summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--MANIFEST1
-rw-r--r--src/H5Dchunk.c3
-rw-r--r--src/H5Dio.c98
-rw-r--r--src/H5Dmpio.c124
-rw-r--r--src/H5Sall.c99
-rw-r--r--src/H5Shyper.c828
-rw-r--r--src/H5Smpio.c627
-rw-r--r--src/H5Snone.c254
-rw-r--r--src/H5Spkg.h6
-rw-r--r--src/H5Spoint.c181
-rw-r--r--src/H5Sprivate.h21
-rw-r--r--src/H5Sselect.c740
-rw-r--r--test/testframe.c2
-rw-r--r--test/tselect.c5244
-rw-r--r--testpar/Makefile.am3
-rw-r--r--testpar/Makefile.in7
-rw-r--r--testpar/t_rank_projection.c4041
-rw-r--r--testpar/t_span_tree.c1927
-rw-r--r--testpar/testphdf5.c21
-rw-r--r--testpar/testphdf5.h4
20 files changed, 13125 insertions, 1106 deletions
diff --git a/MANIFEST b/MANIFEST
index d597d53..f3f1753 100644
--- a/MANIFEST
+++ b/MANIFEST
@@ -960,6 +960,7 @@
./testpar/t_filter_read.c
./testpar/t_span_tree.c
./testpar/t_posix_compliant.c
+./testpar/t_rank_projection.c
./testpar/testpar.h
./testpar/testphdf5.c
./testpar/testphdf5.h
diff --git a/src/H5Dchunk.c b/src/H5Dchunk.c
index a28bce9..88c4ab9 100644
--- a/src/H5Dchunk.c
+++ b/src/H5Dchunk.c
@@ -2665,7 +2665,6 @@ H5D_chunk_lock(const H5D_io_info_t *io_info, H5D_chunk_ud_t *udata,
hbool_t fb_info_init = FALSE; /* Whether the fill value buffer has been initialized */
H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk); /*raw data chunk cache*/
H5D_rdcc_ent_t *ent = NULL; /*cache entry */
- hbool_t found = FALSE; /*already in cache? */
haddr_t chunk_addr = HADDR_UNDEF; /* Address of chunk on disk */
size_t chunk_size; /*size of a chunk */
void *chunk = NULL; /*the file chunk */
@@ -2797,7 +2796,7 @@ H5D_chunk_lock(const H5D_io_info_t *io_info, H5D_chunk_ud_t *udata,
rdcc->stats.ninits++;
} /* end else */
} /* end else */
- HDassert(found || chunk_size > 0);
+ HDassert(chunk_size > 0);
if(ent) {
/*
diff --git a/src/H5Dio.c b/src/H5Dio.c
index 285451e..b7c2ecb 100644
--- a/src/H5Dio.c
+++ b/src/H5Dio.c
@@ -291,6 +291,19 @@ H5D_read(H5D_t *dataset, hid_t mem_type_id, const H5S_t *mem_space,
H5D_io_info_t io_info; /* Dataset I/O info */
H5D_type_info_t type_info; /* Datatype info for operation */
hbool_t type_info_init = FALSE; /* Whether the datatype info has been initialized */
+ H5S_t * projected_mem_space = NULL; /* If not NULL, ptr to dataspace containing a */
+ /* projection of the supplied mem_space to a new */
+ /* data space with rank equal to that of */
+ /* file_space. */
+ /* */
+ /* This field is only used if */
+ /* H5S_select_shape_same() returns TRUE when */
+ /* comparing the mem_space and the data_space, */
+ /* and the mem_space have different rank. */
+ /* */
+ /* Note that if this variable is used, the */
+ /* projected mem space must be discarded at the */
+ /* end of the function to avoid a memory leak. */
H5D_storage_t store; /*union of EFL and chunk pointer in file space */
hssize_t snelmts; /*total number of elmts (signed) */
hsize_t nelmts; /*total number of elmts */
@@ -340,6 +353,37 @@ H5D_read(H5D_t *dataset, hid_t mem_type_id, const H5S_t *mem_space,
if(!(H5S_has_extent(mem_space)))
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "memory dataspace does not have extent set")
+ /* H5S_select_shape_same() has been modified to accept topologically identical
+ * selections with different rank as having the same shape (if the most
+ * rapidly changing coordinates match up), but the I/O code still has
+ * difficulties with the notion.
+ *
+ * To solve this, we check to see if H5S_select_shape_same() returns true,
+ * and if the ranks of the mem and file spaces are different. If the are,
+ * construct a new mem space that is equivalent to the old mem space, and
+ * use that instead.
+ *
+ * Note that in general, this requires us to touch up the memory buffer as
+ * well.
+ */
+ if(TRUE == H5S_select_shape_same(mem_space, file_space) &&
+ H5S_GET_EXTENT_NDIMS(mem_space) != H5S_GET_EXTENT_NDIMS(file_space)) {
+ void *adj_buf = NULL; /* Pointer to the location in buf corresponding */
+ /* to the beginning of the projected mem space. */
+
+ /* Attempt to construct projected dataspace for memory dataspace */
+ if(H5S_select_construct_projection(mem_space, &projected_mem_space,
+ (unsigned)H5S_GET_EXTENT_NDIMS(file_space), buf, &adj_buf, type_info.dst_type_size) < 0)
+ HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to construct projected memory dataspace")
+ HDassert(projected_mem_space);
+ HDassert(adj_buf);
+
+ /* Switch to using projected memory dataspace & adjusted buffer */
+ mem_space = projected_mem_space;
+ buf = adj_buf;
+ } /* end if */
+
+
/* Retrieve dataset properties */
/* <none needed in the general case> */
@@ -417,6 +461,11 @@ done:
if(type_info_init && H5D_typeinfo_term(&type_info) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTCLOSEOBJ, FAIL, "unable to shut down type info")
+ /* discard projected mem space if it was created */
+ if(NULL != projected_mem_space)
+ if(H5S_close(projected_mem_space) < 0)
+ HDONE_ERROR(H5E_DATASET, H5E_CANTCLOSEOBJ, FAIL, "unable to shut down projected memory dataspace")
+
FUNC_LEAVE_NOAPI_TAG(ret_value, FAIL)
} /* end H5D_read() */
@@ -442,6 +491,19 @@ H5D_write(H5D_t *dataset, hid_t mem_type_id, const H5S_t *mem_space,
H5D_io_info_t io_info; /* Dataset I/O info */
H5D_type_info_t type_info; /* Datatype info for operation */
hbool_t type_info_init = FALSE; /* Whether the datatype info has been initialized */
+ H5S_t * projected_mem_space = NULL; /* If not NULL, ptr to dataspace containing a */
+ /* projection of the supplied mem_space to a new */
+ /* data space with rank equal to that of */
+ /* file_space. */
+ /* */
+ /* This field is only used if */
+ /* H5S_select_shape_same() returns TRUE when */
+ /* comparing the mem_space and the data_space, */
+ /* and the mem_space have different rank. */
+ /* */
+ /* Note that if this variable is used, the */
+ /* projected mem space must be discarded at the */
+ /* end of the function to avoid a memory leak. */
H5D_storage_t store; /*union of EFL and chunk pointer in file space */
hssize_t snelmts; /*total number of elmts (signed) */
hsize_t nelmts; /*total number of elmts */
@@ -515,6 +577,37 @@ H5D_write(H5D_t *dataset, hid_t mem_type_id, const H5S_t *mem_space,
file_space = dataset->shared->space;
if(!mem_space)
mem_space = file_space;
+
+ /* H5S_select_shape_same() has been modified to accept topologically
+ * identical selections with different rank as having the same shape
+ * (if the most rapidly changing coordinates match up), but the I/O
+ * code still has difficulties with the notion.
+ *
+ * To solve this, we check to see if H5S_select_shape_same() returns
+ * true, and if the ranks of the mem and file spaces are different.
+ * If the are, construct a new mem space that is equivalent to the
+ * old mem space, and use that instead.
+ *
+ * Note that in general, this requires us to touch up the memory buffer
+ * as well.
+ */
+ if(TRUE == H5S_select_shape_same(mem_space, file_space) &&
+ H5S_GET_EXTENT_NDIMS(mem_space) != H5S_GET_EXTENT_NDIMS(file_space)) {
+ void *adj_buf = NULL; /* Pointer to the location in buf corresponding */
+ /* to the beginning of the projected mem space. */
+
+ /* Attempt to construct projected dataspace for memory dataspace */
+ if(H5S_select_construct_projection(mem_space, &projected_mem_space,
+ (unsigned)H5S_GET_EXTENT_NDIMS(file_space), buf, &adj_buf, type_info.src_type_size) < 0)
+ HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to construct projected memory dataspace")
+ HDassert(projected_mem_space);
+ HDassert(adj_buf);
+
+ /* Switch to using projected memory dataspace & adjusted buffer */
+ mem_space = projected_mem_space;
+ buf = adj_buf;
+ } /* end if */
+
if((snelmts = H5S_GET_SELECT_NPOINTS(mem_space)) < 0)
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "src dataspace has invalid selection")
H5_ASSIGN_OVERFLOW(nelmts, snelmts, hssize_t, hsize_t);
@@ -608,6 +701,11 @@ done:
if(type_info_init && H5D_typeinfo_term(&type_info) < 0)
HDONE_ERROR(H5E_DATASET, H5E_CANTCLOSEOBJ, FAIL, "unable to shut down type info")
+ /* discard projected mem space if it was created */
+ if(NULL != projected_mem_space)
+ if(H5S_close(projected_mem_space) < 0)
+ HDONE_ERROR(H5E_DATASET, H5E_CANTCLOSEOBJ, FAIL, "unable to shut down projected memory dataspace")
+
FUNC_LEAVE_NOAPI_TAG(ret_value, FAIL)
} /* end H5D_write() */
diff --git a/src/H5Dmpio.c b/src/H5Dmpio.c
index ad9b737..e646a7b 100644
--- a/src/H5Dmpio.c
+++ b/src/H5Dmpio.c
@@ -115,7 +115,7 @@ static herr_t H5D_inter_collective_io(H5D_io_info_t *io_info,
const H5D_type_info_t *type_info, const H5S_t *file_space,
const H5S_t *mem_space);
static herr_t H5D_final_collective_io(H5D_io_info_t *io_info,
- const H5D_type_info_t *type_info, size_t nelmts, MPI_Datatype *mpi_file_type,
+ const H5D_type_info_t *type_info, hsize_t nelmts, MPI_Datatype *mpi_file_type,
MPI_Datatype *mpi_buf_type);
#ifdef H5_MPI_COMPLEX_DERIVED_DATATYPE_WORKS
static herr_t H5D_sort_chunk(H5D_io_info_t *io_info, const H5D_chunk_map_t *fm,
@@ -819,10 +819,10 @@ H5D_link_chunk_collective_io(H5D_io_info_t *io_info, const H5D_type_info_t *type
H5D_chunk_map_t *fm, int sum_chunk)
{
H5D_chunk_addr_info_t *chunk_addr_info_array = NULL;
- hbool_t mbt_is_derived = FALSE;
- hbool_t mft_is_derived = FALSE;
MPI_Datatype chunk_final_mtype; /* Final memory MPI datatype for all chunks with seletion */
+ hbool_t chunk_final_mtype_is_derived = FALSE;
MPI_Datatype chunk_final_ftype; /* Final file MPI datatype for all chunks with seletion */
+ hbool_t chunk_final_ftype_is_derived = FALSE;
H5D_storage_t ctg_store; /* Storage info for "fake" contiguous dataset */
size_t total_chunks;
haddr_t *total_chunk_addr_array = NULL;
@@ -830,7 +830,10 @@ H5D_link_chunk_collective_io(H5D_io_info_t *io_info, const H5D_type_info_t *type
MPI_Datatype *chunk_ftype = NULL;
MPI_Aint *chunk_disp_array = NULL;
MPI_Aint *chunk_mem_disp_array = NULL;
- int *blocklen = NULL;
+ hbool_t *chunk_mft_is_derived_array = NULL; /* Flags to indicate each chunk's MPI file datatype is derived */
+ hbool_t *chunk_mbt_is_derived_array = NULL; /* Flags to indicate each chunk's MPI memory datatype is derived */
+ int *chunk_mpi_file_counts = NULL; /* Count of MPI file datatype for each chunk */
+ int *chunk_mpi_mem_counts = NULL; /* Count of MPI memory datatype for each chunk */
int mpi_code; /* MPI return code */
herr_t ret_value = SUCCEED;
@@ -897,7 +900,7 @@ if(H5DEBUG(D))
HGOTO_ERROR(H5E_STORAGE, H5E_CANTGET, FAIL, "couldn't finish shared collective MPI-IO")
} /* end if */
else {
- size_t mpi_buf_count; /* Number of MPI types */
+ hsize_t mpi_buf_count; /* Number of MPI types */
size_t num_chunk; /* Number of chunks for this process */
size_t u; /* Local index variable */
@@ -912,21 +915,25 @@ if(H5DEBUG(D))
/* Set up MPI datatype for chunks selected */
if(num_chunk) {
- hsize_t mpi_mem_extra_offset; /* Extra offset for memory MPI datatype */
- hsize_t mpi_file_extra_offset; /* Extra offset for file MPI datatype */
- size_t mpi_mem_count; /* Memory MPI datatype count */
- size_t mpi_file_count; /* File MPI datatype count */
- hbool_t locl_mbt_is_derived = FALSE, /* Whether the buffer (memory) type is derived and needs to be free'd */
- local_mft_is_derived = FALSE; /* Whether the file type is derived and needs to be free'd */
- int blocklen_value; /* Placeholder for array fill */
-
/* Allocate chunking information */
- chunk_addr_info_array= H5MM_malloc(num_chunk * sizeof(H5D_chunk_addr_info_t));
- chunk_mtype = H5MM_malloc(num_chunk * sizeof(MPI_Datatype));
- chunk_ftype = H5MM_malloc(num_chunk * sizeof(MPI_Datatype));
- chunk_disp_array = H5MM_malloc(num_chunk * sizeof(MPI_Aint));
- chunk_mem_disp_array = H5MM_calloc(num_chunk * sizeof(MPI_Aint));
- blocklen = H5MM_malloc(num_chunk * sizeof(int));
+ if(NULL == (chunk_addr_info_array = (H5D_chunk_addr_info_t *)H5MM_malloc(num_chunk * sizeof(H5D_chunk_addr_info_t))))
+ HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk array buffer")
+ if(NULL == (chunk_mtype = (MPI_Datatype *)H5MM_malloc(num_chunk * sizeof(MPI_Datatype))))
+ HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk memory datatype buffer")
+ if(NULL == (chunk_ftype = (MPI_Datatype *)H5MM_malloc(num_chunk * sizeof(MPI_Datatype))))
+ HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk file datatype buffer")
+ if(NULL == (chunk_disp_array = (MPI_Aint *)H5MM_malloc(num_chunk * sizeof(MPI_Aint))))
+ HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk file displacement buffer")
+ if(NULL == (chunk_mem_disp_array = (MPI_Aint *)H5MM_calloc(num_chunk * sizeof(MPI_Aint))))
+ HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk memory displacement buffer")
+ if(NULL == (chunk_mpi_mem_counts = (int *)H5MM_calloc(num_chunk * sizeof(int))))
+ HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk memory counts buffer")
+ if(NULL == (chunk_mpi_file_counts = (int *)H5MM_calloc(num_chunk * sizeof(int))))
+ HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk file counts buffer")
+ if(NULL == (chunk_mbt_is_derived_array = (hbool_t *)H5MM_calloc(num_chunk * sizeof(hbool_t))))
+ HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk memory is derived datatype flags buffer")
+ if(NULL == (chunk_mft_is_derived_array = (hbool_t *)H5MM_calloc(num_chunk * sizeof(hbool_t))))
+ HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk file is derived datatype flags buffer")
#ifdef H5D_DEBUG
if(H5DEBUG(D))
@@ -945,14 +952,12 @@ if(H5DEBUG(D))
for(u = 0; u < num_chunk; u++) {
/* Disk MPI derived datatype */
if(H5S_mpio_space_type(chunk_addr_info_array[u].chunk_info.fspace,
- type_info->src_type_size, &chunk_ftype[u], &mpi_file_count,
- &mpi_file_extra_offset, &local_mft_is_derived) < 0)
+ type_info->src_type_size, &chunk_ftype[u], &chunk_mpi_file_counts[u], &(chunk_mft_is_derived_array[u])) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "couldn't create MPI file type")
/* Buffer MPI derived datatype */
if(H5S_mpio_space_type(chunk_addr_info_array[u].chunk_info.mspace,
- type_info->dst_type_size, &chunk_mtype[u], &mpi_mem_count,
- &mpi_mem_extra_offset, &locl_mbt_is_derived) < 0)
+ type_info->dst_type_size, &chunk_mtype[u], &chunk_mpi_mem_counts[u], &(chunk_mbt_is_derived_array[u])) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "couldn't create MPI buf type")
/* Chunk address relative to the first chunk */
@@ -963,39 +968,38 @@ if(H5DEBUG(D))
chunk_disp_array[u] = (MPI_Aint)chunk_addr_info_array[u].chunk_addr;
} /* end for */
- /* Initialize the buffer with the constant value 1 */
- blocklen_value = 1;
- H5V_array_fill(blocklen, &blocklen_value, sizeof(int), num_chunk);
-
/* Create final MPI derived datatype for the file */
- if(MPI_SUCCESS != (mpi_code = MPI_Type_struct((int)num_chunk, blocklen, chunk_disp_array, chunk_ftype, &chunk_final_ftype)))
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_struct((int)num_chunk, chunk_mpi_file_counts, chunk_disp_array, chunk_ftype, &chunk_final_ftype)))
HMPI_GOTO_ERROR(FAIL, "MPI_Type_struct failed", mpi_code)
if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(&chunk_final_ftype)))
HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code)
+ chunk_final_ftype_is_derived = TRUE;
/* Create final MPI derived datatype for memory */
- if(MPI_SUCCESS != (mpi_code = MPI_Type_struct(num_chunk, blocklen, chunk_mem_disp_array, chunk_mtype, &chunk_final_mtype)))
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_struct((int)num_chunk, chunk_mpi_mem_counts, chunk_mem_disp_array, chunk_mtype, &chunk_final_mtype)))
HMPI_GOTO_ERROR(FAIL, "MPI_Type_struct failed", mpi_code)
if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(&chunk_final_mtype)))
HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code)
+ chunk_final_mtype_is_derived = TRUE;
/* Free the file & memory MPI datatypes for each chunk */
for(u = 0; u < num_chunk; u++) {
- if(MPI_SUCCESS != (mpi_code = MPI_Type_free(chunk_mtype + u)))
- HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code)
+ if(chunk_mbt_is_derived_array[u])
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_free(chunk_mtype + u)))
+ HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code)
- if(MPI_SUCCESS != (mpi_code = MPI_Type_free(chunk_ftype + u)))
- HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code)
+ if(chunk_mft_is_derived_array[u])
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_free(chunk_ftype + u)))
+ HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code)
} /* end for */
- /* buffer, file derived datatypes should be true */
- mbt_is_derived = TRUE;
- mft_is_derived = TRUE;
- mpi_buf_count = (size_t)1;
+ /* We have a single, complicated MPI datatype for both memory & file */
+ mpi_buf_count = (hsize_t)1;
} /* end if */
else { /* no selection at all for this process */
/* Allocate chunking information */
- total_chunk_addr_array = H5MM_malloc(sizeof(haddr_t) * total_chunks);
+ if(NULL == (total_chunk_addr_array = (haddr_t *)H5MM_malloc(sizeof(haddr_t) * total_chunks)))
+ HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate total chunk address arraybuffer")
/* Retrieve chunk address map */
if(H5D_chunk_addrmap(io_info, total_chunk_addr_array) < 0)
@@ -1012,8 +1016,8 @@ if(H5DEBUG(D))
chunk_final_ftype = MPI_BYTE;
chunk_final_mtype = MPI_BYTE;
- /* buffer, file derived datatypes should be true */
- mpi_buf_count = (size_t)0;
+ /* No chunks selected for this process */
+ mpi_buf_count = (hsize_t)0;
} /* end else */
#ifdef H5D_DEBUG
if(H5DEBUG(D))
@@ -1033,6 +1037,7 @@ done:
if(H5DEBUG(D))
HDfprintf(H5DEBUG(D),"before freeing memory inside H5D_link_collective_io ret_value = %d\n", ret_value);
#endif
+ /* Release resources */
if(total_chunk_addr_array)
H5MM_xfree(total_chunk_addr_array);
if(chunk_addr_info_array)
@@ -1045,13 +1050,19 @@ if(H5DEBUG(D))
H5MM_xfree(chunk_disp_array);
if(chunk_mem_disp_array)
H5MM_xfree(chunk_mem_disp_array);
- if(blocklen)
- H5MM_xfree(blocklen);
+ if(chunk_mpi_mem_counts)
+ H5MM_xfree(chunk_mpi_mem_counts);
+ if(chunk_mpi_file_counts)
+ H5MM_xfree(chunk_mpi_file_counts);
+ if(chunk_mbt_is_derived_array)
+ H5MM_xfree(chunk_mbt_is_derived_array);
+ if(chunk_mft_is_derived_array)
+ H5MM_xfree(chunk_mft_is_derived_array);
/* Free the MPI buf and file types, if they were derived */
- if(mbt_is_derived && MPI_SUCCESS != (mpi_code = MPI_Type_free(&chunk_final_mtype)))
+ if(chunk_final_mtype_is_derived && MPI_SUCCESS != (mpi_code = MPI_Type_free(&chunk_final_mtype)))
HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code)
- if(mft_is_derived && MPI_SUCCESS != (mpi_code = MPI_Type_free(&chunk_final_ftype)))
+ if(chunk_final_ftype_is_derived && MPI_SUCCESS != (mpi_code = MPI_Type_free(&chunk_final_ftype)))
HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code)
FUNC_LEAVE_NOAPI(ret_value)
@@ -1547,32 +1558,29 @@ static herr_t
H5D_inter_collective_io(H5D_io_info_t *io_info, const H5D_type_info_t *type_info,
const H5S_t *file_space, const H5S_t *mem_space)
{
- size_t mpi_buf_count; /* # of MPI types */
+ int mpi_buf_count; /* # of MPI types */
hbool_t mbt_is_derived = FALSE;
hbool_t mft_is_derived = FALSE;
MPI_Datatype mpi_file_type, mpi_buf_type;
- int mpi_code; /* MPI return code */
- herr_t ret_value = SUCCEED; /* return value */
+ int mpi_code; /* MPI return code */
+ herr_t ret_value = SUCCEED; /* return value */
FUNC_ENTER_NOAPI_NOINIT(H5D_inter_collective_io)
if((file_space != NULL) && (mem_space != NULL)) {
- hsize_t mpi_buf_offset, mpi_file_offset; /* Offset within dataset where selection (ie. MPI type) begins */
- size_t mpi_file_count; /* Number of file "objects" to transfer */
+ int mpi_file_count; /* Number of file "objects" to transfer */
/* Obtain disk and memory MPI derived datatype */
- if(H5S_mpio_space_type(file_space, type_info->src_type_size,
- &mpi_file_type, &mpi_file_count, &mpi_file_offset, &mft_is_derived) < 0)
+ if(H5S_mpio_space_type(file_space, type_info->src_type_size, &mpi_file_type, &mpi_file_count, &mft_is_derived) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "couldn't create MPI file type")
- if(H5S_mpio_space_type(mem_space, type_info->src_type_size,
- &mpi_buf_type, &mpi_buf_count, &mpi_buf_offset, &mbt_is_derived) < 0)
+ if(H5S_mpio_space_type(mem_space, type_info->src_type_size, &mpi_buf_type, &mpi_buf_count, &mbt_is_derived) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "couldn't create MPI buffer type")
} /* end if */
else {
/* For non-selection, participate with a none MPI derived datatype, the count is 0. */
mpi_buf_type = MPI_BYTE;
mpi_file_type = MPI_BYTE;
- mpi_buf_count = (size_t)0;
+ mpi_buf_count = 0;
mbt_is_derived = FALSE;
mft_is_derived = FALSE;
} /* end else */
@@ -1583,7 +1591,7 @@ if(H5DEBUG(D))
#endif
/* Perform final collective I/O operation */
- if(H5D_final_collective_io(io_info, type_info, mpi_buf_count, &mpi_file_type, &mpi_buf_type) < 0)
+ if(H5D_final_collective_io(io_info, type_info, (hsize_t)mpi_buf_count, &mpi_file_type, &mpi_buf_type) < 0)
HGOTO_ERROR(H5E_IO, H5E_CANTGET, FAIL, "couldn't finish collective MPI-IO")
done:
@@ -1616,7 +1624,7 @@ if(H5DEBUG(D))
*/
static herr_t
H5D_final_collective_io(H5D_io_info_t *io_info, const H5D_type_info_t *type_info,
- size_t mpi_buf_count, MPI_Datatype *mpi_file_type, MPI_Datatype *mpi_buf_type)
+ hsize_t mpi_buf_count, MPI_Datatype *mpi_file_type, MPI_Datatype *mpi_buf_type)
{
hbool_t plist_is_setup = FALSE; /* Whether the dxpl has been customized */
herr_t ret_value = SUCCEED;
@@ -1629,11 +1637,11 @@ H5D_final_collective_io(H5D_io_info_t *io_info, const H5D_type_info_t *type_info
plist_is_setup = TRUE;
if(io_info->op_type == H5D_IO_OP_WRITE) {
- if((io_info->io_ops.single_write)(io_info, type_info, (hsize_t)mpi_buf_count, NULL, NULL) < 0)
+ if((io_info->io_ops.single_write)(io_info, type_info, mpi_buf_count, NULL, NULL) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_WRITEERROR, FAIL, "optimized write failed")
} /* end if */
else {
- if((io_info->io_ops.single_read)(io_info, type_info, (hsize_t)mpi_buf_count, NULL, NULL) < 0)
+ if((io_info->io_ops.single_read)(io_info, type_info, mpi_buf_count, NULL, NULL) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_READERROR, FAIL, "optimized read failed")
} /* end else */
diff --git a/src/H5Sall.c b/src/H5Sall.c
index 115d5d35..c98781a 100644
--- a/src/H5Sall.c
+++ b/src/H5Sall.c
@@ -47,6 +47,8 @@ static htri_t H5S_all_is_contiguous(const H5S_t *space);
static htri_t H5S_all_is_single(const H5S_t *space);
static htri_t H5S_all_is_regular(const H5S_t *space);
static herr_t H5S_all_adjust_u(H5S_t *space, const hsize_t *offset);
+static herr_t H5S_all_project_scalar(const H5S_t *space, hsize_t *offset);
+static herr_t H5S_all_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset);
static herr_t H5S_all_iter_init(H5S_sel_iter_t *iter, const H5S_t *space);
/* Selection iteration callbacks */
@@ -76,6 +78,8 @@ const H5S_select_class_t H5S_sel_all[1] = {{
H5S_all_is_single,
H5S_all_is_regular,
H5S_all_adjust_u,
+ H5S_all_project_scalar,
+ H5S_all_project_simple,
H5S_all_iter_init,
}};
@@ -372,18 +376,18 @@ H5S_all_iter_release (H5S_sel_iter_t UNUSED * iter)
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
-herr_t
-H5S_all_release (H5S_t UNUSED * space)
+static herr_t
+H5S_all_release(H5S_t *space)
{
- FUNC_ENTER_NOAPI_NOFUNC(H5S_all_release);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_all_release)
/* Check args */
- assert (space);
+ HDassert(space);
/* Reset the number of elements in the selection */
- space->select.num_elem=0;
+ space->select.num_elem = 0;
- FUNC_LEAVE_NOAPI(SUCCEED);
+ FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5S_all_release() */
@@ -406,18 +410,18 @@ H5S_all_release (H5S_t UNUSED * space)
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
-herr_t
+static herr_t
H5S_all_copy(H5S_t *dst, const H5S_t UNUSED *src, hbool_t UNUSED share_selection)
{
- FUNC_ENTER_NOAPI_NOFUNC(H5S_all_copy);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_all_copy)
- assert(src);
- assert(dst);
+ HDassert(src);
+ HDassert(dst);
/* Set number of elements in selection */
- dst->select.num_elem=(hsize_t)H5S_GET_EXTENT_NPOINTS(dst);
+ dst->select.num_elem = (hsize_t)H5S_GET_EXTENT_NPOINTS(dst);
- FUNC_LEAVE_NOAPI(SUCCEED);
+ FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S_all_copy() */
@@ -542,20 +546,20 @@ H5S_all_serialize (const H5S_t *space, uint8_t *buf)
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
-H5S_all_deserialize (H5S_t *space, const uint8_t UNUSED *buf)
+H5S_all_deserialize(H5S_t *space, const uint8_t UNUSED *buf)
{
herr_t ret_value; /* return value */
- FUNC_ENTER_NOAPI(H5S_all_deserialize, FAIL);
+ FUNC_ENTER_NOAPI(H5S_all_deserialize, FAIL)
- assert(space);
+ HDassert(space);
/* Change to "all" selection */
if((ret_value = H5S_select_all(space, TRUE)) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't change selection")
done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_all_deserialize() */
@@ -764,6 +768,69 @@ H5S_all_adjust_u(H5S_t UNUSED *space, const hsize_t UNUSED *offset)
} /* H5S_all_adjust_u() */
+/*-------------------------------------------------------------------------
+ * Function: H5S_all_project_scalar
+ *
+ * Purpose: Projects a single element 'all' selection into a scalar
+ * dataspace
+ *
+ * Return: non-negative on success, negative on failure.
+ *
+ * Programmer: Quincey Koziol
+ * Sunday, July 18, 2010
+ *
+ *-------------------------------------------------------------------------
+ */
+static herr_t
+H5S_all_project_scalar(const H5S_t UNUSED *space, hsize_t *offset)
+{
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_all_project_scalar)
+
+ /* Check args */
+ HDassert(space && H5S_SEL_ALL == H5S_GET_SELECT_TYPE(space));
+ HDassert(offset);
+
+ /* Set offset of selection in projected buffer */
+ *offset = 0;
+
+ FUNC_LEAVE_NOAPI(SUCCEED)
+} /* H5S_all_project_scalar() */
+
+
+/*-------------------------------------------------------------------------
+ * Function: H5S_all_project_simple
+ *
+ * Purpose: Projects an 'all' selection onto/into a simple dataspace
+ * of a different rank
+ *
+ * Return: non-negative on success, negative on failure.
+ *
+ * Programmer: Quincey Koziol
+ * Sunday, July 18, 2010
+ *
+ *-------------------------------------------------------------------------
+ */
+static herr_t
+H5S_all_project_simple(const H5S_t *base_space, H5S_t *new_space, hsize_t *offset)
+{
+ herr_t ret_value = SUCCEED; /* Return value */
+
+ FUNC_ENTER_NOAPI_NOINIT(H5S_all_project_simple)
+
+ /* Check args */
+ HDassert(base_space && H5S_SEL_ALL == H5S_GET_SELECT_TYPE(base_space));
+ HDassert(new_space);
+ HDassert(offset);
+
+ /* Select the entire new space */
+ if(H5S_select_all(new_space, TRUE) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "unable to set all selection")
+
+done:
+ FUNC_LEAVE_NOAPI(ret_value)
+} /* H5S_all_project_simple() */
+
+
/*--------------------------------------------------------------------------
NAME
H5S_select_all
diff --git a/src/H5Shyper.c b/src/H5Shyper.c
index 74402b1..df81275 100644
--- a/src/H5Shyper.c
+++ b/src/H5Shyper.c
@@ -33,12 +33,12 @@
/* Local datatypes */
/* Static function prototypes */
-static herr_t H5S_hyper_free_span_info (H5S_hyper_span_info_t *span_info);
-static herr_t H5S_hyper_free_span (H5S_hyper_span_t *span);
-static H5S_hyper_span_info_t *H5S_hyper_copy_span (H5S_hyper_span_info_t *spans);
-static herr_t H5S_hyper_span_scratch (H5S_hyper_span_info_t *spans, void *scr_value);
-static herr_t H5S_hyper_span_precompute (H5S_hyper_span_info_t *spans, size_t elmt_size);
-static herr_t H5S_generate_hyperslab (H5S_t *space, H5S_seloper_t op,
+static herr_t H5S_hyper_free_span_info(H5S_hyper_span_info_t *span_info);
+static herr_t H5S_hyper_free_span(H5S_hyper_span_t *span);
+static H5S_hyper_span_info_t *H5S_hyper_copy_span(H5S_hyper_span_info_t *spans);
+static void H5S_hyper_span_scratch(H5S_hyper_span_info_t *spans, void *scr_value);
+static herr_t H5S_hyper_span_precompute(H5S_hyper_span_info_t *spans, size_t elmt_size);
+static herr_t H5S_generate_hyperslab(H5S_t *space, H5S_seloper_t op,
const hsize_t start[], const hsize_t stride[], const hsize_t count[], const hsize_t block[]);
static herr_t H5S_hyper_generate_spans(H5S_t *space);
/* Needed for use in hyperslab code (H5Shyper.c) */
@@ -62,6 +62,8 @@ static htri_t H5S_hyper_is_contiguous(const H5S_t *space);
static htri_t H5S_hyper_is_single(const H5S_t *space);
static htri_t H5S_hyper_is_regular(const H5S_t *space);
static herr_t H5S_hyper_adjust_u(H5S_t *space, const hsize_t *offset);
+static herr_t H5S_hyper_project_scalar(const H5S_t *space, hsize_t *offset);
+static herr_t H5S_hyper_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset);
static herr_t H5S_hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space);
/* Selection iteration callbacks */
@@ -96,6 +98,8 @@ const H5S_select_class_t H5S_sel_hyper[1] = {{
H5S_hyper_is_single,
H5S_hyper_is_regular,
H5S_hyper_adjust_u,
+ H5S_hyper_project_scalar,
+ H5S_hyper_project_simple,
H5S_hyper_iter_init,
}};
@@ -292,15 +296,15 @@ H5S_hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space)
/* Check if the regular selection can be "flattened" */
if(cont_dim>0) {
- unsigned last_dim_flattened=1; /* Flag to indicate that the last dimension was flattened */
- unsigned flat_rank=rank-cont_dim; /* Number of dimensions after flattening */
+ unsigned last_dim_flattened = 1; /* Flag to indicate that the last dimension was flattened */
+ unsigned flat_rank = rank-cont_dim; /* Number of dimensions after flattening */
unsigned curr_dim; /* Current dimension */
/* Set the iterator's rank to the contiguous dimensions */
- iter->u.hyp.iter_rank=flat_rank;
+ iter->u.hyp.iter_rank = flat_rank;
/* "Flatten" dataspace extent and selection information */
- curr_dim=flat_rank-1;
+ curr_dim = flat_rank - 1;
for(i = (int)rank - 1, acc = 1; i >= 0; i--) {
if(tdiminfo[i].block == mem_size[i] && i > 0) {
/* "Flatten" this dimension */
@@ -308,24 +312,25 @@ H5S_hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space)
acc *= mem_size[i];
/* Indicate that the dimension was flattened */
- last_dim_flattened=1;
+ last_dim_flattened = 1;
} /* end if */
else {
if(last_dim_flattened) {
/* First dimension after flattened dimensions */
- iter->u.hyp.diminfo[curr_dim].start = tdiminfo[i].start*acc;
+ iter->u.hyp.diminfo[curr_dim].start = tdiminfo[i].start * acc;
+
/* Special case for single block regular selections */
if(tdiminfo[i].count==1)
iter->u.hyp.diminfo[curr_dim].stride = 1;
else
- iter->u.hyp.diminfo[curr_dim].stride = tdiminfo[i].stride*acc;
+ iter->u.hyp.diminfo[curr_dim].stride = tdiminfo[i].stride * acc;
iter->u.hyp.diminfo[curr_dim].count = tdiminfo[i].count;
- iter->u.hyp.diminfo[curr_dim].block = tdiminfo[i].block*acc;
- iter->u.hyp.size[curr_dim] = mem_size[i]*acc;
+ iter->u.hyp.diminfo[curr_dim].block = tdiminfo[i].block * acc;
+ iter->u.hyp.size[curr_dim] = mem_size[i] * acc;
iter->u.hyp.sel_off[curr_dim] = space->select.offset[i] * acc;
/* Reset the "last dim flattened" flag to avoid flattened any further dimensions */
- last_dim_flattened=0;
+ last_dim_flattened = 0;
/* Reset the "accumulator" for possible further dimension flattening */
acc=1;
@@ -596,12 +601,12 @@ static htri_t
H5S_hyper_iter_has_next_block(const H5S_sel_iter_t *iter)
{
unsigned u; /* Local index variable */
- herr_t ret_value=FALSE; /* Return value */
+ htri_t ret_value = FALSE; /* Return value */
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_iter_has_next_block);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_iter_has_next_block)
/* Check args */
- assert (iter);
+ HDassert(iter);
/* Check for a single "regular" hyperslab */
if(iter->u.hyp.diminfo_valid) {
@@ -609,25 +614,25 @@ H5S_hyper_iter_has_next_block(const H5S_sel_iter_t *iter)
const hsize_t *toff; /* Temporary offset in selection */
/* Check if the offset of the iterator is at the last location in all dimensions */
- tdiminfo=iter->u.hyp.diminfo;
- toff=iter->u.hyp.off;
- for(u=0; u<iter->rank; u++) {
+ tdiminfo = iter->u.hyp.diminfo;
+ toff = iter->u.hyp.off;
+ for(u = 0; u < iter->rank; u++) {
/* If there is only one block, continue */
- if(tdiminfo[u].count==1)
+ if(tdiminfo[u].count == 1)
continue;
- if(toff[u]!=(tdiminfo[u].start+((tdiminfo[u].count-1)*tdiminfo[u].stride)))
+ if(toff[u] != (tdiminfo[u].start + ((tdiminfo[u].count - 1) * tdiminfo[u].stride)))
HGOTO_DONE(TRUE);
} /* end for */
} /* end if */
else {
/* Check for any levels of the tree with more sequences in them */
- for(u=0; u<iter->rank; u++)
- if(iter->u.hyp.span[u]->next!=NULL)
+ for(u = 0; u < iter->rank; u++)
+ if(iter->u.hyp.span[u]->next != NULL)
HGOTO_DONE(TRUE);
} /* end else */
done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_hyper_iter_has_next_block() */
@@ -1089,30 +1094,30 @@ H5S_hyper_iter_release (H5S_sel_iter_t *iter)
REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_t *
-H5S_hyper_new_span (hsize_t low, hsize_t high, H5S_hyper_span_info_t *down, H5S_hyper_span_t *next)
+H5S_hyper_new_span(hsize_t low, hsize_t high, H5S_hyper_span_info_t *down, H5S_hyper_span_t *next)
{
H5S_hyper_span_t *ret_value;
- FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_new_span);
+ FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_new_span)
/* Allocate a new span node */
- if((ret_value = H5FL_MALLOC(H5S_hyper_span_t))==NULL)
- HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span");
+ if(NULL == (ret_value = H5FL_MALLOC(H5S_hyper_span_t)))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")
/* Copy the span's basic information */
- ret_value->low=low;
- ret_value->high=high;
- ret_value->nelem=(high-low)+1;
- ret_value->pstride=0;
- ret_value->down=down;
- ret_value->next=next;
+ ret_value->low = low;
+ ret_value->high = high;
+ ret_value->nelem = (high - low) + 1;
+ ret_value->pstride = 0;
+ ret_value->down = down;
+ ret_value->next = next;
/* Increment the reference count of the 'down span' if there is one */
- if(ret_value->down!=NULL)
+ if(ret_value->down)
ret_value->down->count++;
done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_hyper_new_span() */
@@ -1195,24 +1200,23 @@ done:
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
-H5S_hyper_span_precompute (H5S_hyper_span_info_t *spans, size_t elmt_size)
+H5S_hyper_span_precompute(H5S_hyper_span_info_t *spans, size_t elmt_size)
{
- herr_t ret_value=SUCCEED; /* Return value */
+ herr_t ret_value = SUCCEED; /* Return value */
- FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_span_precompute);
+ FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_span_precompute)
- assert(spans);
+ HDassert(spans);
/* Call the helper routine to actually do the work */
- if(H5S_hyper_span_precompute_helper(spans,elmt_size)==FAIL)
- HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't precompute span info");
+ if(H5S_hyper_span_precompute_helper(spans, elmt_size) < 0)
+ HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't precompute span info")
/* Reset the scratch pointers for the next routine which needs them */
- if(H5S_hyper_span_scratch(spans,NULL)==FAIL)
- HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't reset hyperslab scratch pointer");
+ H5S_hyper_span_scratch(spans, NULL);
done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_hyper_span_precompute() */
@@ -1222,10 +1226,10 @@ done:
PURPOSE
Set the scratch pointers on hyperslab span trees
USAGE
- herr_t H5S_hyper_span_scratch(span_info)
+ void H5S_hyper_span_scratch(span_info)
H5S_hyper_span_info_t *span_info; IN: Span tree to reset
RETURNS
- Non-negative on success, negative on failure
+ <none>
DESCRIPTION
Set the scratch pointers on a hyperslab span tree.
GLOBAL VARIABLES
@@ -1233,37 +1237,33 @@ done:
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
-static herr_t
-H5S_hyper_span_scratch (H5S_hyper_span_info_t *spans, void *scr_value)
+static void
+H5S_hyper_span_scratch(H5S_hyper_span_info_t *spans, void *scr_value)
{
- H5S_hyper_span_t *span; /* Hyperslab span */
- herr_t ret_value=SUCCEED; /* Return value */
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_span_scratch)
- FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_span_scratch);
-
- assert(spans);
+ HDassert(spans);
/* Check if we've already set this down span tree */
- if(spans->scratch!=scr_value) {
+ if(spans->scratch != scr_value) {
+ H5S_hyper_span_t *span; /* Hyperslab span */
+
/* Set the tree's scratch pointer */
spans->scratch = (H5S_hyper_span_info_t *)scr_value;
/* Set the scratch pointers in all the nodes */
- span=spans->head;
- while(span!=NULL) {
+ span = spans->head;
+ while(span != NULL) {
/* If there are down spans, set their scratch value also */
- if(span->down!=NULL) {
- if(H5S_hyper_span_scratch(span->down,scr_value)==FAIL)
- HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't reset hyperslab scratch pointer");
- } /* end if */
+ if(span->down != NULL)
+ H5S_hyper_span_scratch(span->down, scr_value);
/* Advance to next span */
- span=span->next;
+ span = span->next;
} /* end while */
} /* end if */
-done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI_VOID
} /* H5S_hyper_span_scratch() */
@@ -1293,65 +1293,65 @@ H5S_hyper_copy_span_helper (H5S_hyper_span_info_t *spans)
H5S_hyper_span_info_t *new_down; /* New down span tree */
H5S_hyper_span_info_t *ret_value;
- FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_copy_span_helper);
+ FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_copy_span_helper)
- assert(spans);
+ HDassert(spans);
/* Check if the span tree was already copied */
- if(spans->scratch!=NULL && spans->scratch!=(H5S_hyper_span_info_t *)~((size_t)NULL)) {
+ if(spans->scratch != NULL && spans->scratch != (H5S_hyper_span_info_t *)~((size_t)NULL)) {
/* Just return the value of the already copied span tree */
- ret_value=spans->scratch;
+ ret_value = spans->scratch;
/* Increment the reference count of the span tree */
ret_value->count++;
} /* end if */
else {
/* Allocate a new span_info node */
- if((ret_value = H5FL_MALLOC(H5S_hyper_span_info_t))==NULL)
- HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span");
+ if(NULL == (ret_value = H5FL_MALLOC(H5S_hyper_span_info_t)))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span info")
/* Copy the span_info information */
- ret_value->count=1;
- ret_value->scratch=NULL;
- ret_value->head=NULL;
+ ret_value->count = 1;
+ ret_value->scratch = NULL;
+ ret_value->head = NULL;
/* Set the scratch pointer in the node being copied to the newly allocated node */
- spans->scratch=ret_value;
+ spans->scratch = ret_value;
/* Copy over the nodes in the span list */
- span=spans->head;
- prev_span=NULL;
- while(span!=NULL) {
+ span = spans->head;
+ prev_span = NULL;
+ while(span != NULL) {
/* Allocate a new node */
- if((new_span = H5S_hyper_new_span(span->low,span->high,NULL,NULL))==NULL)
- HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span");
+ if(NULL == (new_span = H5S_hyper_new_span(span->low, span->high, NULL, NULL)))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")
/* Append to list of spans */
- if(prev_span==NULL)
- ret_value->head=new_span;
+ if(NULL == prev_span)
+ ret_value->head = new_span;
else
- prev_span->next=new_span;
+ prev_span->next = new_span;
/* Copy the pstride */
- new_span->pstride=span->pstride;
+ new_span->pstride = span->pstride;
/* Recurse to copy the 'down' spans, if there are any */
- if(span->down!=NULL) {
- if((new_down = H5S_hyper_copy_span_helper(span->down))==NULL)
- HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span");
- new_span->down=new_down;
+ if(span->down != NULL) {
+ if(NULL == (new_down = H5S_hyper_copy_span_helper(span->down)))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, NULL, "can't copy hyperslab spans")
+ new_span->down = new_down;
} /* end if */
/* Update the previous (new) span */
- prev_span=new_span;
+ prev_span = new_span;
/* Advance to next span */
- span=span->next;
+ span = span->next;
} /* end while */
} /* end else */
done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_hyper_copy_span_helper() */
@@ -1375,23 +1375,23 @@ done:
REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_info_t *
-H5S_hyper_copy_span (H5S_hyper_span_info_t *spans)
+H5S_hyper_copy_span(H5S_hyper_span_info_t *spans)
{
H5S_hyper_span_info_t *ret_value;
- FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_copy_span);
+ FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_copy_span)
- assert(spans);
+ HDassert(spans);
/* Copy the hyperslab span tree */
- ret_value=H5S_hyper_copy_span_helper(spans);
+ if(NULL == (ret_value = H5S_hyper_copy_span_helper(spans)))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree")
/* Reset the scratch pointers for the next routine which needs them */
- if(H5S_hyper_span_scratch(spans,NULL)==FAIL)
- HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, NULL, "can't reset span tree scratch pointers");
+ H5S_hyper_span_scratch(spans, NULL);
done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_hyper_copy_span() */
@@ -1630,7 +1630,7 @@ H5S_hyper_copy (H5S_t *dst, const H5S_t *src, hbool_t share_selection)
assert(dst);
/* Allocate space for the hyperslab selection information */
- if((dst->select.sel_info.hslab=H5FL_MALLOC(H5S_hyper_sel_t))==NULL)
+ if(NULL == (dst->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info");
/* Set temporary pointers */
@@ -1658,7 +1658,7 @@ H5S_hyper_copy (H5S_t *dst, const H5S_t *src, hbool_t share_selection)
} /* end if */
else
/* Copy the hyperslab span information */
- dst->select.sel_info.hslab->span_lst=H5S_hyper_copy_span(src->select.sel_info.hslab->span_lst);
+ dst->select.sel_info.hslab->span_lst = H5S_hyper_copy_span(src->select.sel_info.hslab->span_lst);
} /* end if */
done:
@@ -2331,44 +2331,44 @@ H5S_hyper_span_blocklist(H5S_hyper_span_info_t *spans, hsize_t start[], hsize_t
{
H5S_hyper_span_t *curr; /* Pointer to current hyperslab span */
hsize_t u; /* Index variable */
- herr_t ret_value=SUCCEED; /* return value */
+ herr_t ret_value = SUCCEED; /* return value */
- FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_span_blocklist);
+ FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_span_blocklist)
/* Sanity checks */
- assert(spans);
- assert(rank<H5O_LAYOUT_NDIMS);
- assert(start);
- assert(end);
- assert(startblock);
- assert(numblocks && *numblocks>0);
- assert(buf && *buf);
+ HDassert(spans);
+ HDassert(rank < H5O_LAYOUT_NDIMS);
+ HDassert(start);
+ HDassert(end);
+ HDassert(startblock);
+ HDassert(numblocks && *numblocks > 0);
+ HDassert(buf && *buf);
/* Walk through the list of spans, recursing or outputing them */
- curr=spans->head;
- while(curr!=NULL && *numblocks>0) {
+ curr = spans->head;
+ while(curr != NULL && *numblocks > 0) {
/* Recurse if this node has down spans */
- if(curr->down!=NULL) {
+ if(curr->down != NULL) {
/* Add the starting and ending points for this span to the list */
- start[rank]=curr->low;
- end[rank]=curr->high;
+ start[rank] = curr->low;
+ end[rank] = curr->high;
/* Recurse down to the next dimension */
- if(H5S_hyper_span_blocklist(curr->down,start,end,rank+1,startblock,numblocks,buf)<0)
+ if(H5S_hyper_span_blocklist(curr->down, start, end, (rank + 1), startblock, numblocks, buf) < 0)
HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans");
} /* end if */
else {
/* Skip this block if we haven't skipped all the startblocks yet */
- if(*startblock>0) {
+ if(*startblock > 0) {
/* Decrement the starting block */
(*startblock)--;
- }
+ } /* end if */
/* Process this block */
else {
/* Encode all the previous dimensions starting & ending points */
/* Copy previous starting points */
- for(u=0; u<rank; u++, (*buf)++)
+ for(u = 0; u < rank; u++, (*buf)++)
HDmemcpy(*buf, &start[u], sizeof(hsize_t));
/* Copy starting point for this span */
@@ -2376,7 +2376,7 @@ H5S_hyper_span_blocklist(H5S_hyper_span_info_t *spans, hsize_t start[], hsize_t
(*buf)++;
/* Copy previous ending points */
- for(u=0; u<rank; u++, (*buf)++)
+ for(u = 0; u < rank; u++, (*buf)++)
HDmemcpy(*buf, &end[u], sizeof(hsize_t));
/* Copy starting point for this span */
@@ -2389,11 +2389,11 @@ H5S_hyper_span_blocklist(H5S_hyper_span_info_t *spans, hsize_t start[], hsize_t
} /* end else */
/* Advance to next node */
- curr=curr->next;
+ curr = curr->next;
} /* end while */
done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_hyper_span_blocklist() */
@@ -2430,29 +2430,26 @@ done:
static herr_t
H5S_get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startblock, hsize_t numblocks, hsize_t *buf)
{
- H5S_hyper_dim_t *diminfo; /* Alias for dataspace's diminfo information */
- hsize_t tmp_count[H5O_LAYOUT_NDIMS]; /* Temporary hyperslab counts */
- hsize_t offset[H5O_LAYOUT_NDIMS]; /* Offset of element in dataspace */
- hsize_t start[H5O_LAYOUT_NDIMS]; /* Location of start of hyperslab */
- hsize_t end[H5O_LAYOUT_NDIMS]; /* Location of end of hyperslab */
- hsize_t temp_off; /* Offset in a given dimension */
- int i; /* Counter */
- int fast_dim; /* Rank of the fastest changing dimension for the dataspace */
- int temp_dim; /* Temporary rank holder */
- int ndims; /* Rank of the dataspace */
- int done; /* Whether we are done with the iteration */
- herr_t ret_value=SUCCEED; /* Return value */
+ herr_t ret_value = SUCCEED; /* Return value */
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_get_select_hyper_blocklist);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_get_select_hyper_blocklist)
- assert(space);
- assert(buf);
+ HDassert(space);
+ HDassert(buf);
/* Check for a "regular" hyperslab selection */
if(space->select.sel_info.hslab->diminfo_valid) {
+ const H5S_hyper_dim_t *diminfo; /* Alias for dataspace's diminfo information */
+ hsize_t tmp_count[H5O_LAYOUT_NDIMS]; /* Temporary hyperslab counts */
+ hsize_t offset[H5O_LAYOUT_NDIMS]; /* Offset of element in dataspace */
+ unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */
+ unsigned ndims; /* Rank of the dataspace */
+ hbool_t done; /* Whether we are done with the iteration */
+ unsigned u; /* Counter */
+
/* Set some convienence values */
- ndims=space->extent.rank;
- fast_dim=ndims-1;
+ ndims = space->extent.rank;
+ fast_dim = ndims - 1;
/* Check which set of dimension information to use */
if(internal)
@@ -2460,39 +2457,41 @@ H5S_get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startbloc
* Use the "optimized dimension information" to pass back information
* on the blocks set, not the "application information".
*/
- diminfo=space->select.sel_info.hslab->opt_diminfo;
+ diminfo = space->select.sel_info.hslab->opt_diminfo;
else
/*
* Use the "application dimension information" to pass back to the user
* the blocks they set, not the optimized, internal information.
*/
- diminfo=space->select.sel_info.hslab->app_diminfo;
+ diminfo = space->select.sel_info.hslab->app_diminfo;
/* Build the tables of count sizes as well as the initial offset */
- for(i=0; i<ndims; i++) {
- tmp_count[i]=diminfo[i].count;
- offset[i]=diminfo[i].start;
+ for(u = 0; u < ndims; u++) {
+ tmp_count[u] = diminfo[u].count;
+ offset[u] = diminfo[u].start;
} /* end for */
/* We're not done with the iteration */
- done=0;
+ done = FALSE;
/* Go iterate over the hyperslabs */
- while(done==0 && numblocks>0) {
+ while(!done && numblocks > 0) {
+ hsize_t temp_off; /* Offset in a given dimension */
+
/* Iterate over the blocks in the fastest dimension */
- while(tmp_count[fast_dim]>0 && numblocks>0) {
+ while(tmp_count[fast_dim] > 0 && numblocks > 0) {
/* Check if we should copy this block information */
- if(startblock==0) {
+ if(startblock == 0) {
/* Copy the starting location */
- HDmemcpy(buf,offset,sizeof(hsize_t)*ndims);
- buf+=ndims;
+ HDmemcpy(buf, offset, sizeof(hsize_t) * ndims);
+ buf += ndims;
/* Compute the ending location */
- HDmemcpy(buf,offset,sizeof(hsize_t)*ndims);
- for(i=0; i<ndims; i++)
- buf[i]+=(diminfo[i].block-1);
- buf+=ndims;
+ HDmemcpy(buf, offset, sizeof(hsize_t) * ndims);
+ for(u = 0; u < ndims; u++)
+ buf[u] += (diminfo[u].block - 1);
+ buf += ndims;
/* Decrement the number of blocks to retrieve */
numblocks--;
@@ -2501,33 +2500,35 @@ H5S_get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startbloc
startblock--;
/* Move the offset to the next sequence to start */
- offset[fast_dim]+=diminfo[fast_dim].stride;
+ offset[fast_dim] += diminfo[fast_dim].stride;
/* Decrement the block count */
tmp_count[fast_dim]--;
} /* end while */
/* Work on other dimensions if necessary */
- if(fast_dim>0 && numblocks>0) {
+ if(fast_dim > 0 && numblocks > 0) {
+ int temp_dim; /* Temporary rank holder */
+
/* Reset the block counts */
- tmp_count[fast_dim]=diminfo[fast_dim].count;
+ tmp_count[fast_dim] = diminfo[fast_dim].count;
/* Bubble up the decrement to the slower changing dimensions */
- temp_dim=fast_dim-1;
- while(temp_dim>=0 && done==0) {
+ temp_dim = (int)(fast_dim - 1);
+ while(temp_dim >= 0 && !done) {
/* Decrement the block count */
tmp_count[temp_dim]--;
/* Check if we have more blocks left */
- if(tmp_count[temp_dim]>0)
+ if(tmp_count[temp_dim] > 0)
break;
/* Check for getting out of iterator */
- if(temp_dim==0)
- done=1;
+ if(temp_dim == 0)
+ done = TRUE;
/* Reset the block count in this dimension */
- tmp_count[temp_dim]=diminfo[temp_dim].count;
+ tmp_count[temp_dim] = diminfo[temp_dim].count;
/* Wrapped a dimension, go up to next dimension */
temp_dim--;
@@ -2535,16 +2536,20 @@ H5S_get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startbloc
} /* end if */
/* Re-compute offset array */
- for(i=0; i<ndims; i++) {
- temp_off=diminfo[i].start+diminfo[i].stride*(diminfo[i].count-tmp_count[i]);
- offset[i]=temp_off;
+ for(u = 0; u < ndims; u++) {
+ temp_off = diminfo[u].start + diminfo[u].stride * (diminfo[u].count - tmp_count[u]);
+ offset[u] = temp_off;
} /* end for */
} /* end while */
} /* end if */
- else
- ret_value=H5S_hyper_span_blocklist(space->select.sel_info.hslab->span_lst,start,end,(hsize_t)0,&startblock,&numblocks,&buf);
+ else {
+ hsize_t start[H5O_LAYOUT_NDIMS]; /* Location of start of hyperslab */
+ hsize_t end[H5O_LAYOUT_NDIMS]; /* Location of end of hyperslab */
- FUNC_LEAVE_NOAPI(ret_value);
+ ret_value = H5S_hyper_span_blocklist(space->select.sel_info.hslab->span_lst, start, end, (hsize_t)0, &startblock, &numblocks, &buf);
+ } /* end else */
+
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_get_select_hyper_blocklist() */
@@ -2636,40 +2641,40 @@ done:
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
-H5S_hyper_bounds_helper (const H5S_hyper_span_info_t *spans, const hssize_t *offset, hsize_t rank, hsize_t *start, hsize_t *end)
+H5S_hyper_bounds_helper(const H5S_hyper_span_info_t *spans, const hssize_t *offset, hsize_t rank, hsize_t *start, hsize_t *end)
{
- H5S_hyper_span_t *curr; /* Hyperslab information nodes */
- herr_t ret_value=SUCCEED; /* Return value */
+ H5S_hyper_span_t *curr; /* Hyperslab information nodes */
+ herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_bounds_helper)
- assert(spans);
- assert(offset);
- assert(rank<H5O_LAYOUT_NDIMS);
- assert(start);
- assert(end);
+ HDassert(spans);
+ HDassert(offset);
+ HDassert(rank < H5O_LAYOUT_NDIMS);
+ HDassert(start);
+ HDassert(end);
/* Check each point to determine whether selection+offset is within extent */
curr=spans->head;
while(curr!=NULL) {
/* Check for offset moving selection negative */
- if(((hssize_t)curr->low+offset[rank])<0)
+ if(((hssize_t)curr->low + offset[rank]) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "offset moves selection out of bounds")
/* Check if the current span extends the bounding box */
- if((curr->low+offset[rank])<start[rank])
- start[rank]=curr->low+offset[rank];
- if((curr->high+offset[rank])>end[rank])
- end[rank]=curr->high+offset[rank];
+ if((curr->low + offset[rank]) < start[rank])
+ start[rank] = curr->low + offset[rank];
+ if((curr->high + offset[rank]) > end[rank])
+ end[rank] = curr->high + offset[rank];
/* Recurse if this node has down spans */
- if(curr->down!=NULL) {
- if(H5S_hyper_bounds_helper(curr->down,offset,rank+1,start,end)<0)
+ if(curr->down != NULL) {
+ if(H5S_hyper_bounds_helper(curr->down, offset, (rank + 1), start, end) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "failure in lower dimension")
} /* end if */
/* Advance to next node */
- curr=curr->next;
+ curr = curr->next;
} /* end while */
done:
@@ -3609,20 +3614,16 @@ done:
herr_t
H5S_hyper_reset_scratch(H5S_t *space)
{
- herr_t ret_value=SUCCEED; /* Return value */
-
- FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_reset_scratch);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_reset_scratch)
- assert(space);
+ HDassert(space);
/* Check if there are spans in the span tree */
- if(space->select.sel_info.hslab->span_lst!=NULL)
+ if(space->select.sel_info.hslab->span_lst != NULL)
/* Reset the scratch pointers for the next routine which needs them */
- if(H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst,NULL)==FAIL)
- HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't reset span tree scratch pointers");
+ H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst, NULL);
-done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5S_hyper_reset_scratch() */
@@ -3685,6 +3686,8 @@ H5S_hyper_convert(H5S_t *space)
case H5S_SEL_NONE: /* No elements selected in dataspace */
case H5S_SEL_POINTS: /* Point selection */
+ case H5S_SEL_ERROR: /* Selection error */
+ case H5S_SEL_N: /* Selection count */
default:
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "can't convert to span tree selection");
} /* end switch */
@@ -4033,8 +4036,7 @@ H5S_hyper_adjust_u(H5S_t *space, const hsize_t *offset)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab offset adjustment");
/* Reset the scratch pointers for the next routine which needs them */
- if(H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst,NULL)==FAIL)
- HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't reset hyperslab scratch pointer");
+ H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst, NULL);
} /* end if */
done:
@@ -4042,6 +4044,357 @@ done:
} /* H5S_hyper_adjust_u() */
+/*-------------------------------------------------------------------------
+ * Function: H5S_hyper_project_scalar
+ *
+ * Purpose: Projects a single element hyperslab selection into a scalar
+ * dataspace
+ *
+ * Return: non-negative on success, negative on failure.
+ *
+ * Programmer: Quincey Koziol
+ * Sunday, July 18, 2010
+ *
+ *-------------------------------------------------------------------------
+ */
+static herr_t
+H5S_hyper_project_scalar(const H5S_t *space, hsize_t *offset)
+{
+ hsize_t block[H5S_MAX_RANK]; /* Block selected in base dataspace */
+ herr_t ret_value = SUCCEED; /* Return value */
+
+ FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_project_scalar)
+
+ /* Check args */
+ HDassert(space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(space));
+ HDassert(offset);
+
+ /* Check for a "regular" hyperslab selection */
+ if(space->select.sel_info.hslab->diminfo_valid) {
+ const H5S_hyper_dim_t *diminfo = space->select.sel_info.hslab->opt_diminfo; /* Alias for dataspace's diminfo information */
+ unsigned u; /* Counter */
+
+ /* Build the table of the initial offset */
+ for(u = 0; u < space->extent.rank; u++) {
+ block[u] = diminfo[u].start;
+
+ /* Check for more than one hyperslab */
+ if(diminfo[u].count > 1 || diminfo[u].block > 1)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "hyperslab selection of one element has more than one node!")
+ } /* end for */
+ } /* end if */
+ else {
+ const H5S_hyper_span_t *curr; /* Pointer to current hyperslab span */
+ unsigned curr_dim; /* Current dimension being operated on */
+
+ /* Advance down selected spans */
+ curr = space->select.sel_info.hslab->span_lst->head;
+ curr_dim = 0;
+ while(curr) {
+ /* Check for more than one span */
+ if(curr->next || curr->low != curr->high)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "hyperslab selection of one element has more than one node!")
+
+ /* Save the location of the selection in current dimension */
+ block[curr_dim] = curr->low;
+
+ /* Advance down to next dimension */
+ curr = curr->down->head;
+ curr_dim++;
+ } /* end while */
+ } /* end else */
+
+ /* Calculate offset of selection in projected buffer */
+ *offset = H5V_array_offset(space->extent.rank, space->extent.size, block);
+
+done:
+ FUNC_LEAVE_NOAPI(ret_value)
+} /* H5S_hyper_project_scalar() */
+
+
+/*-------------------------------------------------------------------------
+ * Function: H5S_hyper_project_simple_lower
+ *
+ * Purpose: Projects a hyperslab selection onto/into a simple dataspace
+ * of a lower rank
+ *
+ * Return: non-negative on success, negative on failure.
+ *
+ * Programmer: Quincey Koziol
+ * Sunday, July 18, 2010
+ *
+ *-------------------------------------------------------------------------
+ */
+static herr_t
+H5S_hyper_project_simple_lower(const H5S_t *base_space, H5S_t *new_space)
+{
+ H5S_hyper_span_info_t *down; /* Pointer to list of spans */
+ unsigned curr_dim; /* Current dimension being operated on */
+
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_project_simple_lower)
+
+ /* Check args */
+ HDassert(base_space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(base_space));
+ HDassert(new_space);
+ HDassert(new_space->extent.rank < base_space->extent.rank);
+
+ /* Walk down the span tree until we reach the selection to project */
+ down = base_space->select.sel_info.hslab->span_lst;
+ curr_dim = 0;
+ while(down && curr_dim < (base_space->extent.rank - new_space->extent.rank)) {
+ /* Sanity check */
+ HDassert(NULL == down->head->next);
+
+ /* Advance down to next dimension */
+ down = down->head->down;
+ curr_dim++;
+ } /* end while */
+ HDassert(down);
+
+ /* Share the underlying hyperslab span information */
+ new_space->select.sel_info.hslab->span_lst = down;
+ new_space->select.sel_info.hslab->span_lst->count++;
+
+ FUNC_LEAVE_NOAPI(SUCCEED)
+} /* H5S_hyper_project_simple_lower() */
+
+
+/*-------------------------------------------------------------------------
+ * Function: H5S_hyper_project_simple_higher
+ *
+ * Purpose: Projects a hyperslab selection onto/into a simple dataspace
+ * of a higher rank
+ *
+ * Return: non-negative on success, negative on failure.
