summaryrefslogtreecommitdiffstats
path: root/testpar
diff options
context:
space:
mode:
authorMuQun Yang <ymuqun@hdfgroup.org>2005-10-18 15:47:13 (GMT)
committerMuQun Yang <ymuqun@hdfgroup.org>2005-10-18 15:47:13 (GMT)
commita1d3ff30ac8ee6b6ceda980c526aec5953fbfa55 (patch)
treeb538b5ff9a97a3cd4f65f056d8ef281f2f499c6e /testpar
parent3be01f770df218ed95e6347b0db54fc4c4f4f81a (diff)
downloadhdf5-a1d3ff30ac8ee6b6ceda980c526aec5953fbfa55.zip
hdf5-a1d3ff30ac8ee6b6ceda980c526aec5953fbfa55.tar.gz
hdf5-a1d3ff30ac8ee6b6ceda980c526aec5953fbfa55.tar.bz2
[svn-r11576] Purpose:
Adding comments and code clean-up for code that tests collective irregular selection Description: For better maintenance in the future, Add comments to list the number for (start,count,block,stride) for irregular selection for effective testing collective chunk IO feature development in the future. Solution: Platforms tested: Linux 2.4(heping), mostly comments, no need to test on other platforms. Misc. update:
Diffstat (limited to 'testpar')
-rw-r--r--testpar/t_span_tree.c413
1 files changed, 261 insertions, 152 deletions
diff --git a/testpar/t_span_tree.c b/testpar/t_span_tree.c
index 8c75a8d..ca48c17 100644
--- a/testpar/t_span_tree.c
+++ b/testpar/t_span_tree.c
@@ -45,8 +45,8 @@ static void coll_read_test(int chunk_factor);
/*-------------------------------------------------------------------------
* Function: coll_irregular_cont_write
*
- * Purpose: Test the collectively irregular hyperslab write in contiguous
- storage
+ * Purpose: Wrapper to test the collectively irregular hyperslab write in
+ contiguous storage
*
* Return: Success: 0
*
@@ -72,8 +72,8 @@ coll_irregular_cont_write(void)
/*-------------------------------------------------------------------------
* Function: coll_irregular_cont_read
*
- * Purpose: Test the collectively irregular hyperslab read in contiguous
- storage
+ * Purpose: Wrapper to test the collectively irregular hyperslab read in
+ contiguous storage
*
* Return: Success: 0
*
@@ -98,8 +98,8 @@ coll_irregular_cont_read(void)
/*-------------------------------------------------------------------------
* Function: coll_irregular_simple_chunk_write
*
- * Purpose: Test the collectively irregular hyperslab write in chunk
- storage(1 chunk)
+ * Purpose: Wrapper to test the collectively irregular hyperslab write in
+ chunk storage(1 chunk)
*
* Return: Success: 0
*
@@ -125,7 +125,7 @@ coll_irregular_simple_chunk_write(void)
/*-------------------------------------------------------------------------
* Function: coll_irregular_simple_chunk_read
*
- * Purpose: Test the collectively irregular hyperslab read in chunk
+ * Purpose: Wrapper to test the collectively irregular hyperslab read in chunk
storage(1 chunk)
*
* Return: Success: 0
@@ -150,7 +150,7 @@ coll_irregular_simple_chunk_read(void)
/*-------------------------------------------------------------------------
* Function: coll_irregular_complex_chunk_write
*
- * Purpose: Test the collectively irregular hyperslab write in chunk
+ * Purpose: Wrapper to test the collectively irregular hyperslab write in chunk
storage(4 chunks)
*
* Return: Success: 0
@@ -177,7 +177,7 @@ coll_irregular_complex_chunk_write(void)
/*-------------------------------------------------------------------------
* Function: coll_irregular_complex_chunk_read
*
- * Purpose: Test the collectively irregular hyperslab read in chunk
+ * Purpose: Wrapper to test the collectively irregular hyperslab read in chunk
storage(1 chunk)
*
* Return: Success: 0
