diff options
author | MuQun Yang <ymuqun@hdfgroup.org> | 2004-11-24 21:13:26 (GMT) |
---|---|---|
committer | MuQun Yang <ymuqun@hdfgroup.org> | 2004-11-24 21:13:26 (GMT) |
commit | c20de8aed47c974df8303c0457a4bd034a125f2e (patch) | |
tree | b8b29131068f681e1577ad9a94732c538f4cdeac /testpar | |
parent | cb58a0d8c677a8efd0e896ea690084c97953d6bc (diff) | |
download | hdf5-c20de8aed47c974df8303c0457a4bd034a125f2e.zip hdf5-c20de8aed47c974df8303c0457a4bd034a125f2e.tar.gz hdf5-c20de8aed47c974df8303c0457a4bd034a125f2e.tar.bz2 |
[svn-r9575] Purpose:
Adding testing code for collective IO implementation
Description:
Won't affect testing HDF5 library.
Not tested yet, only check in for debugging purpose.
Solution:
Platforms tested:
Linux 2.4 + mpich 1.2.6
Aix 5.1 + mpcc_r
Misc. update:
Diffstat (limited to 'testpar')
-rw-r--r-- | testpar/t_span_tree.c | 810 | ||||
-rw-r--r-- | testpar/testphdf5.c | 13 | ||||
-rw-r--r-- | testpar/testphdf5.h | 96 |
3 files changed, 642 insertions, 277 deletions
diff --git a/testpar/t_span_tree.c b/testpar/t_span_tree.c index 58c2885..7eaa050 100644 --- a/testpar/t_span_tree.c +++ b/testpar/t_span_tree.c @@ -14,14 +14,23 @@ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /* - * This program shows how the H5Sselect_hyperslab and H5Sselect_elements - * functions are used to write selected data from memory to the file. - * Program takes 48 elements from the linear buffer and writes them into - * the matrix using 3x2 blocks, (4,3) stride and (2,4) count. - * Then four elements of the matrix are overwritten with the new values and - * file is closed. Program reopens the file and selects the union of two - * hyperslabs in the dataset in the file. Then it reads the selection into the - * memory dataset preserving the shape of the selection. + This program will test irregular hyperslab selections with collective write and read. + The way to test whether collective write and read works is to use independent IO + output to verify the collective output. + + 1) We will write two datasets with the same hyperslab selection settings; + one in independent mode, + one in collective mode, + 2) We will read two datasets with the same hyperslab selection settings, + 1. independent read to read independent output, + independent read to read collecive output, + Compare the result, + If the result is the same, then collective write succeeds. + 2. collective read to read independent output, + independent read to read independent output, + Compare the result, + If the result is the same, then collective read succeeds. + */ #include "hdf5.h" @@ -29,280 +38,555 @@ #include "testphdf5.h" -void t_span_tree() +void coll_irregular_cont_write() { - char *filename; - hid_t acc_plist,xfer_plist; - hid_t file, dataset; /* File and dataset identifiers */ - hid_t mid1, mid2, mid, fid; /* Dataspace identifiers */ - hid_t plist; /* Dataset property list identifier */ - - hsize_t dim1[] = {MSPACE1_DIM}; /* Dimension size of the first dataset - (in memory) */ - hsize_t dim2[] = {MSPACE2_DIM}; /* Dimension size of the second dataset - (in memory */ - hsize_t fdim[] = {FSPACE_DIM1, FSPACE_DIM2}; - /* Dimension sizes of the dataset (on disk) */ - hsize_t mdim[] = {MSPACE_DIM1, MSPACE_DIM2}; /* Dimension sizes of the - dataset in memory when we - read selection from the - dataset on the disk */ - - hssize_t start[2]; /* Start of hyperslab */ - hsize_t stride[2]; /* Stride of hyperslab */ - hsize_t count[2]; /* Block count */ - hsize_t block[2]; /* Block sizes */ - - hssize_t coord[NPOINTS][FSPACE_RANK]; /* Array to store selected points - from the file dataspace */ - herr_t ret; - unsigned i,j; - int fillvalue = 0; /* Fill value for the dataset */ - - int matrix_out[MSPACE_DIM1][MSPACE_DIM2]; /* Buffer to read from the - dataset */ - int vector[MSPACE1_DIM]; - int values[] = {53, 59, 61, 67}; /* New values to be written */ - - int