+ *
+ * Programmer: Quincey Koziol
+ * Sunday, July 18, 2010
+ *
+ *-------------------------------------------------------------------------
+ */
+static herr_t
+H5S_hyper_project_simple_higher(const H5S_t *base_space, H5S_t *new_space)
+{
+ H5S_hyper_span_t *prev_span = NULL; /* Pointer to previous list of spans */
+ unsigned curr_dim; /* Current dimension being operated on */
+ herr_t ret_value = SUCCEED; /* Return value */
+
+ FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_project_simple_higher)
+
+ /* Check args */
+ HDassert(base_space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(base_space));
+ HDassert(new_space);
+ HDassert(new_space->extent.rank > base_space->extent.rank);
+
+ /* Create nodes until reaching the correct # of dimensions */
+ new_space->select.sel_info.hslab->span_lst = NULL;
+ curr_dim = 0;
+ while(curr_dim < (new_space->extent.rank - base_space->extent.rank)) {
+ H5S_hyper_span_info_t *new_span_info; /* Pointer to list of spans */
+ H5S_hyper_span_t *new_span; /* Temporary hyperslab span */
+
+ /* Allocate a new span_info node */
+ if(NULL == (new_span_info = H5FL_MALLOC(H5S_hyper_span_info_t)))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span info")
+
+ /* Check for linking into higher span */
+ if(prev_span)
+ prev_span->down = new_span_info;
+
+ /* Allocate a new node */
+ if(NULL == (new_span = H5S_hyper_new_span(0, 0, NULL, NULL)))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span")
+
+ /* Set the span_info information */
+ new_span_info->count = 1;
+ new_span_info->scratch = NULL;
+ new_span_info->head = new_span;
+
+ /* Attach to new space, if top span info */
+ if(NULL == new_space->select.sel_info.hslab->span_lst)
+ new_space->select.sel_info.hslab->span_lst = new_span_info;
+
+ /* Remember previous span info */
+ prev_span = new_span;
+
+ /* Advance to next dimension */
+ curr_dim++;
+ } /* end while */
+ HDassert(new_space->select.sel_info.hslab->span_lst);
+ HDassert(prev_span);
+
+ /* Share the underlying hyperslab span information */
+ prev_span->down = base_space->select.sel_info.hslab->span_lst;
+ prev_span->down->count++;
+
+done:
+ FUNC_LEAVE_NOAPI(ret_value)
+} /* H5S_hyper_project_simple_higher() */
+
+
+/*-------------------------------------------------------------------------
+ * Function: H5S_hyper_project_simple
+ *
+ * Purpose: Projects a hyperslab selection onto/into a simple dataspace
+ * of a different rank
+ *
+ * Return: non-negative on success, negative on failure.
+ *
+ * Programmer: Quincey Koziol
+ * Sunday, July 18, 2010
+ *
+ *-------------------------------------------------------------------------
+ */
+static herr_t
+H5S_hyper_project_simple(const H5S_t *base_space, H5S_t *new_space, hsize_t *offset)
+{
+ herr_t ret_value = SUCCEED; /* Return value */
+
+ FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_project_simple)
+
+ /* Check args */
+ HDassert(base_space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(base_space));
+ HDassert(new_space);
+ HDassert(offset);
+
+ /* We are setting a new selection, remove any current selection in new dataspace */
+ if(H5S_SELECT_RELEASE(new_space) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection")
+
+ /* Allocate space for the hyperslab selection information */
+ if(NULL == (new_space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t)))
+ HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info")
+
+ /* Check for a "regular" hyperslab selection */
+ if(base_space->select.sel_info.hslab->diminfo_valid) {
+ unsigned base_space_dim; /* Current dimension in the base dataspace */
+ unsigned new_space_dim; /* Current dimension in the new dataspace */
+
+ /* Check if the new space's rank is < or > base space's rank */
+ if(new_space->extent.rank < base_space->extent.rank) {
+ const H5S_hyper_dim_t *opt_diminfo = base_space->select.sel_info.hslab->opt_diminfo; /* Alias for dataspace's diminfo information */
+ hsize_t block[H5S_MAX_RANK]; /* Block selected in base dataspace */
+ unsigned u; /* Local index variable */
+
+ /* Compute the offset for the down-projection */
+ HDmemset(block, 0, sizeof(block));
+ for(u = 0; u < (base_space->extent.rank - new_space->extent.rank); u++)
+ block[u] = opt_diminfo[u].start;
+ *offset = H5V_array_offset(base_space->extent.rank, base_space->extent.size, block);
+
+ /* Set the correct dimensions for the base & new spaces */
+ base_space_dim = base_space->extent.rank - new_space->extent.rank;
+ new_space_dim = 0;
+ } /* end if */
+ else {
+ HDassert(new_space->extent.rank > base_space->extent.rank);
+
+ /* The offset is zero when projected into higher dimensions */
+ *offset = 0;
+
+ /* Set the diminfo information for the higher dimensions */
+ for(new_space_dim = 0; new_space_dim < (new_space->extent.rank - base_space->extent.rank); new_space_dim++) {
+ new_space->select.sel_info.hslab->app_diminfo[new_space_dim].start = 0;
+ new_space->select.sel_info.hslab->app_diminfo[new_space_dim].stride = 1;
+ new_space->select.sel_info.hslab->app_diminfo[new_space_dim].count = 1;
+ new_space->select.sel_info.hslab->app_diminfo[new_space_dim].block = 1;
+
+ new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].start = 0;
+ new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].stride = 1;
+ new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].count = 1;
+ new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].block = 1;
+ } /* end for */
+
+ /* Start at beginning of base space's dimension info */
+ base_space_dim = 0;
+ } /* end else */
+
+ /* Copy the diminfo */
+ while(base_space_dim < base_space->extent.rank) {
+ new_space->select.sel_info.hslab->app_diminfo[new_space_dim].start =
+ base_space->select.sel_info.hslab->app_diminfo[base_space_dim].start;
+ new_space->select.sel_info.hslab->app_diminfo[new_space_dim].stride =
+ base_space->select.sel_info.hslab->app_diminfo[base_space_dim].stride;
+ new_space->select.sel_info.hslab->app_diminfo[new_space_dim].count =
+ base_space->select.sel_info.hslab->app_diminfo[base_space_dim].count;
+ new_space->select.sel_info.hslab->app_diminfo[new_space_dim].block =
+ base_space->select.sel_info.hslab->app_diminfo[base_space_dim].block;
+
+ new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].start =
+ base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].start;
+ new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].stride =
+ base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].stride;
+ new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].count =
+ base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].count;
+ new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].block =
+ base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].block;
+
+ /* Advance to next dimensions */
+ base_space_dim++;
+ new_space_dim++;
+ } /* end for */
+
+ /* Indicate that the dimension information is valid */
+ new_space->select.sel_info.hslab->diminfo_valid = TRUE;
+
+ /* Indicate that there's no slab information */
+ new_space->select.sel_info.hslab->span_lst = NULL;
+ } /* end if */
+ else {
+ /* Check if the new space's rank is < or > base space's rank */
+ if(new_space->extent.rank < base_space->extent.rank) {
+ const H5S_hyper_span_t *curr; /* Pointer to current hyperslab span */
+ hsize_t block[H5S_MAX_RANK]; /* Block selected in base dataspace */
+ unsigned curr_dim; /* Current dimension being operated on */
+
+ /* Clear the block buffer */
+ HDmemset(block, 0, sizeof(block));
+
+ /* Advance down selected spans */
+ curr = base_space->select.sel_info.hslab->span_lst->head;
+ curr_dim = 0;
+ while(curr && curr_dim < (base_space->extent.rank - new_space->extent.rank)) {
+ /* Save the location of the selection in current dimension */
+ block[curr_dim] = curr->low;
+
+ /* Advance down to next dimension */
+ curr = curr->down->head;
+ curr_dim++;
+ } /* end while */
+
+ /* Compute the offset for the down-projection */
+ *offset = H5V_array_offset(base_space->extent.rank, base_space->extent.size, block);
+
+ /* Project the base space's selection down in less dimensions */
+ if(H5S_hyper_project_simple_lower(base_space, new_space) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't project hyperslab selection into less dimensions")
+ } /* end if */
+ else {
+ HDassert(new_space->extent.rank > base_space->extent.rank);
+
+ /* The offset is zero when projected into higher dimensions */
+ *offset = 0;
+
+ /* Project the base space's selection down in less dimensions */
+ if(H5S_hyper_project_simple_higher(base_space, new_space) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't project hyperslab selection into less dimensions")
+ } /* end else */
+
+ /* Indicate that the dimension information is not valid */
+ new_space->select.sel_info.hslab->diminfo_valid = FALSE;
+ } /* end else */
+
+ /* Number of elements selected will be the same */
+ new_space->select.num_elem = base_space->select.num_elem;
+
+ /* Set selection type */
+ new_space->select.type = H5S_sel_hyper;
+
+done:
+ FUNC_LEAVE_NOAPI(ret_value)
+} /* H5S_hyper_project_simple() */
+
+
/*--------------------------------------------------------------------------
NAME
H5S_hyper_adjust_helper_s
@@ -4061,41 +4414,41 @@ done:
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
-H5S_hyper_adjust_helper_s (H5S_hyper_span_info_t *spans, const hssize_t *offset)
+H5S_hyper_adjust_helper_s(H5S_hyper_span_info_t *spans, const hssize_t *offset)
{
H5S_hyper_span_t *span; /* Pointer to current span in span tree */
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_adjust_helper_s);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_adjust_helper_s)
/* Sanity check */
- assert(spans);
- assert(offset);
+ HDassert(spans);
+ HDassert(offset);
/* Check if we've already set this down span tree */
- if(spans->scratch!=(H5S_hyper_span_info_t *)~((size_t)NULL)) {
+ if(spans->scratch != (H5S_hyper_span_info_t *)~((size_t)NULL)) {
/* Set the tree's scratch pointer */
- spans->scratch=(H5S_hyper_span_info_t *)~((size_t)NULL);
+ spans->scratch = (H5S_hyper_span_info_t *)~((size_t)NULL);
/* Get the span lists for each span in this tree */
- span=spans->head;
+ span = spans->head;
/* Iterate over the spans in tree */
- while(span!=NULL) {
+ while(span != NULL) {
/* Adjust span offset */
- assert((hssize_t)span->low>=*offset);
- span->low-=*offset;
- span->high-=*offset;
+ HDassert((hssize_t)span->low >= *offset);
+ span->low -= *offset;
+ span->high -= *offset;
/* Recursively adjust spans in next dimension down */
- if(span->down!=NULL)
- H5S_hyper_adjust_helper_s(span->down,offset+1);
+ if(span->down != NULL)
+ H5S_hyper_adjust_helper_s(span->down, offset + 1);
/* Advance to next span in this dimension */
- span=span->next;
+ span = span->next;
} /* end while */
} /* end if */
- FUNC_LEAVE_NOAPI(SUCCEED);
+ FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5S_hyper_adjust_helper_s() */
@@ -4142,8 +4495,7 @@ H5S_hyper_adjust_s(H5S_t *space, const hssize_t *offset)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab offset adjustment");
/* Reset the scratch pointers for the next routine which needs them */
- if(H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst,NULL)==FAIL)
- HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't reset hyperslab scratch pointer");
+ H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst, NULL);
} /* end if */
done:
@@ -4252,8 +4604,7 @@ H5S_hyper_move(H5S_t *space, const hssize_t *offset)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab offset movement");
/* Reset the scratch pointers for the next routine which needs them */
- if(H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst,NULL)==FAIL)
- HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't reset hyperslab scratch pointer");
+ H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst, NULL);
} /* end if */
done:
@@ -6035,8 +6386,6 @@ done:
* Programmer: Quincey Koziol
* Wednesday, January 10, 2001
*
- * Modifications:
- *
*-------------------------------------------------------------------------
*/
herr_t
@@ -6220,18 +6569,18 @@ H5S_select_hyperslab (H5S_t *space, H5S_seloper_t op,
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation");
} /* end switch */
- if(op==H5S_SELECT_SET) {
+ if(op == H5S_SELECT_SET) {
/* If we are setting a new selection, remove current selection first */
- if(H5S_SELECT_RELEASE(space)<0)
- HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release hyperslab");
+ if(H5S_SELECT_RELEASE(space) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection")
/* Allocate space for the hyperslab selection information */
- if((space->select.sel_info.hslab=H5FL_MALLOC(H5S_hyper_sel_t))==NULL)
- HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info");
+ if(NULL == (space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t)))
+ HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info")
/* Save the diminfo */
- space->select.num_elem=1;
- for(u=0; u<space->extent.rank; u++) {
+ space->select.num_elem = 1;
+ for(u = 0; u < space->extent.rank; u++) {
space->select.sel_info.hslab->app_diminfo[u].start = start[u];
space->select.sel_info.hslab->app_diminfo[u].stride = stride[u];
space->select.sel_info.hslab->app_diminfo[u].count = count[u];
@@ -6241,39 +6590,40 @@ H5S_select_hyperslab (H5S_t *space, H5S_seloper_t op,
space->select.sel_info.hslab->opt_diminfo[u].stride = opt_stride[u];
space->select.sel_info.hslab->opt_diminfo[u].count = opt_count[u];
space->select.sel_info.hslab->opt_diminfo[u].block = opt_block[u];
- space->select.num_elem*=(opt_count[u]*opt_block[u]);
+
+ space->select.num_elem *= (opt_count[u] * opt_block[u]);
} /* end for */
/* Indicate that the dimension information is valid */
- space->select.sel_info.hslab->diminfo_valid=TRUE;
+ space->select.sel_info.hslab->diminfo_valid = TRUE;
/* Indicate that there's no slab information */
- space->select.sel_info.hslab->span_lst=NULL;
+ space->select.sel_info.hslab->span_lst = NULL;
} /* end if */
- else if(op>=H5S_SELECT_OR && op<=H5S_SELECT_NOTA) {
+ else if(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA) {
/* Sanity check */
- assert(H5S_GET_SELECT_TYPE(space)==H5S_SEL_HYPERSLABS);
+ HDassert(H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS);
/* Check if there's no hyperslab span information currently */
- if(space->select.sel_info.hslab->span_lst==NULL)
- if(H5S_hyper_generate_spans(space)<0)
- HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree");
+ if(NULL == space->select.sel_info.hslab->span_lst)
+ if(H5S_hyper_generate_spans(space) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree")
/* Indicate that the regular dimensions are no longer valid */
- space->select.sel_info.hslab->diminfo_valid=FALSE;
+ space->select.sel_info.hslab->diminfo_valid = FALSE;
/* Add in the new hyperslab information */
- if(H5S_generate_hyperslab (space, op, start, opt_stride, opt_count, opt_block)<0)
- HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs");
+ if(H5S_generate_hyperslab(space, op, start, opt_stride, opt_count, opt_block) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs")
} /* end if */
else
- HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation");
+ HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
/* Set selection type */
- space->select.type=H5S_sel_hyper;
+ space->select.type = H5S_sel_hyper;
done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_select_hyperslab() */
diff --git a/src/H5Smpio.c b/src/H5Smpio.c
index f535122..e9d0541 100644
--- a/src/H5Smpio.c
+++ b/src/H5Smpio.c
@@ -31,45 +31,25 @@
#include "H5Fprivate.h" /* File access */
#include "H5FDprivate.h" /* File drivers */
#include "H5Iprivate.h" /* IDs */
+#include "H5MMprivate.h" /* Memory management */
#include "H5Oprivate.h" /* Object headers */
#include "H5Pprivate.h" /* Property lists */
#include "H5Spkg.h" /* Dataspaces */
#ifdef H5_HAVE_PARALLEL
-static herr_t
-H5S_mpio_all_type( const H5S_t *space, size_t elmt_size,
- /* out: */
- MPI_Datatype *new_type,
- size_t *count,
- hsize_t *extra_offset,
- hbool_t *is_derived_type );
-static herr_t
-H5S_mpio_none_type( const H5S_t *space, size_t elmt_size,
- /* out: */
- MPI_Datatype *new_type,
- size_t *count,
- hsize_t *extra_offset,
- hbool_t *is_derived_type );
-static herr_t
-H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size,
- /* out: */
- MPI_Datatype *new_type,
- size_t *count,
- hsize_t *extra_offset,
- hbool_t *is_derived_type );
-
-static herr_t
-H5S_mpio_span_hyper_type( const H5S_t *space, size_t elmt_size,
- /* out: */
- MPI_Datatype *new_type,
- size_t *count,
- hsize_t *extra_offset,
- hbool_t *is_derived_type );
+static herr_t H5S_mpio_all_type(const H5S_t *space, size_t elmt_size,
+ MPI_Datatype *new_type, int *count, hbool_t *is_derived_type);
+static herr_t H5S_mpio_none_type(MPI_Datatype *new_type, int *count,
+ hbool_t *is_derived_type);
+static herr_t H5S_mpio_hyper_type(const H5S_t *space, size_t elmt_size,
+ MPI_Datatype *new_type, int *count, hbool_t *is_derived_type);
+static herr_t H5S_mpio_span_hyper_type(const H5S_t *space, size_t elmt_size,
+ MPI_Datatype *new_type, int *count, hbool_t *is_derived_type);
+static herr_t H5S_obtain_datatype(const hsize_t down[], H5S_hyper_span_t* span,
+ const MPI_Datatype *elmt_type, MPI_Datatype *span_type, size_t elmt_size);
-static herr_t H5S_obtain_datatype(const hsize_t size[],
- H5S_hyper_span_t* span,MPI_Datatype *span_type,
- size_t elmt_size,int dimindex);
+#define H5S_MPIO_INITIAL_ALLOC_COUNT 256
/*-------------------------------------------------------------------------
@@ -82,30 +62,20 @@ static herr_t H5S_obtain_datatype(const hsize_t size[],
* Outputs: *new_type the MPI type corresponding to the selection
* *count how many objects of the new_type in selection
* (useful if this is the buffer type for xfer)
- * *extra_offset Number of bytes of offset within dataset
* *is_derived_type 0 if MPI primitive type, 1 if derived
*
* Programmer: rky 980813
*
- * Modifications:
- *
- * Quincey Koziol, June 18, 2002
- * Added 'extra_offset' parameter
- *
*-------------------------------------------------------------------------
*/
static herr_t
-H5S_mpio_all_type( const H5S_t *space, size_t elmt_size,
- /* out: */
- MPI_Datatype *new_type,
- size_t *count,
- hsize_t *extra_offset,
- hbool_t *is_derived_type )
+H5S_mpio_all_type(const H5S_t *space, size_t elmt_size,
+ MPI_Datatype *new_type, int *count, hbool_t *is_derived_type)
{
hsize_t total_bytes;
- hssize_t snelmts; /*total number of elmts (signed) */
- hsize_t nelmts; /*total number of elmts */
- herr_t ret_value = SUCCEED;
+ hssize_t snelmts; /* Total number of elmts (signed) */
+ hsize_t nelmts; /* Total number of elmts */
+ herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_all_type)
@@ -121,8 +91,7 @@ H5S_mpio_all_type( const H5S_t *space, size_t elmt_size,
/* fill in the return values */
*new_type = MPI_BYTE;
- H5_ASSIGN_OVERFLOW(*count, total_bytes, hsize_t, size_t);
- *extra_offset = 0;
+ H5_ASSIGN_OVERFLOW(*count, total_bytes, hsize_t, int);
*is_derived_type = FALSE;
done:
@@ -140,32 +109,23 @@ done:
* Outputs: *new_type the MPI type corresponding to the selection
* *count how many objects of the new_type in selection
* (useful if this is the buffer type for xfer)
- * *extra_offset Number of bytes of offset within dataset
* *is_derived_type 0 if MPI primitive type, 1 if derived
*
* Programmer: Quincey Koziol, October 29, 2002
*
- * Modifications:
- *
*-------------------------------------------------------------------------
*/
static herr_t
-H5S_mpio_none_type( const H5S_t UNUSED *space, size_t UNUSED elmt_size,
- /* out: */
- MPI_Datatype *new_type,
- size_t *count,
- hsize_t *extra_offset,
- hbool_t *is_derived_type )
+H5S_mpio_none_type(MPI_Datatype *new_type, int *count, hbool_t *is_derived_type)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_mpio_none_type);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_mpio_none_type)
/* fill in the return values */
*new_type = MPI_BYTE;
*count = 0;
- *extra_offset = 0;
*is_derived_type = FALSE;
- FUNC_LEAVE_NOAPI(SUCCEED);
+ FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5S_mpio_none_type() */
@@ -179,35 +139,15 @@ H5S_mpio_none_type( const H5S_t UNUSED *space, size_t UNUSED elmt_size,
* Outputs: *new_type the MPI type corresponding to the selection
* *count how many objects of the new_type in selection
* (useful if this is the buffer type for xfer)
- * *extra_offset Number of bytes of offset within dataset
* *is_derived_type 0 if MPI primitive type, 1 if derived
*
* Programmer: rky 980813
*
- * Modifications: ppw 990401
- * rky, ppw 2000-09-26 Freed old type after creating struct type.
- * rky 2000-10-05 Changed displacements to be MPI_Aint.
- * rky 2000-10-06 Added code for cases of empty hyperslab.
- * akc, rky 2000-11-16 Replaced hard coded dimension size with
- * H5S_MAX_RANK.
- *
- * Quincey Koziol, June 18, 2002
- * Added 'extra_offset' parameter. Also accomodate selection
- * offset in MPI type built.
- *
- * Albert Cheng, August 4, 2004
- * Reimplemented the algorithm of forming the outer_type by
- * defining it as (start, vector, extent) in one call.
- *
*-------------------------------------------------------------------------
*/
static herr_t
-H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size,
- /* out: */
- MPI_Datatype *new_type,
- size_t *count,
- hsize_t *extra_offset,
- hbool_t *is_derived_type )
+H5S_mpio_hyper_type(const H5S_t *space, size_t elmt_size,
+ MPI_Datatype *new_type, int *count, hbool_t *is_derived_type)
{
H5S_sel_iter_t sel_iter; /* Selection iteration info */
hbool_t sel_iter_init = FALSE; /* Selection iteration info has been initialized */
@@ -231,18 +171,16 @@ H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size,
int mpi_code; /* MPI return code */
herr_t ret_value = SUCCEED;
- FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_hyper_type);
+ FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_hyper_type)
/* Check args */
HDassert(space);
HDassert(sizeof(MPI_Aint) >= sizeof(elmt_size));
- if(0 == elmt_size)
- goto empty;
/* Initialize selection iterator */
if(H5S_select_iter_init(&sel_iter, space, elmt_size) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator")
- sel_iter_init = 1; /* Selection iteration info has been initialized */
+ sel_iter_init = TRUE; /* Selection iteration info has been initialized */
/* Abbreviate args */
diminfo = sel_iter.u.hyp.diminfo;
@@ -251,18 +189,16 @@ H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size,
/* make a local copy of the dimension info so we can operate with them */
/* Check if this is a "flattened" regular hyperslab selection */
- if(sel_iter.u.hyp.iter_rank!=0 && sel_iter.u.hyp.iter_rank<space->extent.rank) {
+ if(sel_iter.u.hyp.iter_rank != 0 && sel_iter.u.hyp.iter_rank < space->extent.rank) {
/* Flattened selection */
rank = sel_iter.u.hyp.iter_rank;
HDassert(rank >= 0 && rank <= H5S_MAX_RANK); /* within array bounds */
- if (0==rank)
- goto empty;
#ifdef H5S_DEBUG
if(H5DEBUG(S))
HDfprintf(H5DEBUG(S), "%s: Flattened selection\n",FUNC);
#endif
- for ( i=0; i<rank; ++i) {
- d[i].start = diminfo[i].start+sel_iter.u.hyp.sel_off[i];
+ for(i = 0; i < rank; ++i) {
+ d[i].start = diminfo[i].start + sel_iter.u.hyp.sel_off[i];
d[i].strid = diminfo[i].stride;
d[i].block = diminfo[i].block;
d[i].count = diminfo[i].count;
@@ -277,26 +213,26 @@ H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size,
HDfprintf(H5DEBUG(S), "\n" );
}
#endif
- if (0==d[i].block)
+ if(0 == d[i].block)
goto empty;
- if (0==d[i].count)
+ if(0 == d[i].count)
goto empty;
- if (0==d[i].xtent)
+ if(0 == d[i].xtent)
goto empty;
- }
+ } /* end for */
} /* end if */
else {
/* Non-flattened selection */
rank = space->extent.rank;
- HDassert(rank >= 0 && rank<=H5S_MAX_RANK); /* within array bounds */
- if (0==rank)
+ HDassert(rank >= 0 && rank <= H5S_MAX_RANK); /* within array bounds */
+ if(0 == rank)
goto empty;
#ifdef H5S_DEBUG
if(H5DEBUG(S))
HDfprintf(H5DEBUG(S),"%s: Non-flattened selection\n",FUNC);
#endif
- for ( i=0; i<rank; ++i) {
- d[i].start = diminfo[i].start+space->select.offset[i];
+ for(i = 0; i < rank; ++i) {
+ d[i].start = diminfo[i].start + space->select.offset[i];
d[i].strid = diminfo[i].stride;
d[i].block = diminfo[i].block;
d[i].count = diminfo[i].count;
@@ -311,40 +247,37 @@ H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size,
HDfprintf(H5DEBUG(S), "\n" );
}
#endif
- if (0==d[i].block)
+ if(0 == d[i].block)
goto empty;
- if (0==d[i].count)
+ if(0 == d[i].count)
goto empty;
- if (0==d[i].xtent)
+ if(0 == d[i].xtent)
goto empty;
- }
+ } /* end for */
} /* end else */
/**********************************************************************
Compute array "offset[rank]" which gives the offsets for a multi-
dimensional array with dimensions "d[i].xtent" (i=0,1,...,rank-1).
**********************************************************************/
- offset[rank-1] = 1;
- max_xtent[rank-1] = d[rank-1].xtent;
-/*#ifdef H5Smpi_DEBUG */ /* leave the old way */
+ offset[rank - 1] = 1;
+ max_xtent[rank - 1] = d[rank - 1].xtent;
#ifdef H5S_DEBUG
- if(H5DEBUG(S)){
+ if(H5DEBUG(S)) {
i=rank-1;
- HDfprintf(H5DEBUG(S), " offset[%2d]=%d; max_xtent[%2d]=%d\n",
+ HDfprintf(H5DEBUG(S), " offset[%2d]=%d; max_xtent[%2d]=%d\n",
i, offset[i], i, max_xtent[i]);
}
#endif
- for (i=rank-2; i>=0; --i) {
- offset[i] = offset[i+1]*d[i+1].xtent;
- max_xtent[i] = max_xtent[i+1]*d[i].xtent;
+ for(i = rank - 2; i >= 0; --i) {
+ offset[i] = offset[i + 1] * d[i + 1].xtent;
+ max_xtent[i] = max_xtent[i + 1] * d[i].xtent;
#ifdef H5S_DEBUG
- if(H5DEBUG(S)){
+ if(H5DEBUG(S))
HDfprintf(H5DEBUG(S), " offset[%2d]=%d; max_xtent[%2d]=%d\n",
i, offset[i], i, max_xtent[i]);
- }
#endif
-
- }
+ } /* end for */
/* Create a type covering the selected hyperslab.
* Multidimensional dataspaces are stored in row-major order.
@@ -356,59 +289,58 @@ H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size,
*******************************************************/
#ifdef H5S_DEBUG
if(H5DEBUG(S)) {
- HDfprintf(H5DEBUG(S), "%s: Making contig type %d MPI_BYTEs\n", FUNC,elmt_size );
+ HDfprintf(H5DEBUG(S), "%s: Making contig type %Zu MPI_BYTEs\n", FUNC, elmt_size);
for (i=rank-1; i>=0; --i)
HDfprintf(H5DEBUG(S), "d[%d].xtent=%Hu \n", i, d[i].xtent);
}
#endif
- if (MPI_SUCCESS != (mpi_code= MPI_Type_contiguous( (int)elmt_size, MPI_BYTE, &inner_type )))
- HMPI_GOTO_ERROR(FAIL, "MPI_Type_contiguous failed", mpi_code);
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_contiguous((int)elmt_size, MPI_BYTE, &inner_type)))
+ HMPI_GOTO_ERROR(FAIL, "MPI_Type_contiguous failed", mpi_code)
/*******************************************************
* Construct the type by walking the hyperslab dims
* from the inside out:
*******************************************************/
- for ( i=rank-1; i>=0; --i) {
+ for(i = rank - 1; i >= 0; --i) {
#ifdef H5S_DEBUG
- if(H5DEBUG(S)) {
- HDfprintf(H5DEBUG(S), "%s: Dimension i=%d \n"
+ if(H5DEBUG(S))
+ HDfprintf(H5DEBUG(S), "%s: Dimension i=%d \n"
"start=%Hd count=%Hu block=%Hu stride=%Hu, xtent=%Hu max_xtent=%d\n",
FUNC, i, d[i].start, d[i].count, d[i].block, d[i].strid, d[i].xtent, max_xtent[i]);
- }
#endif
#ifdef H5S_DEBUG
if(H5DEBUG(S))
- HDfprintf(H5DEBUG(S), "%s: i=%d Making vector-type \n", FUNC,i);
+ HDfprintf(H5DEBUG(S), "%s: i=%d Making vector-type \n", FUNC,i);
#endif
/****************************************
* Build vector type of the selection.
****************************************/
- mpi_code =MPI_Type_vector((int)(d[i].count), /* count */
- (int)(d[i].block), /* blocklength */
- (int)(d[i].strid), /* stride */
- inner_type, /* old type */
- &outer_type); /* new type */
-
- MPI_Type_free( &inner_type );
- if (mpi_code!=MPI_SUCCESS)
- HMPI_GOTO_ERROR(FAIL, "couldn't create MPI vector type", mpi_code);
-
- /****************************************
- * Then build the dimension type as (start, vector type, xtent).
- ****************************************/
- /* calculate start and extent values of this dimension */
+ mpi_code = MPI_Type_vector((int)(d[i].count), /* count */
+ (int)(d[i].block), /* blocklength */
+ (int)(d[i].strid), /* stride */
+ inner_type, /* old type */
+ &outer_type); /* new type */
+
+ MPI_Type_free(&inner_type);
+ if(mpi_code != MPI_SUCCESS)
+ HMPI_GOTO_ERROR(FAIL, "couldn't create MPI vector type", mpi_code)
+
+ /****************************************
+ * Then build the dimension type as (start, vector type, xtent).
+ ****************************************/
+ /* calculate start and extent values of this dimension */
displacement[1] = d[i].start * offset[i] * elmt_size;
displacement[2] = (MPI_Aint)elmt_size * max_xtent[i];
if(MPI_SUCCESS != (mpi_code = MPI_Type_extent(outer_type, &extent_len)))
- HMPI_GOTO_ERROR(FAIL, "MPI_Type_extent failed", mpi_code);
+ HMPI_GOTO_ERROR(FAIL, "MPI_Type_extent failed", mpi_code)
- /*************************************************
- * Restructure this datatype ("outer_type")
- * so that it still starts at 0, but its extent
- * is the full extent in this dimension.
- *************************************************/
- if (displacement[1] > 0 || (int)extent_len < displacement[2]) {
+ /*************************************************
+ * Restructure this datatype ("outer_type")
+ * so that it still starts at 0, but its extent
+ * is the full extent in this dimension.
+ *************************************************/
+ if(displacement[1] > 0 || (int)extent_len < displacement[2]) {
block_length[0] = 1;
block_length[1] = 1;
@@ -420,42 +352,37 @@ H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size,
old_types[1] = outer_type;
old_types[2] = MPI_UB;
#ifdef H5S_DEBUG
- if(H5DEBUG(S)){
- HDfprintf(H5DEBUG(S), "%s: i=%d Extending struct type\n"
- "***displacements: %d, %d, %d\n",
- FUNC, i, displacement[0], displacement[1], displacement[2]);
- }
+ if(H5DEBUG(S))
+ HDfprintf(H5DEBUG(S), "%s: i=%d Extending struct type\n"
+ "***displacements: %ld, %ld, %ld\n",
+ FUNC, i, (long)displacement[0], (long)displacement[1], (long)displacement[2]);
#endif
- mpi_code = MPI_Type_struct ( 3, /* count */
- block_length, /* blocklengths */
- displacement, /* displacements */
- old_types, /* old types */
- &inner_type); /* new type */
-
- MPI_Type_free (&outer_type);
- if (mpi_code!=MPI_SUCCESS)
- HMPI_GOTO_ERROR(FAIL, "couldn't resize MPI vector type", mpi_code);
- }
- else {
+ mpi_code = MPI_Type_struct(3, /* count */
+ block_length, /* blocklengths */
+ displacement, /* displacements */
+ old_types, /* old types */
+ &inner_type); /* new type */
+
+ MPI_Type_free(&outer_type);
+ if(mpi_code != MPI_SUCCESS)
+ HMPI_GOTO_ERROR(FAIL, "couldn't resize MPI vector type", mpi_code)
+ } /* end if */
+ else
inner_type = outer_type;
- }
} /* end for */
/***************************
* End of loop, walking
* thru dimensions.
***************************/
-
/* At this point inner_type is actually the outermost type, even for 0-trip loop */
-
*new_type = inner_type;
- if (MPI_SUCCESS != (mpi_code= MPI_Type_commit( new_type )))
- HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code);
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(new_type)))
+ HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code)
/* fill in the remaining return values */
*count = 1; /* only have to move one of these suckers! */
- *extra_offset = 0;
*is_derived_type = TRUE;
HGOTO_DONE(SUCCEED);
@@ -463,24 +390,21 @@ empty:
/* special case: empty hyperslab */
*new_type = MPI_BYTE;
*count = 0;
- *extra_offset = 0;
*is_derived_type = FALSE;
done:
/* Release selection iterator */
- if(sel_iter_init) {
- if (H5S_SELECT_ITER_RELEASE(&sel_iter)<0)
- HDONE_ERROR (H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator");
- } /* end if */
+ if(sel_iter_init)
+ if(H5S_SELECT_ITER_RELEASE(&sel_iter) < 0)
+ HDONE_ERROR(H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator")
#ifdef H5S_DEBUG
- if(H5DEBUG(S)){
+ if(H5DEBUG(S))
HDfprintf(H5DEBUG(S), "Leave %s, count=%ld is_derived_type=%t\n",
FUNC, *count, *is_derived_type );
- }
#endif
- FUNC_LEAVE_NOAPI(ret_value);
-}
+ FUNC_LEAVE_NOAPI(ret_value)
+} /* end H5S_mpio_hyper_type() */
/*-------------------------------------------------------------------------
@@ -494,68 +418,57 @@ done:
* Outputs: *new_type the MPI type corresponding to the selection
* *count how many objects of the new_type in selection
* (useful if this is the buffer type for xfer)
- * *extra_offset Number of bytes of offset within dataset
* *is_derived_type 0 if MPI primitive type, 1 if derived
*
* Programmer: kyang
*
+ *-------------------------------------------------------------------------
*/
static herr_t
-H5S_mpio_span_hyper_type( const H5S_t *space,
- size_t elmt_size,
- MPI_Datatype *new_type,/* out: */
- size_t *count,
- hsize_t *extra_offset,
- hbool_t *is_derived_type )
+H5S_mpio_span_hyper_type(const H5S_t *space, size_t elmt_size,
+ MPI_Datatype *new_type, int *count, hbool_t *is_derived_type)
{
- MPI_Datatype span_type;
- H5S_hyper_span_t *ospan;
- H5S_hyper_span_info_t *odown;
- hsize_t *size;
- int mpi_code;
- herr_t ret_value = SUCCEED;
+ MPI_Datatype elmt_type; /* MPI datatype for an element */
+ hbool_t elmt_type_is_derived = FALSE; /* Whether the element type has been created */
+ MPI_Datatype span_type; /* MPI datatype for overall span tree */
+ hsize_t down[H5S_MAX_RANK]; /* 'down' sizes for each dimension */
+ int mpi_code; /* MPI return code */
+ herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_span_hyper_type)
/* Check args */
HDassert(space);
-
- if(0 == elmt_size)
- goto empty;
- size = space->extent.size;
- if(0 == size)
- goto empty;
-
- odown = space->select.sel_info.hslab->span_lst;
- if(NULL == odown)
- goto empty;
- ospan = odown->head;
- if(NULL == ospan)
- goto empty;
-
- /* obtain derived data type */
- if(FAIL == H5S_obtain_datatype(space->extent.size, ospan, &span_type, elmt_size, space->extent.rank))
- HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't obtain MPI derived data type")
-
+ HDassert(space->extent.size);
+ HDassert(space->select.sel_info.hslab->span_lst);
+ HDassert(space->select.sel_info.hslab->span_lst->head);
+
+ /* Create the base type for an element */
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_contiguous((int)elmt_size, MPI_BYTE, &elmt_type)))
+ HMPI_GOTO_ERROR(FAIL, "MPI_Type_contiguous failed", mpi_code)
+ elmt_type_is_derived = TRUE;
+
+ /* Compute 'down' sizes for each dimension */
+ if(H5V_array_down(space->extent.rank, space->extent.size, down) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGETSIZE, FAIL, "couldn't compute 'down' dimension sizes")
+
+ /* Obtain derived data type */
+ if(H5S_obtain_datatype(down, space->select.sel_info.hslab->span_lst->head, &elmt_type, &span_type, elmt_size) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "couldn't obtain MPI derived data type")
if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(&span_type)))
- HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code);
-
+ HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code)
*new_type = span_type;
+
/* fill in the remaining return values */
*count = 1;
- *extra_offset = 0;
*is_derived_type = TRUE;
- HGOTO_DONE(SUCCEED)
-
-empty:
- /* special case: empty hyperslab */
- *new_type = MPI_BYTE;
- *count = 0;
- *extra_offset = 0;
- *is_derived_type = FALSE;
-
done:
+ /* Release resources */
+ if(elmt_type_is_derived)
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_free(&elmt_type)))
+ HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code)
+
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_mpio_span_hyper_type() */
@@ -564,7 +477,7 @@ done:
* Function: H5S_obtain datatype
*
* Purpose: Obtain an MPI derived datatype based on span-tree
- implementation
+ * implementation
*
* Return: non-negative on success, negative on failure.
*
@@ -572,165 +485,169 @@ done:
*
* Programmer: kyang
*
+ *-------------------------------------------------------------------------
*/
static herr_t
-H5S_obtain_datatype(const hsize_t size[],
- H5S_hyper_span_t* span,
- MPI_Datatype *span_type,
- size_t elmt_size,
- int dimindex)
+H5S_obtain_datatype(const hsize_t *down, H5S_hyper_span_t *span,
+ const MPI_Datatype *elmt_type, MPI_Datatype *span_type, size_t elmt_size)
{
- int innercount, outercount;
- MPI_Datatype bas_type;
- MPI_Datatype temp_type;
- MPI_Datatype tempinner_type;
+ size_t alloc_count; /* Number of span tree nodes allocated at this level */
+ size_t outercount; /* Number of span tree nodes at this level */
MPI_Datatype *inner_type = NULL;
+ hbool_t inner_types_freed = FALSE; /* Whether the inner_type MPI datatypes have been freed */
+ hbool_t span_type_valid = FALSE; /* Whether the span_type MPI datatypes is valid */
int *blocklen = NULL;
MPI_Aint *disp = NULL;
- MPI_Aint stride;
- H5S_hyper_span_info_t *down;
- H5S_hyper_span_t *tspan;
-#ifdef H5_HAVE_MPI2
- MPI_Aint sizeaint, sizedtype;
-#endif /* H5_HAVE_MPI2 */
- hsize_t total_lowd, total_lowd1;
- int i;
- int mpi_code;
- herr_t ret_value = SUCCEED;
+ H5S_hyper_span_t *tspan; /* Temporary pointer to span tree node */
+ int mpi_code; /* MPI return status code */
+ herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI_NOINIT(H5S_obtain_datatype)
+ /* Sanity check */
HDassert(span);
- inner_type = NULL;
- down = NULL;
- tspan = NULL;
- down = span->down;
- tspan = span;
-
- /* Obtain the number of span tree nodes for this dimension */
- outercount = 0;
- while(tspan) {
- tspan = tspan->next;
- outercount++;
- } /* end while */
- if(outercount == 0)
- HGOTO_DONE(SUCCEED)
-
-/* MPI2 hasn't been widely acccepted, adding H5_HAVE_MPI2 for the future use */
-#ifdef H5_HAVE_MPI2
- MPI_Type_extent(MPI_Aint, &sizeaint);
- MPI_Type_extent(MPI_Datatype, &sizedtype);
-
- blocklen = (int *)HDcalloc((size_t)outercount, sizeof(int));
- disp = (MPI_Aint *)HDcalloc((size_t)outercount, sizeaint);
- inner_type = (MPI_Datatype *)HDcalloc((size_t)outercount, sizedtype);
-#else
- blocklen = (int *)HDcalloc((size_t)outercount, sizeof(int));
- disp = (MPI_Aint *)HDcalloc((size_t)outercount, sizeof(MPI_Aint));
- inner_type = (MPI_Datatype *)HDcalloc((size_t)outercount, sizeof(MPI_Datatype));
-#endif
-
- tspan = span;
- outercount = 0;
+ /* Allocate the initial displacement & block length buffers */
+ alloc_count = H5S_MPIO_INITIAL_ALLOC_COUNT;
+ if(NULL == (disp = (MPI_Aint *)H5MM_malloc(alloc_count * sizeof(MPI_Aint))))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of displacements")
+ if(NULL == (blocklen = (int *)H5MM_malloc(alloc_count * sizeof(int))))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of block lengths")
/* if this is the fastest changing dimension, it is the base case for derived datatype. */
- if(down == NULL) {
-
- HDassert(dimindex <= 1);
-
- if(MPI_SUCCESS != (mpi_code = MPI_Type_contiguous((int)elmt_size, MPI_BYTE, &bas_type)))
- HMPI_GOTO_ERROR(FAIL, "MPI_Type_contiguous failed", mpi_code);
-
- if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(&bas_type)))
- HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code);
-
+ if(NULL == span->down) {
+ tspan = span;
+ outercount = 0;
while(tspan) {
+ /* Check if we need to increase the size of the buffers */
+ if(outercount >= alloc_count) {
+ MPI_Aint *tmp_disp; /* Temporary pointer to new displacement buffer */
+ int *tmp_blocklen; /* Temporary pointer to new block length buffer */
+
+ /* Double the allocation count */
+ alloc_count *= 2;
+
+ /* Re-allocate the buffers */
+ if(NULL == (tmp_disp = (MPI_Aint *)H5MM_realloc(disp, alloc_count * sizeof(MPI_Aint))))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of displacements")
+ disp = tmp_disp;
+ if(NULL == (tmp_blocklen = (int *)H5MM_realloc(blocklen, alloc_count * sizeof(int))))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of block lengths")
+ blocklen = tmp_blocklen;
+ } /* end if */
+
+ /* Store displacement & block length */
disp[outercount] = (MPI_Aint)elmt_size * tspan->low;
blocklen[outercount] = tspan->nelem;
+
tspan = tspan->next;
outercount++;
} /* end while */
- if(MPI_SUCCESS != (mpi_code = MPI_Type_hindexed(outercount, blocklen, disp, bas_type, span_type)))
- HMPI_GOTO_ERROR(FAIL, "MPI_Type_hindexed failed", mpi_code);
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_hindexed((int)outercount, blocklen, disp, *elmt_type, span_type)))
+ HMPI_GOTO_ERROR(FAIL, "MPI_Type_hindexed failed", mpi_code)
+ span_type_valid = TRUE;
} /* end if */
- else { /* dimindex is the rank of the dimension */
-
- HDassert(dimindex > 1);
-
- /* Calculate the total bytes of the lower dimensions */
- total_lowd = 1; /* one dimension down */
- total_lowd1 = 1; /* two dimensions down */
-
- for(i = dimindex - 1; i > 0; i--)
- total_lowd = total_lowd * size[i];
+ else {
+ size_t u; /* Local index variable */
- for(i = dimindex - 1; i > 1; i--)
- total_lowd1 = total_lowd1 * size[i];
+ if(NULL == (inner_type = (MPI_Datatype *)H5MM_malloc(alloc_count * sizeof(MPI_Datatype))))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of inner MPI datatypes")
+ tspan = span;
+ outercount = 0;
while(tspan) {
+ MPI_Datatype down_type; /* Temporary MPI datatype for a span tree node's children */
+ MPI_Aint stride; /* Distance between inner MPI datatypes */
+
+ /* Check if we need to increase the size of the buffers */
+ if(outercount >= alloc_count) {
+ MPI_Aint *tmp_disp; /* Temporary pointer to new displacement buffer */
+ int *tmp_blocklen; /* Temporary pointer to new block length buffer */
+ MPI_Datatype *tmp_inner_type; /* Temporary pointer to inner MPI datatype buffer */
+
+ /* Double the allocation count */
+ alloc_count *= 2;
+
+ /* Re-allocate the buffers */
+ if(NULL == (tmp_disp = (MPI_Aint *)H5MM_realloc(disp, alloc_count * sizeof(MPI_Aint))))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of displacements")
+ disp = tmp_disp;
+ if(NULL == (tmp_blocklen = (int *)H5MM_realloc(blocklen, alloc_count * sizeof(int))))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of block lengths")
+ blocklen = tmp_blocklen;
+ if(NULL == (tmp_inner_type = (MPI_Datatype *)H5MM_realloc(inner_type, alloc_count * sizeof(MPI_Datatype))))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of inner MPI datatypes")
+ } /* end if */
/* Displacement should be in byte and should have dimension information */
/* First using MPI Type vector to build derived data type for this span only */
/* Need to calculate the disp in byte for this dimension. */
/* Calculate the total bytes of the lower dimension */
-
- disp[outercount] = tspan->low * total_lowd * elmt_size;
+ disp[outercount] = tspan->low * (*down) * elmt_size;
blocklen[outercount] = 1;
- /* generating inner derived datatype by using MPI_Type_hvector */
- if(FAIL == H5S_obtain_datatype(size, tspan->down->head, &temp_type, elmt_size, dimindex - 1))
- HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't obtain MPI derived data type")
-
- if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(&temp_type)))
- HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code);
-
- /* building the inner vector datatype */
- stride = total_lowd * elmt_size;
- innercount = tspan->nelem;
+ /* Generate MPI datatype for next dimension down */
+ if(H5S_obtain_datatype(down + 1, tspan->down->head, elmt_type, &down_type, elmt_size) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "couldn't obtain MPI derived data type")
- if(MPI_SUCCESS != (mpi_code = MPI_Type_hvector(innercount, 1, stride, temp_type, &tempinner_type)))
- HMPI_GOTO_ERROR(FAIL, "MPI_Type_hvector failed", mpi_code);
+ /* Build the MPI datatype for this node */
+ stride = (*down) * elmt_size;
+ H5_CHECK_OVERFLOW(tspan->nelem, hsize_t, int)
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_hvector((int)tspan->nelem, 1, stride, down_type, &inner_type[outercount]))) {
+ MPI_Type_free(&down_type);
+ HMPI_GOTO_ERROR(FAIL, "MPI_Type_hvector failed", mpi_code)
+ } /* end if */
- if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(&tempinner_type)))
- HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code);
+ /* Release MPI datatype for next dimension down */
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_free(&down_type)))
+ HMPI_GOTO_ERROR(FAIL, "MPI_Type_free failed", mpi_code)
- if(MPI_SUCCESS != (mpi_code = MPI_Type_free(&temp_type)))
- HMPI_GOTO_ERROR(FAIL, "MPI_Type_free failed", mpi_code);
-
- inner_type[outercount] = tempinner_type;
- outercount ++;
tspan = tspan->next;
+ outercount++;
} /* end while */
/* building the whole vector datatype */
- if(MPI_SUCCESS != (mpi_code = MPI_Type_struct(outercount, blocklen, disp, inner_type, span_type)))
- HMPI_GOTO_ERROR(FAIL, "MPI_Type_struct failed", mpi_code);
+ H5_CHECK_OVERFLOW(outercount, size_t, int)
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_struct((int)outercount, blocklen, disp, inner_type, span_type)))
+ HMPI_GOTO_ERROR(FAIL, "MPI_Type_struct failed", mpi_code)
+ span_type_valid = TRUE;
+
+ /* Release inner node types */
+ for(u = 0; u < outercount; u++)
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_free(&inner_type[u])))
+ HMPI_GOTO_ERROR(FAIL, "MPI_Type_free failed", mpi_code)
+ inner_types_freed = TRUE;
} /* end else */
- if(inner_type != NULL && down != NULL) {
- } /* end if */
-
done:
+ /* General cleanup */
if(inner_type != NULL) {
- if(down != NULL) {
- for(i = 0; i < outercount; i++)
- if(MPI_SUCCESS != (mpi_code = MPI_Type_free(&inner_type[i])))
- HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code);
+ if(!inner_types_freed) {
+ size_t u; /* Local index variable */
+
+ for(u = 0; u < outercount; u++)
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_free(&inner_type[u])))
+ HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code)
} /* end if */
- HDfree(inner_type);
+ H5MM_free(inner_type);
} /* end if */
if(blocklen != NULL)
- HDfree(blocklen);
+ H5MM_free(blocklen);
if(disp != NULL)
- HDfree(disp);
+ H5MM_free(disp);
+
+ /* Error cleanup */
+ if(ret_value < 0) {
+ if(span_type_valid)
+ if(MPI_SUCCESS != (mpi_code = MPI_Type_free(span_type)))
+ HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code)
+ } /* end if */
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_obtain_datatype() */
-
/*-------------------------------------------------------------------------
* Function: H5S_mpio_space_type
@@ -743,49 +660,38 @@ done:
* Outputs: *new_type the MPI type corresponding to the selection
* *count how many objects of the new_type in selection
* (useful if this is the buffer type for xfer)
- * *extra_offset Number of bytes of offset within dataset
* *is_derived_type 0 if MPI primitive type, 1 if derived
*
* Programmer: rky 980813
*
- * Modifications:
- *
- * Quincey Koziol, June 18, 2002
- * Added 'extra_offset' parameter
- *
*-------------------------------------------------------------------------
*/
herr_t
-H5S_mpio_space_type( const H5S_t *space, size_t elmt_size,
- /* out: */
- MPI_Datatype *new_type,
- size_t *count,
- hsize_t *extra_offset,
- hbool_t *is_derived_type )
+H5S_mpio_space_type(const H5S_t *space, size_t elmt_size,
+ MPI_Datatype *new_type, int *count, hbool_t *is_derived_type)
{
- herr_t ret_value = SUCCEED;
+ herr_t ret_value = SUCCEED; /* Return value */
- FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_space_type);
+ FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_space_type)
/* Check args */
HDassert(space);
+ HDassert(elmt_size);
/* Creat MPI type based on the kind of selection */
- switch (H5S_GET_EXTENT_TYPE(space)) {
+ switch(H5S_GET_EXTENT_TYPE(space)) {
case H5S_NULL:
case H5S_SCALAR:
case H5S_SIMPLE:
switch(H5S_GET_SELECT_TYPE(space)) {
case H5S_SEL_NONE:
- if ( H5S_mpio_none_type( space, elmt_size,
- /* out: */ new_type, count, extra_offset, is_derived_type ) <0)
- HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert \"all\" selection to MPI type");
+ if(H5S_mpio_none_type(new_type, count, is_derived_type) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert 'none' selection to MPI type")
break;
case H5S_SEL_ALL:
- if ( H5S_mpio_all_type( space, elmt_size,
- /* out: */ new_type, count, extra_offset, is_derived_type ) <0)
- HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert \"all\" selection to MPI type");
+ if(H5S_mpio_all_type(space, elmt_size, new_type, count, is_derived_type) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert 'all' selection to MPI type")
break;
case H5S_SEL_POINTS:
@@ -794,16 +700,14 @@ H5S_mpio_space_type( const H5S_t *space, size_t elmt_size,
break;
case H5S_SEL_HYPERSLABS:
- if((H5S_SELECT_IS_REGULAR(space) == TRUE)) {
- if(H5S_mpio_hyper_type( space, elmt_size,
- /* out: */ new_type, count, extra_offset, is_derived_type )<0)
- HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert \"all\" selection to MPI type");
- }
- else {
- if(H5S_mpio_span_hyper_type( space, elmt_size,
- /* out: */ new_type, count, extra_offset, is_derived_type )<0)
- HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert \"all\" selection to MPI type");
- }
+ if((H5S_SELECT_IS_REGULAR(space) == TRUE)) {
+ if(H5S_mpio_hyper_type(space, elmt_size, new_type, count, is_derived_type) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert regular 'hyperslab' selection to MPI type")
+ } /* end if */
+ else {
+ if(H5S_mpio_span_hyper_type(space, elmt_size, new_type, count, is_derived_type) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert irregular 'hyperslab' selection to MPI type")
+ } /* end else */
break;
default:
@@ -815,11 +719,10 @@ H5S_mpio_space_type( const H5S_t *space, size_t elmt_size,
default:
HDassert("unknown data space type" && 0);
break;
- }
+ } /* end switch */
done:
FUNC_LEAVE_NOAPI(ret_value);
-}
-
+} /* end H5S_mpio_space_type() */
#endif /* H5_HAVE_PARALLEL */
diff --git a/src/H5Snone.c b/src/H5Snone.c
index c6e8a6a..1948f13 100644
--- a/src/H5Snone.c
+++ b/src/H5Snone.c
@@ -48,6 +48,8 @@ static htri_t H5S_none_is_contiguous(const H5S_t *space);
static htri_t H5S_none_is_single(const H5S_t *space);
static htri_t H5S_none_is_regular(const H5S_t *space);
static herr_t H5S_none_adjust_u(H5S_t *space, const hsize_t *offset);
+static herr_t H5S_none_project_scalar(const H5S_t *space, hsize_t *offset);
+static herr_t H5S_none_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset);
static herr_t H5S_none_iter_init(H5S_sel_iter_t *iter, const H5S_t *space);
/* Selection iteration callbacks */
@@ -77,6 +79,8 @@ const H5S_select_class_t H5S_sel_none[1] = {{
H5S_none_is_single,
H5S_none_is_regular,
H5S_none_adjust_u,
+ H5S_none_project_scalar,
+ H5S_none_project_simple,
H5S_none_iter_init,
}};
@@ -110,18 +114,18 @@ static const H5S_sel_iter_class_t H5S_sel_iter_none[1] = {{
*-------------------------------------------------------------------------
*/
herr_t
-H5S_none_iter_init (H5S_sel_iter_t *iter, const H5S_t UNUSED *space)
+H5S_none_iter_init(H5S_sel_iter_t *iter, const H5S_t UNUSED *space)
{
- FUNC_ENTER_NOAPI_NOFUNC(H5S_none_iter_init);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_none_iter_init)
/* Check args */
- assert (space && H5S_SEL_NONE==H5S_GET_SELECT_TYPE(space));
- assert (iter);
+ HDassert(space && H5S_SEL_NONE==H5S_GET_SELECT_TYPE(space));
+ HDassert(iter);
/* Initialize type of selection iterator */
- iter->type=H5S_sel_iter_none;
+ iter->type = H5S_sel_iter_none;
- FUNC_LEAVE_NOAPI(SUCCEED);
+ FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5S_none_iter_init() */
@@ -141,15 +145,15 @@ H5S_none_iter_init (H5S_sel_iter_t *iter, const H5S_t UNUSED *space)
*-------------------------------------------------------------------------
*/
static herr_t
-H5S_none_iter_coords (const H5S_sel_iter_t UNUSED *iter, hsize_t UNUSED *coords)
+H5S_none_iter_coords(const H5S_sel_iter_t UNUSED *iter, hsize_t UNUSED *coords)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_coords);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_coords)
/* Check args */
- assert (iter);
- assert (coords);
+ HDassert(iter);
+ HDassert(coords);
- FUNC_LEAVE_NOAPI(FAIL);
+ FUNC_LEAVE_NOAPI(FAIL)
} /* H5S_none_iter_coords() */
@@ -169,16 +173,16 @@ H5S_none_iter_coords (const H5S_sel_iter_t UNUSED *iter, hsize_t UNUSED *coords)
*-------------------------------------------------------------------------
*/
static herr_t
-H5S_none_iter_block (const H5S_sel_iter_t UNUSED *iter, hsize_t UNUSED *start, hsize_t UNUSED *end)
+H5S_none_iter_block(const H5S_sel_iter_t UNUSED *iter, hsize_t UNUSED *start, hsize_t UNUSED *end)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_block);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_block)
/* Check args */
- assert (iter);
- assert (start);
- assert (end);
+ HDassert(iter);
+ HDassert(start);
+ HDassert(end);
- FUNC_LEAVE_NOAPI(FAIL);
+ FUNC_LEAVE_NOAPI(FAIL)
} /* H5S_none_iter_block() */
@@ -197,14 +201,14 @@ H5S_none_iter_block (const H5S_sel_iter_t UNUSED *iter, hsize_t UNUSED *start, h
*-------------------------------------------------------------------------
*/
static hsize_t
-H5S_none_iter_nelmts (const H5S_sel_iter_t UNUSED *iter)
+H5S_none_iter_nelmts(const H5S_sel_iter_t UNUSED *iter)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_nelmts);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_nelmts)
/* Check args */
- assert (iter);
+ HDassert(iter);
- FUNC_LEAVE_NOAPI(0);
+ FUNC_LEAVE_NOAPI(0)
} /* H5S_none_iter_nelmts() */
@@ -228,12 +232,12 @@ H5S_none_iter_nelmts (const H5S_sel_iter_t UNUSED *iter)
static htri_t
H5S_none_iter_has_next_block(const H5S_sel_iter_t UNUSED *iter)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_has_next_block);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_has_next_block)
/* Check args */
- assert (iter);
+ HDassert(iter);
- FUNC_LEAVE_NOAPI(FAIL);
+ FUNC_LEAVE_NOAPI(FAIL)
} /* H5S_none_iter_has_next_block() */
@@ -258,13 +262,13 @@ H5S_none_iter_has_next_block(const H5S_sel_iter_t UNUSED *iter)
static herr_t
H5S_none_iter_next(H5S_sel_iter_t UNUSED *iter, size_t UNUSED nelem)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_next);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_next)
/* Check args */
- assert (iter);
- assert (nelem>0);
+ HDassert(iter);
+ HDassert(nelem>0);
- FUNC_LEAVE_NOAPI(SUCCEED);
+ FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5S_none_iter_next() */
@@ -315,14 +319,14 @@ H5S_none_iter_next_block(H5S_sel_iter_t UNUSED *iter)
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
-H5S_none_iter_release (H5S_sel_iter_t UNUSED * iter)
+H5S_none_iter_release(H5S_sel_iter_t UNUSED * iter)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_release);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_release)
/* Check args */
- assert (iter);
+ HDassert(iter);
- FUNC_LEAVE_NOAPI(SUCCEED);
+ FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5S_none_iter_release() */
@@ -344,14 +348,14 @@ H5S_none_iter_release (H5S_sel_iter_t UNUSED * iter)
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
-H5S_none_release (H5S_t UNUSED * space)
+H5S_none_release(H5S_t UNUSED * space)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_release);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_release)
/* Check args */
- assert (space);
+ HDassert(space);
- FUNC_LEAVE_NOAPI(SUCCEED);
+ FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5S_none_release() */
@@ -377,15 +381,15 @@ H5S_none_release (H5S_t UNUSED * space)
static herr_t
H5S_none_copy(H5S_t *dst, const H5S_t UNUSED *src, hbool_t UNUSED share_selection)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_copy);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_copy)
- assert(src);
- assert(dst);
+ HDassert(src);
+ HDassert(dst);
/* Set number of elements in selection */
- dst->select.num_elem=0;
+ dst->select.num_elem = 0;
- FUNC_LEAVE_NOAPI(SUCCEED);
+ FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S_none_copy() */
@@ -410,13 +414,13 @@ H5S_none_copy(H5S_t *dst, const H5S_t UNUSED *src, hbool_t UNUSED share_selectio
REVISION LOG
--------------------------------------------------------------------------*/
static htri_t
-H5S_none_is_valid (const H5S_t UNUSED *space)
+H5S_none_is_valid(const H5S_t UNUSED *space)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_valid);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_valid)
- assert(space);
+ HDassert(space);
- FUNC_LEAVE_NOAPI(TRUE);
+ FUNC_LEAVE_NOAPI(TRUE)
} /* end H5S_none_is_valid() */
@@ -440,17 +444,17 @@ H5S_none_is_valid (const H5S_t UNUSED *space)
REVISION LOG
--------------------------------------------------------------------------*/
static hssize_t
-H5S_none_serial_size (const H5S_t UNUSED *space)
+H5S_none_serial_size(const H5S_t UNUSED *space)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_serial_size);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_serial_size)
- assert(space);
+ HDassert(space);
/* Basic number of bytes required to serialize point selection:
* <type (4 bytes)> + <version (4 bytes)> + <padding (4 bytes)> +
* <length (4 bytes)> = 16 bytes
*/
- FUNC_LEAVE_NOAPI(16);
+ FUNC_LEAVE_NOAPI(16)
} /* end H5S_none_serial_size() */
@@ -474,11 +478,11 @@ H5S_none_serial_size (const H5S_t UNUSED *space)
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
-H5S_none_serialize (const H5S_t *space, uint8_t *buf)
+H5S_none_serialize(const H5S_t *space, uint8_t *buf)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_serialize);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_serialize)
- assert(space);
+ HDassert(space);
/* Store the preamble information */
UINT32ENCODE(buf, (uint32_t)H5S_GET_SELECT_TYPE(space)); /* Store the type of selection */
@@ -486,7 +490,7 @@ H5S_none_serialize (const H5S_t *space, uint8_t *buf)
UINT32ENCODE(buf, (uint32_t)0); /* Store the un-used padding */
UINT32ENCODE(buf, (uint32_t)0); /* Store the additional information length */
- FUNC_LEAVE_NOAPI(SUCCEED);
+ FUNC_LEAVE_NOAPI(SUCCEED)
} /* H5S_none_serialize() */
@@ -510,20 +514,20 @@ H5S_none_serialize (const H5S_t *space, uint8_t *buf)
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
-H5S_none_deserialize (H5S_t *space, const uint8_t UNUSED *buf)
+H5S_none_deserialize(H5S_t *space, const uint8_t UNUSED *buf)
{
- herr_t ret_value; /* return value */
+ herr_t ret_value = SUCCEED; /* return value */
- FUNC_ENTER_NOAPI_NOINIT(H5S_none_deserialize);
+ FUNC_ENTER_NOAPI_NOINIT(H5S_none_deserialize)
- assert(space);
+ HDassert(space);
/* Change to "none" selection */
- if((ret_value=H5S_select_none(space))<0)
- HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't change selection");
+ if(H5S_select_none(space) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't change selection")
done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_none_deserialize() */
@@ -555,13 +559,13 @@ done:
static herr_t
H5S_none_bounds(const H5S_t UNUSED *space, hsize_t UNUSED *start, hsize_t UNUSED *end)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_bounds);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_bounds)
- assert(space);
- assert(start);
- assert(end);
+ HDassert(space);
+ HDassert(start);
+ HDassert(end);
- FUNC_LEAVE_NOAPI(FAIL);
+ FUNC_LEAVE_NOAPI(FAIL)
} /* H5Sget_none_bounds() */
@@ -618,11 +622,11 @@ H5S_none_offset(const H5S_t UNUSED *space, hsize_t UNUSED *offset)
static htri_t
H5S_none_is_contiguous(const H5S_t UNUSED *space)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_contiguous);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_contiguous)
- assert(space);
+ HDassert(space);
- FUNC_LEAVE_NOAPI(FALSE);
+ FUNC_LEAVE_NOAPI(FALSE)
} /* H5S_none_is_contiguous() */
@@ -647,11 +651,11 @@ H5S_none_is_contiguous(const H5S_t UNUSED *space)
static htri_t
H5S_none_is_single(const H5S_t UNUSED *space)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_single);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_single)
- assert(space);
+ HDassert(space);
- FUNC_LEAVE_NOAPI(FALSE);
+ FUNC_LEAVE_NOAPI(FALSE)
} /* H5S_none_is_single() */
@@ -677,12 +681,12 @@ H5S_none_is_single(const H5S_t UNUSED *space)
static htri_t
H5S_none_is_regular(const H5S_t UNUSED *space)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_regular);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_regular)
/* Check args */
- assert(space);
+ HDassert(space);
- FUNC_LEAVE_NOAPI(TRUE);
+ FUNC_LEAVE_NOAPI(TRUE)
} /* H5S_none_is_regular() */
@@ -717,6 +721,65 @@ H5S_none_adjust_u(H5S_t UNUSED *space, const hsize_t UNUSED *offset)
} /* H5S_none_adjust_u() */
+/*-------------------------------------------------------------------------
+ * Function: H5S_none_project_scalar
+ *
+ * Purpose: Projects a 'none' selection into a scalar dataspace
+ *
+ * Return: non-negative on success, negative on failure.
+ *
+ * Programmer: Quincey Koziol
+ * Sunday, July 18, 2010
+ *
+ *-------------------------------------------------------------------------
+ */
+static herr_t
+H5S_none_project_scalar(const H5S_t UNUSED *space, hsize_t UNUSED *offset)
+{
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_project_scalar)
+
+ /* Check args */
+ HDassert(space && H5S_SEL_NONE == H5S_GET_SELECT_TYPE(space));
+ HDassert(offset);
+
+ FUNC_LEAVE_NOAPI(FAIL)
+} /* H5S_none_project_scalar() */
+
+
+/*-------------------------------------------------------------------------
+ * Function: H5S_none_project_simple
+ *
+ * Purpose: Projects an 'none' selection onto/into a simple dataspace
+ * of a different rank
+ *
+ * Return: non-negative on success, negative on failure.
