summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--testpar/Makefile.irix648
-rw-r--r--testpar/t_dset.c1009
-rw-r--r--testpar/t_file.c80
-rw-r--r--testpar/testphdf5.c947
4 files changed, 1144 insertions, 900 deletions
diff --git a/testpar/Makefile.irix64 b/testpar/Makefile.irix64
index 991479d..4dcf2a8 100644
--- a/testpar/Makefile.irix64
+++ b/testpar/Makefile.irix64
@@ -24,7 +24,7 @@ MOSTLYCLEAN=ParaEg1.h5f ParaEg2.h5f
DISTCLEAN=go
# The default is to build the library and programs.
-all: testphdf5
+all: progs
# These are our main targets. They should be listed in the order to be
@@ -36,10 +36,10 @@ TESTS=$(PROGS)
# source files and is used for things like dependencies, archiving, etc. The
# other source lists are for the individual tests, the files of which may
# overlap with other tests.
-PROG_SRC=testphdf5.c
+PROG_SRC=testphdf5.c t_dset.c t_file.c
PROG_OBJ=$(PROG_SRC:.c=.o)
-TESTPHDF5_SRC=testphdf5.c
+TESTPHDF5_SRC=testphdf5.c t_dset.c t_file.c
TESTPHDF5_OBJ=$(TESTPHDF5_SRC:.c=.o)
# Private header files (not to be installed)...
@@ -92,7 +92,7 @@ distclean: clean
maintainer-clean: distclean
# Implicit rules
-.c.o:
+.c.o: testphdf5.h
$(CC) $(CFLAGS) $(CPPFLAGS) -c $<
diff --git a/testpar/t_dset.c b/testpar/t_dset.c
new file mode 100644
index 0000000..1c027ec
--- /dev/null
+++ b/testpar/t_dset.c
@@ -0,0 +1,1009 @@
+/* $Id$ */
+
+/*
+ * Parallel tests for file operations
+ */
+
+/*
+ * Example of using the parallel HDF5 library to access datasets.
+ *
+ * This program contains two parts. In the first part, the mpi processes
+ * collectively create a new parallel HDF5 file and create two fixed
+ * dimension datasets in it. Then each process writes a hyperslab into
+ * each dataset in an independent mode. All processes collectively
+ * close the datasets and the file.
+ * In the second part, the processes collectively open the created file
+ * and the two datasets in it. Then each process reads a hyperslab from
+ * each dataset in an independent mode and prints them out.
+ * All processes collectively close the datasets and the file.
+ */
+
+#include <testphdf5.h>
+
+/*
+ * Setup the dimensions of the hyperslab.
+ * Two modes--by rows or by columns.
+ * Assume dimension rank is 2.
+ */
+void
+slab_set(int mpi_rank, int mpi_size, hssize_t start[], hsize_t count[],
+ hsize_t stride[], int mode)
+{
+ switch (mode){
+ case BYROW:
+ /* Each process takes a slabs of rows. */
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = DIM1/mpi_size;
+ count[1] = DIM2;
+ start[0] = mpi_rank*count[0];
+ start[1] = 0;
+if (verbose) printf("slab_set BYROW\n");
+ break;
+ case BYCOL:
+ /* Each process takes a block of columns. */
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = DIM1;
+ count[1] = DIM2/mpi_size;
+ start[0] = 0;
+ start[1] = mpi_rank*count[1];
+#ifdef DISABLED
+ /* change the above macro to #ifndef if you want to test */
+ /* zero elements access. */
+ printf("set to size 0\n");
+ if (!(mpi_rank % 3))
+ count[1]=0;
+#endif
+if (verbose) printf("slab_set BYCOL\n");
+ break;
+ default:
+ /* Unknown mode. Set it to cover the whole dataset. */
+ printf("unknown slab_set mode (%d)\n", mode);
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = DIM1;
+ count[1] = DIM2;
+ start[0] = 0;
+ start[1] = 0;
+if (verbose) printf("slab_set wholeset\n");
+ break;
+ }
+if (verbose){
+ printf("start[]=(%d,%d), count[]=(%d,%d), total datapoints=%d\n",
+ start[0], start[1], count[0], count[1], count[0]*count[1]);
+ }
+}
+
+
+/*
+ * Fill the dataset with trivial data for testing.
+ * Assume dimension rank is 2 and data is stored contiguous.
+ */
+void
+dataset_fill(hssize_t start[], hsize_t count[], hsize_t stride[], DATATYPE * dataset)
+{
+ DATATYPE *dataptr = dataset;
+ int i, j;
+
+ /* put some trivial data in the data_array */
+ for (i=0; i < count[0]; i++){
+ for (j=0; j < count[1]; j++){
+ *dataptr = (i*stride[0]+start[0])*100 + (j*stride[1]+start[1]+1);
+ dataptr++;
+ }
+ }
+}
+
+
+/*
+ * Print the content of the dataset.
+ */
+void dataset_print(hssize_t start[], hsize_t count[], hsize_t stride[], DATATYPE * dataset)
+{
+ DATATYPE *dataptr = dataset;
+ int i, j;
+
+ /* print the column heading */
+ printf("%-8s", "Cols:");
+ for (j=0; j < count[1]; j++){
+ printf("%3d ", start[1]+j);
+ }
+ printf("\n");
+
+ /* print the slab data */
+ for (i=0; i < count[0]; i++){
+ printf("Row %2d: ", (int)(i*stride[0]+start[0]));
+ for (j=0; j < count[1]; j++){
+ printf("%03d ", *dataptr++);
+ }
+ printf("\n");
+ }
+}
+
+
+/*
+ * Print the content of the dataset.
+ */
+int dataset_vrfy(hssize_t start[], hsize_t count[], hsize_t stride[], DATATYPE *dataset, DATATYPE *original)
+{
+#define MAX_ERR_REPORT 10 /* Maximum number of errors reported */
+ DATATYPE *dataptr = dataset;
+ DATATYPE *originptr = original;
+
+ int i, j, vrfyerrs;
+
+ /* print it if verbose */
+ if (verbose)
+ dataset_print(start, count, stride, dataset);
+
+ vrfyerrs = 0;
+ for (i=0; i < count[0]; i++){
+ for (j=0; j < count[1]; j++){
+ if (*dataset != *original){
+ if (vrfyerrs++ < MAX_ERR_REPORT || verbose){
+ printf("Dataset Verify failed at [%d][%d](row %d, col %d): expect %d, got %d\n",
+ i, j,
+ (int)(i*stride[0]+start[0]), (int)(j*stride[1]+start[1]),
+ *(original), *(dataset));
+ }
+ dataset++;
+ original++;
+ }
+ }
+ }
+ if (vrfyerrs > MAX_ERR_REPORT && !verbose)
+ printf("[more errors ...]\n");
+ if (vrfyerrs)
+ printf("%d errors found in dataset_vrfy\n", vrfyerrs);
+ return(vrfyerrs);
+}
+
+
+/*
+ * Example of using the parallel HDF5 library to create two datasets
+ * in one HDF5 files with parallel MPIO access support.
+ * The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
+ * Each process controls only a slab of size DIM1 x DIM2 within each
+ * dataset.
+ */
+
+void
+dataset_writeInd(char *filename)
+{
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t sid; /* Dataspace ID */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset1, dataset2; /* Dataset ID */
+ hsize_t dims[RANK] = {DIM1,DIM2}; /* dataset dim sizes */
+ hsize_t dimslocal1[RANK] = {DIM1,DIM2}; /* local dataset dim sizes */
+ DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
+
+ hssize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
+
+ herr_t ret; /* Generic return value */
+ int i, j;
+ int mpi_size, mpi_rank;
+ char *fname;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ if (verbose)
+ printf("Independent write test on file %s\n", filename);
+
+ /* set up MPI parameters */
+ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
+
+ /* -------------------
+ * START AN HDF5 FILE
+ * -------------------*/
+ /* setup file access template with parallel IO access. */
+ acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
+ VRFY((acc_tpl != FAIL), "H5Pcreate access succeed");
+ /* set Parallel access with communicator */
+ ret = H5Pset_mpi(acc_tpl, comm, info);
+ VRFY((ret != FAIL), "H5Pset_mpi succeed");
+
+ /* create the file collectively */
+ fid=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl);
+ VRFY((fid != FAIL), "H5Fcreate succeed");
+
+ /* Release file-access template */
+ ret=H5Pclose(acc_tpl);
+ VRFY((ret != FAIL), "");
+
+
+ /* --------------------------
+ * Define the dimensions of the overall datasets
+ * and the slabs local to the MPI process.