mpi_size,mpi_rank; - hsize_t testdims[2]; - MPI_Comm comm = MPI_COMM_WORLD; - MPI_Info info = MPI_INFO_NULL; - - /*set up MPI parameters */ - MPI_Comm_size(comm,&mpi_size); - MPI_Comm_rank(comm,&mpi_rank); - - printf("mpi_size %d\n",mpi_size); - printf("mpi_rank %d\n",mpi_rank); - - /* Obtain file name */ - filename = (char *) GetTestParameters(); - - - /* - * Buffers' initialization. - */ - vector[0] = vector[MSPACE1_DIM - 1] = -1; - for (i = 1; i < MSPACE1_DIM - 1; i++) vector[i] = i; - - acc_plist = H5Pcreate(H5P_FILE_ACCESS); - ret = H5Pset_fapl_mpio(acc_plist,comm,info); + char *filename; + hid_t acc_plist,xfer_plist; + hid_t file, datasetc,dataseti; /* File and dataset identifiers */ + hid_t mspaceid1, mspaceid, fspaceid,fspaceid1; /* Dataspace identifiers */ + hid_t plist; /* Dataset property list identifier */ + + hsize_t mdim1[] = {MSPACE1_DIM}; /* Dimension size of the first dataset + (in memory) */ + + hsize_t fsdim[] = {FSPACE_DIM1, FSPACE_DIM2}; + /* Dimension sizes of the dataset (on disk) */ + hsize_t mdim[] = {MSPACE_DIM1, MSPACE_DIM2}; /* Dimension sizes of the + dataset in memory when we + read selection from the + dataset on the disk */ + + hssize_t start[2]; /* Start of hyperslab */ + hsize_t stride[2]; /* Stride of hyperslab */ + hsize_t count[2]; /* Block count */ + hsize_t block[2]; /* Block sizes */ + + + herr_t ret; + unsigned i,j; + int fillvalue = 0; /* Fill value for the dataset */ + + int matrix_out[MSPACE_DIM1][MSPACE_DIM2]; + int matrix_out1[MSPACE_DIM1][MSPACE_DIM2]; /* Buffer to read from the + dataset */ + int vector[MSPACE1_DIM]; + + int mpi_size,mpi_rank; + + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + + /*set up MPI parameters */ + MPI_Comm_size(comm,&mpi_size); + MPI_Comm_rank(comm,&mpi_rank); + + + /* Obtain file name */ + filename = (char *) GetTestParameters(); + + /* + * Buffers' initialization. + */ + vector[0] = vector[MSPACE1_DIM - 1] = -1; + for (i = 1; i < MSPACE1_DIM - 1; i++) vector[i] = i; + + acc_plist = H5Pcreate(H5P_FILE_ACCESS); + VRFY((acc_plist >= 0),""); + + ret = H5Pset_fapl_mpio(acc_plist,comm,info); + VRFY((ret >= 0),"MPIO creation property list succeeded"); + + /* + * Create a file. + */ + file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_plist); + VRFY((file >= 0),"H5Fcreate succeeded"); + + /* + * Create property list for a dataset and set up fill values. + */ + plist = H5Pcreate(H5P_DATASET_CREATE); + VRFY((acc_plist >= 0),""); + + ret = H5Pset_fill_value(plist, H5T_NATIVE_INT, &fillvalue); + VRFY((ret >= 0),"Fill value creation property list succeeded"); - /* - * Create a file. - */ - file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_plist); - - /* - * Create property list for a dataset and set up fill values. - */ - plist = H5Pcreate(H5P_DATASET_CREATE); - ret = H5Pset_fill_value(plist, H5T_NATIVE_INT, &fillvalue); - - /* - * Create dataspace for the dataset in the file. - */ - fid = H5Screate_simple(FSPACE_RANK, fdim, NULL); - - /* - * Create dataset in the file. Notice that creation - * property list plist is used. - */ - dataset = H5Dcreate(file, "Matrix in file", H5T_NATIVE_INT, fid, plist); - - - /* - * Select hyperslab for the dataset in the file, using 3x2 blocks, - * (4,3) stride and (1,4) count starting at the position (0,1) - for the first selection - */ - start[0] = 0; start[1] = 1; - stride[0] = 4; stride[1] = 3; - count[0] = 1; count[1] = 4; - block[0] = 3; block[1] = 2; - ret = H5Sselect_hyperslab(fid, H5S_SELECT_SET, start, stride, count, block); - - if(ret < 0) printf("hyperslab selection is wrong. \n"); - - /* - * Select hyperslab for the dataset in the file, using 3x2*4 blocks, - * stride 1 and (1,1) count starting at the position (4,0). - */ - /* start[0] = 4; start[1] = 0; - stride[0] = 1; stride[1] = 1; - count[0] = 1; count[1] = 1; - block[0] = 3; block[1] = 8;*/ - - start[0] = 4; start[1] = 0; - stride[0] = 1; stride[1] = 