+ *
+ * Programmer: Quincey Koziol
+ * Sunday, July 18, 2010
+ *
+ *-------------------------------------------------------------------------
+ */
+static herr_t
+H5S_none_project_simple(const H5S_t *base_space, H5S_t *new_space, hsize_t *offset)
+{
+ herr_t ret_value = SUCCEED; /* Return value */
+
+ FUNC_ENTER_NOAPI_NOINIT(H5S_none_project_simple)
+
+ /* Check args */
+ HDassert(base_space && H5S_SEL_NONE == H5S_GET_SELECT_TYPE(base_space));
+ HDassert(new_space);
+ HDassert(offset);
+
+ /* Select the entire new space */
+ if(H5S_select_none(new_space) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "unable to set none selection")
+
+done:
+ FUNC_LEAVE_NOAPI(ret_value)
+} /* H5S_none_project_simple() */
+
+
/*--------------------------------------------------------------------------
NAME
H5S_select_none
@@ -734,27 +797,28 @@ H5S_none_adjust_u(H5S_t UNUSED *space, const hsize_t UNUSED *offset)
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
-herr_t H5S_select_none (H5S_t *space)
+herr_t
+H5S_select_none(H5S_t *space)
{
- herr_t ret_value=SUCCEED; /* return value */
+ herr_t ret_value = SUCCEED; /* return value */
- FUNC_ENTER_NOAPI(H5S_select_none, FAIL);
+ FUNC_ENTER_NOAPI(H5S_select_none, FAIL)
/* Check args */
- assert(space);
+ HDassert(space);
/* Remove current selection first */
- if(H5S_SELECT_RELEASE(space)<0)
- HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release hyperslab");
+ if(H5S_SELECT_RELEASE(space) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release hyperslab")
/* Set number of elements in selection */
- space->select.num_elem=0;
+ space->select.num_elem = 0;
/* Set selection type */
- space->select.type=H5S_sel_none;
+ space->select.type = H5S_sel_none;
done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_none() */
@@ -833,24 +897,24 @@ H5S_none_get_seq_list(const H5S_t UNUSED *space, unsigned UNUSED flags, H5S_sel_
size_t UNUSED maxseq, size_t UNUSED maxelem, size_t *nseq, size_t *nelem,
hsize_t UNUSED *off, size_t UNUSED *len)
{
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_get_seq_list);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_get_seq_list)
/* Check args */
- assert(space);
- assert(iter);
- assert(maxseq>0);
- assert(maxelem>0);
- assert(nseq);
- assert(nelem);
- assert(off);
- assert(len);
+ HDassert(space);
+ HDassert(iter);
+ HDassert(maxseq > 0);
+ HDassert(maxelem > 0);
+ HDassert(nseq);
+ HDassert(nelem);
+ HDassert(off);
+ HDassert(len);
/* "none" selections don't generate sequences of bytes */
- *nseq=0;
+ *nseq = 0;
/* They don't use any elements, either */
- *nelem=0;
+ *nelem = 0;
- FUNC_LEAVE_NOAPI(SUCCEED);
+ FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S_none_get_seq_list() */
diff --git a/src/H5Spkg.h b/src/H5Spkg.h
index b7818a2..0a9df69 100644
--- a/src/H5Spkg.h
+++ b/src/H5Spkg.h
@@ -145,6 +145,10 @@ typedef htri_t (*H5S_sel_is_single_func_t)(const H5S_t *space);
typedef htri_t (*H5S_sel_is_regular_func_t)(const H5S_t *space);
/* Method to adjust a selection by an offset */
typedef herr_t (*H5S_sel_adjust_u_func_t)(H5S_t *space, const hsize_t *offset);
+/* Method to construct single element projection onto scalar dataspace */
+typedef herr_t (*H5S_sel_project_scalar)(const H5S_t *space, hsize_t *offset);
+/* Method to construct selection projection onto/into simple dataspace */
+typedef herr_t (*H5S_sel_project_simple)(const H5S_t *space, H5S_t *new_space, hsize_t *offset);
/* Method to initialize iterator for current selection */
typedef herr_t (*H5S_sel_iter_init_func_t)(H5S_sel_iter_t *sel_iter, const H5S_t *space);
@@ -166,6 +170,8 @@ typedef struct {
H5S_sel_is_single_func_t is_single; /* Method to determine if current selection is a single block */
H5S_sel_is_regular_func_t is_regular; /* Method to determine if current selection is "regular" */
H5S_sel_adjust_u_func_t adjust_u; /* Method to adjust a selection by an offset */
+ H5S_sel_project_scalar project_scalar; /* Method to construct scalar dataspace projection */
+ H5S_sel_project_simple project_simple; /* Method to construct simple dataspace projection */
H5S_sel_iter_init_func_t iter_init; /* Method to initialize iterator for current selection */
} H5S_select_class_t;
diff --git a/src/H5Spoint.c b/src/H5Spoint.c
index 24dfe2a..cb7e98f 100644
--- a/src/H5Spoint.c
+++ b/src/H5Spoint.c
@@ -49,6 +49,8 @@ static htri_t H5S_point_is_contiguous(const H5S_t *space);
static htri_t H5S_point_is_single(const H5S_t *space);
static htri_t H5S_point_is_regular(const H5S_t *space);
static herr_t H5S_point_adjust_u(H5S_t *space, const hsize_t *offset);
+static herr_t H5S_point_project_scalar(const H5S_t *space, hsize_t *offset);
+static herr_t H5S_point_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset);
static herr_t H5S_point_iter_init(H5S_sel_iter_t *iter, const H5S_t *space);
/* Selection iteration callbacks */
@@ -78,6 +80,8 @@ const H5S_select_class_t H5S_sel_point[1] = {{
H5S_point_is_single,
H5S_point_is_regular,
H5S_point_adjust_u,
+ H5S_point_project_scalar,
+ H5S_point_project_simple,
H5S_point_iter_init,
}};
@@ -610,18 +614,18 @@ H5S_point_copy(H5S_t *dst, const H5S_t *src, hbool_t UNUSED share_selection)
/* Allocate room for the head of the point list */
if(NULL == (dst->select.sel_info.pnt_lst = H5FL_MALLOC(H5S_pnt_list_t)))
- HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate point node")
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate point list node")
curr = src->select.sel_info.pnt_lst->head;
new_tail = NULL;
while(curr) {
/* Create new point */
if(NULL == (new_node = H5FL_MALLOC(H5S_pnt_node_t)))
- HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate point node")
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate point node")
new_node->next = NULL;
- if(NULL == (new_node->pnt = (hsize_t *)H5MM_malloc(src->extent.rank*sizeof(hsize_t)))) {
+ if(NULL == (new_node->pnt = (hsize_t *)H5MM_malloc(src->extent.rank * sizeof(hsize_t)))) {
new_node = H5FL_FREE(H5S_pnt_node_t, new_node);
- HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate coordinate information")
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate coordinate information")
} /* end if */
/* Copy over the point's coordinates */
@@ -976,7 +980,7 @@ H5S_get_select_elem_pointlist(H5S_t *space, hsize_t startpoint, hsize_t numpoint
node = node->next;
} /* end while */
- /* Iterate through the node, copying each hyperslab's information */
+ /* Iterate through the node, copying each point's information */
while(node != NULL && numpoints > 0) {
HDmemcpy(buf, node->pnt, sizeof(hsize_t) * rank);
buf += rank;
@@ -1346,6 +1350,173 @@ H5S_point_adjust_u(H5S_t *space, const hsize_t *offset)
} /* H5S_point_adjust_u() */
+/*-------------------------------------------------------------------------
+ * Function: H5S_point_project_scalar
+ *
+ * Purpose: Projects a single element point selection into a scalar
+ * dataspace
+ *
+ * Return: non-negative on success, negative on failure.
+ *
+ * Programmer: Quincey Koziol
+ * Sunday, July 18, 2010
+ *
+ *-------------------------------------------------------------------------
+ */
+static herr_t
+H5S_point_project_scalar(const H5S_t *space, hsize_t *offset)
+{
+ const H5S_pnt_node_t *node; /* Point node */
+ herr_t ret_value = SUCCEED; /* Return value */
+
+ FUNC_ENTER_NOAPI_NOINIT(H5S_point_project_scalar)
+
+ /* Check args */
+ HDassert(space && H5S_SEL_POINTS == H5S_GET_SELECT_TYPE(space));
+ HDassert(offset);
+
+ /* Get the head of the point list */
+ node = space->select.sel_info.pnt_lst->head;
+
+ /* Check for more than one point selected */
+ if(node->next)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "point selection of one element has more than one node!")
+
+ /* Calculate offset of selection in projected buffer */
+ *offset = H5V_array_offset(space->extent.rank, space->extent.size, node->pnt);
+
+done:
+ FUNC_LEAVE_NOAPI(ret_value)
+} /* H5S_point_project_scalar() */
+
+
+/*-------------------------------------------------------------------------
+ * Function: H5S_point_project_simple
+ *
+ * Purpose: Projects a point selection onto/into a simple dataspace
+ * of a different rank
+ *
+ * Return: non-negative on success, negative on failure.
+ *
+ * Programmer: Quincey Koziol
+ * Sunday, July 18, 2010
+ *
+ *-------------------------------------------------------------------------
+ */
+static herr_t
+H5S_point_project_simple(const H5S_t *base_space, H5S_t *new_space, hsize_t *offset)
+{
+ const H5S_pnt_node_t *base_node; /* Point node in base space */
+ H5S_pnt_node_t *new_node; /* Point node in new space */
+ H5S_pnt_node_t *prev_node; /* Previous point node in new space */
+ unsigned rank_diff; /* Difference in ranks between spaces */
+ herr_t ret_value = SUCCEED; /* Return value */
+
+ FUNC_ENTER_NOAPI_NOINIT(H5S_point_project_simple)
+
+ /* Check args */
+ HDassert(base_space && H5S_SEL_POINTS == H5S_GET_SELECT_TYPE(base_space));
+ HDassert(new_space);
+ HDassert(offset);
+
+ /* We are setting a new selection, remove any current selection in new dataspace */
+ if(H5S_SELECT_RELEASE(new_space) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection")
+
+ /* Allocate room for the head of the point list */
+ if(NULL == (new_space->select.sel_info.pnt_lst = H5FL_MALLOC(H5S_pnt_list_t)))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate point list node")
+
+ /* Check if the new space's rank is < or > base space's rank */
+ if(new_space->extent.rank < base_space->extent.rank) {
+ hsize_t block[H5S_MAX_RANK]; /* Block selected in base dataspace */
+
+ /* Compute the difference in ranks */
+ rank_diff = base_space->extent.rank - new_space->extent.rank;
+
+ /* Calculate offset of selection in projected buffer */
+ HDmemset(block, 0, sizeof(block));
+ HDmemcpy(block, base_space->select.sel_info.pnt_lst->head->pnt, sizeof(hsize_t) * rank_diff);
+ *offset = H5V_array_offset(base_space->extent.rank, base_space->extent.size, block);
+
+ /* Iterate through base space's point nodes, copying the point information */
+ base_node = base_space->select.sel_info.pnt_lst->head;
+ prev_node = NULL;
+ while(base_node) {
+ /* Create new point */
+ if(NULL == (new_node = H5FL_MALLOC(H5S_pnt_node_t)))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate point node")
+ new_node->next = NULL;
+ if(NULL == (new_node->pnt = (hsize_t *)H5MM_malloc(new_space->extent.rank * sizeof(hsize_t)))) {
+ new_node = H5FL_FREE(H5S_pnt_node_t, new_node);
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate coordinate information")
+ } /* end if */
+
+ /* Copy over the point's coordinates */
+ HDmemcpy(new_node->pnt, &base_node->pnt[rank_diff], (new_space->extent.rank * sizeof(hsize_t)));
+
+ /* Keep the order the same when copying */
+ if(NULL == prev_node)
+ prev_node = new_space->select.sel_info.pnt_lst->head = new_node;
+ else {
+ prev_node->next = new_node;
+ prev_node = new_node;
+ } /* end else */
+
+ /* Advance to next node */
+ base_node = base_node->next;
+ } /* end while */
+ } /* end if */
+ else {
+ HDassert(new_space->extent.rank > base_space->extent.rank);
+
+ /* Compute the difference in ranks */
+ rank_diff = new_space->extent.rank - base_space->extent.rank;
+
+ /* The offset is zero when projected into higher dimensions */
+ *offset = 0;
+
+ /* Iterate through base space's point nodes, copying the point information */
+ base_node = base_space->select.sel_info.pnt_lst->head;
+ prev_node = NULL;
+ while(base_node) {
+ /* Create new point */
+ if(NULL == (new_node = H5FL_MALLOC(H5S_pnt_node_t)))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate point node")
+ new_node->next = NULL;
+ if(NULL == (new_node->pnt = (hsize_t *)H5MM_malloc(new_space->extent.rank * sizeof(hsize_t)))) {
+ new_node = H5FL_FREE(H5S_pnt_node_t, new_node);
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate coordinate information")
+ } /* end if */
+
+ /* Copy over the point's coordinates */
+ HDmemset(new_node->pnt, 0, sizeof(hsize_t) * rank_diff);
+ HDmemcpy(&new_node->pnt[rank_diff], base_node->pnt, (new_space->extent.rank * sizeof(hsize_t)));
+
+ /* Keep the order the same when copying */
+ if(NULL == prev_node)
+ prev_node = new_space->select.sel_info.pnt_lst->head = new_node;
+ else {
+ prev_node->next = new_node;
+ prev_node = new_node;
+ } /* end else */
+
+ /* Advance to next node */
+ base_node = base_node->next;
+ } /* end while */
+ } /* end else */
+
+ /* Number of elements selected will be the same */
+ new_space->select.num_elem = base_space->select.num_elem;
+
+ /* Set selection type */
+ new_space->select.type = H5S_sel_point;
+
+done:
+ FUNC_LEAVE_NOAPI(ret_value)
+} /* H5S_point_project_simple() */
+
+
/*--------------------------------------------------------------------------
NAME
H5Sselect_elements
diff --git a/src/H5Sprivate.h b/src/H5Sprivate.h
index 2858ddb..2faf977 100644
--- a/src/H5Sprivate.h
+++ b/src/H5Sprivate.h
@@ -133,6 +133,8 @@ typedef struct H5S_sel_iter_t {
#define H5S_SELECT_IS_SINGLE(S) ((*(S)->select.type->is_single)(S))
#define H5S_SELECT_IS_REGULAR(S) ((*(S)->select.type->is_regular)(S))
#define H5S_SELECT_ADJUST_U(S,O) ((*(S)->select.type->adjust_u)(S, O))
+#define H5S_SELECT_PROJECT_SCALAR(S,O) ((*(S)->select.type->project_scalar)(S, O))
+#define H5S_SELECT_PROJECT_SIMPLE(S,NS, O) ((*(S)->select.type->project_simple)(S, NS, O))
#define H5S_SELECT_ITER_COORDS(ITER,COORDS) ((*(ITER)->type->iter_coords)(ITER,COORDS))
#define H5S_SELECT_ITER_BLOCK(ITER,START,END) ((*(ITER)->type->iter_block)(ITER,START,END))
#define H5S_SELECT_ITER_NELMTS(ITER) ((*(ITER)->type->iter_nelmts)(ITER))
@@ -157,6 +159,8 @@ typedef struct H5S_sel_iter_t {
#define H5S_SELECT_IS_SINGLE(S) (H5S_select_is_single(S))
#define H5S_SELECT_IS_REGULAR(S) (H5S_select_is_regular(S))
#define H5S_SELECT_ADJUST_U(S,O) (H5S_select_adjust_u(S, O))
+#define H5S_SELECT_PROJECT_SCALAR(S,O) (H5S_select_project_scalar)(S, O))
+#define H5S_SELECT_PROJECT_SIMPLE(S,NS,O) (H5S_select_project_simple)(S, NS, O))
#define H5S_SELECT_ITER_COORDS(ITER,COORDS) (H5S_select_iter_coords(ITER,COORDS))
#define H5S_SELECT_ITER_BLOCK(ITER,START,END) (H5S_select_iter_block(ITER,START,END))
#define H5S_SELECT_ITER_NELMTS(ITER) (H5S_select_iter_nelmts(ITER))
@@ -215,6 +219,9 @@ H5_DLL herr_t H5S_get_select_offset(const H5S_t *space, hsize_t *offset);
H5_DLL herr_t H5S_select_offset(H5S_t *space, const hssize_t *offset);
H5_DLL herr_t H5S_select_copy(H5S_t *dst, const H5S_t *src, hbool_t share_selection);
H5_DLL htri_t H5S_select_shape_same(const H5S_t *space1, const H5S_t *space2);
+H5_DLL herr_t H5S_select_construct_projection(const H5S_t *base_space,
+ H5S_t **new_space_ptr, unsigned new_space_rank, const void *buf,
+ void **adj_buf_ptr, hsize_t element_size);
H5_DLL herr_t H5S_select_release(H5S_t *ds);
H5_DLL herr_t H5S_select_get_seq_list(const H5S_t *space, unsigned flags,
H5S_sel_iter_t *iter, size_t maxseq, size_t maxbytes,
@@ -225,6 +232,8 @@ H5_DLL htri_t H5S_select_is_contiguous(const H5S_t *space);
H5_DLL htri_t H5S_select_is_single(const H5S_t *space);
H5_DLL htri_t H5S_select_is_regular(const H5S_t *space);
H5_DLL herr_t H5S_select_adjust_u(H5S_t *space, const hsize_t *offset);
+H5_DLL herr_t H5S_select_project_scalar(const H5S_t *space, hsize_t *offset);
+H5_DLL herr_t H5S_select_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset);
/* Operations on all selections */
H5_DLL herr_t H5S_select_all(H5S_t *space, hbool_t rel_prev);
@@ -268,18 +277,8 @@ H5_DLL herr_t
H5S_mpio_space_type( const H5S_t *space, size_t elmt_size,
/* out: */
MPI_Datatype *new_type,
- size_t *count,
- hsize_t *extra_offset,
+ int *count,
hbool_t *is_derived_type );
-
-H5_DLL herr_t
-H5S_mpio_space_span_type( const H5S_t *space, size_t elmt_size,
- /* out: */
- MPI_Datatype *new_type,
- size_t *count,
- hsize_t *extra_offset,
- hbool_t *is_derived_type );
-
#endif /* H5_HAVE_PARALLEL */
#endif /* _H5Sprivate_H */
diff --git a/src/H5Sselect.c b/src/H5Sselect.c
index a419131..af3c9f9 100644
--- a/src/H5Sselect.c
+++ b/src/H5Sselect.c
@@ -27,6 +27,7 @@
#include "H5Eprivate.h" /* Error handling */
#include "H5FLprivate.h" /* Free Lists */
#include "H5Iprivate.h" /* IDs */
+#include "H5MMprivate.h" /* Memory management */
#include "H5Spkg.h" /* Dataspaces */
#include "H5Vprivate.h" /* Vector and array functions */
#include "H5WBprivate.h" /* Wrapped Buffers */
@@ -108,7 +109,7 @@ H5S_select_copy (H5S_t *dst, const H5S_t *src, hbool_t share_selection)
{
herr_t ret_value; /* return value */
- FUNC_ENTER_NOAPI(H5S_select_copy, FAIL);
+ FUNC_ENTER_NOAPI(H5S_select_copy, FAIL)
/* Check args */
assert(dst);
@@ -119,10 +120,10 @@ H5S_select_copy (H5S_t *dst, const H5S_t *src, hbool_t share_selection)
/* Perform correct type of copy based on the type of selection */
if((ret_value=(*src->select.type->copy)(dst,src,share_selection))<0)
- HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "can't copy selection specific information");
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "can't copy selection specific information")
done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_copy() */
@@ -149,14 +150,14 @@ H5S_select_release(H5S_t *ds)
{
herr_t ret_value; /* Return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_select_release);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_release)
assert(ds);
/* Call the selection type's release function */
ret_value=(*ds->select.type->release)(ds);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_select_release() */
@@ -186,14 +187,14 @@ H5S_select_get_seq_list(const H5S_t *space, unsigned flags,
{
herr_t ret_value; /* Return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_select_get_seq_list);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_get_seq_list)
assert(space);
/* Call the selection type's get_seq_list function */
ret_value=(*space->select.type->get_seq_list)(space,flags,iter,maxseq,maxbytes,nseq,nbytes,off,len);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_select_get_seq_list() */
@@ -221,14 +222,14 @@ H5S_select_serial_size(const H5S_t *space)
{
hssize_t ret_value; /* Return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_select_serial_size);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_serial_size)
assert(space);
/* Call the selection type's serial_size function */
ret_value=(*space->select.type->serial_size)(space);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_select_serial_size() */
@@ -259,7 +260,7 @@ H5S_select_serialize(const H5S_t *space, uint8_t *buf)
{
herr_t ret_value=SUCCEED; /* Return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_select_serialize);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_serialize)
assert(space);
assert(buf);
@@ -267,7 +268,7 @@ H5S_select_serialize(const H5S_t *space, uint8_t *buf)
/* Call the selection type's serialize function */
ret_value=(*space->select.type->serialize)(space,buf);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_select_serialize() */
@@ -410,13 +411,13 @@ H5S_select_valid(const H5S_t *space)
{
htri_t ret_value; /* Return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_select_valid);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_valid)
assert(space);
ret_value = (*space->select.type->is_valid)(space);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_valid() */
@@ -449,7 +450,7 @@ H5S_select_deserialize (H5S_t *space, const uint8_t *buf)
uint32_t sel_type; /* Pointer to the selection type */
herr_t ret_value=FAIL; /* return value */
- FUNC_ENTER_NOAPI(H5S_select_deserialize, FAIL);
+ FUNC_ENTER_NOAPI(H5S_select_deserialize, FAIL)
assert(space);
@@ -476,10 +477,10 @@ H5S_select_deserialize (H5S_t *space, const uint8_t *buf)
break;
}
if(ret_value<0)
- HGOTO_ERROR(H5E_DATASPACE, H5E_CANTLOAD, FAIL, "can't deserialize selection");
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTLOAD, FAIL, "can't deserialize selection")
done:
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_deserialize() */
@@ -567,7 +568,7 @@ H5S_get_select_bounds(const H5S_t *space, hsize_t *start, hsize_t *end)
{
herr_t ret_value; /* return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_get_select_bounds);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_get_select_bounds)
/* Check args */
assert(space);
@@ -576,7 +577,7 @@ H5S_get_select_bounds(const H5S_t *space, hsize_t *start, hsize_t *end)
ret_value = (*space->select.type->bounds)(space,start,end);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_get_select_bounds() */
@@ -646,14 +647,14 @@ H5S_select_is_contiguous(const H5S_t *space)
{
herr_t ret_value; /* return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_select_is_contiguous);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_is_contiguous)
/* Check args */
assert(space);
ret_value = (*space->select.type->is_contiguous)(space);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_is_contiguous() */
@@ -683,14 +684,14 @@ H5S_select_is_single(const H5S_t *space)
{
herr_t ret_value; /* return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_select_is_single);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_is_single)
/* Check args */
assert(space);
ret_value = (*space->select.type->is_single)(space);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_is_single() */
@@ -720,14 +721,14 @@ H5S_select_is_regular(const H5S_t *space)
{
herr_t ret_value; /* return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_select_is_regular);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_is_regular)
/* Check args */
assert(space);
ret_value = (*space->select.type->is_regular)(space);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_is_regular() */
@@ -770,6 +771,86 @@ H5S_select_adjust_u(H5S_t *space, const hsize_t *offset)
/*--------------------------------------------------------------------------
NAME
+ H5S_select_project_scalar
+ PURPOSE
+ Project a single element selection for a scalar dataspace
+ USAGE
+ herr_t H5S_select_project_scalar(space, offset)
+ const H5S_t *space; IN: Pointer to dataspace to project
+ hsize_t *offset; IN/OUT: Offset of projected point
+ RETURNS
+ Non-negative on success, negative on failure
+ DESCRIPTION
+ Projects a selection of a single element into a scalar dataspace, computing
+ the offset of the element in the original selection.
+ GLOBAL VARIABLES
+ COMMENTS, BUGS, ASSUMPTIONS
+ This routine participates in the "Inlining C function pointers"
+ pattern, don't call it directly, use the appropriate macro
+ defined in H5Sprivate.h.
+ EXAMPLES
+ REVISION LOG
+--------------------------------------------------------------------------*/
+herr_t
+H5S_select_project_scalar(const H5S_t *space, hsize_t *offset)
+{
+ herr_t ret_value; /* Return value */
+
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_project_scalar)
+
+ /* Check args */
+ HDassert(space);
+ HDassert(offset);
+
+ ret_value = (*space->select.type->project_scalar)(space, offset);
+
+ FUNC_LEAVE_NOAPI(ret_value)
+} /* H5S_select_project_scalar() */
+
+
+/*--------------------------------------------------------------------------
+ NAME
+ H5S_select_project_simple
+ PURPOSE
+ Project a selection onto/into a dataspace of different rank
+ USAGE
+ herr_t H5S_select_project_simple(space, new_space, offset)
+ const H5S_t *space; IN: Pointer to dataspace to project
+ H5S_t *new_space; IN/OUT: Pointer to dataspace projected onto
+ hsize_t *offset; IN/OUT: Offset of projected point
+ RETURNS
+ Non-negative on success, negative on failure
+ DESCRIPTION
+ Projects a selection onto/into a simple dataspace, computing
+ the offset of the first element in the original selection.
+ GLOBAL VARIABLES
+ COMMENTS, BUGS, ASSUMPTIONS
+ This routine participates in the "Inlining C function pointers"
+ pattern, don't call it directly, use the appropriate macro
+ defined in H5Sprivate.h.
+ EXAMPLES
+ REVISION LOG
+--------------------------------------------------------------------------*/
+herr_t
+H5S_select_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset)
+{
+ herr_t ret_value; /* Return value */
+
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_project_simple)
+
+ /* Check args */
+ HDassert(space);
+ HDassert(new_space);
+ HDassert(offset);
+
+ ret_value = (*space->select.type->project_simple)(space, new_space, offset);
+
+ FUNC_LEAVE_NOAPI(ret_value)
+} /* H5S_select_project_simple() */
+
+
+/*--------------------------------------------------------------------------
+ NAME
H5S_select_iter_init
PURPOSE
Initializes iteration information for a selection.
@@ -790,7 +871,7 @@ H5S_select_iter_init(H5S_sel_iter_t *sel_iter, const H5S_t *space, size_t elmt_s
{
herr_t ret_value; /* Return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_init);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_init)
/* Check args */
assert(sel_iter);
@@ -813,7 +894,7 @@ H5S_select_iter_init(H5S_sel_iter_t *sel_iter, const H5S_t *space, size_t elmt_s
/* Call initialization routine for selection type */
ret_value= (*space->select.type->iter_init)(sel_iter, space);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_iter_init() */
@@ -844,7 +925,7 @@ H5S_select_iter_coords (const H5S_sel_iter_t *sel_iter, hsize_t *coords)
{
herr_t ret_value; /* return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_coords);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_coords)
/* Check args */
assert(sel_iter);
@@ -853,7 +934,7 @@ H5S_select_iter_coords (const H5S_sel_iter_t *sel_iter, hsize_t *coords)
/* Call iter_coords routine for selection type */
ret_value = (*sel_iter->type->iter_coords)(sel_iter,coords);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_iter_coords() */
#ifdef LATER
@@ -886,7 +967,7 @@ H5S_select_iter_block (const H5S_sel_iter_t *iter, hsize_t *start, hsize_t *end)
{
herr_t ret_value; /* return value */
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_select_iter_block);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_select_iter_block)
/* Check args */
assert(iter);
@@ -896,7 +977,7 @@ H5S_select_iter_block (const H5S_sel_iter_t *iter, hsize_t *start, hsize_t *end)
/* Call iter_block routine for selection type */
ret_value = (*iter->type->iter_block)(iter,start,end);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_iter_block() */
#endif /* LATER */
@@ -926,7 +1007,7 @@ H5S_select_iter_nelmts (const H5S_sel_iter_t *sel_iter)
{
hsize_t ret_value; /* return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_nelmts);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_nelmts)
/* Check args */
assert(sel_iter);
@@ -934,7 +1015,7 @@ H5S_select_iter_nelmts (const H5S_sel_iter_t *sel_iter)
/* Call iter_nelmts routine for selection type */
ret_value = (*sel_iter->type->iter_nelmts)(sel_iter);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_iter_nelmts() */
#ifdef LATER
@@ -965,7 +1046,7 @@ H5S_select_iter_has_next_block (const H5S_sel_iter_t *iter)
{
herr_t ret_value; /* return value */
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_select_iter_has_next_block);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_select_iter_has_next_block)
/* Check args */
assert(iter);
@@ -973,7 +1054,7 @@ H5S_select_iter_has_next_block (const H5S_sel_iter_t *iter)
/* Call iter_has_next_block routine for selection type */
ret_value = (*iter->type->iter_has_next_block)(iter);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_iter_has_next_block() */
#endif /* LATER */
@@ -1005,7 +1086,7 @@ H5S_select_iter_next(H5S_sel_iter_t *iter, size_t nelem)
{
herr_t ret_value; /* return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_next);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_next)
/* Check args */
assert(iter);
@@ -1017,7 +1098,7 @@ H5S_select_iter_next(H5S_sel_iter_t *iter, size_t nelem)
/* Decrement the number of elements left in selection */
iter->elmt_left-=nelem;
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_iter_next() */
#ifdef LATER
@@ -1050,7 +1131,7 @@ H5S_select_iter_next_block(H5S_sel_iter_t *iter)
{
herr_t ret_value; /* return value */
- FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_select_iter_next_block);
+ FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_select_iter_next_block)
/* Check args */
assert(iter);
@@ -1058,7 +1139,7 @@ H5S_select_iter_next_block(H5S_sel_iter_t *iter)
/* Call iter_next_block routine for selection type */
ret_value = (*iter->type->iter_next_block)(iter);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_iter_next_block() */
#endif /* LATER */
@@ -1088,7 +1169,7 @@ H5S_select_iter_release(H5S_sel_iter_t *sel_iter)
{
herr_t ret_value; /* return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_release);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_release)
/* Check args */
assert(sel_iter);
@@ -1096,7 +1177,7 @@ H5S_select_iter_release(H5S_sel_iter_t *sel_iter)
/* Call selection type-specific release routine */
ret_value = (*sel_iter->type->iter_release)(sel_iter);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* H5S_select_iter_release() */
@@ -1154,7 +1235,7 @@ H5S_select_iterate(void *buf, hid_t type_id, const H5S_t *space, H5D_operator_t
herr_t user_ret=0; /* User's return value */
herr_t ret_value=SUCCEED; /* Return value */
- FUNC_ENTER_NOAPI(H5S_select_iterate, FAIL);
+ FUNC_ENTER_NOAPI(H5S_select_iterate, FAIL)
/* Check args */
HDassert(buf);
@@ -1302,7 +1383,7 @@ H5S_get_select_type(const H5S_t *space)
{
H5S_sel_type ret_value; /* Return value */
- FUNC_ENTER_NOAPI_NOFUNC(H5S_get_select_type);
+ FUNC_ENTER_NOAPI_NOFUNC(H5S_get_select_type)
/* Check args */
assert(space);
@@ -1310,7 +1391,7 @@ H5S_get_select_type(const H5S_t *space)
/* Set return value */
ret_value=H5S_GET_SELECT_TYPE(space);
- FUNC_LEAVE_NOAPI(ret_value);
+ FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_get_select_type() */
@@ -1334,16 +1415,17 @@ H5S_get_select_type(const H5S_t *space)
Assumes that there is only a single "block" for hyperslab selections.
EXAMPLES
REVISION LOG
+ Modified function to view identical shapes with different dimensions
+ as being the same under some circumstances.
--------------------------------------------------------------------------*/
htri_t
H5S_select_shape_same(const H5S_t *space1, const H5S_t *space2)
{
- H5S_sel_iter_t iter1; /* Selection #1 iteration info */
- H5S_sel_iter_t iter2; /* Selection #2 iteration info */
- hbool_t iter1_init = 0; /* Selection #1 iteration info has been initialized */
- hbool_t iter2_init = 0; /* Selection #2 iteration info has been initialized */
- unsigned u; /* Index variable */
- htri_t ret_value = TRUE; /* Return value */
+ H5S_sel_iter_t iter_a; /* Selection a iteration info */
+ H5S_sel_iter_t iter_b; /* Selection b iteration info */
+ hbool_t iter_a_init = 0; /* Selection a iteration info has been initialized */
+ hbool_t iter_b_init = 0; /* Selection b iteration info has been initialized */
+ htri_t ret_value = TRUE; /* Return value */
FUNC_ENTER_NOAPI(H5S_select_shape_same, FAIL)
@@ -1358,139 +1440,527 @@ H5S_select_shape_same(const H5S_t *space1, const H5S_t *space2)
HGOTO_DONE(FALSE)
} /* end if */
else {
- /* Check for different dimensionality */
- if(space1->extent.rank != space2->extent.rank)
- HGOTO_DONE(FALSE)
+ const H5S_t *space_a; /* Dataspace with larger rank */
+ const H5S_t *space_b; /* Dataspace with smaller rank */
+ unsigned space_a_rank; /* Number of dimensions of dataspace A */
+ unsigned space_b_rank; /* Number of dimensions of dataspace B */
+
+ /* need to be able to handle spaces of different rank:
+ *
+ * To simplify logic, let space_a point to the element of the set
+ * {space1, space2} with the largest rank or space1 if the ranks
+ * are identical.
+ *
+ * Similarly, let space_b point to the element of {space1, space2}
+ * with the smallest rank, or space2 if they are identical.
+ *
+ * Let: space_a_rank be the rank of space_a,
+ * space_b_rank be the rank of space_b,
+ * delta_rank = space_a_rank - space_b_rank.
+ *
+ * Set all this up below.
+ */
+ if(space1->extent.rank >= space2->extent.rank) {
+ space_a = space1;
+ space_a_rank = space_a->extent.rank;
+
+ space_b = space2;
+ space_b_rank = space_b->extent.rank;
+ } /* end if */
+ else {
+ space_a = space2;
+ space_a_rank = space_a->extent.rank;
+
+ space_b = space1;
+ space_b_rank = space_b->extent.rank;
+ } /* end else */
+ HDassert(space_a_rank >= space_b_rank);
+ HDassert(space_b_rank > 0);
/* Check for different number of elements selected */
- if(H5S_GET_SELECT_NPOINTS(space1) != H5S_GET_SELECT_NPOINTS(space2))
+ if(H5S_GET_SELECT_NPOINTS(space_a) != H5S_GET_SELECT_NPOINTS(space_b))
HGOTO_DONE(FALSE)
/* Check for "easy" cases before getting into generalized block iteration code */
- if(H5S_GET_SELECT_TYPE(space1)==H5S_SEL_ALL && H5S_GET_SELECT_TYPE(space2)==H5S_SEL_ALL) {
- hsize_t dims1[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace #1 */
- hsize_t dims2[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace #2 */
-
- if(H5S_get_simple_extent_dims(space1, dims1, NULL)<0)
- HGOTO_ERROR (H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get dimensionality");
- if(H5S_get_simple_extent_dims(space2, dims2, NULL)<0)
- HGOTO_ERROR (H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get dimensionality");
-
- /* Check that the sizes are the same */
- for (u=0; u<space1->extent.rank; u++)
- if(dims1[u]!=dims2[u])
- HGOTO_DONE(FALSE);
+ if((H5S_GET_SELECT_TYPE(space_a) == H5S_SEL_ALL) && (H5S_GET_SELECT_TYPE(space_b) == H5S_SEL_ALL)) {
+ hsize_t dims1[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace #1 */
+ hsize_t dims2[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace #2 */
+ int space_a_dim; /* Current dimension in dataspace A */
+ int space_b_dim; /* Current dimension in dataspace B */
+
+ if(H5S_get_simple_extent_dims(space_a, dims1, NULL) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get dimensionality")
+ if(H5S_get_simple_extent_dims(space_b, dims2, NULL) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get dimensionality")
+
+ space_a_dim = (int)space_a_rank - 1;
+ space_b_dim = (int)space_b_rank - 1;
+
+ /* recall that space_a_rank >= space_b_rank.
+ *
+ * In the following while loop, we test to see if space_a and space_b
+ * have identical size in all dimensions they have in common.
+ */
+ while(space_b_dim >= 0) {
+ if(dims1[space_a_dim] != dims2[space_b_dim])
+ HGOTO_DONE(FALSE)
+
+ space_a_dim--;
+ space_b_dim--;
+ } /* end while */
+
+ /* Since we are selecting the entire spaces, we must also verify that space_a
+ * has size 1 in all dimensions that it does not share with space_b.
+ */
+ while(space_a_dim >= 0) {
+ if(dims1[space_a_dim] != 1)
+ HGOTO_DONE(FALSE)
+
+ space_a_dim--;
+ } /* end while */
} /* end if */
- else if(H5S_GET_SELECT_TYPE(space1)==H5S_SEL_NONE || H5S_GET_SELECT_TYPE(space2)==H5S_SEL_NONE) {
- HGOTO_DONE(TRUE);
+ else if((H5S_GET_SELECT_TYPE(space1) == H5S_SEL_NONE) || (H5S_GET_SELECT_TYPE(space2) == H5S_SEL_NONE)) {
+ HGOTO_DONE(TRUE)
} /* end if */
- else if((H5S_GET_SELECT_TYPE(space1)==H5S_SEL_HYPERSLABS && space1->select.sel_info.hslab->diminfo_valid)
- && (H5S_GET_SELECT_TYPE(space2)==H5S_SEL_HYPERSLABS && space2->select.sel_info.hslab->diminfo_valid)) {
-
- /* Check that the shapes are the same */
- for (u=0; u<space1->extent.rank; u++) {
- if(space1->select.sel_info.hslab->opt_diminfo[u].stride!=space2->select.sel_info.hslab->opt_diminfo[u].stride)
- HGOTO_DONE(FALSE);
- if(space1->select.sel_info.hslab->opt_diminfo[u].count!=space2->select.sel_info.hslab->opt_diminfo[u].count)
- HGOTO_DONE(FALSE);
- if(space1->select.sel_info.hslab->opt_diminfo[u].block!=space2->select.sel_info.hslab->opt_diminfo[u].block)
- HGOTO_DONE(FALSE);
- } /* end for */
+ else if((H5S_GET_SELECT_TYPE(space_a) == H5S_SEL_HYPERSLABS && space_a->select.sel_info.hslab->diminfo_valid)
+ && (H5S_GET_SELECT_TYPE(space_b) == H5S_SEL_HYPERSLABS && space_b->select.sel_info.hslab->diminfo_valid)) {
+ int space_a_dim; /* Current dimension in dataspace A */
+ int space_b_dim; /* Current dimension in dataspace B */
+
+ space_a_dim = (int)space_a_rank - 1;
+ space_b_dim = (int)space_b_rank - 1;
+
+ /* check that the shapes are the same in the common dimensions, and that
+ * block == 1 in all dimensions that appear only in space_a.
+ */
+ while(space_b_dim >= 0) {
+ if(space_a->select.sel_info.hslab->opt_diminfo[space_a_dim].stride !=
+ space_b->select.sel_info.hslab->opt_diminfo[space_b_dim].stride)
+ HGOTO_DONE(FALSE)
+
+ if(space_a->select.sel_info.hslab->opt_diminfo[space_a_dim].count !=
+ space_b->select.sel_info.hslab->opt_diminfo[space_b_dim].count)
+ HGOTO_DONE(FALSE)
+
+ if(space_a->select.sel_info.hslab->opt_diminfo[space_a_dim].block !=
+ space_b->select.sel_info.hslab->opt_diminfo[space_b_dim].block)
+ HGOTO_DONE(FALSE)
+
+ space_a_dim--;
+ space_b_dim--;
+ } /* end while */
+
+ while(space_a_dim >= 0) {
+ if(space_a->select.sel_info.hslab->opt_diminfo[space_a_dim].block != 1)
+ HGOTO_DONE(FALSE)
+
+ space_a_dim--;
+ } /* end while */
} /* end if */
/* Iterate through all the blocks in the selection */
else {
- hsize_t start1[H5O_LAYOUT_NDIMS]; /* Start point of selection block in dataspace #1 */
- hsize_t start2[H5O_LAYOUT_NDIMS]; /* Start point of selection block in dataspace #2 */
- hsize_t end1[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace #1 */
- hsize_t end2[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace #2 */
- hsize_t off1[H5O_LAYOUT_NDIMS]; /* Offset of selection #1 blocks */
- hsize_t off2[H5O_LAYOUT_NDIMS]; /* Offset of selection #2 blocks */
- htri_t status1,status2; /* Status from next block checks */
- unsigned first_block=1; /* Flag to indicate the first block */
+ hsize_t start_a[H5O_LAYOUT_NDIMS]; /* Start point of selection block in dataspace a */
+ hsize_t start_b[H5O_LAYOUT_NDIMS]; /* Start point of selection block in dataspace b */
+ hsize_t end_a[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace a */
+ hsize_t end_b[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace b */
+ hsize_t off_a[H5O_LAYOUT_NDIMS]; /* Offset of selection a blocks */
+ hsize_t off_b[H5O_LAYOUT_NDIMS]; /* Offset of selection b blocks */
+ hbool_t first_block = TRUE; /* Flag to indicate the first block */
/* Initialize iterator for each dataspace selection
* Use '0' for element size instead of actual element size to indicate
* that the selection iterator shouldn't be "flattened", since we
* aren't actually going to be doing I/O with the iterators.
*/
- if(H5S_select_iter_init(&iter1, space1, (size_t)0) < 0)
- HGOTO_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator");
- iter1_init = 1;
- if(H5S_select_iter_init(&iter2, space2, (size_t)0) < 0)
- HGOTO_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator");
- iter2_init = 1;
+ if(H5S_select_iter_init(&iter_a, space_a, (size_t)0) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator a")
+ iter_a_init = 1;
+ if(H5S_select_iter_init(&iter_b, space_b, (size_t)0) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator b")
+ iter_b_init = 1;
/* Iterate over all the blocks in each selection */
while(1) {
+ int space_a_dim; /* Current dimension in dataspace A */
+ int space_b_dim; /* Current dimension in dataspace B */
+ htri_t status_a, status_b; /* Status from next block checks */
+
/* Get the current block for each selection iterator */
- if(H5S_SELECT_ITER_BLOCK(&iter1,start1,end1)<0)
- HGOTO_ERROR (H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get iterator block");
- if(H5S_SELECT_ITER_BLOCK(&iter2,start2,end2)<0)
- HGOTO_ERROR (H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get iterator block");
+ if(H5S_SELECT_ITER_BLOCK(&iter_a, start_a, end_a) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get iterator block a")
+ if(H5S_SELECT_ITER_BLOCK(&iter_b, start_b, end_b) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get iterator block b")
- /* The first block only compares the sizes and sets the relative offsets for later blocks */
+ space_a_dim = (int)space_a_rank - 1;
+ space_b_dim = (int)space_b_rank - 1;
+
+ /* The first block only compares the sizes and sets the
+ * relative offsets for later blocks
+ */
if(first_block) {
- /* If the block sizes from each selection doesn't match, get out */
- for (u=0; u<space1->extent.rank; u++) {
- if((end1[u]-start1[u])!=(end2[u]-start2[u]))
- HGOTO_DONE(FALSE);
+ /* If the block sizes in the common dimensions from
+ * each selection don't match, get out
+ */
+ while(space_b_dim >= 0) {
+ if((end_a[space_a_dim] - start_a[space_a_dim]) !=
+ (end_b[space_b_dim] - start_b[space_b_dim]))
+ HGOTO_DONE(FALSE)
+
+ /* Set the relative locations of the selections */
+ off_a[space_a_dim] = start_a[space_a_dim];
+ off_b[space_b_dim] = start_b[space_b_dim];
+
+ space_a_dim--;
+ space_b_dim--;
+ } /* end while */
+
+ /* similarly, if the block size in any dimension that appears only
+ * in space_a is not equal to 1, get out.
+ */
+ while(space_a_dim >= 0) {
+ if((end_a[space_a_dim] - start_a[space_a_dim]) != 0)
+ HGOTO_DONE(FALSE)
/* Set the relative locations of the selections */
- off1[u]=start1[u];
- off2[u]=start2[u];
- } /* end for */
+ off_a[space_a_dim] = start_a[space_a_dim];
+
+ space_a_dim--;
+ } /* end while */
/* Reset "first block" flag */
- first_block=0;
+ first_block = FALSE;
} /* end if */
+ /* Check over the blocks for each selection */
else {
- /* Check over the blocks for each selection */
- for (u=0; u<space1->extent.rank; u++) {
+ /* for dimensions that space_a and space_b have in common: */
+ while(space_b_dim >= 0) {
/* Check if the blocks are in the same relative location */
- if((start1[u]-off1[u])!=(start2[u]-off2[u]))
- HGOTO_DONE(FALSE);
+ if((start_a[space_a_dim] - off_a[space_a_dim]) !=
+ (start_b[space_b_dim] - off_b[space_b_dim]))
+ HGOTO_DONE(FALSE)
/* If the block sizes from each selection doesn't match, get out */
- if((end1[u]-start1[u])!=(end2[u]-start2[u]))
- HGOTO_DONE(FALSE);
- } /* end for */
+ if((end_a[space_a_dim] - start_a[space_a_dim]) !=
+ (end_b[space_b_dim] - start_b[space_b_dim]))
+ HGOTO_DONE(FALSE)
+
+ space_a_dim--;
+ space_b_dim--;
+ } /* end while */
+
+ /* For dimensions that appear only in space_a: */
+ while(space_a_dim >= 0) {
+ /* If the block size isn't 1, get out */
+ if((end_a[space_a_dim] - start_a[space_a_dim]) != 0)
+ HGOTO_DONE(FALSE)
+
+ space_a_dim--;
+ } /* end while */
} /* end else */
/* Check if we are able to advance to the next selection block */
- if((status1=H5S_SELECT_ITER_HAS_NEXT_BLOCK(&iter1))<0)
- HGOTO_ERROR (H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to check iterator block");
- if((status2=H5S_SELECT_ITER_HAS_NEXT_BLOCK(&iter2))<0)
- HGOTO_ERROR (H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to check iterator block");
+ if((status_a = H5S_SELECT_ITER_HAS_NEXT_BLOCK(&iter_a)) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to check iterator block a")
+
+ if((status_b = H5S_SELECT_ITER_HAS_NEXT_BLOCK(&iter_b)) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to check iterator block b")
/* Did we run out of blocks at the same time? */
- if(status1==FALSE && status2==FALSE)
+ if((status_a == FALSE) && (status_b == FALSE))
break;
- else if(status1!=status2) {
- HGOTO_DONE(FALSE);
- } /* end if */
+ else if(status_a != status_b)
+ HGOTO_DONE(FALSE)
else {
/* Advance to next block in selection iterators */
- if(H5S_SELECT_ITER_NEXT_BLOCK(&iter1)<0)
- HGOTO_ERROR (H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to advance to next iterator block");
- if(H5S_SELECT_ITER_NEXT_BLOCK(&iter2)<0)
- HGOTO_ERROR (H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to advance to next iterator block");
+ if(H5S_SELECT_ITER_NEXT_BLOCK(&iter_a) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to advance to next iterator block a")
+
+ if(H5S_SELECT_ITER_NEXT_BLOCK(&iter_b) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to advance to next iterator block b")
} /* end else */
} /* end while */
} /* end else */
} /* end else */
done:
- if(iter1_init) {
- if (H5S_SELECT_ITER_RELEASE(&iter1)<0)
- HDONE_ERROR (H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator");
+ if(iter_a_init)
+ if(H5S_SELECT_ITER_RELEASE(&iter_a) < 0)
+ HDONE_ERROR(H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator a")
+ if(iter_b_init)
+ if(H5S_SELECT_ITER_RELEASE(&iter_b) < 0)
+ HDONE_ERROR(H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator b")
+
+ FUNC_LEAVE_NOAPI(ret_value)
+} /* H5S_select_shape_same() */
+
+
+/*--------------------------------------------------------------------------
+ NAME
+ H5S_select_construct_projection
+
+ PURPOSE
+ Given a dataspace a of rank n with some selection, construct a new
+ dataspace b of rank m (m != n), with the selection in a being
+ topologically identical to that in b (as verified by
+ H5S_select_shape_same().
+
+ This function exists, as some I/O code chokes of topologically
+ identical selections with different ranks. At least to begin
+ with, we will deal with the issue by constructing projections
+ of the memory dataspace with ranks equaling those of the file
+ dataspace.
+
+ Note that if m > n, it is possible that the starting point in the
+ buffer associated with the memory dataspace will have to be
+ adjusted to match the projected dataspace. If the buf parameter
+ is not NULL, the function must return an adjusted buffer base
+ address in *adj_buf_ptr.
+
+ USAGE
+ htri_t H5S_select_construct_projection(base_space,
+ new_space_ptr,
+ new_space_rank,
+ buf,
+ adj_buf_ptr)
+ const H5S_t *base_space; IN: Ptr to Dataspace to project
+ H5S_t ** new_space_ptr; OUT: Ptr to location in which to return
+ the address of the projected space
+ int new_space_rank; IN: Rank of the projected space.
+ const void * buf; IN: Base address of the buffer
+ associated with the base space.
+ May be NULL.
+ void ** adj_buf_ptr; OUT: If buf != NULL, store the base
+ address of the section of buf
+ that is described by *new_space_ptr
+ in *adj_buf_ptr.
+
+ RETURNS
+ Non-negative on success/Negative on failure.
+
+ DESCRIPTION
+ Construct a new dataspace and associated selection which is a
+ projection of the supplied dataspace and associated selection into
+ the specified rank. Return it in *new_space_ptr.
+
+ If buf is supplied, computes the base address of the projected
+ selection in buf, and stores the base address in *adj_buf_ptr.
+
+ GLOBAL VARIABLES
+ COMMENTS, BUGS, ASSUMPTIONS
+ The selection in the supplied base_space has thickness 1 in all
+ dimensions greater than new_space_rank. Note that here we count
+ dimensions from the fastest changing coordinate to the slowest
+ changing changing coordinate.
+ EXAMPLES
+ REVISION LOG
+--------------------------------------------------------------------------*/
+herr_t
+H5S_select_construct_projection(const H5S_t *base_space, H5S_t **new_space_ptr,
+ unsigned new_space_rank, const void *buf, void **adj_buf_ptr, hsize_t element_size)
+{
+ H5S_t * new_space = NULL; /* New dataspace constructed */
+ hsize_t base_space_dims[H5S_MAX_RANK]; /* Current dimensions of base dataspace */
+ hsize_t base_space_maxdims[H5S_MAX_RANK]; /* Maximum dimensions of base dataspace */
+ int sbase_space_rank; /* Signed # of dimensions of base dataspace */
+ unsigned base_space_rank; /* # of dimensions of base dataspace */
+ hsize_t projected_space_element_offset = 0; /* Offset of selected element in projected buffer */
+ herr_t ret_value = SUCCEED; /* Return value */
+
+ FUNC_ENTER_NOAPI(H5S_select_construct_projection, FAIL)
+
+ /* Sanity checks */
+ HDassert(base_space != NULL);
+ HDassert((H5S_GET_EXTENT_TYPE(base_space) == H5S_SCALAR) || (H5S_GET_EXTENT_TYPE(base_space) == H5S_SIMPLE));
+ HDassert(new_space_ptr != NULL);
+ HDassert((new_space_rank != 0) || (H5S_GET_SELECT_NPOINTS(base_space) <= 1));
+ HDassert(new_space_rank <= H5S_MAX_RANK);
+ HDassert((buf == NULL) || (adj_buf_ptr != NULL));
+ HDassert(element_size > 0 );
+
+ /* Get the extent info for the base dataspace */
+ if((sbase_space_rank = H5S_get_simple_extent_dims(base_space, base_space_dims, base_space_maxdims)) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get dimensionality of base space")
+ base_space_rank = (unsigned)sbase_space_rank;
+ HDassert(base_space_rank != new_space_rank);
+
+ /* Check if projected space is scalar */
+ if(new_space_rank == 0) {
+ hssize_t npoints; /* Number of points selected */
+
+ /* Retreve the number of elements selected */
+ if((npoints = (hssize_t)H5S_GET_SELECT_NPOINTS(base_space)) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get number of points selected")
+ HDassert(npoints <= 1);
+
+ /* Create new scalar dataspace */
+ if(NULL == (new_space = H5S_create(H5S_SCALAR)))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCREATE, FAIL, "unable to create scalar dataspace")
+
+ /* No need to register the dataspace(i.e. get an ID) as
+ * we will just be discarding it shortly.
+ */
+
+ /* Selection for the new space will be either all or
+ * none, depending on whether the base space has 0 or
+ * 1 elements selected.
+ *
+ * Observe that the base space can't have more than
+ * one selected element, since its selection has the
+ * same shape as the file dataspace, and that data
+ * space is scalar.
+ */
+ if(1 == npoints) {
+ /* Assuming that the selection in the base dataspace is not
+ * empty, we must compute the offset of the selected item in
+ * the buffer associated with the base dataspace.
+ *
+ * Since the new space rank is zero, we know that the
+ * the base space must have rank at least 1 -- and
+ * hence it is a simple dataspace. However, the
+ * selection, may be either point, hyperspace, or all.
+ *
+ */
+ if(H5S_SELECT_PROJECT_SCALAR(base_space, &projected_space_element_offset) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "unable to project scalar selection")
+ } /* end if */
+ else {
+ HDassert(0 == npoints);
+
+ if(H5S_select_none(new_space) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't delete default selection")
+ } /* end else */
+ } /* end if */
+ else { /* projected space must be simple */
+ hsize_t new_space_dims[H5S_MAX_RANK]; /* Current dimensions for new dataspace */
+ hsize_t new_space_maxdims[H5S_MAX_RANK];/* Maximum dimensions for new dataspace */
+ unsigned rank_diff; /* Difference in ranks */
+
+ /* Set up the dimensions of the new, projected dataspace.
+ *
+ * How we do this depends on whether we are projecting up into
+ * increased dimensions, or down into a reduced number of
+ * dimensions.
+ *
+ * If we are projecting up (the first half of the following
+ * if statement), we copy the dimensions of the base data
+ * space into the fastest changing dimensions of the new
+ * projected dataspace, and set the remaining dimensions to
+ * one.
+ *
+ * If we are projecting down (the second half of the following
+ * if statement), we just copy the dimensions with the most
+ * quickly changing dimensions into the dims for the projected
+ * data set.
+ *
+ * This works, because H5S_select_shape_same() will return
+ * true on selections of different rank iff:
+ *
+ * 1) the selection in the lower rank dataspace matches that
+ * in the dimensions with the fastest changing indicies in
+ * the larger rank dataspace, and
+ *
+ * 2) the selection has thickness 1 in all ranks that appear
+ * only in the higher rank dataspace (i.e. those with
+ * more slowly changing indicies).
+ */
+ if(new_space_rank > base_space_rank) {
+ hsize_t tmp_dim_size = 1; /* Temporary dimension value, for filling arrays */
+
+ /* we must copy the dimensions of the base space into
+ * the fastest changing dimensions of the new space,
+ * and set the remaining dimensions to 1
+ */
+ rank_diff = new_space_rank - base_space_rank;
+ H5V_array_fill(new_space_dims, &tmp_dim_size, sizeof(tmp_dim_size), rank_diff);
+ H5V_array_fill(new_space_maxdims, &tmp_dim_size, sizeof(tmp_dim_size), rank_diff);
+ HDmemcpy(&new_space_dims[rank_diff], base_space_dims, sizeof(new_space_dims[0]) * base_space_rank);
+ HDmemcpy(&new_space_maxdims[rank_diff], base_space_maxdims, sizeof(new_space_maxdims[0]) * base_space_rank);
+ } /* end if */
+ else { /* new_space_rank < base_space_rank */
+ /* we must copy the fastest changing dimension of the
+ * base space into the dimensions of the new space.
+ */
+ rank_diff = base_space_rank - new_space_rank;
+ HDmemcpy(new_space_dims, &base_space_dims[rank_diff], sizeof(new_space_dims[0]) * new_space_rank);
+ HDmemcpy(new_space_maxdims, &base_space_maxdims[rank_diff], sizeof(new_space_maxdims[0]) * new_space_rank);
+ } /* end else */
+
+ /* now have the new space rank and dimensions set up --
+ * so we can create the new simple dataspace.
+ */
+ if(NULL == (new_space = H5S_create_simple(new_space_rank, new_space_dims, new_space_maxdims)))
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCREATE, FAIL, "can't create simple dataspace")
+
+ /* No need to register the dataspace(i.e. get an ID) as
+ * we will just be discarding it shortly.
+ */
+
+ /* If we get this far, we have successfully created the projected
+ * dataspace. We must now project the selection in the base
+ * dataspace into the projected dataspace.
+ */
+ if(H5S_SELECT_PROJECT_SIMPLE(base_space, new_space, &projected_space_element_offset) < 0)
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "unable to project simple selection")
+
+ /* If we get this far, we have created the new dataspace, and projected
+ * the selection in the base dataspace into the new dataspace.
+ *
+ * If the base dataspace is simple, check to see if the
+ * offset_changed flag on the base selection has been set -- if so,
+ * project the offset into the new dataspace and set the
+ * offset_changed flag.
+ */
+ if(H5S_GET_EXTENT_TYPE(base_space) == H5S_SIMPLE && base_space->select.offset_changed) {
+ if(new_space_rank > base_space_rank) {
+ HDmemset(new_space->select.offset, 0, sizeof(new_space->select.offset[0]) * rank_diff);
+ HDmemcpy(&new_space->select.offset[rank_diff], base_space->select.offset, sizeof(new_space->select.offset[0]) * base_space_rank);
+ } /* end if */
+ else
+ HDmemcpy(new_space->select.offset, &base_space->select.offset[rank_diff], sizeof(new_space->select.offset[0]) * new_space_rank);
+
+ /* Propagate the offset changed flag into the new dataspace. */
+ new_space->select.offset_changed = TRUE;
+ } /* end if */
+ } /* end else */
+
+ /* If we have done the projection correctly, the following assertion
+ * should hold.
+ */
+ HDassert(TRUE == H5S_select_shape_same(base_space, new_space));
+
+ /* load the address of the new space into *new_space_ptr */
+ *new_space_ptr = new_space;
+
+ /* now adjust the buffer if required */
+ if(buf != NULL) {
+ if(new_space_rank < base_space_rank) {
+ /* a bit of pointer magic here:
+ *
+ * Since we can't do pointer arithmetic on void pointers, we first
+ * cast buf to a pointer to byte -- i.e. uint8_t.
+ *
+ * We then multiply the projected space element offset we
+ * calculated earlier by the supplied element size, add this
+ * value to the type cast buf pointer, cast the result back
+ * to a pointer to void, and assign the result to *adj_buf_ptr.
+ */
+ *adj_buf_ptr = (void *)(((const uint8_t *)buf) +
+ ((size_t)(projected_space_element_offset * element_size)));
+ } /* end if */
+ else
+ /* No adjustment necessary */
+ *adj_buf_ptr = buf;
} /* end if */
- if(iter2_init) {
- if (H5S_SELECT_ITER_RELEASE(&iter2)<0)
- HDONE_ERROR (H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator");
+
+done:
+ /* Cleanup on error */
+ if(ret_value < 0) {
+ if(new_space && H5S_close(new_space) < 0)
+ HDONE_ERROR(H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release dataspace")
} /* end if */
FUNC_LEAVE_NOAPI(ret_value)
-} /* H5S_select_shape_same() */
+} /* H5S_select_construct_projection() */
/*--------------------------------------------------------------------------
@@ -1536,7 +2006,7 @@ H5S_select_fill(const void *fill, size_t fill_size, const H5S_t *space, void *_b
/* Initialize iterator */
if(H5S_select_iter_init(&iter, space, fill_size) < 0)
- HGOTO_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator")
+ HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator")
iter_init = 1; /* Selection iteration info has been initialized */
/* Get the number of elements in selection */
@@ -1556,7 +2026,7 @@ H5S_select_fill(const void *fill, size_t fill_size, const H5S_t *space, void *_b
/* Get the sequences of bytes */
if(H5S_SELECT_GET_SEQ_LIST(space, 0, &iter, (size_t)H5D_IO_VECTOR_SIZE, max_elem, &nseq, &nelem, off, len) < 0)
- HGOTO_ERROR (H5E_INTERNAL, H5E_UNSUPPORTED, FAIL, "sequence length generation failed")
+ HGOTO_ERROR(H5E_INTERNAL, H5E_UNSUPPORTED, FAIL, "sequence length generation failed")
/* Loop over sequences */
for(curr_seq = 0; curr_seq < nseq; curr_seq++) {
diff --git a/test/testframe.c b/test/testframe.c
index f0d94d8..201f569 100644
--- a/test/testframe.c
+++ b/test/testframe.c
@@ -26,7 +26,7 @@
/*
* Definitions for the testing structure.
*/
-#define MAXNUMOFTESTS 45
+#define MAXNUMOFTESTS 50
#define MAXTESTNAME 16
#define MAXTESTDESC 64
diff --git a/test/tselect.c b/test/tselect.c
index b8c59d8..89cd9e5 100644
--- a/test/tselect.c
+++ b/test/tselect.c
@@ -159,6 +159,9 @@
#define SPACERE5_DIM3 12
#define SPACERE5_DIM4 8
+/* #defines for shape same / different rank tests */
+#define SS_DR_MAX_RANK 5
+
/* Location comparison function */
@@ -1585,6 +1588,2031 @@ test_select_hyper_contig3(hid_t dset_type, hid_t xfer_plist)
HDfree(rbuf);
} /* test_select_hyper_contig3() */
+
+/****************************************************************
+**
+** verify_select_hyper_contig_dr__run_test(): Verify data from
+** test_select_hyper_contig_dr__run_test()
+**
+****************************************************************/
+static void
+verify_select_hyper_contig_dr__run_test(const uint16_t *cube_buf,
+ size_t cube_size, unsigned edge_size, unsigned cube_rank)
+{
+ const uint16_t *cube_ptr; /* Pointer into the cube buffer */
+ uint16_t expected_value; /* Expected value in dataset */
+ unsigned i, j, k, l, m; /* Local index variables */
+ size_t s; /* Local index variable */
+ hbool_t mis_match; /* Flag to indicate mis-match in expected value */
+
+ HDassert(cube_buf);
+ HDassert(cube_size > 0);
+
+ expected_value = 0;
+ mis_match = FALSE;
+ cube_ptr = cube_buf;
+ s = 0;
+ i = 0;
+ do {
+ j = 0;
+ do {
+ k = 0;
+ do {
+ l = 0;
+ do {
+ m = 0;
+ do {
+ /* Sanity check */
+ HDassert(s < cube_size);
+
+ /* Check for correct value */
+ if(*cube_ptr != expected_value)
+ mis_match = TRUE;
+
+ /* Advance to next element */
+ cube_ptr++;
+ expected_value++;
+ s++;
+ m++;
+ } while((cube_rank > 0) && (m < edge_size));
+ l++;
+ } while((cube_rank > 1) && (l < edge_size));
+ k++;
+ } while((cube_rank > 2) && (k < edge_size));
+ j++;
+ } while((cube_rank > 3) && (j < edge_size));
+ i++;
+ } while((cube_rank > 4) && (i < edge_size));
+ if(mis_match)
+ TestErrPrintf("Initial cube data don't match! Line = %d\n", __LINE__);
+} /* verify_select_hyper_contig_dr__run_test() */
+
+
+/****************************************************************
+**
+** test_select_hyper_contig_dr__run_test(): Test H5S (dataspace)
+** selection code with contiguous source and target having
+** different ranks but the same shape. We have already
+** tested H5S_shape_same in isolation, so now we try to do
+** I/O.
