diff options
-rw-r--r-- | MANIFEST | 1 | ||||
-rw-r--r-- | src/H5Dchunk.c | 3 | ||||
-rw-r--r-- | src/H5Dio.c | 98 | ||||
-rw-r--r-- | src/H5Dmpio.c | 124 | ||||
-rw-r--r-- | src/H5Sall.c | 99 | ||||
-rw-r--r-- | src/H5Shyper.c | 828 | ||||
-rw-r--r-- | src/H5Smpio.c | 627 | ||||
-rw-r--r-- | src/H5Snone.c | 254 | ||||
-rw-r--r-- | src/H5Spkg.h | 6 | ||||
-rw-r--r-- | src/H5Spoint.c | 181 | ||||
-rw-r--r-- | src/H5Sprivate.h | 21 | ||||
-rw-r--r-- | src/H5Sselect.c | 740 | ||||
-rw-r--r-- | test/testframe.c | 2 | ||||
-rw-r--r-- | test/tselect.c | 5244 | ||||
-rw-r--r-- | testpar/Makefile.am | 3 | ||||
-rw-r--r-- | testpar/Makefile.in | 7 | ||||
-rw-r--r-- | testpar/t_rank_projection.c | 4041 | ||||
-rw-r--r-- | testpar/t_span_tree.c | 1927 | ||||
-rw-r--r-- | testpar/testphdf5.c | 21 | ||||
-rw-r--r-- | testpar/testphdf5.h | 4 |
20 files changed, 13125 insertions, 1106 deletions
@@ -960,6 +960,7 @@ ./testpar/t_filter_read.c ./testpar/t_span_tree.c ./testpar/t_posix_compliant.c +./testpar/t_rank_projection.c ./testpar/testpar.h ./testpar/testphdf5.c ./testpar/testphdf5.h diff --git a/src/H5Dchunk.c b/src/H5Dchunk.c index a28bce9..88c4ab9 100644 --- a/src/H5Dchunk.c +++ b/src/H5Dchunk.c @@ -2665,7 +2665,6 @@ H5D_chunk_lock(const H5D_io_info_t *io_info, H5D_chunk_ud_t *udata, hbool_t fb_info_init = FALSE; /* Whether the fill value buffer has been initialized */ H5D_rdcc_t *rdcc = &(dset->shared->cache.chunk); /*raw data chunk cache*/ H5D_rdcc_ent_t *ent = NULL; /*cache entry */ - hbool_t found = FALSE; /*already in cache? */ haddr_t chunk_addr = HADDR_UNDEF; /* Address of chunk on disk */ size_t chunk_size; /*size of a chunk */ void *chunk = NULL; /*the file chunk */ @@ -2797,7 +2796,7 @@ H5D_chunk_lock(const H5D_io_info_t *io_info, H5D_chunk_ud_t *udata, rdcc->stats.ninits++; } /* end else */ } /* end else */ - HDassert(found || chunk_size > 0); + HDassert(chunk_size > 0); if(ent) { /* diff --git a/src/H5Dio.c b/src/H5Dio.c index 285451e..b7c2ecb 100644 --- a/src/H5Dio.c +++ b/src/H5Dio.c @@ -291,6 +291,19 @@ H5D_read(H5D_t *dataset, hid_t mem_type_id, const H5S_t *mem_space, H5D_io_info_t io_info; /* Dataset I/O info */ H5D_type_info_t type_info; /* Datatype info for operation */ hbool_t type_info_init = FALSE; /* Whether the datatype info has been initialized */ + H5S_t * projected_mem_space = NULL; /* If not NULL, ptr to dataspace containing a */ + /* projection of the supplied mem_space to a new */ + /* data space with rank equal to that of */ + /* file_space. */ + /* */ + /* This field is only used if */ + /* H5S_select_shape_same() returns TRUE when */ + /* comparing the mem_space and the data_space, */ + /* and the mem_space have different rank. */ + /* */ + /* Note that if this variable is used, the */ + /* projected mem space must be discarded at the */ + /* end of the function to avoid a memory leak. */ H5D_storage_t store; /*union of EFL and chunk pointer in file space */ hssize_t snelmts; /*total number of elmts (signed) */ hsize_t nelmts; /*total number of elmts */ @@ -340,6 +353,37 @@ H5D_read(H5D_t *dataset, hid_t mem_type_id, const H5S_t *mem_space, if(!(H5S_has_extent(mem_space))) HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "memory dataspace does not have extent set") + /* H5S_select_shape_same() has been modified to accept topologically identical + * selections with different rank as having the same shape (if the most + * rapidly changing coordinates match up), but the I/O code still has + * difficulties with the notion. + * + * To solve this, we check to see if H5S_select_shape_same() returns true, + * and if the ranks of the mem and file spaces are different. If the are, + * construct a new mem space that is equivalent to the old mem space, and + * use that instead. + * + * Note that in general, this requires us to touch up the memory buffer as + * well. + */ + if(TRUE == H5S_select_shape_same(mem_space, file_space) && + H5S_GET_EXTENT_NDIMS(mem_space) != H5S_GET_EXTENT_NDIMS(file_space)) { + void *adj_buf = NULL; /* Pointer to the location in buf corresponding */ + /* to the beginning of the projected mem space. */ + + /* Attempt to construct projected dataspace for memory dataspace */ + if(H5S_select_construct_projection(mem_space, &projected_mem_space, + (unsigned)H5S_GET_EXTENT_NDIMS(file_space), buf, &adj_buf, type_info.dst_type_size) < 0) + HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to construct projected memory dataspace") + HDassert(projected_mem_space); + HDassert(adj_buf); + + /* Switch to using projected memory dataspace & adjusted buffer */ + mem_space = projected_mem_space; + buf = adj_buf; + } /* end if */ + + /* Retrieve dataset properties */ /* <none needed in the general case> */ @@ -417,6 +461,11 @@ done: if(type_info_init && H5D_typeinfo_term(&type_info) < 0) HDONE_ERROR(H5E_DATASET, H5E_CANTCLOSEOBJ, FAIL, "unable to shut down type info") + /* discard projected mem space if it was created */ + if(NULL != projected_mem_space) + if(H5S_close(projected_mem_space) < 0) + HDONE_ERROR(H5E_DATASET, H5E_CANTCLOSEOBJ, FAIL, "unable to shut down projected memory dataspace") + FUNC_LEAVE_NOAPI_TAG(ret_value, FAIL) } /* end H5D_read() */ @@ -442,6 +491,19 @@ H5D_write(H5D_t *dataset, hid_t mem_type_id, const H5S_t *mem_space, H5D_io_info_t io_info; /* Dataset I/O info */ H5D_type_info_t type_info; /* Datatype info for operation */ hbool_t type_info_init = FALSE; /* Whether the datatype info has been initialized */ + H5S_t * projected_mem_space = NULL; /* If not NULL, ptr to dataspace containing a */ + /* projection of the supplied mem_space to a new */ + /* data space with rank equal to that of */ + /* file_space. */ + /* */ + /* This field is only used if */ + /* H5S_select_shape_same() returns TRUE when */ + /* comparing the mem_space and the data_space, */ + /* and the mem_space have different rank. */ + /* */ + /* Note that if this variable is used, the */ + /* projected mem space must be discarded at the */ + /* end of the function to avoid a memory leak. */ H5D_storage_t store; /*union of EFL and chunk pointer in file space */ hssize_t snelmts; /*total number of elmts (signed) */ hsize_t nelmts; /*total number of elmts */ @@ -515,6 +577,37 @@ H5D_write(H5D_t *dataset, hid_t mem_type_id, const H5S_t *mem_space, file_space = dataset->shared->space; if(!mem_space) mem_space = file_space; + + /* H5S_select_shape_same() has been modified to accept topologically + * identical selections with different rank as having the same shape + * (if the most rapidly changing coordinates match up), but the I/O + * code still has difficulties with the notion. + * + * To solve this, we check to see if H5S_select_shape_same() returns + * true, and if the ranks of the mem and file spaces are different. + * If the are, construct a new mem space that is equivalent to the + * old mem space, and use that instead. + * + * Note that in general, this requires us to touch up the memory buffer + * as well. + */ + if(TRUE == H5S_select_shape_same(mem_space, file_space) && + H5S_GET_EXTENT_NDIMS(mem_space) != H5S_GET_EXTENT_NDIMS(file_space)) { + void *adj_buf = NULL; /* Pointer to the location in buf corresponding */ + /* to the beginning of the projected mem space. */ + + /* Attempt to construct projected dataspace for memory dataspace */ + if(H5S_select_construct_projection(mem_space, &projected_mem_space, + (unsigned)H5S_GET_EXTENT_NDIMS(file_space), buf, &adj_buf, type_info.src_type_size) < 0) + HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to construct projected memory dataspace") + HDassert(projected_mem_space); + HDassert(adj_buf); + + /* Switch to using projected memory dataspace & adjusted buffer */ + mem_space = projected_mem_space; + buf = adj_buf; + } /* end if */ + if((snelmts = H5S_GET_SELECT_NPOINTS(mem_space)) < 0) HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "src dataspace has invalid selection") H5_ASSIGN_OVERFLOW(nelmts, snelmts, hssize_t, hsize_t); @@ -608,6 +701,11 @@ done: if(type_info_init && H5D_typeinfo_term(&type_info) < 0) HDONE_ERROR(H5E_DATASET, H5E_CANTCLOSEOBJ, FAIL, "unable to shut down type info") + /* discard projected mem space if it was created */ + if(NULL != projected_mem_space) + if(H5S_close(projected_mem_space) < 0) + HDONE_ERROR(H5E_DATASET, H5E_CANTCLOSEOBJ, FAIL, "unable to shut down projected memory dataspace") + FUNC_LEAVE_NOAPI_TAG(ret_value, FAIL) } /* end H5D_write() */ diff --git a/src/H5Dmpio.c b/src/H5Dmpio.c index ad9b737..e646a7b 100644 --- a/src/H5Dmpio.c +++ b/src/H5Dmpio.c @@ -115,7 +115,7 @@ static herr_t H5D_inter_collective_io(H5D_io_info_t *io_info, const H5D_type_info_t *type_info, const H5S_t *file_space, const H5S_t *mem_space); static herr_t H5D_final_collective_io(H5D_io_info_t *io_info, - const H5D_type_info_t *type_info, size_t nelmts, MPI_Datatype *mpi_file_type, + const H5D_type_info_t *type_info, hsize_t nelmts, MPI_Datatype *mpi_file_type, MPI_Datatype *mpi_buf_type); #ifdef H5_MPI_COMPLEX_DERIVED_DATATYPE_WORKS static herr_t H5D_sort_chunk(H5D_io_info_t *io_info, const H5D_chunk_map_t *fm, @@ -819,10 +819,10 @@ H5D_link_chunk_collective_io(H5D_io_info_t *io_info, const H5D_type_info_t *type H5D_chunk_map_t *fm, int sum_chunk) { H5D_chunk_addr_info_t *chunk_addr_info_array = NULL; - hbool_t mbt_is_derived = FALSE; - hbool_t mft_is_derived = FALSE; MPI_Datatype chunk_final_mtype; /* Final memory MPI datatype for all chunks with seletion */ + hbool_t chunk_final_mtype_is_derived = FALSE; MPI_Datatype chunk_final_ftype; /* Final file MPI datatype for all chunks with seletion */ + hbool_t chunk_final_ftype_is_derived = FALSE; H5D_storage_t ctg_store; /* Storage info for "fake" contiguous dataset */ size_t total_chunks; haddr_t *total_chunk_addr_array = NULL; @@ -830,7 +830,10 @@ H5D_link_chunk_collective_io(H5D_io_info_t *io_info, const H5D_type_info_t *type MPI_Datatype *chunk_ftype = NULL; MPI_Aint *chunk_disp_array = NULL; MPI_Aint *chunk_mem_disp_array = NULL; - int *blocklen = NULL; + hbool_t *chunk_mft_is_derived_array = NULL; /* Flags to indicate each chunk's MPI file datatype is derived */ + hbool_t *chunk_mbt_is_derived_array = NULL; /* Flags to indicate each chunk's MPI memory datatype is derived */ + int *chunk_mpi_file_counts = NULL; /* Count of MPI file datatype for each chunk */ + int *chunk_mpi_mem_counts = NULL; /* Count of MPI memory datatype for each chunk */ int mpi_code; /* MPI return code */ herr_t ret_value = SUCCEED; @@ -897,7 +900,7 @@ if(H5DEBUG(D)) HGOTO_ERROR(H5E_STORAGE, H5E_CANTGET, FAIL, "couldn't finish shared collective MPI-IO") } /* end if */ else { - size_t mpi_buf_count; /* Number of MPI types */ + hsize_t mpi_buf_count; /* Number of MPI types */ size_t num_chunk; /* Number of chunks for this process */ size_t u; /* Local index variable */ @@ -912,21 +915,25 @@ if(H5DEBUG(D)) /* Set up MPI datatype for chunks selected */ if(num_chunk) { - hsize_t mpi_mem_extra_offset; /* Extra offset for memory MPI datatype */ - hsize_t mpi_file_extra_offset; /* Extra offset for file MPI datatype */ - size_t mpi_mem_count; /* Memory MPI datatype count */ - size_t mpi_file_count; /* File MPI datatype count */ - hbool_t locl_mbt_is_derived = FALSE, /* Whether the buffer (memory) type is derived and needs to be free'd */ - local_mft_is_derived = FALSE; /* Whether the file type is derived and needs to be free'd */ - int blocklen_value; /* Placeholder for array fill */ - /* Allocate chunking information */ - chunk_addr_info_array= H5MM_malloc(num_chunk * sizeof(H5D_chunk_addr_info_t)); - chunk_mtype = H5MM_malloc(num_chunk * sizeof(MPI_Datatype)); - chunk_ftype = H5MM_malloc(num_chunk * sizeof(MPI_Datatype)); - chunk_disp_array = H5MM_malloc(num_chunk * sizeof(MPI_Aint)); - chunk_mem_disp_array = H5MM_calloc(num_chunk * sizeof(MPI_Aint)); - blocklen = H5MM_malloc(num_chunk * sizeof(int)); + if(NULL == (chunk_addr_info_array = (H5D_chunk_addr_info_t *)H5MM_malloc(num_chunk * sizeof(H5D_chunk_addr_info_t)))) + HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk array buffer") + if(NULL == (chunk_mtype = (MPI_Datatype *)H5MM_malloc(num_chunk * sizeof(MPI_Datatype)))) + HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk memory datatype buffer") + if(NULL == (chunk_ftype = (MPI_Datatype *)H5MM_malloc(num_chunk * sizeof(MPI_Datatype)))) + HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk file datatype buffer") + if(NULL == (chunk_disp_array = (MPI_Aint *)H5MM_malloc(num_chunk * sizeof(MPI_Aint)))) + HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk file displacement buffer") + if(NULL == (chunk_mem_disp_array = (MPI_Aint *)H5MM_calloc(num_chunk * sizeof(MPI_Aint)))) + HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk memory displacement buffer") + if(NULL == (chunk_mpi_mem_counts = (int *)H5MM_calloc(num_chunk * sizeof(int)))) + HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk memory counts buffer") + if(NULL == (chunk_mpi_file_counts = (int *)H5MM_calloc(num_chunk * sizeof(int)))) + HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk file counts buffer") + if(NULL == (chunk_mbt_is_derived_array = (hbool_t *)H5MM_calloc(num_chunk * sizeof(hbool_t)))) + HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk memory is derived datatype flags buffer") + if(NULL == (chunk_mft_is_derived_array = (hbool_t *)H5MM_calloc(num_chunk * sizeof(hbool_t)))) + HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate chunk file is derived datatype flags buffer") #ifdef H5D_DEBUG if(H5DEBUG(D)) @@ -945,14 +952,12 @@ if(H5DEBUG(D)) for(u = 0; u < num_chunk; u++) { /* Disk MPI derived datatype */ if(H5S_mpio_space_type(chunk_addr_info_array[u].chunk_info.fspace, - type_info->src_type_size, &chunk_ftype[u], &mpi_file_count, - &mpi_file_extra_offset, &local_mft_is_derived) < 0) + type_info->src_type_size, &chunk_ftype[u], &chunk_mpi_file_counts[u], &(chunk_mft_is_derived_array[u])) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "couldn't create MPI file type") /* Buffer MPI derived datatype */ if(H5S_mpio_space_type(chunk_addr_info_array[u].chunk_info.mspace, - type_info->dst_type_size, &chunk_mtype[u], &mpi_mem_count, - &mpi_mem_extra_offset, &locl_mbt_is_derived) < 0) + type_info->dst_type_size, &chunk_mtype[u], &chunk_mpi_mem_counts[u], &(chunk_mbt_is_derived_array[u])) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "couldn't create MPI buf type") /* Chunk address relative to the first chunk */ @@ -963,39 +968,38 @@ if(H5DEBUG(D)) chunk_disp_array[u] = (MPI_Aint)chunk_addr_info_array[u].chunk_addr; } /* end for */ - /* Initialize the buffer with the constant value 1 */ - blocklen_value = 1; - H5V_array_fill(blocklen, &blocklen_value, sizeof(int), num_chunk); - /* Create final MPI derived datatype for the file */ - if(MPI_SUCCESS != (mpi_code = MPI_Type_struct((int)num_chunk, blocklen, chunk_disp_array, chunk_ftype, &chunk_final_ftype))) + if(MPI_SUCCESS != (mpi_code = MPI_Type_struct((int)num_chunk, chunk_mpi_file_counts, chunk_disp_array, chunk_ftype, &chunk_final_ftype))) HMPI_GOTO_ERROR(FAIL, "MPI_Type_struct failed", mpi_code) if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(&chunk_final_ftype))) HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code) + chunk_final_ftype_is_derived = TRUE; /* Create final MPI derived datatype for memory */ - if(MPI_SUCCESS != (mpi_code = MPI_Type_struct(num_chunk, blocklen, chunk_mem_disp_array, chunk_mtype, &chunk_final_mtype))) + if(MPI_SUCCESS != (mpi_code = MPI_Type_struct((int)num_chunk, chunk_mpi_mem_counts, chunk_mem_disp_array, chunk_mtype, &chunk_final_mtype))) HMPI_GOTO_ERROR(FAIL, "MPI_Type_struct failed", mpi_code) if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(&chunk_final_mtype))) HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code) + chunk_final_mtype_is_derived = TRUE; /* Free the file & memory MPI datatypes for each chunk */ for(u = 0; u < num_chunk; u++) { - if(MPI_SUCCESS != (mpi_code = MPI_Type_free(chunk_mtype + u))) - HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code) + if(chunk_mbt_is_derived_array[u]) + if(MPI_SUCCESS != (mpi_code = MPI_Type_free(chunk_mtype + u))) + HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code) - if(MPI_SUCCESS != (mpi_code = MPI_Type_free(chunk_ftype + u))) - HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code) + if(chunk_mft_is_derived_array[u]) + if(MPI_SUCCESS != (mpi_code = MPI_Type_free(chunk_ftype + u))) + HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code) } /* end for */ - /* buffer, file derived datatypes should be true */ - mbt_is_derived = TRUE; - mft_is_derived = TRUE; - mpi_buf_count = (size_t)1; + /* We have a single, complicated MPI datatype for both memory & file */ + mpi_buf_count = (hsize_t)1; } /* end if */ else { /* no selection at all for this process */ /* Allocate chunking information */ - total_chunk_addr_array = H5MM_malloc(sizeof(haddr_t) * total_chunks); + if(NULL == (total_chunk_addr_array = (haddr_t *)H5MM_malloc(sizeof(haddr_t) * total_chunks))) + HGOTO_ERROR(H5E_DATASET, H5E_CANTALLOC, FAIL, "couldn't allocate total chunk address arraybuffer") /* Retrieve chunk address map */ if(H5D_chunk_addrmap(io_info, total_chunk_addr_array) < 0) @@ -1012,8 +1016,8 @@ if(H5DEBUG(D)) chunk_final_ftype = MPI_BYTE; chunk_final_mtype = MPI_BYTE; - /* buffer, file derived datatypes should be true */ - mpi_buf_count = (size_t)0; + /* No chunks selected for this process */ + mpi_buf_count = (hsize_t)0; } /* end else */ #ifdef H5D_DEBUG if(H5DEBUG(D)) @@ -1033,6 +1037,7 @@ done: if(H5DEBUG(D)) HDfprintf(H5DEBUG(D),"before freeing memory inside H5D_link_collective_io ret_value = %d\n", ret_value); #endif + /* Release resources */ if(total_chunk_addr_array) H5MM_xfree(total_chunk_addr_array); if(chunk_addr_info_array) @@ -1045,13 +1050,19 @@ if(H5DEBUG(D)) H5MM_xfree(chunk_disp_array); if(chunk_mem_disp_array) H5MM_xfree(chunk_mem_disp_array); - if(blocklen) - H5MM_xfree(blocklen); + if(chunk_mpi_mem_counts) + H5MM_xfree(chunk_mpi_mem_counts); + if(chunk_mpi_file_counts) + H5MM_xfree(chunk_mpi_file_counts); + if(chunk_mbt_is_derived_array) + H5MM_xfree(chunk_mbt_is_derived_array); + if(chunk_mft_is_derived_array) + H5MM_xfree(chunk_mft_is_derived_array); /* Free the MPI buf and file types, if they were derived */ - if(mbt_is_derived && MPI_SUCCESS != (mpi_code = MPI_Type_free(&chunk_final_mtype))) + if(chunk_final_mtype_is_derived && MPI_SUCCESS != (mpi_code = MPI_Type_free(&chunk_final_mtype))) HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code) - if(mft_is_derived && MPI_SUCCESS != (mpi_code = MPI_Type_free(&chunk_final_ftype))) + if(chunk_final_ftype_is_derived && MPI_SUCCESS != (mpi_code = MPI_Type_free(&chunk_final_ftype))) HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code) FUNC_LEAVE_NOAPI(ret_value) @@ -1547,32 +1558,29 @@ static herr_t H5D_inter_collective_io(H5D_io_info_t *io_info, const H5D_type_info_t *type_info, const H5S_t *file_space, const H5S_t *mem_space) { - size_t mpi_buf_count; /* # of MPI types */ + int mpi_buf_count; /* # of MPI types */ hbool_t mbt_is_derived = FALSE; hbool_t mft_is_derived = FALSE; MPI_Datatype mpi_file_type, mpi_buf_type; - int mpi_code; /* MPI return code */ - herr_t ret_value = SUCCEED; /* return value */ + int mpi_code; /* MPI return code */ + herr_t ret_value = SUCCEED; /* return value */ FUNC_ENTER_NOAPI_NOINIT(H5D_inter_collective_io) if((file_space != NULL) && (mem_space != NULL)) { - hsize_t mpi_buf_offset, mpi_file_offset; /* Offset within dataset where selection (ie. MPI type) begins */ - size_t mpi_file_count; /* Number of file "objects" to transfer */ + int mpi_file_count; /* Number of file "objects" to transfer */ /* Obtain disk and memory MPI derived datatype */ - if(H5S_mpio_space_type(file_space, type_info->src_type_size, - &mpi_file_type, &mpi_file_count, &mpi_file_offset, &mft_is_derived) < 0) + if(H5S_mpio_space_type(file_space, type_info->src_type_size, &mpi_file_type, &mpi_file_count, &mft_is_derived) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "couldn't create MPI file type") - if(H5S_mpio_space_type(mem_space, type_info->src_type_size, - &mpi_buf_type, &mpi_buf_count, &mpi_buf_offset, &mbt_is_derived) < 0) + if(H5S_mpio_space_type(mem_space, type_info->src_type_size, &mpi_buf_type, &mpi_buf_count, &mbt_is_derived) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "couldn't create MPI buffer type") } /* end if */ else { /* For non-selection, participate with a none MPI derived datatype, the count is 0. */ mpi_buf_type = MPI_BYTE; mpi_file_type = MPI_BYTE; - mpi_buf_count = (size_t)0; + mpi_buf_count = 0; mbt_is_derived = FALSE; mft_is_derived = FALSE; } /* end else */ @@ -1583,7 +1591,7 @@ if(H5DEBUG(D)) #endif /* Perform final collective I/O operation */ - if(H5D_final_collective_io(io_info, type_info, mpi_buf_count, &mpi_file_type, &mpi_buf_type) < 0) + if(H5D_final_collective_io(io_info, type_info, (hsize_t)mpi_buf_count, &mpi_file_type, &mpi_buf_type) < 0) HGOTO_ERROR(H5E_IO, H5E_CANTGET, FAIL, "couldn't finish collective MPI-IO") done: @@ -1616,7 +1624,7 @@ if(H5DEBUG(D)) */ static herr_t H5D_final_collective_io(H5D_io_info_t *io_info, const H5D_type_info_t *type_info, - size_t mpi_buf_count, MPI_Datatype *mpi_file_type, MPI_Datatype *mpi_buf_type) + hsize_t mpi_buf_count, MPI_Datatype *mpi_file_type, MPI_Datatype *mpi_buf_type) { hbool_t plist_is_setup = FALSE; /* Whether the dxpl has been customized */ herr_t ret_value = SUCCEED; @@ -1629,11 +1637,11 @@ H5D_final_collective_io(H5D_io_info_t *io_info, const H5D_type_info_t *type_info plist_is_setup = TRUE; if(io_info->op_type == H5D_IO_OP_WRITE) { - if((io_info->io_ops.single_write)(io_info, type_info, (hsize_t)mpi_buf_count, NULL, NULL) < 0) + if((io_info->io_ops.single_write)(io_info, type_info, mpi_buf_count, NULL, NULL) < 0) HGOTO_ERROR(H5E_DATASET, H5E_WRITEERROR, FAIL, "optimized write failed") } /* end if */ else { - if((io_info->io_ops.single_read)(io_info, type_info, (hsize_t)mpi_buf_count, NULL, NULL) < 0) + if((io_info->io_ops.single_read)(io_info, type_info, mpi_buf_count, NULL, NULL) < 0) HGOTO_ERROR(H5E_DATASET, H5E_READERROR, FAIL, "optimized read failed") } /* end else */ diff --git a/src/H5Sall.c b/src/H5Sall.c index 115d5d35..c98781a 100644 --- a/src/H5Sall.c +++ b/src/H5Sall.c @@ -47,6 +47,8 @@ static htri_t H5S_all_is_contiguous(const H5S_t *space); static htri_t H5S_all_is_single(const H5S_t *space); static htri_t H5S_all_is_regular(const H5S_t *space); static herr_t H5S_all_adjust_u(H5S_t *space, const hsize_t *offset); +static herr_t H5S_all_project_scalar(const H5S_t *space, hsize_t *offset); +static herr_t H5S_all_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset); static herr_t H5S_all_iter_init(H5S_sel_iter_t *iter, const H5S_t *space); /* Selection iteration callbacks */ @@ -76,6 +78,8 @@ const H5S_select_class_t H5S_sel_all[1] = {{ H5S_all_is_single, H5S_all_is_regular, H5S_all_adjust_u, + H5S_all_project_scalar, + H5S_all_project_simple, H5S_all_iter_init, }}; @@ -372,18 +376,18 @@ H5S_all_iter_release (H5S_sel_iter_t UNUSED * iter) EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ -herr_t -H5S_all_release (H5S_t UNUSED * space) +static herr_t +H5S_all_release(H5S_t *space) { - FUNC_ENTER_NOAPI_NOFUNC(H5S_all_release); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_all_release) /* Check args */ - assert (space); + HDassert(space); /* Reset the number of elements in the selection */ - space->select.num_elem=0; + space->select.num_elem = 0; - FUNC_LEAVE_NOAPI(SUCCEED); + FUNC_LEAVE_NOAPI(SUCCEED) } /* H5S_all_release() */ @@ -406,18 +410,18 @@ H5S_all_release (H5S_t UNUSED * space) EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ -herr_t +static herr_t H5S_all_copy(H5S_t *dst, const H5S_t UNUSED *src, hbool_t UNUSED share_selection) { - FUNC_ENTER_NOAPI_NOFUNC(H5S_all_copy); + FUNC_ENTER_NOAPI_NOFUNC(H5S_all_copy) - assert(src); - assert(dst); + HDassert(src); + HDassert(dst); /* Set number of elements in selection */ - dst->select.num_elem=(hsize_t)H5S_GET_EXTENT_NPOINTS(dst); + dst->select.num_elem = (hsize_t)H5S_GET_EXTENT_NPOINTS(dst); - FUNC_LEAVE_NOAPI(SUCCEED); + FUNC_LEAVE_NOAPI(SUCCEED) } /* end H5S_all_copy() */ @@ -542,20 +546,20 @@ H5S_all_serialize (const H5S_t *space, uint8_t *buf) REVISION LOG --------------------------------------------------------------------------*/ herr_t -H5S_all_deserialize (H5S_t *space, const uint8_t UNUSED *buf) +H5S_all_deserialize(H5S_t *space, const uint8_t UNUSED *buf) { herr_t ret_value; /* return value */ - FUNC_ENTER_NOAPI(H5S_all_deserialize, FAIL); + FUNC_ENTER_NOAPI(H5S_all_deserialize, FAIL) - assert(space); + HDassert(space); /* Change to "all" selection */ if((ret_value = H5S_select_all(space, TRUE)) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't change selection") done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_all_deserialize() */ @@ -764,6 +768,69 @@ H5S_all_adjust_u(H5S_t UNUSED *space, const hsize_t UNUSED *offset) } /* H5S_all_adjust_u() */ +/*------------------------------------------------------------------------- + * Function: H5S_all_project_scalar + * + * Purpose: Projects a single element 'all' selection into a scalar + * dataspace + * + * Return: non-negative on success, negative on failure. + * + * Programmer: Quincey Koziol + * Sunday, July 18, 2010 + * + *------------------------------------------------------------------------- + */ +static herr_t +H5S_all_project_scalar(const H5S_t UNUSED *space, hsize_t *offset) +{ + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_all_project_scalar) + + /* Check args */ + HDassert(space && H5S_SEL_ALL == H5S_GET_SELECT_TYPE(space)); + HDassert(offset); + + /* Set offset of selection in projected buffer */ + *offset = 0; + + FUNC_LEAVE_NOAPI(SUCCEED) +} /* H5S_all_project_scalar() */ + + +/*------------------------------------------------------------------------- + * Function: H5S_all_project_simple + * + * Purpose: Projects an 'all' selection onto/into a simple dataspace + * of a different rank + * + * Return: non-negative on success, negative on failure. + * + * Programmer: Quincey Koziol + * Sunday, July 18, 2010 + * + *------------------------------------------------------------------------- + */ +static herr_t +H5S_all_project_simple(const H5S_t *base_space, H5S_t *new_space, hsize_t *offset) +{ + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_NOAPI_NOINIT(H5S_all_project_simple) + + /* Check args */ + HDassert(base_space && H5S_SEL_ALL == H5S_GET_SELECT_TYPE(base_space)); + HDassert(new_space); + HDassert(offset); + + /* Select the entire new space */ + if(H5S_select_all(new_space, TRUE) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "unable to set all selection") + +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* H5S_all_project_simple() */ + + /*-------------------------------------------------------------------------- NAME H5S_select_all diff --git a/src/H5Shyper.c b/src/H5Shyper.c index 74402b1..df81275 100644 --- a/src/H5Shyper.c +++ b/src/H5Shyper.c @@ -33,12 +33,12 @@ /* Local datatypes */ /* Static function prototypes */ -static herr_t H5S_hyper_free_span_info (H5S_hyper_span_info_t *span_info); -static herr_t H5S_hyper_free_span (H5S_hyper_span_t *span); -static H5S_hyper_span_info_t *H5S_hyper_copy_span (H5S_hyper_span_info_t *spans); -static herr_t H5S_hyper_span_scratch (H5S_hyper_span_info_t *spans, void *scr_value); -static herr_t H5S_hyper_span_precompute (H5S_hyper_span_info_t *spans, size_t elmt_size); -static herr_t H5S_generate_hyperslab (H5S_t *space, H5S_seloper_t op, +static herr_t H5S_hyper_free_span_info(H5S_hyper_span_info_t *span_info); +static herr_t H5S_hyper_free_span(H5S_hyper_span_t *span); +static H5S_hyper_span_info_t *H5S_hyper_copy_span(H5S_hyper_span_info_t *spans); +static void H5S_hyper_span_scratch(H5S_hyper_span_info_t *spans, void *scr_value); +static herr_t H5S_hyper_span_precompute(H5S_hyper_span_info_t *spans, size_t elmt_size); +static herr_t H5S_generate_hyperslab(H5S_t *space, H5S_seloper_t op, const hsize_t start[], const hsize_t stride[], const hsize_t count[], const hsize_t block[]); static herr_t H5S_hyper_generate_spans(H5S_t *space); /* Needed for use in hyperslab code (H5Shyper.c) */ @@ -62,6 +62,8 @@ static htri_t H5S_hyper_is_contiguous(const H5S_t *space); static htri_t H5S_hyper_is_single(const H5S_t *space); static htri_t H5S_hyper_is_regular(const H5S_t *space); static herr_t H5S_hyper_adjust_u(H5S_t *space, const hsize_t *offset); +static herr_t H5S_hyper_project_scalar(const H5S_t *space, hsize_t *offset); +static herr_t H5S_hyper_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset); static herr_t H5S_hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space); /* Selection iteration callbacks */ @@ -96,6 +98,8 @@ const H5S_select_class_t H5S_sel_hyper[1] = {{ H5S_hyper_is_single, H5S_hyper_is_regular, H5S_hyper_adjust_u, + H5S_hyper_project_scalar, + H5S_hyper_project_simple, H5S_hyper_iter_init, }}; @@ -292,15 +296,15 @@ H5S_hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space) /* Check if the regular selection can be "flattened" */ if(cont_dim>0) { - unsigned last_dim_flattened=1; /* Flag to indicate that the last dimension was flattened */ - unsigned flat_rank=rank-cont_dim; /* Number of dimensions after flattening */ + unsigned last_dim_flattened = 1; /* Flag to indicate that the last dimension was flattened */ + unsigned flat_rank = rank-cont_dim; /* Number of dimensions after flattening */ unsigned curr_dim; /* Current dimension */ /* Set the iterator's rank to the contiguous dimensions */ - iter->u.hyp.iter_rank=flat_rank; + iter->u.hyp.iter_rank = flat_rank; /* "Flatten" dataspace extent and selection information */ - curr_dim=flat_rank-1; + curr_dim = flat_rank - 1; for(i = (int)rank - 1, acc = 1; i >= 0; i--) { if(tdiminfo[i].block == mem_size[i] && i > 0) { /* "Flatten" this dimension */ @@ -308,24 +312,25 @@ H5S_hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space) acc *= mem_size[i]; /* Indicate that the dimension was flattened */ - last_dim_flattened=1; + last_dim_flattened = 1; } /* end if */ else { if(last_dim_flattened) { /* First dimension after flattened dimensions */ - iter->u.hyp.diminfo[curr_dim].start = tdiminfo[i].start*acc; + iter->u.hyp.diminfo[curr_dim].start = tdiminfo[i].start * acc; + /* Special case for single block regular selections */ if(tdiminfo[i].count==1) iter->u.hyp.diminfo[curr_dim].stride = 1; else - iter->u.hyp.diminfo[curr_dim].stride = tdiminfo[i].stride*acc; + iter->u.hyp.diminfo[curr_dim].stride = tdiminfo[i].stride * acc; iter->u.hyp.diminfo[curr_dim].count = tdiminfo[i].count; - iter->u.hyp.diminfo[curr_dim].block = tdiminfo[i].block*acc; - iter->u.hyp.size[curr_dim] = mem_size[i]*acc; + iter->u.hyp.diminfo[curr_dim].block = tdiminfo[i].block * acc; + iter->u.hyp.size[curr_dim] = mem_size[i] * acc; iter->u.hyp.sel_off[curr_dim] = space->select.offset[i] * acc; /* Reset the "last dim flattened" flag to avoid flattened any further dimensions */ - last_dim_flattened=0; + last_dim_flattened = 0; /* Reset the "accumulator" for possible further dimension flattening */ acc=1; @@ -596,12 +601,12 @@ static htri_t H5S_hyper_iter_has_next_block(const H5S_sel_iter_t *iter) { unsigned u; /* Local index variable */ - herr_t ret_value=FALSE; /* Return value */ + htri_t ret_value = FALSE; /* Return value */ - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_iter_has_next_block); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_iter_has_next_block) /* Check args */ - assert (iter); + HDassert(iter); /* Check for a single "regular" hyperslab */ if(iter->u.hyp.diminfo_valid) { @@ -609,25 +614,25 @@ H5S_hyper_iter_has_next_block(const H5S_sel_iter_t *iter) const hsize_t *toff; /* Temporary offset in selection */ /* Check if the offset of the iterator is at the last location in all dimensions */ - tdiminfo=iter->u.hyp.diminfo; - toff=iter->u.hyp.off; - for(u=0; u<iter->rank; u++) { + tdiminfo = iter->u.hyp.diminfo; + toff = iter->u.hyp.off; + for(u = 0; u < iter->rank; u++) { /* If there is only one block, continue */ - if(tdiminfo[u].count==1) + if(tdiminfo[u].count == 1) continue; - if(toff[u]!=(tdiminfo[u].start+((tdiminfo[u].count-1)*tdiminfo[u].stride))) + if(toff[u] != (tdiminfo[u].start + ((tdiminfo[u].count - 1) * tdiminfo[u].stride))) HGOTO_DONE(TRUE); } /* end for */ } /* end if */ else { /* Check for any levels of the tree with more sequences in them */ - for(u=0; u<iter->rank; u++) - if(iter->u.hyp.span[u]->next!=NULL) + for(u = 0; u < iter->rank; u++) + if(iter->u.hyp.span[u]->next != NULL) HGOTO_DONE(TRUE); } /* end else */ done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_hyper_iter_has_next_block() */ @@ -1089,30 +1094,30 @@ H5S_hyper_iter_release (H5S_sel_iter_t *iter) REVISION LOG --------------------------------------------------------------------------*/ static H5S_hyper_span_t * -H5S_hyper_new_span (hsize_t low, hsize_t high, H5S_hyper_span_info_t *down, H5S_hyper_span_t *next) +H5S_hyper_new_span(hsize_t low, hsize_t high, H5S_hyper_span_info_t *down, H5S_hyper_span_t *next) { H5S_hyper_span_t *ret_value; - FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_new_span); + FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_new_span) /* Allocate a new span node */ - if((ret_value = H5FL_MALLOC(H5S_hyper_span_t))==NULL) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span"); + if(NULL == (ret_value = H5FL_MALLOC(H5S_hyper_span_t))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span") /* Copy the span's basic information */ - ret_value->low=low; - ret_value->high=high; - ret_value->nelem=(high-low)+1; - ret_value->pstride=0; - ret_value->down=down; - ret_value->next=next; + ret_value->low = low; + ret_value->high = high; + ret_value->nelem = (high - low) + 1; + ret_value->pstride = 0; + ret_value->down = down; + ret_value->next = next; /* Increment the reference count of the 'down span' if there is one */ - if(ret_value->down!