1; - count[0] = 1; count[1] = 1; - block[0] = 3; block[1] = 8; - ret = H5Sselect_hyperslab(fid, H5S_SELECT_OR, start, stride, count, block); + /* + * Create dataspace for the dataset in the file. + */ + fspaceid = H5Screate_simple(FSPACE_RANK, fsdim, NULL); + VRFY((fspaceid >= 0),"file dataspace created succeeded"); + + /* + * Create dataset in the file. Notice that creation + * property list plist is used. + */ + datasetc = H5Dcreate(file, "collect_write", H5T_NATIVE_INT, fspaceid, plist); + VRFY((datasetc >= 0),"dataset created succeeded"); + + dataseti = H5Dcreate(file, "independ_write", H5T_NATIVE_INT, fspaceid, plist); + VRFY((dataseti >= 0),"dataset created succeeded"); + /* + * Select hyperslab for the dataset in the file, using 3x2 blocks, + * (4,3) stride and (1,4) count starting at the position (0,1) + for the first selection + */ + + start[0] = FHSTART0; + start[1] = FHSTART1+mpi_rank*FHSTRIDE1*FHCOUNT1/mpi_size; + stride[0] = FHSTRIDE0; + stride[1] = FHSTRIDE1; + count[0] = FHCOUNT0; + count[1] = FHCOUNT1/mpi_size; + block[0] = FHBLOCK0; + block[1] = FHBLOCK1; + + ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0),"hyperslab selection succeeded"); + + /* + * Select hyperslab for the dataset in the file, using 3x2*4 blocks, + * stride 1 and (1,1) count starting at the position (4,0). + */ + + start[0] = SHSTART0; + start[1] = SHSTART1+SHCOUNT1*SHBLOCK1*mpi_rank/mpi_size; + stride[0] = SHSTRIDE0; + stride[1] = SHSTRIDE1; + count[0] = SHCOUNT0; + count[1] = SHCOUNT1; + block[0] = SHBLOCK0; + block[1] = SHBLOCK1/mpi_size; + + ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0),"hyperslab selection succeeded"); + + /* + * Create dataspace for the first dataset. + */ + mspaceid1 = H5Screate_simple(MSPACE1_RANK, mdim1, NULL); + VRFY((mspaceid1 >= 0),"memory dataspace created succeeded"); + + /* + * Select hyperslab. + * We will use 48 elements of the vector buffer starting at the second element. + * Selected elements are 1 2 3 . . . 48 + */ + start[0] = MHSTART0; + stride[0] = MHSTRIDE0; + count[0] = MHCOUNT0/mpi_size; + block[0] = MHBLOCK0; + + ret = H5Sselect_hyperslab(mspaceid1, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0),"hyperslab selection succeeded"); + + + ret = H5Dwrite(dataseti, H5T_NATIVE_INT, mspaceid1, fspaceid, H5P_DEFAULT, vector); + VRFY((ret >= 0),"dataset independent write succeed"); + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0),""); + + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0),"MPIO data transfer property list succeed"); + + + ret = H5Dwrite(datasetc, H5T_NATIVE_INT, mspaceid1, fspaceid, xfer_plist, vector); + VRFY((ret >= 0),"dataset collective write succeed"); + + ret = H5Sclose(mspaceid1); + VRFY((ret >= 0),""); + + ret = H5Sclose(fspaceid); + VRFY((ret >= 0),""); - if(ret < 0) printf("hyperslab selection is wrong with or selection. \n"); - /* - * Create dataspace for the first dataset. - */ - mid1 = H5Screate_simple(MSPACE1_RANK, dim1, NULL); - - /* - * Select hyperslab. - * We will use 48 elements of the vector buffer starting at the second element. - * Selected elements are 1 2 3 . . . 48 - */ - start[0] = 1; - stride[0] = 1; - count[0] = 48; - block[0] = 1; - ret = H5Sselect_hyperslab(mid1, H5S_SELECT_SET, start, stride, count, block); + /* + * Close dataset. + */ + ret = H5Dclose(datasetc); + VRFY((ret >= 0),""); + ret = H5Dclose(dataseti); + VRFY((ret >= 0),""); + + /* + * Close the file. + */ + ret = H5Fclose(file); + VRFY((ret >= 0),""); + /* + * Close property list + */ + + ret = H5Pclose(acc_plist); + VRFY((ret >= 0),""); + ret = H5Pclose(xfer_plist); + VRFY((ret >= 0),""); + ret = H5Pclose(plist); + VRFY((ret >= 0),""); + + /* + * Open the file. + */ + + /*** For testing collective hyperslab selection write ***/ + + acc_plist = H5Pcreate(H5P_FILE_ACCESS); + VRFY((acc_plist >= 0),""); + + ret = H5Pset_fapl_mpio(acc_plist,comm,info); + VRFY((ret >= 0),"MPIO creation property list succeeded"); + + file = H5Fopen(filename, H5F_ACC_RDONLY, acc_plist); + VRFY((file >= 0),"H5Fopen succeeded"); + + /* + * Open the dataset. + */ + datasetc = H5Dopen(file,"collect_write"); + VRFY((datasetc >= 0),"H5Dopen succeeded"); + dataseti = H5Dopen(file,"independ_write"); + VRFY((dataseti >= 0),"H5Dopen succeeded"); + + /* + * Get dataspace of the open dataset. + */ + fspaceid = H5Dget_space(datasetc); + VRFY((fspaceid >= 0),"file dataspace obtained succeeded"); + + fspaceid1 = H5Dget_space(dataseti); + VRFY((fspaceid1 >= 0),"file dataspace obtained succeeded"); + + + + start[0] = RFFHSTART0; + start[1] = RFFHSTART1+mpi_rank*RFFHCOUNT1/mpi_size; + block[0] = RFFHBLOCK0; + block[1] = RFFHBLOCK1; + stride[0] = RFFHSTRIDE0; + stride[1] = RFFHSTRIDE1; + count[0] = RFFHCOUNT0; + count[1] = RFFHCOUNT1/mpi_size; - /* - * Write selection from the vector buffer to the dataset in the file. - * - * File dataset should look like this: - * 0 1 2 0 3 4 0 5 6 0 7 8 - * 0 9 10 0 11 12 0 13 14 0 15 16 - * 0 17 18 0 19 20 0 21 22 0 23 24 - * 0 0 0 0 0 0 0 0 0 0 0 0 - * 0 25 26 0 27 28 0 29 30 0 31 32 - * 0 33 34 0 35 36 0 37 38 0 39 40 - * 0 41 42 0 43 44 0 45 46 0 47 48 - * 0 0 0 0 0 0 0 0 0 0 0 0 - */ - - xfer_plist = H5Pcreate(H5P_DATASET_XFER); - - ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - - for (i = 0; i < MSPACE_DIM1; i++) { - for (j = 0; j < MSPACE_DIM2; j++) - matrix_out[i][j] = 3; - } - /* ret = H5Dwrite(dataset, H5T_NATIVE_INT, mid1, fid, xfer_plist, vector);*/ - ret = H5Dwrite(dataset, H5T_NATIVE_INT, mid1, fid, xfer_plist, vector); - if(ret < 0) printf("failing to write data .\n"); + ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0),"hyperslab selection succeeded"); + ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0),"hyperslab selection succeeded"); + + /*start[0] = RFSHSTART0+mpi_rank*RFSHCOUNT1/mpi_size; */ + start[0] = RFSHSTART0; + start[1] = RFSHSTART1+RFSHCOUNT1*mpi_rank/mpi_size; + block[0] = RFSHBLOCK0; + block[1] = RFSHBLOCK1; + stride[0] = RFSHSTRIDE0; + stride[1] = RFSHSTRIDE0; + count[0] = RFSHCOUNT0; + count[1] = RFSHCOUNT1/mpi_size; + ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0),"hyperslab selection succeeded"); + ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0),"hyperslab selection succeeded"); + + + /* + * Create memory dataspace. + */ + mspaceid = H5Screate_simple(MSPACE_RANK, mdim, NULL); + + /* + * Select two hyperslabs in memory. Hyperslabs has the same + * size and shape as the selected hyperslabs for the file dataspace. + */ + + + start[0] = RMFHSTART0; + start[1] = RMFHSTART1+mpi_rank*RMFHCOUNT1/mpi_size; + block[0] = RMFHBLOCK0; + block[1] = RMFHBLOCK1; + stride[0] = RMFHSTRIDE0; + stride[1] = RMFHSTRIDE1; + count[0] = RMFHCOUNT0; + count[1] = RMFHCOUNT1/mpi_size; + ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0),"hyperslab selection succeeded"); + + start[0] = RMSHSTART0; + start[1] = RMSHSTART1+mpi_rank*RMSHCOUNT1/mpi_size; + block[0] = RMSHBLOCK0; + block[1] = RMSHBLOCK1; + stride[0] = RMSHSTRIDE0; + stride[1] = RMSHSTRIDE1; + count[0] = RMSHCOUNT0; + count[1] = RMSHCOUNT1/mpi_size; - /* - * Initialize data buffer. - */ - for (i = 0; i < MSPACE_DIM1; i++) { - for (j = 0; j < MSPACE_DIM2; j++) - matrix_out[i][j] = 1; + + ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0),"hyperslab selection succeeded"); + + /* + * Initialize data buffer. + */ + for (i = 0; i < MSPACE_DIM1; i++) { + for (j = 0; j < MSPACE_DIM2; j++) + matrix_out[i][j] = 0; + } + + /* + * Read data back to the buffer matrix_out. + */ + + ret = H5Dread(datasetc, H5T_NATIVE_INT, mspaceid, fspaceid, + H5P_DEFAULT, matrix_out); + VRFY((ret >= 0),"H5D independent read succeed"); + + + for (i = 0; i < MSPACE_DIM1; i++) { + for (j = 0; j < MSPACE_DIM2; j++) + matrix_out1[i][j] = 0; + } + ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid, + H5P_DEFAULT, matrix_out1); + VRFY((ret >= 0),"H5D independent read succeed"); + + ret = 0; + for (i = 0; i < MSPACE_DIM1; i++){ + for (j = 0; j < MSPACE_DIM2; j++){ + if(matrix_out[i][j]!