+**
+****************************************************************/
+static void
+test_select_hyper_contig_dr__run_test(int test_num, const uint16_t *cube_buf,
+ const uint16_t *zero_buf, unsigned edge_size, unsigned chunk_edge_size,
+ unsigned small_rank, unsigned large_rank, hid_t dset_type, hid_t xfer_plist)
+{
+ hbool_t mis_match; /* Flag indicating a value read in wasn't what was expected */
+ hid_t fapl; /* File access property list */
+ hid_t fid1; /* File ID */
+ hid_t small_cube_sid; /* Dataspace ID for small cube in memory & file */
+ hid_t mem_large_cube_sid; /* Dataspace ID for large cube in memory */
+ hid_t file_large_cube_sid; /* Dataspace ID for large cube in file */
+ hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */
+ hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */
+ hid_t small_cube_dataset; /* Dataset ID */
+ hid_t large_cube_dataset; /* Dataset ID */
+ size_t start_index; /* Offset within buffer to begin inspecting */
+ size_t stop_index; /* Offset within buffer to end inspecting */
+ uint16_t expected_value; /* Expected value in dataset */
+ uint16_t * small_cube_buf_1; /* Buffer for small cube data */
+ uint16_t * large_cube_buf_1; /* Buffer for large cube data */
+ uint16_t * ptr_1; /* Temporary pointer into cube data */
+ hsize_t dims[SS_DR_MAX_RANK]; /* Dataspace dimensions */
+ hsize_t start[SS_DR_MAX_RANK]; /* Shared hyperslab start offset */
+ hsize_t stride[SS_DR_MAX_RANK]; /* Shared hyperslab stride */
+ hsize_t count[SS_DR_MAX_RANK]; /* Shared hyperslab count */
+ hsize_t block[SS_DR_MAX_RANK]; /* Shared hyperslab block size */
+ hsize_t * start_ptr; /* Actual hyperslab start offset */
+ hsize_t * stride_ptr; /* Actual hyperslab stride */
+ hsize_t * count_ptr; /* Actual hyperslab count */
+ hsize_t * block_ptr; /* Actual hyperslab block size */
+ size_t small_cube_size; /* Number of elements in small cube */
+ size_t large_cube_size; /* Number of elements in large cube */
+ unsigned u, v, w, x; /* Local index variables */
+ size_t s; /* Local index variable */
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num));
+ MESSAGE(7, ("\tranks = %u/%u, edge_size = %u, chunk_edge_size = %u.\n", small_rank, large_rank, edge_size, chunk_edge_size));
+
+ HDassert(edge_size >= 6);
+ HDassert(edge_size >= chunk_edge_size);
+ HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3));
+ HDassert(small_rank > 0);
+ HDassert(small_rank < large_rank);
+ HDassert(large_rank <= SS_DR_MAX_RANK);
+
+ /* Compute cube sizes */
+ small_cube_size = large_cube_size = (size_t)1;
+ for(u = 0; u < large_rank; u++) {
+ if(u < small_rank)
+ small_cube_size *= (size_t)edge_size;
+
+ large_cube_size *= (size_t)edge_size;
+ } /* end for */
+
+ HDassert(large_cube_size < (size_t)UINT_MAX);
+
+ /* set up the start, stride, count, and block pointers */
+ start_ptr = &(start[SS_DR_MAX_RANK - large_rank]);
+ stride_ptr = &(stride[SS_DR_MAX_RANK - large_rank]);
+ count_ptr = &(count[SS_DR_MAX_RANK - large_rank]);
+ block_ptr = &(block[SS_DR_MAX_RANK - large_rank]);
+
+ /* Allocate buffers */
+ small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size);
+ CHECK(small_cube_buf_1, NULL, "HDcalloc");
+ large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size);
+ CHECK(large_cube_buf_1, NULL, "HDcalloc");
+
+ /* Create a dataset transfer property list */
+ fapl = H5Pcreate(H5P_FILE_ACCESS);
+ CHECK(fapl, FAIL, "H5Pcreate");
+
+ /* Use the 'core' VFD for this test */
+ ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE);
+ CHECK(ret, FAIL, "H5Pset_fapl_core");
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Close file access property list */
+ ret = H5Pclose(fapl);
+ CHECK(ret, FAIL, "H5Pclose");
+
+ /* setup dims: */
+ dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = (hsize_t)edge_size;
+
+ /* Create small cube dataspaces */
+ small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
+ CHECK(small_cube_sid, FAIL, "H5Screate_simple");
+
+ /* Create large cube dataspace */
+ mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
+ CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple");
+ file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
+ CHECK(file_large_cube_sid, FAIL, "H5Screate_simple");
+
+ /* if chunk edge size is greater than zero, set up the small and
+ * large data set creation property lists to specify chunked
+ * datasets.
+ */
+ if(chunk_edge_size > 0) {
+ hsize_t chunk_dims[SS_DR_MAX_RANK]; /* Chunk dimensions */
+
+ chunk_dims[0] = chunk_dims[1] =
+ chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = (hsize_t)chunk_edge_size;
+
+ small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate");
+
+ ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED);
+ CHECK(ret, FAIL, "H5Pset_layout");
+
+ ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims);
+ CHECK(ret, FAIL, "H5Pset_chunk");
+
+
+ large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate");
+
+ ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED);
+ CHECK(ret, FAIL, "H5Pset_layout");
+
+ ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims);
+ CHECK(ret, FAIL, "H5Pset_chunk");
+ } /* end if */
+
+ /* create the small cube dataset */
+ small_cube_dataset = H5Dcreate2(fid1, "small_cube_dataset", dset_type,
+ small_cube_sid, H5P_DEFAULT, small_cube_dcpl_id, H5P_DEFAULT);
+ CHECK(small_cube_dataset, FAIL, "H5Dcreate2");
+
+ /* Close non-default small dataset DCPL */
+ if(small_cube_dcpl_id != H5P_DEFAULT) {
+ ret = H5Pclose(small_cube_dcpl_id);
+ CHECK(ret, FAIL, "H5Pclose");
+ } /* end if */
+
+ /* create the large cube dataset */
+ large_cube_dataset = H5Dcreate2(fid1, "large_cube_dataset", dset_type,
+ file_large_cube_sid, H5P_DEFAULT, large_cube_dcpl_id, H5P_DEFAULT);
+ CHECK(large_cube_dataset, FAIL, "H5Dcreate2");
+
+ /* Close non-default large dataset DCPL */
+ if(large_cube_dcpl_id != H5P_DEFAULT) {
+ ret = H5Pclose(large_cube_dcpl_id);
+ CHECK(ret, FAIL, "H5Pclose");
+ } /* end if */
+
+
+ /* write initial data to the on disk datasets */
+ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid,
+ small_cube_sid, xfer_plist, cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid,
+ file_large_cube_sid, xfer_plist, cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* read initial data from disk and verify that it is as expected. */
+ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid,
+ small_cube_sid, xfer_plist, small_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check that the data is valid */
+ verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size,
+ edge_size, small_rank);
+
+ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid,
+ file_large_cube_sid, xfer_plist, large_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check that the data is valid */
+ verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size,
+ edge_size, large_rank);
+
+
+ /* first, verify that we can read from disk correctly using selections
+ * of different rank that H5S_select_shape_same() views as being of the
+ * same shape.
+ *
+ * Start by reading small_rank-D slice from the on disk large cube, and
+ * verifying that the data read is correct. Verify that H5S_select_shape_same()
+ * returns true on the memory and file selections.
+ */
+
+
+ /* set up start, stride, count, and block -- note that we will
+ * change start[] so as to read slices of the large cube.
+ */
+ for(u = 0; u < SS_DR_MAX_RANK; u++) {
+ start[u] = 0;
+ stride[u] = 1;
+ count[u] = 1;
+ if((SS_DR_MAX_RANK - u) > small_rank)
+ block[u] = 1;
+ else
+ block[u] = (hsize_t)edge_size;
+ } /* end for */
+
+ u = 0;
+ do {
+ v = 0;
+ do {
+ w = 0;
+ do {
+ x = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+ start[0] = (hsize_t)u;
+ start[1] = (hsize_t)v;
+ start[2] = (hsize_t)w;
+ start[3] = (hsize_t)x;
+ start[4] = (hsize_t)0;
+
+ ret = H5Sselect_hyperslab(file_large_cube_sid,
+ H5S_SELECT_SET,
+ start_ptr,
+ stride_ptr,
+ count_ptr,
+ block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* verify that H5S_select_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(small_cube_sid,
+ file_large_cube_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+ /* Read selection from disk */
+ ret = H5Dread(large_cube_dataset,
+ H5T_NATIVE_UINT16,
+ small_cube_sid,
+ file_large_cube_sid,
+ xfer_plist,
+ small_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* verify that expected data is retrieved */
+ mis_match = FALSE;
+ ptr_1 = small_cube_buf_1;
+ expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) +
+ (w * edge_size * edge_size) +
+ (x * edge_size));
+ for(s = 0; s < small_cube_size; s++ ) {
+ if(*ptr_1 != expected_value )
+ mis_match = TRUE;
+ ptr_1++;
+ expected_value++;
+ } /* end for */
+ if(mis_match)
+ TestErrPrintf("small cube read from largecube has bad data! Line=%d\n",__LINE__);
+
+ x++;
+ } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
+ w++;
+ } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
+ v++;
+ } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
+ u++;
+ } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));
+
+
+ /* similarly, read the on disk small cube into slices through the in memory
+ * large cube, and verify that the correct data (and only the correct data)
+ * is read.
+ */
+
+ /* zero out the in-memory large cube */
+ HDmemset(large_cube_buf_1, 0, large_cube_size * sizeof(uint16_t));
+
+ u = 0;
+ do {
+ v = 0;
+ do {
+ w = 0;
+ do {
+ x = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+ start[0] = (hsize_t)u;
+ start[1] = (hsize_t)v;
+ start[2] = (hsize_t)w;
+ start[3] = (hsize_t)x;
+ start[4] = (hsize_t)0;
+
+ ret = H5Sselect_hyperslab(mem_large_cube_sid,
+ H5S_SELECT_SET,
+ start_ptr,
+ stride_ptr,
+ count_ptr,
+ block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* verify that H5S_select_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(small_cube_sid,
+ mem_large_cube_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+
+ /* Read selection from disk */
+ ret = H5Dread(small_cube_dataset,
+ H5T_NATIVE_UINT16,
+ mem_large_cube_sid,
+ small_cube_sid,
+ xfer_plist,
+ large_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+
+ /* verify that the expected data and only the
+ * expected data was read.
+ */
+ start_index = (u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) +
+ (w * edge_size * edge_size) +
+ (x * edge_size);
+ stop_index = start_index + small_cube_size - 1;
+
+ HDassert(start_index < stop_index);
+ HDassert(stop_index <= large_cube_size);
+
+ mis_match = FALSE;
+ ptr_1 = large_cube_buf_1;
+ expected_value = 0;
+ for(s = 0; s < start_index; s++) {
+ if(*ptr_1 != 0)
+ mis_match = TRUE;
+ ptr_1++;
+ } /* end for */
+ for(; s <= stop_index; s++) {
+ if(*ptr_1 != expected_value)
+ mis_match = TRUE;
+ expected_value++;
+ ptr_1++;
+ } /* end for */
+ for(; s < large_cube_size; s++) {
+ if(*ptr_1 != 0)
+ mis_match = TRUE;
+ ptr_1++;
+ } /* end for */
+ if(mis_match)
+ TestErrPrintf("large cube read from small cube has bad data! Line=%u\n", __LINE__);
+
+ /* Zero out the buffer for the next pass */
+ HDmemset(large_cube_buf_1 + start_index, 0, small_cube_size * sizeof(uint16_t));
+
+ x++;
+ } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
+ w++;
+ } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
+ v++;
+ } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
+ u++;
+ } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));
+
+
+ /* now we go in the opposite direction, verifying that we can write
+ * from memory to file using selections of different rank that
+ * H5S_select_shape_same() views as being of the same shape.
+ *
+ * Start by writing small_rank D slices from the in memory large cube, to
+ * the the on disk small cube dataset. After each write, read the small
+ * cube dataset back from disk, and verify that it contains the expected
+ * data. Verify that H5S_select_shape_same() returns true on the
+ * memory and file selections.
+ */
+
+ u = 0;
+ do {
+ v = 0;
+ do {
+ w = 0;
+ do {
+ x = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ /* zero out the on disk small cube */
+ ret = H5Dwrite(small_cube_dataset,
+ H5T_NATIVE_UINT16,
+ small_cube_sid,
+ small_cube_sid,
+ xfer_plist,
+ zero_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* select the portion of the in memory large cube from which we
+ * are going to write data.
+ */
+ start[0] = (hsize_t)u;
+ start[1] = (hsize_t)v;
+ start[2] = (hsize_t)w;
+ start[3] = (hsize_t)x;
+ start[4] = (hsize_t)0;
+
+ ret = H5Sselect_hyperslab(mem_large_cube_sid,
+ H5S_SELECT_SET,
+ start_ptr,
+ stride_ptr,
+ count_ptr,
+ block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* verify that H5S_select_shape_same() reports the in
+ * memory slice through the cube selection and the
+ * on disk full small cube selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(small_cube_sid,
+ mem_large_cube_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+
+ /* write the slice from the in memory large cube to the on disk small cube */
+ ret = H5Dwrite(small_cube_dataset,
+ H5T_NATIVE_UINT16,
+ mem_large_cube_sid,
+ small_cube_sid,
+ xfer_plist,
+ cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+
+ /* read the on disk small cube into memory */
+ ret = H5Dread(small_cube_dataset,
+ H5T_NATIVE_UINT16,
+ small_cube_sid,
+ small_cube_sid,
+ xfer_plist,
+ small_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+
+ /* verify that expected data is retrieved */
+ mis_match = FALSE;
+ ptr_1 = small_cube_buf_1;
+ expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) +
+ (w * edge_size * edge_size) +
+ (x * edge_size));
+ for(s = 0; s < small_cube_size; s++) {
+ if(*ptr_1 != expected_value)
+ mis_match = TRUE;
+ expected_value++;
+ ptr_1++;
+ } /* end for */
+ if(mis_match )
+ TestErrPrintf("small cube data don't match! Line=%d\n",__LINE__);
+
+ x++;
+ } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
+ w++;
+ } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
+ v++;
+ } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
+ u++;
+ } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));
+
+
+ /* Now write the contents of the in memory small cube to slices of
+ * the on disk cube. After each write, read the on disk cube
+ * into memeory, and verify that it contains the expected
+ * data. Verify that H5S_select_shape_same() returns true on
+ * the memory and file selections.
+ */
+
+ /* select the entire memory and file cube dataspaces */
+ ret = H5Sselect_all(mem_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sselect_all");
+
+ ret = H5Sselect_all(file_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sselect_all");
+
+ u = 0;
+ do {
+ v = 0;
+ do {
+ w = 0;
+ do {
+ x = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ /* zero out the on disk cube */
+ ret = H5Dwrite(large_cube_dataset,
+ H5T_NATIVE_USHORT,
+ mem_large_cube_sid,
+ file_large_cube_sid,
+ xfer_plist,
+ zero_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+
+ /* select the portion of the in memory large cube to which we
+ * are going to write data.
+ */
+ start[0] = (hsize_t)u;
+ start[1] = (hsize_t)v;
+ start[2] = (hsize_t)w;
+ start[3] = (hsize_t)x;
+ start[4] = (hsize_t)0;
+
+ ret = H5Sselect_hyperslab(file_large_cube_sid,
+ H5S_SELECT_SET,
+ start_ptr,
+ stride_ptr,
+ count_ptr,
+ block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* verify that H5S_select_shape_same() reports the in
+ * memory full selection of the small cube and the
+ * on disk slice through the large cube selection
+ * as having the same shape.
+ */
+ check = H5S_select_shape_same_test(small_cube_sid,
+ file_large_cube_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+
+ /* write the cube from memory to the target slice of the disk cube */
+ ret = H5Dwrite(large_cube_dataset,
+ H5T_NATIVE_UINT16,
+ small_cube_sid,
+ file_large_cube_sid,
+ xfer_plist,
+ cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+
+ /* read the on disk cube into memory */
+ ret = H5Sselect_all(file_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sselect_all");
+
+ ret = H5Dread(large_cube_dataset,
+ H5T_NATIVE_UINT16,
+ mem_large_cube_sid,
+ file_large_cube_sid,
+ xfer_plist,
+ large_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+
+ /* verify that the expected data and only the
+ * expected data was read.
+ */
+ start_index = (u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) +
+ (w * edge_size * edge_size) +
+ (x * edge_size);
+ stop_index = start_index + small_cube_size - 1;
+
+ HDassert(start_index < stop_index);
+ HDassert(stop_index <= large_cube_size);
+
+ mis_match = FALSE;
+ ptr_1 = large_cube_buf_1;
+ expected_value = 0;
+ for(s = 0; s < start_index; s++) {
+ if(*ptr_1 != 0)
+ mis_match = TRUE;
+ ptr_1++;
+ } /* end for */
+ for(; s <= stop_index; s++) {
+ if(*ptr_1 != expected_value)
+ mis_match = TRUE;
+ expected_value++;
+ ptr_1++;
+ } /* end for */
+ for(; s < large_cube_size; s++) {
+ if(*ptr_1 != 0)
+ mis_match = TRUE;
+ ptr_1++;
+ } /* end for */
+ if(mis_match)
+ TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__);
+
+ x++;
+ } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
+ w++;
+ } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
+ v++;
+ } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
+ u++;
+ } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));
+
+ /* Close memory dataspaces */
+ ret = H5Sclose(small_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(mem_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ /* Close disk dataspace */
+ ret = H5Sclose(file_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ /* Close Datasets */
+ ret = H5Dclose(small_cube_dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ ret = H5Dclose(large_cube_dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(small_cube_buf_1);
+ HDfree(large_cube_buf_1);
+
+} /* test_select_hyper_contig_dr__run_test() */
+
+
+/****************************************************************
+**
+** test_select_hyper_contig_dr(): Test H5S (dataspace)
+** selection code with contiguous source and target having
+** different ranks but the same shape. We have already
+** tested H5S_shape_same in isolation, so now we try to do
+** I/O.
+**
+****************************************************************/
+static void
+test_select_hyper_contig_dr(hid_t dset_type, hid_t xfer_plist)
+{
+ int test_num = 0;
+ unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */
+ unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */
+ unsigned small_rank; /* Current rank of small dataset */
+ unsigned large_rank; /* Current rank of large dataset */
+ uint16_t *cube_buf; /* Buffer for writing cube data */
+ uint16_t *zero_buf; /* Buffer for writing zeroed cube data */
+ uint16_t *cube_ptr; /* Temporary pointer into cube data */
+ unsigned max_rank = 5; /* Max. rank to use */
+ size_t max_cube_size; /* Max. number of elements in largest cube */
+ size_t s; /* Local index variable */
+ unsigned u; /* Local index variable */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Contiguous Hyperslabs With Different Rank I/O Functionality\n"));
+
+ /* Compute max. cube size */
+ max_cube_size = (size_t)1;
+ for(u = 0; u < max_rank; u++)
+ max_cube_size *= (size_t)edge_size;
+
+ /* Allocate cube buffer for writing values */
+ cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size);
+ CHECK(cube_buf, NULL, "HDmalloc");
+
+ /* Initialize the cube buffer */
+ cube_ptr = cube_buf;
+ for(s = 0; s < max_cube_size; s++)
+ *cube_ptr++ = (uint16_t)s;
+
+ /* Allocate cube buffer for zeroing values on disk */
+ zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size);
+ CHECK(zero_buf, NULL, "HDcalloc");
+
+ for(large_rank = 1; large_rank <= max_rank; large_rank++) {
+ for(small_rank = 1; small_rank < large_rank; small_rank++) {
+ chunk_edge_size = 0;
+ test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf,
+ edge_size, chunk_edge_size, small_rank, large_rank,
+ dset_type, xfer_plist);
+ test_num++;
+
+ chunk_edge_size = 3;
+ test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf,
+ edge_size, chunk_edge_size, small_rank, large_rank,
+ dset_type, xfer_plist);
+ test_num++;
+ } /* for loop on small rank */
+ } /* for loop on large rank */
+
+ HDfree(cube_buf);
+ HDfree(zero_buf);
+
+} /* test_select_hyper_contig_dr() */
+
+
+/****************************************************************
+**
+** test_select_hyper_checker_board_dr__select_checker_board():
+** Given an n-cube data space with each edge of length
+** edge_size, and a checker_edge_size either select a checker
+** board selection of the entire cube(if sel_rank == n),
+** or select a checker board selection of a
+** sel_rank dimensional slice through n-cube parallel to the
+** sel_rank fastest changing indices, with origin (in the
+** higher indices) as indicated by the start array.
+**
+** Note that this function, like all its relatives, is
+** hard coded to presume a maximum n-cube rank of 5.
+** While this maximum is declared as a constant, increasing
+** it will require extensive coding in addition to changing
+** the value of the constant.
+**
+** JRM -- 9/9/09
+**
+****************************************************************/
+static void
+test_select_hyper_checker_board_dr__select_checker_board(hid_t tgt_n_cube_sid,
+ unsigned tgt_n_cube_rank, unsigned edge_size, unsigned checker_edge_size,
+ unsigned sel_rank, hsize_t sel_start[])
+{
+ hbool_t first_selection = TRUE;
+ unsigned n_cube_offset;
+ unsigned sel_offset;
+ hsize_t base_count;
+ hsize_t offset_count;
+ hsize_t start[SS_DR_MAX_RANK]; /* Offset of hyperslab selection */
+ hsize_t stride[SS_DR_MAX_RANK]; /* Stride of hyperslab selection */
+ hsize_t count[SS_DR_MAX_RANK]; /* Count of hyperslab selection */
+ hsize_t block[SS_DR_MAX_RANK]; /* Block size of hyperslab selection */
+ unsigned i, j, k, l, m; /* Local index variable */
+ unsigned u; /* Local index variables */
+ herr_t ret; /* Generic return value */
+
+ HDassert(edge_size >= 6);
+ HDassert(0 < checker_edge_size);
+ HDassert(checker_edge_size <= edge_size);
+ HDassert(0 < sel_rank);
+ HDassert(sel_rank <= tgt_n_cube_rank);
+ HDassert(tgt_n_cube_rank <= SS_DR_MAX_RANK);
+
+ sel_offset = SS_DR_MAX_RANK - sel_rank;
+ n_cube_offset = SS_DR_MAX_RANK - tgt_n_cube_rank;
+ HDassert(n_cube_offset <= sel_offset);
+
+ /* First, compute the base count (which assumes start == 0
+ * for the associated offset) and offset_count (which
+ * assumes start == checker_edge_size for the associated
+ * offset).
+ */
+ base_count = edge_size / (checker_edge_size * 2);
+ if((edge_size % (checker_edge_size * 2)) > 0)
+ base_count++;
+
+ offset_count = (edge_size - checker_edge_size) / (checker_edge_size * 2);
+ if(((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0)
+ offset_count++;
+
+ /* Now set up the stride and block arrays, and portions of the start
+ * and count arrays that will not be altered during the selection of
+ * the checker board.
+ */
+ u = 0;
+ while(u < n_cube_offset) {
+ /* these values should never be used */
+ start[u] = 0;
+ stride[u] = 0;
+ count[u] = 0;
+ block[u] = 0;
+
+ u++;
+ } /* end while */
+
+ while(u < sel_offset) {
+ start[u] = sel_start[u];
+ stride[u] = 2 * edge_size;
+ count[u] = 1;
+ block[u] = 1;
+
+ u++;
+ } /* end while */
+
+ while(u < SS_DR_MAX_RANK) {
+ stride[u] = 2 * checker_edge_size;
+ block[u] = checker_edge_size;
+
+ u++;
+ } /* end while */
+
+ i = 0;
+ do {
+ if(0 >= sel_offset) {
+ if(i == 0) {
+ start[0] = 0;
+ count[0] = base_count;
+ } /* end if */
+ else {
+ start[0] = checker_edge_size;
+ count[0] = offset_count;
+ } /* end else */
+ } /* end if */
+
+ j = 0;
+ do {
+ if(1 >= sel_offset) {
+ if(j == 0 ) {
+ start[1] = 0;
+ count[1] = base_count;
+ } /* end if */
+ else {
+ start[1] = checker_edge_size;
+ count[1] = offset_count;
+ } /* end else */
+ } /* end if */
+
+ k = 0;
+ do {
+ if(2 >= sel_offset) {
+ if(k == 0) {
+ start[2] = 0;
+ count[2] = base_count;
+ } /* end if */
+ else {
+ start[2] = checker_edge_size;
+ count[2] = offset_count;
+ } /* end else */
+ } /* end if */
+
+ l = 0;
+ do {
+ if(3 >= sel_offset) {
+ if(l == 0) {
+ start[3] = 0;
+ count[3] = base_count;
+ } /* end if */
+ else {
+ start[3] = checker_edge_size;
+ count[3] = offset_count;
+ } /* end else */
+ } /* end if */
+
+ m = 0;
+ do {
+ if(4 >= sel_offset) {
+ if(m == 0) {
+ start[4] = 0;
+ count[4] = base_count;
+ } /* end if */
+ else {
+ start[4] = checker_edge_size;
+ count[4] = offset_count;
+ } /* end else */
+ } /* end if */
+
+ if(((i + j + k + l + m) % 2) == 0) {
+ if(first_selection) {
+ first_selection = FALSE;
+
+ ret = H5Sselect_hyperslab(tgt_n_cube_sid,
+ H5S_SELECT_SET,
+ &(start[n_cube_offset]),
+ &(stride[n_cube_offset]),
+ &(count[n_cube_offset]),
+ &(block[n_cube_offset]));
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end if */
+ else {
+ ret = H5Sselect_hyperslab(tgt_n_cube_sid,
+ H5S_SELECT_OR,
+ &(start[n_cube_offset]),
+ &(stride[n_cube_offset]),
+ &(count[n_cube_offset]),
+ &(block[n_cube_offset]));
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end else */
+ } /* end if */
+
+ m++;
+ } while((m <= 1) && (4 >= sel_offset));
+ l++;
+ } while((l <= 1) && (3 >= sel_offset));
+ k++;
+ } while((k <= 1) && (2 >= sel_offset));
+ j++;
+ } while((j <= 1) && (1 >= sel_offset));
+ i++;
+ } while((i <= 1) && (0 >= sel_offset));
+
+ /* Wierdness alert:
+ *
+ * Some how, it seems that selections can extend beyond the
+ * boundaries of the target data space -- hence the following
+ * code to manually clip the selection back to the data space
+ * proper.
+ */
+ for(u = 0; u < SS_DR_MAX_RANK; u++) {
+ start[u] = 0;
+ stride[u] = edge_size;
+ count[u] = 1;
+ block[u] = edge_size;
+ } /* end for */
+
+ ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_AND, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+} /* test_select_hyper_checker_board_dr__select_checker_board() */
+
+
+/****************************************************************
+**
+** test_select_hyper_checker_board_dr__verify_data():
+**
+** Examine the supplied buffer to see if it contains the
+** expected data. Return TRUE if it does, and FALSE
+** otherwise.
+**
+** The supplied buffer is presumed to contain the results
+** of read or writing a checkerboard selection of an
+** n-cube, or a checkerboard selection of an m (1 <= m < n)
+** dimensional slice through an n-cube parallel to the
+** fastest changing indices.
+**
+** It is further presumed that the buffer was zeroed before
+** the read, and that the n-cube was initialize with the
+** natural numbers listed in order from the origin along
+** the fastest changing axis.
+**
+** Thus for a 10x10x10 3-cube, the value stored in location
+** (x, y, z) (assuming that z is the fastest changing index
+** and x the slowest) is assumed to be:
+**
+** (10 * 10 * x) + (10 * y) + z
+**
+** Thus, if the buffer contains the result of reading a
+** checker board selection of a 10x10x10 3-cube, location
+** (x, y, z) will contain zero if it is not in a checker,
+** and 100x + 10y + z if (x, y, z) is in a checker.
+**
+** If the buffer contains the result of reading a 3
+** dimensional slice (parallel to the three fastest changing
+** indices) through an n cube (n > 3), then the expected
+** values in the buffer will be the same, save that we will
+** add a constant determined by the origin of the 3-cube
+** in the n-cube.
+**
+** Finally, the function presumes that the first element
+** of the buffer resides either at the origin of either
+** a selected or an unselected checker.
+**
+****************************************************************/
+static hbool_t
+test_select_hyper_checker_board_dr__verify_data(uint16_t * buf_ptr,
+ unsigned rank, unsigned edge_size, unsigned checker_edge_size,
+ uint16_t first_expected_val, hbool_t buf_starts_in_checker)
+{
+ hbool_t good_data = TRUE;
+ hbool_t in_checker;
+ hbool_t start_in_checker[5];
+ uint16_t expected_value;
+ uint16_t * val_ptr;
+ unsigned i, j, k, l, m; /* to track position in n-cube */
+ unsigned v, w, x, y, z; /* to track position in checker */
+ const unsigned test_max_rank = 5; /* code changes needed if this is increased */
+
+ HDassert(buf_ptr != NULL);
+ HDassert(0 < rank);
+ HDassert(rank <= test_max_rank);
+ HDassert(edge_size >= 6);
+ HDassert(0 < checker_edge_size);
+ HDassert(checker_edge_size <= edge_size);
+ HDassert(test_max_rank <= SS_DR_MAX_RANK);
+
+ val_ptr = buf_ptr;
+ expected_value = first_expected_val;
+
+ i = 0;
+ v = 0;
+ start_in_checker[0] = buf_starts_in_checker;
+ do {
+ if(v >= checker_edge_size) {
+ start_in_checker[0] = !start_in_checker[0];
+ v = 0;
+ } /* end if */
+
+ j = 0;
+ w = 0;
+ start_in_checker[1] = start_in_checker[0];
+ do {
+ if(w >= checker_edge_size) {
+ start_in_checker[1] = !start_in_checker[1];
+ w = 0;
+ } /* end if */
+
+ k = 0;
+ x = 0;
+ start_in_checker[2] = start_in_checker[1];
+ do {
+ if(x >= checker_edge_size) {
+ start_in_checker[2] = !start_in_checker[2];
+ x = 0;
+ } /* end if */
+
+ l = 0;
+ y = 0;
+ start_in_checker[3] = start_in_checker[2];
+ do {
+ if(y >= checker_edge_size) {
+ start_in_checker[3] = ! start_in_checker[3];
+ y = 0;
+ } /* end if */
+
+ m = 0;
+ z = 0;
+ in_checker = start_in_checker[3];
+ do {
+ if(z >= checker_edge_size) {
+ in_checker = ! in_checker;
+ z = 0;
+ } /* end if */
+
+ if(in_checker) {
+ if(*val_ptr != expected_value)
+ good_data = FALSE;
+ } /* end if */
+ else {
+ if(*val_ptr != 0)
+ good_data = FALSE;
+ } /* end else */
+
+ val_ptr++;
+ expected_value++;
+
+ m++;
+ z++;
+ } while((rank >= (test_max_rank - 4)) && (m < edge_size));
+ l++;
+ y++;
+ } while((rank >= (test_max_rank - 3)) && (l < edge_size));
+ k++;
+ x++;
+ } while((rank >= (test_max_rank - 2)) && (k < edge_size));
+ j++;
+ w++;
+ } while((rank >= (test_max_rank - 1)) && (j < edge_size));
+ i++;
+ v++;
+ } while((rank >= test_max_rank) && (i < edge_size));
+
+ return(good_data);
+} /* test_select_hyper_checker_board_dr__verify_data() */
+
+
+/****************************************************************
+**
+** test_select_hyper_checker_board_dr__run_test(): Test H5S
+** (dataspace) selection code with checker board source and
+** target selections having different ranks but the same
+** shape. We have already tested H5S_shape_same in
+** isolation, so now we try to do I/O.
+**
+****************************************************************/
+static void
+test_select_hyper_checker_board_dr__run_test(int test_num, const uint16_t *cube_buf,
+ const uint16_t *zero_buf, unsigned edge_size, unsigned checker_edge_size,
+ unsigned chunk_edge_size, unsigned small_rank, unsigned large_rank,
+ hid_t dset_type, hid_t xfer_plist)
+{
+ hbool_t data_ok;
+ hbool_t start_in_checker[5];
+ hid_t fapl; /* File access property list */
+ hid_t fid; /* HDF5 File IDs */
+ hid_t full_small_cube_sid; /* Dataspace for small cube w/all selection */
+ hid_t mem_small_cube_sid;
+ hid_t file_small_cube_sid;
+ hid_t full_large_cube_sid; /* Dataspace for large cube w/all selection */
+ hid_t mem_large_cube_sid;
+ hid_t file_large_cube_sid;
+ hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */
+ hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */
+ hid_t small_cube_dataset; /* Dataset ID */
+ hid_t large_cube_dataset; /* Dataset ID */
+ unsigned small_rank_offset; /* Rank offset of slice */
+ const unsigned test_max_rank = 5; /* must update code if this changes */
+ size_t start_index; /* Offset within buffer to begin inspecting */
+ size_t stop_index; /* Offset within buffer to end inspecting */
+ uint16_t expected_value;
+ uint16_t * small_cube_buf_1;
+ uint16_t * large_cube_buf_1;
+ uint16_t * ptr_1;
+ size_t small_cube_size; /* Number of elements in small cube */
+ size_t large_cube_size; /* Number of elements in large cube */
+ hsize_t dims[SS_DR_MAX_RANK];
+ hsize_t chunk_dims[SS_DR_MAX_RANK];
+ hsize_t sel_start[SS_DR_MAX_RANK];
+ unsigned u, v, w, x; /* Local index variables */
+ size_t s; /* Local index variable */
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num));
+ MESSAGE(7, ("\tranks = %d/%d, edge_size = %d, checker_edge_size = %d, chunk_edge_size = %d.\n", small_rank, large_rank, edge_size, checker_edge_size, chunk_edge_size));
+
+ HDassert(edge_size >= 6);
+ HDassert(checker_edge_size > 0);
+ HDassert(checker_edge_size <= edge_size);
+ HDassert(edge_size >= chunk_edge_size);
+ HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3));
+ HDassert(small_rank > 0);
+ HDassert(small_rank < large_rank);
+ HDassert(large_rank <= test_max_rank);
+ HDassert(test_max_rank <= SS_DR_MAX_RANK);
+
+ /* Compute cube sizes */
+ small_cube_size = large_cube_size = (size_t)1;
+ for(u = 0; u < large_rank; u++) {
+ if(u < small_rank)
+ small_cube_size *= (size_t)edge_size;
+
+ large_cube_size *= (size_t)edge_size;
+ } /* end for */
+ HDassert(large_cube_size < (size_t)(UINT_MAX));
+
+ small_rank_offset = test_max_rank - small_rank;
+ HDassert(small_rank_offset >= 1);
+
+ /* also, at present, we use 16 bit values in this test --
+ * hence the following assertion. Delete it if we convert
+ * to 32 bit values.
+ */
+ HDassert(large_cube_size < (size_t)(UINT16_MAX));
+
+
+ /* Allocate & initialize buffers */
+ small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size);
+ CHECK(small_cube_buf_1, NULL, "HDcalloc");
+ large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size);
+ CHECK(large_cube_buf_1, NULL, "HDcalloc");
+
+
+ /* Create a dataset transfer property list */
+ fapl = H5Pcreate(H5P_FILE_ACCESS);
+ CHECK(fapl, FAIL, "H5Pcreate");
+
+ /* Use the 'core' VFD for this test */
+ ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE);
+ CHECK(ret, FAIL, "H5Pset_fapl_core");
+
+ /* Create file */
+ fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
+ CHECK(fid, FAIL, "H5Fcreate");
+
+ /* Close file access property list */
+ ret = H5Pclose(fapl);
+ CHECK(ret, FAIL, "H5Pclose");
+
+
+ /* setup dims: */
+ dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = edge_size;
+
+
+ /* Create small cube dataspaces */
+ full_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
+ CHECK(full_small_cube_sid, FAIL, "H5Screate_simple");
+
+ mem_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
+ CHECK(mem_small_cube_sid, FAIL, "H5Screate_simple");
+
+ file_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
+ CHECK(file_small_cube_sid, FAIL, "H5Screate_simple");
+
+
+ /* Create large cube dataspace */
+ full_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
+ CHECK(full_large_cube_sid, FAIL, "H5Screate_simple");
+
+ mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
+ CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple");
+
+ file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
+ CHECK(file_large_cube_sid, FAIL, "H5Screate_simple");
+
+
+ /* if chunk edge size is greater than zero, set up the small and
+ * large data set creation property lists to specify chunked
+ * datasets.
+ */
+ if(chunk_edge_size > 0) {
+ chunk_dims[0] = chunk_dims[1] =
+ chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = chunk_edge_size;
+
+ small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate");
+
+ ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED);
+ CHECK(ret, FAIL, "H5Pset_layout");
+
+ ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims);
+ CHECK(ret, FAIL, "H5Pset_chunk");
+
+
+ large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate");
+
+ ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED);
+ CHECK(ret, FAIL, "H5Pset_layout");
+
+ ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims);
+ CHECK(ret, FAIL, "H5Pset_chunk");
+ } /* end if */
+
+
+ /* create the small cube dataset */
+ small_cube_dataset = H5Dcreate2(fid, "small_cube_dataset", dset_type,
+ file_small_cube_sid, H5P_DEFAULT, small_cube_dcpl_id, H5P_DEFAULT);
+ CHECK(small_cube_dataset, FAIL, "H5Dcreate2");
+
+ /* Close non-default small dataset DCPL */
+ if(small_cube_dcpl_id != H5P_DEFAULT) {
+ ret = H5Pclose(small_cube_dcpl_id);
+ CHECK(ret, FAIL, "H5Pclose");
+ } /* end if */
+
+ /* create the large cube dataset */
+ large_cube_dataset = H5Dcreate2(fid, "large_cube_dataset", dset_type,
+ file_large_cube_sid, H5P_DEFAULT, large_cube_dcpl_id, H5P_DEFAULT);
+ CHECK(large_cube_dataset, FAIL, "H5Dcreate2");
+
+ /* Close non-default large dataset DCPL */
+ if(large_cube_dcpl_id != H5P_DEFAULT) {
+ ret = H5Pclose(large_cube_dcpl_id);
+ CHECK(ret, FAIL, "H5Pclose");
+ } /* end if */
+
+
+ /* write initial data to the on disk datasets */
+ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid,
+ full_small_cube_sid, xfer_plist, cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid,
+ full_large_cube_sid, xfer_plist, cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+
+ /* read initial small cube data from disk and verify that it is as expected. */
+ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid,
+ full_small_cube_sid, xfer_plist, small_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check that the data is valid */
+ verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size,
+ edge_size, small_rank);
+
+ /* read initial large cube data from disk and verify that it is as expected. */
+ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid,
+ full_large_cube_sid, xfer_plist, large_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check that the data is valid */
+ verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size,
+ edge_size, large_rank);
+
+
+ /* first, verify that we can read from disk correctly using selections
+ * of different rank that H5S_select_shape_same() views as being of the
+ * same shape.
+ *
+ * Start by reading small_rank-D slice from the on disk large cube, and
+ * verifying that the data read is correct. Verify that H5S_select_shape_same()
+ * returns true on the memory and file selections.
+ *
+ * The first step is to set up the needed checker board selection in the
+ * in memory small small cube
+ */
+
+ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
+
+ test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid,
+ small_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank,
+ sel_start);
+
+ /* now read slices from the large, on-disk cube into the small cube.
+ * Note how we adjust sel_start only in the dimensions peculiar to the
+ * large cube.
+ */
+
+ start_in_checker[0] = TRUE;
+ u = 0;
+ do {
+ if(small_rank_offset > 0)
+ sel_start[0] = u;
+
+ v = 0;
+ do {
+ if(small_rank_offset > 1)
+ sel_start[1] = v;
+
+ w = 0;
+ do {
+ if(small_rank_offset > 2)
+ sel_start[2] = w;
+
+ x = 0;
+ do {
+ if(small_rank_offset > 3)
+ sel_start[3] = x;
+
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ HDassert((sel_start[0] == 0) || (0 < small_rank_offset));
+ HDassert((sel_start[1] == 0) || (1 < small_rank_offset));
+ HDassert((sel_start[2] == 0) || (2 < small_rank_offset));
+ HDassert((sel_start[3] == 0) || (3 < small_rank_offset));
+ HDassert((sel_start[4] == 0) || (4 < small_rank_offset));
+
+ test_select_hyper_checker_board_dr__select_checker_board
+ (
+ file_large_cube_sid,
+ large_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank,
+ sel_start
+ );
+
+ /* verify that H5S_select_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(mem_small_cube_sid,
+ file_large_cube_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+ /* zero the buffer that we will be using for reading */
+ HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size);
+
+ /* Read selection from disk */
+ ret = H5Dread(large_cube_dataset,
+ H5T_NATIVE_UINT16,
+ mem_small_cube_sid,
+ file_large_cube_sid,
+ xfer_plist,
+ small_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ expected_value = (uint16_t)
+ ((u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) +
+ (w * edge_size * edge_size) +
+ (x * edge_size));
+
+ data_ok = test_select_hyper_checker_board_dr__verify_data
+ (
+ small_cube_buf_1,
+ small_rank,
+ edge_size,
+ checker_edge_size,
+ expected_value,
+ (hbool_t)TRUE
+ );
+ if(!data_ok)
+ TestErrPrintf("small cube read from largecube has bad data! Line=%d\n",__LINE__);
+
+ x++;
+ } while((large_rank >= (test_max_rank - 3)) &&
+ (small_rank <= (test_max_rank - 4)) && (x < edge_size));
+ w++;
+ } while((large_rank >= (test_max_rank - 2)) &&
+ (small_rank <= (test_max_rank - 3)) && (w < edge_size));
+ v++;
+ } while((large_rank >= (test_max_rank - 1)) &&
+ (small_rank <= (test_max_rank - 2)) && (v < edge_size));
+ u++;
+ } while((large_rank >= test_max_rank) &&
+ (small_rank <= (test_max_rank - 1)) && (u < edge_size));
+
+
+ /* similarly, read the on disk small cube into slices through the in memory
+ * large cube, and verify that the correct data (and only the correct data)
+ * is read.
+ */
+
+ /* select a checker board in the file small cube dataspace */
+ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
+ test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid,
+ small_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank,
+ sel_start);
+
+
+ start_in_checker[0] = TRUE;
+ u = 0;
+ do {
+ if(0 < small_rank_offset)
+ sel_start[0] = u;
+
+ v = 0;
+ do {
+ if(1 < small_rank_offset)
+ sel_start[1] = v;
+
+ w = 0;
+ do {
+ if(2 < small_rank_offset)
+ sel_start[2] = w;
+
+ x = 0;
+ do {
+ if(3 < small_rank_offset)
+ sel_start[3] = x;
+
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ HDassert((sel_start[0] == 0) || (0 < small_rank_offset));
+ HDassert((sel_start[1] == 0) || (1 < small_rank_offset));
+ HDassert((sel_start[2] == 0) || (2 < small_rank_offset));
+ HDassert((sel_start[3] == 0) || (3 < small_rank_offset));
+ HDassert((sel_start[4] == 0) || (4 < small_rank_offset));
+
+ test_select_hyper_checker_board_dr__select_checker_board
+ (
+ mem_large_cube_sid,
+ large_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank,
+ sel_start
+ );
+
+ /* verify that H5S_select_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(file_small_cube_sid,
+ mem_large_cube_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+
+ /* zero out the in memory large cube */
+ HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size);
+
+ /* Read selection from disk */
+ ret = H5Dread(small_cube_dataset,
+ H5T_NATIVE_UINT16,
+ mem_large_cube_sid,
+ file_small_cube_sid,
+ xfer_plist,
+ large_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+
+ /* verify that the expected data and only the
+ * expected data was read.
+ */
+ data_ok = TRUE;
+ ptr_1 = large_cube_buf_1;
+ expected_value = 0;
+ start_index = (u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) +
+ (w * edge_size * edge_size) +
+ (x * edge_size);
+ stop_index = start_index + small_cube_size - 1;
+
+ HDassert( start_index < stop_index );
+ HDassert( stop_index <= large_cube_size );
+
+ /* verify that the large cube contains only zeros before the slice */
+ for(s = 0; s < start_index; s++) {
+ if(*ptr_1 != 0)
+ data_ok = FALSE;
+ ptr_1++;
+ } /* end for */
+ HDassert(s == start_index);
+
+ data_ok &= test_select_hyper_checker_board_dr__verify_data
+ (
+ ptr_1,
+ small_rank,
+ edge_size,
+ checker_edge_size,
+ (uint16_t)0,
+ (hbool_t)TRUE
+ );
+
+ ptr_1 += small_cube_size;
+ s += small_cube_size;
+
+ HDassert(s == stop_index + 1);
+
+ /* verify that the large cube contains only zeros after the slice */
+ for(s = stop_index + 1; s < large_cube_size; s++) {
+ if(*ptr_1 != 0)
+ data_ok = FALSE;
+ ptr_1++;
+ } /* end for */
+ if(!data_ok)
+ TestErrPrintf("large cube read from small cube has bad data! Line=%d\n",__LINE__);
+
+ x++;
+ } while((large_rank >= (test_max_rank - 3)) &&
+ (small_rank <= (test_max_rank - 4)) && (x < edge_size));
+ w++;
+ } while((large_rank >= (test_max_rank - 2)) &&
+ (small_rank <= (test_max_rank - 3)) && (w < edge_size));
+ v++;
+ } while((large_rank >= (test_max_rank - 1)) &&
+ (small_rank <= (test_max_rank - 2)) && (v < edge_size));
+ u++;
+ } while((large_rank >= test_max_rank) &&
+ (small_rank <= (test_max_rank - 1)) && (u < edge_size));
+
+
+ /* now we go in the opposite direction, verifying that we can write
+ * from memory to file using selections of different rank that
+ * H5S_select_shape_same() views as being of the same shape.
+ *
+ * Start by writing small_rank D slices from the in memory large cube, to
+ * the the on disk small cube dataset. After each write, read the small
+ * cube dataset back from disk, and verify that it contains the expected
+ * data. Verify that H5S_select_shape_same() returns true on the
+ * memory and file selections.
+ */
+
+ /* select a checker board in the file small cube dataspace */
+ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
+ test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid,
+ small_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank,
+ sel_start);
+
+ start_in_checker[0] = TRUE;
+ u = 0;
+ do {
+ if(small_rank_offset > 0)
+ sel_start[0] = u;
+
+ v = 0;
+ do {
+ if(small_rank_offset > 1)
+ sel_start[1] = v;
+
+ w = 0;
+ do {
+ if(small_rank_offset > 2)
+ sel_start[2] = w;
+
+ x = 0;
+ do {
+ if(small_rank_offset > 3)
+ sel_start[3] = x;
+
+ /* zero out the on disk small cube */
+ ret = H5Dwrite(small_cube_dataset,
+ H5T_NATIVE_UINT16,
+ full_small_cube_sid,
+ full_small_cube_sid,
+ xfer_plist,
+ zero_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ HDassert((sel_start[0] == 0) || (0 < small_rank_offset));
+ HDassert((sel_start[1] == 0) || (1 < small_rank_offset));
+ HDassert((sel_start[2] == 0) || (2 < small_rank_offset));
+ HDassert((sel_start[3] == 0) || (3 < small_rank_offset));
+ HDassert((sel_start[4] == 0) || (4 < small_rank_offset));
+
+ test_select_hyper_checker_board_dr__select_checker_board
+ (
+ mem_large_cube_sid,
+ large_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank,
+ sel_start
+ );
+
+ /* verify that H5S_select_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(file_small_cube_sid,
+ mem_large_cube_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+
+ /* write the slice from the in memory large cube to the
+ * on disk small cube
+ */
+ ret = H5Dwrite(small_cube_dataset,
+ H5T_NATIVE_UINT16,
+ mem_large_cube_sid,
+ file_small_cube_sid,
+ xfer_plist,
+ cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+
+ /* zero the buffer that we will be using for reading */
+ HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size);
+
+ /* read the on disk small cube into memory */
+ ret = H5Dread(small_cube_dataset,
+ H5T_NATIVE_UINT16,
+ full_small_cube_sid,
+ full_small_cube_sid,
+ xfer_plist,
+ small_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ expected_value = (uint16_t)
+ ((u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) +
+ (w * edge_size * edge_size) +
+ (x * edge_size));
+
+ data_ok = test_select_hyper_checker_board_dr__verify_data
+ (
+ small_cube_buf_1,
+ small_rank,
+ edge_size,
+ checker_edge_size,
+ expected_value,
+ (hbool_t)TRUE
+ );
+ if(!data_ok)
+ TestErrPrintf("small cube read from largecube has bad data! Line=%d\n",__LINE__);
+
+ x++;
+ } while((large_rank >= (test_max_rank - 3)) &&
+ (small_rank <= (test_max_rank - 4)) && (x < edge_size));
+ w++;
+ } while((large_rank >= (test_max_rank - 2)) &&
+ (small_rank <= (test_max_rank - 3)) && (w < edge_size));
+ v++;
+ } while((large_rank >= (test_max_rank - 1)) &&
+ (small_rank <= (test_max_rank - 2)) && (v < edge_size));
+ u++;
+ } while((large_rank >= test_max_rank) &&
+ (small_rank <= (test_max_rank - 1)) && (u < edge_size));
+
+
+ /* Now write checker board selections of the entries in memory
+ * small cube to slices of the on disk cube. After each write,
+ * read the on disk large cube * into memeory, and verify that
+ * it contains the expected * data. Verify that
+ * H5S_select_shape_same() returns true on the memory and file
+ * selections.
+ */
+
+ /* select a checker board in the in memory small cube dataspace */
+ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
+ test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid,
+ small_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank,
+ sel_start);
+
+ start_in_checker[0] = TRUE;
+ u = 0;
+ do {
+ if(small_rank_offset > 0)
+ sel_start[0] = u;
+
+ v = 0;
+ do {
+ if(small_rank_offset > 1)
+ sel_start[1] = v;
+
+ w = 0;
+ do {
+ if(small_rank_offset > 2)
+ sel_start[2] = w;
+
+ x = 0;
+ do {
+ if(small_rank_offset > 3)
+ sel_start[3] = x;
+
+ /* zero out the on disk cube */
+ ret = H5Dwrite(large_cube_dataset,
+ H5T_NATIVE_USHORT,
+ full_large_cube_sid,
+ full_large_cube_sid,
+ xfer_plist,
+ zero_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ HDassert((sel_start[0] == 0) || (0 < small_rank_offset));
+ HDassert((sel_start[1] == 0) || (1 < small_rank_offset));
+ HDassert((sel_start[2] == 0) || (2 < small_rank_offset));
+ HDassert((sel_start[3] == 0) || (3 < small_rank_offset));
+ HDassert((sel_start[4] == 0) || (4 < small_rank_offset));
+
+
+ test_select_hyper_checker_board_dr__select_checker_board
+ (
+ file_large_cube_sid,
+ large_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank,
+ sel_start
+ );
+
+ /* verify that H5S_select_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(file_large_cube_sid,
+ mem_small_cube_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+
+ /* write the checker board selection of the in memory
+ * small cube to a slice through the on disk large
+ * cube.
+ */
+ ret = H5Dwrite(large_cube_dataset,
+ H5T_NATIVE_UINT16,
+ mem_small_cube_sid,
+ file_large_cube_sid,
+ xfer_plist,
+ cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+
+ /* zero out the in memory large cube */
+ HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size);
+
+ /* read the on disk large cube into memory */
+ ret = H5Dread(large_cube_dataset,
+ H5T_NATIVE_UINT16,
+ full_large_cube_sid,
+ full_large_cube_sid,
+ xfer_plist,
+ large_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+
+ /* verify that the expected data and only the
+ * expected data was written to the on disk large
+ * cube.
+ */
+ data_ok = TRUE;
+ ptr_1 = large_cube_buf_1;
+ expected_value = 0;
+ start_index = (u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) +
+ (w * edge_size * edge_size) +
+ (x * edge_size);
+ stop_index = start_index + small_cube_size - 1;
+
+ HDassert( start_index < stop_index );
+ HDassert( stop_index <= large_cube_size );
+
+ /* verify that the large cube contains only zeros before the slice */
+ for(s = 0; s < start_index; s++) {
+ if(*ptr_1 != 0)
+ data_ok = FALSE;
+ ptr_1++;
+ } /* end for */
+ HDassert(s == start_index);
+
+ /* verify that the slice contains the expected data */
+ data_ok &= test_select_hyper_checker_board_dr__verify_data
+ (
+ ptr_1,
+ small_rank,
+ edge_size,
+ checker_edge_size,
+ (uint16_t)0,
+ (hbool_t)TRUE
+ );
+
+ ptr_1 += small_cube_size;
+ s += small_cube_size;
+
+ HDassert(s == stop_index + 1);
+
+ /* verify that the large cube contains only zeros after the slice */
+ for(s = stop_index + 1; s < large_cube_size; s++) {
+ if(*ptr_1 != 0)
+ data_ok = FALSE;
+ ptr_1++;
+ } /* end for */
+ if(!data_ok)
+ TestErrPrintf("large cube written from small cube has bad data! Line=%d\n",__LINE__);
+
+ x++;
+ } while((large_rank >= (test_max_rank - 3)) &&
+ (small_rank <= (test_max_rank - 4)) && (x < edge_size));
+ w++;
+ } while((large_rank >= (test_max_rank - 2)) &&
+ (small_rank <= (test_max_rank - 3)) && (w < edge_size));
+ v++;
+ } while((large_rank >= (test_max_rank - 1)) &&
+ (small_rank <= (test_max_rank - 2)) && (v < edge_size));
+ u++;
+ } while((large_rank >= test_max_rank) &&
+ (small_rank <= (test_max_rank - 1)) && (u < edge_size));
+
+
+ /* Close memory dataspaces */
+ ret = H5Sclose(full_small_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(full_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(mem_small_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(mem_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ /* Close disk dataspace */
+ ret = H5Sclose(file_small_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(file_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Datasets */
+ ret = H5Dclose(small_cube_dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ ret = H5Dclose(large_cube_dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(small_cube_buf_1);
+ HDfree(large_cube_buf_1);
+
+} /* test_select_hyper_checker_board_dr__run_test() */
+
+
+/****************************************************************
+**
+** test_select_hyper_checker_board_dr(): Test H5S (dataspace)
+** selection code with checkerboard source and target having
+** different ranks but the same shape. We have already
+** tested H5S_shape_same in isolation, so now we try to do
+** I/O.
+**
+** This is just an initial smoke check, so we will work
+** with a slice through a cube only.
+**
+****************************************************************/
+static void
+test_select_hyper_checker_board_dr(hid_t dset_type, hid_t xfer_plist)
+{
+ uint16_t *cube_buf; /* Buffer for writing cube data */
+ uint16_t *cube_ptr; /* Temporary pointer into cube data */
+ uint16_t *zero_buf; /* Buffer for writing zeroed cube data */
+ int test_num = 0;
+ unsigned checker_edge_size = 2; /* Size of checkerboard dimension */
+ unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */
+ unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */
+ unsigned small_rank; /* Current rank of small dataset */
+ unsigned large_rank; /* Current rank of large dataset */
+ unsigned max_rank = 5; /* Max. rank to use */
+ size_t max_cube_size; /* Max. number of elements in largest cube */
+ size_t s; /* Local index variable */
+ unsigned u; /* Local index variable */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Checker Board Hyperslabs With Different Rank I/O Functionality\n"));
+
+ /* Compute max. cube size */
+ max_cube_size = (size_t)1;
+ for(u = 0; u < max_rank; u++)
+ max_cube_size *= (size_t)(edge_size + 1);
+
+ /* Allocate cube buffer for writing values */
+ cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size);
+ CHECK(cube_buf, NULL, "HDmalloc");
+
+ /* Initialize the cube buffer */
+ cube_ptr = cube_buf;
+ for(s = 0; s < max_cube_size; s++)
+ *cube_ptr++ = (uint16_t)s;
+
+ /* Allocate cube buffer for zeroing values on disk */
+ zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size);
+ CHECK(zero_buf, NULL, "HDcalloc");
+
+ for(large_rank = 1; large_rank <= max_rank; large_rank++) {
+ for(small_rank = 1; small_rank < large_rank; small_rank++) {
+ chunk_edge_size = 0;
+ test_select_hyper_checker_board_dr__run_test(test_num, cube_buf,
+ zero_buf, edge_size, checker_edge_size, chunk_edge_size, small_rank,
+ large_rank, dset_type, xfer_plist);
+ test_num++;
+
+ test_select_hyper_checker_board_dr__run_test(test_num, cube_buf,
+ zero_buf,
+ edge_size + 1, checker_edge_size, chunk_edge_size, small_rank,
+ large_rank, dset_type, xfer_plist);
+ test_num++;
+
+ chunk_edge_size = 3;
+ test_select_hyper_checker_board_dr__run_test(test_num, cube_buf,
+ zero_buf,
+ edge_size, checker_edge_size, chunk_edge_size, small_rank,
+ large_rank, dset_type, xfer_plist);
+ test_num++;
+
+ test_select_hyper_checker_board_dr__run_test(test_num, cube_buf,
+ zero_buf,
+ edge_size + 1, checker_edge_size, chunk_edge_size, small_rank,
+ large_rank, dset_type, xfer_plist);
+ test_num++;
+ } /* for loop on small rank */
+ } /* for loop on large rank */
+
+ HDfree(cube_buf);
+ HDfree(zero_buf);
