H5P_DEFAULT); + VRFY((dataset1 >= 0), "H5Dopen2 succeeded"); + + if (0 == mpi_rank) { + for (i=0 ; i<buf_size ; i++) { + write_buf[i] = 5; + } + } + else { + for (i=0 ; i<buf_size ; i++) { + read_buf[i] = 8; + } + } + + /* check that the atomicity flag is set */ + ret = H5Fget_mpi_atomicity(fid , &atomicity); + VRFY((ret >= 0), "atomcity get failed"); + VRFY((atomicity == TRUE), "atomcity set failed"); + + MPI_Barrier (comm); + + /* Process 0 writes contiguously to the entire dataset */ + if (0 == mpi_rank) { + ret = H5Dwrite(dataset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, write_buf); + VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); + } + /* The other processes read the entire dataset */ + else { + ret = H5Dread(dataset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, read_buf); + VRFY((ret >= 0), "H5Dwrite() dataset multichunk write succeeded"); + } + + if(VERBOSE_MED) { + i=0;j=0;k=0; + for (i=0 ; i<dim0 ; i++) { + HDprintf ("\n"); + for (j=0 ; j<dim1 ; j++) + HDprintf ("%d ", read_buf[k++]); + } + } + + /* The processes that read the dataset must either read all values + as 0 (read happened before process 0 wrote to dataset 1), or 5 + (read happened after process 0 wrote to dataset 1) */ + if (0 != mpi_rank) { + int compare = read_buf[0]; + + VRFY((compare == 0 || compare == 5), + "Atomicity Test Failed Process %d: Value read should be 0 or 5\n"); + for (i=1; i<buf_size; i++) { + if (read_buf[i] != compare) { + HDprintf("Atomicity Test Failed Process %d: read_buf[%d] is %d, should be %d\n", mpi_rank, i, read_buf[i], compare); + nerrors ++; + } + } + } + + ret = H5Dclose(dataset1); + VRFY((ret >= 0), "H5D close succeeded"); + + /* release data buffers */ + if(write_buf) HDfree(write_buf); + if(read_buf) HDfree(read_buf); + + /* open dataset2 (non-contiguous case) */ + dataset2 = H5Dopen2(fid, DATASETNAME6, H5P_DEFAULT); + VRFY((dataset2 >= 0), "H5Dopen2 succeeded"); + + /* allocate memory for data buffer */ + write_buf = (int *)HDcalloc(buf_size, sizeof(int)); + VRFY((write_buf != NULL), "write_buf HDcalloc succeeded"); + /* allocate memory for data buffer */ + read_buf = (int *)HDcalloc(buf_size, sizeof(int)); + VRFY((read_buf != NULL), "read_buf HDcalloc succeeded"); + + for (i=0 ; i<buf_size ; i++) { + write_buf[i] = 5; + } + for (i=0 ; i<buf_size ; i++) { + read_buf[i] = 8; + } + + atomicity = FALSE; + /* check that the atomicity flag is set */ + ret = H5Fget_mpi_atomicity(fid , &atomicity); + VRFY((ret >= 0), "atomcity get failed"); + VRFY((atomicity == TRUE), "atomcity set failed"); + + + block[0] = dim0/mpi_size - 1; + block[1] = dim1/mpi_size - 1; + stride[0] = block[0] + 1; + stride[1] = block[1] + 1; + count[0] = mpi_size; + count[1] = mpi_size; + start[0] = 0; + start[1] = 0; + + /* create a file dataspace */ + file_dataspace = H5Dget_space (dataset2); + VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); + ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + /* create a memory dataspace */ + mem_dataspace = H5Screate_simple (MAX_RANK, dims, NULL); + VRFY((mem_dataspace >= 0), ""); + + ret = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); + + MPI_Barrier (comm); + + /* Process 0 writes to the dataset */ + if (0 == mpi_rank) { + ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, write_buf); + VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); + } + /* All processes wait for the write to finish. This works because + atomicity is set to true */ + MPI_Barrier (comm); + /* The other processes read the entire dataset */ + if (0 != mpi_rank) { + ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, + H5P_DEFAULT, read_buf); + VRFY((ret >= 0), "H5Dread dataset2 succeeded"); + } + + if(VERBOSE_MED) { + if (mpi_rank == 1) { + i=0;j=0;k=0; + for (i=0 ; i<dim0 ; i++) { + HDprintf ("\n"); + for (j=0 ; j<dim1 ; j++) + HDprintf ("%d ", read_buf[k++]); + } + HDprintf ("\n"); + } + } + + /* The processes that read the dataset must either read all values + as 5 (read happened after process 0 wrote to dataset 1) */ + if (0 != mpi_rank) { + int compare; + i=0;j=0;k=0; + + compare = 5; + + for (i=0 ; i<dim0 ; i++) { + if ((hsize_t)i >= mpi_rank*(block[0]+1)) { + break; + } + if ((i+1)%(block[0]+1)==0) { + k += dim1; + continue; + } + for (j=0 ; j<dim1 ; j++) { + if ((hsize_t)j >= mpi_rank*(block[1]+1)) { + k += dim1 - mpi_rank*(block[1]+1); + break; + } + if ((j+1)%(block[1]+1)==0) { + k++; + continue; + } + else if (compare != read_buf[k]) { + HDprintf("Atomicity Test Failed Process %d: read_buf[%d] is %d, should be %d\n", mpi_rank, k, read_buf[k], compare); + nerrors++; + } + k ++; + } + } + } + + ret = H5Dclose(dataset2); + VRFY((ret >= 0), "H5Dclose succeeded"); + ret = H5Sclose(file_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + ret = H5Sclose(mem_dataspace); + VRFY((ret >= 0), "H5Sclose succeeded"); + + /* release data buffers */ + if(write_buf) HDfree(write_buf); + if(read_buf) HDfree(read_buf); + + ret = H5Fclose(fid); + VRFY((ret >= 0), "H5Fclose succeeded"); + +} + +/* Function: dense_attr_test + * + * Purpose: Test cases for writing dense attributes in parallel + * + * Programmer: Quincey Koziol + * Date: April, 2013 + */ +void +test_dense_attr(void) +{ + int mpi_size, mpi_rank; + hid_t fpid, fid; + hid_t gid, gpid; + hid_t atFileSpace, atid; + hsize_t atDims[1] = {10000}; + herr_t status; + const char *filename; + + /* get filename */ + filename = (const char *)GetTestParameters(); + HDassert( filename != NULL ); + + /* set up MPI parameters */ + MPI_Comm_size(test_comm,&mpi_size); + MPI_Comm_rank(test_comm,&mpi_rank); + + fpid = H5Pcreate(H5P_FILE_ACCESS); + VRFY((fpid > 0), "H5Pcreate succeeded"); + status = H5Pset_libver_bounds(fpid, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST); + VRFY((status >= 0), "H5Pset_libver_bounds succeeded"); + status = H5Pset_fapl_mpio(fpid, test_comm, MPI_INFO_NULL); + VRFY((status >= 0), "H5Pset_fapl_mpio succeeded"); + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fpid); + VRFY((fid > 0), "H5Fcreate succeeded"); + status = H5Pclose(fpid); + VRFY((status >= 0), "H5Pclose succeeded"); + + gpid = H5Pcreate(H5P_GROUP_CREATE); + VRFY((gpid > 0), "H5Pcreate succeeded"); + status = H5Pset_attr_phase_change(gpid, 0, 0); + VRFY((status >= 0), "H5Pset_attr_phase_change succeeded"); + gid = H5Gcreate2(fid, "foo", H5P_DEFAULT, gpid, H5P_DEFAULT); + VRFY((gid > 0), "H5Gcreate2 succeeded"); + status = H5Pclose(gpid); + VRFY((status >= 0), "H5Pclose succeeded"); + + atFileSpace = H5Screate_simple(1, atDims, NULL); + VRFY((atFileSpace > 0), "H5Screate_simple succeeded"); + atid = H5Acreate2(gid, "bar", H5T_STD_U64LE, atFileSpace, H5P_DEFAULT, H5P_DEFAULT); + VRFY((atid > 0), "H5Acreate succeeded"); + status = H5Sclose(atFileSpace); + VRFY((status >= 0), "H5Sclose succeeded"); + + status = H5Aclose(atid); + VRFY((status >= 0), "H5Aclose succeeded"); + + status = H5Gclose(gid); + VRFY((status >= 0), "H5Gclose succeeded"); + status = H5Fclose(fid); + VRFY((status >= 0), "H5Fclose succeeded"); + + return; +} + + +int +main(int argc, char **argv) +{ + int express_test; + int mpi_size, mpi_rank; /* mpi variables */ + hsize_t oldsize, newsize = 1048576; + +#ifndef H5_HAVE_WIN32_API + /* Un-buffer the stdout and stderr */ + HDsetbuf(stderr, NULL); + HDsetbuf(stdout, NULL); +#endif + + + MPI_Init(&argc, &argv); + MPI_Comm_size(test_comm, &mpi_size); + MPI_Comm_rank(test_comm, &mpi_rank); + + dim0 = BIG_X_FACTOR; + dim1 = BIG_Y_FACTOR; + dim2 = BIG_Z_FACTOR; + + if (MAINPROCESS){ + HDprintf("===================================\n"); + HDprintf("2 GByte IO TESTS START\n"); + HDprintf("2 MPI ranks will run the tests...\n"); + HDprintf("===================================\n"); + h5_show_hostname(); + } + + H5open(); + /* Set the internal transition size to allow use of derived datatypes + * without having to actually read or write large datasets (>2GB). + */ + oldsize = H5_mpi_set_bigio_count(newsize); + + if (mpi_size > 2) { + int rank_color = 0; + if (mpi_rank >= 2) rank_color = 1; + if (MPI_Comm_split(test_comm, rank_color, mpi_rank, &test_comm) != MPI_SUCCESS) { + HDprintf("MPI returned an error. Exiting\n"); + } + } + + /* Initialize testing framework */ + if (mpi_rank < 2) { + TestInit(argv[0], usage, parse_options); + + /* Parse command line arguments */ + TestParseCmdLine(argc, argv); + + AddTest("idsetw", dataset_writeInd, NULL, + "dataset independent write", PARATESTFILE); + + AddTest("idsetr", dataset_readInd, NULL, + "dataset independent read", PARATESTFILE); + + AddTest("cdsetw", dataset_writeAll, NULL, + "dataset collective write", PARATESTFILE); + + AddTest("cdsetr", dataset_readAll, NULL, + "dataset collective read", PARATESTFILE); + + AddTest("eidsetw2", extend_writeInd2, NULL, + "extendible dataset independent write #2", PARATESTFILE); + + AddTest("selnone", none_selection_chunk, NULL, + "chunked dataset with none-selection", PARATESTFILE); + +#ifdef H5_HAVE_FILTER_DEFLATE + AddTest("cmpdsetr", compress_readAll, NULL, + "compressed dataset collective read", PARATESTFILE); +#endif /* H5_HAVE_FILTER_DEFLATE */ + + /* Display testing information */ + if (MAINPROCESS) + TestInfo(argv[0]); + + /* setup file access property list */ + fapl = H5Pcreate (H5P_FILE_ACCESS); + H5Pset_fapl_mpio(fapl, test_comm, MPI_INFO_NULL); + + /* Perform requested testing */ + PerformTests(); + } + + MPI_Barrier(MPI_COMM_WORLD); + + /* Restore the default bigio setting */ + H5_mpi_set_bigio_count(oldsize); + + express_test = GetTestExpress(); + if ((express_test == 0) && (mpi_rank < 2)) { + MpioTest2G(test_comm, mpi_rank); + } + + MPI_Barrier(MPI_COMM_WORLD); + + if (mpi_rank == 0) + HDremove(FILENAME[0]); + + H5close(); + if (test_comm != MPI_COMM_WORLD) { + MPI_Comm_free(&test_comm); + } + MPI_Finalize(); + return 0; +} |