+ * ------------------------- */
+ /* setup dimensionality object */
+ sid = H5Screate_simple (RANK, dims, NULL);
+ VRFY((sid != FAIL), "H5Screate_simple succeed");
+
+
+ /* create a dataset collectively */
+ dataset1 = H5Dcreate(fid, DATASETNAME1, H5T_NATIVE_INT, sid,
+ H5P_DEFAULT);
+ VRFY((dataset1 != FAIL), "H5Dcreate succeed");
+
+ /* create another dataset collectively */
+ dataset2 = H5Dcreate(fid, DATASETNAME2, H5T_NATIVE_INT, sid,
+ H5P_DEFAULT);
+ VRFY((dataset2 != FAIL), "H5Dcreate succeed");
+
+
+
+ /* set up dimensions of the slab this process accesses */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
+
+ /* put some trivial data in the data_array */
+ dataset_fill(start, count, stride, &data_array1[0][0]);
+ MESG("data_array initialized");
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* write data independently */
+ ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "H5Dwrite succeed");
+
+ /* write data independently */
+ ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "H5Dwrite succeed");
+
+ /* release dataspace ID */
+ H5Sclose(file_dataspace);
+
+ /* close dataset collectively */
+ ret=H5Dclose(dataset1);
+ VRFY((ret != FAIL), "H5Dclose1 succeed");
+ ret=H5Dclose(dataset2);
+ VRFY((ret != FAIL), "H5Dclose2 succeed");
+
+ /* release all IDs created */
+ H5Sclose(sid);
+
+ /* close the file collectively */
+ H5Fclose(fid);
+}
+
+/* Example of using the parallel HDF5 library to read a dataset */
+void
+dataset_readInd(char *filename)
+{
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t sid; /* Dataspace ID */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset1, dataset2; /* Dataset ID */
+ hsize_t dims[] = {DIM1,DIM2}; /* dataset dim sizes */
+ DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
+ DATATYPE data_origin1[DIM1][DIM2]; /* expected data buffer */
+
+ hssize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
+
+ herr_t ret; /* Generic return value */
+ int i, j;
+ int mpi_size, mpi_rank;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ if (verbose)
+ printf("Independent read test on file %s\n", filename);
+
+ /* set up MPI parameters */
+ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
+
+
+ /* setup file access template */
+ acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
+ VRFY((acc_tpl != FAIL), "");
+ /* set Parallel access with communicator */
+ ret = H5Pset_mpi(acc_tpl, comm, info);
+ VRFY((ret != FAIL), "");
+
+
+ /* open the file collectively */
+ fid=H5Fopen(filename,H5F_ACC_RDWR,acc_tpl);
+ VRFY((fid != FAIL), "");
+
+ /* Release file-access template */
+ ret=H5Pclose(acc_tpl);
+ VRFY((ret != FAIL), "");
+
+ /* open the dataset1 collectively */
+ dataset1 = H5Dopen(fid, DATASETNAME1);
+ VRFY((dataset1 != FAIL), "");
+
+ /* open another dataset collectively */
+ dataset2 = H5Dopen(fid, DATASETNAME1);
+ VRFY((dataset2 != FAIL), "");
+
+
+ /* set up dimensions of the slab this process accesses */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* fill dataset with test data */
+ dataset_fill(start, count, stride, &data_origin1[0][0]);
+
+ /* read data independently */
+ ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "");
+
+ /* verify the read data with original expected data */
+ ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
+ if (ret) nerrors++;
+
+ /* read data independently */
+ ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "");
+
+ /* verify the read data with original expected data */
+ ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
+ if (ret) nerrors++;
+
+ /* close dataset collectively */
+ ret=H5Dclose(dataset1);
+ VRFY((ret != FAIL), "");
+ ret=H5Dclose(dataset2);
+ VRFY((ret != FAIL), "");
+
+ /* release all IDs created */
+ H5Sclose(file_dataspace);
+
+ /* close the file collectively */
+ H5Fclose(fid);
+}
+
+
+/*
+ * Example of using the parallel HDF5 library to create two datasets
+ * in one HDF5 file with collective parallel access support.
+ * The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
+ * Each process controls only a slab of size DIM1 x DIM2 within each
+ * dataset. [Note: not so yet. Datasets are of sizes DIM1xDIM2 and
+ * each process controls a hyperslab within.]
+ */
+
+void
+dataset_writeAll(char *filename)
+{
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t xfer_plist; /* Dataset transfer properties list */
+ hid_t sid; /* Dataspace ID */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset1, dataset2; /* Dataset ID */
+ hid_t datatype; /* Datatype ID */
+ hsize_t dims[RANK] = {DIM1,DIM2}; /* dataset dim sizes */
+ DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
+
+ hssize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
+
+ herr_t ret; /* Generic return value */
+ int mpi_size, mpi_rank;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ if (verbose)
+ printf("Collective write test on file %s\n", filename);
+
+ /* set up MPI parameters */
+ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
+
+ /* -------------------
+ * START AN HDF5 FILE
+ * -------------------*/
+ /* setup file access template with parallel IO access. */
+ acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
+ VRFY((acc_tpl != FAIL), "H5Pcreate access succeed");
+ /* set Parallel access with communicator */
+ ret = H5Pset_mpi(acc_tpl, comm, info);
+ VRFY((ret != FAIL), "H5Pset_mpi succeed");
+
+ /* create the file collectively */
+ fid=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl);
+ VRFY((fid != FAIL), "H5Fcreate succeed");
+
+ /* Release file-access template */
+ ret=H5Pclose(acc_tpl);
+ VRFY((ret != FAIL), "");
+
+
+ /* --------------------------
+ * Define the dimensions of the overall datasets
+ * and create the dataset
+ * ------------------------- */
+ /* setup dimensionality object */
+ sid = H5Screate_simple (RANK, dims, NULL);
+ VRFY((sid != FAIL), "H5Screate_simple succeed");
+
+
+ /* create a dataset collectively */
+ dataset1 = H5Dcreate(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT);
+ VRFY((dataset1 != FAIL), "H5Dcreate succeed");
+
+ /* create another dataset collectively */
+ datatype = H5Tcopy(H5T_NATIVE_INT);
+ ret = H5Tset_order(datatype, H5T_ORDER_LE);
+ VRFY((ret != FAIL), "H5Tset_order succeed");
+
+ dataset2 = H5Dcreate(fid, DATASETNAME2, datatype, sid, H5P_DEFAULT);
+ VRFY((dataset2 != FAIL), "H5Dcreate 2 succeed");
+
+ /*
+ * Set up dimensions of the slab this process accesses.
+ */
+
+ /* Dataset1: each process takes a block of rows. */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* fill the local slab with some trivial data */
+ dataset_fill(start, count, stride, &data_array1[0][0]);
+ MESG("data_array initialized");
+ if (verbose){
+ MESG("data_array created");
+ dataset_print(start, count, stride, &data_array1[0][0]);
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate (H5P_DATASET_XFER);
+ VRFY((xfer_plist != FAIL), "");
+ ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
+ VRFY((ret != FAIL), "H5Pcreate xfer succeed");
+
+ /* write data collectively */
+ ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ xfer_plist, data_array1);
+ VRFY((ret != FAIL), "H5Dwrite dataset1 succeed");
+
+ /* release all temporary handles. */
+ /* Could have used them for dataset2 but it is cleaner */
+ /* to create them again.*/
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+
+ /* Dataset2: each process takes a block of columns. */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYCOL);
+
+ /* put some trivial data in the data_array */
+ dataset_fill(start, count, stride, &data_array1[0][0]);
+ MESG("data_array initialized");
+ if (verbose){
+ MESG("data_array created");
+ dataset_print(start, count, stride, &data_array1[0][0]);
+ }
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* fill the local slab with some trivial data */
+ dataset_fill(start, count, stride, &data_array1[0][0]);
+ MESG("data_array initialized");
+ if (verbose){
+ MESG("data_array created");
+ dataset_print(start, count, stride, &data_array1[0][0]);
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate (H5P_DATASET_XFER);
+ VRFY((xfer_plist != FAIL), "");
+ ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
+ VRFY((ret != FAIL), "H5Pcreate xfer succeed");
+
+ /* write data independently */
+ ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ xfer_plist, data_array1);
+ VRFY((ret != FAIL), "H5Dwrite dataset2 succeed");
+
+ /* release all temporary handles. */
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+
+
+ /*
+ * All writes completed. Close datasets collectively
+ */
+ ret=H5Dclose(dataset1);
+ VRFY((ret != FAIL), "H5Dclose1 succeed");
+ ret=H5Dclose(dataset2);
+ VRFY((ret != FAIL), "H5Dclose2 succeed");
+
+ /* release all IDs created */
+ H5Sclose(sid);
+
+ /* close the file collectively */
+ H5Fclose(fid);
+}
+
+/*
+ * Example of using the parallel HDF5 library to read two datasets
+ * in one HDF5 file with collective parallel access support.