@@ -200,27 +200,42 @@ coll_irregular_complex_chunk_read(void)
}
+/*-------------------------------------------------------------------------
+ * Function: coll_write_test
+ *
+ * Purpose: To test the collectively irregular hyperslab write in chunk
+ storage
+ * Input: number of chunks on each dimension
+ if number is equal to 0, contiguous storage
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * Dec 2nd, 2004
+ *
+ * Modifications: Oct 18th, 2005
+ *
+ *-------------------------------------------------------------------------
+ */
void coll_write_test(int chunk_factor)
{
- const char *filename;
- hid_t acc_plist,xfer_plist;
- hbool_t use_gpfs = FALSE;
- hid_t file, datasetc,dataseti; /* File and dataset identifiers */
- hid_t mspaceid1, mspaceid, fspaceid,fspaceid1; /* Dataspace identifiers */
- hid_t plist; /* Dataset property list identifier */
-
- hsize_t mdim1[] = {MSPACE1_DIM}; /* Dimension size of the first dataset
+ const char *filename;
+ hid_t facc_plist,dxfer_plist,dcrt_plist;
+ hid_t file, datasetc,dataseti; /* File and dataset identifiers */
+ hid_t mspaceid1, mspaceid, fspaceid,fspaceid1; /* Dataspace identifiers */
+ hsize_t mdim1[] = {MSPACE1_DIM}; /* Dimension size of the first dataset
(in memory) */
+ hsize_t fsdim[] = {FSPACE_DIM1, FSPACE_DIM2}; /* Dimension sizes of the dataset
+ (on disk) */
- hsize_t fsdim[] = {FSPACE_DIM1, FSPACE_DIM2};
- /* Dimension sizes of the dataset (on disk) */
- hsize_t mdim[] = {MSPACE_DIM1, MSPACE_DIM2}; /* Dimension sizes of the
+ hsize_t mdim[] = {MSPACE_DIM1, MSPACE_DIM2}; /* Dimension sizes of the
dataset in memory when we
read selection from the
dataset on the disk */
- hsize_t start[2]; /* Start of hyperslab */
+ hsize_t start[2]; /* Start of hyperslab */
hsize_t stride[2]; /* Stride of hyperslab */
hsize_t count[2]; /* Block count */
hsize_t block[2]; /* Block sizes */
@@ -228,14 +243,15 @@ void coll_write_test(int chunk_factor)
herr_t ret;
unsigned i,j;
- int fillvalue = 0; /* Fill value for the dataset */
+ int fillvalue = 0; /* Fill value for the dataset */
- int matrix_out[MSPACE_DIM1][MSPACE_DIM2];
- int matrix_out1[MSPACE_DIM1][MSPACE_DIM2]; /* Buffer to read from the
- dataset */
- int vector[MSPACE1_DIM];
+ int matrix_out[MSPACE_DIM1][MSPACE_DIM2];
+ int matrix_out1[MSPACE_DIM1][MSPACE_DIM2]; /* Buffer to read from the
+ dataset */
+ int vector[MSPACE1_DIM];
- int mpi_size,mpi_rank;
+ hbool_t use_gpfs = FALSE;
+ int mpi_size,mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
@@ -244,7 +260,6 @@ void coll_write_test(int chunk_factor)
MPI_Comm_size(comm,&mpi_size);
MPI_Comm_rank(comm,&mpi_rank);
-
/* Obtain file name */
filename = GetTestParameters();
@@ -254,59 +269,61 @@ void coll_write_test(int chunk_factor)
vector[0] = vector[MSPACE1_DIM - 1] = -1;
for (i = 1; i < MSPACE1_DIM - 1; i++) vector[i] = i;
-#if 0
- acc_plist = H5Pcreate(H5P_FILE_ACCESS);
- VRFY((acc_plist >= 0),"");
-
- ret = H5Pset_fapl_mpio(acc_plist,comm,info);
- VRFY((ret >= 0),"MPIO creation property list succeeded");
-#endif
-
- acc_plist = create_faccess_plist(comm, info, facc_type, use_gpfs);
- VRFY((acc_plist >= 0),"");
+ /* Grab file access property list */
+ facc_plist = create_faccess_plist(comm, info, facc_type, use_gpfs);
+ VRFY((facc_plist >= 0),"");
/*
* Create a file.
*/
- file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_plist);
+ file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, facc_plist);
VRFY((file >= 0),"H5Fcreate succeeded");
/*
* Create property list for a dataset and set up fill values.