=NULL) + if(ret_value->down) ret_value->down->count++; done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_hyper_new_span() */ @@ -1195,24 +1200,23 @@ done: REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S_hyper_span_precompute (H5S_hyper_span_info_t *spans, size_t elmt_size) +H5S_hyper_span_precompute(H5S_hyper_span_info_t *spans, size_t elmt_size) { - herr_t ret_value=SUCCEED; /* Return value */ + herr_t ret_value = SUCCEED; /* Return value */ - FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_span_precompute); + FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_span_precompute) - assert(spans); + HDassert(spans); /* Call the helper routine to actually do the work */ - if(H5S_hyper_span_precompute_helper(spans,elmt_size)==FAIL) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't precompute span info"); + if(H5S_hyper_span_precompute_helper(spans, elmt_size) < 0) + HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't precompute span info") /* Reset the scratch pointers for the next routine which needs them */ - if(H5S_hyper_span_scratch(spans,NULL)==FAIL) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't reset hyperslab scratch pointer"); + H5S_hyper_span_scratch(spans, NULL); done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_hyper_span_precompute() */ @@ -1222,10 +1226,10 @@ done: PURPOSE Set the scratch pointers on hyperslab span trees USAGE - herr_t H5S_hyper_span_scratch(span_info) + void H5S_hyper_span_scratch(span_info) H5S_hyper_span_info_t *span_info; IN: Span tree to reset RETURNS - Non-negative on success, negative on failure + <none> DESCRIPTION Set the scratch pointers on a hyperslab span tree. GLOBAL VARIABLES @@ -1233,37 +1237,33 @@ done: EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ -static herr_t -H5S_hyper_span_scratch (H5S_hyper_span_info_t *spans, void *scr_value) +static void +H5S_hyper_span_scratch(H5S_hyper_span_info_t *spans, void *scr_value) { - H5S_hyper_span_t *span; /* Hyperslab span */ - herr_t ret_value=SUCCEED; /* Return value */ + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_span_scratch) - FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_span_scratch); - - assert(spans); + HDassert(spans); /* Check if we've already set this down span tree */ - if(spans->scratch!=scr_value) { + if(spans->scratch != scr_value) { + H5S_hyper_span_t *span; /* Hyperslab span */ + /* Set the tree's scratch pointer */ spans->scratch = (H5S_hyper_span_info_t *)scr_value; /* Set the scratch pointers in all the nodes */ - span=spans->head; - while(span!=NULL) { + span = spans->head; + while(span != NULL) { /* If there are down spans, set their scratch value also */ - if(span->down!=NULL) { - if(H5S_hyper_span_scratch(span->down,scr_value)==FAIL) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't reset hyperslab scratch pointer"); - } /* end if */ + if(span->down != NULL) + H5S_hyper_span_scratch(span->down, scr_value); /* Advance to next span */ - span=span->next; + span = span->next; } /* end while */ } /* end if */ -done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI_VOID } /* H5S_hyper_span_scratch() */ @@ -1293,65 +1293,65 @@ H5S_hyper_copy_span_helper (H5S_hyper_span_info_t *spans) H5S_hyper_span_info_t *new_down; /* New down span tree */ H5S_hyper_span_info_t *ret_value; - FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_copy_span_helper); + FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_copy_span_helper) - assert(spans); + HDassert(spans); /* Check if the span tree was already copied */ - if(spans->scratch!=NULL && spans->scratch!=(H5S_hyper_span_info_t *)~((size_t)NULL)) { + if(spans->scratch != NULL && spans->scratch != (H5S_hyper_span_info_t *)~((size_t)NULL)) { /* Just return the value of the already copied span tree */ - ret_value=spans->scratch; + ret_value = spans->scratch; /* Increment the reference count of the span tree */ ret_value->count++; } /* end if */ else { /* Allocate a new span_info node */ - if((ret_value = H5FL_MALLOC(H5S_hyper_span_info_t))==NULL) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span"); + if(NULL == (ret_value = H5FL_MALLOC(H5S_hyper_span_info_t))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span info") /* Copy the span_info information */ - ret_value->count=1; - ret_value->scratch=NULL; - ret_value->head=NULL; + ret_value->count = 1; + ret_value->scratch = NULL; + ret_value->head = NULL; /* Set the scratch pointer in the node being copied to the newly allocated node */ - spans->scratch=ret_value; + spans->scratch = ret_value; /* Copy over the nodes in the span list */ - span=spans->head; - prev_span=NULL; - while(span!=NULL) { + span = spans->head; + prev_span = NULL; + while(span != NULL) { /* Allocate a new node */ - if((new_span = H5S_hyper_new_span(span->low,span->high,NULL,NULL))==NULL) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span"); + if(NULL == (new_span = H5S_hyper_new_span(span->low, span->high, NULL, NULL))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span") /* Append to list of spans */ - if(prev_span==NULL) - ret_value->head=new_span; + if(NULL == prev_span) + ret_value->head = new_span; else - prev_span->next=new_span; + prev_span->next = new_span; /* Copy the pstride */ - new_span->pstride=span->pstride; + new_span->pstride = span->pstride; /* Recurse to copy the 'down' spans, if there are any */ - if(span->down!=NULL) { - if((new_down = H5S_hyper_copy_span_helper(span->down))==NULL) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span"); - new_span->down=new_down; + if(span->down != NULL) { + if(NULL == (new_down = H5S_hyper_copy_span_helper(span->down))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, NULL, "can't copy hyperslab spans") + new_span->down = new_down; } /* end if */ /* Update the previous (new) span */ - prev_span=new_span; + prev_span = new_span; /* Advance to next span */ - span=span->next; + span = span->next; } /* end while */ } /* end else */ done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_hyper_copy_span_helper() */ @@ -1375,23 +1375,23 @@ done: REVISION LOG --------------------------------------------------------------------------*/ static H5S_hyper_span_info_t * -H5S_hyper_copy_span (H5S_hyper_span_info_t *spans) +H5S_hyper_copy_span(H5S_hyper_span_info_t *spans) { H5S_hyper_span_info_t *ret_value; - FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_copy_span); + FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_copy_span) - assert(spans); + HDassert(spans); /* Copy the hyperslab span tree */ - ret_value=H5S_hyper_copy_span_helper(spans); + if(NULL == (ret_value = H5S_hyper_copy_span_helper(spans))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree") /* Reset the scratch pointers for the next routine which needs them */ - if(H5S_hyper_span_scratch(spans,NULL)==FAIL) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, NULL, "can't reset span tree scratch pointers"); + H5S_hyper_span_scratch(spans, NULL); done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_hyper_copy_span() */ @@ -1630,7 +1630,7 @@ H5S_hyper_copy (H5S_t *dst, const H5S_t *src, hbool_t share_selection) assert(dst); /* Allocate space for the hyperslab selection information */ - if((dst->select.sel_info.hslab=H5FL_MALLOC(H5S_hyper_sel_t))==NULL) + if(NULL == (dst->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t))) HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info"); /* Set temporary pointers */ @@ -1658,7 +1658,7 @@ H5S_hyper_copy (H5S_t *dst, const H5S_t *src, hbool_t share_selection) } /* end if */ else /* Copy the hyperslab span information */ - dst->select.sel_info.hslab->span_lst=H5S_hyper_copy_span(src->select.sel_info.hslab->span_lst); + dst->select.sel_info.hslab->span_lst = H5S_hyper_copy_span(src->select.sel_info.hslab->span_lst); } /* end if */ done: @@ -2331,44 +2331,44 @@ H5S_hyper_span_blocklist(H5S_hyper_span_info_t *spans, hsize_t start[], hsize_t { H5S_hyper_span_t *curr; /* Pointer to current hyperslab span */ hsize_t u; /* Index variable */ - herr_t ret_value=SUCCEED; /* return value */ + herr_t ret_value = SUCCEED; /* return value */ - FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_span_blocklist); + FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_span_blocklist) /* Sanity checks */ - assert(spans); - assert(rank<H5O_LAYOUT_NDIMS); - assert(start); - assert(end); - assert(startblock); - assert(numblocks && *numblocks>0); - assert(buf && *buf); + HDassert(spans); + HDassert(rank < H5O_LAYOUT_NDIMS); + HDassert(start); + HDassert(end); + HDassert(startblock); + HDassert(numblocks && *numblocks > 0); + HDassert(buf && *buf); /* Walk through the list of spans, recursing or outputing them */ - curr=spans->head; - while(curr!=NULL && *numblocks>0) { + curr = spans->head; + while(curr != NULL && *numblocks > 0) { /* Recurse if this node has down spans */ - if(curr->down!=NULL) { + if(curr->down != NULL) { /* Add the starting and ending points for this span to the list */ - start[rank]=curr->low; - end[rank]=curr->high; + start[rank] = curr->low; + end[rank] = curr->high; /* Recurse down to the next dimension */ - if(H5S_hyper_span_blocklist(curr->down,start,end,rank+1,startblock,numblocks,buf)<0) + if(H5S_hyper_span_blocklist(curr->down, start, end, (rank + 1), startblock, numblocks, buf) < 0) HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans"); } /* end if */ else { /* Skip this block if we haven't skipped all the startblocks yet */ - if(*startblock>0) { + if(*startblock > 0) { /* Decrement the starting block */ (*startblock)--; - } + } /* end if */ /* Process this block */ else { /* Encode all the previous dimensions starting & ending points */ /* Copy previous starting points */ - for(u=0; u<rank; u++, (*buf)++) + for(u = 0; u < rank; u++, (*buf)++) HDmemcpy(*buf, &start[u], sizeof(hsize_t)); /* Copy starting point for this span */ @@ -2376,7 +2376,7 @@ H5S_hyper_span_blocklist(H5S_hyper_span_info_t *spans, hsize_t start[], hsize_t (*buf)++; /* Copy previous ending points */ - for(u=0; u<rank; u++, (*buf)++) + for(u = 0; u < rank; u++, (*buf)++) HDmemcpy(*buf, &end[u], sizeof(hsize_t)); /* Copy starting point for this span */ @@ -2389,11 +2389,11 @@ H5S_hyper_span_blocklist(H5S_hyper_span_info_t *spans, hsize_t start[], hsize_t } /* end else */ /* Advance to next node */ - curr=curr->next; + curr = curr->next; } /* end while */ done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_hyper_span_blocklist() */ @@ -2430,29 +2430,26 @@ done: static herr_t H5S_get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startblock, hsize_t numblocks, hsize_t *buf) { - H5S_hyper_dim_t *diminfo; /* Alias for dataspace's diminfo information */ - hsize_t tmp_count[H5O_LAYOUT_NDIMS]; /* Temporary hyperslab counts */ - hsize_t offset[H5O_LAYOUT_NDIMS]; /* Offset of element in dataspace */ - hsize_t start[H5O_LAYOUT_NDIMS]; /* Location of start of hyperslab */ - hsize_t end[H5O_LAYOUT_NDIMS]; /* Location of end of hyperslab */ - hsize_t temp_off; /* Offset in a given dimension */ - int i; /* Counter */ - int fast_dim; /* Rank of the fastest changing dimension for the dataspace */ - int temp_dim; /* Temporary rank holder */ - int ndims; /* Rank of the dataspace */ - int done; /* Whether we are done with the iteration */ - herr_t ret_value=SUCCEED; /* Return value */ + herr_t ret_value = SUCCEED; /* Return value */ - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_get_select_hyper_blocklist); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_get_select_hyper_blocklist) - assert(space); - assert(buf); + HDassert(space); + HDassert(buf); /* Check for a "regular" hyperslab selection */ if(space->select.sel_info.hslab->diminfo_valid) { + const H5S_hyper_dim_t *diminfo; /* Alias for dataspace's diminfo information */ + hsize_t tmp_count[H5O_LAYOUT_NDIMS]; /* Temporary hyperslab counts */ + hsize_t offset[H5O_LAYOUT_NDIMS]; /* Offset of element in dataspace */ + unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ + unsigned ndims; /* Rank of the dataspace */ + hbool_t done; /* Whether we are done with the iteration */ + unsigned u; /* Counter */ + /* Set some convienence values */ - ndims=space->extent.rank; - fast_dim=ndims-1; + ndims = space->extent.rank; + fast_dim = ndims - 1; /* Check which set of dimension information to use */ if(internal) @@ -2460,39 +2457,41 @@ H5S_get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startbloc * Use the "optimized dimension information" to pass back information * on the blocks set, not the "application information". */ - diminfo=space->select.sel_info.hslab->opt_diminfo; + diminfo = space->select.sel_info.hslab->opt_diminfo; else /* * Use the "application dimension information" to pass back to the user * the blocks they set, not the optimized, internal information. */ - diminfo=space->select.sel_info.hslab->app_diminfo; + diminfo = space->select.sel_info.hslab->app_diminfo; /* Build the tables of count sizes as well as the initial offset */ - for(i=0; i<ndims; i++) { - tmp_count[i]=diminfo[i].count; - offset[i]=diminfo[i].start; + for(u = 0; u < ndims; u++) { + tmp_count[u] = diminfo[u].count; + offset[u] = diminfo[u].start; } /* end for */ /* We're not done with the iteration */ - done=0; + done = FALSE; /* Go iterate over the hyperslabs */ - while(done==0 && numblocks>0) { + while(!done && numblocks > 0) { + hsize_t temp_off; /* Offset in a given dimension */ + /* Iterate over the blocks in the fastest dimension */ - while(tmp_count[fast_dim]>0 && numblocks>0) { + while(tmp_count[fast_dim] > 0 && numblocks > 0) { /* Check if we should copy this block information */ - if(startblock==0) { + if(startblock == 0) { /* Copy the starting location */ - HDmemcpy(buf,offset,sizeof(hsize_t)*ndims); - buf+=ndims; + HDmemcpy(buf, offset, sizeof(hsize_t) * ndims); + buf += ndims; /* Compute the ending location */ - HDmemcpy(buf,offset,sizeof(hsize_t)*ndims); - for(i=0; i<ndims; i++) - buf[i]+=(diminfo[i].block-1); - buf+=ndims; + HDmemcpy(buf, offset, sizeof(hsize_t) * ndims); + for(u = 0; u < ndims; u++) + buf[u] += (diminfo[u].block - 1); + buf += ndims; /* Decrement the number of blocks to retrieve */ numblocks--; @@ -2501,33 +2500,35 @@ H5S_get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startbloc startblock--; /* Move the offset to the next sequence to start */ - offset[fast_dim]+=diminfo[fast_dim].stride; + offset[fast_dim] += diminfo[fast_dim].stride; /* Decrement the block count */ tmp_count[fast_dim]--; } /* end while */ /* Work on other dimensions if necessary */ - if(fast_dim>0 && numblocks>0) { + if(fast_dim > 0 && numblocks > 0) { + int temp_dim; /* Temporary rank holder */ + /* Reset the block counts */ - tmp_count[fast_dim]=diminfo[fast_dim].count; + tmp_count[fast_dim] = diminfo[fast_dim].count; /* Bubble up the decrement to the slower changing dimensions */ - temp_dim=fast_dim-1; - while(temp_dim>=0 && done==0) { + temp_dim = (int)(fast_dim - 1); + while(temp_dim >= 0 && !done) { /* Decrement the block count */ tmp_count[temp_dim]--; /* Check if we have more blocks left */ - if(tmp_count[temp_dim]>0) + if(tmp_count[temp_dim] > 0) break; /* Check for getting out of iterator */ - if(temp_dim==0) - done=1; + if(temp_dim == 0) + done = TRUE; /* Reset the block count in this dimension */ - tmp_count[temp_dim]=diminfo[temp_dim].count; + tmp_count[temp_dim] = diminfo[temp_dim].count; /* Wrapped a dimension, go up to next dimension */ temp_dim--; @@ -2535,16 +2536,20 @@ H5S_get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startbloc } /* end if */ /* Re-compute offset array */ - for(i=0; i<ndims; i++) { - temp_off=diminfo[i].start+diminfo[i].stride*(diminfo[i].count-tmp_count[i]); - offset[i]=temp_off; + for(u = 0; u < ndims; u++) { + temp_off = diminfo[u].start + diminfo[u].stride * (diminfo[u].count - tmp_count[u]); + offset[u] = temp_off; } /* end for */ } /* end while */ } /* end if */ - else - ret_value=H5S_hyper_span_blocklist(space->select.sel_info.hslab->span_lst,start,end,(hsize_t)0,&startblock,&numblocks,&buf); + else { + hsize_t start[H5O_LAYOUT_NDIMS]; /* Location of start of hyperslab */ + hsize_t end[H5O_LAYOUT_NDIMS]; /* Location of end of hyperslab */ - FUNC_LEAVE_NOAPI(ret_value); + ret_value = H5S_hyper_span_blocklist(space->select.sel_info.hslab->span_lst, start, end, (hsize_t)0, &startblock, &numblocks, &buf); + } /* end else */ + + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_get_select_hyper_blocklist() */ @@ -2636,40 +2641,40 @@ done: REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S_hyper_bounds_helper (const H5S_hyper_span_info_t *spans, const hssize_t *offset, hsize_t rank, hsize_t *start, hsize_t *end) +H5S_hyper_bounds_helper(const H5S_hyper_span_info_t *spans, const hssize_t *offset, hsize_t rank, hsize_t *start, hsize_t *end) { - H5S_hyper_span_t *curr; /* Hyperslab information nodes */ - herr_t ret_value=SUCCEED; /* Return value */ + H5S_hyper_span_t *curr; /* Hyperslab information nodes */ + herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_bounds_helper) - assert(spans); - assert(offset); - assert(rank<H5O_LAYOUT_NDIMS); - assert(start); - assert(end); + HDassert(spans); + HDassert(offset); + HDassert(rank < H5O_LAYOUT_NDIMS); + HDassert(start); + HDassert(end); /* Check each point to determine whether selection+offset is within extent */ curr=spans->head; while(curr!