+
+} /* test_select_hyper_checker_board_dr() */
+
+
/****************************************************************
**
** test_select_hyper_copy(): Test H5S (dataspace) selection code.
@@ -2345,15 +4373,15 @@ test_select_point_offset(void)
CHECK(ret, FAIL, "H5Sselect_elements");
/* Read selection from disk */
- ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,rbuf);
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
CHECK(ret, FAIL, "H5Dread");
/* Compare data read with data written out */
- for(i=0; i<POINT1_NPOINTS; i++) {
- tbuf=wbuf+((coord2[i][0]+offset[0])*SPACE2_DIM2)+coord2[i][1]+offset[1];
- tbuf2=rbuf+(coord3[i][0]*SPACE3_DIM2)+coord3[i][1];
- if(*tbuf!=*tbuf2)
- TestErrPrintf("element values don't match!, i=%d\n",i);
+ for(i = 0; i < POINT1_NPOINTS; i++) {
+ tbuf = wbuf + ((coord2[i][0] + (hsize_t)offset[0]) * SPACE2_DIM2) + coord2[i][1] + (hsize_t)offset[1];
+ tbuf2 = rbuf + (coord3[i][0] * SPACE3_DIM2) + coord3[i][1];
+ if(*tbuf != *tbuf2)
+ TestErrPrintf("element values don't match!, i=%d\n", i);
} /* end for */
/* Close memory dataspace */
@@ -2410,7 +4438,7 @@ test_select_hyper_union(void)
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
- hsize_t npoints; /* Number of elements in selection */
+ hssize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of hyperslabs\n"));
@@ -2448,7 +4476,7 @@ test_select_hyper_union(void)
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid1);
- VERIFY(npoints, 2*15*13, "H5Sget_select_npoints");
+ VERIFY(npoints, 2 * 15 * 13, "H5Sget_select_npoints");
/* Select 8x26 hyperslab for memory dataset */
start[0]=15; start[1]=0;
@@ -2561,7 +4589,7 @@ test_select_hyper_union(void)
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
- VERIFY(npoints, 15*26, "H5Sget_select_npoints");
+ VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
@@ -2647,7 +4675,7 @@ test_select_hyper_union(void)
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
- VERIFY(npoints, 15*26, "H5Sget_select_npoints");
+ VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE3_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
@@ -2737,7 +4765,7 @@ test_select_hyper_union(void)
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
- VERIFY(npoints, 15*26, "H5Sget_select_npoints");
+ VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE4_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
@@ -2834,7 +4862,7 @@ test_select_hyper_union(void)
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
- VERIFY(npoints, 15*26, "H5Sget_select_npoints");
+ VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1,SPACE5_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
@@ -3277,7 +5305,7 @@ test_select_hyper_and_2d(void)
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
- hsize_t npoints; /* Number of elements in selection */
+ hssize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with intersection of 2-D hyperslabs\n"));
@@ -3322,7 +5350,7 @@ test_select_hyper_and_2d(void)
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid1);
- VERIFY(npoints, 5*5, "H5Sget_select_npoints");
+ VERIFY(npoints, 5 * 5, "H5Sget_select_npoints");
/* Select 25 hyperslab for memory dataset */
start[0]=0;
@@ -3333,7 +5361,7 @@ test_select_hyper_and_2d(void)
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints = H5Sget_select_npoints(sid2);
- VERIFY(npoints, 5*5, "H5Sget_select_npoints");
+ VERIFY(npoints, 5 * 5, "H5Sget_select_npoints");
/* Create a dataset */
dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
@@ -3406,7 +5434,7 @@ test_select_hyper_xor_2d(void)
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
- hsize_t npoints; /* Number of elements in selection */
+ hssize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with XOR of 2-D hyperslabs\n"));
@@ -3537,7 +5565,7 @@ test_select_hyper_notb_2d(void)
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
- hsize_t npoints; /* Number of elements in selection */
+ hssize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTB of 2-D hyperslabs\n"));
@@ -3667,7 +5695,7 @@ test_select_hyper_nota_2d(void)
*tbuf2; /* temporary buffer pointer */
int i,j; /* Counters */
herr_t ret; /* Generic return value */
- hsize_t npoints; /* Number of elements in selection */
+ hssize_t npoints; /* Number of elements in selection */
/* Output message about test being performed */
MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTA of 2-D hyperslabs\n"));
@@ -3878,7 +5906,7 @@ test_select_hyper_union_random_5d(hid_t read_plist)
#else /* QAK */
seed=987909620;
#endif /* QAK */
- HDsrand(seed);
+ HDsrandom(seed);
#ifdef QAK
printf("test_num=%d, seed=%u\n",test_num,seed);
@@ -3893,26 +5921,26 @@ printf("hyperslab=%d\n",i);
#endif /* QAK */
/* Select random hyperslab location & size for selection */
for(j=0; j<SPACE5_RANK; j++) {
- start[j]=rand()%dims1[j];
- count[j]=(rand()%(dims1[j]-start[j]))+1;
+ start[j] = ((hsize_t)HDrandom() % dims1[j]);
+ count[j] = (((hsize_t)HDrandom() % (dims1[j] - start[j])) + 1);
#ifdef QAK
printf("start[%d]=%d, count[%d]=%d (end[%d]=%d)\n",j,(int)start[j],j,(int)count[j],j,(int)(start[j]+count[j]-1));
#endif /* QAK */
} /* end for */
/* Select hyperslab */
- ret = H5Sselect_hyperslab(sid1,(i==0 ? H5S_SELECT_SET : H5S_SELECT_OR),start,NULL,count,NULL);
+ ret = H5Sselect_hyperslab(sid1, (i == 0 ? H5S_SELECT_SET : H5S_SELECT_OR), start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* end for */
/* Get the number of elements selected */
- npoints=H5Sget_select_npoints(sid1);
+ npoints = H5Sget_select_npoints(sid1);
CHECK(npoints, 0, "H5Sget_select_npoints");
/* Select linear 1-D hyperslab for memory dataset */
- start[0]=0;
- count[0]=npoints;
- ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,NULL,count,NULL);
+ start[0] = 0;
+ count[0] = (hsize_t)npoints;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
npoints2 = H5Sget_select_npoints(sid2);
@@ -4973,24 +7001,24 @@ typedef struct {
static herr_t
test_select_hyper_iter3(void *_elem, hid_t UNUSED type_id, unsigned ndim, const hsize_t *point, void *_operator_data)
{
- unsigned short *tbuf=(unsigned short *)_elem; /* temporary buffer pointer */
- fill_iter_info *iter_info=(fill_iter_info *)_operator_data; /* Get the pointer to the iterator information */
+ unsigned *tbuf = (unsigned *)_elem; /* temporary buffer pointer */
+ fill_iter_info *iter_info = (fill_iter_info *)_operator_data; /* Get the pointer to the iterator information */
hsize_t *coord_ptr; /* Pointer to the coordinate information for a point*/
/* Check value in current buffer location */
- if(*tbuf!=iter_info->fill_value)
+ if(*tbuf != iter_info->fill_value)
return(-1);
else {
/* Check number of dimensions */
- if(ndim!=SPACE7_RANK)
+ if(ndim != SPACE7_RANK)
return(-1);
else {
/* Check Coordinates */
- coord_ptr=iter_info->coords+(2*iter_info->curr_coord);
+ coord_ptr = iter_info->coords + (2 * iter_info->curr_coord);
iter_info->curr_coord++;
- if(coord_ptr[0]!=point[0])
+ if(coord_ptr[0] != point[0])
return(-1);
- else if(coord_ptr[1]!=point[1])
+ else if(coord_ptr[1] != point[1])
return(-1);
else
return(0);
@@ -5009,25 +7037,25 @@ test_select_fill_all(void)
{
hid_t sid1; /* Dataspace ID */
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
- int fill_value; /* Fill value */
+ unsigned fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
hsize_t points[SPACE7_DIM1*SPACE7_DIM2][SPACE7_RANK]; /* Coordinates of selection */
- unsigned short *wbuf, /* buffer to write to disk */
+ unsigned *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
- int i,j; /* Counters */
+ unsigned u, v; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling 'all' Selections\n"));
/* Allocate memory buffer */
- wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2);
+ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK(wbuf, NULL, "HDmalloc");
/* Initialize memory buffer */
- for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
- for(j=0; j<SPACE7_DIM2; j++)
- *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j;
+ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for(v = 0; v < SPACE7_DIM2; v++)
+ *tbuf++ = (u * SPACE7_DIM2) + v;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
@@ -5036,32 +7064,32 @@ test_select_fill_all(void)
/* Space defaults to "all" selection */
/* Set fill value */
- fill_value=SPACE7_FILL;
+ fill_value = SPACE7_FILL;
/* Fill selection in memory */
- ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1);
+ ret = H5Dfill(&fill_value, H5T_NATIVE_UINT, wbuf, H5T_NATIVE_UINT, sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
- for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
- for(j=0; j<SPACE7_DIM2; j++)
- if(*tbuf!=(unsigned short)fill_value)
- TestErrPrintf("Error! j=%d, i=%d, *tbuf=%x, fill_value=%x\n",j,i,(unsigned)*tbuf,(unsigned)fill_value);
+ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for(v = 0; v < SPACE7_DIM2; v++)
+ if(*tbuf != fill_value)
+ TestErrPrintf("Error! v=%d, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, fill_value);
/* Set the coordinates of the selection */
- for(i=0; i<SPACE7_DIM1; i++)
- for(j=0; j<SPACE7_DIM2; j++) {
- points[(i*SPACE7_DIM2)+j][0]=i;
- points[(i*SPACE7_DIM2)+j][1]=j;
+ for(u = 0; u < SPACE7_DIM1; u++)
+ for(v = 0; v < SPACE7_DIM2; v++) {
+ points[(u * SPACE7_DIM2) + v][0] = u;
+ points[(u * SPACE7_DIM2) + v][1] = v;
} /* end for */
/* Initialize the iterator structure */
- iter_info.fill_value=SPACE7_FILL;
- iter_info.curr_coord=0;
- iter_info.coords=(hsize_t *)points;
+ iter_info.fill_value = SPACE7_FILL;
+ iter_info.curr_coord = 0;
+ iter_info.coords = (hsize_t *)points;
/* Iterate through selection, verifying correct data */
- ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info);
+ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
@@ -5085,78 +7113,78 @@ test_select_fill_point(hssize_t *offset)
hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
hsize_t points[5][SPACE7_RANK] = {{2,4}, {3,8}, {8,4}, {7,5}, {7,7}};
- size_t num_points=5; /* Number of points selected */
+ size_t num_points = 5; /* Number of points selected */
int fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
- unsigned short *wbuf, /* buffer to write to disk */
+ unsigned *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
- int i,j,k; /* Counters */
+ unsigned u, v, w; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling 'point' Selections\n"));
/* Allocate memory buffer */
- wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2);
+ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK(wbuf, NULL, "HDmalloc");
/* Initialize memory buffer */
- for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
- for(j=0; j<SPACE7_DIM2; j++)
- *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j;
+ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for(v = 0; v < SPACE7_DIM2; v++)
+ *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Select "point" selection */
- ret = H5Sselect_elements(sid1, H5S_SELECT_SET,num_points,(const hsize_t *)points);
+ ret = H5Sselect_elements(sid1, H5S_SELECT_SET, num_points, (const hsize_t *)points);
CHECK(ret, FAIL, "H5Sselect_elements");
- if(offset!=NULL) {
- HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t));
+ if(offset != NULL) {
+ HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));
/* Set offset, if provided */
- ret = H5Soffset_simple(sid1,real_offset);
+ ret = H5Soffset_simple(sid1, real_offset);
CHECK(ret, FAIL, "H5Soffset_simple");
} /* end if */
else
- HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t));
+ HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));
/* Set fill value */
- fill_value=SPACE7_FILL;
+ fill_value = SPACE7_FILL;
/* Fill selection in memory */
- ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1);
+ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
- for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
- for(j=0; j<SPACE7_DIM2; j++, tbuf++) {
- for(k=0; k<(int)num_points; k++) {
- if(i==(int)(points[k][0]+real_offset[0]) && j==(int)(points[k][1]+real_offset[1])) {
- if(*tbuf!=(unsigned short)fill_value)
- TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value);
+ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for(v = 0; v < SPACE7_DIM2; v++, tbuf++) {
+ for(w = 0; w < (unsigned)num_points; w++) {
+ if(u == (unsigned)(points[w][0] + (hsize_t)real_offset[0]) && v == (unsigned)(points[w][1] + (hsize_t)real_offset[1])) {
+ if(*tbuf != (unsigned)fill_value)
+ TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value);
break;
} /* end if */
} /* end for */
- if(k==(int)num_points && *tbuf!=((unsigned short)(i*SPACE7_DIM2)+j))
- TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j));
+ if(w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v))
+ TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v));
} /* end for */
/* Initialize the iterator structure */
- iter_info.fill_value=SPACE7_FILL;
- iter_info.curr_coord=0;
- iter_info.coords=(hsize_t *)points;
+ iter_info.fill_value = SPACE7_FILL;
+ iter_info.curr_coord = 0;
+ iter_info.coords = (hsize_t *)points;
/* Add in the offset */
- for(i=0; i<(int)num_points; i++) {
- points[i][0]+=real_offset[0];
- points[i][1]+=real_offset[1];
+ for(u = 0; u < (unsigned)num_points; u++) {
+ points[u][0] = (hsize_t)(points[u][0] + real_offset[0]);
+ points[u][1] = (hsize_t)(points[u][1] + real_offset[1]);
} /* end for */
/* Iterate through selection, verifying correct data */
- ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info);
+ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
@@ -5185,78 +7213,78 @@ test_select_fill_hyper_simple(hssize_t *offset)
hsize_t points[16][SPACE7_RANK]; /* Coordinates selected */
int fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
- unsigned short *wbuf, /* buffer to write to disk */
+ unsigned *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
- int i,j; /* Counters */
+ unsigned u, v; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling Simple 'hyperslab' Selections\n"));
/* Allocate memory buffer */
- wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2);
+ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK(wbuf, NULL, "HDmalloc");
/* Initialize memory buffer */
- for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
- for(j=0; j<SPACE7_DIM2; j++)
- *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j;
+ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for(v = 0; v < SPACE7_DIM2; v++)
+ *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Select "hyperslab" selection */
- start[0]=3; start[1]=3;
- count[0]=4; count[1]=4;
- ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET,start,NULL,count,NULL);
+ start[0] = 3; start[1] = 3;
+ count[0] = 4; count[1] = 4;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
- if(offset!=NULL) {
- HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t));
+ if(offset != NULL) {
+ HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));
/* Set offset, if provided */
- ret = H5Soffset_simple(sid1,real_offset);
+ ret = H5Soffset_simple(sid1, real_offset);
CHECK(ret, FAIL, "H5Soffset_simple");
} /* end if */
else
- HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t));
+ HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));
/* Set fill value */
- fill_value=SPACE7_FILL;
+ fill_value = SPACE7_FILL;
/* Fill selection in memory */
- ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1);
+ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
- for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
- for(j=0; j<SPACE7_DIM2; j++, tbuf++) {
- if((i>=(int)(start[0]+real_offset[0]) && i<(int)(start[0]+count[0]+real_offset[0]))
- && (j>=(int)(start[1]+real_offset[1]) && j<(int)(start[1]+count[1]+real_offset[1]))) {
- if(*tbuf!=(unsigned short)fill_value)
- TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value);
+ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for(v = 0; v < SPACE7_DIM2; v++, tbuf++) {
+ if((u >= (unsigned)(start[0] + real_offset[0]) && u < (unsigned)(start[0] + count[0] + real_offset[0]))
+ && (v >= (unsigned)(start[1] + real_offset[1]) && v < (unsigned)(start[1] + count[1] + real_offset[1]))) {
+ if(*tbuf != (unsigned)fill_value)
+ TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value);
} /* end if */
else {
- if(*tbuf!=((unsigned short)(i*SPACE7_DIM2)+j))
- TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j));
+ if(*tbuf != ((unsigned)(u * SPACE7_DIM2) + v))
+ TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v));
} /* end else */
} /* end for */
/* Initialize the iterator structure */
- iter_info.fill_value=SPACE7_FILL;
- iter_info.curr_coord=0;
- iter_info.coords=(hsize_t *)points;
+ iter_info.fill_value = SPACE7_FILL;
+ iter_info.curr_coord = 0;
+ iter_info.coords = (hsize_t *)points;
/* Set the coordinates of the selection (with the offset) */
- for(i=0, num_points=0; i<(int)count[0]; i++)
- for(j=0; j<(int)count[1]; j++, num_points++) {
- points[num_points][0]=i+start[0]+real_offset[0];
- points[num_points][1]=j+start[1]+real_offset[1];
+ for(u = 0, num_points = 0; u < (unsigned)count[0]; u++)
+ for(v = 0; v < (unsigned)count[1]; v++, num_points++) {
+ points[num_points][0] = (hsize_t)(u + start[0] + real_offset[0]);
+ points[num_points][1] = (hsize_t)(v + start[1] + real_offset[1]);
} /* end for */
/* Iterate through selection, verifying correct data */
- ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info);
+ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
@@ -5292,79 +7320,79 @@ test_select_fill_hyper_regular(hssize_t *offset)
size_t num_points=16; /* Number of points selected */
int fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
- unsigned short *wbuf, /* buffer to write to disk */
+ unsigned *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
- int i,j,k; /* Counters */
+ unsigned u, v, w; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling Regular 'hyperslab' Selections\n"));
/* Allocate memory buffer */
- wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2);
+ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK(wbuf, NULL, "HDmalloc");
/* Initialize memory buffer */
- for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
- for(j=0; j<SPACE7_DIM2; j++)
- *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j;
+ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for(v = 0; v < SPACE7_DIM2; v++)
+ *tbuf++ =(u * SPACE7_DIM2) + v;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Select "hyperslab" selection */
- start[0]=2; start[1]=2;
- stride[0]=4; stride[1]=4;
- count[0]=2; count[1]=2;
- block[0]=2; block[1]=2;
- ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block);
+ start[0] = 2; start[1] = 2;
+ stride[0] = 4; stride[1] = 4;
+ count[0] = 2; count[1] = 2;
+ block[0] = 2; block[1] = 2;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
- if(offset!=NULL) {
- HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t));
+ if(offset != NULL) {
+ HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));
/* Set offset, if provided */
- ret = H5Soffset_simple(sid1,real_offset);
+ ret = H5Soffset_simple(sid1, real_offset);
CHECK(ret, FAIL, "H5Soffset_simple");
} /* end if */
else
- HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t));
+ HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));
/* Set fill value */
- fill_value=SPACE7_FILL;
+ fill_value = SPACE7_FILL;
/* Fill selection in memory */
- ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1);
+ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
- for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
- for(j=0; j<SPACE7_DIM2; j++, tbuf++) {
- for(k=0; k<(int)num_points; k++) {
- if(i==(int)(points[k][0]+real_offset[0]) && j==(int)(points[k][1]+real_offset[1])) {
- if(*tbuf!=(unsigned short)fill_value)
- TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value);
+ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for(v = 0; v < SPACE7_DIM2; v++, tbuf++) {
+ for(w = 0; w < (unsigned)num_points; w++) {
+ if(u == (unsigned)(points[w][0] + real_offset[0]) && v == (unsigned)(points[w][1] + real_offset[1])) {
+ if(*tbuf != (unsigned)fill_value)
+ TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value);
break;
} /* end if */
} /* end for */
- if(k==(int)num_points && *tbuf!=((unsigned short)(i*SPACE7_DIM2)+j))
- TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j));
+ if(w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v))
+ TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v));
} /* end for */
/* Initialize the iterator structure */
- iter_info.fill_value=SPACE7_FILL;
- iter_info.curr_coord=0;
- iter_info.coords=(hsize_t *)points;
+ iter_info.fill_value = SPACE7_FILL;
+ iter_info.curr_coord = 0;
+ iter_info.coords = (hsize_t *)points;
/* Add in the offset */
- for(i=0; i<(int)num_points; i++) {
- points[i][0] += real_offset[0];
- points[i][1] += real_offset[1];
+ for(u = 0; u < (unsigned)num_points; u++) {
+ points[u][0] = (hsize_t)(points[u][0] + real_offset[0]);
+ points[u][1] = (hsize_t)(points[u][1] + real_offset[1]);
} /* end for */
/* Iterate through selection, verifying correct data */
- ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info);
+ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
@@ -5407,72 +7435,72 @@ test_select_fill_hyper_irregular(hssize_t *offset)
{6,4}, {6,5}, {6,6}, {6,7},
{7,4}, {7,5}, {7,6}, {7,7},
};
- size_t num_points=32; /* Number of points selected */
- size_t num_iter_points=28; /* Number of resulting points */
+ size_t num_points = 32; /* Number of points selected */
+ size_t num_iter_points = 28; /* Number of resulting points */
int fill_value; /* Fill value */
fill_iter_info iter_info; /* Iterator information structure */
- unsigned short *wbuf, /* buffer to write to disk */
+ unsigned *wbuf, /* buffer to write to disk */
*tbuf; /* temporary buffer pointer */
- int i,j,k; /* Counters */
+ unsigned u, v, w; /* Counters */
herr_t ret; /* Generic return value */
/* Output message about test being performed */
MESSAGE(5, ("Testing Filling Irregular 'hyperslab' Selections\n"));
/* Allocate memory buffer */
- wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2);
+ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
CHECK(wbuf, NULL, "HDmalloc");
/* Initialize memory buffer */
- for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
- for(j=0; j<SPACE7_DIM2; j++)
- *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j;
+ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for(v = 0; v < SPACE7_DIM2; v++)
+ *tbuf++ = (u * SPACE7_DIM2) + v;
/* Create dataspace for dataset on disk */
sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
CHECK(sid1, FAIL, "H5Screate_simple");
/* Select first "hyperslab" selection */
- start[0]=2; start[1]=2;
- count[0]=4; count[1]=4;
- ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,NULL,count,NULL);
+ start[0] = 2; start[1] = 2;
+ count[0] = 4; count[1] = 4;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
/* Combine with second "hyperslab" selection */
- start[0]=4; start[1]=4;
- count[0]=4; count[1]=4;
- ret = H5Sselect_hyperslab(sid1,H5S_SELECT_OR,start,NULL,count,NULL);
+ start[0] = 4; start[1] = 4;
+ count[0] = 4; count[1] = 4;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_OR, start, NULL, count, NULL);
CHECK(ret, FAIL, "H5Sselect_hyperslab");
- if(offset!=NULL) {
- HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t));
+ if(offset != NULL) {
+ HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));
/* Set offset, if provided */
- ret = H5Soffset_simple(sid1,real_offset);
+ ret = H5Soffset_simple(sid1, real_offset);
CHECK(ret, FAIL, "H5Soffset_simple");
} /* end if */
else
- HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t));
+ HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));
/* Set fill value */
- fill_value=SPACE7_FILL;
+ fill_value = SPACE7_FILL;
/* Fill selection in memory */
- ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1);
+ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
CHECK(ret, FAIL, "H5Dfill");
/* Verify memory buffer the hard way... */
- for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++)
- for(j=0; j<SPACE7_DIM2; j++, tbuf++) {
- for(k=0; k<(int)num_points; k++) {
- if(i==(int)(points[k][0]+real_offset[0]) && j==(int)(points[k][1]+real_offset[1])) {
- if(*tbuf!=(unsigned short)fill_value)
- TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value);
+ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for(v = 0; v < SPACE7_DIM2; v++, tbuf++) {
+ for(w = 0; w < (unsigned)num_points; w++) {
+ if(u == (unsigned)(points[w][0] + real_offset[0]) && v == (unsigned)(points[w][1] + real_offset[1])) {
+ if(*tbuf != (unsigned)fill_value)
+ TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value);
break;
} /* end if */
} /* end for */
- if(k==(int)num_points && *tbuf!=((unsigned short)(i*SPACE7_DIM2)+j))
- TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j));
+ if(w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v))
+ TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v));
} /* end for */
/* Initialize the iterator structure */
@@ -5481,13 +7509,13 @@ test_select_fill_hyper_irregular(hssize_t *offset)
iter_info.coords = (hsize_t *)iter_points;
/* Add in the offset */
- for(i=0; i<(int)num_iter_points; i++) {
- iter_points[i][0] += real_offset[0];
- iter_points[i][1] += real_offset[1];
+ for(u = 0; u < (unsigned)num_iter_points; u++) {
+ iter_points[u][0] = (hsize_t)(iter_points[u][0] + real_offset[0]);
+ iter_points[u][1] = (hsize_t)(iter_points[u][1] + real_offset[1]);
} /* end for */
/* Iterate through selection, verifying correct data */
- ret = H5Diterate(wbuf, H5T_NATIVE_USHORT, sid1, test_select_hyper_iter3, &iter_info);
+ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
CHECK(ret, FAIL, "H5Diterate");
/* Close dataspace */
@@ -7005,6 +9033,2855 @@ test_shape_same(void)
CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same() */
+/****************************************************************
+**
+** test_shape_same_dr__smoke_check_1():
+**
+** Create a square, 2 D data space (10 X 10), and select
+** all of it.
+**
+** Similarly, create nine, 3 D data spaces (10 X 10 X 10),
+** and select (10 X 10 X 1) hyper slabs in each, three with
+** the slab parallel to the xy plane, three parallel to the
+** xz plane, and three parallel to the yz plane.
+**
+** Assuming that z is the fastest changing dimension,
+** H5S_select_shape_same() should return TRUE when comparing
+** the full 2 D space against any hyperslab parallel to the
+** yz plane in the 3 D space, and FALSE when comparing the
+** full 2 D space against the other two hyper slabs.
+**
+** Also create two additional 3 D data spaces (10 X 10 X 10),
+** and select a (10 X 10 X 2) hyper slab parallel to the yz
+** axis in one of them, and two parallel (10 X 10 X 1) hyper
+** slabs parallel to the yz axis in the other.
+** H5S_select_shape_same() should return FALSE when comparing
+** each to the 2 D selection.
+**
+****************************************************************/
+static void
+test_shape_same_dr__smoke_check_1(void)
+{
+ hid_t small_square_sid;
+ hid_t small_cube_xy_slice_0_sid;
+ hid_t small_cube_xy_slice_1_sid;
+ hid_t small_cube_xy_slice_2_sid;
+ hid_t small_cube_xz_slice_0_sid;
+ hid_t small_cube_xz_slice_1_sid;
+ hid_t small_cube_xz_slice_2_sid;
+ hid_t small_cube_yz_slice_0_sid;
+ hid_t small_cube_yz_slice_1_sid;
+ hid_t small_cube_yz_slice_2_sid;
+ hid_t small_cube_yz_slice_3_sid;
+ hid_t small_cube_yz_slice_4_sid;
+ hsize_t small_cube_dims[] = {10, 10, 10};
+ hsize_t start[3];
+ hsize_t stride[3];
+ hsize_t count[3];
+ hsize_t block[3];
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MESSAGE(7, (" Smoke check 1: Slices through a cube.\n"));
+
+ /* Create the 10 x 10 dataspace */
+ small_square_sid = H5Screate_simple(2, small_cube_dims, NULL);
+ CHECK(small_square_sid, FAIL, "H5Screate_simple");
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */
+ small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+ start[2] = 0; /* z */
+
+ /* stride is a bit silly here, since we are only selecting a single */
+ /* contiguous plane, but include it anyway, with values large enough */
+ /* to ensure that we will only get the single block selected. */
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 10; /* x */
+ block[1] = 10; /* y */
+ block[2] = 1; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[2] = 5;
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[2] = 9;
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */
+ small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+ start[2] = 0; /* z */
+
+ /* stride is a bit silly here, since we are only selecting a single */
+ /* contiguous chunk, but include it anyway, with values large enough */
+ /* to ensure that we will only get the single chunk. */
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 10; /* x */
+ block[1] = 1; /* y */
+ block[2] = 10; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[1] = 4;
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[1] = 9;
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */
+ small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_4_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_4_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+ start[2] = 0; /* z */
+
+ /* stride is a bit silly here, since we are only selecting a single */
+ /* contiguous chunk, but include it anyway, with values large enough */
+ /* to ensure that we will only get the single chunk. */
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 1; /* x */
+ block[1] = 10; /* y */
+ block[2] = 10; /* z */
+
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 4;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 9;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 4;
+ block[0] = 2;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 3;
+ block[0] = 1;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 6;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* setup is done -- run the tests: */
+
+ /* Compare against "xy" selection */
+ check = H5S_select_shape_same_test(small_cube_xy_slice_0_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_xy_slice_1_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_xy_slice_2_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+
+ /* Compare against "xz" selection */
+ check = H5S_select_shape_same_test(small_cube_xz_slice_0_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_xz_slice_1_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_xz_slice_2_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+
+ /* Compare against "yz" selection */
+ check = H5S_select_shape_same_test(small_cube_yz_slice_0_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_yz_slice_1_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_yz_slice_2_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_yz_slice_3_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_yz_slice_4_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+
+ /* Close dataspaces */
+ ret = H5Sclose(small_square_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ ret = H5Sclose(small_cube_xy_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ ret = H5Sclose(small_cube_xz_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ ret = H5Sclose(small_cube_yz_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_3_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_4_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+} /* test_shape_same_dr__smoke_check_1() */
+
+/****************************************************************
+**
+** test_shape_same_dr__smoke_check_2():
+**
+** Create a square, 2 D data space (10 X 10), and select
+** a "checker board" hyper slab as follows:
+**
+** * * - - * * - - * *
+** * * - - * * - - * *
+** - - * * - - * * - -
+** - - * * - - * * - -
+** * * - - * * - - * *
+** * * - - * * - - * *
+** - - * * - - * * - -
+** - - * * - - * * - -
+** * * - - * * - - * *
+** * * - - * * - - * *
+**
+** where asterisks indicate selected elements, and dashes
+** indicate unselected elements.
+**
+** Similarly, create nine, 3 D data spaces (10 X 10 X 10),
+** and select similar (10 X 10 X 1) checker board hyper
+** slabs in each, three with the slab parallel to the xy
+** plane, three parallel to the xz plane, and three parallel
+** to the yz plane.
+**
+** Assuming that z is the fastest changing dimension,
+** H5S_select_shape_same() should return TRUE when comparing
+** the 2 D space checker board selection against a checker
+** board hyperslab parallel to the yz plane in the 3 D
+** space, and FALSE when comparing the 2 D checkerboard
+** selection against two hyper slabs parallel to the xy
+** or xz planes.
+**
+** Also create an additional 3 D data spaces (10 X 10 X 10),
+** and select a checker board parallel with the yz axis,
+** save with some squares being on different planes.
+** H5S_select_shape_same() should return FALSE when
+** comparing this selection to the 2 D selection.
+**
+****************************************************************/
+static void
+test_shape_same_dr__smoke_check_2(void)
+{
+ hid_t small_square_sid;
+ hid_t small_cube_xy_slice_0_sid;
+ hid_t small_cube_xy_slice_1_sid;
+ hid_t small_cube_xy_slice_2_sid;
+ hid_t small_cube_xz_slice_0_sid;
+ hid_t small_cube_xz_slice_1_sid;
+ hid_t small_cube_xz_slice_2_sid;
+ hid_t small_cube_yz_slice_0_sid;
+ hid_t small_cube_yz_slice_1_sid;
+ hid_t small_cube_yz_slice_2_sid;
+ hid_t small_cube_yz_slice_3_sid;
+ hsize_t small_cube_dims[] = {10, 10, 10};
+ hsize_t start[3];
+ hsize_t stride[3];
+ hsize_t count[3];
+ hsize_t block[3];
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MESSAGE(7, (" Smoke check 2: Checker board slices through a cube.\n"));
+
+ /* Create the 10 x 10 dataspace */
+ small_square_sid = H5Screate_simple(2, small_cube_dims, NULL);
+ CHECK(small_square_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+
+ stride[0] = 4; /* x */
+ stride[1] = 4; /* y */
+
+ count[0] = 3; /* x */
+ count[1] = 3; /* y */
+
+ block[0] = 2; /* x */
+ block[1] = 2; /* y */
+ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 2; /* x */
+ start[1] = 2; /* y */
+
+ stride[0] = 4; /* x */
+ stride[1] = 4; /* y */
+
+ count[0] = 2; /* x */
+ count[1] = 2; /* y */
+
+ block[0] = 2; /* x */
+ block[1] = 2; /* y */
+ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */
+ small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple");
+
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+ start[2] = 0; /* z */
+
+ stride[0] = 4; /* x */
+ stride[1] = 4; /* y */
+ stride[2] = 20; /* z -- large enough that there will only be one slice */
+
+ count[0] = 3; /* x */
+ count[1] = 3; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 2; /* y */
+ block[2] = 1; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[2] = 3;
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[2] = 9;
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ start[0] = 2; /* x */
+ start[1] = 2; /* y */
+ start[2] = 0; /* z */
+
+ stride[0] = 4; /* x */
+ stride[1] = 4; /* y */
+ stride[2] = 20; /* z -- large enough that there will only be one slice */
+
+ count[0] = 2; /* x */
+ count[1] = 2; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 2; /* y */
+ block[2] = 1; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[2] = 3;
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[2] = 9;
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */
+ small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple");
+
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+ start[2] = 0; /* z */
+
+ stride[0] = 4; /* x */
+ stride[1] = 20; /* y -- large enough that there will only be one slice */
+ stride[2] = 4; /* z */
+
+ count[0] = 3; /* x */
+ count[1] = 1; /* y */
+ count[2] = 3; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 1; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[1] = 5;
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[1] = 9;
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 2; /* x */
+ start[1] = 0; /* y */
+ start[2] = 2; /* z */
+
+ stride[0] = 4; /* x */
+ stride[1] = 20; /* y -- large enough that there will only be one slice */
+ stride[2] = 4; /* z */
+
+ count[0] = 2; /* x */
+ count[1] = 1; /* y */
+ count[2] = 2; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 1; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[1] = 5;
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[1] = 9;
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */
+ small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+ start[2] = 0; /* z */
+
+ stride[0] = 20; /* x -- large enough that there will only be one slice */
+ stride[1] = 4; /* y */
+ stride[2] = 4; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 3; /* y */
+ count[2] = 3; /* z */
+
+ block[0] = 1; /* x */
+ block[1] = 2; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 8;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 9;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 3;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ start[0] = 0; /* x */
+ start[1] = 2; /* y */
+ start[2] = 2; /* z */
+
+ stride[0] = 20; /* x -- large enough that there will only be one slice */
+ stride[1] = 4; /* y */
+ stride[2] = 4; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 2; /* y */
+ count[2] = 2; /* z */
+
+ block[0] = 1; /* x */
+ block[1] = 2; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 8;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 9;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 4;
+ /* This test gets the right answer, but it fails the shape same
+ * test in an unexpected point. Bring this up with Quincey, as
+ * the oddness looks like it is not related to my code.
+ * -- JRM
+ */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* setup is done -- run the tests: */
+
+ /* Compare against "xy" selection */
+ check = H5S_select_shape_same_test(small_cube_xy_slice_0_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_xy_slice_1_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_xy_slice_2_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+
+ /* Compare against "xz" selection */
+ check = H5S_select_shape_same_test(small_cube_xz_slice_0_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_xz_slice_1_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_xz_slice_2_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+
+ /* Compare against "yz" selection */
+ check = H5S_select_shape_same_test(small_cube_yz_slice_0_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_yz_slice_1_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_yz_slice_2_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_yz_slice_3_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+
+ /* Close dataspaces */
+ ret = H5Sclose(small_square_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ ret = H5Sclose(small_cube_xy_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ ret = H5Sclose(small_cube_xz_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ ret = H5Sclose(small_cube_yz_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_3_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+} /* test_shape_same_dr__smoke_check_2() */
+
+
+/****************************************************************
+**
+** test_shape_same_dr__smoke_check_3():
+**
+** Create a square, 2 D data space (10 X 10), and select an
+** irregular hyper slab as follows:
+**
+** y
+** 9 - - - - - - - - - -
+** 8 - - - - - - - - - -
+** 7 - - - * * * * - - -
+** 6 - - * * * * * - - -
+** 5 - - * * - - - - - -
+** 4 - - * * - * * - - -
+** 3 - - * * - * * - - -
+** 2 - - - - - - - - - -
+** 1 - - - - - - - - - -
+** 0 - - - - - - - - - -
+** 0 1 2 3 4 5 6 7 8 9 x
+**
+** where asterisks indicate selected elements, and dashes
+** indicate unselected elements.
+**
+** Similarly, create nine, 3 D data spaces (10 X 10 X 10),
+** and select similar irregular hyper slabs in each, three
+** with the slab parallel to the xy plane, three parallel
+** to the xz plane, and three parallel to the yz plane.
+** Further, translate the irregular slab in 2/3rds of the
+** cases.
+**
+** Assuming that z is the fastest changing dimension,
+** H5S_select_shape_same() should return TRUE when
+** comparing the 2 D irregular hyperslab selection
+** against the irregular hyperslab selections parallel
+** to the yz plane in the 3 D space, and FALSE when
+** comparing it against the irregular hyper slabs
+** selections parallel to the xy or xz planes.
+**
+****************************************************************/
+static void
+test_shape_same_dr__smoke_check_3(void)
+{
+ hid_t small_square_sid;
+ hid_t small_cube_xy_slice_0_sid;
+ hid_t small_cube_xy_slice_1_sid;
+ hid_t small_cube_xy_slice_2_sid;
+ hid_t small_cube_xz_slice_0_sid;
+ hid_t small_cube_xz_slice_1_sid;
+ hid_t small_cube_xz_slice_2_sid;
+ hid_t small_cube_yz_slice_0_sid;
+ hid_t small_cube_yz_slice_1_sid;
+ hid_t small_cube_yz_slice_2_sid;
+ hsize_t small_cube_dims[] = {10, 10, 10};
+ hsize_t start[3];
+ hsize_t stride[3];
+ hsize_t count[3];
+ hsize_t block[3];
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MESSAGE(7, (" Smoke check 3: Offset subsets of slices through a cube.\n"));
+
+ /* Create the 10 x 10 dataspace */
+ small_square_sid = H5Screate_simple(2, small_cube_dims, NULL);
+ CHECK(small_square_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 2; /* x */
+ start[1] = 3; /* y */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+
+ block[0] = 2; /* x */
+ block[1] = 4; /* y */
+ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 3; /* x */
+ start[1] = 6; /* y */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+
+ block[0] = 4; /* x */
+ block[1] = 2; /* y */
+ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 5; /* x */
+ start[1] = 3; /* y */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+
+ block[0] = 2; /* x */
+ block[1] = 2; /* y */
+ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */
+ small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple");
+
+
+ start[0] = 2; /* x */
+ start[1] = 3; /* y */
+ start[2] = 5; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 4; /* y */
+ block[2] = 1; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[0] -= 1; /* x */
+ start[1] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[1] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 3; /* x */
+ start[1] = 6; /* y */
+ start[2] = 5; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 4; /* x */
+ block[1] = 2; /* y */
+ block[2] = 1; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[0] -= 1; /* x */
+ start[1] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[1] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 5; /* x */
+ start[1] = 3; /* y */
+ start[2] = 5; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 2; /* y */
+ block[2] = 1; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[0] -= 1; /* x */
+ start[1] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[1] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */
+ small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 2; /* x */
+ start[1] = 5; /* y */
+ start[2] = 3; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 1; /* y */
+ block[2] = 4; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[0] -= 1; /* x */
+ start[2] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[2] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 3; /* x */
+ start[1] = 5; /* y */
+ start[2] = 6; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 4; /* x */
+ block[1] = 1; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[0] -= 1; /* x */
+ start[2] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[2] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 5; /* x */
+ start[1] = 5; /* y */
+ start[2] = 3; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 1; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[0] -= 1; /* x */
+ start[2] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[2] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+/* QAK: Start here.
+ */
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */
+ small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 8; /* x */
+ start[1] = 2; /* y */
+ start[2] = 3; /* z */
+
+ stride[0] = 20; /* x -- large enough that there will only be one slice */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 1; /* x */
+ block[1] = 2; /* y */
+ block[2] = 4; /* z */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[1] -= 1; /* x */
+ start[2] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[2] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 8; /* x */
+ start[1] = 3; /* y */
+ start[2] = 6; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 1; /* x */
+ block[1] = 4; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[1] -= 1; /* x */
+ start[2] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[2] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 8; /* x */
+ start[1] = 5; /* y */
+ start[2] = 3; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 1; /* x */
+ block[1] = 2; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[1] -= 1; /* x */
+ start[2] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[2] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* setup is done -- run the tests: */
+
+ /* Compare against "xy" selection */
+ check = H5S_select_shape_same_test(small_cube_xy_slice_0_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_xy_slice_1_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_xy_slice_2_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+
+ /* Compare against "xz" selection */
+ check = H5S_select_shape_same_test(small_cube_xz_slice_0_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_xz_slice_1_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_xz_slice_2_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+
+ /* Compare against "yz" selection */
+ check = H5S_select_shape_same_test(small_cube_yz_slice_0_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_yz_slice_1_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(small_cube_yz_slice_2_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+
+ /* Close dataspaces */
+ ret = H5Sclose(small_square_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ ret = H5Sclose(small_cube_xy_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ ret = H5Sclose(small_cube_xz_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ ret = H5Sclose(small_cube_yz_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+} /* test_shape_same_dr__smoke_check_3() */
+
+
+/****************************************************************
+**
+** test_shape_same_dr__smoke_check_4():
+**
+** Create a square, 2 D data space (10 X 10), and select
+** the entire space.
+**
+** Similarly, create 3 D and 4 D data spaces:
+**
+** (1 X 10 X 10)
+** (10 X 1 X 10)
+** (10 X 10 X 1)
+** (10 X 10 X 10)
+**
+** (1 X 1 X 10 X 10)
+** (1 X 10 X 1 X 10)
+** (1 X 10 X 10 X 1)
+** (10 X 1 X 1 X 10)
+** (10 X 1 X 10 X 1)
+** (10 X 10 X 1 X 1)
+** (10 X 1 X 10 X 10)
+**
+** And select these entire spaces as well.
+**
+** Compare the 2 D space against all the other spaces
+** with H5S_select_shape_same(). The (1 X 10 X 10) &
+** (1 X 1 X 10 X 10) should return TRUE. All others
+** should return FALSE.
+**
+****************************************************************/
+static void
+test_shape_same_dr__smoke_check_4(void)
+{
+ hid_t square_sid;
+ hid_t three_d_space_0_sid;
+ hid_t three_d_space_1_sid;
+ hid_t three_d_space_2_sid;
+ hid_t three_d_space_3_sid;
+ hid_t four_d_space_0_sid;
+ hid_t four_d_space_1_sid;
+ hid_t four_d_space_2_sid;
+ hid_t four_d_space_3_sid;
+ hid_t four_d_space_4_sid;
+ hid_t four_d_space_5_sid;
+ hid_t four_d_space_6_sid;
+ hsize_t dims[] = {10, 10, 10, 10};
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MESSAGE(7, (" Smoke check 4: Spaces of different dimension but same size.\n"));
+
+ /* Create the 10 x 10 dataspace */
+ square_sid = H5Screate_simple(2, dims, NULL);
+ CHECK(square_sid, FAIL, "H5Screate_simple");
+
+ /* create (1 X 10 X 10) data space */
+ dims[0] = 1;
+ dims[1] = 10;
+ dims[2] = 10;
+ three_d_space_0_sid = H5Screate_simple(3, dims, NULL);
+ CHECK(three_d_space_0_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 1 X 10) data space */
+ dims[0] = 10;
+ dims[1] = 1;
+ dims[2] = 10;
+ three_d_space_1_sid = H5Screate_simple(3, dims, NULL);
+ CHECK(three_d_space_1_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 10 X 1) data space */
+ dims[0] = 10;
+ dims[1] = 10;
+ dims[2] = 1;
+ three_d_space_2_sid = H5Screate_simple(3, dims, NULL);
+ CHECK(three_d_space_2_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 10 X 10) data space */
+ dims[0] = 10;
+ dims[1] = 10;
+ dims[2] = 10;
+ three_d_space_3_sid = H5Screate_simple(3, dims, NULL);
+ CHECK(three_d_space_3_sid, FAIL, "H5Screate_simple");
+
+
+ /* create (1 X 1 X 10 X 10) data space */
+ dims[0] = 1;
+ dims[1] = 1;
+ dims[2] = 10;
+ dims[3] = 10;
+ four_d_space_0_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_0_sid, FAIL, "H5Screate_simple");
+
+ /* create (1 X 10 X 1 X 10) data space */
+ dims[0] = 1;
+ dims[1] = 10;
+ dims[2] = 1;
+ dims[3] = 10;
+ four_d_space_1_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_1_sid, FAIL, "H5Screate_simple");
+
+ /* create (1 X 10 X 10 X 1) data space */
+ dims[0] = 1;
+ dims[1] = 10;
+ dims[2] = 10;
+ dims[3] = 1;
+ four_d_space_2_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_2_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 1 X 1 X 10) data space */
+ dims[0] = 10;
+ dims[1] = 1;
+ dims[2] = 1;
+ dims[3] = 10;
+ four_d_space_3_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_3_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 1 X 10 X 1) data space */
+ dims[0] = 10;
+ dims[1] = 1;
+ dims[2] = 10;
+ dims[3] = 1;
+ four_d_space_4_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_4_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 10 X 1 X 1) data space */
+ dims[0] = 10;
+ dims[1] = 10;
+ dims[2] = 1;
+ dims[3] = 1;
+ four_d_space_5_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_5_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 1 X 10 X 10) data space */
+ dims[0] = 10;
+ dims[1] = 1;
+ dims[2] = 10;
+ dims[3] = 10;
+ four_d_space_6_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_6_sid, FAIL, "H5Screate_simple");
+
+
+ /* setup is done -- run the tests: */
+
+ check = H5S_select_shape_same_test(three_d_space_0_sid, square_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(three_d_space_1_sid, square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(three_d_space_2_sid, square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(three_d_space_3_sid, square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+
+ check = H5S_select_shape_same_test(four_d_space_0_sid, square_sid);
+ VERIFY(check, TRUE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(four_d_space_1_sid, square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(four_d_space_2_sid, square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(four_d_space_3_sid, square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(four_d_space_4_sid, square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(four_d_space_5_sid, square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+ check = H5S_select_shape_same_test(four_d_space_6_sid, square_sid);
+ VERIFY(check, FALSE, "H5S_select_shape_same_test");
+
+
+ /* Close dataspaces */
+ ret = H5Sclose(square_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ ret = H5Sclose(three_d_space_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(three_d_space_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(three_d_space_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(three_d_space_3_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+
+ ret = H5Sclose(four_d_space_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(four_d_space_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(four_d_space_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(four_d_space_3_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(four_d_space_4_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(four_d_space_5_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(four_d_space_6_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+} /* test_shape_same_dr__smoke_check_4() */
+
+/****************************************************************
+**
+** test_shape_same_dr__full_space_vs_slice(): Tests selection
+** of a full n-cube data space vs an n-dimensional slice of
+** of an m-cube (m > n) in a call to H5S_select_shape_same().
+** Note that this test does not require the n-cube and the
+** n-dimensional slice to have the same rank (although
+** H5S_select_shape_same() should always return FALSE if
+** they don't).
+**
+** Per Quincey's suggestion, only test up to 5 dimensional
+** spaces.
+**
+****************************************************************/
+static void
+test_shape_same_dr__full_space_vs_slice(int test_num,
+ int small_rank,
+ int large_rank,
+ int offset,
+ hsize_t edge_size,
+ hbool_t dim_selected[],
+ hbool_t expected_result)
+{
+ char test_desc_0[128];
+ char test_desc_1[128];
+ int i;
+ hid_t n_cube_0_sid; /* the fully selected hyper cube */
+ hid_t n_cube_1_sid; /* the hyper cube in which a slice is selected */
+ hsize_t dims[SS_DR_MAX_RANK];
+ hsize_t start[SS_DR_MAX_RANK];
+ hsize_t * start_ptr;
+ hsize_t stride[SS_DR_MAX_RANK];
+ hsize_t * stride_ptr;
+ hsize_t count[SS_DR_MAX_RANK];
+ hsize_t * count_ptr;
+ hsize_t block[SS_DR_MAX_RANK];
+ hsize_t * block_ptr;
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ HDassert( 0 < small_rank );
+ HDassert( small_rank <= large_rank );
+ HDassert( large_rank <= SS_DR_MAX_RANK );
+ HDassert( 0 <= offset );
+ HDassert( offset < large_rank );
+ HDassert( edge_size > 0 );
+ HDassert( edge_size <= 1000 );
+
+ sprintf(test_desc_0,
+ "\tn-cube slice through m-cube (n <= m) test %d.\n",
+ test_num);
+ MESSAGE(7, (test_desc_0));
+
+ /* This statement must be updated if SS_DR_MAX_RANK is changed */
+ sprintf(test_desc_1,
+ "\t\tranks: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d.\n",
+ small_rank, large_rank, offset,
+ (int)dim_selected[0],
+ (int)dim_selected[1],
+ (int)dim_selected[2],
+ (int)dim_selected[3],
+ (int)dim_selected[4]);
+ MESSAGE(7, (test_desc_1));
+
+ /* copy the edge size into the dims array */
+ for(i = 0; i < SS_DR_MAX_RANK; i++)
+ dims[i] = edge_size;
+
+ /* Create the small n-cube */
+ n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL);
+ CHECK(n_cube_0_sid, FAIL, "H5Screate_simple");
+
+
+ /* Create the large n-cube */
+ n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL);
+ CHECK(n_cube_1_sid, FAIL, "H5Screate_simple");
+
+ /* set up start, stride, count, and block for the hyperslab selection */
+ for(i = 0; i < SS_DR_MAX_RANK; i++) {
+ stride[i] = 2 * edge_size; /* a bit silly in this case */
+ count[i] = 1;
+ if(dim_selected[i]) {
+ start[i] = 0;
+ block[i] = edge_size;
+ } /* end if */
+ else {
+ start[i] = (hsize_t)offset;
+ block[i] = 1;
+ } /* end else */
+ } /* end for */
+
+ /* since large rank may be less than SS_DR_MAX_RANK, we may not
+ * use the entire start, stride, count, and block arrays. This
+ * is a problem, since it is inconvenient to set up the dim_selected
+ * array to reflect the large rank, and thus if large_rank <
+ * SS_DR_MAX_RANK, we need to hide the lower index entries
+ * from H5Sselect_hyperslab().
+ *
+ * Do this by setting up pointers to the first valid entry in start,
+ * stride, count, and block below, and pass these pointers in
+ * to H5Sselect_hyperslab() instead of the array base addresses.
+ */
+
+ i = SS_DR_MAX_RANK - large_rank;
+ HDassert(i >= 0);
+
+ start_ptr = &(start[i]);
+ stride_ptr = &(stride[i]);
+ count_ptr = &(count[i]);
+ block_ptr = &(block[i]);
+
+
+ /* select the hyper slab */
+ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET,
+ start_ptr, stride_ptr, count_ptr, block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* setup is done -- run the test: */
+ check = H5S_select_shape_same_test(n_cube_0_sid, n_cube_1_sid);
+ VERIFY(check, expected_result, "test_shape_same_dr__full_space_vs_slice");
+
+
+ /* Close dataspaces */
+ ret = H5Sclose(n_cube_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(n_cube_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+} /* test_shape_same_dr__full_space_vs_slice() */
+
+
+/****************************************************************
+**
+** test_shape_same_dr__run_full_space_vs_slice_tests():
+**
+** Run the est_shape_same_dr__full_space_vs_slice() test
+** over a variety of ranks and offsets.
+**
+** At present, we test H5S_select_shape_same() with
+** fully selected 1, 2, 3, and 4 cubes as one parameter, and
+** 1, 2, 3, and 4 dimensional slices through a n-cube of rank
+** no more than 5 (and at least the rank of the slice).
+** We stop at rank 5, as Quincey suggested that it would be
+** sufficient.
+**
+** All the n-cubes will have lengths of the same size, so
+** H5S_select_shape_same() should return true iff:
+**
+** 1) the rank for the fully selected n cube equals the
+** number of dimensions selected in the slice through the
+** m-cube (m >= n).
+**
+** 2) The dimensions selected in the slice through the m-cube
+** are the dimesnions with the most quickly changing
+** indices.
+**
+****************************************************************/
+static void
+test_shape_same_dr__run_full_space_vs_slice_tests(void)
+{
+ hbool_t dim_selected[5];
+ hbool_t expected_result;
+ int i, j;
+ int v, w, x, y, z;
+ int test_num = 0;
+ int small_rank;
+ int large_rank;
+ hsize_t edge_size = 10;
+
+ for(large_rank = 1; large_rank <= 5; large_rank++) {
+ for(small_rank = 1; small_rank <= large_rank; small_rank++) {
+ v = 0;
+ do {
+ if(v == 0)
+ dim_selected[0] = FALSE;
+ else
+ dim_selected[0] = TRUE;
+
+ w = 0;
+ do {
+ if(w == 0)
+ dim_selected[1] = FALSE;
+ else
+ dim_selected[1] = TRUE;
+
+ x = 0;
+ do {
+ if(x == 0)
+ dim_selected[2] = FALSE;
+ else
+ dim_selected[2] = TRUE;
+
+ y = 0;
+ do {
+ if(y == 0)
+ dim_selected[3] = FALSE;
+ else
+ dim_selected[3] = TRUE;
+
+ z = 0;
+ do {
+ if(z == 0)
+ dim_selected[4] = FALSE;
+ else
+ dim_selected[4] = TRUE;
+
+ /* compute the expected result: */
+ i = 0;
+ j = 4;
+ expected_result = TRUE;
+ while((i < small_rank) && expected_result) {
+ if(!dim_selected[j])
+ expected_result = FALSE;
+ i++;
+ j--;
+ } /* end while */
+
+ while((i < large_rank) && expected_result) {
+ if(dim_selected[j])
+ expected_result = FALSE;
+ i++;
+ j--;
+ } /* end while */
+
+
+ /* everything is set up -- run the tests */
+
+ test_shape_same_dr__full_space_vs_slice
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ 0,
+ edge_size,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__full_space_vs_slice
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ large_rank / 2,
+ edge_size,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__full_space_vs_slice
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ large_rank - 1,
+ edge_size,
+ dim_selected,
+ expected_result
+ );
+
+ z++;
+ } while((z < 2) && (large_rank >= 1));
+
+ y++;
+ } while((y < 2) && (large_rank >= 2));
+
+ x++;
+ } while((x < 2) && (large_rank >= 3));
+
+ w++;
+ } while((w < 2) && (large_rank >= 4));
+
+ v++;
+ } while((v < 2) && (large_rank >= 5));
+ } /* end for */
+ } /* end for */
+
+} /* test_shape_same_dr__run_full_space_vs_slice_tests() */
+
+
+/****************************************************************
+**
+** test_shape_same_dr__checkerboard(): Tests selection of a
+** "checker board" subset of a full n-cube data space vs
+** a "checker board" n-dimensional slice of an m-cube (m > n).
+** in a call to H5S_select_shape_same().
+**
+** Note that this test does not require the n-cube and the
+** n-dimensional slice to have the same rank (although
+** H5S_select_shape_same() should always return FALSE if
+** they don't).
+**
+** Per Quincey's suggestion, only test up to 5 dimensional
+** spaces.
+**
+****************************************************************/
+static void
+test_shape_same_dr__checkerboard(int test_num,
+ int small_rank,
+ int large_rank,
+ int offset,
+ hsize_t edge_size,
+ hsize_t checker_size,
+ hbool_t dim_selected[],
+ hbool_t expected_result)
+{
+ char test_desc_0[128];
+ char test_desc_1[128];
+ int i;
+ int dims_selected = 0;
+ hid_t n_cube_0_sid; /* the checker board selected
+ * hyper cube
+ */
+ hid_t n_cube_1_sid; /* the hyper cube in which a
+ * checkerboard slice is selected
+ */
+ hsize_t dims[SS_DR_MAX_RANK];
+ hsize_t base_start[2];
+ hsize_t start[SS_DR_MAX_RANK];
+ hsize_t * start_ptr;
+ hsize_t base_stride[2];
+ hsize_t stride[SS_DR_MAX_RANK];
+ hsize_t * stride_ptr;
+ hsize_t base_count[2];
+ hsize_t count[SS_DR_MAX_RANK];
+ hsize_t * count_ptr;
+ hsize_t base_block[2];
+ hsize_t block[SS_DR_MAX_RANK];
+ hsize_t * block_ptr;
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ HDassert( 0 < small_rank );
+ HDassert( small_rank <= large_rank );
+ HDassert( large_rank <= SS_DR_MAX_RANK );
+ HDassert( 0 < checker_size );
+ HDassert( checker_size <= edge_size );
+ HDassert( edge_size <= 1000 );
+ HDassert( 0 <= offset );
+ HDassert( offset < (int)edge_size );
+
+ for(i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++)
+ if(dim_selected[i] == TRUE)
+ dims_selected++;
+
+ HDassert( dims_selected >= 0 );
+ HDassert( dims_selected <= large_rank );
+
+ sprintf(test_desc_0,
+ "\tcheckerboard n-cube slice through m-cube (n <= m) test %d.\n",
+ test_num);
+ MESSAGE(7, (test_desc_0));
+
+ /* This statement must be updated if SS_DR_MAX_RANK is changed */
+ sprintf(test_desc_1,
+ "\tranks: %d/%d edge/chkr size: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d:%d.\n",
+ small_rank, large_rank,
+ (int)edge_size, (int)checker_size,
+ offset,
+ (int)dim_selected[0],
+ (int)dim_selected[1],
+ (int)dim_selected[2],
+ (int)dim_selected[3],
+ (int)dim_selected[4],
+ dims_selected);
+ MESSAGE(7, (test_desc_1));
+
+ /* copy the edge size into the dims array */
+ for(i = 0; i < SS_DR_MAX_RANK; i++)
+ dims[i] = edge_size;
+
+ /* Create the small n-cube */
+ n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL);
+ CHECK(n_cube_0_sid, FAIL, "H5Screate_simple");
+
+ /* Select a "checkerboard" pattern in the small n-cube.
+ *
+ * In the 1-D case, the "checkerboard" would look like this:
+ *
+ * * * - - * * - - * *
+ *
+ * and in the 2-D case, it would look like this:
+ *
+ * * * - - * * - - * *
+ * * * - - * * - - * *
+ * - - * * - - * * - -
+ * - - * * - - * * - -
+ * * * - - * * - - * *
+ * * * - - * * - - * *
+ * - - * * - - * * - -
+ * - - * * - - * * - -
+ * * * - - * * - - * *
+ * * * - - * * - - * *
+ *
+ * In both cases, asterisks indicate selected elements,
+ * and dashes indicate unselected elements.
+ *
+ * 3-D and 4-D ascii art is somewhat painful, so I'll
+ * leave those selections to your imagination. :-)
+ *
+ * Note, that since the edge_size and checker_size are
+ * parameters that are passed in, the selection need
+ * not look exactly like the selection shown above.
+ * At present, the function allows checker sizes that
+ * are not even divisors of the edge size -- thus
+ * something like the following is also possible:
+ *
+ * * * * - - - * * * -
+ * * * * - - - * * * -
+ * * * * - - - * * * -
+ * - - - * * * - - - *
+ * - - - * * * - - - *
+ * - - - * * * - - - *
+ * * * * - - - * * * -
+ * * * * - - - * * * -
+ * * * * - - - * * * -
+ * - - - * * * - - - *
+ *
+ * As the above pattern can't be selected in one
+ * call to H5Sselect_hyperslab(), and since the
+ * values in the start, stride, count, and block
+ * arrays will be repeated over all entries in
+ * the selected space case, and over all selected
+ * dimensions in the selected hyperslab case, we
+ * compute these values first and store them in
+ * in the base_start, base_stride, base_count,
+ * and base_block arrays.
+ */
+
+ base_start[0] = 0;
+ base_start[1] = checker_size;
+
+ base_stride[0] = 2 * checker_size;
+ base_stride[1] = 2 * checker_size;
+
+ /* Note that the following computation depends on the C99
+ * requirement that integer division discard any fraction
+ * (truncation towards zero) to function correctly. As we
+ * now require C99, this shouldn't be a problem, but noting
+ * it may save us some pain if we are ever obliged to support
+ * pre-C99 compilers again.
+ */
+
+ base_count[0] = edge_size / (checker_size * 2);
+ if((edge_size % (checker_size * 2)) > 0)
+ base_count[0]++;
+
+ base_count[1] = (edge_size - checker_size) / (checker_size * 2);
+ if(((edge_size - checker_size) % (checker_size * 2)) > 0)
+ base_count[1]++;
+
+ base_block[0] = checker_size;
+ base_block[1] = checker_size;
+
+ /* now setup start, stride, count, and block arrays for
+ * the first call to H5Sselect_hyperslab().
+ */
+ for(i = 0; i < SS_DR_MAX_RANK; i++) {
+ start[i] = base_start[0];
+ stride[i] = base_stride[0];
+ count[i] = base_count[0];
+ block[i] = base_block[0];
+ } /* end for */
+
+ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_SET,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* if small_rank == 1, or if edge_size == checker_size, we
+ * are done, as either there is no added dimension in which
+ * to place offset selected "checkers".
+ *
+ * Otherwise, set up start, stride, count and block, and
+ * make the additional selection.
+ */
+
+ if((small_rank > 1) && (checker_size < edge_size)) {
+ for(i = 0; i < SS_DR_MAX_RANK; i++) {
+ start[i] = base_start[1];
+ stride[i] = base_stride[1];
+ count[i] = base_count[1];
+ block[i] = base_block[1];
+ } /* end for */
+
+ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end if */
+
+ /* Wierdness alert:
+ *
+ * Some how, it seems that selections can extend beyond the
+ * boundaries of the target data space -- hence the following
+ * code to manually clip the selection back to the data space
+ * proper.
+ */
+ for(i = 0; i < SS_DR_MAX_RANK; i++) {
+ start[i] = 0;
+ stride[i] = edge_size;
+ count[i] = 1;
+ block[i] = edge_size;
+ } /* end for */
+
+ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* Create the large n-cube */
+ n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL);
+ CHECK(n_cube_1_sid, FAIL, "H5Screate_simple");
+
+
+ /* Now select the checkerboard selection in the (possibly larger) n-cube.
+ *
+ * Since we have already calculated the base start, stride, count,
+ * and block, re-use the values in setting up start, stride, count,
+ * and block.
+ */
+ for(i = 0; i < SS_DR_MAX_RANK; i++) {
+ if(dim_selected[i]) {
+ start[i] = base_start[0];
+ stride[i] = base_stride[0];
+ count[i] = base_count[0];
+ block[i] = base_block[0];
+ } /* end if */
+ else {
+ start[i] = (hsize_t)offset;
+ stride[i] = (hsize_t)(2 * edge_size);
+ count[i] = 1;
+ block[i] = 1;
+ } /* end else */
+ } /* end for */
+
+ /* Since large rank may be less than SS_DR_MAX_RANK, we may not
+ * use the entire start, stride, count, and block arrays. This
+ * is a problem, since it is inconvenient to set up the dim_selected
+ * array to reflect the large rank, and thus if large_rank <
+ * SS_DR_MAX_RANK, we need to hide the lower index entries
+ * from H5Sselect_hyperslab().
+ *
+ * Do this by setting up pointers to the first valid entry in start,
+ * stride, count, and block below, and pass these pointers in
+ * to H5Sselect_hyperslab() instead of the array base addresses.
+ */
+
+ i = SS_DR_MAX_RANK - large_rank;
+ HDassert( i >= 0 );
+
+ start_ptr = &(start[i]);
+ stride_ptr = &(stride[i]);
+ count_ptr = &(count[i]);
+ block_ptr = &(block[i]);
+
+ /* select the hyper slab */
+ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET,
+ start_ptr, stride_ptr, count_ptr, block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* As before, if the number of dimensions selected is less than or
+ * equal to 1, or if edge_size == checker_size, we are done, as
+ * either there is no added dimension in which to place offset selected
+ * "checkers", or the hyperslab is completely occupied by one
+ * "checker".
+ *
+ * Otherwise, set up start, stride, count and block, and
+ * make the additional selection.
+ */
+ if((dims_selected > 1) && (checker_size < edge_size)) {
+ for(i = 0; i < SS_DR_MAX_RANK; i++) {
+ if(dim_selected[i]) {
+ start[i] = base_start[1];
+ stride[i] = base_stride[1];
+ count[i] = base_count[1];
+ block[i] = base_block[1];
+ } /* end if */
+ else {
+ start[i] = (hsize_t)offset;
+ stride[i] = (hsize_t)(2 * edge_size);
+ count[i] = 1;
+ block[i] = 1;
+ } /* end else */
+ } /* end for */
+
+ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR,
+ start_ptr, stride_ptr, count_ptr, block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end if */
+
+
+ /* Wierdness alert:
+ *
+ * Again, it seems that selections can extend beyond the
+ * boundaries of the target data space -- hence the following
+ * code to manually clip the selection back to the data space
+ * proper.
+ */
+ for(i = 0; i < SS_DR_MAX_RANK; i++) {
+ start[i] = 0;
+ stride[i] = edge_size;
+ count[i] = 1;
+ block[i] = edge_size;
+ } /* end for */
+
+ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND,
+ start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* setup is done -- run the test: */
+ check = H5S_select_shape_same_test(n_cube_0_sid, n_cube_1_sid);
+ VERIFY(check, expected_result, "test_shape_same_dr__checkerboard");
+
+
+ /* Close dataspaces */
+ ret = H5Sclose(n_cube_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(n_cube_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+} /* test_shape_same_dr__checkerboard() */
+
+
+/****************************************************************
+**
+** test_shape_same_dr__run_checkerboard_tests():
+**
+** In this set of tests, we test H5S_select_shape_same()
+** with a "checkerboard" selection of 1, 2, 3, and 4 cubes as
+** one parameter, and 1, 2, 3, and 4 dimensional checkerboard
+** slices through a n-cube of rank no more than 5 (and at
+** least the rank of the slice).
+**
+** All the n-cubes will have lengths of the same size, so
+** H5S_select_shape_same() should return true iff:
+**
+** 1) the rank of the n cube equals the number of dimensions
+** selected in the checker board slice through the m-cube
+** (m >= n).
+**
+** 2) The dimensions selected in the checkerboard slice
+** through the m-cube are the dimensions with the most
+** quickly changing indices.
+**
+****************************************************************/
+static void
+test_shape_same_dr__run_checkerboard_tests(void)
+{
+ hbool_t dim_selected[5];
+ hbool_t expected_result;
+ int i, j;
+ int v, w, x, y, z;
+ int test_num = 0;
+ int small_rank;
+ int large_rank;
+
+ for(large_rank = 1; large_rank <= 5; large_rank++) {
+ for(small_rank = 1; small_rank <= large_rank; small_rank++) {
+ v = 0;
+ do {
+ if(v == 0)
+ dim_selected[0] = FALSE;
+ else
+ dim_selected[0] = TRUE;
+
+ w = 0;
+ do {
+ if(w == 0)
+ dim_selected[1] = FALSE;
+ else
+ dim_selected[1] = TRUE;
+
+ x = 0;
+ do {
+ if(x == 0)
+ dim_selected[2] = FALSE;
+ else
+ dim_selected[2] = TRUE;
+
+ y = 0;
+ do {
+ if(y == 0)
+ dim_selected[3] = FALSE;
+ else
+ dim_selected[3] = TRUE;
+
+ z = 0;
+ do {
+ if(z == 0)
+ dim_selected[4] = FALSE;
+ else
+ dim_selected[4] = TRUE;
+
+
+ /* compute the expected result: */
+ i = 0;
+ j = 4;
+ expected_result = TRUE;
+ while((i < small_rank) && expected_result) {
+ if(!dim_selected[j])
+ expected_result = FALSE;
+ i++;
+ j--;
+ } /* end while */
+
+ while((i < large_rank) && expected_result) {
+ if(dim_selected[j])
+ expected_result = FALSE;
+ i++;
+ j--;
+ } /* end while */
+
+
+ /* everything is set up -- run the tests */
+
+ /* run test with edge size 16, checker
+ * size 1, and a variety of offsets
+ */
+ test_shape_same_dr__checkerboard
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* offset */ 0,
+ /* edge_size */ 16,
+ /* checker_size */ 1,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__checkerboard
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* offset */ 5,
+ /* edge_size */ 16,
+ /* checker_size */ 1,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__checkerboard
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* offset */ 15,
+ /* edge_size */ 16,
+ /* checker_size */ 1,
+ dim_selected,
+ expected_result
+ );
+
+
+ /* run test with edge size 10, checker
+ * size 2, and a variety of offsets
+ */
+ test_shape_same_dr__checkerboard
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* offset */ 0,
+ /* edge_size */ 10,
+ /* checker_size */ 2,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__checkerboard
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* offset */ 5,
+ /* edge_size */ 10,
+ /* checker_size */ 2,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__checkerboard
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* offset */ 9,
+ /* edge_size */ 10,
+ /* checker_size */ 2,
+ dim_selected,
+ expected_result
+ );
+
+
+ /* run test with edge size 10, checker
+ * size 3, and a variety of offsets
+ */
+ test_shape_same_dr__checkerboard
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* offset */ 0,
+ /* edge_size */ 10,
+ /* checker_size */ 3,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__checkerboard
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* offset */ 5,
+ /* edge_size */ 10,
+ /* checker_size */ 3,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__checkerboard
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* offset */ 9,
+ /* edge_size */ 10,
+ /* checker_size */ 3,
+ dim_selected,
+ expected_result
+ );
+
+
+ /* run test with edge size 8, checker
+ * size 8, and a variety of offsets
+ */
+ test_shape_same_dr__checkerboard
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* offset */ 0,
+ /* edge_size */ 8,
+ /* checker_size */ 8,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__checkerboard
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* offset */ 4,
+ /* edge_size */ 8,
+ /* checker_size */ 8,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__checkerboard
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* offset */ 7,
+ /* edge_size */ 8,
+ /* checker_size */ 8,
+ dim_selected,
+ expected_result
+ );
+
+ z++;
+ } while((z < 2) && (large_rank >= 1));
+
+ y++;
+ } while((y < 2) && (large_rank >= 2));
+
+ x++;
+ } while((x < 2) && (large_rank >= 3));
+
+ w++;
+ } while((w < 2) && (large_rank >= 4));
+
+ v++;
+ } while((v < 2) && (large_rank >= 5));
+ } /* end for */
+ } /* end for */
+
+} /* test_shape_same_dr__run_checkerboard_tests() */
+
+
+/****************************************************************
+**
+** test_shape_same_dr__irregular():
+**
+** Tests selection of an "irregular" subset of a full
+** n-cube data space vs an identical "irregular" subset
+** of an n-dimensional slice of an m-cube (m > n).
+** in a call to H5S_select_shape_same().
+**
+** Note that this test does not require the n-cube and the
+** n-dimensional slice to have the same rank (although
+** H5S_select_shape_same() should always return FALSE if
+** they don't).
+**
+****************************************************************/
+static void
+test_shape_same_dr__irregular(int test_num,
+ int small_rank,
+ int large_rank,
+ int pattern_offset,
+ int slice_offset,
+ hbool_t dim_selected[],
+ hbool_t expected_result)
+{
+ char test_desc_0[128];
+ char test_desc_1[128];
+ int edge_size = 10;
+ int i;
+ int j;
+ int k;
+ int dims_selected = 0;
+ hid_t n_cube_0_sid; /* the hyper cube containing
+ * an irregular selection
+ */
+ hid_t n_cube_1_sid; /* the hyper cube in which a
+ * slice contains an irregular
+ * selection.
+ */
+ hsize_t dims[SS_DR_MAX_RANK];
+ hsize_t start_0[SS_DR_MAX_RANK] = { 2, 2, 2, 2, 5};
+ hsize_t stride_0[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+ hsize_t count_0[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1};
+ hsize_t block_0[SS_DR_MAX_RANK] = { 2, 2, 2, 2, 3};
+
+ hsize_t start_1[SS_DR_MAX_RANK] = { 2, 2, 2, 5, 2};
+ hsize_t stride_1[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+ hsize_t count_1[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1};
+ hsize_t block_1[SS_DR_MAX_RANK] = { 2, 2, 2, 3, 2};
+
+ hsize_t start_2[SS_DR_MAX_RANK] = { 2, 2, 5, 2, 2};
+ hsize_t stride_2[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+ hsize_t count_2[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1};
+ hsize_t block_2[SS_DR_MAX_RANK] = { 2, 2, 3, 2, 2};
+
+ hsize_t start_3[SS_DR_MAX_RANK] = { 2, 5, 2, 2, 2};
+ hsize_t stride_3[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+ hsize_t count_3[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1};
+ hsize_t block_3[SS_DR_MAX_RANK] = { 2, 3, 2, 2, 2};
+
+ hsize_t start_4[SS_DR_MAX_RANK] = { 5, 2, 2, 2, 2};
+ hsize_t stride_4[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+ hsize_t count_4[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1};
+ hsize_t block_4[SS_DR_MAX_RANK] = { 3, 2, 2, 2, 2};
+
+ hsize_t clip_start[SS_DR_MAX_RANK] = { 0, 0, 0, 0, 0};
+ hsize_t clip_stride[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+ hsize_t clip_count[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1};
+ hsize_t clip_block[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+
+
+ hsize_t *(starts[SS_DR_MAX_RANK]) =
+ {start_0, start_1, start_2, start_3, start_4};
+ hsize_t *(strides[SS_DR_MAX_RANK]) =
+ {stride_0, stride_1, stride_2, stride_3, stride_4};
+ hsize_t *(counts[SS_DR_MAX_RANK]) =
+ {count_0, count_1, count_2, count_3, count_4};
+ hsize_t *(blocks[SS_DR_MAX_RANK]) =
+ {block_0, block_1, block_2, block_3, block_4};
+
+ hsize_t start[SS_DR_MAX_RANK];
+ hsize_t * start_ptr;
+ hsize_t stride[SS_DR_MAX_RANK];
+ hsize_t * stride_ptr;
+ hsize_t count[SS_DR_MAX_RANK];
+ hsize_t * count_ptr;
+ hsize_t block[SS_DR_MAX_RANK];
+ hsize_t * block_ptr;
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ HDassert( 0 < small_rank );
+ HDassert( small_rank <= large_rank );
+ HDassert( large_rank <= SS_DR_MAX_RANK );
+ HDassert( 9 <= edge_size );
+ HDassert( edge_size <= 1000 );
+ HDassert( 0 <= slice_offset );
+ HDassert( slice_offset < edge_size );
+ HDassert( -2 <= pattern_offset );
+ HDassert( pattern_offset <= 2 );
+
+ for(i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++)
+ if(dim_selected[i] == TRUE)
+ dims_selected++;
+
+ HDassert( dims_selected >= 0 );
+ HDassert( dims_selected <= large_rank );
+
+ sprintf(test_desc_0,
+ "\tirregular sub set of n-cube slice through m-cube (n <= m) test %d.\n",
+ test_num);
+ MESSAGE(7, (test_desc_0));
+
+ /* This statement must be updated if SS_DR_MAX_RANK is changed */
+ sprintf(test_desc_1,
+ "\tranks: %d/%d edge: %d s/p offset: %d/%d dim_selected: %d/%d/%d/%d/%d:%d.\n",
+ small_rank, large_rank,
+ edge_size,
+ slice_offset, pattern_offset,
+ (int)dim_selected[0],
+ (int)dim_selected[1],
+ (int)dim_selected[2],
+ (int)dim_selected[3],
+ (int)dim_selected[4],
+ dims_selected);
+ MESSAGE(7, (test_desc_1));
+
+ /* copy the edge size into the dims array */
+ for(i = 0; i < SS_DR_MAX_RANK; i++)
+ dims[i] = (hsize_t)edge_size;
+
+ /* Create the small n-cube */
+ n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL);
+ CHECK(n_cube_0_sid, FAIL, "H5Screate_simple");
+
+ /* Select an "irregular" pattern in the small n-cube. This
+ * pattern can be though of a set of four 3 x 2 x 2 X 2
+ * four dimensional prisims, each parallel to one of the
+ * axies and none of them intersecting with the other.