+ * The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
+ * Each process controls only a slab of size DIM1 x DIM2 within each
+ * dataset. [Note: not so yet. Datasets are of sizes DIM1xDIM2 and
+ * each process controls a hyperslab within.]
+ */
+
+void
+dataset_readAll(char *filename)
+{
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t xfer_plist; /* Dataset transfer properties list */
+ hid_t sid; /* Dataspace ID */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset1, dataset2; /* Dataset ID */
+ hsize_t dims[] = {DIM1,DIM2}; /* dataset dim sizes */
+ DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
+ DATATYPE data_origin1[DIM1][DIM2]; /* expected data buffer */
+
+ hssize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
+
+ herr_t ret; /* Generic return value */
+ int mpi_size, mpi_rank;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ if (verbose)
+ printf("Collective read test on file %s\n", filename);
+
+ /* set up MPI parameters */
+ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
+
+ /* -------------------
+ * OPEN AN HDF5 FILE
+ * -------------------*/
+ /* setup file access template with parallel IO access. */
+ acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
+ VRFY((acc_tpl != FAIL), "H5Pcreate access succeed");
+ /* set Parallel access with communicator */
+ ret = H5Pset_mpi(acc_tpl, comm, info);
+ VRFY((ret != FAIL), "H5Pset_mpi succeed");
+
+ /* open the file collectively */
+ fid=H5Fopen(filename,H5F_ACC_RDWR,acc_tpl);
+ VRFY((fid != FAIL), "H5Fopen succeed");
+
+ /* Release file-access template */
+ ret=H5Pclose(acc_tpl);
+ VRFY((ret != FAIL), "");
+
+
+ /* --------------------------
+ * Open the datasets in it
+ * ------------------------- */
+ /* open the dataset1 collectively */
+ dataset1 = H5Dopen(fid, DATASETNAME1);
+ VRFY((dataset1 != FAIL), "H5Dopen succeed");
+
+ /* open another dataset collectively */
+ dataset2 = H5Dopen(fid, DATASETNAME2);
+ VRFY((dataset2 != FAIL), "H5Dopen 2 succeed");
+
+ /*
+ * Set up dimensions of the slab this process accesses.
+ */
+
+ /* Dataset1: each process takes a block of columns. */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYCOL);
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* fill dataset with test data */
+ dataset_fill(start, count, stride, &data_origin1[0][0]);
+ MESG("data_array initialized");
+ if (verbose){
+ MESG("data_array created");
+ dataset_print(start, count, stride, &data_origin1[0][0]);
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate (H5P_DATASET_XFER);
+ VRFY((xfer_plist != FAIL), "");
+ ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
+ VRFY((ret != FAIL), "H5Pcreate xfer succeed");
+
+ /* read data collectively */
+ ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ xfer_plist, data_array1);
+ VRFY((ret != FAIL), "H5Dread succeed");
+
+ /* verify the read data with original expected data */
+ ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
+ if (ret) nerrors++;
+
+ /* release all temporary handles. */
+ /* Could have used them for dataset2 but it is cleaner */
+ /* to create them again.*/
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+
+ /* Dataset2: each process takes a block of rows. */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* fill dataset with test data */
+ dataset_fill(start, count, stride, &data_origin1[0][0]);
+ MESG("data_array initialized");
+ if (verbose){
+ MESG("data_array created");
+ dataset_print(start, count, stride, &data_origin1[0][0]);
+ }
+
+ /* set up the collective transfer properties list */
+ xfer_plist = H5Pcreate (H5P_DATASET_XFER);
+ VRFY((xfer_plist != FAIL), "");
+ ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
+ VRFY((ret != FAIL), "H5Pcreate xfer succeed");
+
+ /* read data independently */
+ ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ xfer_plist, data_array1);
+ VRFY((ret != FAIL), "H5Dread succeed");
+
+ /* verify the read data with original expected data */
+ ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
+ if (ret) nerrors++;
+
+ /* release all temporary handles. */
+ H5Sclose(file_dataspace);
+ H5Sclose(mem_dataspace);
+ H5Pclose(xfer_plist);
+
+
+ /*
+ * All reads completed. Close datasets collectively
+ */
+ ret=H5Dclose(dataset1);
+ VRFY((ret != FAIL), "H5Dclose1 succeed");
+ ret=H5Dclose(dataset2);
+ VRFY((ret != FAIL), "H5Dclose2 succeed");
+
+ /* close the file collectively */
+ H5Fclose(fid);
+}
+
+
+/*
+ * Example of using the parallel HDF5 library to create two extendable
+ * datasets in one HDF5 file with parallel MPIO access support.
+ * The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
+ * Each process controls only a slab of size DIM1 x DIM2 within each
+ * dataset.
+ */
+
+void
+extend_writeInd(char *filename)
+{
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t sid; /* Dataspace ID */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset1, dataset2; /* Dataset ID */
+ hsize_t dims[RANK] = {DIM1,DIM2}; /* dataset initial dim sizes */
+ hsize_t max_dims[RANK] =
+ {DIM1, DIM2}; /* dataset maximum dim sizes */
+ hsize_t dimslocal1[RANK] = {DIM1,DIM2}; /* local dataset dim sizes */
+ DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
+ hsize_t chunk_dims[RANK]; /* chunk sizes */
+ hid_t dataset_pl; /* dataset create prop. list */
+
+ hssize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK]; /* for hyperslab setting */
+ hsize_t stride[RANK]; /* for hyperslab setting */
+
+ herr_t ret; /* Generic return value */
+ int i, j;
+ int mpi_size, mpi_rank;
+ char *fname;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ if (verbose)
+ printf("Extend independent write test on file %s\n", filename);
+
+ /* set up MPI parameters */
+ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
+
+ /* -------------------
+ * START AN HDF5 FILE
+ * -------------------*/
+ /* setup file access template with parallel IO access. */
+ acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
+ VRFY((acc_tpl != FAIL), "H5Pcreate access succeed");
+ /* set Parallel access with communicator */
+ ret = H5Pset_mpi(acc_tpl, comm, info);
+ VRFY((ret != FAIL), "H5Pset_mpi succeed");
+
+ /* create the file collectively */
+ fid=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl);
+ VRFY((fid != FAIL), "H5Fcreate succeed");
+
+ /* Release file-access template */
+ ret=H5Pclose(acc_tpl);
+ VRFY((ret != FAIL), "");
+
+
+ /* --------------------------
+ * Define the dimensions of the overall datasets
+ * and the slabs local to the MPI process.