*/
- plist = H5Pcreate(H5P_DATASET_CREATE);
- VRFY((acc_plist >= 0),"");
+ dcrt_plist = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((dcrt_plist >= 0),"");
- ret = H5Pset_fill_value(plist, H5T_NATIVE_INT, &fillvalue);
+ ret = H5Pset_fill_value(dcrt_plist, H5T_NATIVE_INT, &fillvalue);
VRFY((ret >= 0),"Fill value creation property list succeeded");
if(chunk_factor != 0) {
-
chunk_dims[0] = FSPACE_DIM1/chunk_factor;
chunk_dims[1] = FSPACE_DIM2/chunk_factor;
- ret = H5Pset_chunk(plist, 2, chunk_dims);
+ ret = H5Pset_chunk(dcrt_plist, 2, chunk_dims);
VRFY((ret >= 0),"chunk creation property list succeeded");
}
+
/*
- * Create dataspace for the dataset in the file.
+ *
+ * Create dataspace for the first dataset in the disk.
+ * dim1 = 9
+ * dim2 = 3600
+ *
+ *
*/
fspaceid = H5Screate_simple(FSPACE_RANK, fsdim, NULL);
VRFY((fspaceid >= 0),"file dataspace created succeeded");
/*
* Create dataset in the file. Notice that creation
- * property list plist is used.
+ * property list dcrt_plist is used.
*/
- datasetc = H5Dcreate(file, "collect_write", H5T_NATIVE_INT, fspaceid, plist);
+ datasetc = H5Dcreate(file, "collect_write", H5T_NATIVE_INT, fspaceid, dcrt_plist);
VRFY((datasetc >= 0),"dataset created succeeded");
- dataseti = H5Dcreate(file, "independ_write", H5T_NATIVE_INT, fspaceid, plist);
+ dataseti = H5Dcreate(file, "independ_write", H5T_NATIVE_INT, fspaceid, dcrt_plist);
VRFY((dataseti >= 0),"dataset created succeeded");
- /*
- * Select hyperslab for the dataset in the file, using 3x2 blocks,
- * (4,3) stride and (1,4) count starting at the position (0,1)
- for the first selection
- */
+
+ /* The First selection for FILE
+ *
+ * block (3,2)
+ * stride(4.3)
+ * count (1,768/mpi_size)
+ * start (0,1+768*3*mpi_rank/mpi_size)
+ *
+ */
start[0] = FHSTART0;
start[1] = FHSTART1+mpi_rank*FHSTRIDE1*FHCOUNT1/mpi_size;
@@ -320,9 +337,13 @@ void coll_write_test(int chunk_factor)
ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0),"hyperslab selection succeeded");
- /*
- * Select hyperslab for the dataset in the file, using 3x2*4 blocks,
- * stride 1 and (1,1) count starting at the position (4,0).
+ /* The Second selection for FILE
+ *
+ * block (3,768)
+ * stride (1,1)
+ * count (1,1)
+ * start (4,768*mpi_rank/mpi_size)
+ *
*/
start[0] = SHSTART0;
@@ -338,15 +359,21 @@ void coll_write_test(int chunk_factor)
VRFY((ret >= 0),"hyperslab selection succeeded");
/*
- * Create dataspace for the first dataset.
+ * Create dataspace for the first dataset in the memory
+ * dim1 = 27000
+ *
*/
mspaceid1 = H5Screate_simple(MSPACE1_RANK, mdim1, NULL);
VRFY((mspaceid1 >= 0),"memory dataspace created succeeded");
/*
- * Select hyperslab.
- * We will use 48 elements of the vector buffer starting at the second element.
- * Selected elements are 1 2 3 . . . 48
+ * Memory space is 1-D, this is a good test to check
+ * whether a span-tree derived datatype needs to be built.