=NULL) { /* Check for offset moving selection negative */ - if(((hssize_t)curr->low+offset[rank])<0) + if(((hssize_t)curr->low + offset[rank]) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "offset moves selection out of bounds") /* Check if the current span extends the bounding box */ - if((curr->low+offset[rank])<start[rank]) - start[rank]=curr->low+offset[rank]; - if((curr->high+offset[rank])>end[rank]) - end[rank]=curr->high+offset[rank]; + if((curr->low + offset[rank]) < start[rank]) + start[rank] = curr->low + offset[rank]; + if((curr->high + offset[rank]) > end[rank]) + end[rank] = curr->high + offset[rank]; /* Recurse if this node has down spans */ - if(curr->down!=NULL) { - if(H5S_hyper_bounds_helper(curr->down,offset,rank+1,start,end)<0) + if(curr->down != NULL) { + if(H5S_hyper_bounds_helper(curr->down, offset, (rank + 1), start, end) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "failure in lower dimension") } /* end if */ /* Advance to next node */ - curr=curr->next; + curr = curr->next; } /* end while */ done: @@ -3609,20 +3614,16 @@ done: herr_t H5S_hyper_reset_scratch(H5S_t *space) { - herr_t ret_value=SUCCEED; /* Return value */ - - FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_reset_scratch); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_reset_scratch) - assert(space); + HDassert(space); /* Check if there are spans in the span tree */ - if(space->select.sel_info.hslab->span_lst!=NULL) + if(space->select.sel_info.hslab->span_lst != NULL) /* Reset the scratch pointers for the next routine which needs them */ - if(H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst,NULL)==FAIL) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't reset span tree scratch pointers"); + H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst, NULL); -done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(SUCCEED) } /* H5S_hyper_reset_scratch() */ @@ -3685,6 +3686,8 @@ H5S_hyper_convert(H5S_t *space) case H5S_SEL_NONE: /* No elements selected in dataspace */ case H5S_SEL_POINTS: /* Point selection */ + case H5S_SEL_ERROR: /* Selection error */ + case H5S_SEL_N: /* Selection count */ default: HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "can't convert to span tree selection"); } /* end switch */ @@ -4033,8 +4036,7 @@ H5S_hyper_adjust_u(H5S_t *space, const hsize_t *offset) HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab offset adjustment"); /* Reset the scratch pointers for the next routine which needs them */ - if(H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst,NULL)==FAIL) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't reset hyperslab scratch pointer"); + H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst, NULL); } /* end if */ done: @@ -4042,6 +4044,357 @@ done: } /* H5S_hyper_adjust_u() */ +/*------------------------------------------------------------------------- + * Function: H5S_hyper_project_scalar + * + * Purpose: Projects a single element hyperslab selection into a scalar + * dataspace + * + * Return: non-negative on success, negative on failure. + * + * Programmer: Quincey Koziol + * Sunday, July 18, 2010 + * + *------------------------------------------------------------------------- + */ +static herr_t +H5S_hyper_project_scalar(const H5S_t *space, hsize_t *offset) +{ + hsize_t block[H5S_MAX_RANK]; /* Block selected in base dataspace */ + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_project_scalar) + + /* Check args */ + HDassert(space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(space)); + HDassert(offset); + + /* Check for a "regular" hyperslab selection */ + if(space->select.sel_info.hslab->diminfo_valid) { + const H5S_hyper_dim_t *diminfo = space->select.sel_info.hslab->opt_diminfo; /* Alias for dataspace's diminfo information */ + unsigned u; /* Counter */ + + /* Build the table of the initial offset */ + for(u = 0; u < space->extent.rank; u++) { + block[u] = diminfo[u].start; + + /* Check for more than one hyperslab */ + if(diminfo[u].count > 1 || diminfo[u].block > 1) + HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "hyperslab selection of one element has more than one node!") + } /* end for */ + } /* end if */ + else { + const H5S_hyper_span_t *curr; /* Pointer to current hyperslab span */ + unsigned curr_dim; /* Current dimension being operated on */ + + /* Advance down selected spans */ + curr = space->select.sel_info.hslab->span_lst->head; + curr_dim = 0; + while(curr) { + /* Check for more than one span */ + if(curr->next || curr->low != curr->high) + HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "hyperslab selection of one element has more than one node!") + + /* Save the location of the selection in current dimension */ + block[curr_dim] = curr->low; + + /* Advance down to next dimension */ + curr = curr->down->head; + curr_dim++; + } /* end while */ + } /* end else */ + + /* Calculate offset of selection in projected buffer */ + *offset = H5V_array_offset(space->extent.rank, space->extent.size, block); + +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* H5S_hyper_project_scalar() */ + + +/*------------------------------------------------------------------------- + * Function: H5S_hyper_project_simple_lower + * + * Purpose: Projects a hyperslab selection onto/into a simple dataspace + * of a lower rank + * + * Return: non-negative on success, negative on failure. + * + * Programmer: Quincey Koziol + * Sunday, July 18, 2010 + * + *------------------------------------------------------------------------- + */ +static herr_t +H5S_hyper_project_simple_lower(const H5S_t *base_space, H5S_t *new_space) +{ + H5S_hyper_span_info_t *down; /* Pointer to list of spans */ + unsigned curr_dim; /* Current dimension being operated on */ + + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_project_simple_lower) + + /* Check args */ + HDassert(base_space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(base_space)); + HDassert(new_space); + HDassert(new_space->extent.rank < base_space->extent.rank); + + /* Walk down the span tree until we reach the selection to project */ + down = base_space->select.sel_info.hslab->span_lst; + curr_dim = 0; + while(down && curr_dim < (base_space->extent.rank - new_space->extent.rank)) { + /* Sanity check */ + HDassert(NULL == down->head->next); + + /* Advance down to next dimension */ + down = down->head->down; + curr_dim++; + } /* end while */ + HDassert(down); + + /* Share the underlying hyperslab span information */ + new_space->select.sel_info.hslab->span_lst = down; + new_space->select.sel_info.hslab->span_lst->count++; + + FUNC_LEAVE_NOAPI(SUCCEED) +} /* H5S_hyper_project_simple_lower() */ + + +/*------------------------------------------------------------------------- + * Function: H5S_hyper_project_simple_higher + * + * Purpose: Projects a hyperslab selection onto/into a simple dataspace + * of a higher rank + * + * Return: non-negative on success, negative on failure. + * + * Programmer: Quincey Koziol + * Sunday, July 18, 2010 + * + *------------------------------------------------------------------------- + */ +static herr_t +H5S_hyper_project_simple_higher(const H5S_t *base_space, H5S_t *new_space) +{ + H5S_hyper_span_t *prev_span = NULL; /* Pointer to previous list of spans */ + unsigned curr_dim; /* Current dimension being operated on */ + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_project_simple_higher) + + /* Check args */ + HDassert(base_space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(base_space)); + HDassert(new_space); + HDassert(new_space->extent.rank > base_space->extent.rank); + + /* Create nodes until reaching the correct # of dimensions */ + new_space->select.sel_info.hslab->span_lst = NULL; + curr_dim = 0; + while(curr_dim < (new_space->extent.rank - base_space->extent.rank)) { + H5S_hyper_span_info_t *new_span_info; /* Pointer to list of spans */ + H5S_hyper_span_t *new_span; /* Temporary hyperslab span */ + + /* Allocate a new span_info node */ + if(NULL == (new_span_info = H5FL_MALLOC(H5S_hyper_span_info_t))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span info") + + /* Check for linking into higher span */ + if(prev_span) + prev_span->down = new_span_info; + + /* Allocate a new node */ + if(NULL == (new_span = H5S_hyper_new_span(0, 0, NULL, NULL))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span") + + /* Set the span_info information */ + new_span_info->count = 1; + new_span_info->scratch = NULL; + new_span_info->head = new_span; + + /* Attach to new space, if top span info */ + if(NULL == new_space->select.sel_info.hslab->span_lst) + new_space->select.sel_info.hslab->span_lst = new_span_info; + + /* Remember previous span info */ + prev_span = new_span; + + /* Advance to next dimension */ + curr_dim++; + } /* end while */ + HDassert(new_space->select.sel_info.hslab->span_lst); + HDassert(prev_span); + + /* Share the underlying hyperslab span information */ + prev_span->down = base_space->select.sel_info.hslab->span_lst; + prev_span->down->count++; + +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* H5S_hyper_project_simple_higher() */ + + +/*------------------------------------------------------------------------- + * Function: H5S_hyper_project_simple + * + * Purpose: Projects a hyperslab selection onto/into a simple dataspace + * of a different rank + * + * Return: non-negative on success, negative on failure. + * + * Programmer: Quincey Koziol + * Sunday, July 18, 2010 + * + *------------------------------------------------------------------------- + */ +static herr_t +H5S_hyper_project_simple(const H5S_t *base_space, H5S_t *new_space, hsize_t *offset) +{ + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_NOAPI_NOINIT(H5S_hyper_project_simple) + + /* Check args */ + HDassert(base_space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(base_space)); + HDassert(new_space); + HDassert(offset); + + /* We are setting a new selection, remove any current selection in new dataspace */ + if(H5S_SELECT_RELEASE(new_space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection") + + /* Allocate space for the hyperslab selection information */ + if(NULL == (new_space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t))) + HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info") + + /* Check for a "regular" hyperslab selection */ + if(base_space->select.sel_info.hslab->diminfo_valid) { + unsigned base_space_dim; /* Current dimension in the base dataspace */ + unsigned new_space_dim; /* Current dimension in the new dataspace */ + + /* Check if the new space's rank is < or > base space's rank */ + if(new_space->extent.rank < base_space->extent.rank) { + const H5S_hyper_dim_t *opt_diminfo = base_space->select.sel_info.hslab->opt_diminfo; /* Alias for dataspace's diminfo information */ + hsize_t block[H5S_MAX_RANK]; /* Block selected in base dataspace */ + unsigned u; /* Local index variable */ + + /* Compute the offset for the down-projection */ + HDmemset(block, 0, sizeof(block)); + for(u = 0; u < (base_space->extent.rank - new_space->extent.rank); u++) + block[u] = opt_diminfo[u].start; + *offset = H5V_array_offset(base_space->extent.rank, base_space->extent.size, block); + + /* Set the correct dimensions for the base & new spaces */ + base_space_dim = base_space->extent.rank - new_space->extent.rank; + new_space_dim = 0; + } /* end if */ + else { + HDassert(new_space->extent.rank > base_space->extent.rank); + + /* The offset is zero when projected into higher dimensions */ + *offset = 0; + + /* Set the diminfo information for the higher dimensions */ + for(new_space_dim = 0; new_space_dim < (new_space->extent.rank - base_space->extent.rank); new_space_dim++) { + new_space->select.sel_info.hslab->app_diminfo[new_space_dim].start = 0; + new_space->select.sel_info.hslab->app_diminfo[new_space_dim].stride = 1; + new_space->select.sel_info.hslab->app_diminfo[new_space_dim].count = 1; + new_space->select.sel_info.hslab->app_diminfo[new_space_dim].block = 1; + + new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].start = 0; + new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].stride = 1; + new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].count = 1; + new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].block = 1; + } /* end for */ + + /* Start at beginning of base space's dimension info */ + base_space_dim = 0; + } /* end else */ + + /* Copy the diminfo */ + while(base_space_dim < base_space->extent.rank) { + new_space->select.sel_info.hslab->app_diminfo[new_space_dim].start = + base_space->select.sel_info.hslab->app_diminfo[base_space_dim].start; + new_space->select.sel_info.hslab->app_diminfo[new_space_dim].stride = + base_space->select.sel_info.hslab->app_diminfo[base_space_dim].stride; + new_space->select.sel_info.hslab->app_diminfo[new_space_dim].count = + base_space->select.sel_info.hslab->app_diminfo[base_space_dim].count; + new_space->select.sel_info.hslab->app_diminfo[new_space_dim].block = + base_space->select.sel_info.hslab->app_diminfo[base_space_dim].block; + + new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].start = + base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].start; + new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].stride = + base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].stride; + new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].count = + base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].count; + new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].block = + base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].block; + + /* Advance to next dimensions */ + base_space_dim++; + new_space_dim++; + } /* end for */ + + /* Indicate that the dimension information is valid */ + new_space->select.sel_info.hslab->diminfo_valid = TRUE; + + /* Indicate that there's no slab information */ + new_space->select.sel_info.hslab->span_lst = NULL; + } /* end if */ + else { + /* Check if the new space's rank is < or > base space's rank */ + if(new_space->extent.rank < base_space->extent.rank) { + const H5S_hyper_span_t *curr; /* Pointer to current hyperslab span */ + hsize_t block[H5S_MAX_RANK]; /* Block selected in base dataspace */ + unsigned curr_dim; /* Current dimension being operated on */ + + /* Clear the block buffer */ + HDmemset(block, 0, sizeof(block)); + + /* Advance down selected spans */ + curr = base_space->select.sel_info.hslab->span_lst->head; + curr_dim = 0; + while(curr && curr_dim < (base_space->extent.rank - new_space->extent.rank)) { + /* Save the location of the selection in current dimension */ + block[curr_dim] = curr->low; + + /* Advance down to next dimension */ + curr = curr->down->head; + curr_dim++; + } /* end while */ + + /* Compute the offset for the down-projection */ + *offset = H5V_array_offset(base_space->extent.rank, base_space->extent.size, block); + + /* Project the base space's selection down in less dimensions */ + if(H5S_hyper_project_simple_lower(base_space, new_space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't project hyperslab selection into less dimensions") + } /* end if */ + else { + HDassert(new_space->extent.rank > base_space->extent.rank); + + /* The offset is zero when projected into higher dimensions */ + *offset = 0; + + /* Project the base space's selection down in less dimensions */ + if(H5S_hyper_project_simple_higher(base_space, new_space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't project hyperslab selection into less dimensions") + } /* end else */ + + /* Indicate that the dimension information is not valid */ + new_space->select.sel_info.hslab->diminfo_valid = FALSE; + } /* end else */ + + /* Number of elements selected will be the same */ + new_space->select.num_elem = base_space->select.num_elem; + + /* Set selection type */ + new_space->select.type = H5S_sel_hyper; + +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* H5S_hyper_project_simple() */ + + /*-------------------------------------------------------------------------- NAME H5S_hyper_adjust_helper_s @@ -4061,41 +4414,41 @@ done: REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S_hyper_adjust_helper_s (H5S_hyper_span_info_t *spans, const hssize_t *offset) +H5S_hyper_adjust_helper_s(H5S_hyper_span_info_t *spans, const hssize_t *offset) { H5S_hyper_span_t *span; /* Pointer to current span in span tree */ - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_adjust_helper_s); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_hyper_adjust_helper_s) /* Sanity check */ - assert(spans); - assert(offset); + HDassert(spans); + HDassert(offset); /* Check if we've already set this down span tree */ - if(spans->scratch!=(H5S_hyper_span_info_t *)~((size_t)NULL)) { + if(spans->scratch != (H5S_hyper_span_info_t *)~((size_t)NULL)) { /* Set the tree's scratch pointer */ - spans->scratch=(H5S_hyper_span_info_t *)~((size_t)NULL); + spans->scratch = (H5S_hyper_span_info_t *)~((size_t)NULL); /* Get the span lists for each span in this tree */ - span=spans->head; + span = spans->head; /* Iterate over the spans in tree */ - while(span!