+ * ------------------------- */
+
+ /* set up dataset storage chunk sizes and creation property list */
+ chunk_dims[0] = 7;
+ chunk_dims[1] = 13;
+ if (verbose)
+ printf("chunks[]=%d,%d\n", chunk_dims[0], chunk_dims[1]);
+ dataset_pl = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((dataset_pl != FAIL), "H5Pcreate succeed");
+ ret = H5Pset_chunk(dataset_pl, RANK, chunk_dims);
+ VRFY((ret != FAIL), "H5Pset_chunk succeed");
+
+
+ /* setup dimensionality object */
+ sid = H5Screate_simple (RANK, dims, max_dims);
+ VRFY((sid != FAIL), "H5Screate_simple succeed");
+
+
+ /* create an extendable dataset collectively */
+ dataset1 = H5Dcreate(fid, DATASETNAME1, H5T_NATIVE_INT, sid,
+ dataset_pl);
+ VRFY((dataset1 != FAIL), "H5Dcreate succeed");
+
+ /* create another extendable dataset collectively */
+ dataset2 = H5Dcreate(fid, DATASETNAME2, H5T_NATIVE_INT, sid,
+ dataset_pl);
+ VRFY((dataset2 != FAIL), "H5Dcreate succeed");
+
+ /* extend both datasets */
+ ret = H5Dextend (dataset2, dims);
+ VRFY((ret != FAIL), "H5Dextend succeed");
+
+
+ /* set up dimensions of the slab this process accesses */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
+
+ /* put some trivial data in the data_array */
+ dataset_fill(start, count, stride, &data_array1[0][0]);
+ MESG("data_array initialized");
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* write data independently */
+ ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "H5Dwrite succeed");
+
+ /* set up dimensions of the slab this process accesses */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYCOL);
+
+ /* put some trivial data in the data_array */
+ dataset_fill(start, count, stride, &data_array1[0][0]);
+ MESG("data_array initialized");
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* write data independently */
+ ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "H5Dwrite succeed");
+
+ /* release dataspace ID */
+ H5Sclose(file_dataspace);
+#ifdef NO
+#endif /* NO */
+
+ /* close dataset collectively */
+ ret=H5Dclose(dataset1);
+ VRFY((ret != FAIL), "H5Dclose1 succeed");
+ ret=H5Dclose(dataset2);
+ VRFY((ret != FAIL), "H5Dclose2 succeed");
+
+ /* release all IDs created */
+ H5Sclose(sid);
+
+ /* close the file collectively */
+ H5Fclose(fid);
+}
+
+/* Example of using the parallel HDF5 library to read a dataset */
+void
+extend_readInd(char *filename)
+{
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t sid; /* Dataspace ID */
+ hid_t file_dataspace; /* File dataspace ID */
+ hid_t mem_dataspace; /* memory dataspace ID */
+ hid_t dataset1, dataset2; /* Dataset ID */
+ hsize_t dims[] = {DIM1,DIM2}; /* dataset dim sizes */
+ DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
+ DATATYPE data_origin1[DIM1][DIM2]; /* expected data buffer */
+
+ hssize_t start[RANK]; /* for hyperslab setting */
+ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
+
+ herr_t ret; /* Generic return value */
+ int i, j;
+ int mpi_size, mpi_rank;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ if (verbose)
+ printf("Extend independent read test on file %s\n", filename);
+
+ /* set up MPI parameters */
+ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
+
+
+ /* setup file access template */
+ acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
+ VRFY((acc_tpl != FAIL), "");
+ /* set Parallel access with communicator */
+ ret = H5Pset_mpi(acc_tpl, comm, info);
+ VRFY((ret != FAIL), "");
+
+
+ /* open the file collectively */
+ fid=H5Fopen(filename,H5F_ACC_RDWR,acc_tpl);
+ VRFY((fid != FAIL), "");
+
+ /* Release file-access template */
+ ret=H5Pclose(acc_tpl);
+ VRFY((ret != FAIL), "");
+
+ /* open the dataset1 collectively */
+ dataset1 = H5Dopen(fid, DATASETNAME1);
+ VRFY((dataset1 != FAIL), "");
+
+ /* open another dataset collectively */
+ dataset2 = H5Dopen(fid, DATASETNAME1);
+ VRFY((dataset2 != FAIL), "");
+
+
+ /* set up dimensions of the slab this process accesses */
+ slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
+
+ /* create a file dataspace independently */
+ file_dataspace = H5Dget_space (dataset1);
+ VRFY((file_dataspace != FAIL), "");
+ ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
+ VRFY((ret != FAIL), "");
+
+ /* create a memory dataspace independently */
+ mem_dataspace = H5Screate_simple (RANK, count, NULL);
+ VRFY((mem_dataspace != FAIL), "");
+
+ /* fill dataset with test data */
+ dataset_fill(start, count, stride, &data_origin1[0][0]);
+
+ /* read data independently */
+ ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "");
+
+ /* verify the read data with original expected data */
+ ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
+ VRFY((ret == 0), "dataset1 read verified correct");
+ if (ret) nerrors++;
+
+ /* read data independently */
+ ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
+ H5P_DEFAULT, data_array1);
+ VRFY((ret != FAIL), "");
+
+ /* verify the read data with original expected data */
+ ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
+ VRFY((ret == 0), "dataset2 read verified correct");
+ if (ret) nerrors++;
+
+ /* close dataset collectively */
+ ret=H5Dclose(dataset1);
+ VRFY((ret != FAIL), "");
+ ret=H5Dclose(dataset2);
+ VRFY((ret != FAIL), "");
+
+ /* release all IDs created */
+ H5Sclose(file_dataspace);
+
+ /* close the file collectively */
+ H5Fclose(fid);
+}
diff --git a/testpar/t_file.c b/testpar/t_file.c
new file mode 100644
index 0000000..8e5ff67
--- /dev/null
+++ b/testpar/t_file.c
@@ -0,0 +1,80 @@
+/* $Id$ */
+
+/*
+ * Parallel tests for file operations
+ */
+
+#include <testphdf5.h>
+
+/*
+ * test file access by communicator besides COMM_WORLD.
+ * Split COMM_WORLD into two, one (even_comm) contains the original
+ * processes of even ranks. The other (odd_comm) contains the original
+ * processes of odd ranks. Processes in even_comm creates a file, then
+ * cloose it, using even_comm. Processes in old_comm just do a barrier
+ * using odd_comm. Then they all do a barrier using COMM_WORLD.
+ * If the file creation and cloose does not do correct collective action
+ * according to the communicator argument, the processes will freeze up
+ * sooner or later due to barrier mixed up.
+ */
+void
+test_split_comm_access(char *filename[])
+{
+ int mpi_size, mpi_rank;
+ MPI_Comm comm;
+ MPI_Info info = MPI_INFO_NULL;
+ int color, mrc;
+ int newrank, newprocs;
+ hid_t fid; /* file IDs */
+ hid_t acc_tpl; /* File access properties */
+ herr_t ret; /* generic return value */
+
+ if (verbose)
+ printf("Split Communicator access test on file %s %s\n",
+ filename[0], filename[1]);
+
+ /* set up MPI parameters */
+ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
+ color = mpi_rank%2;
+ mrc = MPI_Comm_split (MPI_COMM_WORLD, color, mpi_rank, &comm);
+ VRFY((mrc==MPI_SUCCESS), "");
+ MPI_Comm_size(comm,&newprocs);
+ MPI_Comm_rank(comm,&newrank);
+
+ if (color){
+ /* odd-rank processes */
+ mrc = MPI_Barrier(comm);
+ VRFY((mrc==MPI_SUCCESS), "");
+ }else{
+ /* even-rank processes */
+ int sub_mpi_rank; /* rank in the sub-comm */
+ MPI_Comm_rank(comm,&sub_mpi_rank);
+
+ /* setup file access template */
+ acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
+ VRFY((acc_tpl != FAIL), "");
+
+ /* set Parallel access with communicator */
+ ret = H5Pset_mpi(acc_tpl, comm, info);
+ VRFY((ret != FAIL), "");
+
+ /* create the file collectively */
+ fid=H5Fcreate(filename[color],H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl);
+ VRFY((fid != FAIL), "H5Fcreate succeed");
+
+ /* Release file-access template */
+ ret=H5Pclose(acc_tpl);
+ VRFY((ret != FAIL), "");
+
+ /* close the file */
+ ret=H5Fclose(fid);
+ VRFY((ret != FAIL), "");
+
+ /* detele the test file */
+ if (sub_mpi_rank == 0){
+ mrc = MPI_File_delete(filename[color], info);
+ VRFY((mrc==MPI_SUCCESS), "");
+ }
+ }
+}
diff --git a/testpar/testphdf5.c b/testpar/testphdf5.c
index 03c3d92..1d8b632 100644
--- a/testpar/testphdf5.c
+++ b/testpar/testphdf5.c
@@ -1,84 +1,16 @@
-
/* $Id$ */
/*
- * Example of using the parallel HDF5 library to access datasets.
- *
- * This program contains two parts. In the first part, the mpi processes
- * collectively create a new parallel HDF5 file and create two fixed
- * dimension datasets in it. Then each process writes a hyperslab into
- * each dataset in an independent mode. All processes collectively
- * close the datasets and the file.
- * In the second part, the processes collectively open the created file
- * and the two datasets in it. Then each process reads a hyperslab from
- * each dataset in an independent mode and prints them out.
- * All processes collectively close the datasets and the file.