=matrix_out1[i][j]) ret = -1; + if(ret < 0) break; } + } + VRFY((ret >= 0),"H5D contiguous irregular collective write succeed"); + + /* + * Close memory file and memory dataspaces. + */ + ret = H5Sclose(mspaceid); + VRFY((ret >= 0),""); + ret = H5Sclose(fspaceid); + VRFY((ret >= 0),""); + + /* + * Close dataset. + */ + ret = H5Dclose(dataseti); + VRFY((ret >= 0),""); - for (i=0; i < MSPACE_DIM1; i++) { - for(j=0; j < MSPACE_DIM2; j++) printf("%3d ", matrix_out[i][j]); - printf("\n"); - } - + ret = H5Dclose(datasetc); + VRFY((ret >= 0),""); + /* + * Close property list + */ -#if 0 + ret = H5Pclose(acc_plist); + VRFY((ret >= 0),""); - /* for dataset reading */ - xfer_plist = H5Pcreate(H5P_DATASET_XFER); + + /* + * Close the file. + */ + ret = H5Fclose(file); + VRFY((ret >= 0),""); - ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); - ret = H5Dread(dataset, H5T_NATIVE_INT, fid, fid, - xfer_plist, matrix_out); + return ; +} - /* ret = H5Dread(dataset, H5T_NATIVE_INT, fid, fid, - H5P_DEFAULT, matrix_out);*/ +void coll_irregular_cont_read() +{ - if(ret < 0) printf("fail to read the dataset afterwards.\n"); - for (i=0; i < MSPACE_DIM1; i++) { - for(j=0; j < MSPACE_DIM2; j++) printf("%3d ", matrix_out[i][j]); - printf("\n"); - } -#endif - - ret = H5Sclose(mid1); - ret = H5Sclose(fid); + char *filename; + hid_t acc_plist,xfer_plist; + hid_t file, dataseti; /* File and dataset identifiers */ + hid_t mspaceid, fspaceid1; /* Dataspace identifiers */ - /* - * Close dataset. - */ - ret = H5Dclose(dataset); - - /* - * Close the file. - */ - ret = H5Fclose(file); - - /* - * Close property list - */ - - ret = H5Pclose(acc_plist); - - ret = H5Pclose(xfer_plist); - ret = H5Pclose(plist); - -#if 0 - /* - * Open the file. - */ - file = H5Fopen(filename, H5F_ACC_RDONLY, acc_plist); - if(file <0) printf("fail to open the file.\n"); - - /* - * Open the dataset. - */ - dataset = H5Dopen(file,"Matrix in file"); - if(dataset < 0) printf("fail to open the dataset.\n"); - - /* - * Get dataspace of the open dataset. - */ - fid = H5Dget_space(dataset); - if(fid < 0) printf("cannot obtain the correct file space.\n"); - H5Sget_simple_extent_dims(fid,testdims,NULL); - HDfprintf(stdout,"testdims[0] %Hu\n",testdims[0]); - HDfprintf(stdout, "testdims[1] %Hu\n",testdims[1]); - - /* - * Initialize data buffer. - */ - for (i = 0; i < MSPACE_DIM1; i++) { - for (j = 0; j < MSPACE_DIM2; j++) - matrix_out[i][j] = 1; - } + /* Dimension sizes of the dataset (on disk) */ + hsize_t mdim[] = {MSPACE_DIM1, MSPACE_DIM2}; /* Dimension sizes of the + dataset in memory when we + read selection from the + dataset on the disk */ - ret = H5Dread(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, - H5P_DEFAULT, matrix_out); + hssize_t start[2]; /* Start of hyperslab */ + hsize_t stride[2]; /* Stride of hyperslab */ + hsize_t count[2]; /* Block count */ + hsize_t block[2]; /* Block sizes */ - if(ret < 0) printf("fail to read the dataset.\n"); - for (i=0; i < MSPACE_DIM1; i++) { - for(j=0; j < MSPACE_DIM2; j++) printf("%3d ", matrix_out[i][j]); - printf("\n"); - } + herr_t ret; + unsigned i,j; + + int matrix_out[MSPACE_DIM1][MSPACE_DIM2]; + int matrix_out1[MSPACE_DIM1][MSPACE_DIM2]; /* Buffer to read from the + dataset */ + + int mpi_size,mpi_rank; + + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + + /*set up MPI parameters */ + MPI_Comm_size(comm,&mpi_size); + MPI_Comm_rank(comm,&mpi_rank); - /* - * Close memory file and memory dataspaces. - */ - ret = H5Sclose(mid); - ret = H5Sclose(fid); + + /* Obtain file name */ + filename = (char *) GetTestParameters(); + + /* + * Buffers' initialization. + */ + + /* + * Open the file. + */ + + /*** For testing collective hyperslab