+ * block 1
+ * stride 1
+ * count 6912/mpi_size
+ * start 1
+ *
*/
start[0] = MHSTART0;
stride[0] = MHSTRIDE0;
@@ -356,18 +383,18 @@ void coll_write_test(int chunk_factor)
ret = H5Sselect_hyperslab(mspaceid1, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0),"hyperslab selection succeeded");
-
+ /* independent write */
ret = H5Dwrite(dataseti, H5T_NATIVE_INT, mspaceid1, fspaceid, H5P_DEFAULT, vector);
VRFY((ret >= 0),"dataset independent write succeed");
- xfer_plist = H5Pcreate(H5P_DATASET_XFER);
- VRFY((xfer_plist >= 0),"");
- ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
- VRFY((ret >= 0),"MPIO data transfer property list succeed");
+ dxfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY((dxfer_plist >= 0),"");
+ ret = H5Pset_dxpl_mpio(dxfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY((ret >= 0),"MPIO data transfer property list succeed");
- ret = H5Dwrite(datasetc, H5T_NATIVE_INT, mspaceid1, fspaceid, xfer_plist, vector);
-/* ret = H5Dwrite(datasetc, H5T_NATIVE_INT, mspaceid1, fspaceid, H5P_DEFAULT, vector);*/
+ /* collective write */
+ ret = H5Dwrite(datasetc, H5T_NATIVE_INT, mspaceid1, fspaceid, dxfer_plist, vector);
VRFY((ret >= 0),"dataset collective write succeed");
ret = H5Sclose(mspaceid1);
@@ -381,6 +408,7 @@ void coll_write_test(int chunk_factor)
*/
ret = H5Dclose(datasetc);
VRFY((ret >= 0),"");
+
ret = H5Dclose(dataseti);
VRFY((ret >= 0),"");
@@ -393,30 +421,35 @@ void coll_write_test(int chunk_factor)
* Close property list
*/
- ret = H5Pclose(acc_plist);
+ ret = H5Pclose(facc_plist);
VRFY((ret >= 0),"");
- ret = H5Pclose(xfer_plist);
+ ret = H5Pclose(dxfer_plist);
VRFY((ret >= 0),"");
- ret = H5Pclose(plist);
+ ret = H5Pclose(dcrt_plist);
VRFY((ret >= 0),"");
/*
* Open the file.
*/
- /*** For testing collective hyperslab selection write ***/
+ /***
+
+ For testing collective hyperslab selection write
+ In this test, we are using independent read to check
+ the correctedness of collective write compared with
+ independent write,
+
+ In order to throughly test this feature, we choose
+ a different selection set for reading the data out.
+
-#if 0
- acc_plist = H5Pcreate(H5P_FILE_ACCESS);
- VRFY((acc_plist >= 0),"");
+ ***/
- ret = H5Pset_fapl_mpio(acc_plist,comm,info);
- VRFY((ret >= 0),"MPIO creation property list succeeded");
-#endif
- acc_plist = create_faccess_plist(comm, info, facc_type, use_gpfs);
- VRFY((acc_plist >= 0),"");
+ /* Obtain file access property list with MPI-IO driver */
+ facc_plist = create_faccess_plist(comm, info, facc_type, use_gpfs);
+ VRFY((facc_plist >= 0),"");
- file = H5Fopen(filename, H5F_ACC_RDONLY, acc_plist);
+ file = H5Fopen(filename, H5F_ACC_RDONLY, facc_plist);
VRFY((file >= 0),"H5Fopen succeeded");
/*
@@ -424,20 +457,28 @@ void coll_write_test(int chunk_factor)
*/
datasetc = H5Dopen(file,"collect_write");
VRFY((datasetc >= 0),"H5Dopen succeeded");
+
dataseti = H5Dopen(file,"independ_write");
VRFY((dataseti >= 0),"H5Dopen succeeded");
/*
* Get dataspace of the open dataset.
*/
- fspaceid = H5Dget_space(datasetc);
+ fspaceid = H5Dget_space(datasetc);
VRFY((fspaceid >= 0),"file dataspace obtained succeeded");
fspaceid1 = H5Dget_space(dataseti);
VRFY((fspaceid1 >= 0),"file dataspace obtained succeeded");
-
+ /* The First selection for FILE to read
+ *
+ * block (1,1)
+ * stride(1.1)
+ * count (3,768/mpi_size)
+ * start (1,2+768*mpi_rank/mpi_size)
+ *
+ */
start[0] = RFFHSTART0;
start[1] = RFFHSTART1+mpi_rank*RFFHCOUNT1/mpi_size;
block[0] = RFFHBLOCK0;
@@ -448,12 +489,23 @@ void coll_write_test(int chunk_factor)
count[1] = RFFHCOUNT1/mpi_size;
+ /* The first selection of the dataset generated by collective write */
ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0),"hyperslab selection succeeded");
+
+ /* The first selection of the dataset generated by independent write */
ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0),"hyperslab selection succeeded");
- /*start[0] = RFSHSTART0+mpi_rank*RFSHCOUNT1/mpi_size; */
+ /* The Second selection for FILE to read
+ *
+ * block (1,1)
+ * stride(1.1)
+ * count (3,1536/mpi_size)
+ * start (2,4+1536*mpi_rank/mpi_size)
+ *
+ */
+
start[0] = RFSHSTART0;
start[1] = RFSHSTART1+RFSHCOUNT1*mpi_rank/mpi_size;
block[0] = RFSHBLOCK0;
@@ -462,20 +514,34 @@ void coll_write_test(int chunk_factor)
stride[1] = RFSHSTRIDE0;
count[0] = RFSHCOUNT0;
count[1] = RFSHCOUNT1/mpi_size;
+
+ /* The second selection of the dataset generated by collective write */
ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_OR, start, stride, count, block);
VRFY((ret >= 0),"hyperslab selection succeeded");
+
+ /* The second selection of the dataset generated by independent write */
ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_OR, start, stride, count, block);
VRFY((ret >= 0),"hyperslab selection succeeded");
-
/*
* Create memory dataspace.