+ * Main driver of the Parallel HDF5 tests
*/
-#include <assert.h>
-#include <hdf5.h>
-#include <mpi.h>
-#include <mpio.h>
-
-/* Temporary source code */
-#define FAIL -1
-/* temporary code end */
-
-/* Define some handy debugging shorthands, routines, ... */
-/* debugging tools */
-
-#define MESG(x) \
- if (verbose) printf("%s\n", x); \
-
-#define VRFY(val, mesg) do { \
- if (val) { \
- if (*mesg != '\0'){ \
- MESG(mesg); \
- } \
- } \
- else{ \
- printf("*** Assertion failed (%s) at line %4d in %s\n", \
- mesg, (int)__LINE__, __FILE__); \
- nerrors++; \
- H5Eprint (stdout); \
- if (!verbose) exit(nerrors); \
- } \
- H5Eclear(); \
-} while(0)
-
-#define MPI_BANNER(mesg)\
- {printf("--------------------------------\n");\
- printf("Proc %d: ", mpi_rank); \
- printf("*** %s\n", mesg);\
- printf("--------------------------------\n");}
-
-#define SYNC(comm)\
- {MPI_BANNER("doing a SYNC"); MPI_Barrier(comm); MPI_BANNER("SYNC DONE");}
-/* End of Define some handy debugging shorthands, routines, ... */
-
-/* Constants definitions */
-/* 24 is a multiple of 2, 3, 4, 6, 8, 12. Neat for parallel tests. */
-#define SPACE1_DIM1 24
-#define SPACE1_DIM2 24
-#define SPACE1_RANK 2
-#define DATASETNAME1 "Data1"
-#define DATASETNAME2 "Data2"
-#define DATASETNAME3 "Data3"
-/* hyperslab layout styles */
-#define BYROW 1 /* divide into slabs of rows */
-#define BYCOL 2 /* divide into blocks of columns */
-
-
-/* dataset data type. Int's can be easily octo dumped. */
-typedef int DATATYPE;
+#include <testphdf5.h>
/* global variables */
int nerrors = 0; /* errors count */
-
-int mpi_size, mpi_rank; /* mpi variables */
-
-/* option flags */
int verbose = 0; /* verbose, default as no. */
+
+/* other option flags */
int doread=1; /* read test */
int dowrite=1; /* write test */
@@ -89,8 +21,7 @@ int dowrite=1; /* write test */
/* continue. */
#include <sys/types.h>
#include <sys/stat.h>
-void pause_proc(MPI_Comm comm, int mpi_rank, char* mpi_name, int mpi_namelen,
- int argc, char **argv)
+void pause_proc(MPI_Comm comm, int argc, char **argv)
{
int pid;
@@ -100,14 +31,22 @@ void pause_proc(MPI_Comm comm, int mpi_rank, char* mpi_name, int mpi_namelen,
int loops = 0;
int time_int = 10;
+ /* mpi variables */
+ int mpi_size, mpi_rank;
+ int mpi_namelen;
+ char mpi_name[MPI_MAX_PROCESSOR_NAME];
+
#ifdef DISABLED
/* check if an pause interval option is given */
if (--argc > 0 && isdigit(*++argv))
time_int = atoi(*argv);
#endif
pid = getpid();
+ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+ MPI_Get_processor_name(mpi_name, &mpi_namelen);
- if (mpi_rank == 0)
+ if (MAINPROCESS)
while ((stat(greenlight, &statbuf) == -1) && loops < maxloop){
if (!loops++){
printf("Proc %d (%*s, %d): You may attach %d for debugging.\n",
@@ -121,806 +60,6 @@ void pause_proc(MPI_Comm comm, int mpi_rank, char* mpi_name, int mpi_namelen,
}
#endif /* USE_PAUSE */
-/*
- * Setup the dimensions of the hyperslab.
- * Two modes--by rows or by columns.
- * Assume dimension rank is 2.
- */
-void
-slab_set(hssize_t start[], hsize_t count[], hsize_t stride[], int mode)
-{
- switch (mode){
- case BYROW:
- /* Each process takes a slabs of rows. */
- stride[0] = 1;
- stride[1] = 1;
- count[0] = SPACE1_DIM1/mpi_size;
- count[1] = SPACE1_DIM2;
- start[0] = mpi_rank*count[0];
- start[1] = 0;
-if (verbose) printf("slab_set BYROW\n");
- break;
- case BYCOL:
- /* Each process takes a block of columns. */
- stride[0] = 1;
- stride[1] = 1;
- count[0] = SPACE1_DIM1;
- count[1] = SPACE1_DIM2/mpi_size;
- start[0] = 0;
- start[1] = mpi_rank*count[1];
-#ifdef DISABLED
- /* change the above macro to #ifndef if you want to test */
- /* zero elements access. */
- printf("set to size 0\n");
- if (!(mpi_rank % 3))
- count[1]=0;
-#endif
-if (verbose) printf("slab_set BYCOL\n");
- break;
- default:
- /* Unknown mode. Set it to cover the whole dataset. */
- printf("unknown slab_set mode (%d)\n", mode);
- stride[0] = 1;
- stride[1] = 1;
- count[0] = SPACE1_DIM1;
- count[1] = SPACE1_DIM2;
- start[0] = 0;
- start[1] = 0;
-if (verbose) printf("slab_set wholeset\n");
- break;
- }
-if (verbose){
- printf("start[]=(%d,%d), count[]=(%d,%d), total datapoints=%d\n",
- start[0], start[1], count[0], count[1], count[0]*count[1]);
- }
-}
-
-
-/*
- * Fill the dataset with trivial data for testing.
- * Assume dimension rank is 2 and data is stored contiguous.
- */
-void
-dataset_fill(hssize_t start[], hsize_t count[], hsize_t stride[], DATATYPE * dataset)
-{
- DATATYPE *dataptr = dataset;
- int i, j;
-
- /* put some trivial data in the data_array */
- for (i=0; i < count[0]; i++){
- for (j=0; j < count[1]; j++){
- *dataptr = (i*stride[0]+start[0])*100 + (j*stride[1]+start[1]+1);
- dataptr++;
- }
- }
-}
-
-
-/*
- * Print the content of the dataset.
- */
-void dataset_print(hssize_t start[], hsize_t count[], hsize_t stride[], DATATYPE * dataset)
-{
- DATATYPE *dataptr = dataset;
- int i, j;
-
- /* print the column heading */
- printf("%-8s", "Cols:");
- for (j=0; j < count[1]; j++){
- printf("%3d ", start[1]+j);
- }
- printf("\n");
-
- /* print the slab data */
- for (i=0; i < count[0]; i++){
- printf("Row %2d: ", (int)(i*stride[0]+start[0]));
- for (j=0; j < count[1]; j++){
- printf("%03d ", *dataptr++);
- }
- printf("\n");
- }
-}
-
-
-/*
- * Print the content of the dataset.
- */
-int dataset_vrfy(hssize_t start[], hsize_t count[], hsize_t stride[], DATATYPE *dataset, DATATYPE *original)
-{
-#define MAX_ERR_REPORT 10 /* Maximum number of errors reported */
- DATATYPE *dataptr = dataset;
- DATATYPE *originptr = original;
-
- int i, j, vrfyerrs;
-
- /* print it if verbose */
- if (verbose)
- dataset_print(start, count, stride, dataset);
-
- vrfyerrs = 0;
- for (i=0; i < count[0]; i++){
- for (j=0; j < count[1]; j++){
- if (*dataset != *original){
- if (vrfyerrs++ < MAX_ERR_REPORT){
- printf("Dataset Verify failed at [%d][%d](row %d, col %d): expect %d, got %d\n",
- i, j,
- (int)(i*stride[0]+start[0]), (int)(j*stride[1]+start[1]),
- *(original), *(dataset));
- }
- dataset++;
- original++;
- }
- }
- }
- if (vrfyerrs > MAX_ERR_REPORT)
- printf("[more errors ...]\n");
- if (vrfyerrs)
- printf("%d errors found in dataset_vrfy\n", vrfyerrs);
- return(vrfyerrs);
-}
-
-
-/*
- * Example of using the parallel HDF5 library to create two datasets
- * in one HDF5 files with parallel MPIO access support.
- * The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
- * Each process controls only a slab of size DIM1 x DIM2 within each
- * dataset.
- */
-
-void
-phdf5writeInd(char *filename)
-{
- hid_t fid1, fid2; /* HDF5 file IDs */
- hid_t acc_tpl1; /* File access templates */
- hid_t sid1,sid2; /* Dataspace ID */
- hid_t file_dataspace; /* File dataspace ID */
- hid_t mem_dataspace; /* memory dataspace ID */
- hid_t dataset1, dataset2; /* Dataset ID */
- int rank = SPACE1_RANK; /* Logical rank of dataspace */
- hsize_t dims1[SPACE1_RANK] =
- {SPACE1_DIM1,SPACE1_DIM2}; /* dataspace dim sizes */
- hsize_t dimslocal1[SPACE1_RANK] =
- {SPACE1_DIM1,SPACE1_DIM2}; /* local dataspace dim sizes */
- DATATYPE data_array1[SPACE1_DIM1][SPACE1_DIM2]; /* data buffer */
-
- hssize_t start[SPACE1_RANK]; /* for hyperslab setting */
- hsize_t count[SPACE1_RANK], stride[SPACE1_RANK]; /* for hyperslab setting */
-
- herr_t ret; /* Generic return value */
- int i, j;
- int mpi_size, mpi_rank;
- char *fname;
- int mrc; /* mpi return code */
-
- MPI_Comm comm = MPI_COMM_WORLD;
- MPI_Info info = MPI_INFO_NULL;
-
- if (verbose)
- printf("Independent write test on file %s\n", filename);
-
- /* set up MPI parameters */
- MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
- MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
-
- /* -------------------
- * START AN HDF5 FILE
- * -------------------*/
- /* setup file access template with parallel IO access. */
- acc_tpl1 = H5Pcreate (H5P_FILE_ACCESS);
- VRFY((acc_tpl1 != FAIL), "H5Pcreate access succeed");
- /* set Parallel access with communicator */
- ret = H5Pset_mpi(acc_tpl1, comm, info);
- VRFY((ret != FAIL), "H5Pset_mpi succeed");
-
- /* create the file collectively */
- fid1=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl1);
- VRFY((fid1 != FAIL), "H5Fcreate succeed");
-
- /* Release file-access template */
- ret=H5Pclose(acc_tpl1);
- VRFY((ret != FAIL), "");
-
-
- /* --------------------------
- * Define the dimensions of the overall datasets
- * and the slabs local to the MPI process.