selection read ***/ + + acc_plist = H5Pcreate(H5P_FILE_ACCESS); + VRFY((acc_plist >= 0),""); + + ret = H5Pset_fapl_mpio(acc_plist,comm,info); + VRFY((ret >= 0),"MPIO creation property list succeeded"); + + file = H5Fopen(filename, H5F_ACC_RDONLY, acc_plist); + VRFY((file >= 0),"H5Fopen succeeded"); + + /* + * Open the dataset. + */ + dataseti = H5Dopen(file,"independ_write"); + VRFY((dataseti >= 0),"H5Dopen succeeded"); + + /* + * Get dataspace of the open dataset. + */ + + fspaceid1 = H5Dget_space(dataseti); + VRFY((fspaceid1 >= 0),"file dataspace obtained succeeded"); + + start[0] = RFFHSTART0; + start[1] = RFFHSTART1+mpi_rank*RFFHCOUNT1/mpi_size; + block[0] = RFFHBLOCK0; + block[1] = RFFHBLOCK1; + stride[0] = RFFHSTRIDE0; + stride[1] = RFFHSTRIDE1; + count[0] = RFFHCOUNT0; + count[1] = RFFHCOUNT1/mpi_size; + + ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0),"hyperslab selection succeeded"); + + + start[0] = RFSHSTART0; + start[1] = RFSHSTART1+RFSHCOUNT1*mpi_rank/mpi_size; + block[0] = RFSHBLOCK0; + block[1] = RFSHBLOCK1; + stride[0] = RFSHSTRIDE0; + stride[1] = RFSHSTRIDE0; + count[0] = RFSHCOUNT0; + count[1] = RFSHCOUNT1/mpi_size; + + ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0),"hyperslab selection succeeded"); + + + /* + * Create memory dataspace. + */ + mspaceid = H5Screate_simple(MSPACE_RANK, mdim, NULL); + + /* + * Select two hyperslabs in memory. Hyperslabs has the same + * size and shape as the selected hyperslabs for the file dataspace. + */ + + start[0] = RMFHSTART0; + start[1] = RMFHSTART1+mpi_rank*RMFHCOUNT1/mpi_size; + block[0] = RMFHBLOCK0; + block[1] = RMFHBLOCK1; + stride[0] = RMFHSTRIDE0; + stride[1] = RMFHSTRIDE1; + count[0] = RMFHCOUNT0; + count[1] = RMFHCOUNT1/mpi_size; + ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_SET, start, stride, count, block); + VRFY((ret >= 0),"hyperslab selection succeeded"); + + start[0] = RMSHSTART0; + start[1] = RMSHSTART1+mpi_rank*RMSHCOUNT1/mpi_size; + block[0] = RMSHBLOCK0; + block[1] = RMSHBLOCK1; + stride[0] = RMSHSTRIDE0; + stride[1] = RMSHSTRIDE1; + count[0] = RMSHCOUNT0; + count[1] = RMSHCOUNT1/mpi_size; + ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_OR, start, stride, count, block); + VRFY((ret >= 0),"hyperslab selection succeeded"); + + /* + * Initialize data buffer. + */ + for (i = 0; i < MSPACE_DIM1; i++) { + for (j = 0; j < MSPACE_DIM2; j++) + matrix_out[i][j] = 0; + } + + /* + * Read data back to the buffer matrix_out. + */ + + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0),""); + + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0),"MPIO data transfer property list succeed"); + + ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid1, + xfer_plist, matrix_out); + VRFY((ret >= 0),"H5D collecive read succeed"); + + ret = H5Pclose(xfer_plist); + VRFY((ret >= 0),""); + + for (i = 0; i < MSPACE_DIM1; i++) { + for (j = 0; j < MSPACE_DIM2; j++) + matrix_out1[i][j] = 0; + } + ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid1, + H5P_DEFAULT, matrix_out1); + + VRFY((ret >= 0),"H5D independent read succeed"); + ret = 0; + for (i = 0; i < MSPACE_DIM1; i++){ + for (j = 0; j < MSPACE_DIM2; j++){ + if(matrix_out[i][j]!=matrix_out1[i][j])ret = -1; + if(ret < 0) break; + } + } + VRFY((ret >= 0),"H5D contiguous irregular collective read succeed"); + + /* + * Close memory file and memory dataspaces. + */ + ret = H5Sclose(mspaceid); + VRFY((ret >= 0),""); + ret = H5Sclose(fspaceid1); + VRFY((ret >= 0),""); - /* - * Close dataset. - */ - ret = H5Dclose(dataset); - - /* - * Close property list - */ - ret = H5Pclose(plist); - ret = H5Pclose(acc_plist); - - ret = H5Pclose(xfer_plist); + /* + * Close dataset. + */ + ret = H5Dclose(dataseti); + VRFY((ret >= 0),""); + /* + * Close property list + */ + ret = H5Pclose(acc_plist); + VRFY((ret >= 0),""); + - /* - * Close the file. - */ - ret = H5Fclose(file); -#endif - return ; + /* + * Close the file. + */ + ret = H5Fclose(file); + VRFY((ret >= 0),""); + + return ; } diff --git a/testpar/testphdf5.c b/testpar/testphdf5.c index 01e7ef9..d6cc6a7 100644 --- a/testpar/testphdf5.c +++ b/testpar/testphdf5.c @@ -352,7 +352,6 @@ int main(int argc, char **argv) TestInit(argv[0], usage, parse_options); /* Tests are generally arranged from least to most complexity... */ - AddTest("mpiodup", test_fapl_mpio_dup, NULL, "fapl_mpio duplicate", NULL); AddTest("posixdup", test_fapl_mpiposix_dup, NULL, @@ -434,11 +433,14 @@ int main(int argc, char **argv) AddTest("cchunk4", coll_chunk4,NULL, "collective to independent chunk io",PARATESTFILE); } - -#ifdef KYANG - AddTest("span_tree",t_span_tree,NULL, - "derived datatype test",PARATESTFILE); + /*#ifdef KYANG*/ +#ifdef KYANG + AddTest("ccontw",coll_irregular_cont_write,NULL, + "collective irregular contiguous write",PARATESTFILE); + AddTest("ccontr",coll_irregular_cont_read,NULL, + "collective irregular contiguous read",PARATESTFILE); #endif + AddTest("null", null_dataset, NULL, "null dataset test", PARATESTFILE); @@ -448,7 +450,6 @@ int main(int argc, char **argv) AddTest("I/Omodeconf", io_mode_confusion, NULL, "I/O mode confusion test -- hangs quickly on failure", &io_mode_confusion_params); - /* Display testing information */ TestInfo(argv[0]); diff --git a/testpar/testphdf5.h b/testpar/testphdf5.h index 788a02a..cc16719 100644 --- a/testpar/testphdf5.h +++ b/testpar/testphdf5.h @@ -123,17 +123,96 @@ /*Constants for MPI derived data type generated from span tree */ #define MSPACE1_RANK 1 /* Rank of the first dataset in memory */ -#define MSPACE1_DIM 50 /* Dataset size in memory */ -#define MSPACE2_RANK 1 /* Rank of the second dataset in memory */ -#define MSPACE2_DIM 4 /* Dataset size in memory */ -#define FSPACE_RANK 2 /* Dataset rank as it is stored in the file */ -#define FSPACE_DIM1 8 /* Dimension sizes of the dataset as it is stored in the file */ -#define FSPACE_DIM2 12 /* We will read dataset back from the file to the dataset in memory with these dataspace parameters. */ +#define MSPACE1_DIM 19000 /* Dataset size in memory */ +#define FSPACE_RANK 2 /* Dataset rank as it is stored in the file */ +#define FSPACE_DIM1 9 /* Dimension sizes of the dataset as it is stored in the file */ +#define FSPACE_DIM2 2400 /* We will read dataset back from the file to the dataset in memory with these dataspace parameters. */ +#define MSPACE_RANK 2 +#define MSPACE_DIM1 9 +#define MSPACE_DIM2 2400 +#define FHCOUNT0 1 /* Count of the first dimension of the first hyperslab selection*/ +#define FHCOUNT1 512 /* Count of the second dimension of the first hyperslab selection*/ +#define FHSTRIDE0 4 /* Stride of the first dimension of the first hyperslab selection*/ +#define FHSTRIDE1 3 /* Stride of the second dimension of the first hyperslab selection*/ +#define FHBLOCK0 3 /* Block of the first dimension of the first hyperslab selection*/ +#define FHBLOCK1 2 /* Block of the second dimension of the first hyperslab selection*/ +#define FHSTART0 0 /* start of the first dimension of the first hyperslab selection*/ +#define FHSTART1 1 /* start of the second dimension of the first hyperslab selection*/ + +#define SHCOUNT0 1 /* Count of the first dimension of the first hyperslab selection*/ +#define SHCOUNT1 1 /* Count of the second dimension of the first hyperslab selection*/ +#define SHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ +#define SHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ +#define SHBLOCK0 3 /* Block of the first dimension of the first hyperslab selection*/ +#define SHBLOCK1 512 /* Block of the second dimension of the first hyperslab selection*/ +#define SHSTART0 4 /* start of the first dimension of the first hyperslab selection*/ +#define SHSTART1 0 /* start of the second dimension of the first hyperslab selection*/ + +#define MHCOUNT0 4608 /* Count of