+ * rank = 2
+ * mdim1 = 9
+ * mdim2 = 3600
+ *
*/
mspaceid = H5Screate_simple(MSPACE_RANK, mdim, NULL);
/*
* Select two hyperslabs in memory. Hyperslabs has the same
- * size and shape as the selected hyperslabs for the file dataspace.
+ * size and shape as the selected hyperslabs for the file dataspace
+ * Only the starting point is different.
+ * The first selection
+ * block (1,1)
+ * stride(1.1)
+ * count (3,768/mpi_size)
+ * start (0,768*mpi_rank/mpi_size)
+ *
*/
@@ -487,9 +553,21 @@ void coll_write_test(int chunk_factor)
stride[1] = RMFHSTRIDE1;
count[0] = RMFHCOUNT0;
count[1] = RMFHCOUNT1/mpi_size;
+
ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0),"hyperslab selection succeeded");
+ /*
+ * Select two hyperslabs in memory. Hyperslabs has the same
+ * size and shape as the selected hyperslabs for the file dataspace
+ * Only the starting point is different.
+ * The second selection
+ * block (1,1)
+ * stride(1,1)
+ * count (3,1536/mpi_size)
+ * start (1,2+1536*mpi_rank/mpi_size)
+ *
+ */
start[0] = RMSHSTART0;
start[1] = RMSHSTART1+mpi_rank*RMSHCOUNT1/mpi_size;
block[0] = RMSHBLOCK0;
@@ -499,18 +577,15 @@ void coll_write_test(int chunk_factor)
count[0] = RMSHCOUNT0;
count[1] = RMSHCOUNT1/mpi_size;
-
ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_OR, start, stride, count, block);
VRFY((ret >= 0),"hyperslab selection succeeded");
/*
* Initialize data buffer.
*/
- for (i = 0; i < MSPACE_DIM1; i++) {
- for (j = 0; j < MSPACE_DIM2; j++)
- matrix_out[i][j] = 0;
- }
+ HDmemset(matrix_out,0,sizeof(int)*MSPACE_DIM1*MSPACE_DIM2);
+ HDmemset(matrix_out1,0,sizeof(int)*MSPACE_DIM1*MSPACE_DIM2);
/*
* Read data back to the buffer matrix_out.
*/
@@ -519,23 +594,20 @@ void coll_write_test(int chunk_factor)
H5P_DEFAULT, matrix_out);
VRFY((ret >= 0),"H5D independent read succeed");
-
- for (i = 0; i < MSPACE_DIM1; i++) {
- for (j = 0; j < MSPACE_DIM2; j++)
- matrix_out1[i][j] = 0;
- }
+
ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid,
H5P_DEFAULT, matrix_out1);
VRFY((ret >= 0),"H5D independent read succeed");
ret = 0;
+
for (i = 0; i < MSPACE_DIM1; i++){
for (j = 0; j < MSPACE_DIM2; j++){
if(matrix_out[i][j]!=matrix_out1[i][j]) ret = -1;
if(ret < 0) break;
}
}
- VRFY((ret >= 0),"H5D contiguous irregular collective write succeed");
+ VRFY((ret >= 0),"H5D irregular collective write succeed");
/*
* Close memory file and memory dataspaces.