- * ------------------------- */
- /* setup dimensionality object */
- sid1 = H5Screate_simple (SPACE1_RANK, dims1, NULL);
- VRFY((sid1 != FAIL), "H5Screate_simple succeed");
-
-
- /* create a dataset collectively */
- dataset1 = H5Dcreate(fid1, DATASETNAME1, H5T_NATIVE_INT, sid1,
- H5P_DEFAULT);
- VRFY((dataset1 != FAIL), "H5Dcreate succeed");
-
- /* create another dataset collectively */
- dataset2 = H5Dcreate(fid1, DATASETNAME2, H5T_NATIVE_INT, sid1,
- H5P_DEFAULT);
- VRFY((dataset2 != FAIL), "H5Dcreate succeed");
-
-
-
- /* set up dimensions of the slab this process accesses */
- slab_set(start, count, stride, BYROW);
-
- /* put some trivial data in the data_array */
- dataset_fill(start, count, stride, &data_array1[0][0]);
- MESG("data_array initialized");
-
- /* create a file dataspace independently */
- file_dataspace = H5Dget_space (dataset1);
- VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
- ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
- VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
-
- /* create a memory dataspace independently */
- mem_dataspace = H5Screate_simple (SPACE1_RANK, count, NULL);
- VRFY((mem_dataspace != FAIL), "");
-
- /* write data independently */
- ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
- H5P_DEFAULT, data_array1);
- VRFY((ret != FAIL), "H5Dwrite succeed");
-
- /* write data independently */
- ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
- H5P_DEFAULT, data_array1);
- VRFY((ret != FAIL), "H5Dwrite succeed");
-
- /* release dataspace ID */
- H5Sclose(file_dataspace);
-
- /* close dataset collectively */
- ret=H5Dclose(dataset1);
- VRFY((ret != FAIL), "H5Dclose1 succeed");
- ret=H5Dclose(dataset2);
- VRFY((ret != FAIL), "H5Dclose2 succeed");
-
- /* release all IDs created */
- H5Sclose(sid1);
-
- /* close the file collectively */
- H5Fclose(fid1);
-}
-
-/* Example of using the parallel HDF5 library to read a dataset */
-void
-phdf5readInd(char *filename)
-{
- hid_t fid1, fid2; /* HDF5 file IDs */
- hid_t acc_tpl1; /* File access templates */
- hid_t sid1,sid2; /* Dataspace ID */
- hid_t file_dataspace; /* File dataspace ID */
- hid_t mem_dataspace; /* memory dataspace ID */
- hid_t dataset1, dataset2; /* Dataset ID */
- int rank = SPACE1_RANK; /* Logical rank of dataspace */
- hsize_t dims1[] = {SPACE1_DIM1,SPACE1_DIM2}; /* dataspace dim sizes */
- DATATYPE data_array1[SPACE1_DIM1][SPACE1_DIM2]; /* data buffer */
- DATATYPE data_origin1[SPACE1_DIM1][SPACE1_DIM2]; /* expected data buffer */
-
- hssize_t start[SPACE1_RANK]; /* for hyperslab setting */
- hsize_t count[SPACE1_RANK], stride[SPACE1_RANK]; /* for hyperslab setting */
-
- herr_t ret; /* Generic return value */
- int i, j;
- int mpi_size, mpi_rank;
-
- MPI_Comm comm = MPI_COMM_WORLD;
- MPI_Info info = MPI_INFO_NULL;
-
- if (verbose)
- printf("Independent read test on file %s\n", filename);
-
- /* set up MPI parameters */
- MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
- MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
-
-
- /* setup file access template */
- acc_tpl1 = H5Pcreate (H5P_FILE_ACCESS);
- VRFY((acc_tpl1 != FAIL), "");
- /* set Parallel access with communicator */
- ret = H5Pset_mpi(acc_tpl1, comm, info);
- VRFY((ret != FAIL), "");
-
-
- /* open the file collectively */
- fid1=H5Fopen(filename,H5F_ACC_RDWR,acc_tpl1);
- VRFY((fid1 != FAIL), "");
-
- /* Release file-access template */
- ret=H5Pclose(acc_tpl1);
- VRFY((ret != FAIL), "");
-
- /* open the dataset1 collectively */
- dataset1 = H5Dopen(fid1, DATASETNAME1);
- VRFY((dataset1 != FAIL), "");
-
- /* open another dataset collectively */
- dataset2 = H5Dopen(fid1, DATASETNAME1);
- VRFY((dataset2 != FAIL), "");
-
-
- /* set up dimensions of the slab this process accesses */
- slab_set(start, count, stride, BYROW);
-
- /* create a file dataspace independently */
- file_dataspace = H5Dget_space (dataset1);
- VRFY((file_dataspace != FAIL), "");
- ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
- VRFY((ret != FAIL), "");
-
- /* create a memory dataspace independently */
- mem_dataspace = H5Screate_simple (SPACE1_RANK, count, NULL);
- VRFY((mem_dataspace != FAIL), "");
-
- /* fill dataset with test data */
- dataset_fill(start, count, stride, &data_origin1[0][0]);
-
- /* read data independently */
- ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
- H5P_DEFAULT, data_array1);
- VRFY((ret != FAIL), "");
-
- /* verify the read data with original expected data */
- ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
- if (ret) nerrors++;
-
- /* read data independently */
- ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
- H5P_DEFAULT, data_array1);
- VRFY((ret != FAIL), "");
-
- /* verify the read data with original expected data */
- ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
- if (ret) nerrors++;
-
- /* close dataset collectively */
- ret=H5Dclose(dataset1);
- VRFY((ret != FAIL), "");
- ret=H5Dclose(dataset2);
- VRFY((ret != FAIL), "");
-
- /* release all IDs created */
- H5Sclose(file_dataspace);
-
- /* close the file collectively */
- H5Fclose(fid1);
-}
-
-
-/*
- * Example of using the parallel HDF5 library to create two datasets
- * in one HDF5 file with collective parallel access support.
- * The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
- * Each process controls only a slab of size DIM1 x DIM2 within each
- * dataset. [Note: not so yet. Datasets are of sizes DIM1xDIM2 and
- * each process controls a hyperslab within.]