the first dimension of the first hyperslab selection*/ +#define MHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ +#define MHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ +#define MHSTART0 1 /* start of the first dimension of the first hyperslab selection*/ + + + +#define RFFHCOUNT0 3 /* Count of the first dimension of the first hyperslab selection*/ +#define RFFHCOUNT1 512 /* Count of the second dimension of the first hyperslab selection*/ +#define RFFHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ +#define RFFHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ +#define RFFHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ +#define RFFHBLOCK1 1 /* Block of the second dimension of the first hyperslab selection*/ +#define RFFHSTART0 1 /* start of the first dimension of the first hyperslab selection*/ +#define RFFHSTART1 2 /* start of the second dimension of the first hyperslab selection*/ + + +#define RFSHCOUNT0 3 /* Count of the first dimension of the first hyperslab selection*/ +#define RFSHCOUNT1 1024 /* Count of the second dimension of the first hyperslab selection*/ +#define RFSHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ +#define RFSHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ +#define RFSHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ +#define RFSHBLOCK1 1 /* Block of the second dimension of the first hyperslab selection*/ +#define RFSHSTART0 2 /* start of the first dimension of the first hyperslab selection*/ +#define RFSHSTART1 4 /* start of the second dimension of the first hyperslab selection*/ + + +#define RMFHCOUNT0 3 /* Count of the first dimension of the first hyperslab selection*/ +#define RMFHCOUNT1 512 /* Count of the second dimension of the first hyperslab selection*/ +#define RMFHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ +#define RMFHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ +#define RMFHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ +#define RMFHBLOCK1 1 /* Block of the second dimension of the first hyperslab selection*/ +#define RMFHSTART0 0 /* start of the first dimension of the first hyperslab selection*/ +#define RMFHSTART1 0 /* start of the second dimension of the first hyperslab selection*/ + +#define RMSHCOUNT0 3 /* Count of the first dimension of the first hyperslab selection*/ +#define RMSHCOUNT1 1024 /* Count of the second dimension of the first hyperslab selection*/ +#define RMSHSTRIDE0 1 /* Stride of the first dimension of the first hyperslab selection*/ +#define RMSHSTRIDE1 1 /* Stride of the second dimension of the first hyperslab selection*/ +#define RMSHBLOCK0 1 /* Block of the first dimension of the first hyperslab selection*/ +#define RMSHBLOCK1 1 /* Block of the second dimension of the first hyperslab selection*/ +#define RMSHSTART0 1 /* start of the first dimension of the first hyperslab selection*/ +#define RMSHSTART1 2 /* start of the second dimension of the first hyperslab selection*/ + + +#define NPOINTS 4 /* Number of points that will be selected + and overwritten */ + +/* Don't erase these lines, they are put here for debugging purposes */ +/* +#define MSPACE1_RANK 1 +#define MSPACE1_DIM 50 +#define MSPACE2_RANK 1 +#define MSPACE2_DIM 4 +#define FSPACE_RANK 2 +#define FSPACE_DIM1 8 +#define FSPACE_DIM2 12 #define MSPACE_RANK 2 #define MSPACE_DIM1 8 #define MSPACE_DIM2 9 -#define NPOINTS 4 /* Number of points that will be selected and overwritten */ +#define NPOINTS 4 + +*/ /* end of debugging macro */ /* type definitions */ typedef struct H5Ptest_param_t /* holds extra test parameters */ { @@ -178,7 +257,8 @@ void coll_chunk1(void); void coll_chunk2(void); void coll_chunk3(void); void coll_chunk4(void); -void t_span_tree(void); +void coll_irregular_cont_read(void); +void coll_irregular_cont_write(void); void io_mode_confusion(void); #ifdef H5_HAVE_FILTER_DEFLATE void compress_readAll(void); |