@@ -553,11 +625,12 @@ void coll_write_test(int chunk_factor)
ret = H5Dclose(datasetc);
VRFY((ret >= 0),"");
+
/*
* Close property list
*/
- ret = H5Pclose(acc_plist);
+ ret = H5Pclose(facc_plist);
VRFY((ret >= 0),"");
@@ -570,15 +643,32 @@ void coll_write_test(int chunk_factor)
return ;
}
-
+/*-------------------------------------------------------------------------
+ * Function: coll_read_test
+ *
+ * Purpose: To test the collectively irregular hyperslab read in chunk
+ storage
+ * Input: number of chunks on each dimension
+ if number is equal to 0, contiguous storage
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * Dec 2nd, 2004
+ *
+ * Modifications: Oct 18th, 2005
+ * Note: This test must be used with the correpsonding
+ coll_write_test.
+ *-------------------------------------------------------------------------
+ */
void coll_read_test(int chunk_factor)
{
- const char *filename;
- hid_t acc_plist,xfer_plist;
+ const char *filename;
+ hid_t facc_plist,dxfer_plist;
hid_t file, dataseti; /* File and dataset identifiers */
- hid_t mspaceid, fspaceid1; /* Dataspace identifiers */
- hbool_t use_gpfs = FALSE;
+ hid_t mspaceid, fspaceid1; /* Dataspace identifiers */
/* Dimension sizes of the dataset (on disk) */
hsize_t mdim[] = {MSPACE_DIM1, MSPACE_DIM2}; /* Dimension sizes of the
@@ -586,19 +676,19 @@ void coll_read_test(int chunk_factor)
read selection from the
dataset on the disk */
- hsize_t start[2]; /* Start of hyperslab */
+
+ hsize_t start[2]; /* Start of hyperslab */
hsize_t stride[2]; /* Stride of hyperslab */
hsize_t count[2]; /* Block count */
hsize_t block[2]; /* Block sizes */
-
herr_t ret;
- unsigned i,j;
-
- int matrix_out[MSPACE_DIM1][MSPACE_DIM2];
- int matrix_out1[MSPACE_DIM1][MSPACE_DIM2]; /* Buffer to read from the
- dataset */
- int mpi_size,mpi_rank;
+ unsigned i,j;
+ int matrix_out[MSPACE_DIM1][MSPACE_DIM2];
+ int matrix_out1[MSPACE_DIM1][MSPACE_DIM2]; /* Buffer to read from the
+ dataset */
+ hbool_t use_gpfs = FALSE;
+ int mpi_size,mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
@@ -610,29 +700,17 @@ void coll_read_test(int chunk_factor)
/* Obtain file name */
filename = GetTestParameters();
+
+ /*** For testing collective hyperslab selection read ***/
- /*
- * Buffers' initialization.
- */
+ /* Obtain file access property list */
+ facc_plist = create_faccess_plist(comm, info, facc_type, use_gpfs);
+ VRFY((facc_plist >= 0),"");
- /*
+ /*
* Open the file.
*/
-
- /*** For testing collective hyperslab selection read ***/
-
-#if 0
- acc_plist = H5Pcreate(H5P_FILE_ACCESS);
- VRFY((acc_plist >= 0),"");
-
- ret = H5Pset_fapl_mpio(acc_plist,comm,info);
- VRFY((ret >= 0),"MPIO creation property list succeeded");
-#endif
-
- acc_plist = create_faccess_plist(comm, info, facc_type, use_gpfs);
- VRFY((acc_plist >= 0),"");
-
- file = H5Fopen(filename, H5F_ACC_RDONLY, acc_plist);
+ file = H5Fopen(filename, H5F_ACC_RDONLY, facc_plist);
VRFY((file >= 0),"H5Fopen succeeded");
/*
@@ -644,10 +722,17 @@ void coll_read_test(int chunk_factor)
/*
* Get dataspace of the open dataset.