=NULL) { + while(span != NULL) { /* Adjust span offset */ - assert((hssize_t)span->low>=*offset); - span->low-=*offset; - span->high-=*offset; + HDassert((hssize_t)span->low >= *offset); + span->low -= *offset; + span->high -= *offset; /* Recursively adjust spans in next dimension down */ - if(span->down!=NULL) - H5S_hyper_adjust_helper_s(span->down,offset+1); + if(span->down != NULL) + H5S_hyper_adjust_helper_s(span->down, offset + 1); /* Advance to next span in this dimension */ - span=span->next; + span = span->next; } /* end while */ } /* end if */ - FUNC_LEAVE_NOAPI(SUCCEED); + FUNC_LEAVE_NOAPI(SUCCEED) } /* H5S_hyper_adjust_helper_s() */ @@ -4142,8 +4495,7 @@ H5S_hyper_adjust_s(H5S_t *space, const hssize_t *offset) HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab offset adjustment"); /* Reset the scratch pointers for the next routine which needs them */ - if(H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst,NULL)==FAIL) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't reset hyperslab scratch pointer"); + H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst, NULL); } /* end if */ done: @@ -4252,8 +4604,7 @@ H5S_hyper_move(H5S_t *space, const hssize_t *offset) HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "can't perform hyperslab offset movement"); /* Reset the scratch pointers for the next routine which needs them */ - if(H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst,NULL)==FAIL) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "can't reset hyperslab scratch pointer"); + H5S_hyper_span_scratch(space->select.sel_info.hslab->span_lst, NULL); } /* end if */ done: @@ -6035,8 +6386,6 @@ done: * Programmer: Quincey Koziol * Wednesday, January 10, 2001 * - * Modifications: - * *------------------------------------------------------------------------- */ herr_t @@ -6220,18 +6569,18 @@ H5S_select_hyperslab (H5S_t *space, H5S_seloper_t op, HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation"); } /* end switch */ - if(op==H5S_SELECT_SET) { + if(op == H5S_SELECT_SET) { /* If we are setting a new selection, remove current selection first */ - if(H5S_SELECT_RELEASE(space)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release hyperslab"); + if(H5S_SELECT_RELEASE(space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection") /* Allocate space for the hyperslab selection information */ - if((space->select.sel_info.hslab=H5FL_MALLOC(H5S_hyper_sel_t))==NULL) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info"); + if(NULL == (space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t))) + HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info") /* Save the diminfo */ - space->select.num_elem=1; - for(u=0; u<space->extent.rank; u++) { + space->select.num_elem = 1; + for(u = 0; u < space->extent.rank; u++) { space->select.sel_info.hslab->app_diminfo[u].start = start[u]; space->select.sel_info.hslab->app_diminfo[u].stride = stride[u]; space->select.sel_info.hslab->app_diminfo[u].count = count[u]; @@ -6241,39 +6590,40 @@ H5S_select_hyperslab (H5S_t *space, H5S_seloper_t op, space->select.sel_info.hslab->opt_diminfo[u].stride = opt_stride[u]; space->select.sel_info.hslab->opt_diminfo[u].count = opt_count[u]; space->select.sel_info.hslab->opt_diminfo[u].block = opt_block[u]; - space->select.num_elem*=(opt_count[u]*opt_block[u]); + + space->select.num_elem *= (opt_count[u] * opt_block[u]); } /* end for */ /* Indicate that the dimension information is valid */ - space->select.sel_info.hslab->diminfo_valid=TRUE; + space->select.sel_info.hslab->diminfo_valid = TRUE; /* Indicate that there's no slab information */ - space->select.sel_info.hslab->span_lst=NULL; + space->select.sel_info.hslab->span_lst = NULL; } /* end if */ - else if(op>=H5S_SELECT_OR && op<=H5S_SELECT_NOTA) { + else if(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA) { /* Sanity check */ - assert(H5S_GET_SELECT_TYPE(space)==H5S_SEL_HYPERSLABS); + HDassert(H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS); /* Check if there's no hyperslab span information currently */ - if(space->select.sel_info.hslab->span_lst==NULL) - if(H5S_hyper_generate_spans(space)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree"); + if(NULL == space->select.sel_info.hslab->span_lst) + if(H5S_hyper_generate_spans(space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree") /* Indicate that the regular dimensions are no longer valid */ - space->select.sel_info.hslab->diminfo_valid=FALSE; + space->select.sel_info.hslab->diminfo_valid = FALSE; /* Add in the new hyperslab information */ - if(H5S_generate_hyperslab (space, op, start, opt_stride, opt_count, opt_block)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs"); + if(H5S_generate_hyperslab(space, op, start, opt_stride, opt_count, opt_block) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs") } /* end if */ else - HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation"); + HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") /* Set selection type */ - space->select.type=H5S_sel_hyper; + space->select.type = H5S_sel_hyper; done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* end H5S_select_hyperslab() */ diff --git a/src/H5Smpio.c b/src/H5Smpio.c index f535122..e9d0541 100644 --- a/src/H5Smpio.c +++ b/src/H5Smpio.c @@ -31,45 +31,25 @@ #include "H5Fprivate.h" /* File access */ #include "H5FDprivate.h" /* File drivers */ #include "H5Iprivate.h" /* IDs */ +#include "H5MMprivate.h" /* Memory management */ #include "H5Oprivate.h" /* Object headers */ #include "H5Pprivate.h" /* Property lists */ #include "H5Spkg.h" /* Dataspaces */ #ifdef H5_HAVE_PARALLEL -static herr_t -H5S_mpio_all_type( const H5S_t *space, size_t elmt_size, - /* out: */ - MPI_Datatype *new_type, - size_t *count, - hsize_t *extra_offset, - hbool_t *is_derived_type ); -static herr_t -H5S_mpio_none_type( const H5S_t *space, size_t elmt_size, - /* out: */ - MPI_Datatype *new_type, - size_t *count, - hsize_t *extra_offset, - hbool_t *is_derived_type ); -static herr_t -H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size, - /* out: */ - MPI_Datatype *new_type, - size_t *count, - hsize_t *extra_offset, - hbool_t *is_derived_type ); - -static herr_t -H5S_mpio_span_hyper_type( const H5S_t *space, size_t elmt_size, - /* out: */ - MPI_Datatype *new_type, - size_t *count, - hsize_t *extra_offset, - hbool_t *is_derived_type ); +static herr_t H5S_mpio_all_type(const H5S_t *space, size_t elmt_size, + MPI_Datatype *new_type, int *count, hbool_t *is_derived_type); +static herr_t H5S_mpio_none_type(MPI_Datatype *new_type, int *count, + hbool_t *is_derived_type); +static herr_t H5S_mpio_hyper_type(const H5S_t *space, size_t elmt_size, + MPI_Datatype *new_type, int *count, hbool_t *is_derived_type); +static herr_t H5S_mpio_span_hyper_type(const H5S_t *space, size_t elmt_size, + MPI_Datatype *new_type, int *count, hbool_t *is_derived_type); +static herr_t H5S_obtain_datatype(const hsize_t down[], H5S_hyper_span_t* span, + const MPI_Datatype *elmt_type, MPI_Datatype *span_type, size_t elmt_size); -static herr_t H5S_obtain_datatype(const hsize_t size[], - H5S_hyper_span_t* span,MPI_Datatype *span_type, - size_t elmt_size,int dimindex); +#define H5S_MPIO_INITIAL_ALLOC_COUNT 256 /*------------------------------------------------------------------------- @@ -82,30 +62,20 @@ static herr_t H5S_obtain_datatype(const hsize_t size[], * Outputs: *new_type the MPI type corresponding to the selection * *count how many objects of the new_type in selection * (useful if this is the buffer type for xfer) - * *extra_offset Number of bytes of offset within dataset * *is_derived_type 0 if MPI primitive type, 1 if derived * * Programmer: rky 980813 * - * Modifications: - * - * Quincey Koziol, June 18, 2002 - * Added 'extra_offset' parameter - * *------------------------------------------------------------------------- */ static herr_t -H5S_mpio_all_type( const H5S_t *space, size_t elmt_size, - /* out: */ - MPI_Datatype *new_type, - size_t *count, - hsize_t *extra_offset, - hbool_t *is_derived_type ) +H5S_mpio_all_type(const H5S_t *space, size_t elmt_size, + MPI_Datatype *new_type, int *count, hbool_t *is_derived_type) { hsize_t total_bytes; - hssize_t snelmts; /*total number of elmts (signed) */ - hsize_t nelmts; /*total number of elmts */ - herr_t ret_value = SUCCEED; + hssize_t snelmts; /* Total number of elmts (signed) */ + hsize_t nelmts; /* Total number of elmts */ + herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_all_type) @@ -121,8 +91,7 @@ H5S_mpio_all_type( const H5S_t *space, size_t elmt_size, /* fill in the return values */ *new_type = MPI_BYTE; - H5_ASSIGN_OVERFLOW(*count, total_bytes, hsize_t, size_t); - *extra_offset = 0; + H5_ASSIGN_OVERFLOW(*count, total_bytes, hsize_t, int); *is_derived_type = FALSE; done: @@ -140,32 +109,23 @@ done: * Outputs: *new_type the MPI type corresponding to the selection * *count how many objects of the new_type in selection * (useful if this is the buffer type for xfer) - * *extra_offset Number of bytes of offset within dataset * *is_derived_type 0 if MPI primitive type, 1 if derived * * Programmer: Quincey Koziol, October 29, 2002 * - * Modifications: - * *------------------------------------------------------------------------- */ static herr_t -H5S_mpio_none_type( const H5S_t UNUSED *space, size_t UNUSED elmt_size, - /* out: */ - MPI_Datatype *new_type, - size_t *count, - hsize_t *extra_offset, - hbool_t *is_derived_type ) +H5S_mpio_none_type(MPI_Datatype *new_type, int *count, hbool_t *is_derived_type) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_mpio_none_type); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_mpio_none_type) /* fill in the return values */ *new_type = MPI_BYTE; *count = 0; - *extra_offset = 0; *is_derived_type = FALSE; - FUNC_LEAVE_NOAPI(SUCCEED); + FUNC_LEAVE_NOAPI(SUCCEED) } /* H5S_mpio_none_type() */ @@ -179,35 +139,15 @@ H5S_mpio_none_type( const H5S_t UNUSED *space, size_t UNUSED elmt_size, * Outputs: *new_type the MPI type corresponding to the selection * *count how many objects of the new_type in selection * (useful if this is the buffer type for xfer) - * *extra_offset Number of bytes of offset within dataset * *is_derived_type 0 if MPI primitive type, 1 if derived * * Programmer: rky 980813 * - * Modifications: ppw 990401 - * rky, ppw 2000-09-26 Freed old type after creating struct type. - * rky 2000-10-05 Changed displacements to be MPI_Aint. - * rky 2000-10-06 Added code for cases of empty hyperslab. - * akc, rky 2000-11-16 Replaced hard coded dimension size with - * H5S_MAX_RANK. - * - * Quincey Koziol, June 18, 2002 - * Added 'extra_offset' parameter. Also accomodate selection - * offset in MPI type built. - * - * Albert Cheng, August 4, 2004 - * Reimplemented the algorithm of forming the outer_type by - * defining it as (start, vector, extent) in one call. - * *------------------------------------------------------------------------- */ static herr_t -H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size, - /* out: */ - MPI_Datatype *new_type, - size_t *count, - hsize_t *extra_offset, - hbool_t *is_derived_type ) +H5S_mpio_hyper_type(const H5S_t *space, size_t elmt_size, + MPI_Datatype *new_type, int *count, hbool_t *is_derived_type) { H5S_sel_iter_t sel_iter; /* Selection iteration info */ hbool_t sel_iter_init = FALSE; /* Selection iteration info has been initialized */ @@ -231,18 +171,16 @@ H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size, int mpi_code; /* MPI return code */ herr_t ret_value = SUCCEED; - FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_hyper_type); + FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_hyper_type) /* Check args */ HDassert(space); HDassert(sizeof(MPI_Aint) >= sizeof(elmt_size)); - if(0 == elmt_size) - goto empty; /* Initialize selection iterator */ if(H5S_select_iter_init(&sel_iter, space, elmt_size) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator") - sel_iter_init = 1; /* Selection iteration info has been initialized */ + sel_iter_init = TRUE; /* Selection iteration info has been initialized */ /* Abbreviate args */ diminfo = sel_iter.u.hyp.diminfo; @@ -251,18 +189,16 @@ H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size, /* make a local copy of the dimension info so we can operate with them */ /* Check if this is a "flattened" regular hyperslab selection */ - if(sel_iter.u.hyp.iter_rank!=0 && sel_iter.u.hyp.iter_rank<space->extent.rank) { + if(sel_iter.u.hyp.iter_rank != 0 && sel_iter.u.hyp.iter_rank < space->extent.rank) { /* Flattened selection */ rank = sel_iter.u.hyp.iter_rank; HDassert(rank >= 0 && rank <= H5S_MAX_RANK); /* within array bounds */ - if (0==rank) - goto empty; #ifdef H5S_DEBUG if(H5DEBUG(S)) HDfprintf(H5DEBUG(S), "%s: Flattened selection\n",FUNC); #endif - for ( i=0; i<rank; ++i) { - d[i].start = diminfo[i].start+sel_iter.u.hyp.sel_off[i]; + for(i = 0; i < rank; ++i) { + d[i].start = diminfo[i].start + sel_iter.u.hyp.sel_off[i]; d[i].strid = diminfo[i].stride; d[i].block = diminfo[i].block; d[i].count = diminfo[i].count; @@ -277,26 +213,26 @@ H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size, HDfprintf(H5DEBUG(S), "\n" ); } #endif - if (0==d[i].block) + if(0 == d[i].block) goto empty; - if (0==d[i].count) + if(0 == d[i].count) goto empty; - if (0==d[i].xtent) + if(0 == d[i].xtent) goto empty; - } + } /* end for */ } /* end if */ else { /* Non-flattened selection */ rank = space->extent.rank; - HDassert(rank >= 0 && rank<=H5S_MAX_RANK); /* within array bounds */ - if (0==rank) + HDassert(rank >= 0 && rank <= H5S_MAX_RANK); /* within array bounds */ + if(0 == rank) goto empty; #ifdef H5S_DEBUG if(H5DEBUG(S)) HDfprintf(H5DEBUG(S),"%s: Non-flattened selection\n",FUNC); #endif - for ( i=0; i<rank; ++i) { - d[i].start = diminfo[i].start+space->select.offset[i]; + for(i = 0; i < rank; ++i) { + d[i].start = diminfo[i].start + space->select.offset[i]; d[i].strid = diminfo[i].stride; d[i].block = diminfo[i].block; d[i].count = diminfo[i].count; @@ -311,40 +247,37 @@ H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size, HDfprintf(H5DEBUG(S), "\n" ); } #endif - if (0==d[i].block) + if(0 == d[i].block) goto empty; - if (0==d[i].count) + if(0 == d[i].count) goto empty; - if (0==d[i].xtent) + if(0 == d[i].xtent) goto empty; - } + } /* end for */ } /* end else */ /********************************************************************** Compute array "offset[rank]" which gives the offsets for a multi- dimensional array with dimensions "d[i].xtent" (i=0,1,...,rank-1). **********************************************************************/ - offset[rank-1] = 1; - max_xtent[rank-1] = d[rank-1].xtent; -/*#ifdef H5Smpi_DEBUG */ /* leave the old way */ + offset[rank - 1] = 1; + max_xtent[rank - 1] = d[rank - 1].xtent; #ifdef H5S_DEBUG - if(H5DEBUG(S)){ + if(H5DEBUG(S)) { i=rank-1; - HDfprintf(H5DEBUG(S), " offset[%2d]=%d; max_xtent[%2d]=%d\n", + HDfprintf(H5DEBUG(S), " offset[%2d]=%d; max_xtent[%2d]=%d\n", i, offset[i], i, max_xtent[i]); } #endif - for (i=rank-2; i>=0; --i) { - offset[i] = offset[i+1]*d[i+1].xtent; - max_xtent[i] = max_xtent[i+1]*d[i].xtent; + for(i = rank - 2; i >= 0; --i) { + offset[i] = offset[i + 1] * d[i + 1].xtent; + max_xtent[i] = max_xtent[i + 1] * d[i].xtent; #ifdef H5S_DEBUG - if(H5DEBUG(S)){ + if(H5DEBUG(S)) HDfprintf(H5DEBUG(S), " offset[%2d]=%d; max_xtent[%2d]=%d\n", i, offset[i], i, max_xtent[i]); - } #endif - - } + } /* end for */ /* Create a type covering the selected hyperslab. * Multidimensional dataspaces are stored in row-major order. @@ -356,59 +289,58 @@ H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size, *******************************************************/ #ifdef H5S_DEBUG if(H5DEBUG(S)) { - HDfprintf(H5DEBUG(S), "%s: Making contig type %d MPI_BYTEs\n", FUNC,elmt_size ); + HDfprintf(H5DEBUG(S), "%s: Making contig type %Zu MPI_BYTEs\n", FUNC, elmt_size); for (i=rank-1; i>=0; --i) HDfprintf(H5DEBUG(S), "d[%d].xtent=%Hu \n", i, d[i].xtent); } #endif - if (MPI_SUCCESS != (mpi_code= MPI_Type_contiguous( (int)elmt_size, MPI_BYTE, &inner_type ))) - HMPI_GOTO_ERROR(FAIL, "MPI_Type_contiguous failed", mpi_code); + if(MPI_SUCCESS != (mpi_code = MPI_Type_contiguous((int)elmt_size, MPI_BYTE, &inner_type))) + HMPI_GOTO_ERROR(FAIL, "MPI_Type_contiguous failed", mpi_code) /******************************************************* * Construct the type by walking the hyperslab dims * from the inside out: *******************************************************/ - for ( i=rank-1; i>=0; --i) { + for(i = rank - 1; i >= 0; --i) { #ifdef H5S_DEBUG - if(H5DEBUG(S)) { - HDfprintf(H5DEBUG(S), "%s: Dimension i=%d \n" + if(H5DEBUG(S)) + HDfprintf(H5DEBUG(S), "%s: Dimension i=%d \n" "start=%Hd count=%Hu block=%Hu stride=%Hu, xtent=%Hu max_xtent=%d\n", FUNC, i, d[i].start, d[i].count, d[i].block, d[i].strid, d[i].xtent, max_xtent[i]); - } #endif #ifdef H5S_DEBUG if(H5DEBUG(S)) - HDfprintf(H5DEBUG(S), "%s: i=%d Making vector-type \n", FUNC,i); + HDfprintf(H5DEBUG(S), "%s: i=%d Making vector-type \n", FUNC,i); #endif /**************************************** * Build vector type of the selection. ****************************************/ - mpi_code =MPI_Type_vector((int)(d[i].count), /* count */ - (int)(d[i].block), /* blocklength */ - (int)(d[i].strid), /* stride */ - inner_type, /* old type */ - &outer_type); /* new type */ - - MPI_Type_free( &inner_type ); - if (mpi_code!