- */
-
-void
-phdf5writeAll(char *filename)
-{
- hid_t fid1, fid2; /* HDF5 file IDs */
- hid_t acc_tpl1; /* File access templates */
- hid_t xfer_plist; /* Dataset transfer properties list */
- hid_t sid1,sid2; /* Dataspace ID */
- hid_t file_dataspace; /* File dataspace ID */
- hid_t mem_dataspace; /* memory dataspace ID */
- hid_t dataset1, dataset2; /* Dataset ID */
- hid_t datatype; /* Datatype ID */
- int rank = SPACE1_RANK; /* Logical rank of dataspace */
- hsize_t dims1[SPACE1_RANK] =
- {SPACE1_DIM1,SPACE1_DIM2}; /* dataspace dim sizes */
- DATATYPE data_array1[SPACE1_DIM1][SPACE1_DIM2]; /* data buffer */
-
- hssize_t start[SPACE1_RANK]; /* for hyperslab setting */
- hsize_t count[SPACE1_RANK], stride[SPACE1_RANK]; /* for hyperslab setting */
-
- herr_t ret; /* Generic return value */
- int mpi_size, mpi_rank;
-
- MPI_Comm comm = MPI_COMM_WORLD;
- MPI_Info info = MPI_INFO_NULL;
-
- if (verbose)
- printf("Collective write test on file %s\n", filename);
-
- /* set up MPI parameters */
- MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
- MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
-
- /* -------------------
- * START AN HDF5 FILE
- * -------------------*/
- /* setup file access template with parallel IO access. */
- acc_tpl1 = H5Pcreate (H5P_FILE_ACCESS);
- VRFY((acc_tpl1 != FAIL), "H5Pcreate access succeed");
- /* set Parallel access with communicator */
- ret = H5Pset_mpi(acc_tpl1, comm, info);
- VRFY((ret != FAIL), "H5Pset_mpi succeed");
-
- /* create the file collectively */
- fid1=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl1);
- VRFY((fid1 != FAIL), "H5Fcreate succeed");
-
- /* Release file-access template */
- ret=H5Pclose(acc_tpl1);
- VRFY((ret != FAIL), "");
-
-
- /* --------------------------
- * Define the dimensions of the overall datasets
- * and create the dataset
- * ------------------------- */
- /* setup dimensionality object */
- sid1 = H5Screate_simple (SPACE1_RANK, dims1, NULL);
- VRFY((sid1 != FAIL), "H5Screate_simple succeed");
-
-
- /* create a dataset collectively */
- dataset1 = H5Dcreate(fid1, DATASETNAME1, H5T_NATIVE_INT, sid1, H5P_DEFAULT);
- VRFY((dataset1 != FAIL), "H5Dcreate succeed");
-
- /* create another dataset collectively */
- datatype = H5Tcopy(H5T_NATIVE_INT32);
- ret = H5Tset_order(datatype, H5T_ORDER_LE);
- VRFY((ret != FAIL), "H5Tset_order succeed");
-
- dataset2 = H5Dcreate(fid1, DATASETNAME2, datatype, sid1, H5P_DEFAULT);
- VRFY((dataset2 != FAIL), "H5Dcreate 2 succeed");
-
- /*
- * Set up dimensions of the slab this process accesses.
- */
-
- /* Dataset1: each process takes a block of rows. */
- slab_set(start, count, stride, BYROW);
-
- /* create a file dataspace independently */
- file_dataspace = H5Dget_space (dataset1);
- VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
- ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
- VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
-
- /* create a memory dataspace independently */
- mem_dataspace = H5Screate_simple (SPACE1_RANK, count, NULL);
- VRFY((mem_dataspace != FAIL), "");
-
- /* fill the local slab with some trivial data */
- dataset_fill(start, count, stride, &data_array1[0][0]);
- MESG("data_array initialized");
- if (verbose){
- MESG("data_array created");
- dataset_print(start, count, stride, &data_array1[0][0]);
- }
-
- /* set up the collective transfer properties list */
- xfer_plist = H5Pcreate (H5P_DATASET_XFER);
- VRFY((xfer_plist != FAIL), "");
- ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
- VRFY((ret != FAIL), "H5Pcreate xfer succeed");
-
- /* write data collectively */
- ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
- xfer_plist, data_array1);
- VRFY((ret != FAIL), "H5Dwrite dataset1 succeed");
-
- /* release all temporary handles. */
- /* Could have used them for dataset2 but it is cleaner */
- /* to create them again.*/
- H5Sclose(file_dataspace);
- H5Sclose(mem_dataspace);
- H5Pclose(xfer_plist);
-
- /* Dataset2: each process takes a block of columns. */
- slab_set(start, count, stride, BYCOL);
-
- /* put some trivial data in the data_array */
- dataset_fill(start, count, stride, &data_array1[0][0]);
- MESG("data_array initialized");
- if (verbose){
- MESG("data_array created");
- dataset_print(start, count, stride, &data_array1[0][0]);
- }
-
- /* create a file dataspace independently */
- file_dataspace = H5Dget_space (dataset1);
- VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
- ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
- VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
-
- /* create a memory dataspace independently */
- mem_dataspace = H5Screate_simple (SPACE1_RANK, count, NULL);
- VRFY((mem_dataspace != FAIL), "");
-
- /* fill the local slab with some trivial data */
- dataset_fill(start, count, stride, &data_array1[0][0]);
- MESG("data_array initialized");
- if (verbose){
- MESG("data_array created");
- dataset_print(start, count, stride, &data_array1[0][0]);
- }
-
- /* set up the collective transfer properties list */
- xfer_plist = H5Pcreate (H5P_DATASET_XFER);
- VRFY((xfer_plist != FAIL), "");
- ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
- VRFY((ret != FAIL), "H5Pcreate xfer succeed");
-
- /* write data independently */
-printf("WRITING TO DATASET2\n");
- ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
- xfer_plist, data_array1);
- VRFY((ret != FAIL), "H5Dwrite dataset2 succeed");
-
- /* release all temporary handles. */
- H5Sclose(file_dataspace);
- H5Sclose(mem_dataspace);
- H5Pclose(xfer_plist);
-
-
- /*
- * All writes completed. Close datasets collectively
- */
- ret=H5Dclose(dataset1);
- VRFY((ret != FAIL), "H5Dclose1 succeed");
- ret=H5Dclose(dataset2);
- VRFY((ret != FAIL), "H5Dclose2 succeed");
-
- /* release all IDs created */
- H5Sclose(sid1);
-
- /* close the file collectively */
- H5Fclose(fid1);
-}
-
-/*
- * Example of using the parallel HDF5 library to read two datasets
- * in one HDF5 file with collective parallel access support.
- * The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
- * Each process controls only a slab of size DIM1 x DIM2 within each
- * dataset. [Note: not so yet. Datasets are of sizes DIM1xDIM2 and
- * each process controls a hyperslab within.]
- */
-
-void
-phdf5readAll(char *filename)
-{
- hid_t fid1, fid2; /* HDF5 file IDs */
- hid_t acc_tpl1; /* File access templates */
- hid_t xfer_plist; /* Dataset transfer properties list */
- hid_t sid1,sid2; /* Dataspace ID */
- hid_t file_dataspace; /* File dataspace ID */
- hid_t mem_dataspace; /* memory dataspace ID */
- hid_t dataset1, dataset2; /* Dataset ID */
- int rank = SPACE1_RANK; /* Logical rank of dataspace */
- hsize_t dims1[] = {SPACE1_DIM1,SPACE1_DIM2}; /* dataspace dim sizes */
- DATATYPE data_array1[SPACE1_DIM1][SPACE1_DIM2]; /* data buffer */
- DATATYPE data_origin1[SPACE1_DIM1][SPACE1_DIM2]; /* expected data buffer */
-
- hssize_t start[SPACE1_RANK]; /* for hyperslab setting */
- hsize_t count[SPACE1_RANK], stride[SPACE1_RANK]; /* for hyperslab setting */
-
- herr_t ret; /* Generic return value */
- int mpi_size, mpi_rank;
-
- MPI_Comm comm = MPI_COMM_WORLD;
- MPI_Info info = MPI_INFO_NULL;
-
- if (verbose)
- printf("Collective read test on file %s\n", filename);
-
- /* set up MPI parameters */
- MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
- MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
-
- /* -------------------
- * OPEN AN HDF5 FILE
- * -------------------*/
- /* setup file access template with parallel IO access. */
- acc_tpl1 = H5Pcreate (H5P_FILE_ACCESS);
- VRFY((acc_tpl1 != FAIL), "H5Pcreate access succeed");
- /* set Parallel access with communicator */
- ret = H5Pset_mpi(acc_tpl1, comm, info);
- VRFY((ret != FAIL), "H5Pset_mpi succeed");
-
- /* open the file collectively */
- fid1=H5Fopen(filename,H5F_ACC_RDWR,acc_tpl1);
- VRFY((fid1 != FAIL), "H5Fopen succeed");
-
- /* Release file-access template */
- ret=H5Pclose(acc_tpl1);
- VRFY((ret != FAIL), "");
-
-
- /* --------------------------
- * Open the datasets in it
- * ------------------------- */
- /* open the dataset1 collectively */
- dataset1 = H5Dopen(fid1, DATASETNAME1);
- VRFY((dataset1 != FAIL), "H5Dopen succeed");
-
- /* open another dataset collectively */
- dataset2 = H5Dopen(fid1, DATASETNAME2);
- VRFY((dataset2 != FAIL), "H5Dopen 2 succeed");
-
- /*
- * Set up dimensions of the slab this process accesses.