+ *
+ * In the lesser dimensional cases, this 4D pattern is
+ * projected onto the lower dimensional space.
+ *
+ * In the 1-D case, the projection of the pattern looks
+ * like this:
+ *
+ * - - * * - * * * - -
+ * 0 1 2 3 4 5 6 7 8 9 x
+ *
+ * and in the 2-D case, it would look like this:
+ *
+ *
+ * y
+ * 9 - - - - - - - - - -
+ * 8 - - - - - - - - - -
+ * 7 - - * * - - - - - -
+ * 6 - - * * - - - - - -
+ * 5 - - * * - - - - - -
+ * 4 - - - - - - - - - -
+ * 3 - - * * - * * * - -
+ * 2 - - * * - * * * - -
+ * 1 - - - - - - - - - -
+ * 0 - - - - - - - - - -
+ * 0 1 2 3 4 5 6 7 8 9 x
+ *
+ * In both cases, asterisks indicate selected elements,
+ * and dashes indicate unselected elements.
+ *
+ * Note that is this case, since the edge size is fixed,
+ * the pattern does not change. However, we do use the
+ * displacement parameter to allow it to be moved around
+ * within the n-cube or hyper slab.
+ */
+
+ /* first, ensure that the small n-cube has no selection */
+ ret = H5Sselect_none(n_cube_0_sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* now, select the irregular pattern */
+ for(i = 0; i < SS_DR_MAX_RANK; i++) {
+ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR,
+ starts[i], strides[i], counts[i], blocks[i]);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end for */
+
+ /* finally, clip the selection to ensure that it lies fully
+ * within the n-cube.
+ */
+ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND,
+ clip_start, clip_stride, clip_count, clip_block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* Create the large n-cube */
+ n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL);
+ CHECK(n_cube_1_sid, FAIL, "H5Screate_simple");
+
+ /* Ensure that the large n-cube has no selection */
+ H5Sselect_none(n_cube_1_sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+
+ /* Since large rank may be less than SS_DR_MAX_RANK, we may not
+ * use the entire start, stride, count, and block arrays. This
+ * is a problem, since it is inconvenient to set up the dim_selected
+ * array to reflect the large rank, and thus if large_rank <
+ * SS_DR_MAX_RANK, we need to hide the lower index entries
+ * from H5Sselect_hyperslab().
+ *
+ * Do this by setting up pointers to the first valid entry in start,
+ * stride, count, and block below, and pass these pointers in
+ * to H5Sselect_hyperslab() instead of the array base addresses.
+ */
+
+ i = SS_DR_MAX_RANK - large_rank;
+ HDassert( i >= 0 );
+
+ start_ptr = &(start[i]);
+ stride_ptr = &(stride[i]);
+ count_ptr = &(count[i]);
+ block_ptr = &(block[i]);
+
+
+ /* Now select the irregular selection in the (possibly larger) n-cube.
+ *
+ * Basic idea is to project the pattern used in the smaller n-cube
+ * onto the dimensions selected in the larger n-cube, with the displacement
+ * specified.
+ */
+ for(i = 0; i < SS_DR_MAX_RANK; i++) {
+ j = 0;
+ for(k = 0; k < SS_DR_MAX_RANK; k++) {
+ if(dim_selected[k]) {
+ start[k] = (starts[i])[j] + (hsize_t)pattern_offset;
+ stride[k] = (strides[i])[j];
+ count[k] = (counts[i])[j];
+ block[k] = (blocks[i])[j];
+ j++;
+ } /* end if */
+ else {
+ start[k] = (hsize_t)slice_offset;
+ stride[k] = (hsize_t)(2 * edge_size);
+ count[k] = 1;
+ block[k] = 1;
+ } /* end else */
+ } /* end for */
+
+ /* select the hyper slab */
+ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR,
+ start_ptr, stride_ptr, count_ptr, block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end for */
+
+ /* it is possible that the selection extends beyond the data space.
+ * clip the selection to ensure that it doesn't.
+ */
+ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND,
+ clip_start, clip_stride, clip_count, clip_block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+
+ /* setup is done -- run the test: */
+ check = H5S_select_shape_same_test(n_cube_0_sid, n_cube_1_sid);
+ VERIFY(check, expected_result, "test_shape_same_dr__checkerboard");
+
+
+ /* Close dataspaces */
+ ret = H5Sclose(n_cube_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(n_cube_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+} /* test_shape_same_dr__irregular() */
+
+
+/****************************************************************
+**
+** test_shape_same_dr__run_irregular_tests():
+**
+** In this set of tests, we test H5S_select_shape_same()
+** with an "irregular" subselection of 1, 2, 3, and 4 cubes as
+** one parameter, and irregular subselections of 1, 2, 3,
+** and 4 dimensional slices through a n-cube of rank no more
+** than 5 (and at least the rank of the slice) as the other.
+** Note that the "irregular" selection may be offset between
+** the n-cube and the slice.
+**
+** All the irregular selections will be identical (modulo rank)
+** so H5S_select_shape_same() should return true iff:
+**
+** 1) the rank of the n cube equals the number of dimensions
+** selected in the irregular slice through the m-cube
+** (m >= n).
+**
+** 2) The dimensions selected in the irregular slice
+** through the m-cube are the dimensions with the most
+** quickly changing indices.
+**
+****************************************************************/
+static void
+test_shape_same_dr__run_irregular_tests(void)
+{
+ hbool_t dim_selected[5];
+ hbool_t expected_result;
+ int i, j;
+ int v, w, x, y, z;
+ int test_num = 0;
+ int small_rank;
+ int large_rank;
+
+ for(large_rank = 1; large_rank <= 5; large_rank++) {
+ for(small_rank = 1; small_rank <= large_rank; small_rank++) {
+ v = 0;
+ do {
+ if(v == 0)
+ dim_selected[0] = FALSE;
+ else
+ dim_selected[0] = TRUE;
+
+ w = 0;
+ do {
+ if(w == 0)
+ dim_selected[1] = FALSE;
+ else
+ dim_selected[1] = TRUE;
+
+ x = 0;
+ do {
+ if(x == 0)
+ dim_selected[2] = FALSE;
+ else
+ dim_selected[2] = TRUE;
+
+ y = 0;
+ do {
+ if(y == 0)
+ dim_selected[3] = FALSE;
+ else
+ dim_selected[3] = TRUE;
+
+ z = 0;
+ do {
+ if(z == 0)
+ dim_selected[4] = FALSE;
+ else
+ dim_selected[4] = TRUE;
+
+
+ /* compute the expected result: */
+ i = 0;
+ j = 4;
+ expected_result = TRUE;
+ while((i < small_rank) && expected_result) {
+ if(!dim_selected[j])
+ expected_result = FALSE;
+ i++;
+ j--;
+ } /* end while */
+
+ while((i < large_rank) && expected_result) {
+ if(dim_selected[j])
+ expected_result = FALSE;
+ i++;
+ j--;
+ } /* end while */
+
+
+ /* everything is set up -- run the tests */
+
+ test_shape_same_dr__irregular
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* pattern_offset */ -2,
+ /* slice_offset */ 0,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__irregular
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* pattern_offset */ -2,
+ /* slice_offset */ 4,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__irregular
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* pattern_offset */ -2,
+ /* slice_offset */ 9,
+ dim_selected,
+ expected_result
+ );
+
+
+ test_shape_same_dr__irregular
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* pattern_offset */ 0,
+ /* slice_offset */ 0,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__irregular
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* pattern_offset */ 0,
+ /* slice_offset */ 6,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__irregular
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* pattern_offset */ 0,
+ /* slice_offset */ 9,
+ dim_selected,
+ expected_result
+ );
+
+
+ test_shape_same_dr__irregular
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* pattern_offset */ 2,
+ /* slice_offset */ 0,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__irregular
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* pattern_offset */ 2,
+ /* slice_offset */ 5,
+ dim_selected,
+ expected_result
+ );
+
+ test_shape_same_dr__irregular
+ (
+ test_num++,
+ small_rank,
+ large_rank,
+ /* pattern_offset */ 2,
+ /* slice_offset */ 9,
+ dim_selected,
+ expected_result
+ );
+
+ z++;
+ } while((z < 2) && (large_rank >= 1));
+
+ y++;
+ } while((y < 2) && (large_rank >= 2));
+
+ x++;
+ } while((x < 2) && (large_rank >= 3));
+
+ w++;
+ } while((w < 2) && (large_rank >= 4));
+
+ v++;
+ } while((v < 2 ) && (large_rank >= 5));
+ } /* end for */
+ } /* end for */
+
+} /* test_shape_same_dr__run_irregular_tests() */
+
+
+/****************************************************************
+**
+** test_shape_same_dr(): Tests selections on dataspace with
+** different ranks, to verify that "shape same" routine
+** is now handling this case correctly.
+**
+****************************************************************/
+static void
+test_shape_same_dr(void)
+{
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing Same Shape/Different Rank Comparisons\n"));
+
+
+ /* first run some smoke checks */
+ test_shape_same_dr__smoke_check_1();
+ test_shape_same_dr__smoke_check_2();
+ test_shape_same_dr__smoke_check_3();
+ test_shape_same_dr__smoke_check_4();
+
+
+ /* now run more intensive tests. */
+ test_shape_same_dr__run_full_space_vs_slice_tests();
+ test_shape_same_dr__run_checkerboard_tests();
+ test_shape_same_dr__run_irregular_tests();
+
+} /* test_shape_same_dr() */
+
/****************************************************************
**
@@ -8241,6 +13118,14 @@ test_select(void)
test_select_hyper_contig3(H5T_STD_U16LE,plist_id); /* Test yet more contiguous hyperslab selection cases */
test_select_hyper_contig3(H5T_STD_U16BE,H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */
test_select_hyper_contig3(H5T_STD_U16BE,plist_id); /* Test yet more contiguous hyperslab selection cases */
+ test_select_hyper_contig_dr(H5T_STD_U16LE, H5P_DEFAULT);
+ test_select_hyper_contig_dr(H5T_STD_U16LE, plist_id);
+ test_select_hyper_contig_dr(H5T_STD_U16BE, H5P_DEFAULT);
+ test_select_hyper_contig_dr(H5T_STD_U16BE, plist_id);
+ test_select_hyper_checker_board_dr(H5T_STD_U16LE, H5P_DEFAULT);
+ test_select_hyper_checker_board_dr(H5T_STD_U16LE, plist_id);
+ test_select_hyper_checker_board_dr(H5T_STD_U16BE, H5P_DEFAULT);
+ test_select_hyper_checker_board_dr(H5T_STD_U16BE, plist_id);
test_select_hyper_copy(); /* Test hyperslab selection copying code */
test_select_point_copy(); /* Test point selection copying code */
test_select_hyper_offset(); /* Test selection offset code with hyperslabs */
@@ -8320,6 +13205,9 @@ test_select(void)
/* Test "same shape" routine */
test_shape_same();
+ /* Test "same shape" routine for selections of different rank */
+ test_shape_same_dr();
+
/* Test "re-build" routine */
test_space_rebuild();
diff --git a/testpar/Makefile.am b/testpar/Makefile.am
index 3c39989..6e76e88 100644
--- a/testpar/Makefile.am
+++ b/testpar/Makefile.am
@@ -32,7 +32,8 @@ check_PROGRAMS = $(TEST_PROG_PARA)
check_SCRIPTS= $(TEST_SCRIPT)
testphdf5_SOURCES=testphdf5.c t_dset.c t_file.c t_mdset.c t_ph5basic.c \
- t_coll_chunk.c t_span_tree.c t_chunk_alloc.c t_filter_read.c
+ t_coll_chunk.c t_span_tree.c t_chunk_alloc.c t_filter_read.c \
+ t_rank_projection.c
# The tests all depend on the hdf5 library and the test library
LDADD = $(LIBH5TEST) $(LIBHDF5)
diff --git a/testpar/Makefile.in b/testpar/Makefile.in
index 02fea3d..4f92776 100644
--- a/testpar/Makefile.in
+++ b/testpar/Makefile.in
@@ -90,7 +90,8 @@ t_posix_compliant_DEPENDENCIES = $(LIBH5TEST) $(LIBHDF5)
am_testphdf5_OBJECTS = testphdf5.$(OBJEXT) t_dset.$(OBJEXT) \
t_file.$(OBJEXT) t_mdset.$(OBJEXT) t_ph5basic.$(OBJEXT) \
t_coll_chunk.$(OBJEXT) t_span_tree.$(OBJEXT) \
- t_chunk_alloc.$(OBJEXT) t_filter_read.$(OBJEXT)
+ t_chunk_alloc.$(OBJEXT) t_filter_read.$(OBJEXT) \
+ t_rank_projection.$(OBJEXT)
testphdf5_OBJECTS = $(am_testphdf5_OBJECTS)
testphdf5_LDADD = $(LDADD)
testphdf5_DEPENDENCIES = $(LIBH5TEST) $(LIBHDF5)
@@ -390,7 +391,8 @@ TEST_PROG_PARA = t_mpi t_posix_compliant testphdf5 t_cache t_pflush1 t_pflush2
TEST_SCRIPT_PARA = testph5.sh
check_SCRIPTS = $(TEST_SCRIPT)
testphdf5_SOURCES = testphdf5.c t_dset.c t_file.c t_mdset.c t_ph5basic.c \
- t_coll_chunk.c t_span_tree.c t_chunk_alloc.c t_filter_read.c
+ t_coll_chunk.c t_span_tree.c t_chunk_alloc.c t_filter_read.c \
+ t_rank_projection.c
# The tests all depend on the hdf5 library and the test library
@@ -494,6 +496,7 @@ distclean-compile:
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/t_pflush2.Po@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/t_ph5basic.Po@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/t_posix_compliant.Po@am__quote@
+@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/t_rank_projection.Po@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/t_span_tree.Po@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/testphdf5.Po@am__quote@
diff --git a/testpar/t_rank_projection.c b/testpar/t_rank_projection.c
new file mode 100644
index 0000000..bbc0a1f
--- /dev/null
+++ b/testpar/t_rank_projection.c
@@ -0,0 +1,4041 @@
+
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+ * Copyright by The HDF Group. *
+ * Copyright by the Board of Trustees of the University of Illinois. *
+ * All rights reserved. *
+ * *
+ * This file is part of HDF5. The full HDF5 copyright notice, including *
+ * terms governing use, modification, and redistribution, is contained in *
+ * the files COPYING and Copyright.html. COPYING can be found at the root *
+ * of the source code distribution tree; Copyright.html can be found at the *
+ * root level of an installed copy of the electronic HDF5 document set and *
+ * is linked from the top-level documents page. It can also be found at *
+ * http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have *
+ * access to either file, you may request a copy from help@hdfgroup.org. *
+ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+/*
+ This program will test independant and collective reads and writes between
+ selections of different rank that non-the-less are deemed as having the
+ same shape by H5Sselect_shape_same().
+ */
+
+#define H5S_PACKAGE /*suppress error about including H5Spkg */
+
+
+#include "hdf5.h"
+#include "H5private.h"
+#include "testphdf5.h"
+#include "H5Spkg.h" /* Dataspaces */
+
+
+/*-------------------------------------------------------------------------
+ * Function: contig_hyperslab_dr_pio_test__run_test()
+ *
+ * Purpose: Test I/O to/from hyperslab selections of different rank in
+ * the parallel.
+ *
+ * Return: void
+ *
+ * Programmer: JRM -- 9/18/09
+ *
+ * Modifications:
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#define PAR_SS_DR_MAX_RANK 5
+#define CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG 0
+
+void
+contig_hyperslab_dr_pio_test__run_test(const int test_num,
+ const int edge_size,
+ const int chunk_edge_size,
+ const int small_rank,
+ const int large_rank,
+ const hbool_t use_collective_io,
+ const hid_t dset_type)
+{
+ const char *fcnName = "contig_hyperslab_dr_pio_test()";
+ const char *filename;
+ hbool_t use_gpfs = FALSE; /* Use GPFS hints */
+ hbool_t mis_match = FALSE;
+ int i, j, k, l, m, n;
+ int mrc;
+ int mpi_size = -1;
+ int mpi_rank = -1;
+ int start_index;
+ int stop_index;
+ const int test_max_rank = 5; /* must update code if this changes */
+ uint32_t expected_value;
+ uint32_t * small_ds_buf_0 = NULL;
+ uint32_t * small_ds_buf_1 = NULL;
+ uint32_t * small_ds_buf_2 = NULL;
+ uint32_t * small_ds_slice_buf = NULL;
+ uint32_t * large_ds_buf_0 = NULL;
+ uint32_t * large_ds_buf_1 = NULL;
+ uint32_t * large_ds_buf_2 = NULL;
+ uint32_t * large_ds_slice_buf = NULL;
+ uint32_t * ptr_0;
+ uint32_t * ptr_1;
+ uint32_t * ptr_2;
+ MPI_Comm mpi_comm = MPI_COMM_NULL;
+ MPI_Info mpi_info = MPI_INFO_NULL;
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t xfer_plist = H5P_DEFAULT;
+ hid_t full_mem_small_ds_sid;
+ hid_t full_file_small_ds_sid;
+ hid_t mem_small_ds_sid;
+ hid_t file_small_ds_sid;
+ hid_t small_ds_slice_sid;
+ hid_t full_mem_large_ds_sid;
+ hid_t full_file_large_ds_sid;
+ hid_t mem_large_ds_sid;
+ hid_t file_large_ds_sid;
+ hid_t file_large_ds_process_slice_sid;
+ hid_t mem_large_ds_process_slice_sid;
+ hid_t large_ds_slice_sid;
+ hid_t small_ds_dcpl_id = H5P_DEFAULT;
+ hid_t large_ds_dcpl_id = H5P_DEFAULT;
+ hid_t small_dataset; /* Dataset ID */
+ hid_t large_dataset; /* Dataset ID */
+ size_t small_ds_size = 1;
+ size_t small_ds_slice_size = 1;
+ size_t large_ds_size = 1;
+ size_t large_ds_slice_size = 1;
+ hsize_t dims[PAR_SS_DR_MAX_RANK];
+ hsize_t chunk_dims[PAR_SS_DR_MAX_RANK];
+ hsize_t start[PAR_SS_DR_MAX_RANK];
+ hsize_t stride[PAR_SS_DR_MAX_RANK];
+ hsize_t count[PAR_SS_DR_MAX_RANK];
+ hsize_t block[PAR_SS_DR_MAX_RANK];
+ hsize_t * start_ptr = NULL;
+ hsize_t * stride_ptr = NULL;
+ hsize_t * count_ptr = NULL;
+ hsize_t * block_ptr = NULL;
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ HDassert( edge_size >= 6 );
+ HDassert( edge_size >= chunk_edge_size );
+ HDassert( ( chunk_edge_size == 0 ) || ( chunk_edge_size >= 3 ) );
+ HDassert( 1 < small_rank );
+ HDassert( small_rank < large_rank );
+ HDassert( large_rank <= test_max_rank );
+ HDassert( test_max_rank <= PAR_SS_DR_MAX_RANK );
+
+ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ HDassert( mpi_size >= 1 );
+
+ mpi_comm = MPI_COMM_WORLD;
+ mpi_info = MPI_INFO_NULL;
+
+ for ( i = 0; i < small_rank - 1; i++ )
+ {
+ small_ds_size *= (size_t)edge_size;
+ small_ds_slice_size *= (size_t)edge_size;
+ }
+ small_ds_size *= (size_t)(mpi_size + 1);
+
+
+ for ( i = 0; i < large_rank - 1; i++ ) {
+
+ large_ds_size *= (size_t)edge_size;
+ large_ds_slice_size *= (size_t)edge_size;
+ }
+ large_ds_size *= (size_t)(mpi_size + 1);
+
+
+ /* set up the start, stride, count, and block pointers */
+ start_ptr = &(start[PAR_SS_DR_MAX_RANK - large_rank]);
+ stride_ptr = &(stride[PAR_SS_DR_MAX_RANK - large_rank]);
+ count_ptr = &(count[PAR_SS_DR_MAX_RANK - large_rank]);
+ block_ptr = &(block[PAR_SS_DR_MAX_RANK - large_rank]);
+
+
+ /* Allocate buffers */
+ small_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size);
+ VRFY((small_ds_buf_0 != NULL), "malloc of small_ds_buf_0 succeeded");
+
+ small_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size);
+ VRFY((small_ds_buf_1 != NULL), "malloc of small_ds_buf_1 succeeded");
+
+ small_ds_buf_2 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size);
+ VRFY((small_ds_buf_2 != NULL), "malloc of small_ds_buf_2 succeeded");
+
+ small_ds_slice_buf =
+ (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_slice_size);
+ VRFY((small_ds_slice_buf != NULL), "malloc of small_ds_slice_buf succeeded");
+
+ large_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size);
+ VRFY((large_ds_buf_0 != NULL), "malloc of large_ds_buf_0 succeeded");
+
+ large_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size);
+ VRFY((large_ds_buf_1 != NULL), "malloc of large_ds_buf_1 succeeded");
+
+ large_ds_buf_2 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size);
+ VRFY((large_ds_buf_2 != NULL), "malloc of large_ds_buf_2 succeeded");
+
+ large_ds_slice_buf =
+ (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_slice_size);
+ VRFY((large_ds_slice_buf != NULL), "malloc of large_ds_slice_buf succeeded");
+
+ /* initialize the buffers */
+
+ ptr_0 = small_ds_buf_0;
+ ptr_1 = small_ds_buf_1;
+ ptr_2 = small_ds_buf_2;
+
+ for ( i = 0; i < (int)small_ds_size; i++ ) {
+
+ *ptr_0 = (uint32_t)i;
+ *ptr_1 = 0;
+ *ptr_2 = 0;
+
+ ptr_0++;
+ ptr_1++;
+ ptr_2++;
+ }
+
+ ptr_0 = small_ds_slice_buf;
+
+ for ( i = 0; i < (int)small_ds_slice_size; i++ ) {
+
+ *ptr_0 = (uint32_t)0;
+ ptr_0++;
+ }
+
+ ptr_0 = large_ds_buf_0;
+ ptr_1 = large_ds_buf_1;
+ ptr_2 = large_ds_buf_2;
+
+ for ( i = 0; i < (int)large_ds_size; i++ ) {
+
+ *ptr_0 = (uint32_t)i;
+ *ptr_1 = 0;
+ *ptr_2 = 0;
+
+ ptr_0++;
+ ptr_1++;
+ ptr_2++;
+ }
+
+ ptr_0 = large_ds_slice_buf;
+
+ for ( i = 0; i < (int)large_ds_slice_size; i++ ) {
+
+ *ptr_0 = (uint32_t)0;
+ ptr_0++;
+ }
+
+ filename = (const char *)GetTestParameters();
+ HDassert( filename != NULL );
+#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ if ( MAINPROCESS ) {
+
+ HDfprintf(stdout, "%d: test num = %d.\n", mpi_rank, test_num);
+ HDfprintf(stdout, "%d: mpi_size = %d.\n", mpi_rank, mpi_size);
+ HDfprintf(stdout,
+ "%d: small/large rank = %d/%d, use_collective_io = %d.\n",
+ mpi_rank, small_rank, large_rank, (int)use_collective_io);
+ HDfprintf(stdout, "%d: edge_size = %d, chunk_edge_size = %d.\n",
+ mpi_rank, edge_size, chunk_edge_size);
+ HDfprintf(stdout, "%d: small_ds_size = %d, large_ds_size = %d.\n",
+ mpi_rank, (int)small_ds_size, (int)large_ds_size);
+ HDfprintf(stdout, "%d: filename = %s.\n", mpi_rank, filename);
+ }
+#endif
+ /* ----------------------------------------
+ * CREATE AN HDF5 FILE WITH PARALLEL ACCESS
+ * ---------------------------------------*/
+ /* setup file access template */
+ acc_tpl = create_faccess_plist(mpi_comm, mpi_info, facc_type, use_gpfs);
+ VRFY((acc_tpl >= 0), "create_faccess_plist() succeeded");
+
+ /* create the file collectively */
+ fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
+ VRFY((fid >= 0), "H5Fcreate succeeded");
+
+ MESG("File opened.");
+
+ /* Release file-access template */
+ ret = H5Pclose(acc_tpl);
+ VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded");
+
+
+ /* setup dims: */
+ dims[0] = (int)(mpi_size + 1);
+ dims[1] = dims[2] = dims[3] = dims[4] = edge_size;
+
+
+ /* Create small ds dataspaces */
+ full_mem_small_ds_sid = H5Screate_simple(small_rank, dims, NULL);
+ VRFY((full_mem_small_ds_sid != 0),
+ "H5Screate_simple() full_mem_small_ds_sid succeeded");
+
+ full_file_small_ds_sid = H5Screate_simple(small_rank, dims, NULL);
+ VRFY((full_file_small_ds_sid != 0),
+ "H5Screate_simple() full_file_small_ds_sid succeeded");
+
+ mem_small_ds_sid = H5Screate_simple(small_rank, dims, NULL);
+ VRFY((mem_small_ds_sid != 0),
+ "H5Screate_simple() mem_small_ds_sid succeeded");
+
+ file_small_ds_sid = H5Screate_simple(small_rank, dims, NULL);
+ VRFY((file_small_ds_sid != 0),
+ "H5Screate_simple() file_small_ds_sid succeeded");
+
+ small_ds_slice_sid = H5Screate_simple(small_rank - 1, &(dims[1]), NULL);
+ VRFY((small_ds_slice_sid != 0),
+ "H5Screate_simple() small_ds_slice_sid succeeded");
+
+
+ /* Create large ds dataspaces */
+ full_mem_large_ds_sid = H5Screate_simple(large_rank, dims, NULL);
+ VRFY((full_mem_large_ds_sid != 0),
+ "H5Screate_simple() full_mem_large_ds_sid succeeded");
+
+ full_file_large_ds_sid = H5Screate_simple(large_rank, dims, NULL);
+ VRFY((full_file_large_ds_sid != FAIL),
+ "H5Screate_simple() full_file_large_ds_sid succeeded");
+
+ mem_large_ds_sid = H5Screate_simple(large_rank, dims, NULL);
+ VRFY((mem_large_ds_sid != FAIL),
+ "H5Screate_simple() mem_large_ds_sid succeeded");
+
+ file_large_ds_sid = H5Screate_simple(large_rank, dims, NULL);
+ VRFY((file_large_ds_sid != FAIL),
+ "H5Screate_simple() file_large_ds_sid succeeded");
+
+ mem_large_ds_process_slice_sid = H5Screate_simple(large_rank, dims, NULL);
+ VRFY((mem_large_ds_process_slice_sid != FAIL),
+ "H5Screate_simple() mem_large_ds_process_slice_sid succeeded");
+
+ file_large_ds_process_slice_sid = H5Screate_simple(large_rank, dims, NULL);
+ VRFY((file_large_ds_process_slice_sid != FAIL),
+ "H5Screate_simple() file_large_ds_process_slice_sid succeeded");
+
+
+ large_ds_slice_sid = H5Screate_simple(large_rank - 1, &(dims[1]), NULL);
+ VRFY((large_ds_slice_sid != 0),
+ "H5Screate_simple() large_ds_slice_sid succeeded");
+
+
+ /* Select the entire extent of the full small ds, and ds slice dataspaces */
+ ret = H5Sselect_all(full_mem_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_mem_small_ds_sid) succeeded");
+
+ ret = H5Sselect_all(full_file_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_file_small_ds_sid) succeeded");
+
+ ret = H5Sselect_all(small_ds_slice_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(small_ds_slice_sid) succeeded");
+
+
+ /* Select the entire extent of the full large ds, and ds slice dataspaces */
+ ret = H5Sselect_all(full_mem_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_mem_large_ds_sid) succeeded");
+
+ ret = H5Sselect_all(full_file_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_file_large_ds_sid) succeeded");
+
+ ret = H5Sselect_all(large_ds_slice_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(large_ds_slice_sid) succeeded");
+
+
+ /* if chunk edge size is greater than zero, set up the small and
+ * large data set creation property lists to specify chunked
+ * datasets.
+ */
+ if ( chunk_edge_size > 0 ) {
+
+ chunk_dims[0] = mpi_size + 1;
+ chunk_dims[1] = chunk_dims[2] =
+ chunk_dims[3] = chunk_dims[4] = chunk_edge_size;
+
+ small_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((ret != FAIL), "H5Pcreate() small_ds_dcpl_id succeeded");
+
+ ret = H5Pset_layout(small_ds_dcpl_id, H5D_CHUNKED);
+ VRFY((ret != FAIL), "H5Pset_layout() small_ds_dcpl_id succeeded");
+
+ ret = H5Pset_chunk(small_ds_dcpl_id, small_rank, chunk_dims);
+ VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded");
+
+
+ large_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((ret != FAIL), "H5Pcreate() large_ds_dcpl_id succeeded");
+
+ ret = H5Pset_layout(large_ds_dcpl_id, H5D_CHUNKED);
+ VRFY((ret != FAIL), "H5Pset_layout() large_ds_dcpl_id succeeded");
+
+ ret = H5Pset_chunk(large_ds_dcpl_id, large_rank, chunk_dims);
+ VRFY((ret != FAIL), "H5Pset_chunk() large_ds_dcpl_id succeeded");
+ }
+
+ /* create the small dataset */
+ small_dataset = H5Dcreate2(fid, "small_dataset", dset_type,
+ file_small_ds_sid, H5P_DEFAULT,
+ small_ds_dcpl_id, H5P_DEFAULT);
+ VRFY((ret != FAIL), "H5Dcreate2() small_dataset succeeded");
+
+ /* create the large dataset */
+ large_dataset = H5Dcreate2(fid, "large_dataset", dset_type,
+ file_large_ds_sid, H5P_DEFAULT,
+ large_ds_dcpl_id, H5P_DEFAULT);
+ VRFY((ret != FAIL), "H5Dcreate2() large_dataset succeeded");
+
+
+
+ /* setup xfer property list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY((xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded");
+
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
+
+ if ( ! use_collective_io ) {
+
+ ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,
+ H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY((ret>= 0), "H5Pset_dxpl_mpio_collective_opt() suceeded");
+ }
+
+ /* setup selection to write initial data to the small and large data sets */
+ start[0] = mpi_rank;
+ stride[0] = 2 * (mpi_size + 1);
+ count[0] = 1;
+ block[0] = 1;
+
+ for ( i = 1; i < large_rank; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ block[i] = edge_size;
+ }
+
+ /* setup selections for writing initial data to the small data set */
+ ret = H5Sselect_hyperslab(mem_small_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded");
+
+ ret = H5Sselect_hyperslab(file_small_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid, set) suceeded");
+
+ if ( MAINPROCESS ) { /* add an additional slice to the selections */
+
+ start[0] = mpi_size;
+
+ ret = H5Sselect_hyperslab(mem_small_ds_sid,
+ H5S_SELECT_OR,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret>= 0), "H5Sselect_hyperslab(mem_small_ds_sid, or) suceeded");
+
+ ret = H5Sselect_hyperslab(file_small_ds_sid,
+ H5S_SELECT_OR,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret>= 0), "H5Sselect_hyperslab(file_small_ds_sid, or) suceeded");
+ }
+
+
+ /* write the initial value of the small data set to file */
+ ret = H5Dwrite(small_dataset, dset_type, mem_small_ds_sid, file_small_ds_sid,
+ xfer_plist, small_ds_buf_0);
+
+ VRFY((ret >= 0), "H5Dwrite() small_dataset initial write succeeded");
+
+
+ /* sync with the other processes before checking data */
+ mrc = MPI_Barrier(MPI_COMM_WORLD);
+ VRFY((mrc==MPI_SUCCESS), "Sync after small dataset writes");
+
+
+ /* read the small data set back to verify that it contains the
+ * expected data. Note that each process reads in the entire
+ * data set.
+ */
+ ret = H5Dread(small_dataset,
+ H5T_NATIVE_UINT32,
+ full_mem_small_ds_sid,
+ full_file_small_ds_sid,
+ xfer_plist,
+ small_ds_buf_1);
+ VRFY((ret >= 0), "H5Dread() small_dataset initial read succeeded");
+
+
+ /* verify that the correct data was written to the small data set */
+ expected_value = 0;
+ mis_match = FALSE;
+ ptr_1 = small_ds_buf_1;
+
+ i = 0;
+ for ( i = 0; i < (int)small_ds_size; i++ ) {
+
+ if ( *ptr_1 != expected_value ) {
+
+ mis_match = TRUE;
+ }
+ ptr_1++;
+ expected_value++;
+ }
+ VRFY( (mis_match == FALSE), "small ds init data good.");
+
+
+
+ /* setup selections for writing initial data to the large data set */
+
+ start[0] = mpi_rank;
+
+ ret = H5Sselect_hyperslab(mem_large_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, set) suceeded");
+
+ ret = H5Sselect_hyperslab(file_large_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid, set) suceeded");
+
+ /* In passing, setup the process slice data spaces as well */
+
+ ret = H5Sselect_hyperslab(mem_large_ds_process_slice_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0),
+ "H5Sselect_hyperslab(mem_large_ds_process_slice_sid, set) suceeded");
+
+ ret = H5Sselect_hyperslab(file_large_ds_process_slice_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0),
+ "H5Sselect_hyperslab(file_large_ds_process_slice_sid, set) suceeded");
+
+ if ( MAINPROCESS ) { /* add an additional slice to the selections */
+
+ start[0] = mpi_size;
+
+ ret = H5Sselect_hyperslab(mem_large_ds_sid,
+ H5S_SELECT_OR,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret>= 0), "H5Sselect_hyperslab(mem_large_ds_sid, or) suceeded");
+
+ ret = H5Sselect_hyperslab(file_large_ds_sid,
+ H5S_SELECT_OR,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret>= 0), "H5Sselect_hyperslab(file_large_ds_sid, or) suceeded");
+ }
+
+
+ /* write the initial value of the large data set to file */
+ ret = H5Dwrite(large_dataset, dset_type, mem_large_ds_sid, file_large_ds_sid,
+ xfer_plist, large_ds_buf_0);
+ if ( ret < 0 ) H5Eprint(H5E_DEFAULT, stderr);
+ VRFY((ret >= 0), "H5Dwrite() large_dataset initial write succeeded");
+
+
+ /* sync with the other processes before checking data */
+ mrc = MPI_Barrier(MPI_COMM_WORLD);
+ VRFY((mrc==MPI_SUCCESS), "Sync after large dataset writes");
+
+
+ /* read the small data set back to verify that it contains the
+ * expected data. Note that each process reads in the entire
+ * data set.
+ */
+ ret = H5Dread(large_dataset,
+ H5T_NATIVE_UINT32,
+ full_mem_large_ds_sid,
+ full_file_large_ds_sid,
+ xfer_plist,
+ large_ds_buf_1);
+ VRFY((ret >= 0), "H5Dread() large_dataset initial read succeeded");
+
+
+ /* verify that the correct data was written to the small data set */
+ expected_value = 0;
+ mis_match = FALSE;
+ ptr_1 = large_ds_buf_1;
+
+ i = 0;
+ for ( i = 0; i < (int)large_ds_size; i++ ) {
+
+ if ( *ptr_1 != expected_value ) {
+
+ mis_match = TRUE;
+ }
+ ptr_1++;
+ expected_value++;
+ }
+ VRFY( (mis_match == FALSE), "large ds init data good.");
+
+
+ /* first, verify that we can read from disk correctly using selections
+ * of different rank that H5S_select_shape_same() views as being of the
+ * same shape.
+ *
+ * Start by reading small_rank-D - 1 slice from the on disk large cube,
+ * and verifying that the data read is correct. Verify that
+ * H5S_select_shape_same() returns true on the memory and file selections.
+ */
+
+ /* We have already done a H5Sselect_all() on the data space
+ * small_ds_slice_sid, so no need to call H5Sselect_all() again.
+ */
+
+ /* set up start, stride, count, and block -- note that we will
+ * change start[] so as to read slices of the large cube.
+ */
+ for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) {
+
+ block[i] = 1;
+
+ } else {
+
+ block[i] = edge_size;
+ }
+ }
+
+ /* zero out the buffer we will be reading into */
+ ptr_0 = small_ds_slice_buf;
+
+ for ( i = 0; i < (int)small_ds_slice_size; i++ ) {
+
+ *ptr_0 = (uint32_t)0;
+ ptr_0++;
+ }
+
+#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout,
+ "%s reading slices from big cube on disk into small cube slice.\n",
+ fcnName);
+#endif
+ /* in serial versions of this test, we loop through all the dimensions
+ * of the large data set. However, in the parallel version, each
+ * process only works with that slice of the large cube indicated
+ * by its rank -- hence we set the most slowly changing index to
+ * mpi_rank, and don't itterate over it.
+ */
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) {
+
+ i = mpi_rank;
+
+ } else {
+
+ i = 0;
+ }
+
+ /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
+ * loop over it -- either we are setting i to mpi_rank, or
+ * we are setting it to zero. It will not change during the
+ * test.
+ */
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) {
+
+ j = mpi_rank;
+
+ } else {
+
+ j = 0;
+ }
+
+ do {
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) {
+
+ k = mpi_rank;
+
+ } else {
+
+ k = 0;
+ }
+
+ do {
+ /* since small rank >= 2 and large_rank > small_rank, we
+ * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
+ * (baring major re-orgaization), this gives us:
+ *
+ * (PAR_SS_DR_MAX_RANK - large_rank) <= 2
+ *
+ * so no need to repeat the test in the outer loops --
+ * just set l = 0.
+ */
+
+ l = 0;
+ do {
+ /* we know that small_rank - 1 >= 1 and that
+ * large_rank > small_rank by the assertions at the head
+ * of this function. Thus no need for another inner loop.
+ */
+ start[0] = i;
+ start[1] = j;
+ start[2] = k;
+ start[3] = l;
+ start[4] = 0;
+
+ ret = H5Sselect_hyperslab(file_large_ds_sid,
+ H5S_SELECT_SET,
+ start_ptr,
+ stride_ptr,
+ count_ptr,
+ block_ptr);
+ VRFY((ret != FAIL),
+ "H5Sselect_hyperslab(file_large_cube_sid) succeeded");
+
+
+ /* verify that H5S_select_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(small_ds_slice_sid,
+ file_large_ds_sid);
+ VRFY((check == TRUE), "H5S_select_shape_same_test passed");
+
+
+ /* Read selection from disk */
+#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n",
+ fcnName, (int)mpi_rank,
+ (int)start[0], (int)start[1], (int)start[2],
+ (int)start[3], (int)start[4]);
+ HDfprintf(stdout, "%s slice/file extent dims = %d/%d.\n",
+ fcnName,
+ H5Sget_simple_extent_ndims(small_ds_slice_sid),
+ H5Sget_simple_extent_ndims(file_large_ds_sid));
+#endif
+ ret = H5Dread(large_dataset,
+ H5T_NATIVE_UINT32,
+ small_ds_slice_sid,
+ file_large_ds_sid,
+ xfer_plist,
+ small_ds_slice_buf);
+ VRFY((ret >= 0), "H5Sread() slice from large ds succeeded.");
+
+
+ /* verify that expected data is retrieved */
+
+ mis_match = FALSE;
+ ptr_1 = small_ds_slice_buf;
+ expected_value =
+ (i * edge_size * edge_size * edge_size * edge_size) +
+ (j * edge_size * edge_size * edge_size) +
+ (k * edge_size * edge_size) +
+ (l * edge_size);
+
+ for ( n = 0; n < (int)small_ds_slice_size; n++ ) {
+
+ if ( *ptr_1 != expected_value ) {
+
+ mis_match = TRUE;
+ }
+
+ *ptr_1 = 0; /* zero data for next use */
+
+ ptr_1++;
+ expected_value++;
+ }
+
+ VRFY((mis_match == FALSE),
+ "small slice read from large ds data good.");
+ l++;
+
+ } while ( ( large_rank > 2 ) &&
+ ( (small_rank - 1) <= 1 ) &&
+ ( l < edge_size ) );
+ k++;
+ } while ( ( large_rank > 3 ) &&
+ ( (small_rank - 1) <= 2 ) &&
+ ( k < edge_size ) );
+ j++;
+ } while ( ( large_rank > 4 ) &&
+ ( (small_rank - 1) <= 3 ) &&
+ ( j < edge_size ) );
+
+
+ /* similarly, read slices of the on disk small data set into slices
+ * through the in memory large data set, and verify that the correct
+ * data (and only the correct data) is read.
+ */
+
+ start[0] = mpi_rank;
+ stride[0] = 2 * (mpi_size + 1);
+ count[0] = 1;
+ block[0] = 1;
+
+ for ( i = 1; i < large_rank; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ block[i] = edge_size;
+ }
+
+ ret = H5Sselect_hyperslab(file_small_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid, set) suceeded");
+
+
+#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout,
+ "%s reading slices of on disk small data set into slices of big data set.\n",
+ fcnName);
+#endif
+
+ /* zero out the in memory large ds */
+ ptr_1 = large_ds_buf_1;
+ for ( n = 0; n < (int)large_ds_size; n++ ) {
+
+ *ptr_1 = 0;
+ ptr_1++;
+ }
+
+ /* set up start, stride, count, and block -- note that we will
+ * change start[] so as to read slices of the large cube.
+ */
+ for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) {
+
+ block[i] = 1;
+
+ } else {
+
+ block[i] = edge_size;
+ }
+ }
+
+
+ /* in serial versions of this test, we loop through all the dimensions
+ * of the large data set that don't appear in the small data set.
+ *
+ * However, in the parallel version, each process only works with that
+ * slice of the large (and small) data set indicated by its rank -- hence
+ * we set the most slowly changing index to mpi_rank, and don't itterate
+ * over it.
+ */
+
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) {
+
+ i = mpi_rank;
+
+ } else {
+
+ i = 0;
+ }
+
+ /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
+ * loop over it -- either we are setting i to mpi_rank, or
+ * we are setting it to zero. It will not change during the
+ * test.
+ */
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) {
+
+ j = mpi_rank;
+
+ } else {
+
+ j = 0;
+ }
+
+ do {
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) {
+
+ k = mpi_rank;
+
+ } else {
+
+ k = 0;
+ }
+
+ do {
+ /* since small rank >= 2 and large_rank > small_rank, we
+ * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
+ * (baring major re-orgaization), this gives us:
+ *
+ * (PAR_SS_DR_MAX_RANK - large_rank) <= 2
+ *
+ * so no need to repeat the test in the outer loops --
+ * just set l = 0.
+ */
+
+ l = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+ start[0] = i;
+ start[1] = j;
+ start[2] = k;
+ start[3] = l;
+ start[4] = 0;
+
+ ret = H5Sselect_hyperslab(mem_large_ds_sid,
+ H5S_SELECT_SET,
+ start_ptr,
+ stride_ptr,
+ count_ptr,
+ block_ptr);
+ VRFY((ret != FAIL),
+ "H5Sselect_hyperslab(mem_large_ds_sid) succeeded");
+
+
+ /* verify that H5S_select_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(file_small_ds_sid,
+ mem_large_ds_sid);
+ VRFY((check == TRUE), "H5S_select_shape_same_test passed");
+
+
+ /* Read selection from disk */
+#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n",
+ fcnName, (int)mpi_rank,
+ (int)start[0], (int)start[1], (int)start[2],
+ (int)start[3], (int)start[4]);
+ HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n",
+ fcnName, mpi_rank,
+ H5Sget_simple_extent_ndims(mem_large_ds_sid),
+ H5Sget_simple_extent_ndims(file_small_ds_sid));
+#endif
+ ret = H5Dread(small_dataset,
+ H5T_NATIVE_UINT32,
+ mem_large_ds_sid,
+ file_small_ds_sid,
+ xfer_plist,
+ large_ds_buf_1);
+ VRFY((ret >= 0), "H5Sread() slice from small ds succeeded.");
+
+ /* verify that the expected data and only the
+ * expected data was read.
+ */
+ ptr_1 = large_ds_buf_1;
+ expected_value = mpi_rank * small_ds_slice_size;
+ start_index =
+ (i * edge_size * edge_size * edge_size * edge_size) +
+ (j * edge_size * edge_size * edge_size) +
+ (k * edge_size * edge_size) +
+ (l * edge_size);
+ stop_index = start_index + (int)small_ds_slice_size - 1;
+
+ HDassert( 0 <= start_index );
+ HDassert( start_index < stop_index );
+ HDassert( stop_index <= (int)large_ds_size );
+
+ for ( n = 0; n < (int)large_ds_size; n++ ) {
+
+ if ( ( n >= start_index ) && ( n <= stop_index ) ) {
+
+ if ( *ptr_1 != expected_value ) {
+
+ mis_match = TRUE;
+ }
+ expected_value++;
+
+ } else {
+
+ if ( *ptr_1 != 0 ) {
+
+ mis_match = TRUE;
+ }
+ }
+ /* zero out the value for the next pass */
+ *ptr_1 = 0;
+
+ ptr_1++;
+ }
+
+ VRFY((mis_match == FALSE),
+ "small slice read from large ds data good.");
+
+ l++;
+
+ } while ( ( large_rank > 2 ) &&
+ ( (small_rank - 1) <= 1 ) &&
+ ( l < edge_size ) );
+ k++;
+ } while ( ( large_rank > 3 ) &&
+ ( (small_rank - 1) <= 2 ) &&
+ ( k < edge_size ) );
+ j++;
+ } while ( ( large_rank > 4 ) &&
+ ( (small_rank - 1) <= 3 ) &&
+ ( j < edge_size ) );
+
+
+ /* now we go in the opposite direction, verifying that we can write
+ * from memory to file using selections of different rank that
+ * H5S_select_shape_same() views as being of the same shape.
+ *
+ * Start by writing small_rank - 1 D slices from the in memory large data
+ * set to the on disk small cube dataset. After each write, read the
+ * slice of the small dataset back from disk, and verify that it contains
+ * the expected data. Verify that H5S_select_shape_same() returns true on
+ * the memory and file selections.
+ */
+
+ start[0] = mpi_rank;
+ stride[0] = 2 * (mpi_size + 1);
+ count[0] = 1;
+ block[0] = 1;
+
+ for ( i = 1; i < large_rank; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ block[i] = edge_size;
+ }
+
+ ret = H5Sselect_hyperslab(file_small_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid, set) suceeded");
+
+ ret = H5Sselect_hyperslab(mem_small_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded");
+
+
+ /* set up start, stride, count, and block -- note that we will
+ * change start[] so as to read slices of the large cube.
+ */
+ for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) {
+
+ block[i] = 1;
+
+ } else {
+
+ block[i] = edge_size;
+ }
+ }
+
+ /* zero out the in memory small ds */
+ ptr_1 = small_ds_buf_1;
+ for ( n = 0; n < (int)small_ds_size; n++ ) {
+
+ *ptr_1 = 0;
+ ptr_1++;
+ }
+
+
+#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout,
+ "%s writing slices from big ds to slices of small ds on disk.\n",
+ fcnName);
+#endif
+
+ /* in serial versions of this test, we loop through all the dimensions
+ * of the large data set that don't appear in the small data set.
+ *
+ * However, in the parallel version, each process only works with that
+ * slice of the large (and small) data set indicated by its rank -- hence
+ * we set the most slowly changing index to mpi_rank, and don't itterate
+ * over it.
+ */
+
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) {
+
+ i = mpi_rank;
+
+ } else {
+
+ i = 0;
+ }
+
+ /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
+ * loop over it -- either we are setting i to mpi_rank, or
+ * we are setting it to zero. It will not change during the
+ * test.
+ */
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) {
+
+ j = mpi_rank;
+
+ } else {
+
+ j = 0;
+ }
+
+ j = 0;
+ do {
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) {
+
+ k = mpi_rank;
+
+ } else {
+
+ k = 0;
+ }
+
+ do {
+ /* since small rank >= 2 and large_rank > small_rank, we
+ * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
+ * (baring major re-orgaization), this gives us:
+ *
+ * (PAR_SS_DR_MAX_RANK - large_rank) <= 2
+ *
+ * so no need to repeat the test in the outer loops --
+ * just set l = 0.
+ */
+
+ l = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ /* zero out this rank's slice of the on disk small data set */
+ ret = H5Dwrite(small_dataset,
+ H5T_NATIVE_UINT32,
+ mem_small_ds_sid,
+ file_small_ds_sid,
+ xfer_plist,
+ small_ds_buf_2);
+ VRFY((ret >= 0), "H5Dwrite() zero slice to small ds succeeded.");
+
+ /* select the portion of the in memory large cube from which we
+ * are going to write data.
+ */
+ start[0] = i;
+ start[1] = j;
+ start[2] = k;
+ start[3] = l;
+ start[4] = 0;
+
+ ret = H5Sselect_hyperslab(mem_large_ds_sid,
+ H5S_SELECT_SET,
+ start_ptr,
+ stride_ptr,
+ count_ptr,
+ block_ptr);
+ VRFY((ret >= 0),
+ "H5Sselect_hyperslab() mem_large_ds_sid succeeded.");
+
+
+ /* verify that H5S_select_shape_same() reports the in
+ * memory slice through the cube selection and the
+ * on disk full square selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(file_small_ds_sid,
+ mem_large_ds_sid);
+ VRFY((check == TRUE), "H5S_select_shape_same_test passed.");
+
+
+ /* write the slice from the in memory large data set to the
+ * slice of the on disk small dataset. */
+#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n",
+ fcnName, (int)mpi_rank,
+ (int)start[0], (int)start[1], (int)start[2],
+ (int)start[3], (int)start[4]);
+ HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n",
+ fcnName, mpi_rank,
+ H5Sget_simple_extent_ndims(mem_large_ds_sid),
+ H5Sget_simple_extent_ndims(file_small_ds_sid));
+#endif
+ ret = H5Dwrite(small_dataset,
+ H5T_NATIVE_UINT32,
+ mem_large_ds_sid,
+ file_small_ds_sid,
+ xfer_plist,
+ large_ds_buf_0);
+ VRFY((ret >= 0), "H5Dwrite() slice to large ds succeeded.");
+
+
+ /* read the on disk square into memory */
+ ret = H5Dread(small_dataset,
+ H5T_NATIVE_UINT32,
+ mem_small_ds_sid,
+ file_small_ds_sid,
+ xfer_plist,
+ small_ds_buf_1);
+ VRFY((ret >= 0), "H5Dread() slice from small ds succeeded.");
+
+
+ /* verify that expected data is retrieved */
+
+ mis_match = FALSE;
+ ptr_1 = small_ds_buf_1;
+
+ expected_value =
+ (i * edge_size * edge_size * edge_size * edge_size) +
+ (j * edge_size * edge_size * edge_size) +
+ (k * edge_size * edge_size) +
+ (l * edge_size);
+
+ start_index = mpi_rank * small_ds_slice_size;
+ stop_index = start_index + small_ds_slice_size - 1;
+
+ HDassert( 0 <= start_index );
+ HDassert( start_index < stop_index );
+ HDassert( stop_index <= (int)small_ds_size );
+
+ for ( n = 0; n < (int)small_ds_size; n++ ) {
+
+ if ( ( n >= start_index ) && ( n <= stop_index ) ) {
+
+ if ( *ptr_1 != expected_value ) {
+
+ mis_match = TRUE;
+ }
+ expected_value++;
+
+ } else {
+
+ if ( *ptr_1 != 0 ) {
+
+ mis_match = TRUE;
+ }
+ }
+ /* zero out the value for the next pass */
+ *ptr_1 = 0;
+
+ ptr_1++;
+ }
+
+ VRFY((mis_match == FALSE),
+ "small slice write from large ds data good.");
+
+ l++;
+
+ } while ( ( large_rank > 2 ) &&
+ ( (small_rank - 1) <= 1 ) &&
+ ( l < edge_size ) );
+ k++;
+ } while ( ( large_rank > 3 ) &&
+ ( (small_rank - 1) <= 2 ) &&
+ ( k < edge_size ) );
+ j++;
+ } while ( ( large_rank > 4 ) &&
+ ( (small_rank - 1) <= 3 ) &&
+ ( j < edge_size ) );
+
+
+ /* Now write the contents of the process's slice of the in memory
+ * small data set to slices of the on disk large data set. After
+ * each write, read the process's slice of the large data set back
+ * into memory, and verify that it contains the expected data.
+ * Verify that H5S_select_shape_same() returns true on the memory
+ * and file selections.
+ */
+
+ /* select the slice of the in memory small data set associated with
+ * the process's mpi rank.
+ */
+ start[0] = mpi_rank;
+ stride[0] = 2 * (mpi_size + 1);
+ count[0] = 1;
+ block[0] = 1;
+
+ for ( i = 1; i < large_rank; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ block[i] = edge_size;
+ }
+
+ ret = H5Sselect_hyperslab(mem_small_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded");
+
+
+ /* set up start, stride, count, and block -- note that we will
+ * change start[] so as to write slices of the small data set to
+ * slices of the large data set.
+ */
+ for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) {
+
+ block[i] = 1;
+
+ } else {
+
+ block[i] = edge_size;
+ }
+ }
+
+ /* zero out the in memory large ds */
+ ptr_1 = large_ds_buf_1;
+ for ( n = 0; n < (int)large_ds_size; n++ ) {
+
+ *ptr_1 = 0;
+ ptr_1++;
+ }
+
+#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout,
+ "%s writing process slices of small ds to slices of large ds on disk.\n",
+ fcnName);
+#endif
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) {
+
+ i = mpi_rank;
+
+ } else {
+
+ i = 0;
+ }
+
+ /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
+ * loop over it -- either we are setting i to mpi_rank, or
+ * we are setting it to zero. It will not change during the
+ * test.
+ */
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) {
+
+ j = mpi_rank;
+
+ } else {
+
+ j = 0;
+ }
+
+ do {
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) {
+
+ k = mpi_rank;
+
+ } else {
+
+ k = 0;
+ }
+
+ do {
+ /* since small rank >= 2 and large_rank > small_rank, we
+ * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
+ * (baring major re-orgaization), this gives us:
+ *
+ * (PAR_SS_DR_MAX_RANK - large_rank) <= 2
+ *
+ * so no need to repeat the test in the outer loops --
+ * just set l = 0.
+ */
+
+ l = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ /* Zero out this processes slice of the on disk large data set.
+ * Note that this will leave one slice with its original data
+ * as there is one more slice than processes.
+ */
+ ret = H5Dwrite(large_dataset,
+ H5T_NATIVE_UINT32,
+ large_ds_slice_sid,
+ file_large_ds_process_slice_sid,
+ xfer_plist,
+ large_ds_buf_2);
+ VRFY((ret != FAIL), "H5Dwrite() to zero large ds suceeded");
+
+
+ /* select the portion of the in memory large cube to which we
+ * are going to write data.
+ */
+ start[0] = i;
+ start[1] = j;
+ start[2] = k;
+ start[3] = l;
+ start[4] = 0;
+
+ ret = H5Sselect_hyperslab(file_large_ds_sid,
+ H5S_SELECT_SET,
+ start_ptr,
+ stride_ptr,
+ count_ptr,
+ block_ptr);
+ VRFY((ret != FAIL),
+ "H5Sselect_hyperslab() target large ds slice succeeded");
+
+
+ /* verify that H5S_select_shape_same() reports the in
+ * memory small data set slice selection and the
+ * on disk slice through the large data set selection
+ * as having the same shape.
+ */
+ check = H5S_select_shape_same_test(mem_small_ds_sid,
+ file_large_ds_sid);
+ VRFY((check == TRUE), "H5S_select_shape_same_test passed");
+
+
+ /* write the small data set slice from memory to the
+ * target slice of the disk data set
+ */
+#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n",
+ fcnName, (int)mpi_rank,
+ (int)start[0], (int)start[1], (int)start[2],
+ (int)start[3], (int)start[4]);
+ HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n",
+ fcnName, mpi_rank,
+ H5Sget_simple_extent_ndims(mem_small_ds_sid),
+ H5Sget_simple_extent_ndims(file_large_ds_sid));
+#endif
+ ret = H5Dwrite(large_dataset,
+ H5T_NATIVE_UINT32,
+ mem_small_ds_sid,
+ file_large_ds_sid,
+ xfer_plist,
+ small_ds_buf_0);
+ VRFY((ret != FAIL),
+ "H5Dwrite of small ds slice to large ds succeeded");
+
+
+ /* read this processes slice on the on disk large
+ * data set into memory.
+ */
+
+ ret = H5Dread(large_dataset,
+ H5T_NATIVE_UINT32,
+ mem_large_ds_process_slice_sid,
+ file_large_ds_process_slice_sid,
+ xfer_plist,
+ large_ds_buf_1);
+ VRFY((ret != FAIL),
+ "H5Dread() of process slice of large ds succeeded");
+
+
+ /* verify that the expected data and only the
+ * expected data was read.
+ */
+ ptr_1 = large_ds_buf_1;
+ expected_value = (uint32_t)(mpi_rank) * small_ds_slice_size;
+
+
+ start_index = (i * edge_size * edge_size * edge_size * edge_size) +
+ (j * edge_size * edge_size * edge_size) +
+ (k * edge_size * edge_size) +
+ (l * edge_size);
+ stop_index = start_index + (int)small_ds_slice_size - 1;
+
+ HDassert( 0 <= start_index );
+ HDassert( start_index < stop_index );
+ HDassert( stop_index < (int)large_ds_size );
+
+ for ( n = 0; n < (int)large_ds_size; n++ ) {
+
+ if ( ( n >= start_index ) && ( n <= stop_index ) ) {
+
+ if ( *ptr_1 != expected_value ) {
+
+ mis_match = TRUE;
+ }
+
+ expected_value++;
+
+ } else {
+
+ if ( *ptr_1 != 0 ) {
+
+ mis_match = TRUE;
+ }
+ }
+ /* zero out buffer for next test */
+ *ptr_1 = 0;
+ ptr_1++;
+ }
+
+ VRFY((mis_match == FALSE),
+ "small ds slice write to large ds slice data good.");
+
+ l++;
+
+ } while ( ( large_rank > 2 ) &&
+ ( (small_rank - 1) <= 1 ) &&
+ ( l < edge_size ) );
+ k++;
+ } while ( ( large_rank > 3 ) &&
+ ( (small_rank - 1) <= 2 ) &&
+ ( k < edge_size ) );
+ j++;
+ } while ( ( large_rank > 4 ) &&
+ ( (small_rank - 1) <= 3 ) &&
+ ( j < edge_size ) );
+
+
+ /* Close dataspaces */
+ ret = H5Sclose(full_mem_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_mem_small_ds_sid) succeeded");
+
+ ret = H5Sclose(full_file_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_file_small_ds_sid) succeeded");
+
+ ret = H5Sclose(mem_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(mem_small_ds_sid) succeeded");
+
+ ret = H5Sclose(file_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid) succeeded");
+
+ ret = H5Sclose(small_ds_slice_sid);
+ VRFY((ret != FAIL), "H5Sclose(small_ds_slice_sid) succeeded");
+
+ ret = H5Sclose(full_mem_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_mem_large_ds_sid) succeeded");
+
+ ret = H5Sclose(full_file_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_file_large_ds_sid) succeeded");
+
+ ret = H5Sclose(mem_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded");
+
+ ret = H5Sclose(file_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded");
+
+ ret = H5Sclose(mem_large_ds_process_slice_sid);
+ VRFY((ret != FAIL), "H5Sclose(mem_large_ds_process_slice_sid) succeeded");
+
+ ret = H5Sclose(file_large_ds_process_slice_sid);
+ VRFY((ret != FAIL), "H5Sclose(file_large_ds_process_slice_sid) succeeded");
+
+ ret = H5Sclose(large_ds_slice_sid);
+ VRFY((ret != FAIL), "H5Sclose(large_ds_slice_sid) succeeded");
+
+
+ /* Close Datasets */
+ ret = H5Dclose(small_dataset);
+ VRFY((ret != FAIL), "H5Dclose(small_dataset) succeeded");
+
+ ret = H5Dclose(large_dataset);
+ VRFY((ret != FAIL), "H5Dclose(large_dataset) succeeded");
+
+
+ /* close the file collectively */
+ MESG("about to close file.");
+ ret = H5Fclose(fid);
+ VRFY((ret != FAIL), "file close succeeded");
+
+ /* Free memory buffers */
+
+ if ( small_ds_buf_0 != NULL ) HDfree(small_ds_buf_0);
+ if ( small_ds_buf_1 != NULL ) HDfree(small_ds_buf_1);
+ if ( small_ds_buf_2 != NULL ) HDfree(small_ds_buf_2);
+ if ( small_ds_slice_buf != NULL ) HDfree(small_ds_slice_buf);
+
+ if ( large_ds_buf_0 != NULL ) HDfree(large_ds_buf_0);
+ if ( large_ds_buf_1 != NULL ) HDfree(large_ds_buf_1);
+ if ( large_ds_buf_2 != NULL ) HDfree(large_ds_buf_2);
+ if ( large_ds_slice_buf != NULL ) HDfree(large_ds_slice_buf);
+
+ return;
+
+} /* contig_hyperslab_dr_pio_test__run_test() */
+
+
+/*-------------------------------------------------------------------------
+ * Function: contig_hyperslab_dr_pio_test()
+ *
+ * Purpose: Test I/O to/from hyperslab selections of different rank in
+ * the parallel case.
+ *
+ * Return: void
+ *
+ * Programmer: JRM -- 9/18/09
+ *
+ * Modifications:
+ *
+ *-------------------------------------------------------------------------
+ */
+
+void
+contig_hyperslab_dr_pio_test(void)
+{
+ const char *fcnName = "contig_hyperslab_dr_pio_test()";
+ int test_num = 0;
+ int edge_size = 10;
+ int chunk_edge_size = 0;
+ int small_rank;
+ int large_rank;
+ int use_collective_io;
+ hid_t dset_type = H5T_STD_U32LE;
+
+ for ( large_rank = 3; large_rank <= PAR_SS_DR_MAX_RANK; large_rank++ ) {
+
+ for ( small_rank = 2; small_rank < large_rank; small_rank++ ) {
+
+ for ( use_collective_io = 0;
+ use_collective_io <= 1;
+ use_collective_io++ ) {
+
+ chunk_edge_size = 0;
+ contig_hyperslab_dr_pio_test__run_test(test_num,
+ edge_size,
+ chunk_edge_size,
+ small_rank,
+ large_rank,
+ (hbool_t)use_collective_io,
+ dset_type);
+ test_num++;
+#if 1
+ chunk_edge_size = 5;
+ contig_hyperslab_dr_pio_test__run_test(test_num,
+ edge_size,
+ chunk_edge_size,
+ small_rank,
+ large_rank,
+ (hbool_t)use_collective_io,
+ dset_type);
+ test_num++;
+#endif
+ }
+ }
+ }
+
+ return;
+
+} /* contig_hyperslab_dr_pio_test() */
+
+
+/****************************************************************
+**
+** checker_board_hyperslab_dr_pio_test__select_checker_board():
+** Given a data space of tgt_rank, and dimensions:
+**
+** (mpi_size + 1), edge_size, ... , edge_size
+**
+** edge_size, and a checker_edge_size, select a checker
+** board selection of a sel_rank (sel_rank < tgt_rank)
+** dimensional slice through the data space parallel to the
+** sel_rank fastest changing indicies, with origin (in the
+** higher indicies) as indicated by the start array.
+**
+** Note that this function, like all its relatives, is
+** hard coded to presume a maximum data space rank of 5.
+** While this maximum is declared as a constant, increasing
+** it will require extensive coding in addition to changing
+** the value of the constant.
+**
+** JRM -- 10/8/09
+**
+****************************************************************/
+
+#define CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG 0
+
+static void
+checker_board_hyperslab_dr_pio_test__select_checker_board(
+ const int mpi_rank,
+ const hid_t tgt_sid,
+ const int tgt_rank,
+ const int edge_size,
+ const int checker_edge_size,
+ const int sel_rank,
+ hsize_t sel_start[])
+{
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
+ const char * fcnName =
+ "checker_board_hyperslab_dr_pio_test__select_checker_board():";
+#endif
+ hbool_t first_selection = TRUE;
+ int i, j, k, l, m;
+ int n_cube_offset;
+ int sel_offset;
+ const int test_max_rank = PAR_SS_DR_MAX_RANK; /* must update code if */
+ /* this changes */
+ hsize_t base_count;
+ hsize_t offset_count;
+ hsize_t start[PAR_SS_DR_MAX_RANK];
+ hsize_t stride[PAR_SS_DR_MAX_RANK];
+ hsize_t count[PAR_SS_DR_MAX_RANK];
+ hsize_t block[PAR_SS_DR_MAX_RANK];
+ herr_t ret; /* Generic return value */
+
+ HDassert( edge_size >= 6 );
+ HDassert( 0 < checker_edge_size );
+ HDassert( checker_edge_size <= edge_size );
+ HDassert( 0 < sel_rank );
+ HDassert( sel_rank <= tgt_rank );
+ HDassert( tgt_rank <= test_max_rank );
+ HDassert( test_max_rank <= PAR_SS_DR_MAX_RANK );
+
+ sel_offset = test_max_rank - sel_rank;
+ HDassert( sel_offset >= 0 );
+
+ n_cube_offset = test_max_rank - tgt_rank;
+ HDassert( n_cube_offset >= 0 );
+ HDassert( n_cube_offset <= sel_offset );
+
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
+ HDfprintf(stdout, "%s:%d: edge_size/checker_edge_size = %d/%d\n",
+ fcnName, mpi_rank, edge_size, checker_edge_size);
+ HDfprintf(stdout, "%s:%d: sel_rank/sel_offset = %d/%d.\n",
+ fcnName, mpi_rank, sel_rank, sel_offset);
+ HDfprintf(stdout, "%s:%d: tgt_rank/n_cube_offset = %d/%d.\n",
+ fcnName, mpi_rank, tgt_rank, n_cube_offset);
+#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */
+
+ /* First, compute the base count (which assumes start == 0
+ * for the associated offset) and offset_count (which
+ * assumes start == checker_edge_size for the associated
+ * offset).