*/
-
fspaceid1 = H5Dget_space(dataseti);
VRFY((fspaceid1 >= 0),"file dataspace obtained succeeded");
+ /* The First selection for FILE to read
+ *
+ * block (1,1)
+ * stride(1.1)
+ * count (3,768/mpi_size)
+ * start (1,2+768*mpi_rank/mpi_size)
+ *
+ */
start[0] = RFFHSTART0;
start[1] = RFFHSTART1+mpi_rank*RFFHCOUNT1/mpi_size;
block[0] = RFFHBLOCK0;
@@ -660,11 +745,18 @@ void coll_read_test(int chunk_factor)
ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0),"hyperslab selection succeeded");
-
- start[0] = RFSHSTART0;
- start[1] = RFSHSTART1+RFSHCOUNT1*mpi_rank/mpi_size;
- block[0] = RFSHBLOCK0;
- block[1] = RFSHBLOCK1;
+ /* The Second selection for FILE to read
+ *
+ * block (1,1)
+ * stride(1.1)
+ * count (3,1536/mpi_size)
+ * start (2,4+1536*mpi_rank/mpi_size)
+ *
+ */
+ start[0] = RFSHSTART0;
+ start[1] = RFSHSTART1+RFSHCOUNT1*mpi_rank/mpi_size;
+ block[0] = RFSHBLOCK0;
+ block[1] = RFSHBLOCK1;
stride[0] = RFSHSTRIDE0;
stride[1] = RFSHSTRIDE0;
count[0] = RFSHCOUNT0;
@@ -682,6 +774,13 @@ void coll_read_test(int chunk_factor)
/*
* Select two hyperslabs in memory. Hyperslabs has the same
* size and shape as the selected hyperslabs for the file dataspace.
+ * Only the starting point is different.
+ * The first selection
+ * block (1,1)
+ * stride(1.1)
+ * count (3,768/mpi_size)
+ * start (0,768*mpi_rank/mpi_size)
+ *
*/
start[0] = RMFHSTART0;
@@ -695,6 +794,17 @@ void coll_read_test(int chunk_factor)
ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_SET, start, stride, count, block);
VRFY((ret >= 0),"hyperslab selection succeeded");
+ /*
+ * Select two hyperslabs in memory. Hyperslabs has the same
+ * size and shape as the selected hyperslabs for the file dataspace
+ * Only the starting point is different.
+ * The second selection
+ * block (1,1)
+ * stride(1,1)
+ * count (3,1536/mpi_size)
+ * start (1,2+1536*mpi_rank/mpi_size)
+ *
+ */
start[0] = RMSHSTART0;
start[1] = RMSHSTART1+mpi_rank*RMSHCOUNT1/mpi_size;
block[0] = RMSHBLOCK0;
@@ -706,39 +816,37 @@ void coll_read_test(int chunk_factor)
ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_OR, start, stride, count, block);
VRFY((ret >= 0),"hyperslab selection succeeded");
+
/*
* Initialize data buffer.
*/
- for (i = 0; i < MSPACE_DIM1; i++) {
- for (j = 0; j < MSPACE_DIM2; j++)
- matrix_out[i][j] = 0;
- }
+
+ HDmemset(matrix_out,0,sizeof(int)*MSPACE_DIM1*MSPACE_DIM2);
+ HDmemset(matrix_out1,0,sizeof(int)*MSPACE_DIM1*MSPACE_DIM2);
/*
* Read data back to the buffer matrix_out.
*/
- xfer_plist = H5Pcreate(H5P_DATASET_XFER);
- VRFY((xfer_plist >= 0),"");
+ dxfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY((dxfer_plist >= 0),"");
- ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ ret = H5Pset_dxpl_mpio(dxfer_plist, H5FD_MPIO_COLLECTIVE);
VRFY((ret >= 0),"MPIO data transfer property list succeed");
- ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid1,
- xfer_plist, matrix_out);
- VRFY((ret >= 0),"H5D collecive read succeed");
+ /* Collective read */
+ ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid1,
+ dxfer_plist, matrix_out);
+ VRFY((ret >= 0),"H5D collecive read succeed");
- ret = H5Pclose(xfer_plist);
+ ret = H5Pclose(dxfer_plist);
VRFY((ret >= 0),"");
- for (i = 0; i < MSPACE_DIM1; i++) {
- for (j = 0; j < MSPACE_DIM2; j++)
- matrix_out1[i][j] = 0;
- }
+ /* Independent read */
ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid1,
H5P_DEFAULT, matrix_out1);
-
VRFY((ret >= 0),"H5D independent read succeed");
+
ret = 0;
for (i = 0; i < MSPACE_DIM1; i++){
for (j = 0; j < MSPACE_DIM2; j++){
@@ -761,10 +869,11 @@ void coll_read_test(int chunk_factor)
*/
ret = H5Dclose(dataseti);
VRFY((ret >= 0),"");
+
/*
* Close property list
*/
- ret = H5Pclose(acc_plist);
+ ret = H5Pclose(facc_plist);
VRFY((ret >= 0),"");