- */
-
- /* Dataset1: each process takes a block of columns. */
- slab_set(start, count, stride, BYCOL);
-
- /* create a file dataspace independently */
- file_dataspace = H5Dget_space (dataset1);
- VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
- ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
- VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
-
- /* create a memory dataspace independently */
- mem_dataspace = H5Screate_simple (SPACE1_RANK, count, NULL);
- VRFY((mem_dataspace != FAIL), "");
-
- /* fill dataset with test data */
- dataset_fill(start, count, stride, &data_origin1[0][0]);
- MESG("data_array initialized");
- if (verbose){
- MESG("data_array created");
- dataset_print(start, count, stride, &data_origin1[0][0]);
- }
-
- /* set up the collective transfer properties list */
- xfer_plist = H5Pcreate (H5P_DATASET_XFER);
- VRFY((xfer_plist != FAIL), "");
- ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
- VRFY((ret != FAIL), "H5Pcreate xfer succeed");
-
- /* read data collectively */
- ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
- xfer_plist, data_array1);
- VRFY((ret != FAIL), "H5Dread succeed");
-
- /* verify the read data with original expected data */
- ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
- if (ret) nerrors++;
-
- /* release all temporary handles. */
- /* Could have used them for dataset2 but it is cleaner */
- /* to create them again.*/
- H5Sclose(file_dataspace);
- H5Sclose(mem_dataspace);
- H5Pclose(xfer_plist);
-
- /* Dataset2: each process takes a block of rows. */
- slab_set(start, count, stride, BYROW);
-
- /* create a file dataspace independently */
- file_dataspace = H5Dget_space (dataset1);
- VRFY((file_dataspace != FAIL), "H5Dget_space succeed");
- ret=H5Sset_hyperslab(file_dataspace, start, count, stride);
- VRFY((ret != FAIL), "H5Sset_hyperslab succeed");
-
- /* create a memory dataspace independently */
- mem_dataspace = H5Screate_simple (SPACE1_RANK, count, NULL);
- VRFY((mem_dataspace != FAIL), "");
-
- /* fill dataset with test data */
- dataset_fill(start, count, stride, &data_origin1[0][0]);
- MESG("data_array initialized");
- if (verbose){
- MESG("data_array created");
- dataset_print(start, count, stride, &data_origin1[0][0]);
- }
-
- /* set up the collective transfer properties list */
- xfer_plist = H5Pcreate (H5P_DATASET_XFER);
- VRFY((xfer_plist != FAIL), "");
- ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
- VRFY((ret != FAIL), "H5Pcreate xfer succeed");
-
- /* read data independently */
- ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
- xfer_plist, data_array1);
- VRFY((ret != FAIL), "H5Dread succeed");
-
- /* verify the read data with original expected data */
- ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
- if (ret) nerrors++;
-
- /* release all temporary handles. */
- H5Sclose(file_dataspace);
- H5Sclose(mem_dataspace);
- H5Pclose(xfer_plist);
-
-
- /*
- * All reads completed. Close datasets collectively
- */
- ret=H5Dclose(dataset1);
- VRFY((ret != FAIL), "H5Dclose1 succeed");
- ret=H5Dclose(dataset2);
- VRFY((ret != FAIL), "H5Dclose2 succeed");
-
- /* close the file collectively */
- H5Fclose(fid1);
-}
-
-/*
- * test file access by communicator besides COMM_WORLD.
- * Split COMM_WORLD into two, one (even_comm) contains the original
- * processes of even ranks. The other (odd_comm) contains the original
- * processes of odd ranks. Processes in even_comm creates a file, then
- * cloose it, using even_comm. Processes in old_comm just do a barrier
- * using odd_comm. Then they all do a barrier using COMM_WORLD.
- * If the file creation and cloose does not do correct collective action
- * according to the communicator argument, the processes will freeze up
- * sooner or later due to barrier mixed up.
- */
-void
-test_split_comm_access(char *filename[])
-{
- int mpi_size, mpi_rank;
- MPI_Comm comm;
- MPI_Info info = MPI_INFO_NULL;
- int color, mrc;
- int newrank, newprocs;
- hid_t fid; /* file IDs */
- hid_t acc_tpl; /* File access properties */
- herr_t ret; /* generic return value */
-
- if (verbose)
- printf("Split Communicator access test on file %s %s\n",
- filename[0], filename[1]);
-
- /* set up MPI parameters */
- MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
- MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
- color = mpi_rank%2;
- mrc = MPI_Comm_split (MPI_COMM_WORLD, color, mpi_rank, &comm);
- VRFY((mrc==MPI_SUCCESS), "");
- MPI_Comm_size(comm,&newprocs);
- MPI_Comm_rank(comm,&newrank);
-
- if (color){
- /* odd-rank processes */
- mrc = MPI_Barrier(comm);
- VRFY((mrc==MPI_SUCCESS), "");
- }else{
- /* even-rank processes */
- int sub_mpi_rank; /* rank in the sub-comm */
- MPI_Comm_rank(comm,&sub_mpi_rank);
-
- /* setup file access template */
- acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
- VRFY((acc_tpl != FAIL), "");
-
- /* set Parallel access with communicator */
- ret = H5Pset_mpi(acc_tpl, comm, info);
- VRFY((ret != FAIL), "");
-
- /* create the file collectively */
- fid=H5Fcreate(filename[color],H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl);
- VRFY((fid != FAIL), "H5Fcreate succeed");
-
- /* Release file-access template */
- ret=H5Pclose(acc_tpl);
- VRFY((ret != FAIL), "");
-
- /* close the file */
- ret=H5Fclose(fid);
- VRFY((ret != FAIL), "");
-
- /* detele the test file */
- if (sub_mpi_rank == 0){
- mrc = MPI_File_delete(filename[color], info);
- VRFY((mrc==MPI_SUCCESS), "");
- }
- }
-}
/*
* Show command usage
@@ -965,43 +104,59 @@ parse_options(int argc, char **argv){
main(int argc, char **argv)
{
- char *filenames[]={ "ParaEg1.h5f", "ParaEg2.h5f" };
+ char *filenames[]={ "ParaEg1.h5f",
+ "ParaEg2.h5f",
+ "ParaEg3.h5f"
+ };
- int mpi_namelen;
- char mpi_name[MPI_MAX_PROCESSOR_NAME];
+ int mpi_size, mpi_rank; /* mpi variables */
+
+ MPI_Init(&argc, &argv);
+ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ if (MAINPROCESS){
+ printf("===================================\n");
+ printf("PHDF5 TESTS START\n");
+ printf("===================================\n");
+ }
- MPI_Init(&argc,&argv);
- MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
- MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
- MPI_Get_processor_name(mpi_name,&mpi_namelen);
/* Make sure datasets can be divided into equal chunks by the processes */
- if ((SPACE1_DIM1 % mpi_size) || (SPACE1_DIM2 % mpi_size)){
- printf("DIM1(%d) and DIM2(%d) must be multiples of processes (%d)\n",
- SPACE1_DIM1, SPACE1_DIM2, mpi_size);
+ if ((DIM1 % mpi_size) || (DIM2 % mpi_size)){
+ if (MAINPROCESS)
+ printf("DIM1(%d) and DIM2(%d) must be multiples of processes(%d)\n",
+ DIM1, DIM2, mpi_size);
nerrors++;
goto finish;
}
#ifdef USE_PAUSE
- pause_proc(MPI_COMM_WORLD, mpi_rank, mpi_name, mpi_namelen, argc, argv);
+ pause_proc(MPI_COMM_WORLD, argc, argv);
#endif
if (parse_options(argc, argv) != 0)
goto finish;
if (dowrite){
- MPI_BANNER("testing PHDF5 dataset using split communicators...");
+ MPI_BANNER("testing dataset using split communicators...");
test_split_comm_access(filenames);
- MPI_BANNER("testing PHDF5 dataset independent write...");
- phdf5writeInd(filenames[0]);
- MPI_BANNER("testing PHDF5 dataset collective write...");
- phdf5writeAll(filenames[1]);
+
+ MPI_BANNER("testing dataset independent write...");
+ dataset_writeInd(filenames[0]);
+
+ MPI_BANNER("testing dataset collective write...");
+ dataset_writeAll(filenames[1]);
+ MPI_BANNER("testing extendable dataset independent write...");
+ extend_writeInd(filenames[2]);
}
if (doread){
- MPI_BANNER("testing PHDF5 dataset independent read...");
- phdf5readInd(filenames[0]);
- MPI_BANNER("testing PHDF5 dataset collective read...");
- phdf5readAll(filenames[1]);
+ MPI_BANNER("testing dataset independent read...");
+ dataset_readInd(filenames[0]);
+
+ MPI_BANNER("testing dataset collective read...");
+ dataset_readAll(filenames[1]);
+ MPI_BANNER("testing extendable dataset independent read...");
+ extend_readInd(filenames[2]);
}
if (!(dowrite || doread)){
@@ -1010,7 +165,7 @@ main(int argc, char **argv)
}
finish:
- if (mpi_rank == 0){ /* only process 0 reports */
+ if (MAINPROCESS){ /* only process 0 reports */
printf("===================================\n");
if (nerrors){
printf("***PHDF5 tests detected %d errors***\n", nerrors);