+ *
+ * Note that the following computation depends on the C99
+ * requirement that integer division discard any fraction
+ * (truncation towards zero) to function correctly. As we
+ * now require C99, this shouldn't be a problem, but noting
+ * it may save us some pain if we are ever obliged to support
+ * pre-C99 compilers again.
+ */
+
+ base_count = edge_size / (checker_edge_size * 2);
+
+ if ( (edge_size % (checker_edge_size * 2)) > 0 ) {
+
+ base_count++;
+ }
+
+ offset_count = (edge_size - checker_edge_size) / (checker_edge_size * 2);
+
+ if ( ((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0 ) {
+
+ offset_count++;
+ }
+
+ /* Now set up the stride and block arrays, and portions of the start
+ * and count arrays that will not be altered during the selection of
+ * the checker board.
+ */
+ i = 0;
+ while ( i < n_cube_offset ) {
+
+ /* these values should never be used */
+ start[i] = 0;
+ stride[i] = 0;
+ count[i] = 0;
+ block[i] = 0;
+
+ i++;
+ }
+
+ while ( i < sel_offset ) {
+
+ start[i] = sel_start[i];
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ block[i] = 1;
+
+ i++;
+ }
+
+ while ( i < test_max_rank ) {
+
+ stride[i] = 2 * checker_edge_size;
+ block[i] = checker_edge_size;
+
+ i++;
+ }
+
+ i = 0;
+ do {
+ if ( 0 >= sel_offset ) {
+
+ if ( i == 0 ) {
+
+ start[0] = 0;
+ count[0] = base_count;
+
+ } else {
+
+ start[0] = checker_edge_size;
+ count[0] = offset_count;
+
+ }
+ }
+
+ j = 0;
+ do {
+ if ( 1 >= sel_offset ) {
+
+ if ( j == 0 ) {
+
+ start[1] = 0;
+ count[1] = base_count;
+
+ } else {
+
+ start[1] = checker_edge_size;
+ count[1] = offset_count;
+
+ }
+ }
+
+ k = 0;
+ do {
+ if ( 2 >= sel_offset ) {
+
+ if ( k == 0 ) {
+
+ start[2] = 0;
+ count[2] = base_count;
+
+ } else {
+
+ start[2] = checker_edge_size;
+ count[2] = offset_count;
+
+ }
+ }
+
+ l = 0;
+ do {
+ if ( 3 >= sel_offset ) {
+
+ if ( l == 0 ) {
+
+ start[3] = 0;
+ count[3] = base_count;
+
+ } else {
+
+ start[3] = checker_edge_size;
+ count[3] = offset_count;
+
+ }
+ }
+
+ m = 0;
+ do {
+ if ( 4 >= sel_offset ) {
+
+ if ( m == 0 ) {
+
+ start[4] = 0;
+ count[4] = base_count;
+
+ } else {
+
+ start[4] = checker_edge_size;
+ count[4] = offset_count;
+
+ }
+ }
+
+ if ( ((i + j + k + l + m) % 2) == 0 ) {
+
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
+ HDfprintf(stdout, "%s%d: *** first_selection = %d ***\n",
+ fcnName, mpi_rank, (int)first_selection);
+ HDfprintf(stdout, "%s:%d: i/j/k/l/m = %d/%d/%d/%d/%d\n",
+ fcnName, mpi_rank, i, j, k, l, m);
+ HDfprintf(stdout,
+ "%s:%d: start = %d %d %d %d %d.\n",
+ fcnName, mpi_rank, (int)start[0], (int)start[1],
+ (int)start[2], (int)start[3], (int)start[4]);
+ HDfprintf(stdout,
+ "%s:%d: stride = %d %d %d %d %d.\n",
+ fcnName, mpi_rank, (int)stride[0], (int)stride[1],
+ (int)stride[2], (int)stride[3], (int)stride[4]);
+ HDfprintf(stdout,
+ "%s:%d: count = %d %d %d %d %d.\n",
+ fcnName, mpi_rank, (int)count[0], (int)count[1],
+ (int)count[2], (int)count[3], (int)count[4]);
+ HDfprintf(stdout,
+ "%s:%d: block = %d %d %d %d %d.\n",
+ fcnName, mpi_rank, (int)block[0], (int)block[1],
+ (int)block[2], (int)block[3], (int)block[4]);
+ HDfprintf(stdout, "%s:%d: n-cube extent dims = %d.\n",
+ fcnName, mpi_rank,
+ H5Sget_simple_extent_ndims(tgt_sid));
+ HDfprintf(stdout, "%s:%d: selection rank = %d.\n",
+ fcnName, mpi_rank, sel_rank);
+#endif
+
+ if ( first_selection ) {
+
+ first_selection = FALSE;
+
+ ret = H5Sselect_hyperslab
+ (
+ tgt_sid,
+ H5S_SELECT_SET,
+ &(start[n_cube_offset]),
+ &(stride[n_cube_offset]),
+ &(count[n_cube_offset]),
+ &(block[n_cube_offset])
+ );
+
+ VRFY((ret != FAIL), "H5Sselect_hyperslab(SET) succeeded");
+
+ } else {
+
+ ret = H5Sselect_hyperslab
+ (
+ tgt_sid,
+ H5S_SELECT_OR,
+ &(start[n_cube_offset]),
+ &(stride[n_cube_offset]),
+ &(count[n_cube_offset]),
+ &(block[n_cube_offset])
+ );
+
+ VRFY((ret != FAIL), "H5Sselect_hyperslab(OR) succeeded");
+
+ }
+ }
+
+ m++;
+
+ } while ( ( m <= 1 ) &&
+ ( 4 >= sel_offset ) );
+
+ l++;
+
+ } while ( ( l <= 1 ) &&
+ ( 3 >= sel_offset ) );
+
+ k++;
+
+ } while ( ( k <= 1 ) &&
+ ( 2 >= sel_offset ) );
+
+ j++;
+
+ } while ( ( j <= 1 ) &&
+ ( 1 >= sel_offset ) );
+
+
+ i++;
+
+ } while ( ( i <= 1 ) &&
+ ( 0 >= sel_offset ) );
+
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
+ HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n",
+ fcnName, mpi_rank, (int)H5Sget_select_npoints(tgt_sid));
+#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */
+
+ /* Clip the selection back to the data space proper. */
+
+ for ( i = 0; i < test_max_rank; i++ ) {
+
+ start[i] = 0;
+ stride[i] = edge_size;
+ count[i] = 1;
+ block[i] = edge_size;
+ }
+
+ ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_AND,
+ start, stride, count, block);
+
+ VRFY((ret != FAIL), "H5Sselect_hyperslab(AND) succeeded");
+
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
+ HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n",
+ fcnName, mpi_rank, (int)H5Sget_select_npoints(tgt_sid));
+ HDfprintf(stdout, "%s%d: done.\n", fcnName, mpi_rank);
+#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */
+
+ return;
+
+} /* checker_board_hyperslab_dr_pio_test__select_checker_board() */
+
+
+/****************************************************************
+**
+** checker_board_hyperslab_dr_pio_test__verify_data():
+**
+** Examine the supplied buffer to see if it contains the
+** expected data. Return TRUE if it does, and FALSE
+** otherwise.
+**
+** The supplied buffer is presumed to this process's slice
+** of the target data set. Each such slice will be an
+** n-cube of rank (rank -1) and the supplied edge_size with
+** origin (mpi_rank, 0, ... , 0) in the target data set.
+**
+** Further, the buffer is presumed to be the result of reading
+** or writing a checker board selection of an m (1 <= m <
+** rank) dimensional slice through this processes slice
+** of the target data set. Also, this slice must be parallel
+** to the fastest changing indicies.
+**
+** It is further presumed that the buffer was zeroed before
+** the read/write, and that the full target data set (i.e.
+** the buffer/data set for all processes) was initialized
+** with the natural numbers listed in order from the origin
+** along the fastest changing axis.
+**
+** Thus for a 20x10x10 dataset, the value stored in location
+** (x, y, z) (assuming that z is the fastest changing index
+** and x the slowest) is assumed to be:
+**
+** (10 * 10 * x) + (10 * y) + z
+**
+** Further, supposing that this is process 10, this process's
+** slice of the dataset would be a 10 x 10 2-cube with origin
+** (10, 0, 0) in the data set, and would be initialize (prior
+** to the checkerboard selection) as follows:
+**
+** 1000, 1001, 1002, ... 1008, 1009
+** 1010, 1011, 1012, ... 1018, 1019
+** . . . . .
+** . . . . .
+** . . . . .
+** 1090, 1091, 1092, ... 1098, 1099
+**
+** In the case of a read from the processors slice of another
+** data set of different rank, the values expected will have
+** to be adjusted accordingly. This is done via the
+** first_expected_val parameter.
+**
+** Finally, the function presumes that the first element
+** of the buffer resides either at the origin of either
+** a selected or an unselected checker. (Translation:
+** if partial checkers appear in the buffer, they will
+** intersect the edges of the n-cube oposite the origin.)
+**
+****************************************************************/
+
+#define CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__VERIFY_DATA__DEBUG 0
+
+static hbool_t
+checker_board_hyperslab_dr_pio_test__verify_data(uint32_t * buf_ptr,
+ const int mpi_rank,
+ const int rank,
+ const int edge_size,
+ const int checker_edge_size,
+ uint32_t first_expected_val,
+ hbool_t buf_starts_in_checker)
+{
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__VERIFY_DATA__DEBUG
+ const char * fcnName =
+ "checker_board_hyperslab_dr_pio_test__verify_data():";
+#endif
+ hbool_t good_data = TRUE;
+ hbool_t in_checker;
+ hbool_t start_in_checker[5];
+ uint32_t expected_value;
+ uint32_t * val_ptr;
+ int i, j, k, l, m; /* to track position in n-cube */
+ int v, w, x, y, z; /* to track position in checker */
+ const int test_max_rank = 5; /* code changes needed if this is increased */
+
+ HDassert( buf_ptr != NULL );
+ HDassert( 0 < rank );
+ HDassert( rank <= test_max_rank );
+ HDassert( edge_size >= 6 );
+ HDassert( 0 < checker_edge_size );
+ HDassert( checker_edge_size <= edge_size );
+ HDassert( test_max_rank <= PAR_SS_DR_MAX_RANK );
+
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__VERIFY_DATA__DEBUG
+ HDfprintf(stdout, "%s mpi_rank = %d.\n", fcnName, mpi_rank);
+ HDfprintf(stdout, "%s rank = %d.\n", fcnName, rank);
+ HDfprintf(stdout, "%s edge_size = %d.\n", fcnName, edge_size);
+ HDfprintf(stdout, "%s checker_edge_size = %d.\n", fcnName, checker_edge_size);
+ HDfprintf(stdout, "%s first_expected_val = %d.\n", fcnName, (int)first_expected_val);
+ HDfprintf(stdout, "%s starts_in_checker = %d.\n", fcnName, (int)buf_starts_in_checker);
+#endif
+
+ val_ptr = buf_ptr;
+ expected_value = first_expected_val;
+
+ i = 0;
+ v = 0;
+ start_in_checker[0] = buf_starts_in_checker;
+ do
+ {
+ if ( v >= checker_edge_size ) {
+
+ start_in_checker[0] = ! start_in_checker[0];
+ v = 0;
+ }
+
+ j = 0;
+ w = 0;
+ start_in_checker[1] = start_in_checker[0];
+ do
+ {
+ if ( w >= checker_edge_size ) {
+
+ start_in_checker[1] = ! start_in_checker[1];
+ w = 0;
+ }
+
+ k = 0;
+ x = 0;
+ start_in_checker[2] = start_in_checker[1];
+ do
+ {
+ if ( x >= checker_edge_size ) {
+
+ start_in_checker[2] = ! start_in_checker[2];
+ x = 0;
+ }
+
+ l = 0;
+ y = 0;
+ start_in_checker[3] = start_in_checker[2];
+ do
+ {
+ if ( y >= checker_edge_size ) {
+
+ start_in_checker[3] = ! start_in_checker[3];
+ y = 0;
+ }
+
+ m = 0;
+ z = 0;
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__VERIFY_DATA__DEBUG
+ HDfprintf(stdout, "%d, %d, %d, %d, %d:", i, j, k, l, m);
+#endif
+ in_checker = start_in_checker[3];
+ do
+ {
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__VERIFY_DATA__DEBUG
+ HDfprintf(stdout, " %d", (int)(*val_ptr));
+#endif
+ if ( z >= checker_edge_size ) {
+
+ in_checker = ! in_checker;
+ z = 0;
+ }
+
+ if ( in_checker ) {
+
+ if ( *val_ptr != expected_value ) {
+
+ good_data = FALSE;
+ }
+
+ /* zero out buffer for re-use */
+ *val_ptr = 0;
+
+ } else if ( *val_ptr != 0 ) {
+
+ good_data = FALSE;
+
+ /* zero out buffer for re-use */
+ *val_ptr = 0;
+
+ }
+
+ val_ptr++;
+ expected_value++;
+ m++;
+ z++;
+
+ } while ( ( rank >= (test_max_rank - 4) ) &&
+ ( m < edge_size ) );
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__VERIFY_DATA__DEBUG
+ HDfprintf(stdout, "\n");
+#endif
+ l++;
+ y++;
+ } while ( ( rank >= (test_max_rank - 3) ) &&
+ ( l < edge_size ) );
+ k++;
+ x++;
+ } while ( ( rank >= (test_max_rank - 2) ) &&
+ ( k < edge_size ) );
+ j++;
+ w++;
+ } while ( ( rank >= (test_max_rank - 1) ) &&
+ ( j < edge_size ) );
+ i++;
+ v++;
+ } while ( ( rank >= test_max_rank ) &&
+ ( i < edge_size ) );
+
+ return(good_data);
+
+} /* checker_board_hyperslab_dr_pio_test__verify_data() */
+
+
+/*-------------------------------------------------------------------------
+ * Function: checker_board_hyperslab_dr_pio_test__run_test()
+ *
+ * Purpose: Test I/O to/from checkerboard selections of hyperslabs of
+ * different rank in the parallel.
+ *
+ * Return: void
+ *
+ * Programmer: JRM -- 10/10/09
+ *
+ * Modifications:
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#define PAR_SS_DR_MAX_RANK 5
+#define CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG 0
+
+void
+checker_board_hyperslab_dr_pio_test__run_test(const int test_num,
+ const int edge_size,
+ const int checker_edge_size,
+ const int chunk_edge_size,
+ const int small_rank,
+ const int large_rank,
+ const hbool_t use_collective_io,
+ const hid_t dset_type)
+{
+ const char *fcnName = "checker_board_hyperslab_dr_pio_test__run_test()";
+ const char *filename;
+ hbool_t use_gpfs = FALSE; /* Use GPFS hints */
+ hbool_t data_ok = FALSE;
+ hbool_t mis_match = FALSE;
+ int i, j, k, l, m, n;
+ int mrc;
+ int start_index;
+ int stop_index;
+ int small_ds_offset;
+ int large_ds_offset;
+ const int test_max_rank = 5; /* must update code if this changes */
+ uint32_t expected_value;
+ uint32_t * small_ds_buf_0 = NULL;
+ uint32_t * small_ds_buf_1 = NULL;
+ uint32_t * small_ds_buf_2 = NULL;
+ uint32_t * small_ds_slice_buf = NULL;
+ uint32_t * large_ds_buf_0 = NULL;
+ uint32_t * large_ds_buf_1 = NULL;
+ uint32_t * large_ds_buf_2 = NULL;
+ uint32_t * large_ds_slice_buf = NULL;
+ uint32_t * ptr_0;
+ uint32_t * ptr_1;
+ uint32_t * ptr_2;
+ int mpi_rank;
+ int mpi_size;
+ MPI_Comm mpi_comm = MPI_COMM_NULL;
+ MPI_Info mpi_info = MPI_INFO_NULL;
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t xfer_plist = H5P_DEFAULT;
+ hid_t full_mem_small_ds_sid;
+ hid_t full_file_small_ds_sid;
+ hid_t mem_small_ds_sid;
+ hid_t file_small_ds_sid_0;
+ hid_t file_small_ds_sid_1;
+ hid_t small_ds_slice_sid;
+ hid_t full_mem_large_ds_sid;
+ hid_t full_file_large_ds_sid;
+ hid_t mem_large_ds_sid;
+ hid_t file_large_ds_sid_0;
+ hid_t file_large_ds_sid_1;
+ hid_t file_large_ds_process_slice_sid;
+ hid_t mem_large_ds_process_slice_sid;
+ hid_t large_ds_slice_sid;
+ hid_t small_ds_dcpl_id = H5P_DEFAULT;
+ hid_t large_ds_dcpl_id = H5P_DEFAULT;
+ hid_t small_dataset; /* Dataset ID */
+ hid_t large_dataset; /* Dataset ID */
+ size_t small_ds_size = 1;
+ size_t small_ds_slice_size = 1;
+ size_t large_ds_size = 1;
+ size_t large_ds_slice_size = 1;
+ hsize_t dims[PAR_SS_DR_MAX_RANK];
+ hsize_t chunk_dims[PAR_SS_DR_MAX_RANK];
+ hsize_t start[PAR_SS_DR_MAX_RANK];
+ hsize_t stride[PAR_SS_DR_MAX_RANK];
+ hsize_t count[PAR_SS_DR_MAX_RANK];
+ hsize_t block[PAR_SS_DR_MAX_RANK];
+ hsize_t sel_start[PAR_SS_DR_MAX_RANK];
+ hsize_t * start_ptr = NULL;
+ hsize_t * stride_ptr = NULL;
+ hsize_t * count_ptr = NULL;
+ hsize_t * block_ptr = NULL;
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ HDassert( edge_size >= 6 );
+ HDassert( edge_size >= chunk_edge_size );
+ HDassert( ( chunk_edge_size == 0 ) || ( chunk_edge_size >= 3 ) );
+ HDassert( 1 < small_rank );
+ HDassert( small_rank < large_rank );
+ HDassert( large_rank <= test_max_rank );
+ HDassert( test_max_rank <= PAR_SS_DR_MAX_RANK );
+
+ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ HDassert( mpi_size >= 1 );
+
+ mpi_comm = MPI_COMM_WORLD;
+ mpi_info = MPI_INFO_NULL;
+
+ for ( i = 0; i < small_rank - 1; i++ )
+ {
+ small_ds_size *= (size_t)edge_size;
+ small_ds_slice_size *= (size_t)edge_size;
+ }
+ small_ds_size *= (size_t)(mpi_size + 1);
+
+ small_ds_offset = PAR_SS_DR_MAX_RANK - small_rank;
+
+ HDassert( 0 < small_ds_offset );
+ HDassert( small_ds_offset < PAR_SS_DR_MAX_RANK );
+
+
+ for ( i = 0; i < large_rank - 1; i++ ) {
+
+ large_ds_size *= (size_t)edge_size;
+ large_ds_slice_size *= (size_t)edge_size;
+ }
+ large_ds_size *= (size_t)(mpi_size + 1);
+
+ large_ds_offset = PAR_SS_DR_MAX_RANK - large_rank;
+
+ HDassert( 0 <= large_ds_offset );
+ HDassert( large_ds_offset < PAR_SS_DR_MAX_RANK );
+
+
+ /* set up the start, stride, count, and block pointers */
+ start_ptr = &(start[PAR_SS_DR_MAX_RANK - large_rank]);
+ stride_ptr = &(stride[PAR_SS_DR_MAX_RANK - large_rank]);
+ count_ptr = &(count[PAR_SS_DR_MAX_RANK - large_rank]);
+ block_ptr = &(block[PAR_SS_DR_MAX_RANK - large_rank]);
+
+
+ /* Allocate buffers */
+ small_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size);
+ VRFY((small_ds_buf_0 != NULL), "malloc of small_ds_buf_0 succeeded");
+
+ small_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size);
+ VRFY((small_ds_buf_1 != NULL), "malloc of small_ds_buf_1 succeeded");
+
+ small_ds_buf_2 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size);
+ VRFY((small_ds_buf_2 != NULL), "malloc of small_ds_buf_2 succeeded");
+
+ small_ds_slice_buf =
+ (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_slice_size);
+ VRFY((small_ds_slice_buf != NULL), "malloc of small_ds_slice_buf succeeded");
+
+ large_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size);
+ VRFY((large_ds_buf_0 != NULL), "malloc of large_ds_buf_0 succeeded");
+
+ large_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size);
+ VRFY((large_ds_buf_1 != NULL), "malloc of large_ds_buf_1 succeeded");
+
+ large_ds_buf_2 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size);
+ VRFY((large_ds_buf_2 != NULL), "malloc of large_ds_buf_2 succeeded");
+
+ large_ds_slice_buf =
+ (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_slice_size);
+ VRFY((large_ds_slice_buf != NULL), "malloc of large_ds_slice_buf succeeded");
+
+ /* initialize the buffers */
+
+ ptr_0 = small_ds_buf_0;
+ ptr_1 = small_ds_buf_1;
+ ptr_2 = small_ds_buf_2;
+
+ for ( i = 0; i < (int)small_ds_size; i++ ) {
+
+ *ptr_0 = (uint32_t)i;
+ *ptr_1 = 0;
+ *ptr_2 = 0;
+
+ ptr_0++;
+ ptr_1++;
+ ptr_2++;
+ }
+
+ ptr_0 = small_ds_slice_buf;
+
+ for ( i = 0; i < (int)small_ds_slice_size; i++ ) {
+
+ *ptr_0 = (uint32_t)i;
+ ptr_0++;
+ }
+
+ ptr_0 = large_ds_buf_0;
+ ptr_1 = large_ds_buf_1;
+ ptr_2 = large_ds_buf_2;
+
+ for ( i = 0; i < (int)large_ds_size; i++ ) {
+
+ *ptr_0 = (uint32_t)i;
+ *ptr_1 = 0;
+ *ptr_2 = 0;
+
+ ptr_0++;
+ ptr_1++;
+ ptr_2++;
+ }
+
+ ptr_0 = large_ds_slice_buf;
+
+ for ( i = 0; i < (int)large_ds_slice_size; i++ ) {
+
+ *ptr_0 = (uint32_t)0;
+ ptr_0++;
+ }
+
+ filename = (const char *)GetTestParameters();
+ HDassert( filename != NULL );
+
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ if ( MAINPROCESS ) {
+
+ HDfprintf(stdout, "%s:%d: test num = %d.\n", fcnName, mpi_rank, test_num);
+ HDfprintf(stdout, "%s:%d: mpi_size = %d.\n", fcnName, mpi_rank, mpi_size);
+ HDfprintf(stdout,
+ "%s:%d: small/large rank = %d/%d, use_collective_io = %d.\n",
+ fcnName, mpi_rank, small_rank, large_rank, (int)use_collective_io);
+ HDfprintf(stdout, "%s:%d: edge_size = %d, chunk_edge_size = %d.\n",
+ fcnName, mpi_rank, edge_size, chunk_edge_size);
+ HDfprintf(stdout, "%s:%d: checker_edge_size = %d.\n",
+ fcnName, mpi_rank, checker_edge_size);
+ HDfprintf(stdout, "%s:%d: small_ds_size = %d, large_ds_size = %d.\n",
+ fcnName, mpi_rank, (int)small_ds_size, (int)large_ds_size);
+ HDfprintf(stdout, "%s:%d: filename = %s.\n", fcnName, mpi_rank, filename);
+ }
+#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG */
+
+ /* ----------------------------------------
+ * CREATE AN HDF5 FILE WITH PARALLEL ACCESS
+ * ---------------------------------------*/
+ /* setup file access template */
+ acc_tpl = create_faccess_plist(mpi_comm, mpi_info, facc_type, use_gpfs);
+ VRFY((acc_tpl >= 0), "create_faccess_plist() succeeded");
+
+ /* create the file collectively */
+ fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
+ VRFY((fid >= 0), "H5Fcreate succeeded");
+
+ MESG("File opened.");
+
+ /* Release file-access template */
+ ret = H5Pclose(acc_tpl);
+ VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded");
+
+
+ /* setup dims: */
+ dims[0] = (int)(mpi_size + 1);
+ dims[1] = dims[2] = dims[3] = dims[4] = edge_size;
+
+
+ /* Create small ds dataspaces */
+ full_mem_small_ds_sid = H5Screate_simple(small_rank, dims, NULL);
+ VRFY((full_mem_small_ds_sid != 0),
+ "H5Screate_simple() full_mem_small_ds_sid succeeded");
+
+ full_file_small_ds_sid = H5Screate_simple(small_rank, dims, NULL);
+ VRFY((full_file_small_ds_sid != 0),
+ "H5Screate_simple() full_file_small_ds_sid succeeded");
+
+ mem_small_ds_sid = H5Screate_simple(small_rank, dims, NULL);
+ VRFY((mem_small_ds_sid != 0),
+ "H5Screate_simple() mem_small_ds_sid succeeded");
+
+ file_small_ds_sid_0 = H5Screate_simple(small_rank, dims, NULL);
+ VRFY((file_small_ds_sid_0 != 0),
+ "H5Screate_simple() file_small_ds_sid_0 succeeded");
+
+ file_small_ds_sid_1 = H5Screate_simple(small_rank, dims, NULL);
+ VRFY((file_small_ds_sid_1 != 0),
+ "H5Screate_simple() file_small_ds_sid_1 succeeded");
+
+ small_ds_slice_sid = H5Screate_simple(small_rank - 1, &(dims[1]), NULL);
+ VRFY((small_ds_slice_sid != 0),
+ "H5Screate_simple() small_ds_slice_sid succeeded");
+
+
+ /* Create large ds dataspaces */
+ full_mem_large_ds_sid = H5Screate_simple(large_rank, dims, NULL);
+ VRFY((full_mem_large_ds_sid != 0),
+ "H5Screate_simple() full_mem_large_ds_sid succeeded");
+
+ full_file_large_ds_sid = H5Screate_simple(large_rank, dims, NULL);
+ VRFY((full_file_large_ds_sid != FAIL),
+ "H5Screate_simple() full_file_large_ds_sid succeeded");
+
+ mem_large_ds_sid = H5Screate_simple(large_rank, dims, NULL);
+ VRFY((mem_large_ds_sid != FAIL),
+ "H5Screate_simple() mem_large_ds_sid succeeded");
+
+ file_large_ds_sid_0 = H5Screate_simple(large_rank, dims, NULL);
+ VRFY((file_large_ds_sid_0 != FAIL),
+ "H5Screate_simple() file_large_ds_sid_0 succeeded");
+
+ file_large_ds_sid_1 = H5Screate_simple(large_rank, dims, NULL);
+ VRFY((file_large_ds_sid_1 != FAIL),
+ "H5Screate_simple() file_large_ds_sid_1 succeeded");
+
+ mem_large_ds_process_slice_sid = H5Screate_simple(large_rank, dims, NULL);
+ VRFY((mem_large_ds_process_slice_sid != FAIL),
+ "H5Screate_simple() mem_large_ds_process_slice_sid succeeded");
+
+ file_large_ds_process_slice_sid = H5Screate_simple(large_rank, dims, NULL);
+ VRFY((file_large_ds_process_slice_sid != FAIL),
+ "H5Screate_simple() file_large_ds_process_slice_sid succeeded");
+
+
+ large_ds_slice_sid = H5Screate_simple(large_rank - 1, &(dims[1]), NULL);
+ VRFY((large_ds_slice_sid != 0),
+ "H5Screate_simple() large_ds_slice_sid succeeded");
+
+
+ /* Select the entire extent of the full small ds, and ds slice dataspaces */
+ ret = H5Sselect_all(full_mem_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_mem_small_ds_sid) succeeded");
+
+ ret = H5Sselect_all(full_file_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_file_small_ds_sid) succeeded");
+
+ ret = H5Sselect_all(small_ds_slice_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(small_ds_slice_sid) succeeded");
+
+
+ /* Select the entire extent of the full large ds, and ds slice dataspaces */
+ ret = H5Sselect_all(full_mem_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_mem_large_ds_sid) succeeded");
+
+ ret = H5Sselect_all(full_file_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_file_large_ds_sid) succeeded");
+
+ ret = H5Sselect_all(large_ds_slice_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(large_ds_slice_sid) succeeded");
+
+
+ /* if chunk edge size is greater than zero, set up the small and
+ * large data set creation property lists to specify chunked
+ * datasets.
+ */
+ if ( chunk_edge_size > 0 ) {
+
+ chunk_dims[0] = mpi_size + 1;
+ chunk_dims[1] = chunk_dims[2] =
+ chunk_dims[3] = chunk_dims[4] = chunk_edge_size;
+
+ small_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((ret != FAIL), "H5Pcreate() small_ds_dcpl_id succeeded");
+
+ ret = H5Pset_layout(small_ds_dcpl_id, H5D_CHUNKED);
+ VRFY((ret != FAIL), "H5Pset_layout() small_ds_dcpl_id succeeded");
+
+ ret = H5Pset_chunk(small_ds_dcpl_id, small_rank, chunk_dims);
+ VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded");
+
+
+ large_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((ret != FAIL), "H5Pcreate() large_ds_dcpl_id succeeded");
+
+ ret = H5Pset_layout(large_ds_dcpl_id, H5D_CHUNKED);
+ VRFY((ret != FAIL), "H5Pset_layout() large_ds_dcpl_id succeeded");
+
+ ret = H5Pset_chunk(large_ds_dcpl_id, large_rank, chunk_dims);
+ VRFY((ret != FAIL), "H5Pset_chunk() large_ds_dcpl_id succeeded");
+ }
+
+ /* create the small dataset */
+ small_dataset = H5Dcreate2(fid, "small_dataset", dset_type,
+ file_small_ds_sid_0, H5P_DEFAULT,
+ small_ds_dcpl_id, H5P_DEFAULT);
+ VRFY((ret != FAIL), "H5Dcreate2() small_dataset succeeded");
+
+ /* create the large dataset */
+ large_dataset = H5Dcreate2(fid, "large_dataset", dset_type,
+ file_large_ds_sid_0, H5P_DEFAULT,
+ large_ds_dcpl_id, H5P_DEFAULT);
+ VRFY((ret != FAIL), "H5Dcreate2() large_dataset succeeded");
+
+
+
+ /* setup xfer property list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY((xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded");
+
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
+
+ if ( ! use_collective_io ) {
+
+ ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,
+ H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY((ret>= 0), "H5Pset_dxpl_mpio_collective_opt() suceeded");
+ }
+
+ /* setup selection to write initial data to the small and large data sets */
+ start[0] = mpi_rank;
+ stride[0] = 2 * (mpi_size + 1);
+ count[0] = 1;
+ block[0] = 1;
+
+ for ( i = 1; i < large_rank; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ block[i] = edge_size;
+ }
+
+ /* setup selections for writing initial data to the small data set */
+ ret = H5Sselect_hyperslab(mem_small_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded");
+
+ ret = H5Sselect_hyperslab(file_small_ds_sid_0,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) suceeded");
+
+ if ( MAINPROCESS ) { /* add an additional slice to the selections */
+
+ start[0] = mpi_size;
+
+ ret = H5Sselect_hyperslab(mem_small_ds_sid,
+ H5S_SELECT_OR,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret>= 0), "H5Sselect_hyperslab(mem_small_ds_sid, or) suceeded");
+
+ ret = H5Sselect_hyperslab(file_small_ds_sid_0,
+ H5S_SELECT_OR,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret>= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, or) suceeded");
+ }
+
+
+ /* write the initial value of the small data set to file */
+ ret = H5Dwrite(small_dataset, dset_type, mem_small_ds_sid, file_small_ds_sid_0,
+ xfer_plist, small_ds_buf_0);
+ VRFY((ret >= 0), "H5Dwrite() small_dataset initial write succeeded");
+
+
+ /* sync with the other processes before checking data */
+ mrc = MPI_Barrier(MPI_COMM_WORLD);
+ VRFY((mrc==MPI_SUCCESS), "Sync after small dataset writes");
+
+
+ /* read the small data set back to verify that it contains the
+ * expected data. Note that each process reads in the entire
+ * data set and verifies it.
+ */
+ ret = H5Dread(small_dataset,
+ H5T_NATIVE_UINT32,
+ full_mem_small_ds_sid,
+ full_file_small_ds_sid,
+ xfer_plist,
+ small_ds_buf_1);
+ VRFY((ret >= 0), "H5Dread() small_dataset initial read succeeded");
+
+
+ /* verify that the correct data was written to the small data set */
+ expected_value = 0;
+ mis_match = FALSE;
+ ptr_1 = small_ds_buf_1;
+
+ i = 0;
+ for ( i = 0; i < (int)small_ds_size; i++ ) {
+
+ if ( *ptr_1 != expected_value ) {
+
+ mis_match = TRUE;
+ }
+ ptr_1++;
+ expected_value++;
+ }
+ VRFY( (mis_match == FALSE), "small ds init data good.");
+
+
+
+ /* setup selections for writing initial data to the large data set */
+
+ start[0] = mpi_rank;
+
+ ret = H5Sselect_hyperslab(mem_large_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, set) suceeded");
+
+ ret = H5Sselect_hyperslab(file_large_ds_sid_0,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, set) suceeded");
+
+ /* In passing, setup the process slice data spaces as well */
+
+ ret = H5Sselect_hyperslab(mem_large_ds_process_slice_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0),
+ "H5Sselect_hyperslab(mem_large_ds_process_slice_sid, set) suceeded");
+
+ ret = H5Sselect_hyperslab(file_large_ds_process_slice_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0),
+ "H5Sselect_hyperslab(file_large_ds_process_slice_sid, set) suceeded");
+
+ if ( MAINPROCESS ) { /* add an additional slice to the selections */
+
+ start[0] = mpi_size;
+
+ ret = H5Sselect_hyperslab(mem_large_ds_sid,
+ H5S_SELECT_OR,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret>= 0), "H5Sselect_hyperslab(mem_large_ds_sid, or) suceeded");
+
+ ret = H5Sselect_hyperslab(file_large_ds_sid_0,
+ H5S_SELECT_OR,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret>= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, or) suceeded");
+ }
+
+
+ /* write the initial value of the large data set to file */
+ ret = H5Dwrite(large_dataset, dset_type, mem_large_ds_sid, file_large_ds_sid_0,
+ xfer_plist, large_ds_buf_0);
+ if ( ret < 0 ) H5Eprint(H5E_DEFAULT, stderr);
+ VRFY((ret >= 0), "H5Dwrite() large_dataset initial write succeeded");
+
+
+ /* sync with the other processes before checking data */
+ mrc = MPI_Barrier(MPI_COMM_WORLD);
+ VRFY((mrc==MPI_SUCCESS), "Sync after large dataset writes");
+
+
+ /* read the small data set back to verify that it contains the
+ * expected data. Note that each process reads in the entire
+ * data set.
+ */
+ ret = H5Dread(large_dataset,
+ H5T_NATIVE_UINT32,
+ full_mem_large_ds_sid,
+ full_file_large_ds_sid,
+ xfer_plist,
+ large_ds_buf_1);
+ VRFY((ret >= 0), "H5Dread() large_dataset initial read succeeded");
+
+
+ /* verify that the correct data was written to the small data set */
+ expected_value = 0;
+ mis_match = FALSE;
+ ptr_1 = large_ds_buf_1;
+
+ i = 0;
+ for ( i = 0; i < (int)large_ds_size; i++ ) {
+
+ if ( *ptr_1 != expected_value ) {
+
+ mis_match = TRUE;
+ }
+ ptr_1++;
+ expected_value++;
+ }
+ VRFY( (mis_match == FALSE), "large ds init data good.");
+
+ /***********************************/
+ /***** INITIALIZATION COMPLETE *****/
+ /***********************************/
+
+ /* first, verify that we can read from disk correctly using selections
+ * of different rank that H5S_select_shape_same() views as being of the
+ * same shape.
+ *
+ * Start by reading a (small_rank - 1)-D slice from this processes slice
+ * of the on disk large data set, and verifying that the data read is
+ * correct. Verify that H5S_select_shape_same() returns true on the
+ * memory and file selections.
+ *
+ * The first step is to set up the needed checker board selection in the
+ * in memory small small cube
+ */
+
+ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
+ sel_start[small_ds_offset] = mpi_rank;
+
+ checker_board_hyperslab_dr_pio_test__select_checker_board(mpi_rank,
+ small_ds_slice_sid,
+ small_rank - 1,
+ edge_size,
+ checker_edge_size,
+ small_rank - 1,
+ sel_start);
+
+ /* zero out the buffer we will be reading into */
+
+ ptr_0 = small_ds_slice_buf;
+
+ for ( i = 0; i < (int)small_ds_slice_size; i++ ) {
+
+ *ptr_0 = (uint32_t)0;
+ ptr_0++;
+ }
+
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout, "%s:%d: initial small_ds_slice_buf = ",
+ fcnName, mpi_rank);
+ ptr_0 = small_ds_slice_buf;
+ for ( i = 0; i < (int)small_ds_slice_size; i++ ) {
+ HDfprintf(stdout, "%d ", (int)(*ptr_0));
+ ptr_0++;
+ }
+ HDfprintf(stdout, "\n");
+#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG */
+
+ /* set up start, stride, count, and block -- note that we will
+ * change start[] so as to read slices of the large cube.
+ */
+ for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) {
+
+ block[i] = 1;
+
+ } else {
+
+ block[i] = edge_size;
+ }
+ }
+
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout,
+ "%s:%d: reading slice from big ds on disk into small ds slice.\n",
+ fcnName, mpi_rank);
+#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG */
+ /* in serial versions of this test, we loop through all the dimensions
+ * of the large data set. However, in the parallel version, each
+ * process only works with that slice of the large cube indicated
+ * by its rank -- hence we set the most slowly changing index to
+ * mpi_rank, and don't itterate over it.
+ */
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) {
+
+ i = mpi_rank;
+
+ } else {
+
+ i = 0;
+ }
+
+ /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
+ * loop over it -- either we are setting i to mpi_rank, or
+ * we are setting it to zero. It will not change during the
+ * test.
+ */
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) {
+
+ j = mpi_rank;
+
+ } else {
+
+ j = 0;
+ }
+
+ do {
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) {
+
+ k = mpi_rank;
+
+ } else {
+
+ k = 0;
+ }
+
+ do {
+ /* since small rank >= 2 and large_rank > small_rank, we
+ * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
+ * (baring major re-orgaization), this gives us:
+ *
+ * (PAR_SS_DR_MAX_RANK - large_rank) <= 2
+ *
+ * so no need to repeat the test in the outer loops --
+ * just set l = 0.
+ */
+
+ l = 0;
+ do {
+ /* we know that small_rank - 1 >= 1 and that
+ * large_rank > small_rank by the assertions at the head
+ * of this function. Thus no need for another inner loop.
+ */
+ start[0] = i;
+ start[1] = j;
+ start[2] = k;
+ start[3] = l;
+ start[4] = 0;
+
+ HDassert( ( start[0] == 0 ) || ( 0 < small_ds_offset + 1 ) );
+ HDassert( ( start[1] == 0 ) || ( 1 < small_ds_offset + 1 ) );
+ HDassert( ( start[2] == 0 ) || ( 2 < small_ds_offset + 1 ) );
+ HDassert( ( start[3] == 0 ) || ( 3 < small_ds_offset + 1 ) );
+ HDassert( ( start[4] == 0 ) || ( 4 < small_ds_offset + 1 ) );
+
+ checker_board_hyperslab_dr_pio_test__select_checker_board
+ (
+ mpi_rank,
+ file_large_ds_sid_0,
+ large_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank - 1,
+ start
+ );
+
+ /* verify that H5S_select_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(small_ds_slice_sid,
+ file_large_ds_sid_0);
+ VRFY((check == TRUE), "H5S_select_shape_same_test passed");
+
+
+ /* Read selection from disk */
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName,
+ mpi_rank, start[0], start[1], start[2], start[3],
+ start[4]);
+ HDfprintf(stdout, "%s slice/file extent dims = %d/%d.\n",
+ fcnName,
+ H5Sget_simple_extent_ndims(small_ds_slice_sid),
+ H5Sget_simple_extent_ndims(file_large_ds_sid_0));
+#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG */
+
+ ret = H5Dread(large_dataset,
+ H5T_NATIVE_UINT32,
+ small_ds_slice_sid,
+ file_large_ds_sid_0,
+ xfer_plist,
+ small_ds_slice_buf);
+ VRFY((ret >= 0), "H5Sread() slice from large ds succeeded.");
+
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout, "%s:%d: H5Dread() returns.\n",
+ fcnName, mpi_rank);
+#endif
+
+ /* verify that expected data is retrieved */
+
+ expected_value = (uint32_t)
+ ((i * edge_size * edge_size * edge_size * edge_size) +
+ (j * edge_size * edge_size * edge_size) +
+ (k * edge_size * edge_size) +
+ (l * edge_size));
+
+ data_ok = checker_board_hyperslab_dr_pio_test__verify_data
+ (
+ small_ds_slice_buf,
+ mpi_rank,
+ small_rank - 1,
+ edge_size,
+ checker_edge_size,
+ expected_value,
+ (hbool_t)TRUE
+ );
+
+ VRFY((data_ok == TRUE),
+ "small slice read from large ds data good.");
+ l++;
+
+ } while ( ( large_rank > 2 ) &&
+ ( (small_rank - 1) <= 1 ) &&
+ ( l < edge_size ) );
+ k++;
+ } while ( ( large_rank > 3 ) &&
+ ( (small_rank - 1) <= 2 ) &&
+ ( k < edge_size ) );
+ j++;
+ } while ( ( large_rank > 4 ) &&
+ ( (small_rank - 1) <= 3 ) &&
+ ( j < edge_size ) );
+
+
+ /* similarly, read slices of the on disk small data set into slices
+ * through the in memory large data set, and verify that the correct
+ * data (and only the correct data) is read.
+ */
+
+ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
+ sel_start[small_ds_offset] = mpi_rank;
+
+ checker_board_hyperslab_dr_pio_test__select_checker_board(mpi_rank,
+ file_small_ds_sid_0,
+ small_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank - 1,
+ sel_start);
+
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout,
+ "%s reading slices of on disk small data set into slices of big data set.\n",
+ fcnName);
+#endif
+
+ /* zero out the buffer we will be reading into */
+ ptr_0 = large_ds_buf_1;
+ for ( i = 0; i < (int)large_ds_size; i++ ) {
+
+ *ptr_0 = (uint32_t)0;
+ ptr_0++;
+ }
+
+ /* set up start, stride, count, and block -- note that we will
+ * change start[] so as to read the slice of the small data set
+ * into different slices of the process slice of the large data
+ * set.
+ */
+ for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) {
+
+ block[i] = 1;
+
+ } else {
+
+ block[i] = edge_size;
+ }
+ }
+
+
+ /* in serial versions of this test, we loop through all the dimensions
+ * of the large data set that don't appear in the small data set.
+ *
+ * However, in the parallel version, each process only works with that
+ * slice of the large (and small) data set indicated by its rank -- hence
+ * we set the most slowly changing index to mpi_rank, and don't itterate
+ * over it.
+ */
+
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) {
+
+ i = mpi_rank;
+
+ } else {
+
+ i = 0;
+ }
+
+ /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
+ * loop over it -- either we are setting i to mpi_rank, or
+ * we are setting it to zero. It will not change during the
+ * test.
+ */
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) {
+
+ j = mpi_rank;
+
+ } else {
+
+ j = 0;
+ }
+
+ do {
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) {
+
+ k = mpi_rank;
+
+ } else {
+
+ k = 0;
+ }
+
+ do {
+ /* since small rank >= 2 and large_rank > small_rank, we
+ * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
+ * (baring major re-orgaization), this gives us:
+ *
+ * (PAR_SS_DR_MAX_RANK - large_rank) <= 2
+ *
+ * so no need to repeat the test in the outer loops --
+ * just set l = 0.
+ */
+
+ l = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+ start[0] = i;
+ start[1] = j;
+ start[2] = k;
+ start[3] = l;
+ start[4] = 0;
+
+ HDassert( ( start[0] == 0 ) || ( 0 < small_ds_offset + 1 ) );
+ HDassert( ( start[1] == 0 ) || ( 1 < small_ds_offset + 1 ) );
+ HDassert( ( start[2] == 0 ) || ( 2 < small_ds_offset + 1 ) );
+ HDassert( ( start[3] == 0 ) || ( 3 < small_ds_offset + 1 ) );
+ HDassert( ( start[4] == 0 ) || ( 4 < small_ds_offset + 1 ) );
+
+ checker_board_hyperslab_dr_pio_test__select_checker_board
+ (
+ mpi_rank,
+ mem_large_ds_sid,
+ large_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank - 1,
+ start
+ );
+
+
+ /* verify that H5S_select_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(file_small_ds_sid_0,
+ mem_large_ds_sid);
+ VRFY((check == TRUE), "H5S_select_shape_same_test passed");
+
+
+ /* Read selection from disk */
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n",
+ fcnName, mpi_rank,
+ start[0], start[1], start[2], start[3], start[4]);
+ HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n",
+ fcnName, mpi_rank,
+ H5Sget_simple_extent_ndims(large_ds_slice_sid),
+ H5Sget_simple_extent_ndims(file_small_ds_sid_0));
+#endif
+ ret = H5Dread(small_dataset,
+ H5T_NATIVE_UINT32,
+ mem_large_ds_sid,
+ file_small_ds_sid_0,
+ xfer_plist,
+ large_ds_buf_1);
+ VRFY((ret >= 0), "H5Sread() slice from small ds succeeded.");
+
+ /* verify that the expected data and only the
+ * expected data was read.
+ */
+ data_ok = TRUE;
+ ptr_1 = large_ds_buf_1;
+ expected_value = mpi_rank * small_ds_slice_size;
+ start_index =
+ (i * edge_size * edge_size * edge_size * edge_size) +
+ (j * edge_size * edge_size * edge_size) +
+ (k * edge_size * edge_size) +
+ (l * edge_size);
+ stop_index = start_index + (int)small_ds_slice_size - 1;
+
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout, "%s:%d: expected_value = %d.\n",
+ fcnName, mpi_rank, expected_value);
+ HDfprintf(stdout, "%s:%d: start/stop index = %d/%d.\n",
+ fcnName, mpi_rank, start_index, stop_index);
+ n = 0;
+ for ( m = 0; m < large_ds_size; m ++ ) {
+ HDfprintf(stdout, "%d ", (int)(*ptr_1));
+ ptr_1++;
+ n++;
+ if ( n >= edge_size ) {
+ HDfprintf(stdout, "\n");
+ n = 0;
+ }
+ }
+ HDfprintf(stdout, "\n");
+ fsync(stdout);
+ ptr_1 = large_ds_buf_1;
+#endif
+
+ HDassert( 0 <= start_index );
+ HDassert( start_index < stop_index );
+ HDassert( stop_index <= (int)large_ds_size );
+
+ for ( n = 0; n < (int)start_index; n++ ) {
+
+ if ( *ptr_1 != 0 ) {
+
+ data_ok = FALSE;
+ }
+
+ /* zero out the value for the next pass */
+ *ptr_1 = 0;
+
+ *ptr_1++;
+ }
+
+ VRFY((data_ok == TRUE),
+ "slice read from small to large ds data good(1).");
+
+ data_ok = checker_board_hyperslab_dr_pio_test__verify_data
+ (
+ ptr_1,
+ mpi_rank,
+ small_rank - 1,
+ edge_size,
+ checker_edge_size,
+ expected_value,
+ (hbool_t)TRUE
+ );
+
+ VRFY((data_ok == TRUE),
+ "slice read from small to large ds data good(2).");
+
+
+ ptr_1 = large_ds_buf_1 + stop_index + 1;
+ for ( n = stop_index + 1; n < large_ds_size; n++ ) {
+
+ if ( *ptr_1 != 0 ) {
+
+ data_ok = FALSE;
+ }
+
+ /* zero out the value for the next pass */
+ *ptr_1 = 0;
+
+ *ptr_1++;
+ }
+
+ VRFY((data_ok == TRUE),
+ "slice read from small to large ds data good(3).");
+
+ l++;
+
+ } while ( ( large_rank > 2 ) &&
+ ( (small_rank - 1) <= 1 ) &&
+ ( l < edge_size ) );
+ k++;
+ } while ( ( large_rank > 3 ) &&
+ ( (small_rank - 1) <= 2 ) &&
+ ( k < edge_size ) );
+ j++;
+ } while ( ( large_rank > 4 ) &&
+ ( (small_rank - 1) <= 3 ) &&
+ ( j < edge_size ) );
+
+
+ /* now we go in the opposite direction, verifying that we can write
+ * from memory to file using selections of different rank that
+ * H5S_select_shape_same() views as being of the same shape.
+ *
+ * Start by writing small_rank - 1 D slices from the in memory large data
+ * set to the on disk small dataset. After each write, read the slice of
+ * the small dataset back from disk, and verify that it contains the
+ * expected data. Verify that H5S_select_shape_same() returns true on
+ * the memory and file selections.
+ */
+
+ start[0] = mpi_rank;
+ stride[0] = 2 * (mpi_size + 1);
+ count[0] = 1;
+ block[0] = 1;
+
+ for ( i = 1; i < large_rank; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ block[i] = edge_size;
+ }
+
+ ret = H5Sselect_hyperslab(file_small_ds_sid_0,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) suceeded");
+
+ ret = H5Sselect_hyperslab(mem_small_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded");
+
+
+ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
+ sel_start[small_ds_offset] = mpi_rank;
+
+ checker_board_hyperslab_dr_pio_test__select_checker_board(mpi_rank,
+ file_small_ds_sid_1,
+ small_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank - 1,
+ sel_start);
+
+
+ /* set up start, stride, count, and block -- note that we will
+ * change start[] so as to read slices of the large cube.
+ */
+ for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) {
+
+ block[i] = 1;
+
+ } else {
+
+ block[i] = edge_size;
+ }
+ }
+
+ /* zero out the in memory small ds */
+ ptr_1 = small_ds_buf_1;
+ for ( n = 0; n < (int)small_ds_size; n++ ) {
+
+ *ptr_1 = 0;
+ ptr_1++;
+ }
+
+
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout,
+ "%s writing checker boards selections of slices from big ds to slices of small ds on disk.\n",
+ fcnName);
+#endif
+
+ /* in serial versions of this test, we loop through all the dimensions
+ * of the large data set that don't appear in the small data set.
+ *
+ * However, in the parallel version, each process only works with that
+ * slice of the large (and small) data set indicated by its rank -- hence
+ * we set the most slowly changing index to mpi_rank, and don't itterate
+ * over it.
+ */
+
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) {
+
+ i = mpi_rank;
+
+ } else {
+
+ i = 0;
+ }
+
+ /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
+ * loop over it -- either we are setting i to mpi_rank, or
+ * we are setting it to zero. It will not change during the
+ * test.
+ */
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) {
+
+ j = mpi_rank;
+
+ } else {
+
+ j = 0;
+ }
+
+ j = 0;
+ do {
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) {
+
+ k = mpi_rank;
+
+ } else {
+
+ k = 0;
+ }
+
+ do {
+ /* since small rank >= 2 and large_rank > small_rank, we
+ * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
+ * (baring major re-orgaization), this gives us:
+ *
+ * (PAR_SS_DR_MAX_RANK - large_rank) <= 2
+ *
+ * so no need to repeat the test in the outer loops --
+ * just set l = 0.
+ */
+
+ l = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ /* zero out this rank's slice of the on disk small data set */
+ ret = H5Dwrite(small_dataset,
+ H5T_NATIVE_UINT32,
+ mem_small_ds_sid,
+ file_small_ds_sid_0,
+ xfer_plist,
+ small_ds_buf_2);
+ VRFY((ret >= 0), "H5Dwrite() zero slice to small ds succeeded.");
+
+ /* select the portion of the in memory large cube from which we
+ * are going to write data.
+ */
+ start[0] = i;
+ start[1] = j;
+ start[2] = k;
+ start[3] = l;
+ start[4] = 0;
+
+ HDassert( ( start[0] == 0 ) || ( 0 < small_ds_offset + 1 ) );
+ HDassert( ( start[1] == 0 ) || ( 1 < small_ds_offset + 1 ) );
+ HDassert( ( start[2] == 0 ) || ( 2 < small_ds_offset + 1 ) );
+ HDassert( ( start[3] == 0 ) || ( 3 < small_ds_offset + 1 ) );
+ HDassert( ( start[4] == 0 ) || ( 4 < small_ds_offset + 1 ) );
+
+ checker_board_hyperslab_dr_pio_test__select_checker_board
+ (
+ mpi_rank,
+ mem_large_ds_sid,
+ large_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank - 1,
+ start
+ );
+
+
+ /* verify that H5S_select_shape_same() reports the in
+ * memory checkerboard selection of the slice through the
+ * large dataset and the checkerboard selection of the process
+ * slice of the small data set as having the same shape.
+ */
+ check = H5S_select_shape_same_test(file_small_ds_sid_1,
+ mem_large_ds_sid);
+ VRFY((check == TRUE), "H5S_select_shape_same_test passed.");
+
+
+ /* write the checker board selection of the slice from the in
+ * memory large data set to the slice of the on disk small
+ * dataset.
+ */
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n",
+ fcnName, mpi_rank,
+ start[0], start[1], start[2], start[3], start[4]);
+ HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n",
+ fcnName, mpi_rank,
+ H5Sget_simple_extent_ndims(mem_large_ds_sid),
+ H5Sget_simple_extent_ndims(file_small_ds_sid_1));
+#endif
+ ret = H5Dwrite(small_dataset,
+ H5T_NATIVE_UINT32,
+ mem_large_ds_sid,
+ file_small_ds_sid_1,
+ xfer_plist,
+ large_ds_buf_0);
+ VRFY((ret >= 0), "H5Dwrite() slice to large ds succeeded.");
+
+
+ /* read the on disk process slice of the small dataset into memory */
+ ret = H5Dread(small_dataset,
+ H5T_NATIVE_UINT32,
+ mem_small_ds_sid,
+ file_small_ds_sid_0,
+ xfer_plist,
+ small_ds_buf_1);
+ VRFY((ret >= 0), "H5Dread() slice from small ds succeeded.");
+
+
+ /* verify that expected data is retrieved */
+
+ mis_match = FALSE;
+ ptr_1 = small_ds_buf_1;
+
+ expected_value =
+ (i * edge_size * edge_size * edge_size * edge_size) +
+ (j * edge_size * edge_size * edge_size) +
+ (k * edge_size * edge_size) +
+ (l * edge_size);
+
+ start_index = mpi_rank * small_ds_slice_size;
+ stop_index = start_index + small_ds_slice_size - 1;
+
+ HDassert( 0 <= start_index );
+ HDassert( start_index < stop_index );
+ HDassert( stop_index <= (int)small_ds_size );
+
+ data_ok = TRUE;
+
+ for ( n = 0; n < start_index; n++ ) {
+
+ if ( *(ptr_1 + n) != 0 ) {
+
+ data_ok = FALSE;
+ *(ptr_1 + n) = 0;
+ }
+ }
+
+ data_ok &= checker_board_hyperslab_dr_pio_test__verify_data
+ (
+ ptr_1 + start_index,
+ mpi_rank,
+ small_rank - 1,
+ edge_size,
+ checker_edge_size,
+ expected_value,
+ (hbool_t)TRUE
+ );
+
+
+ for ( n = stop_index; n < small_ds_size; n++ ) {
+
+ if ( *(ptr_1 + n) != 0 ) {
+
+ data_ok = FALSE;
+ *(ptr_1 + n) = 0;
+ }
+ }
+
+ VRFY((data_ok == TRUE),
+ "large slice write slice to small slice data good.");
+
+ l++;
+
+ } while ( ( large_rank > 2 ) &&
+ ( (small_rank - 1) <= 1 ) &&
+ ( l < edge_size ) );
+ k++;
+ } while ( ( large_rank > 3 ) &&
+ ( (small_rank - 1) <= 2 ) &&
+ ( k < edge_size ) );
+ j++;
+ } while ( ( large_rank > 4 ) &&
+ ( (small_rank - 1) <= 3 ) &&
+ ( j < edge_size ) );
+
+
+ /* Now write the contents of the process's slice of the in memory
+ * small data set to slices of the on disk large data set. After
+ * each write, read the process's slice of the large data set back
+ * into memory, and verify that it contains the expected data.
+ * Verify that H5S_select_shape_same() returns true on the memory
+ * and file selections.
+ */
+
+ start[0] = mpi_rank;
+ stride[0] = 2 * (mpi_size + 1);
+ count[0] = 1;
+ block[0] = 1;
+
+ for ( i = 1; i < large_rank; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ block[i] = edge_size;
+ }
+
+ ret = H5Sselect_hyperslab(file_large_ds_sid_0,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, set) suceeded");
+
+ ret = H5Sselect_hyperslab(mem_large_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded");
+
+ /* setup a checkerboard selection of the slice of the in memory small
+ * data set associated with the process's mpi rank.
+ */
+
+ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
+ sel_start[small_ds_offset] = mpi_rank;
+
+ checker_board_hyperslab_dr_pio_test__select_checker_board(mpi_rank,
+ mem_small_ds_sid,
+ small_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank - 1,
+ sel_start);
+
+ /* set up start, stride, count, and block -- note that we will
+ * change start[] so as to write checkerboard selections of slices
+ * of the small data set to slices of the large data set.
+ */
+ for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) {
+
+ start[i] = 0;
+ stride[i] = 2 * edge_size;
+ count[i] = 1;
+ if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) {
+
+ block[i] = 1;
+
+ } else {
+
+ block[i] = edge_size;
+ }
+ }
+
+ /* zero out the in memory large ds */
+ ptr_1 = large_ds_buf_1;
+ for ( n = 0; n < (int)large_ds_size; n++ ) {
+
+ *ptr_1 = 0;
+ ptr_1++;
+ }
+
+#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout,
+ "%s writing process checkerboard selections of slices of small ds to process slices of large ds on disk.\n",
+ fcnName);
+#endif
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) {
+
+ i = mpi_rank;
+
+ } else {
+
+ i = 0;
+ }
+
+ /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
+ * loop over it -- either we are setting i to mpi_rank, or
+ * we are setting it to zero. It will not change during the
+ * test.
+ */
+
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) {
+
+ j = mpi_rank;
+
+ } else {
+
+ j = 0;
+ }
+
+ do {
+ if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) {
+
+ k = mpi_rank;
+
+ } else {
+
+ k = 0;
+ }
+
+ do {
+ /* since small rank >= 2 and large_rank > small_rank, we
+ * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5
+ * (baring major re-orgaization), this gives us:
+ *
+ * (PAR_SS_DR_MAX_RANK - large_rank) <= 2
+ *
+ * so no need to repeat the test in the outer loops --
+ * just set l = 0.
+ */
+
+ l = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ /* Zero out this processes slice of the on disk large data set.
+ * Note that this will leave one slice with its original data
+ * as there is one more slice than processes.
+ */
+ ret = H5Dwrite(large_dataset,
+ H5T_NATIVE_UINT32,
+ mem_large_ds_sid,
+ file_large_ds_sid_0,
+ xfer_plist,
+ large_ds_buf_2);
+ VRFY((ret != FAIL), "H5Dwrite() to zero large ds suceeded");
+
+
+ /* select the portion of the in memory large cube to which we
+ * are going to write data.
+ */
+ start[0] = i;
+ start[1] = j;
+ start[2] = k;
+ start[3] = l;
+ start[4] = 0;
+
+ HDassert( ( start[0] == 0 ) || ( 0 < small_ds_offset + 1 ) );
+ HDassert( ( start[1] == 0 ) || ( 1 < small_ds_offset + 1 ) );
+ HDassert( ( start[2] == 0 ) || ( 2 < small_ds_offset + 1 ) );
+ HDassert( ( start[3] == 0 ) || ( 3 < small_ds_offset + 1 ) );
+ HDassert( ( start[4] == 0 ) || ( 4 < small_ds_offset + 1 ) );
+
+ checker_board_hyperslab_dr_pio_test__select_checker_board
+ (
+ mpi_rank,
+ file_large_ds_sid_1,
+ large_rank,
+ edge_size,
+ checker_edge_size,
+ small_rank - 1,
+ start
+ );
+
+
+ /* verify that H5S_select_shape_same() reports the in
+ * memory small data set slice selection and the
+ * on disk slice through the large data set selection
+ * as having the same shape.
+ */
+ check = H5S_select_shape_same_test(mem_small_ds_sid,
+ file_large_ds_sid_1);
+ VRFY((check == TRUE), "H5S_select_shape_same_test passed");
+
+
+ /* write the small data set slice from memory to the
+ * target slice of the disk data set
+ */
+#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG
+ HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n",
+ fcnName, mpi_rank,
+ start[0], start[1], start[2], start[3], start[4]);
+ HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n",
+ fcnName, mpi_rank,
+ H5Sget_simple_extent_ndims(mem_small_ds_sid),
+ H5Sget_simple_extent_ndims(file_large_ds_sid_1));
+#endif
+ ret = H5Dwrite(large_dataset,
+ H5T_NATIVE_UINT32,
+ mem_small_ds_sid,
+ file_large_ds_sid_1,
+ xfer_plist,
+ small_ds_buf_0);
+ VRFY((ret != FAIL),
+ "H5Dwrite of small ds slice to large ds succeeded");
+
+
+ /* read this processes slice on the on disk large
+ * data set into memory.
+ */
+
+ ret = H5Dread(large_dataset,
+ H5T_NATIVE_UINT32,
+ mem_large_ds_sid,
+ file_large_ds_sid_0,
+ xfer_plist,
+ large_ds_buf_1);
+ VRFY((ret != FAIL),
+ "H5Dread() of process slice of large ds succeeded");
+
+
+ /* verify that the expected data and only the
+ * expected data was read.
+ */
+ ptr_1 = large_ds_buf_1;
+ expected_value = (uint32_t)(mpi_rank) * small_ds_slice_size;
+
+
+ start_index = (i * edge_size * edge_size * edge_size * edge_size) +
+ (j * edge_size * edge_size * edge_size) +
+ (k * edge_size * edge_size) +
+ (l * edge_size);
+ stop_index = start_index + (int)small_ds_slice_size - 1;
+
+ HDassert( 0 <= start_index );
+ HDassert( start_index < stop_index );
+ HDassert( stop_index < (int)large_ds_size );
+
+
+ mis_match = FALSE;
+
+ data_ok = TRUE;
+
+ for ( n = 0; n < start_index; n++ ) {
+
+ if ( *(ptr_1 + n) != 0 ) {
+
+ data_ok = FALSE;
+ *(ptr_1 + n) = 0;
+ }
+ }
+
+ data_ok &= checker_board_hyperslab_dr_pio_test__verify_data
+ (
+ ptr_1 + start_index,
+ mpi_rank,
+ small_rank - 1,
+ edge_size,
+ checker_edge_size,
+ expected_value,
+ (hbool_t)TRUE
+ );
+
+
+ for ( n = stop_index; n < small_ds_size; n++ ) {
+
+ if ( *(ptr_1 + n) != 0 ) {
+
+ data_ok = FALSE;
+ *(ptr_1 + n) = 0;
+ }
+ }
+
+ VRFY((data_ok == TRUE),
+ "small ds cb slice write to large ds slice data good.");
+
+ l++;
+
+ } while ( ( large_rank > 2 ) &&
+ ( (small_rank - 1) <= 1 ) &&
+ ( l < edge_size ) );
+ k++;
+ } while ( ( large_rank > 3 ) &&
+ ( (small_rank - 1) <= 2 ) &&
+ ( k < edge_size ) );
+ j++;
+ } while ( ( large_rank > 4 ) &&
+ ( (small_rank - 1) <= 3 ) &&
+ ( j < edge_size ) );
+
+
+ /* Close dataspaces */
+ ret = H5Sclose(full_mem_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_mem_small_ds_sid) succeeded");
+
+ ret = H5Sclose(full_file_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_file_small_ds_sid) succeeded");
+
+ ret = H5Sclose(mem_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(mem_small_ds_sid) succeeded");
+
+ ret = H5Sclose(file_small_ds_sid_0);
+ VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid_0) succeeded");
+
+ ret = H5Sclose(file_small_ds_sid_1);
+ VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid_1) succeeded");
+
+ ret = H5Sclose(small_ds_slice_sid);
+ VRFY((ret != FAIL), "H5Sclose(small_ds_slice_sid) succeeded");
+
+ ret = H5Sclose(full_mem_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_mem_large_ds_sid) succeeded");
+
+ ret = H5Sclose(full_file_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_file_large_ds_sid) succeeded");
+
+ ret = H5Sclose(mem_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded");
+
+ ret = H5Sclose(file_large_ds_sid_0);
+ VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded");
+
+ ret = H5Sclose(file_large_ds_sid_1);
+ VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded");
+
+ ret = H5Sclose(mem_large_ds_process_slice_sid);
+ VRFY((ret != FAIL), "H5Sclose(mem_large_ds_process_slice_sid) succeeded");
+
+ ret = H5Sclose(file_large_ds_process_slice_sid);
+ VRFY((ret != FAIL), "H5Sclose(file_large_ds_process_slice_sid) succeeded");
+
+ ret = H5Sclose(large_ds_slice_sid);
+ VRFY((ret != FAIL), "H5Sclose(large_ds_slice_sid) succeeded");
+
+
+ /* Close Datasets */
+ ret = H5Dclose(small_dataset);
+ VRFY((ret != FAIL), "H5Dclose(small_dataset) succeeded");
+
+ ret = H5Dclose(large_dataset);
+ VRFY((ret != FAIL), "H5Dclose(large_dataset) succeeded");
+
+
+ /* close the file collectively */
+ MESG("about to close file.");
+ ret = H5Fclose(fid);
+ VRFY((ret != FAIL), "file close succeeded");
+
+ /* Free memory buffers */
+ if ( small_ds_buf_0 != NULL ) HDfree(small_ds_buf_0);
+ if ( small_ds_buf_1 != NULL ) HDfree(small_ds_buf_1);
+ if ( small_ds_buf_2 != NULL ) HDfree(small_ds_buf_2);
+ if ( small_ds_slice_buf != NULL ) HDfree(small_ds_slice_buf);
+
+ if ( large_ds_buf_0 != NULL ) HDfree(large_ds_buf_0);
+ if ( large_ds_buf_1 != NULL ) HDfree(large_ds_buf_1);
+ if ( large_ds_buf_2 != NULL ) HDfree(large_ds_buf_2);
+ if ( large_ds_slice_buf != NULL ) HDfree(large_ds_slice_buf);
+
+ return;
+
+} /* contig_hyperslab_dr_pio_test__run_test() */
+
+
+/*-------------------------------------------------------------------------
+ * Function: checker_board_hyperslab_dr_pio_test()
+ *
+ * Purpose: Test I/O to/from hyperslab selections of different rank in
+ * the parallel case.
+ *
+ * Return: void
+ *
+ * Programmer: JRM -- 9/18/09
+ *
+ * Modifications:
+ *
+ *-------------------------------------------------------------------------
+ */
+
+void
+checker_board_hyperslab_dr_pio_test(void)
+{
+ const char *fcnName = "checker_board_hyperslab_dr_pio_test()";
+ int test_num = 0;
+ int edge_size = 10;
+ int checker_edge_size = 3;
+ int chunk_edge_size = 0;
+ int small_rank = 3;
+ int large_rank = 4;
+ int use_collective_io = 1;
+ hid_t dset_type = H5T_STD_U32LE;
+#if 0
+ int DebugWait = 1;
+
+ while (DebugWait) ;
+#endif
+
+ for ( large_rank = 3; large_rank <= PAR_SS_DR_MAX_RANK; large_rank++ ) {
+
+ for ( small_rank = 2; small_rank < large_rank; small_rank++ ) {
+
+ for ( use_collective_io = 0;
+ use_collective_io <= 1;
+ use_collective_io++ ) {
+
+ chunk_edge_size = 0;
+ checker_board_hyperslab_dr_pio_test__run_test(test_num,
+ edge_size,
+ checker_edge_size,
+ chunk_edge_size,
+ small_rank,
+ large_rank,
+ (hbool_t)use_collective_io,
+ dset_type);
+ test_num++;
+
+ chunk_edge_size = 5;
+ checker_board_hyperslab_dr_pio_test__run_test(test_num,
+ edge_size,
+ checker_edge_size,
+ chunk_edge_size,
+ small_rank,
+ large_rank,
+ (hbool_t)use_collective_io,
+ dset_type);
+ test_num++;
+
+ }
+ }
+ }
+
+ return;
+
+} /* checker_board_hyperslab_dr_pio_test() */
+
diff --git a/testpar/t_span_tree.c b/testpar/t_span_tree.c
index 667872c..5425377 100644
--- a/testpar/t_span_tree.c
+++ b/testpar/t_span_tree.c
@@ -934,3 +934,1930 @@ coll_read_test(int chunk_factor)
return ;
}
+
+/****************************************************************
+**
+** lower_dim_size_comp_test__select_checker_board():
+**
+** Given a data space of tgt_rank, and dimensions:
+**
+** (mpi_size + 1), edge_size, ... , edge_size
+**
+** edge_size, and a checker_edge_size, select a checker
+** board selection of a sel_rank (sel_rank < tgt_rank)
+** dimensional slice through the data space parallel to the
+** sel_rank fastest changing indicies, with origin (in the
+** higher indicies) as indicated by the start array.
+**
+** Note that this function, is hard coded to presume a
+** maximum data space rank of 5.
+**
+** While this maximum is declared as a constant, increasing
+** it will require extensive coding in addition to changing
+** the value of the constant.
+**
+** JRM -- 11/11/09
+**
+****************************************************************/
+
+#define LDSCT_DS_RANK 5
+#define LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK 0
+
+#define LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG 0
+
+static void
+lower_dim_size_comp_test__select_checker_board(
+ const int mpi_rank,
+ const hid_t tgt_sid,
+ const int tgt_rank,
+ const hsize_t dims[LDSCT_DS_RANK],
+ const int checker_edge_size,
+ const int sel_rank,
+ hsize_t sel_start[])
+{
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ const char * fcnName =
+ "lower_dim_size_comp_test__select_checker_board():";
+#endif
+ hbool_t first_selection = TRUE;
+ int i, j, k, l, m;
+ int ds_offset;
+ int sel_offset;
+ const int test_max_rank = LDSCT_DS_RANK; /* must update code if */
+ /* this changes */
+ hsize_t base_count;
+ hsize_t offset_count;
+ hsize_t start[LDSCT_DS_RANK];
+ hsize_t stride[LDSCT_DS_RANK];
+ hsize_t count[LDSCT_DS_RANK];
+ hsize_t block[LDSCT_DS_RANK];
+ herr_t ret; /* Generic return value */
+
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout,
+ "%s:%d: dims/checker_edge_size = %d %d %d %d %d / %d\n",
+ fcnName, mpi_rank, (int)dims[0], (int)dims[1], (int)dims[2],
+ (int)dims[3], (int)dims[4], checker_edge_size);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */
+
+ HDassert( 0 < checker_edge_size );
+ HDassert( 0 < sel_rank );
+ HDassert( sel_rank <= tgt_rank );
+ HDassert( tgt_rank <= test_max_rank );
+ HDassert( test_max_rank <= LDSCT_DS_RANK );
+
+ sel_offset = test_max_rank - sel_rank;
+ HDassert( sel_offset >= 0 );
+
+ ds_offset = test_max_rank - tgt_rank;
+ HDassert( ds_offset >= 0 );
+ HDassert( ds_offset <= sel_offset );
+
+ HDassert( (hsize_t)checker_edge_size <= dims[sel_offset] );
+ HDassert( dims[sel_offset] == 10 );
+
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s:%d: sel_rank/sel_offset = %d/%d.\n",
+ fcnName, mpi_rank, sel_rank, sel_offset);
+ HDfprintf(stdout, "%s:%d: tgt_rank/ds_offset = %d/%d.\n",
+ fcnName, mpi_rank, tgt_rank, ds_offset);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */
+
+ /* First, compute the base count (which assumes start == 0
+ * for the associated offset) and offset_count (which
+ * assumes start == checker_edge_size for the associated
+ * offset).
+ *
+ * Note that the following computation depends on the C99
+ * requirement that integer division discard any fraction
+ * (truncation towards zero) to function correctly. As we
+ * now require C99, this shouldn't be a problem, but noting
+ * it may save us some pain if we are ever obliged to support
+ * pre-C99 compilers again.
+ */
+
+ base_count = dims[sel_offset] / (checker_edge_size * 2);
+
+ if ( (dims[sel_rank] % (checker_edge_size * 2)) > 0 ) {
+
+ base_count++;
+ }
+
+ offset_count =
+ (hsize_t)((dims[sel_offset] - (hsize_t)checker_edge_size) /
+ ((hsize_t)(checker_edge_size * 2)));
+
+ if ( ((dims[sel_rank] - (hsize_t)checker_edge_size) %
+ ((hsize_t)(checker_edge_size * 2))) > 0 ) {
+
+ offset_count++;
+ }
+
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s:%d: base_count/offset_count = %d/%d.\n",
+ fcnName, mpi_rank, base_count, offset_count);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */
+
+ /* Now set up the stride and block arrays, and portions of the start
+ * and count arrays that will not be altered during the selection of
+ * the checker board.
+ */
+ i = 0;
+ while ( i < ds_offset ) {
+
+ /* these values should never be used */
+ start[i] = 0;
+ stride[i] = 0;
+ count[i] = 0;
+ block[i] = 0;
+
+ i++;
+ }
+
+ while ( i < sel_offset ) {
+
+ start[i] = sel_start[i];
+ stride[i] = 2 * dims[i];
+ count[i] = 1;
+ block[i] = 1;
+
+ i++;
+ }
+
+ while ( i < test_max_rank ) {
+
+ stride[i] = (hsize_t)(2 * checker_edge_size);
+ block[i] = (hsize_t)checker_edge_size;
+
+ i++;
+ }
+
+ i = 0;
+ do {
+ if ( 0 >= sel_offset ) {
+
+ if ( i == 0 ) {
+
+ start[0] = 0;
+ count[0] = base_count;
+
+ } else {
+
+ start[0] = (hsize_t)checker_edge_size;
+ count[0] = offset_count;
+
+ }
+ }
+
+ j = 0;
+ do {
+ if ( 1 >= sel_offset ) {
+
+ if ( j == 0 ) {
+
+ start[1] = 0;
+ count[1] = base_count;
+
+ } else {
+
+ start[1] = (hsize_t)checker_edge_size;
+ count[1] = offset_count;
+
+ }
+ }
+
+ k = 0;
+ do {
+ if ( 2 >= sel_offset ) {
+
+ if ( k == 0 ) {
+
+ start[2] = 0;
+ count[2] = base_count;
+
+ } else {
+
+ start[2] = (hsize_t)checker_edge_size;
+ count[2] = offset_count;
+
+ }
+ }
+
+ l = 0;
+ do {
+ if ( 3 >= sel_offset ) {
+
+ if ( l == 0 ) {
+
+ start[3] = 0;
+ count[3] = base_count;
+
+ } else {
+
+ start[3] = (hsize_t)checker_edge_size;
+ count[3] = offset_count;
+
+ }
+ }
+
+ m = 0;
+ do {
+ if ( 4 >= sel_offset ) {
+
+ if ( m == 0 ) {
+
+ start[4] = 0;
+ count[4] = base_count;
+
+ } else {
+
+ start[4] = (hsize_t)checker_edge_size;
+ count[4] = offset_count;
+
+ }
+ }
+
+ if ( ((i + j + k + l + m) % 2) == 0 ) {
+
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ if ( mpi_rank ==
+ LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+
+ HDfprintf(stdout,
+ "%s%d: *** first_selection = %d ***\n",
+ fcnName, mpi_rank, (int)first_selection);
+ HDfprintf(stdout,
+ "%s:%d: i/j/k/l/m = %d/%d/%d/%d/%d\n",
+ fcnName, mpi_rank, i, j, k, l, m);
+ HDfprintf(stdout,
+ "%s:%d: start = %d %d %d %d %d.\n",
+ fcnName, mpi_rank,
+ (int)start[0], (int)start[1],
+ (int)start[2], (int)start[3],
+ (int)start[4]);
+ HDfprintf(stdout,
+ "%s:%d: stride = %d %d %d %d %d.\n",
+ fcnName, mpi_rank,
+ (int)stride[0], (int)stride[1],
+ (int)stride[2], (int)stride[3],
+ (int)stride[4]);
+ HDfprintf(stdout,
+ "%s:%d: count = %d %d %d %d %d.\n",
+ fcnName, mpi_rank,
+ (int)count[0], (int)count[1],
+ (int)count[2], (int)count[3],
+ (int)count[4]);
+ HDfprintf(stdout,
+ "%s:%d: block = %d %d %d %d %d.\n",
+ fcnName, mpi_rank,
+ (int)block[0], (int)block[1],
+ (int)block[2], (int)block[3],
+ (int)block[4]);
+ HDfprintf(stdout,
+ "%s:%d: n-cube extent dims = %d.\n",
+ fcnName, mpi_rank,
+ H5Sget_simple_extent_ndims(tgt_sid));
+ HDfprintf(stdout,
+ "%s:%d: selection rank = %d.\n",
+ fcnName, mpi_rank, sel_rank);
+ }
+#endif
+
+ if ( first_selection ) {
+
+ first_selection = FALSE;
+
+ ret = H5Sselect_hyperslab
+ (
+ tgt_sid,
+ H5S_SELECT_SET,
+ &(start[ds_offset]),
+ &(stride[ds_offset]),
+ &(count[ds_offset]),
+ &(block[ds_offset])
+ );
+
+ VRFY((ret != FAIL), "H5Sselect_hyperslab(SET) succeeded");
+
+ } else {
+
+ ret = H5Sselect_hyperslab
+ (
+ tgt_sid,
+ H5S_SELECT_OR,
+ &(start[ds_offset]),
+ &(stride[ds_offset]),
+ &(count[ds_offset]),
+ &(block[ds_offset])
+ );
+
+ VRFY((ret != FAIL), "H5Sselect_hyperslab(OR) succeeded");
+
+ }
+ }
+
+ m++;
+
+ } while ( ( m <= 1 ) &&
+ ( 4 >= sel_offset ) );
+
+ l++;
+
+ } while ( ( l <= 1 ) &&
+ ( 3 >= sel_offset ) );
+
+ k++;
+
+ } while ( ( k <= 1 ) &&
+ ( 2 >= sel_offset ) );
+
+ j++;
+
+ } while ( ( j <= 1 ) &&
+ ( 1 >= sel_offset ) );
+
+
+ i++;
+
+ } while ( ( i <= 1 ) &&
+ ( 0 >= sel_offset ) );
+
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n",
+ fcnName, mpi_rank, (int)H5Sget_select_npoints(tgt_sid));
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */
+
+ /* Clip the selection back to the data space proper. */
+
+ for ( i = 0; i < test_max_rank; i++ ) {
+
+ start[i] = 0;
+ stride[i] = dims[i];
+ count[i] = 1;
+ block[i] = dims[i];
+ }
+
+ ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_AND,
+ start, stride, count, block);
+
+ VRFY((ret != FAIL), "H5Sselect_hyperslab(AND) succeeded");
+
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n",
+ fcnName, mpi_rank, (int)H5Sget_select_npoints(tgt_sid));
+ HDfprintf(stdout, "%s%d: done.\n", fcnName, mpi_rank);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */
+
+ return;
+
+} /* lower_dim_size_comp_test__select_checker_board() */
+
+
+/****************************************************************
+**
+** lower_dim_size_comp_test__verify_data():
+**
+** Examine the supplied buffer to see if it contains the
+** expected data. Return TRUE if it does, and FALSE
+** otherwise.
+**
+** The supplied buffer is presumed to this process's slice
+** of the target data set. Each such slice will be an
+** n-cube of rank (rank -1) and the supplied edge_size with
+** origin (mpi_rank, 0, ... , 0) in the target data set.
+**
+** Further, the buffer is presumed to be the result of reading
+** or writing a checker board selection of an m (1 <= m <
+** rank) dimensional slice through this processes slice
+** of the target data set. Also, this slice must be parallel
+** to the fastest changing indicies.
+**
+** It is further presumed that the buffer was zeroed before
+** the read/write, and that the full target data set (i.e.
+** the buffer/data set for all processes) was initialized
+** with the natural numbers listed in order from the origin
+** along the fastest changing axis.
+**
+** Thus for a 20x10x10 dataset, the value stored in location
+** (x, y, z) (assuming that z is the fastest changing index
+** and x the slowest) is assumed to be:
+**
+** (10 * 10 * x) + (10 * y) + z
+**
+** Further, supposing that this is process 10, this process's
+** slice of the dataset would be a 10 x 10 2-cube with origin
+** (10, 0, 0) in the data set, and would be initialize (prior
+** to the checkerboard selection) as follows:
+**
+** 1000, 1001, 1002, ... 1008, 1009
+** 1010, 1011, 1012, ... 1018, 1019
+** . . . . .
+** . . . . .
+** . . . . .
+** 1090, 1091, 1092, ... 1098, 1099
+**
+** In the case of a read from the processors slice of another
+** data set of different rank, the values expected will have
+** to be adjusted accordingly. This is done via the
+** first_expected_val parameter.
+**
+** Finally, the function presumes that the first element
+** of the buffer resides either at the origin of either
+** a selected or an unselected checker. (Translation:
+** if partial checkers appear in the buffer, they will
+** intersect the edges of the n-cube oposite the origin.)
+**
+****************************************************************/
+
+#define LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG 0
+
+static hbool_t
+lower_dim_size_comp_test__verify_data(uint32_t * buf_ptr,
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ const int mpi_rank,
+#endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */
+ const int rank,
+ const int edge_size,
+ const int checker_edge_size,
+ uint32_t first_expected_val,
+ hbool_t buf_starts_in_checker)
+{
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ const char * fcnName =
+ "lower_dim_size_comp_test__verify_data():";
+#endif
+ hbool_t good_data = TRUE;
+ hbool_t in_checker;
+ hbool_t start_in_checker[5];
+ uint32_t expected_value;
+ uint32_t * val_ptr;
+ int i, j, k, l, m; /* to track position in n-cube */
+ int v, w, x, y, z; /* to track position in checker */
+ const int test_max_rank = 5; /* code changes needed if this is increased */
+
+ HDassert( buf_ptr != NULL );
+ HDassert( 0 < rank );
+ HDassert( rank <= test_max_rank );
+ HDassert( edge_size >= 6 );
+ HDassert( 0 < checker_edge_size );
+ HDassert( checker_edge_size <= edge_size );
+ HDassert( test_max_rank <= LDSCT_DS_RANK );
+
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s mpi_rank = %d.\n", fcnName, mpi_rank);
+ HDfprintf(stdout, "%s rank = %d.\n", fcnName, rank);
+ HDfprintf(stdout, "%s edge_size = %d.\n", fcnName, edge_size);
+ HDfprintf(stdout, "%s checker_edge_size = %d.\n",
+ fcnName, checker_edge_size);
+ HDfprintf(stdout, "%s first_expected_val = %d.\n",
+ fcnName, (int)first_expected_val);
+ HDfprintf(stdout, "%s starts_in_checker = %d.\n",
+ fcnName, (int)buf_starts_in_checker);
+ }
+#endif
+
+ val_ptr = buf_ptr;
+ expected_value = first_expected_val;
+
+ i = 0;
+ v = 0;
+ start_in_checker[0] = buf_starts_in_checker;
+ do
+ {
+ if ( v >= checker_edge_size ) {
+
+ start_in_checker[0] = ! start_in_checker[0];
+ v = 0;
+ }
+
+ j = 0;
+ w = 0;
+ start_in_checker[1] = start_in_checker[0];
+ do
+ {
+ if ( w >= checker_edge_size ) {
+
+ start_in_checker[1] = ! start_in_checker[1];
+ w = 0;
+ }
+
+ k = 0;
+ x = 0;
+ start_in_checker[2] = start_in_checker[1];
+ do
+ {
+ if ( x >= checker_edge_size ) {
+
+ start_in_checker[2] = ! start_in_checker[2];
+ x = 0;
+ }
+
+ l = 0;
+ y = 0;
+ start_in_checker[3] = start_in_checker[2];
+ do
+ {
+ if ( y >= checker_edge_size ) {
+
+ start_in_checker[3] = ! start_in_checker[3];
+ y = 0;
+ }
+
+ m = 0;
+ z = 0;
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ if ( mpi_rank ==
+ LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%d, %d, %d, %d, %d:", i, j, k, l, m);
+ }
+#endif
+ in_checker = start_in_checker[3];
+ do
+ {
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ if ( mpi_rank ==
+ LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, " %d", (int)(*val_ptr));
+ }
+#endif
+ if ( z >= checker_edge_size ) {
+
+ in_checker = ! in_checker;
+ z = 0;
+ }
+
+ if ( in_checker ) {
+
+ if ( *val_ptr != expected_value ) {
+
+ good_data = FALSE;
+ }
+
+ /* zero out buffer for re-use */
+ *val_ptr = 0;
+
+ } else if ( *val_ptr != 0 ) {
+
+ good_data = FALSE;
+
+ /* zero out buffer for re-use */
+ *val_ptr = 0;
+
+ }
+
+ val_ptr++;
+ expected_value++;
+ m++;
+ z++;
+
+ } while ( ( rank >= (test_max_rank - 4) ) &&
+ ( m < edge_size ) );
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ if ( mpi_rank ==
+ LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "\n");
+ }
+#endif
+ l++;
+ y++;
+ } while ( ( rank >= (test_max_rank - 3) ) &&
+ ( l < edge_size ) );
+ k++;
+ x++;
+ } while ( ( rank >= (test_max_rank - 2) ) &&
+ ( k < edge_size ) );
+ j++;
+ w++;
+ } while ( ( rank >= (test_max_rank - 1) ) &&
+ ( j < edge_size ) );
+ i++;
+ v++;
+ } while ( ( rank >= test_max_rank ) &&
+ ( i < edge_size ) );
+
+ return(good_data);
+
+} /* lower_dim_size_comp_test__verify_data() */
+
+
+/*-------------------------------------------------------------------------
+ * Function: lower_dim_size_comp_test__run_test()
+ *
+ * Purpose: Verify that a bug in the computation of the size of the
+ * lower dimensions of a data space in H5S_obtain_datatype()
+ * has been corrected.
+ *
+ * Return: void
+ *
+ * Programmer: JRM -- 11/11/09
+ *
+ * Modifications:
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#define LDSCT_DS_RANK 5
+#define LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG 0
+
+void
+lower_dim_size_comp_test__run_test(const int chunk_edge_size,
+ const hbool_t use_collective_io,
+ const hid_t dset_type)
+{
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ const char *fcnName = "lower_dim_size_comp_test__run_test()";
+ int rank;
+ hsize_t dims[32];
+ hsize_t max_dims[32];
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+ const char *filename;
+ hbool_t use_gpfs = FALSE; /* Use GPFS hints */
+ hbool_t data_ok = FALSE;
+ hbool_t mis_match = FALSE;
+ int i;
+ int start_index;
+ int stop_index;
+ int mrc;
+ int mpi_rank;
+ int mpi_size;
+ MPI_Comm mpi_comm = MPI_COMM_NULL;
+ MPI_Info mpi_info = MPI_INFO_NULL;
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t xfer_plist = H5P_DEFAULT;
+ size_t small_ds_size;
+ size_t small_ds_slice_size;
+ size_t large_ds_size;
+ size_t large_ds_slice_size;
+ uint32_t expected_value;
+ uint32_t * small_ds_buf_0 = NULL;
+ uint32_t * small_ds_buf_1 = NULL;
+ uint32_t * large_ds_buf_0 = NULL;
+ uint32_t * large_ds_buf_1 = NULL;
+ uint32_t * ptr_0;
+ uint32_t * ptr_1;
+ hsize_t small_chunk_dims[LDSCT_DS_RANK];
+ hsize_t large_chunk_dims[LDSCT_DS_RANK];
+ hsize_t small_dims[LDSCT_DS_RANK];
+ hsize_t large_dims[LDSCT_DS_RANK];
+ hsize_t start[LDSCT_DS_RANK];
+ hsize_t stride[LDSCT_DS_RANK];
+ hsize_t count[LDSCT_DS_RANK];
+ hsize_t block[LDSCT_DS_RANK];
+ hsize_t small_sel_start[LDSCT_DS_RANK];
+ hsize_t large_sel_start[LDSCT_DS_RANK];
+ hid_t full_mem_small_ds_sid;
+ hid_t full_file_small_ds_sid;
+ hid_t mem_small_ds_sid;
+ hid_t file_small_ds_sid;
+ hid_t full_mem_large_ds_sid;
+ hid_t full_file_large_ds_sid;
+ hid_t mem_large_ds_sid;
+ hid_t file_large_ds_sid;
+ hid_t small_ds_dcpl_id = H5P_DEFAULT;
+ hid_t large_ds_dcpl_id = H5P_DEFAULT;
+ hid_t small_dataset; /* Dataset ID */
+ hid_t large_dataset; /* Dataset ID */
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ HDassert( mpi_size >= 1 );
+
+ mpi_comm = MPI_COMM_WORLD;
+ mpi_info = MPI_INFO_NULL;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s:%d: chunk_edge_size = %d.\n",
+ fcnName, mpi_rank, (int)chunk_edge_size);
+ HDfprintf(stdout, "%s:%d: use_collective_io = %d.\n",
+ fcnName, mpi_rank, (int)use_collective_io);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+
+ small_ds_size = (size_t)((mpi_size + 1) * 1 * 1 * 10 * 10);
+ small_ds_slice_size = (size_t) ( 1 * 1 * 10 * 10);
+ large_ds_size = (size_t)((mpi_size + 1) * 10 * 10 * 10 * 10);
+ large_ds_slice_size = (size_t) (10 * 10 * 10 * 10);
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s:%d: small ds size / slice size = %d / %d.\n",
+ fcnName, mpi_rank,
+ (int)small_ds_size, (int)small_ds_slice_size);
+ HDfprintf(stdout, "%s:%d: large ds size / slice size = %d / %d.\n",
+ fcnName, mpi_rank,
+ (int)large_ds_size, (int)large_ds_slice_size);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ /* Allocate buffers */
+ small_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size);
+ VRFY((small_ds_buf_0 != NULL), "malloc of small_ds_buf_0 succeeded");
+
+ small_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size);
+ VRFY((small_ds_buf_1 != NULL), "malloc of small_ds_buf_1 succeeded");
+
+ large_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size);
+ VRFY((large_ds_buf_0 != NULL), "malloc of large_ds_buf_0 succeeded");
+
+ large_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size);
+ VRFY((large_ds_buf_1 != NULL), "malloc of large_ds_buf_1 succeeded");
+
+
+ /* initialize the buffers */
+
+ ptr_0 = small_ds_buf_0;
+ ptr_1 = small_ds_buf_1;
+
+ for ( i = 0; i < (int)small_ds_size; i++ ) {
+
+ *ptr_0 = (uint32_t)i;
+ *ptr_1 = 0;
+
+ ptr_0++;
+ ptr_1++;
+ }
+
+ ptr_0 = large_ds_buf_0;
+ ptr_1 = large_ds_buf_1;
+
+ for ( i = 0; i < (int)large_ds_size; i++ ) {
+
+ *ptr_0 = (uint32_t)i;
+ *ptr_1 = 0;
+
+ ptr_0++;
+ ptr_1++;
+ }
+
+
+ /* get the file name */
+
+ filename = (const char *)GetTestParameters();
+ HDassert( filename != NULL );
+
+
+ /* ----------------------------------------
+ * CREATE AN HDF5 FILE WITH PARALLEL ACCESS
+ * ---------------------------------------*/
+ /* setup file access template */
+ acc_tpl = create_faccess_plist(mpi_comm, mpi_info, facc_type, use_gpfs);
+ VRFY((acc_tpl >= 0), "create_faccess_plist() succeeded");
+
+ /* create the file collectively */
+ fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
+ VRFY((fid >= 0), "H5Fcreate succeeded");
+
+ MESG("File opened.");
+
+ /* Release file-access template */
+ ret = H5Pclose(acc_tpl);
+ VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded");
+
+
+ /* setup dims: */
+ small_dims[0] = (hsize_t)(mpi_size + 1);
+ small_dims[1] = 1;
+ small_dims[2] = 1;
+ small_dims[3] = 10;
+ small_dims[4] = 10;
+
+ large_dims[0] = (hsize_t)(mpi_size + 1);
+ large_dims[1] = 10;
+ large_dims[2] = 10;
+ large_dims[3] = 10;
+ large_dims[4] = 10;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s:%d: small_dims[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)small_dims[0], (int)small_dims[1],
+ (int)small_dims[2], (int)small_dims[3], (int)small_dims[4]);
+ HDfprintf(stdout, "%s:%d: large_dims[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)large_dims[0], (int)large_dims[1],
+ (int)large_dims[2], (int)large_dims[3], (int)large_dims[4]);
+ }
+#endif
+
+ /* create data spaces */
+
+ full_mem_small_ds_sid = H5Screate_simple(5, small_dims, NULL);
+ VRFY((full_mem_small_ds_sid != 0),
+ "H5Screate_simple() full_mem_small_ds_sid succeeded");
+
+ full_file_small_ds_sid = H5Screate_simple(5, small_dims, NULL);
+ VRFY((full_file_small_ds_sid != 0),
+ "H5Screate_simple() full_file_small_ds_sid succeeded");
+
+ mem_small_ds_sid = H5Screate_simple(5, small_dims, NULL);
+ VRFY((mem_small_ds_sid != 0),
+ "H5Screate_simple() mem_small_ds_sid succeeded");
+
+ file_small_ds_sid = H5Screate_simple(5, small_dims, NULL);
+ VRFY((file_small_ds_sid != 0),
+ "H5Screate_simple() file_small_ds_sid succeeded");
+
+
+ full_mem_large_ds_sid = H5Screate_simple(5, large_dims, NULL);
+ VRFY((full_mem_large_ds_sid != 0),
+ "H5Screate_simple() full_mem_large_ds_sid succeeded");
+
+ full_file_large_ds_sid = H5Screate_simple(5, large_dims, NULL);
+ VRFY((full_file_large_ds_sid != 0),
+ "H5Screate_simple() full_file_large_ds_sid succeeded");
+
+ mem_large_ds_sid = H5Screate_simple(5, large_dims, NULL);
+ VRFY((mem_large_ds_sid != 0),
+ "H5Screate_simple() mem_large_ds_sid succeeded");
+
+ file_large_ds_sid = H5Screate_simple(5, large_dims, NULL);
+ VRFY((file_large_ds_sid != 0),
+ "H5Screate_simple() file_large_ds_sid succeeded");
+
+
+ /* Select the entire extent of the full small ds dataspaces */
+ ret = H5Sselect_all(full_mem_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_mem_small_ds_sid) succeeded");
+
+ ret = H5Sselect_all(full_file_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_file_small_ds_sid) succeeded");
+
+
+ /* Select the entire extent of the full large ds dataspaces */
+ ret = H5Sselect_all(full_mem_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_mem_large_ds_sid) succeeded");
+
+ ret = H5Sselect_all(full_file_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_file_large_ds_sid) succeeded");
+
+
+ /* if chunk edge size is greater than zero, set up the small and
+ * large data set creation property lists to specify chunked
+ * datasets.
+ */
+ if ( chunk_edge_size > 0 ) {
+
+ small_chunk_dims[0] = (hsize_t)(1);
+ small_chunk_dims[1] = small_chunk_dims[2] = (hsize_t)1;
+ small_chunk_dims[3] = small_chunk_dims[4] = (hsize_t)chunk_edge_size;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s:%d: small chunk dims[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)small_chunk_dims[0],
+ (int)small_chunk_dims[1], (int)small_chunk_dims[2],
+ (int)small_chunk_dims[3], (int)small_chunk_dims[4]);
+ }
+#endif
+
+ small_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((ret != FAIL), "H5Pcreate() small_ds_dcpl_id succeeded");
+
+ ret = H5Pset_layout(small_ds_dcpl_id, H5D_CHUNKED);
+ VRFY((ret != FAIL), "H5Pset_layout() small_ds_dcpl_id succeeded");
+
+ ret = H5Pset_chunk(small_ds_dcpl_id, 5, small_chunk_dims);
+ VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded");
+
+ large_chunk_dims[0] = (hsize_t)(1);
+ large_chunk_dims[1] = large_chunk_dims[2] =
+ large_chunk_dims[3] = large_chunk_dims[4] = (hsize_t)chunk_edge_size;
+
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s:%d: large chunk dims[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)large_chunk_dims[0],
+ (int)large_chunk_dims[1], (int)large_chunk_dims[2],
+ (int)large_chunk_dims[3], (int)large_chunk_dims[4]);
+ }
+#endif
+
+ large_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((ret != FAIL), "H5Pcreate() large_ds_dcpl_id succeeded");
+
+ ret = H5Pset_layout(large_ds_dcpl_id, H5D_CHUNKED);
+ VRFY((ret != FAIL), "H5Pset_layout() large_ds_dcpl_id succeeded");
+
+ ret = H5Pset_chunk(large_ds_dcpl_id, 5, large_chunk_dims);
+ VRFY((ret != FAIL), "H5Pset_chunk() large_ds_dcpl_id succeeded");
+ }
+
+
+ /* create the small dataset */
+ small_dataset = H5Dcreate2(fid, "small_dataset", dset_type,
+ file_small_ds_sid, H5P_DEFAULT,
+ small_ds_dcpl_id, H5P_DEFAULT);
+ VRFY((ret >= 0), "H5Dcreate2() small_dataset succeeded");
+
+
+ /* create the large dataset */
+ large_dataset = H5Dcreate2(fid, "large_dataset", dset_type,
+ file_large_ds_sid, H5P_DEFAULT,
+ large_ds_dcpl_id, H5P_DEFAULT);
+ VRFY((ret >= 0), "H5Dcreate2() large_dataset succeeded");
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout,
+ "%s:%d: small/large ds id = %d / %d.\n",
+ fcnName, mpi_rank, (int)small_dataset,
+ (int)large_dataset);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+
+ /* setup xfer property list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY((xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded");
+
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
+
+ if ( ! use_collective_io ) {
+
+ ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist,
+ H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY((ret>= 0), "H5Pset_dxpl_mpio_collective_opt() suceeded");
+ }
+
+
+ /* setup selection to write initial data to the small data sets */
+ start[0] = (hsize_t)(mpi_rank + 1);
+ start[1] = start[2] = start[3] = start[4] = 0;
+
+ stride[0] = (hsize_t)(2 * (mpi_size + 1));
+ stride[1] = stride[2] = 2;
+ stride[3] = stride[4] = 2 * 10;
+
+ count[0] = count[1] = count[2] = count[3] = count[4] = 1;
+
+ block[0] = block[1] = block[2] = 1;
+ block[3] = block[4] = 10;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout,
+ "%s:%d: settings for small data set initialization.\n",
+ fcnName, mpi_rank);
+ HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)start[0], (int)start[1],
+ (int)start[2], (int)start[3], (int)start[4]);
+ HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)stride[0], (int)stride[1],
+ (int)stride[2], (int)stride[3], (int)stride[4]);
+ HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)count[0], (int)count[1],
+ (int)count[2], (int)count[3], (int)count[4]);
+ HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)block[0], (int)block[1],
+ (int)block[2], (int)block[3], (int)block[4]);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ /* setup selections for writing initial data to the small data set */
+ ret = H5Sselect_hyperslab(mem_small_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded");
+
+ ret = H5Sselect_hyperslab(file_small_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid, set) suceeded");
+
+ if ( MAINPROCESS ) { /* add an additional slice to the selections */
+
+ start[0] = 0;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout,
+ "%s:%d: added settings for main process.\n",
+ fcnName, mpi_rank);
+ HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)start[0], (int)start[1],
+ (int)start[2], (int)start[3], (int)start[4]);
+ HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)stride[0], (int)stride[1],
+ (int)stride[2], (int)stride[3], (int)stride[4]);
+ HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)count[0], (int)count[1],
+ (int)count[2], (int)count[3], (int)count[4]);
+ HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)block[0], (int)block[1],
+ (int)block[2], (int)block[3], (int)block[4]);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ ret = H5Sselect_hyperslab(mem_small_ds_sid,
+ H5S_SELECT_OR,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret>= 0), "H5Sselect_hyperslab(mem_small_ds_sid, or) suceeded");
+
+ ret = H5Sselect_hyperslab(file_small_ds_sid,
+ H5S_SELECT_OR,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret>= 0), "H5Sselect_hyperslab(file_small_ds_sid, or) suceeded");
+ }
+
+ check = H5Sselect_valid(mem_small_ds_sid);
+ VRFY((check == TRUE),"H5Sselect_valid(mem_small_ds_sid) returns TRUE");
+
+ check = H5Sselect_valid(file_small_ds_sid);
+ VRFY((check == TRUE),"H5Sselect_valid(file_small_ds_sid) returns TRUE");
+
+
+ /* write the initial value of the small data set to file */
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s:%d: writing init value of small ds to file.\n",
+ fcnName, mpi_rank);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+ ret = H5Dwrite(small_dataset,
+ dset_type,
+ mem_small_ds_sid,
+ file_small_ds_sid,
+ xfer_plist,
+ small_ds_buf_0);
+ VRFY((ret >= 0), "H5Dwrite() small_dataset initial write succeeded");
+
+
+ /* read the small data set back to verify that it contains the
+ * expected data. Note that each process reads in the entire
+ * data set and verifies it.
+ */
+ ret = H5Dread(small_dataset,
+ H5T_NATIVE_UINT32,
+ full_mem_small_ds_sid,
+ full_file_small_ds_sid,
+ xfer_plist,
+ small_ds_buf_1);
+ VRFY((ret >= 0), "H5Dread() small_dataset initial read succeeded");
+
+
+ /* sync with the other processes before checking data */
+ mrc = MPI_Barrier(MPI_COMM_WORLD);
+ VRFY((mrc==MPI_SUCCESS), "Sync after small dataset writes");
+
+
+ /* verify that the correct data was written to the small data set,
+ * and reset the buffer to zero in passing.
+ */
+ expected_value = 0;
+ mis_match = FALSE;
+ ptr_1 = small_ds_buf_1;
+
+ i = 0;
+ for ( i = 0; i < (int)small_ds_size; i++ ) {
+
+ if ( *ptr_1 != expected_value ) {
+
+ mis_match = TRUE;
+ }
+
+ *ptr_1 = (uint32_t)0;
+
+ ptr_1++;
+ expected_value++;
+ }
+ VRFY( (mis_match == FALSE), "small ds init data good.");
+
+
+
+ /* setup selections for writing initial data to the large data set */
+ start[0] = (hsize_t)(mpi_rank + 1);
+ start[1] = start[2] = start[3] = start[4] = (hsize_t)0;
+
+ stride[0] = (hsize_t)(2 * (mpi_size + 1));
+ stride[1] = stride[2] = stride[3] = stride[4] = (hsize_t)(2 * 10);
+
+ count[0] = count[1] = count[2] = count[3] = count[4] = (hsize_t)1;
+
+ block[0] = (hsize_t)1;
+ block[1] = block[2] = block[3] = block[4] = (hsize_t)10;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout,
+ "%s:%d: settings for large data set initialization.\n",
+ fcnName, mpi_rank);
+ HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)start[0], (int)start[1],
+ (int)start[2], (int)start[3], (int)start[4]);
+ HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)stride[0], (int)stride[1],
+ (int)stride[2], (int)stride[3], (int)stride[4]);
+ HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)count[0], (int)count[1],
+ (int)count[2], (int)count[3], (int)count[4]);
+ HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)block[0], (int)block[1],
+ (int)block[2], (int)block[3], (int)block[4]);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ ret = H5Sselect_hyperslab(mem_large_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, set) suceeded");
+
+ ret = H5Sselect_hyperslab(file_large_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid, set) suceeded");
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout,
+ "%s%d: H5Sget_select_npoints(mem_large_ds_sid) = %d.\n",
+ fcnName, mpi_rank,
+ (int)H5Sget_select_npoints(mem_large_ds_sid));
+ HDfprintf(stdout,
+ "%s%d: H5Sget_select_npoints(file_large_ds_sid) = %d.\n",
+ fcnName, mpi_rank,
+ (int)H5Sget_select_npoints(file_large_ds_sid));
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ if ( MAINPROCESS ) { /* add an additional slice to the selections */
+
+ start[0] = (hsize_t)0;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout,
+ "%s:%d: added settings for main process.\n",
+ fcnName, mpi_rank);
+ HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)start[0], (int)start[1],
+ (int)start[2], (int)start[3], (int)start[4]);
+ HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)stride[0], (int)stride[1],
+ (int)stride[2], (int)stride[3], (int)stride[4]);
+ HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)count[0], (int)count[1],
+ (int)count[2], (int)count[3], (int)count[4]);
+ HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, (int)block[0], (int)block[1],
+ (int)block[2], (int)block[3], (int)block[4]);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ ret = H5Sselect_hyperslab(mem_large_ds_sid,
+ H5S_SELECT_OR,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret>= 0), "H5Sselect_hyperslab(mem_large_ds_sid, or) suceeded");
+
+ ret = H5Sselect_hyperslab(file_large_ds_sid,
+ H5S_SELECT_OR,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret>= 0), "H5Sselect_hyperslab(file_large_ds_sid, or) suceeded");
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout,
+ "%s%d: H5Sget_select_npoints(mem_large_ds_sid) = %d.\n",
+ fcnName, mpi_rank,
+ (int)H5Sget_select_npoints(mem_large_ds_sid));
+ HDfprintf(stdout,
+ "%s%d: H5Sget_select_npoints(file_large_ds_sid) = %d.\n",
+ fcnName, mpi_rank,
+ (int)H5Sget_select_npoints(file_large_ds_sid));
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+ }
+
+ /* try clipping the selection back to the large data space proper */
+ start[0] = start[1] = start[2] = start[3] = start[4] = (hsize_t)0;
+
+ stride[0] = (hsize_t)(2 * (mpi_size + 1));
+ stride[1] = stride[2] = stride[3] = stride[4] = (hsize_t)(2 * 10);
+
+ count[0] = count[1] = count[2] = count[3] = count[4] = (hsize_t)1;
+
+ block[0] = (hsize_t)(mpi_size + 1);
+ block[1] = block[2] = block[3] = block[4] = (hsize_t)10;
+
+ ret = H5Sselect_hyperslab(mem_large_ds_sid, H5S_SELECT_AND,
+ start, stride, count, block);
+ VRFY((ret != FAIL),"H5Sselect_hyperslab(mem_large_ds_sid, and) succeeded");
+
+ ret = H5Sselect_hyperslab(file_large_ds_sid, H5S_SELECT_AND,
+ start, stride, count, block);
+ VRFY((ret != FAIL),"H5Sselect_hyperslab(file_large_ds_sid, and) succeeded");
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+
+ rank = H5Sget_simple_extent_dims(mem_large_ds_sid, dims, max_dims);
+ HDfprintf(stdout,
+ "%s:%d: mem_large_ds_sid dims[%d] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, rank, (int)dims[0], (int)dims[1],
+ (int)dims[2], (int)dims[3], (int)dims[4]);
+
+ rank = H5Sget_simple_extent_dims(file_large_ds_sid, dims, max_dims);
+ HDfprintf(stdout,
+ "%s:%d: file_large_ds_sid dims[%d] = %d %d %d %d %d\n",
+ fcnName, mpi_rank, rank, (int)dims[0], (int)dims[1],
+ (int)dims[2], (int)dims[3], (int)dims[4]);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ check = H5Sselect_valid(mem_large_ds_sid);
+ VRFY((check == TRUE),"H5Sselect_valid(mem_large_ds_sid) returns TRUE");
+
+ check = H5Sselect_valid(file_large_ds_sid);
+ VRFY((check == TRUE),"H5Sselect_valid(file_large_ds_sid) returns TRUE");
+
+
+ /* write the initial value of the large data set to file */
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s:%d: writing init value of large ds to file.\n",
+ fcnName, mpi_rank);
+ HDfprintf(stdout,
+ "%s:%d: large_dataset = %d.\n",
+ fcnName, mpi_rank,
+ (int)large_dataset);
+ HDfprintf(stdout,
+ "%s:%d: mem_large_ds_sid = %d, file_large_ds_sid = %d.\n",
+ fcnName, mpi_rank,
+ (int)mem_large_ds_sid, (int)file_large_ds_sid);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ ret = H5Dwrite(large_dataset,
+ dset_type,
+ mem_large_ds_sid,
+ file_large_ds_sid,
+ xfer_plist,
+ large_ds_buf_0);
+
+ if ( ret < 0 ) H5Eprint(H5E_DEFAULT, stderr);
+ VRFY((ret >= 0), "H5Dwrite() large_dataset initial write succeeded");
+
+
+ /* sync with the other processes before checking data */
+ mrc = MPI_Barrier(MPI_COMM_WORLD);
+ VRFY((mrc==MPI_SUCCESS), "Sync after large dataset writes");
+
+ /* read the large data set back to verify that it contains the
+ * expected data. Note that each process reads in the entire
+ * data set.
+ */
+ ret = H5Dread(large_dataset,
+ H5T_NATIVE_UINT32,
+ full_mem_large_ds_sid,
+ full_file_large_ds_sid,
+ xfer_plist,
+ large_ds_buf_1);
+ VRFY((ret >= 0), "H5Dread() large_dataset initial read succeeded");
+
+
+ /* verify that the correct data was written to the large data set.
+ * in passing, reset the buffer to zeros
+ */
+ expected_value = 0;
+ mis_match = FALSE;
+ ptr_1 = large_ds_buf_1;
+
+ i = 0;
+ for ( i = 0; i < (int)large_ds_size; i++ ) {
+
+ if ( *ptr_1 != expected_value ) {
+
+ mis_match = TRUE;
+ }
+
+ *ptr_1 = (uint32_t)0;
+
+ ptr_1++;
+ expected_value++;
+ }
+ VRFY( (mis_match == FALSE), "large ds init data good.");
+
+ /***********************************/
+ /***** INITIALIZATION COMPLETE *****/
+ /***********************************/
+
+
+ /* read a checkerboard selection of the process slice of the
+ * small on disk data set into the process slice of the large
+ * in memory data set, and verify the data read.
+ */
+
+ small_sel_start[0] = (hsize_t)(mpi_rank + 1);
+ small_sel_start[1] = small_sel_start[2] =
+ small_sel_start[3] = small_sel_start[4] = 0;
+
+ lower_dim_size_comp_test__select_checker_board(mpi_rank,
+ file_small_ds_sid,
+ /* tgt_rank = */ 5,
+ small_dims,
+ /* checker_edge_size = */ 3,
+ /* sel_rank */ 2,
+ small_sel_start);
+
+ expected_value = (uint32_t)
+ ((small_sel_start[0] * small_dims[1] * small_dims[2] *
+ small_dims[3] * small_dims[4]) +
+ (small_sel_start[1] * small_dims[2] * small_dims[3] *
+ small_dims[4]) +
+ (small_sel_start[2] * small_dims[3] * small_dims[4]) +
+ (small_sel_start[3] * small_dims[4]) +
+ (small_sel_start[4]));
+
+
+ large_sel_start[0] = (hsize_t)(mpi_rank + 1);
+ large_sel_start[1] = 5;
+ large_sel_start[2] = large_sel_start[3] = large_sel_start[4] = 0;
+
+ lower_dim_size_comp_test__select_checker_board(mpi_rank,
+ mem_large_ds_sid,
+ /* tgt_rank = */ 5,
+ large_dims,
+ /* checker_edge_size = */ 3,
+ /* sel_rank = */ 2,
+ large_sel_start);
+
+
+ /* verify that H5S_select_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(mem_large_ds_sid,
+ file_small_ds_sid);
+ VRFY((check == TRUE), "H5S_select_shape_same_test passed (1)");
+
+
+ ret = H5Dread(small_dataset,
+ H5T_NATIVE_UINT32,
+ mem_large_ds_sid,
+ file_small_ds_sid,
+ xfer_plist,
+ large_ds_buf_1);
+
+ VRFY((ret >= 0), "H5Sread() slice from small ds succeeded.");
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s:%d: H5Dread() returns.\n", fcnName, mpi_rank);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ /* verify that expected data is retrieved */
+
+ data_ok = TRUE;
+
+ start_index = (int)((large_sel_start[0] * large_dims[1] * large_dims[2] *
+ large_dims[3] * large_dims[4]) +
+ (large_sel_start[1] * large_dims[2] * large_dims[3] *
+ large_dims[4]) +
+ (large_sel_start[2] * large_dims[3] * large_dims[4]) +
+ (large_sel_start[3] * large_dims[4]) +
+ (large_sel_start[4]));
+
+ stop_index = start_index + (int)small_ds_slice_size;
+
+ HDassert( 0 <= start_index );
+ HDassert( start_index < stop_index );
+ HDassert( stop_index <= (int)large_ds_size );
+
+ ptr_1 = large_ds_buf_1;
+
+ for ( i = 0; i < start_index; i++ ) {
+
+ if ( *ptr_1 != (uint32_t)0 ) {
+
+ data_ok = FALSE;
+ *ptr_1 = (uint32_t)0;
+ }
+
+ ptr_1++;
+ }
+
+ VRFY((data_ok == TRUE), "slice read from small ds data good(1).");
+
+
+ data_ok = lower_dim_size_comp_test__verify_data(ptr_1,
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ mpi_rank,
+#endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */
+ /* rank */ 2,
+ /* edge_size */ 10,
+ /* checker_edge_size */ 3,
+ expected_value,
+ /* buf_starts_in_checker */ TRUE);
+
+ VRFY((data_ok == TRUE), "slice read from small ds data good(2).");
+
+ data_ok = TRUE;
+
+ ptr_1 += small_ds_slice_size;
+
+
+ for ( i = stop_index; i < (int)large_ds_size; i++ ) {
+
+ if ( *ptr_1 != (uint32_t)0 ) {
+
+ data_ok = FALSE;
+ *ptr_1 = (uint32_t)0;
+ }
+
+ ptr_1++;
+ }
+
+ VRFY((data_ok == TRUE), "slice read from small ds data good(3).");
+
+
+
+
+
+ /* read a checkerboard selection of a slice of the process slice of
+ * the large on disk data set into the process slice of the small
+ * in memory data set, and verify the data read.
+ */
+
+ small_sel_start[0] = (hsize_t)(mpi_rank + 1);
+ small_sel_start[1] = small_sel_start[2] =
+ small_sel_start[3] = small_sel_start[4] = 0;
+
+ lower_dim_size_comp_test__select_checker_board(mpi_rank,
+ mem_small_ds_sid,
+ /* tgt_rank = */ 5,
+ small_dims,
+ /* checker_edge_size = */ 3,
+ /* sel_rank */ 2,
+ small_sel_start);
+
+ large_sel_start[0] = (hsize_t)(mpi_rank + 1);
+ large_sel_start[1] = 5;
+ large_sel_start[2] = large_sel_start[3] = large_sel_start[4] = 0;
+
+ lower_dim_size_comp_test__select_checker_board(mpi_rank,
+ file_large_ds_sid,
+ /* tgt_rank = */ 5,
+ large_dims,
+ /* checker_edge_size = */ 3,
+ /* sel_rank = */ 2,
+ large_sel_start);
+
+
+ /* verify that H5S_select_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5S_select_shape_same_test(mem_small_ds_sid,
+ file_large_ds_sid);
+ VRFY((check == TRUE), "H5S_select_shape_same_test passed (2)");
+
+
+ ret = H5Dread(large_dataset,
+ H5T_NATIVE_UINT32,
+ mem_small_ds_sid,
+ file_large_ds_sid,
+ xfer_plist,
+ small_ds_buf_1);
+
+ VRFY((ret >= 0), "H5Sread() slice from large ds succeeded.");
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s:%d: H5Dread() returns.\n", fcnName, mpi_rank);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ /* verify that expected data is retrieved */
+
+ data_ok = TRUE;
+
+ expected_value = (uint32_t)
+ ((large_sel_start[0] * large_dims[1] * large_dims[2] *
+ large_dims[3] * large_dims[4]) +
+ (large_sel_start[1] * large_dims[2] * large_dims[3] *
+ large_dims[4]) +
+ (large_sel_start[2] * large_dims[3] * large_dims[4]) +
+ (large_sel_start[3] * large_dims[4]) +
+ (large_sel_start[4]));
+
+ start_index = (int)(mpi_rank + 1) * (int)small_ds_slice_size;
+
+ stop_index = start_index + (int)small_ds_slice_size;
+
+ HDassert( 0 <= start_index );
+ HDassert( start_index < stop_index );
+ HDassert( stop_index <= (int)small_ds_size );
+
+ ptr_1 = small_ds_buf_1;
+
+ for ( i = 0; i < start_index; i++ ) {
+
+ if ( *ptr_1 != (uint32_t)0 ) {
+
+ data_ok = FALSE;
+ *ptr_1 = (uint32_t)0;
+ }
+
+ ptr_1++;
+ }
+
+ VRFY((data_ok == TRUE), "slice read from large ds data good(1).");
+
+
+ data_ok = lower_dim_size_comp_test__verify_data(ptr_1,
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ mpi_rank,
+#endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */
+ /* rank */ 2,
+ /* edge_size */ 10,
+ /* checker_edge_size */ 3,
+ expected_value,
+ /* buf_starts_in_checker */ TRUE);
+
+ VRFY((data_ok == TRUE), "slice read from large ds data good(2).");
+
+ data_ok = TRUE;
+
+ ptr_1 += small_ds_slice_size;
+
+
+ for ( i = stop_index; i < (int)small_ds_size; i++ ) {
+
+ if ( *ptr_1 != (uint32_t)0 ) {
+
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) {
+ HDfprintf(stdout, "%s:%d: unexpected value at index %d: %d.\n",
+ fcnName, mpi_rank, (int)i, (int)(*ptr_1));
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */
+
+ data_ok = FALSE;
+ *ptr_1 = (uint32_t)0;
+ }
+
+ ptr_1++;
+ }
+
+ VRFY((data_ok == TRUE), "slice read from large ds data good(3).");
+
+
+ /* Close dataspaces */
+ ret = H5Sclose(full_mem_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_mem_small_ds_sid) succeeded");
+
+ ret = H5Sclose(full_file_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_file_small_ds_sid) succeeded");
+
+ ret = H5Sclose(mem_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(mem_small_ds_sid) succeeded");
+
+ ret = H5Sclose(file_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid) succeeded");
+
+
+ ret = H5Sclose(full_mem_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_mem_large_ds_sid) succeeded");
+
+ ret = H5Sclose(full_file_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_file_large_ds_sid) succeeded");
+
+ ret = H5Sclose(mem_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded");
+
+ ret = H5Sclose(file_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(file_large_ds_sid) succeeded");
+
+
+ /* Close Datasets */
+ ret = H5Dclose(small_dataset);
+ VRFY((ret != FAIL), "H5Dclose(small_dataset) succeeded");
+
+ ret = H5Dclose(large_dataset);
+ VRFY((ret != FAIL), "H5Dclose(large_dataset) succeeded");
+
+
+ /* close the file collectively */
+ MESG("about to close file.");
+ ret = H5Fclose(fid);
+ VRFY((ret != FAIL), "file close succeeded");
+
+ /* Free memory buffers */
+ if ( small_ds_buf_0 != NULL ) HDfree(small_ds_buf_0);
+ if ( small_ds_buf_1 != NULL ) HDfree(small_ds_buf_1);
+
+ if ( large_ds_buf_0 != NULL ) HDfree(large_ds_buf_0);
+ if ( large_ds_buf_1 != NULL ) HDfree(large_ds_buf_1);
+
+ return;
+
+} /* lower_dim_size_comp_test__run_test() */
+
+
+/*-------------------------------------------------------------------------
+ * Function: lower_dim_size_comp_test()
+ *
+ * Purpose: Test to see if an error in the computation of the size
+ * of the lower dimensions in H5S_obtain_datatype() has
+ * been corrected.
+ *
+ * Return: void
+ *
+ * Programmer: JRM -- 11/11/09
+ *
+ * Modifications:
+ *
+ *-------------------------------------------------------------------------
+ */
+
+void
+lower_dim_size_comp_test(void)
+{
+ /* const char *fcnName = "lower_dim_size_comp_test()"; */
+ int chunk_edge_size = 0;
+ int use_collective_io = 1;
+ hid_t dset_type = H5T_STD_U32LE;
+#if 0
+ sleep(60);
+#endif
+ for ( use_collective_io = (hbool_t)0;
+ (int)use_collective_io <= 1;
+ (hbool_t)(use_collective_io++) ) {
+
+ chunk_edge_size = 0;
+ lower_dim_size_comp_test__run_test(chunk_edge_size,
+ (hbool_t)use_collective_io,
+ dset_type);
+
+
+ chunk_edge_size = 5;
+ lower_dim_size_comp_test__run_test(chunk_edge_size,
+ (hbool_t)use_collective_io,
+ dset_type);
+ }
+
+ return;
+
+} /* lower_dim_size_comp_test() */
+
+
+/*-------------------------------------------------------------------------
+ * Function: link_chunk_collective_io_test()
+ *
+ * Purpose: Test to verify that an error in MPI type management in
+ * H5D_link_chunk_collective_io() has been corrected.
+ * In this bug, we used to free MPI types regardless of
+ * whether they were basic or derived.
+ *
+ * This test is based on a bug report kindly provided by
+ * Rob Latham of the MPICH team and ANL.
+ *
+ * The basic thrust of the test is to cause a process
+ * to participate in a collective I/O in which it:
+ *
+ * 1) Reads or writes exactly one chunk,
+ *
+ * 2) Has no in memory buffer for any other chunk.
+ *
+ * The test differers from Rob Latham's bug report in
+ * that is runs with an arbitrary number of proceeses,
+ * and uses a 1 dimensional dataset.
+ *
+ * Return: void
+ *
+ * Programmer: JRM -- 12/16/09
+ *
+ * Modifications:
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#define LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE 16
+
+void
+link_chunk_collective_io_test(void)
+{
+ /* const char *fcnName = "link_chunk_collective_io_test()"; */
+ const char *filename;
+ hbool_t mis_match = FALSE;
+ hbool_t use_gpfs = FALSE; /* Use GPFS hints */
+ int i;
+ int mrc;
+ int mpi_rank;
+ int mpi_size;
+ MPI_Comm mpi_comm = MPI_COMM_WORLD;
+ MPI_Info mpi_info = MPI_INFO_NULL;
+ hsize_t count[1] = {1};
+ hsize_t stride[1] = {2 * LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE};
+ hsize_t block[1] = {LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE};
+ hsize_t start[1];
+ hsize_t dims[1];
+ hsize_t chunk_dims[1] = {LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE};
+ herr_t ret; /* Generic return value */
+ hid_t file_id;
+ hid_t acc_tpl;
+ hid_t dset_id;
+ hid_t file_ds_sid;
+ hid_t write_mem_ds_sid;
+ hid_t read_mem_ds_sid;
+ hid_t ds_dcpl_id;
+ hid_t xfer_plist;
+ double diff;
+ double expected_value;
+ double local_data_written[LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE];
+ double local_data_read[LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE];
+
+ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ HDassert( mpi_size > 0 );
+
+ /* get the file name */
+ filename = (const char *)GetTestParameters();
+ HDassert( filename != NULL );
+
+ /* setup file access template */
+ acc_tpl = create_faccess_plist(mpi_comm, mpi_info, facc_type, use_gpfs);
+ VRFY((acc_tpl >= 0), "create_faccess_plist() succeeded");
+
+ /* create the file collectively */
+ file_id = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
+ VRFY((file_id >= 0), "H5Fcreate succeeded");
+
+ MESG("File opened.");
+
+ /* Release file-access template */
+ ret = H5Pclose(acc_tpl);
+ VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded");
+
+ /* setup dims */
+ dims[0] = ((hsize_t)mpi_size) * ((hsize_t)(LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE));
+
+ /* setup mem and file data spaces */
+ write_mem_ds_sid = H5Screate_simple(1, chunk_dims, NULL);
+ VRFY((write_mem_ds_sid != 0),
+ "H5Screate_simple() write_mem_ds_sid succeeded");
+
+ read_mem_ds_sid = H5Screate_simple(1, chunk_dims, NULL);
+ VRFY((read_mem_ds_sid != 0),
+ "H5Screate_simple() read_mem_ds_sid succeeded");
+
+ file_ds_sid = H5Screate_simple(1, dims, NULL);
+ VRFY((file_ds_sid != 0),
+ "H5Screate_simple() file_ds_sid succeeded");
+
+ /* setup data set creation property list */
+ ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((ds_dcpl_id != FAIL), "H5Pcreate() ds_dcpl_id succeeded");
+
+ ret = H5Pset_layout(ds_dcpl_id, H5D_CHUNKED);
+ VRFY((ret != FAIL), "H5Pset_layout() ds_dcpl_id succeeded");
+
+ ret = H5Pset_chunk(ds_dcpl_id, 1, chunk_dims);
+ VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded");
+
+ /* create the data set */
+ dset_id = H5Dcreate2(file_id, "dataset", H5T_NATIVE_DOUBLE,
+ file_ds_sid, H5P_DEFAULT,
+ ds_dcpl_id, H5P_DEFAULT);
+ VRFY((dset_id >= 0), "H5Dcreate2() dataset succeeded");
+
+ /* close the dataset creation property list */
+ ret = H5Pclose(ds_dcpl_id);
+ VRFY((ret >= 0), "H5Pclose(ds_dcpl_id) succeeded");
+
+ /* setup local data */
+ expected_value = (double)(LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE) *
+ (double)(mpi_rank);
+ for ( i = 0; i < LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE; i++ ) {
+
+ local_data_written[i] = expected_value;
+ local_data_read[i] = 0.0;
+ expected_value += 1.0;
+ }
+
+ /* select the file and mem spaces */
+ start[0] = (hsize_t)(mpi_rank * LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE);
+ ret = H5Sselect_hyperslab(file_ds_sid,
+ H5S_SELECT_SET,
+ start,
+ stride,
+ count,
+ block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_ds_sid, set) suceeded");
+
+ ret = H5Sselect_all(write_mem_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(mem_ds_sid) succeeded");
+
+ /* Note that we use NO SELECTION on the read memory dataspace */
+
+ /* setup xfer property list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY((xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded");
+
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
+
+ /* write the data set */
+ ret = H5Dwrite(dset_id,
+ H5T_NATIVE_DOUBLE,
+ write_mem_ds_sid,
+ file_ds_sid,
+ xfer_plist,
+ local_data_written);
+
+ VRFY((ret >= 0), "H5Dwrite() dataset initial write succeeded");
+
+ /* sync with the other processes before checking data */
+ mrc = MPI_Barrier(MPI_COMM_WORLD);
+ VRFY((mrc==MPI_SUCCESS), "Sync after dataset write");
+
+ /* read this processes slice of the dataset back in */
+ ret = H5Dread(dset_id,
+ H5T_NATIVE_DOUBLE,
+ read_mem_ds_sid,
+ file_ds_sid,
+ xfer_plist,
+ local_data_read);
+ VRFY((ret >= 0), "H5Dread() dataset read succeeded");
+
+ /* close the xfer property list */
+ ret = H5Pclose(xfer_plist);
+ VRFY((ret >= 0), "H5Pclose(xfer_plist) succeeded");
+
+ /* verify the data */
+ mis_match = FALSE;
+ for ( i = 0; i < LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE; i++ ) {
+
+ diff = local_data_written[i] - local_data_read[i];
+ diff = fabs(diff);
+
+ if ( diff >= 0.001 ) {
+
+ mis_match = TRUE;
+ }
+ }
+ VRFY( (mis_match == FALSE), "dataset data good.");
+
+ /* Close dataspaces */
+ ret = H5Sclose(write_mem_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(write_mem_ds_sid) succeeded");
+
+ ret = H5Sclose(read_mem_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(read_mem_ds_sid) succeeded");
+
+ ret = H5Sclose(file_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(file_ds_sid) succeeded");
+
+ /* Close Dataset */
+ ret = H5Dclose(dset_id);
+ VRFY((ret != FAIL), "H5Dclose(dset_id) succeeded");
+
+ /* close the file collectively */
+ ret = H5Fclose(file_id);
+ VRFY((ret != FAIL), "file close succeeded");
+
+ return;
+
+} /* link_chunk_collective_io_test() */
+
diff --git a/testpar/testphdf5.c b/testpar/testphdf5.c
index 4dabada..0864b11 100644
--- a/testpar/testphdf5.c
+++ b/testpar/testphdf5.c
@@ -462,7 +462,6 @@ int main(int argc, char **argv)
coll_irregular_complex_chunk_read,NULL,
"collective irregular complex chunk read",PARATESTFILE);
-
AddTest("null", null_dataset, NULL,
"null dataset test", PARATESTFILE);
@@ -473,6 +472,26 @@ int main(int argc, char **argv)
"I/O mode confusion test -- hangs quickly on failure",
&io_mode_confusion_params);
+ AddTest("tldsc",
+ lower_dim_size_comp_test, NULL,
+ "test lower dim size comp in span tree to mpi derived type",
+ PARATESTFILE);
+
+ AddTest("lccio",
+ link_chunk_collective_io_test, NULL,
+ "test mpi derived type management",
+ PARATESTFILE);
+
+ /* rank projections / shape same tests */
+
+ AddTest("chsssdrpio",
+ contig_hyperslab_dr_pio_test, NULL,
+ "contiguous hyperslab shape same different rank PIO",PARATESTFILE);
+
+ AddTest("cbhsssdrpio",
+ checker_board_hyperslab_dr_pio_test, NULL,
+ "checker board hyperslab shape same different rank PIO",PARATESTFILE);
+
/* Display testing information */
TestInfo(argv[0]);
diff --git a/testpar/testphdf5.h b/testpar/testphdf5.h
index 24c4432..ba46e4d 100644
--- a/testpar/testphdf5.h
+++ b/testpar/testphdf5.h
@@ -237,6 +237,10 @@ void coll_irregular_simple_chunk_write(void);
void coll_irregular_complex_chunk_read(void);
void coll_irregular_complex_chunk_write(void);
void io_mode_confusion(void);
+void lower_dim_size_comp_test(void);
+void link_chunk_collective_io_test(void);
+void contig_hyperslab_dr_pio_test(void);
+void checker_board_hyperslab_dr_pio_test(void);
#ifdef H5_HAVE_FILTER_DEFLATE
void compress_readAll(void);
#endif /* H5_HAVE_FILTER_DEFLATE */