=MPI_SUCCESS) - HMPI_GOTO_ERROR(FAIL, "couldn't create MPI vector type", mpi_code); - - /**************************************** - * Then build the dimension type as (start, vector type, xtent). - ****************************************/ - /* calculate start and extent values of this dimension */ + mpi_code = MPI_Type_vector((int)(d[i].count), /* count */ + (int)(d[i].block), /* blocklength */ + (int)(d[i].strid), /* stride */ + inner_type, /* old type */ + &outer_type); /* new type */ + + MPI_Type_free(&inner_type); + if(mpi_code != MPI_SUCCESS) + HMPI_GOTO_ERROR(FAIL, "couldn't create MPI vector type", mpi_code) + + /**************************************** + * Then build the dimension type as (start, vector type, xtent). + ****************************************/ + /* calculate start and extent values of this dimension */ displacement[1] = d[i].start * offset[i] * elmt_size; displacement[2] = (MPI_Aint)elmt_size * max_xtent[i]; if(MPI_SUCCESS != (mpi_code = MPI_Type_extent(outer_type, &extent_len))) - HMPI_GOTO_ERROR(FAIL, "MPI_Type_extent failed", mpi_code); + HMPI_GOTO_ERROR(FAIL, "MPI_Type_extent failed", mpi_code) - /************************************************* - * Restructure this datatype ("outer_type") - * so that it still starts at 0, but its extent - * is the full extent in this dimension. - *************************************************/ - if (displacement[1] > 0 || (int)extent_len < displacement[2]) { + /************************************************* + * Restructure this datatype ("outer_type") + * so that it still starts at 0, but its extent + * is the full extent in this dimension. + *************************************************/ + if(displacement[1] > 0 || (int)extent_len < displacement[2]) { block_length[0] = 1; block_length[1] = 1; @@ -420,42 +352,37 @@ H5S_mpio_hyper_type( const H5S_t *space, size_t elmt_size, old_types[1] = outer_type; old_types[2] = MPI_UB; #ifdef H5S_DEBUG - if(H5DEBUG(S)){ - HDfprintf(H5DEBUG(S), "%s: i=%d Extending struct type\n" - "***displacements: %d, %d, %d\n", - FUNC, i, displacement[0], displacement[1], displacement[2]); - } + if(H5DEBUG(S)) + HDfprintf(H5DEBUG(S), "%s: i=%d Extending struct type\n" + "***displacements: %ld, %ld, %ld\n", + FUNC, i, (long)displacement[0], (long)displacement[1], (long)displacement[2]); #endif - mpi_code = MPI_Type_struct ( 3, /* count */ - block_length, /* blocklengths */ - displacement, /* displacements */ - old_types, /* old types */ - &inner_type); /* new type */ - - MPI_Type_free (&outer_type); - if (mpi_code!=MPI_SUCCESS) - HMPI_GOTO_ERROR(FAIL, "couldn't resize MPI vector type", mpi_code); - } - else { + mpi_code = MPI_Type_struct(3, /* count */ + block_length, /* blocklengths */ + displacement, /* displacements */ + old_types, /* old types */ + &inner_type); /* new type */ + + MPI_Type_free(&outer_type); + if(mpi_code != MPI_SUCCESS) + HMPI_GOTO_ERROR(FAIL, "couldn't resize MPI vector type", mpi_code) + } /* end if */ + else inner_type = outer_type; - } } /* end for */ /*************************** * End of loop, walking * thru dimensions. ***************************/ - /* At this point inner_type is actually the outermost type, even for 0-trip loop */ - *new_type = inner_type; - if (MPI_SUCCESS != (mpi_code= MPI_Type_commit( new_type ))) - HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code); + if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(new_type))) + HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code) /* fill in the remaining return values */ *count = 1; /* only have to move one of these suckers! */ - *extra_offset = 0; *is_derived_type = TRUE; HGOTO_DONE(SUCCEED); @@ -463,24 +390,21 @@ empty: /* special case: empty hyperslab */ *new_type = MPI_BYTE; *count = 0; - *extra_offset = 0; *is_derived_type = FALSE; done: /* Release selection iterator */ - if(sel_iter_init) { - if (H5S_SELECT_ITER_RELEASE(&sel_iter)<0) - HDONE_ERROR (H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator"); - } /* end if */ + if(sel_iter_init) + if(H5S_SELECT_ITER_RELEASE(&sel_iter) < 0) + HDONE_ERROR(H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator") #ifdef H5S_DEBUG - if(H5DEBUG(S)){ + if(H5DEBUG(S)) HDfprintf(H5DEBUG(S), "Leave %s, count=%ld is_derived_type=%t\n", FUNC, *count, *is_derived_type ); - } #endif - FUNC_LEAVE_NOAPI(ret_value); -} + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S_mpio_hyper_type() */ /*------------------------------------------------------------------------- @@ -494,68 +418,57 @@ done: * Outputs: *new_type the MPI type corresponding to the selection * *count how many objects of the new_type in selection * (useful if this is the buffer type for xfer) - * *extra_offset Number of bytes of offset within dataset * *is_derived_type 0 if MPI primitive type, 1 if derived * * Programmer: kyang * + *------------------------------------------------------------------------- */ static herr_t -H5S_mpio_span_hyper_type( const H5S_t *space, - size_t elmt_size, - MPI_Datatype *new_type,/* out: */ - size_t *count, - hsize_t *extra_offset, - hbool_t *is_derived_type ) +H5S_mpio_span_hyper_type(const H5S_t *space, size_t elmt_size, + MPI_Datatype *new_type, int *count, hbool_t *is_derived_type) { - MPI_Datatype span_type; - H5S_hyper_span_t *ospan; - H5S_hyper_span_info_t *odown; - hsize_t *size; - int mpi_code; - herr_t ret_value = SUCCEED; + MPI_Datatype elmt_type; /* MPI datatype for an element */ + hbool_t elmt_type_is_derived = FALSE; /* Whether the element type has been created */ + MPI_Datatype span_type; /* MPI datatype for overall span tree */ + hsize_t down[H5S_MAX_RANK]; /* 'down' sizes for each dimension */ + int mpi_code; /* MPI return code */ + herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_span_hyper_type) /* Check args */ HDassert(space); - - if(0 == elmt_size) - goto empty; - size = space->extent.size; - if(0 == size) - goto empty; - - odown = space->select.sel_info.hslab->span_lst; - if(NULL == odown) - goto empty; - ospan = odown->head; - if(NULL == ospan) - goto empty; - - /* obtain derived data type */ - if(FAIL == H5S_obtain_datatype(space->extent.size, ospan, &span_type, elmt_size, space->extent.rank)) - HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't obtain MPI derived data type") - + HDassert(space->extent.size); + HDassert(space->select.sel_info.hslab->span_lst); + HDassert(space->select.sel_info.hslab->span_lst->head); + + /* Create the base type for an element */ + if(MPI_SUCCESS != (mpi_code = MPI_Type_contiguous((int)elmt_size, MPI_BYTE, &elmt_type))) + HMPI_GOTO_ERROR(FAIL, "MPI_Type_contiguous failed", mpi_code) + elmt_type_is_derived = TRUE; + + /* Compute 'down' sizes for each dimension */ + if(H5V_array_down(space->extent.rank, space->extent.size, down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGETSIZE, FAIL, "couldn't compute 'down' dimension sizes") + + /* Obtain derived data type */ + if(H5S_obtain_datatype(down, space->select.sel_info.hslab->span_lst->head, &elmt_type, &span_type, elmt_size) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "couldn't obtain MPI derived data type") if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(&span_type))) - HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code); - + HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code) *new_type = span_type; + /* fill in the remaining return values */ *count = 1; - *extra_offset = 0; *is_derived_type = TRUE; - HGOTO_DONE(SUCCEED) - -empty: - /* special case: empty hyperslab */ - *new_type = MPI_BYTE; - *count = 0; - *extra_offset = 0; - *is_derived_type = FALSE; - done: + /* Release resources */ + if(elmt_type_is_derived) + if(MPI_SUCCESS != (mpi_code = MPI_Type_free(&elmt_type))) + HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code) + FUNC_LEAVE_NOAPI(ret_value) } /* end H5S_mpio_span_hyper_type() */ @@ -564,7 +477,7 @@ done: * Function: H5S_obtain datatype * * Purpose: Obtain an MPI derived datatype based on span-tree - implementation + * implementation * * Return: non-negative on success, negative on failure. * @@ -572,165 +485,169 @@ done: * * Programmer: kyang * + *------------------------------------------------------------------------- */ static herr_t -H5S_obtain_datatype(const hsize_t size[], - H5S_hyper_span_t* span, - MPI_Datatype *span_type, - size_t elmt_size, - int dimindex) +H5S_obtain_datatype(const hsize_t *down, H5S_hyper_span_t *span, + const MPI_Datatype *elmt_type, MPI_Datatype *span_type, size_t elmt_size) { - int innercount, outercount; - MPI_Datatype bas_type; - MPI_Datatype temp_type; - MPI_Datatype tempinner_type; + size_t alloc_count; /* Number of span tree nodes allocated at this level */ + size_t outercount; /* Number of span tree nodes at this level */ MPI_Datatype *inner_type = NULL; + hbool_t inner_types_freed = FALSE; /* Whether the inner_type MPI datatypes have been freed */ + hbool_t span_type_valid = FALSE; /* Whether the span_type MPI datatypes is valid */ int *blocklen = NULL; MPI_Aint *disp = NULL; - MPI_Aint stride; - H5S_hyper_span_info_t *down; - H5S_hyper_span_t *tspan; -#ifdef H5_HAVE_MPI2 - MPI_Aint sizeaint, sizedtype; -#endif /* H5_HAVE_MPI2 */ - hsize_t total_lowd, total_lowd1; - int i; - int mpi_code; - herr_t ret_value = SUCCEED; + H5S_hyper_span_t *tspan; /* Temporary pointer to span tree node */ + int mpi_code; /* MPI return status code */ + herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_NOAPI_NOINIT(H5S_obtain_datatype) + /* Sanity check */ HDassert(span); - inner_type = NULL; - down = NULL; - tspan = NULL; - down = span->down; - tspan = span; - - /* Obtain the number of span tree nodes for this dimension */ - outercount = 0; - while(tspan) { - tspan = tspan->next; - outercount++; - } /* end while */ - if(outercount == 0) - HGOTO_DONE(SUCCEED) - -/* MPI2 hasn't been widely acccepted, adding H5_HAVE_MPI2 for the future use */ -#ifdef H5_HAVE_MPI2 - MPI_Type_extent(MPI_Aint, &sizeaint); - MPI_Type_extent(MPI_Datatype, &sizedtype); - - blocklen = (int *)HDcalloc((size_t)outercount, sizeof(int)); - disp = (MPI_Aint *)HDcalloc((size_t)outercount, sizeaint); - inner_type = (MPI_Datatype *)HDcalloc((size_t)outercount, sizedtype); -#else - blocklen = (int *)HDcalloc((size_t)outercount, sizeof(int)); - disp = (MPI_Aint *)HDcalloc((size_t)outercount, sizeof(MPI_Aint)); - inner_type = (MPI_Datatype *)HDcalloc((size_t)outercount, sizeof(MPI_Datatype)); -#endif - - tspan = span; - outercount = 0; + /* Allocate the initial displacement & block length buffers */ + alloc_count = H5S_MPIO_INITIAL_ALLOC_COUNT; + if(NULL == (disp = (MPI_Aint *)H5MM_malloc(alloc_count * sizeof(MPI_Aint)))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of displacements") + if(NULL == (blocklen = (int *)H5MM_malloc(alloc_count * sizeof(int)))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of block lengths") /* if this is the fastest changing dimension, it is the base case for derived datatype. */ - if(down == NULL) { - - HDassert(dimindex <= 1); - - if(MPI_SUCCESS != (mpi_code = MPI_Type_contiguous((int)elmt_size, MPI_BYTE, &bas_type))) - HMPI_GOTO_ERROR(FAIL, "MPI_Type_contiguous failed", mpi_code); - - if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(&bas_type))) - HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code); - + if(NULL == span->down) { + tspan = span; + outercount = 0; while(tspan) { + /* Check if we need to increase the size of the buffers */ + if(outercount >= alloc_count) { + MPI_Aint *tmp_disp; /* Temporary pointer to new displacement buffer */ + int *tmp_blocklen; /* Temporary pointer to new block length buffer */ + + /* Double the allocation count */ + alloc_count *= 2; + + /* Re-allocate the buffers */ + if(NULL == (tmp_disp = (MPI_Aint *)H5MM_realloc(disp, alloc_count * sizeof(MPI_Aint)))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of displacements") + disp = tmp_disp; + if(NULL == (tmp_blocklen = (int *)H5MM_realloc(blocklen, alloc_count * sizeof(int)))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of block lengths") + blocklen = tmp_blocklen; + } /* end if */ + + /* Store displacement & block length */ disp[outercount] = (MPI_Aint)elmt_size * tspan->low; blocklen[outercount] = tspan->nelem; + tspan = tspan->next; outercount++; } /* end while */ - if(MPI_SUCCESS != (mpi_code = MPI_Type_hindexed(outercount, blocklen, disp, bas_type, span_type))) - HMPI_GOTO_ERROR(FAIL, "MPI_Type_hindexed failed", mpi_code); + if(MPI_SUCCESS != (mpi_code = MPI_Type_hindexed((int)outercount, blocklen, disp, *elmt_type, span_type))) + HMPI_GOTO_ERROR(FAIL, "MPI_Type_hindexed failed", mpi_code) + span_type_valid = TRUE; } /* end if */ - else { /* dimindex is the rank of the dimension */ - - HDassert(dimindex > 1); - - /* Calculate the total bytes of the lower dimensions */ - total_lowd = 1; /* one dimension down */ - total_lowd1 = 1; /* two dimensions down */ - - for(i = dimindex - 1; i > 0; i--) - total_lowd = total_lowd * size[i]; + else { + size_t u; /* Local index variable */ - for(i = dimindex - 1; i > 1; i--) - total_lowd1 = total_lowd1 * size[i]; + if(NULL == (inner_type = (MPI_Datatype *)H5MM_malloc(alloc_count * sizeof(MPI_Datatype)))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of inner MPI datatypes") + tspan = span; + outercount = 0; while(tspan) { + MPI_Datatype down_type; /* Temporary MPI datatype for a span tree node's children */ + MPI_Aint stride; /* Distance between inner MPI datatypes */ + + /* Check if we need to increase the size of the buffers */ + if(outercount >= alloc_count) { + MPI_Aint *tmp_disp; /* Temporary pointer to new displacement buffer */ + int *tmp_blocklen; /* Temporary pointer to new block length buffer */ + MPI_Datatype *tmp_inner_type; /* Temporary pointer to inner MPI datatype buffer */ + + /* Double the allocation count */ + alloc_count *= 2; + + /* Re-allocate the buffers */ + if(NULL == (tmp_disp = (MPI_Aint *)H5MM_realloc(disp, alloc_count * sizeof(MPI_Aint)))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of displacements") + disp = tmp_disp; + if(NULL == (tmp_blocklen = (int *)H5MM_realloc(blocklen, alloc_count * sizeof(int)))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of block lengths") + blocklen = tmp_blocklen; + if(NULL == (tmp_inner_type = (MPI_Datatype *)H5MM_realloc(inner_type, alloc_count * sizeof(MPI_Datatype)))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate array of inner MPI datatypes") + } /* end if */ /* Displacement should be in byte and should have dimension information */ /* First using MPI Type vector to build derived data type for this span only */ /* Need to calculate the disp in byte for this dimension. */ /* Calculate the total bytes of the lower dimension */ - - disp[outercount] = tspan->low * total_lowd * elmt_size; + disp[outercount] = tspan->low * (*down) * elmt_size; blocklen[outercount] = 1; - /* generating inner derived datatype by using MPI_Type_hvector */ - if(FAIL == H5S_obtain_datatype(size, tspan->down->head, &temp_type, elmt_size, dimindex - 1)) - HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't obtain MPI derived data type") - - if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(&temp_type))) - HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code); - - /* building the inner vector datatype */ - stride = total_lowd * elmt_size; - innercount = tspan->nelem; + /* Generate MPI datatype for next dimension down */ + if(H5S_obtain_datatype(down + 1, tspan->down->head, elmt_type, &down_type, elmt_size) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "couldn't obtain MPI derived data type") - if(MPI_SUCCESS != (mpi_code = MPI_Type_hvector(innercount, 1, stride, temp_type, &tempinner_type))) - HMPI_GOTO_ERROR(FAIL, "MPI_Type_hvector failed", mpi_code); + /* Build the MPI datatype for this node */ + stride = (*down) * elmt_size; + H5_CHECK_OVERFLOW(tspan->nelem, hsize_t, int) + if(MPI_SUCCESS != (mpi_code = MPI_Type_hvector((int)tspan->nelem, 1, stride, down_type, &inner_type[outercount]))) { + MPI_Type_free(&down_type); + HMPI_GOTO_ERROR(FAIL, "MPI_Type_hvector failed", mpi_code) + } /* end if */ - if(MPI_SUCCESS != (mpi_code = MPI_Type_commit(&tempinner_type))) - HMPI_GOTO_ERROR(FAIL, "MPI_Type_commit failed", mpi_code); + /* Release MPI datatype for next dimension down */ + if(MPI_SUCCESS != (mpi_code = MPI_Type_free(&down_type))) + HMPI_GOTO_ERROR(FAIL, "MPI_Type_free failed", mpi_code) - if(MPI_SUCCESS != (mpi_code = MPI_Type_free(&temp_type))) - HMPI_GOTO_ERROR(FAIL, "MPI_Type_free failed", mpi_code); - - inner_type[outercount] = tempinner_type; - outercount ++; tspan = tspan->next; + outercount++; } /* end while */ /* building the whole vector datatype */ - if(MPI_SUCCESS != (mpi_code = MPI_Type_struct(outercount, blocklen, disp, inner_type, span_type))) - HMPI_GOTO_ERROR(FAIL, "MPI_Type_struct failed", mpi_code); + H5_CHECK_OVERFLOW(outercount, size_t, int) + if(MPI_SUCCESS != (mpi_code = MPI_Type_struct((int)outercount, blocklen, disp, inner_type, span_type))) + HMPI_GOTO_ERROR(FAIL, "MPI_Type_struct failed", mpi_code) + span_type_valid = TRUE; + + /* Release inner node types */ + for(u = 0; u < outercount; u++) + if(MPI_SUCCESS != (mpi_code = MPI_Type_free(&inner_type[u]))) + HMPI_GOTO_ERROR(FAIL, "MPI_Type_free failed", mpi_code) + inner_types_freed = TRUE; } /* end else */ - if(inner_type != NULL && down != NULL) { - } /* end if */ - done: + /* General cleanup */ if(inner_type != NULL) { - if(down != NULL) { - for(i = 0; i < outercount; i++) - if(MPI_SUCCESS != (mpi_code = MPI_Type_free(&inner_type[i]))) - HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code); + if(!inner_types_freed) { + size_t u; /* Local index variable */ + + for(u = 0; u < outercount; u++) + if(MPI_SUCCESS != (mpi_code = MPI_Type_free(&inner_type[u]))) + HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code) } /* end if */ - HDfree(inner_type); + H5MM_free(inner_type); } /* end if */ if(blocklen != NULL) - HDfree(blocklen); + H5MM_free(blocklen); if(disp != NULL) - HDfree(disp); + H5MM_free(disp); + + /* Error cleanup */ + if(ret_value < 0) { + if(span_type_valid) + if(MPI_SUCCESS != (mpi_code = MPI_Type_free(span_type))) + HMPI_DONE_ERROR(FAIL, "MPI_Type_free failed", mpi_code) + } /* end if */ FUNC_LEAVE_NOAPI(ret_value) } /* end H5S_obtain_datatype() */ - /*------------------------------------------------------------------------- * Function: H5S_mpio_space_type @@ -743,49 +660,38 @@ done: * Outputs: *new_type the MPI type corresponding to the selection * *count how many objects of the new_type in selection * (useful if this is the buffer type for xfer) - * *extra_offset Number of bytes of offset within dataset * *is_derived_type 0 if MPI primitive type, 1 if derived * * Programmer: rky 980813 * - * Modifications: - * - * Quincey Koziol, June 18, 2002 - * Added 'extra_offset' parameter - * *------------------------------------------------------------------------- */ herr_t -H5S_mpio_space_type( const H5S_t *space, size_t elmt_size, - /* out: */ - MPI_Datatype *new_type, - size_t *count, - hsize_t *extra_offset, - hbool_t *is_derived_type ) +H5S_mpio_space_type(const H5S_t *space, size_t elmt_size, + MPI_Datatype *new_type, int *count, hbool_t *is_derived_type) { - herr_t ret_value = SUCCEED; + herr_t ret_value = SUCCEED; /* Return value */ - FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_space_type); + FUNC_ENTER_NOAPI_NOINIT(H5S_mpio_space_type) /* Check args */ HDassert(space); + HDassert(elmt_size); /* Creat MPI type based on the kind of selection */ - switch (H5S_GET_EXTENT_TYPE(space)) { + switch(H5S_GET_EXTENT_TYPE(space)) { case H5S_NULL: case H5S_SCALAR: case H5S_SIMPLE: switch(H5S_GET_SELECT_TYPE(space)) { case H5S_SEL_NONE: - if ( H5S_mpio_none_type( space, elmt_size, - /* out: */ new_type, count, extra_offset, is_derived_type ) <0) - HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert \"all\" selection to MPI type"); + if(H5S_mpio_none_type(new_type, count, is_derived_type) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert 'none' selection to MPI type") break; case H5S_SEL_ALL: - if ( H5S_mpio_all_type( space, elmt_size, - /* out: */ new_type, count, extra_offset, is_derived_type ) <0) - HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert \"all\" selection to MPI type"); + if(H5S_mpio_all_type(space, elmt_size, new_type, count, is_derived_type) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert 'all' selection to MPI type") break; case H5S_SEL_POINTS: @@ -794,16 +700,14 @@ H5S_mpio_space_type( const H5S_t *space, size_t elmt_size, break; case H5S_SEL_HYPERSLABS: - if((H5S_SELECT_IS_REGULAR(space) == TRUE)) { - if(H5S_mpio_hyper_type( space, elmt_size, - /* out: */ new_type, count, extra_offset, is_derived_type )<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert \"all\" selection to MPI type"); - } - else { - if(H5S_mpio_span_hyper_type( space, elmt_size, - /* out: */ new_type, count, extra_offset, is_derived_type )<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert \"all\" selection to MPI type"); - } + if((H5S_SELECT_IS_REGULAR(space) == TRUE)) { + if(H5S_mpio_hyper_type(space, elmt_size, new_type, count, is_derived_type) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert regular 'hyperslab' selection to MPI type") + } /* end if */ + else { + if(H5S_mpio_span_hyper_type(space, elmt_size, new_type, count, is_derived_type) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL,"couldn't convert irregular 'hyperslab' selection to MPI type") + } /* end else */ break; default: @@ -815,11 +719,10 @@ H5S_mpio_space_type( const H5S_t *space, size_t elmt_size, default: HDassert("unknown data space type" && 0); break; - } + } /* end switch */ done: FUNC_LEAVE_NOAPI(ret_value); -} - +} /* end H5S_mpio_space_type() */ #endif /* H5_HAVE_PARALLEL */ diff --git a/src/H5Snone.c b/src/H5Snone.c index c6e8a6a..1948f13 100644 --- a/src/H5Snone.c +++ b/src/H5Snone.c @@ -48,6 +48,8 @@ static htri_t H5S_none_is_contiguous(const H5S_t *space); static htri_t H5S_none_is_single(const H5S_t *space); static htri_t H5S_none_is_regular(const H5S_t *space); static herr_t H5S_none_adjust_u(H5S_t *space, const hsize_t *offset); +static herr_t H5S_none_project_scalar(const H5S_t *space, hsize_t *offset); +static herr_t H5S_none_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset); static herr_t H5S_none_iter_init(H5S_sel_iter_t *iter, const H5S_t *space); /* Selection iteration callbacks */ @@ -77,6 +79,8 @@ const H5S_select_class_t H5S_sel_none[1] = {{ H5S_none_is_single, H5S_none_is_regular, H5S_none_adjust_u, + H5S_none_project_scalar, + H5S_none_project_simple, H5S_none_iter_init, }}; @@ -110,18 +114,18 @@ static const H5S_sel_iter_class_t H5S_sel_iter_none[1] = {{ *------------------------------------------------------------------------- */ herr_t -H5S_none_iter_init (H5S_sel_iter_t *iter, const H5S_t UNUSED *space) +H5S_none_iter_init(H5S_sel_iter_t *iter, const H5S_t UNUSED *space) { - FUNC_ENTER_NOAPI_NOFUNC(H5S_none_iter_init); + FUNC_ENTER_NOAPI_NOFUNC(H5S_none_iter_init) /* Check args */ - assert (space && H5S_SEL_NONE==H5S_GET_SELECT_TYPE(space)); - assert (iter); + HDassert(space && H5S_SEL_NONE==H5S_GET_SELECT_TYPE(space)); + HDassert(iter); /* Initialize type of selection iterator */ - iter->type=H5S_sel_iter_none; + iter->type = H5S_sel_iter_none; - FUNC_LEAVE_NOAPI(SUCCEED); + FUNC_LEAVE_NOAPI(SUCCEED) } /* H5S_none_iter_init() */ @@ -141,15 +145,15 @@ H5S_none_iter_init (H5S_sel_iter_t *iter, const H5S_t UNUSED *space) *------------------------------------------------------------------------- */ static herr_t -H5S_none_iter_coords (const H5S_sel_iter_t UNUSED *iter, hsize_t UNUSED *coords) +H5S_none_iter_coords(const H5S_sel_iter_t UNUSED *iter, hsize_t UNUSED *coords) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_coords); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_coords) /* Check args */ - assert (iter); - assert (coords); + HDassert(iter); + HDassert(coords); - FUNC_LEAVE_NOAPI(FAIL); + FUNC_LEAVE_NOAPI(FAIL) } /* H5S_none_iter_coords() */ @@ -169,16 +173,16 @@ H5S_none_iter_coords (const H5S_sel_iter_t UNUSED *iter, hsize_t UNUSED *coords) *------------------------------------------------------------------------- */ static herr_t -H5S_none_iter_block (const H5S_sel_iter_t UNUSED *iter, hsize_t UNUSED *start, hsize_t UNUSED *end) +H5S_none_iter_block(const H5S_sel_iter_t UNUSED *iter, hsize_t UNUSED *start, hsize_t UNUSED *end) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_block); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_block) /* Check args */ - assert (iter); - assert (start); - assert (end); + HDassert(iter); + HDassert(start); + HDassert(end); - FUNC_LEAVE_NOAPI(FAIL); + FUNC_LEAVE_NOAPI(FAIL) } /* H5S_none_iter_block() */ @@ -197,14 +201,14 @@ H5S_none_iter_block (const H5S_sel_iter_t UNUSED *iter, hsize_t UNUSED *start, h *------------------------------------------------------------------------- */ static hsize_t -H5S_none_iter_nelmts (const H5S_sel_iter_t UNUSED *iter) +H5S_none_iter_nelmts(const H5S_sel_iter_t UNUSED *iter) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_nelmts); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_nelmts) /* Check args */ - assert (iter); + HDassert(iter); - FUNC_LEAVE_NOAPI(0); + FUNC_LEAVE_NOAPI(0) } /* H5S_none_iter_nelmts() */ @@ -228,12 +232,12 @@ H5S_none_iter_nelmts (const H5S_sel_iter_t UNUSED *iter) static htri_t H5S_none_iter_has_next_block(const H5S_sel_iter_t UNUSED *iter) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_has_next_block); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_has_next_block) /* Check args */ - assert (iter); + HDassert(iter); - FUNC_LEAVE_NOAPI(FAIL); + FUNC_LEAVE_NOAPI(FAIL) } /* H5S_none_iter_has_next_block() */ @@ -258,13 +262,13 @@ H5S_none_iter_has_next_block(const H5S_sel_iter_t UNUSED *iter) static herr_t H5S_none_iter_next(H5S_sel_iter_t UNUSED *iter, size_t UNUSED nelem) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_next); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_next) /* Check args */ - assert (iter); - assert (nelem>0); + HDassert(iter); + HDassert(nelem>0); - FUNC_LEAVE_NOAPI(SUCCEED); + FUNC_LEAVE_NOAPI(SUCCEED) } /* H5S_none_iter_next() */ @@ -315,14 +319,14 @@ H5S_none_iter_next_block(H5S_sel_iter_t UNUSED *iter) REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S_none_iter_release (H5S_sel_iter_t UNUSED * iter) +H5S_none_iter_release(H5S_sel_iter_t UNUSED * iter) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_release); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_iter_release) /* Check args */ - assert (iter); + HDassert(iter); - FUNC_LEAVE_NOAPI(SUCCEED); + FUNC_LEAVE_NOAPI(SUCCEED) } /* H5S_none_iter_release() */ @@ -344,14 +348,14 @@ H5S_none_iter_release (H5S_sel_iter_t UNUSED * iter) REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S_none_release (H5S_t UNUSED * space) +H5S_none_release(H5S_t UNUSED * space) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_release); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_release) /* Check args */ - assert (space); + HDassert(space); - FUNC_LEAVE_NOAPI(SUCCEED); + FUNC_LEAVE_NOAPI(SUCCEED) } /* H5S_none_release() */ @@ -377,15 +381,15 @@ H5S_none_release (H5S_t UNUSED * space) static herr_t H5S_none_copy(H5S_t *dst, const H5S_t UNUSED *src, hbool_t UNUSED share_selection) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_copy); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_copy) - assert(src); - assert(dst); + HDassert(src); + HDassert(dst); /* Set number of elements in selection */ - dst->select.num_elem=0; + dst->select.num_elem = 0; - FUNC_LEAVE_NOAPI(SUCCEED); + FUNC_LEAVE_NOAPI(SUCCEED) } /* end H5S_none_copy() */ @@ -410,13 +414,13 @@ H5S_none_copy(H5S_t *dst, const H5S_t UNUSED *src, hbool_t UNUSED share_selectio REVISION LOG --------------------------------------------------------------------------*/ static htri_t -H5S_none_is_valid (const H5S_t UNUSED *space) +H5S_none_is_valid(const H5S_t UNUSED *space) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_valid); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_valid) - assert(space); + HDassert(space); - FUNC_LEAVE_NOAPI(TRUE); + FUNC_LEAVE_NOAPI(TRUE) } /* end H5S_none_is_valid() */ @@ -440,17 +444,17 @@ H5S_none_is_valid (const H5S_t UNUSED *space) REVISION LOG --------------------------------------------------------------------------*/ static hssize_t -H5S_none_serial_size (const H5S_t UNUSED *space) +H5S_none_serial_size(const H5S_t UNUSED *space) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_serial_size); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_serial_size) - assert(space); + HDassert(space); /* Basic number of bytes required to serialize point selection: * <type (4 bytes)> + <version (4 bytes)> + <padding (4 bytes)> + * <length (4 bytes)> = 16 bytes */ - FUNC_LEAVE_NOAPI(16); + FUNC_LEAVE_NOAPI(16) } /* end H5S_none_serial_size() */ @@ -474,11 +478,11 @@ H5S_none_serial_size (const H5S_t UNUSED *space) REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S_none_serialize (const H5S_t *space, uint8_t *buf) +H5S_none_serialize(const H5S_t *space, uint8_t *buf) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_serialize); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_serialize) - assert(space); + HDassert(space); /* Store the preamble information */ UINT32ENCODE(buf, (uint32_t)H5S_GET_SELECT_TYPE(space)); /* Store the type of selection */ @@ -486,7 +490,7 @@ H5S_none_serialize (const H5S_t *space, uint8_t *buf) UINT32ENCODE(buf, (uint32_t)0); /* Store the un-used padding */ UINT32ENCODE(buf, (uint32_t)0); /* Store the additional information length */ - FUNC_LEAVE_NOAPI(SUCCEED); + FUNC_LEAVE_NOAPI(SUCCEED) } /* H5S_none_serialize() */ @@ -510,20 +514,20 @@ H5S_none_serialize (const H5S_t *space, uint8_t *buf) REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S_none_deserialize (H5S_t *space, const uint8_t UNUSED *buf) +H5S_none_deserialize(H5S_t *space, const uint8_t UNUSED *buf) { - herr_t ret_value; /* return value */ + herr_t ret_value = SUCCEED; /* return value */ - FUNC_ENTER_NOAPI_NOINIT(H5S_none_deserialize); + FUNC_ENTER_NOAPI_NOINIT(H5S_none_deserialize) - assert(space); + HDassert(space); /* Change to "none" selection */ - if((ret_value=H5S_select_none(space))<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't change selection"); + if(H5S_select_none(space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't change selection") done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_none_deserialize() */ @@ -555,13 +559,13 @@ done: static herr_t H5S_none_bounds(const H5S_t UNUSED *space, hsize_t UNUSED *start, hsize_t UNUSED *end) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_bounds); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_bounds) - assert(space); - assert(start); - assert(end); + HDassert(space); + HDassert(start); + HDassert(end); - FUNC_LEAVE_NOAPI(FAIL); + FUNC_LEAVE_NOAPI(FAIL) } /* H5Sget_none_bounds() */ @@ -618,11 +622,11 @@ H5S_none_offset(const H5S_t UNUSED *space, hsize_t UNUSED *offset) static htri_t H5S_none_is_contiguous(const H5S_t UNUSED *space) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_contiguous); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_contiguous) - assert(space); + HDassert(space); - FUNC_LEAVE_NOAPI(FALSE); + FUNC_LEAVE_NOAPI(FALSE) } /* H5S_none_is_contiguous() */ @@ -647,11 +651,11 @@ H5S_none_is_contiguous(const H5S_t UNUSED *space) static htri_t H5S_none_is_single(const H5S_t UNUSED *space) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_single); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_single) - assert(space); + HDassert(space); - FUNC_LEAVE_NOAPI(FALSE); + FUNC_LEAVE_NOAPI(FALSE) } /* H5S_none_is_single() */ @@ -677,12 +681,12 @@ H5S_none_is_single(const H5S_t UNUSED *space) static htri_t H5S_none_is_regular(const H5S_t UNUSED *space) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_regular); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_is_regular) /* Check args */ - assert(space); + HDassert(space); - FUNC_LEAVE_NOAPI(TRUE); + FUNC_LEAVE_NOAPI(TRUE) } /* H5S_none_is_regular() */ @@ -717,6 +721,65 @@ H5S_none_adjust_u(H5S_t UNUSED *space, const hsize_t UNUSED *offset) } /* H5S_none_adjust_u() */ +/*------------------------------------------------------------------------- + * Function: H5S_none_project_scalar + * + * Purpose: Projects a 'none' selection into a scalar dataspace + * + * Return: non-negative on success, negative on failure. + * + * Programmer: Quincey Koziol + * Sunday, July 18, 2010 + * + *------------------------------------------------------------------------- + */ +static herr_t +H5S_none_project_scalar(const H5S_t UNUSED *space, hsize_t UNUSED *offset) +{ + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_project_scalar) + + /* Check args */ + HDassert(space && H5S_SEL_NONE == H5S_GET_SELECT_TYPE(space)); + HDassert(offset); + + FUNC_LEAVE_NOAPI(FAIL) +} /* H5S_none_project_scalar() */ + + +/*------------------------------------------------------------------------- + * Function: H5S_none_project_simple + * + * Purpose: Projects an 'none' selection onto/into a simple dataspace + * of a different rank + * + * Return: non-negative on success, negative on failure. + * + * Programmer: Quincey Koziol + * Sunday, July 18, 2010 + * + *------------------------------------------------------------------------- + */ +static herr_t +H5S_none_project_simple(const H5S_t *base_space, H5S_t *new_space, hsize_t *offset) +{ + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_NOAPI_NOINIT(H5S_none_project_simple) + + /* Check args */ + HDassert(base_space && H5S_SEL_NONE == H5S_GET_SELECT_TYPE(base_space)); + HDassert(new_space); + HDassert(offset); + + /* Select the entire new space */ + if(H5S_select_none(new_space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "unable to set none selection") + +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* H5S_none_project_simple() */ + + /*-------------------------------------------------------------------------- NAME H5S_select_none @@ -734,27 +797,28 @@ H5S_none_adjust_u(H5S_t UNUSED *space, const hsize_t UNUSED *offset) EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ -herr_t H5S_select_none (H5S_t *space) +herr_t +H5S_select_none(H5S_t *space) { - herr_t ret_value=SUCCEED; /* return value */ + herr_t ret_value = SUCCEED; /* return value */ - FUNC_ENTER_NOAPI(H5S_select_none, FAIL); + FUNC_ENTER_NOAPI(H5S_select_none, FAIL) /* Check args */ - assert(space); + HDassert(space); /* Remove current selection first */ - if(H5S_SELECT_RELEASE(space)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release hyperslab"); + if(H5S_SELECT_RELEASE(space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release hyperslab") /* Set number of elements in selection */ - space->select.num_elem=0; + space->select.num_elem = 0; /* Set selection type */ - space->select.type=H5S_sel_none; + space->select.type = H5S_sel_none; done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_none() */ @@ -833,24 +897,24 @@ H5S_none_get_seq_list(const H5S_t UNUSED *space, unsigned UNUSED flags, H5S_sel_ size_t UNUSED maxseq, size_t UNUSED maxelem, size_t *nseq, size_t *nelem, hsize_t UNUSED *off, size_t UNUSED *len) { - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_get_seq_list); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_none_get_seq_list) /* Check args */ - assert(space); - assert(iter); - assert(maxseq>0); - assert(maxelem>0); - assert(nseq); - assert(nelem); - assert(off); - assert(len); + HDassert(space); + HDassert(iter); + HDassert(maxseq > 0); + HDassert(maxelem > 0); + HDassert(nseq); + HDassert(nelem); + HDassert(off); + HDassert(len); /* "none" selections don't generate sequences of bytes */ - *nseq=0; + *nseq = 0; /* They don't use any elements, either */ - *nelem=0; + *nelem = 0; - FUNC_LEAVE_NOAPI(SUCCEED); + FUNC_LEAVE_NOAPI(SUCCEED) } /* end H5S_none_get_seq_list() */ diff --git a/src/H5Spkg.h b/src/H5Spkg.h index b7818a2..0a9df69 100644 --- a/src/H5Spkg.h +++ b/src/H5Spkg.h @@ -145,6 +145,10 @@ typedef htri_t (*H5S_sel_is_single_func_t)(const H5S_t *space); typedef htri_t (*H5S_sel_is_regular_func_t)(const H5S_t *space); /* Method to adjust a selection by an offset */ typedef herr_t (*H5S_sel_adjust_u_func_t)(H5S_t *space, const hsize_t *offset); +/* Method to construct single element projection onto scalar dataspace */ +typedef herr_t (*H5S_sel_project_scalar)(const H5S_t *space, hsize_t *offset); +/* Method to construct selection projection onto/into simple dataspace */ +typedef herr_t (*H5S_sel_project_simple)(const H5S_t *space, H5S_t *new_space, hsize_t *offset); /* Method to initialize iterator for current selection */ typedef herr_t (*H5S_sel_iter_init_func_t)(H5S_sel_iter_t *sel_iter, const H5S_t *space); @@ -166,6 +170,8 @@ typedef struct { H5S_sel_is_single_func_t is_single; /* Method to determine if current selection is a single block */ H5S_sel_is_regular_func_t is_regular; /* Method to determine if current selection is "regular" */ H5S_sel_adjust_u_func_t adjust_u; /* Method to adjust a selection by an offset */ + H5S_sel_project_scalar project_scalar; /* Method to construct scalar dataspace projection */ + H5S_sel_project_simple project_simple; /* Method to construct simple dataspace projection */ H5S_sel_iter_init_func_t iter_init; /* Method to initialize iterator for current selection */ } H5S_select_class_t; diff --git a/src/H5Spoint.c b/src/H5Spoint.c index 24dfe2a..cb7e98f 100644 --- a/src/H5Spoint.c +++ b/src/H5Spoint.c @@ -49,6 +49,8 @@ static htri_t H5S_point_is_contiguous(const H5S_t *space); static htri_t H5S_point_is_single(const H5S_t *space); static htri_t H5S_point_is_regular(const H5S_t *space); static herr_t H5S_point_adjust_u(H5S_t *space, const hsize_t *offset); +static herr_t H5S_point_project_scalar(const H5S_t *space, hsize_t *offset); +static herr_t H5S_point_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset); static herr_t H5S_point_iter_init(H5S_sel_iter_t *iter, const H5S_t *space); /* Selection iteration callbacks */ @@ -78,6 +80,8 @@ const H5S_select_class_t H5S_sel_point[1] = {{ H5S_point_is_single, H5S_point_is_regular, H5S_point_adjust_u, + H5S_point_project_scalar, + H5S_point_project_simple, H5S_point_iter_init, }}; @@ -610,18 +614,18 @@ H5S_point_copy(H5S_t *dst, const H5S_t *src, hbool_t UNUSED share_selection) /* Allocate room for the head of the point list */ if(NULL == (dst->select.sel_info.pnt_lst = H5FL_MALLOC(H5S_pnt_list_t))) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate point node") + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate point list node") curr = src->select.sel_info.pnt_lst->head; new_tail = NULL; while(curr) { /* Create new point */ if(NULL == (new_node = H5FL_MALLOC(H5S_pnt_node_t))) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate point node") + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate point node") new_node->next = NULL; - if(NULL == (new_node->pnt = (hsize_t *)H5MM_malloc(src->extent.rank*sizeof(hsize_t)))) { + if(NULL == (new_node->pnt = (hsize_t *)H5MM_malloc(src->extent.rank * sizeof(hsize_t)))) { new_node = H5FL_FREE(H5S_pnt_node_t, new_node); - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate coordinate information") + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate coordinate information") } /* end if */ /* Copy over the point's coordinates */ @@ -976,7 +980,7 @@ H5S_get_select_elem_pointlist(H5S_t *space, hsize_t startpoint, hsize_t numpoint node = node->next; } /* end while */ - /* Iterate through the node, copying each hyperslab's information */ + /* Iterate through the node, copying each point's information */ while(node != NULL && numpoints > 0) { HDmemcpy(buf, node->pnt, sizeof(hsize_t) * rank); buf += rank; @@ -1346,6 +1350,173 @@ H5S_point_adjust_u(H5S_t *space, const hsize_t *offset) } /* H5S_point_adjust_u() */ +/*------------------------------------------------------------------------- + * Function: H5S_point_project_scalar + * + * Purpose: Projects a single element point selection into a scalar + * dataspace + * + * Return: non-negative on success, negative on failure. + * + * Programmer: Quincey Koziol + * Sunday, July 18, 2010 + * + *------------------------------------------------------------------------- + */ +static herr_t +H5S_point_project_scalar(const H5S_t *space, hsize_t *offset) +{ + const H5S_pnt_node_t *node; /* Point node */ + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_NOAPI_NOINIT(H5S_point_project_scalar) + + /* Check args */ + HDassert(space && H5S_SEL_POINTS == H5S_GET_SELECT_TYPE(space)); + HDassert(offset); + + /* Get the head of the point list */ + node = space->select.sel_info.pnt_lst->head; + + /* Check for more than one point selected */ + if(node->next) + HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "point selection of one element has more than one node!") + + /* Calculate offset of selection in projected buffer */ + *offset = H5V_array_offset(space->extent.rank, space->extent.size, node->pnt); + +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* H5S_point_project_scalar() */ + + +/*------------------------------------------------------------------------- + * Function: H5S_point_project_simple + * + * Purpose: Projects a point selection onto/into a simple dataspace + * of a different rank + * + * Return: non-negative on success, negative on failure. + * + * Programmer: Quincey Koziol + * Sunday, July 18, 2010 + * + *------------------------------------------------------------------------- + */ +static herr_t +H5S_point_project_simple(const H5S_t *base_space, H5S_t *new_space, hsize_t *offset) +{ + const H5S_pnt_node_t *base_node; /* Point node in base space */ + H5S_pnt_node_t *new_node; /* Point node in new space */ + H5S_pnt_node_t *prev_node; /* Previous point node in new space */ + unsigned rank_diff; /* Difference in ranks between spaces */ + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_NOAPI_NOINIT(H5S_point_project_simple) + + /* Check args */ + HDassert(base_space && H5S_SEL_POINTS == H5S_GET_SELECT_TYPE(base_space)); + HDassert(new_space); + HDassert(offset); + + /* We are setting a new selection, remove any current selection in new dataspace */ + if(H5S_SELECT_RELEASE(new_space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection") + + /* Allocate room for the head of the point list */ + if(NULL == (new_space->select.sel_info.pnt_lst = H5FL_MALLOC(H5S_pnt_list_t))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate point list node") + + /* Check if the new space's rank is < or > base space's rank */ + if(new_space->extent.rank < base_space->extent.rank) { + hsize_t block[H5S_MAX_RANK]; /* Block selected in base dataspace */ + + /* Compute the difference in ranks */ + rank_diff = base_space->extent.rank - new_space->extent.rank; + + /* Calculate offset of selection in projected buffer */ + HDmemset(block, 0, sizeof(block)); + HDmemcpy(block, base_space->select.sel_info.pnt_lst->head->pnt, sizeof(hsize_t) * rank_diff); + *offset = H5V_array_offset(base_space->extent.rank, base_space->extent.size, block); + + /* Iterate through base space's point nodes, copying the point information */ + base_node = base_space->select.sel_info.pnt_lst->head; + prev_node = NULL; + while(base_node) { + /* Create new point */ + if(NULL == (new_node = H5FL_MALLOC(H5S_pnt_node_t))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate point node") + new_node->next = NULL; + if(NULL == (new_node->pnt = (hsize_t *)H5MM_malloc(new_space->extent.rank * sizeof(hsize_t)))) { + new_node = H5FL_FREE(H5S_pnt_node_t, new_node); + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate coordinate information") + } /* end if */ + + /* Copy over the point's coordinates */ + HDmemcpy(new_node->pnt, &base_node->pnt[rank_diff], (new_space->extent.rank * sizeof(hsize_t))); + + /* Keep the order the same when copying */ + if(NULL == prev_node) + prev_node = new_space->select.sel_info.pnt_lst->head = new_node; + else { + prev_node->next = new_node; + prev_node = new_node; + } /* end else */ + + /* Advance to next node */ + base_node = base_node->next; + } /* end while */ + } /* end if */ + else { + HDassert(new_space->extent.rank > base_space->extent.rank); + + /* Compute the difference in ranks */ + rank_diff = new_space->extent.rank - base_space->extent.rank; + + /* The offset is zero when projected into higher dimensions */ + *offset = 0; + + /* Iterate through base space's point nodes, copying the point information */ + base_node = base_space->select.sel_info.pnt_lst->head; + prev_node = NULL; + while(base_node) { + /* Create new point */ + if(NULL == (new_node = H5FL_MALLOC(H5S_pnt_node_t))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate point node") + new_node->next = NULL; + if(NULL == (new_node->pnt = (hsize_t *)H5MM_malloc(new_space->extent.rank * sizeof(hsize_t)))) { + new_node = H5FL_FREE(H5S_pnt_node_t, new_node); + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate coordinate information") + } /* end if */ + + /* Copy over the point's coordinates */ + HDmemset(new_node->pnt, 0, sizeof(hsize_t) * rank_diff); + HDmemcpy(&new_node->pnt[rank_diff], base_node->pnt, (new_space->extent.rank * sizeof(hsize_t))); + + /* Keep the order the same when copying */ + if(NULL == prev_node) + prev_node = new_space->select.sel_info.pnt_lst->head = new_node; + else { + prev_node->next = new_node; + prev_node = new_node; + } /* end else */ + + /* Advance to next node */ + base_node = base_node->next; + } /* end while */ + } /* end else */ + + /* Number of elements selected will be the same */ + new_space->select.num_elem = base_space->select.num_elem; + + /* Set selection type */ + new_space->select.type = H5S_sel_point; + +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* H5S_point_project_simple() */ + + /*-------------------------------------------------------------------------- NAME H5Sselect_elements diff --git a/src/H5Sprivate.h b/src/H5Sprivate.h index 2858ddb..2faf977 100644 --- a/src/H5Sprivate.h +++ b/src/H5Sprivate.h @@ -133,6 +133,8 @@ typedef struct H5S_sel_iter_t { #define H5S_SELECT_IS_SINGLE(S) ((*(S)->select.type->is_single)(S)) #define H5S_SELECT_IS_REGULAR(S) ((*(S)->select.type->is_regular)(S)) #define H5S_SELECT_ADJUST_U(S,O) ((*(S)->select.type->adjust_u)(S, O)) +#define H5S_SELECT_PROJECT_SCALAR(S,O) ((*(S)->select.type->project_scalar)(S, O)) +#define H5S_SELECT_PROJECT_SIMPLE(S,NS, O) ((*(S)->select.type->project_simple)(S, NS, O)) #define H5S_SELECT_ITER_COORDS(ITER,COORDS) ((*(ITER)->type->iter_coords)(ITER,COORDS)) #define H5S_SELECT_ITER_BLOCK(ITER,START,END) ((*(ITER)->type->iter_block)(ITER,START,END)) #define H5S_SELECT_ITER_NELMTS(ITER) ((*(ITER)->type->iter_nelmts)(ITER)) @@ -157,6 +159,8 @@ typedef struct H5S_sel_iter_t { #define H5S_SELECT_IS_SINGLE(S) (H5S_select_is_single(S)) #define H5S_SELECT_IS_REGULAR(S) (H5S_select_is_regular(S)) #define H5S_SELECT_ADJUST_U(S,O) (H5S_select_adjust_u(S, O)) +#define H5S_SELECT_PROJECT_SCALAR(S,O) (H5S_select_project_scalar)(S, O)) +#define H5S_SELECT_PROJECT_SIMPLE(S,NS,O) (H5S_select_project_simple)(S, NS, O)) #define H5S_SELECT_ITER_COORDS(ITER,COORDS) (H5S_select_iter_coords(ITER,COORDS)) #define H5S_SELECT_ITER_BLOCK(ITER,START,END) (H5S_select_iter_block(ITER,START,END)) #define H5S_SELECT_ITER_NELMTS(ITER) (H5S_select_iter_nelmts(ITER)) @@ -215,6 +219,9 @@ H5_DLL herr_t H5S_get_select_offset(const H5S_t *space, hsize_t *offset); H5_DLL herr_t H5S_select_offset(H5S_t *space, const hssize_t *offset); H5_DLL herr_t H5S_select_copy(H5S_t *dst, const H5S_t *src, hbool_t share_selection); H5_DLL htri_t H5S_select_shape_same(const H5S_t *space1, const H5S_t *space2); +H5_DLL herr_t H5S_select_construct_projection(const H5S_t *base_space, + H5S_t **new_space_ptr, unsigned new_space_rank, const void *buf, + void **adj_buf_ptr, hsize_t element_size); H5_DLL herr_t H5S_select_release(H5S_t *ds); H5_DLL herr_t H5S_select_get_seq_list(const H5S_t *space, unsigned flags, H5S_sel_iter_t *iter, size_t maxseq, size_t maxbytes, @@ -225,6 +232,8 @@ H5_DLL htri_t H5S_select_is_contiguous(const H5S_t *space); H5_DLL htri_t H5S_select_is_single(const H5S_t *space); H5_DLL htri_t H5S_select_is_regular(const H5S_t *space); H5_DLL herr_t H5S_select_adjust_u(H5S_t *space, const hsize_t *offset); +H5_DLL herr_t H5S_select_project_scalar(const H5S_t *space, hsize_t *offset); +H5_DLL herr_t H5S_select_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset); /* Operations on all selections */ H5_DLL herr_t H5S_select_all(H5S_t *space, hbool_t rel_prev); @@ -268,18 +277,8 @@ H5_DLL herr_t H5S_mpio_space_type( const H5S_t *space, size_t elmt_size, /* out: */ MPI_Datatype *new_type, - size_t *count, - hsize_t *extra_offset, + int *count, hbool_t *is_derived_type ); - -H5_DLL herr_t -H5S_mpio_space_span_type( const H5S_t *space, size_t elmt_size, - /* out: */ - MPI_Datatype *new_type, - size_t *count, - hsize_t *extra_offset, - hbool_t *is_derived_type ); - #endif /* H5_HAVE_PARALLEL */ #endif /* _H5Sprivate_H */ diff --git a/src/H5Sselect.c b/src/H5Sselect.c index a419131..af3c9f9 100644 --- a/src/H5Sselect.c +++ b/src/H5Sselect.c @@ -27,6 +27,7 @@ #include "H5Eprivate.h" /* Error handling */ #include "H5FLprivate.h" /* Free Lists */ #include "H5Iprivate.h" /* IDs */ +#include "H5MMprivate.h" /* Memory management */ #include "H5Spkg.h" /* Dataspaces */ #include "H5Vprivate.h" /* Vector and array functions */ #include "H5WBprivate.h" /* Wrapped Buffers */ @@ -108,7 +109,7 @@ H5S_select_copy (H5S_t *dst, const H5S_t *src, hbool_t share_selection) { herr_t ret_value; /* return value */ - FUNC_ENTER_NOAPI(H5S_select_copy, FAIL); + FUNC_ENTER_NOAPI(H5S_select_copy, FAIL) /* Check args */ assert(dst); @@ -119,10 +120,10 @@ H5S_select_copy (H5S_t *dst, const H5S_t *src, hbool_t share_selection) /* Perform correct type of copy based on the type of selection */ if((ret_value=(*src->select.type->copy)(dst,src,share_selection))<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "can't copy selection specific information"); + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "can't copy selection specific information") done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_copy() */ @@ -149,14 +150,14 @@ H5S_select_release(H5S_t *ds) { herr_t ret_value; /* Return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_select_release); + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_release) assert(ds); /* Call the selection type's release function */ ret_value=(*ds->select.type->release)(ds); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* end H5S_select_release() */ @@ -186,14 +187,14 @@ H5S_select_get_seq_list(const H5S_t *space, unsigned flags, { herr_t ret_value; /* Return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_select_get_seq_list); + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_get_seq_list) assert(space); /* Call the selection type's get_seq_list function */ ret_value=(*space->select.type->get_seq_list)(space,flags,iter,maxseq,maxbytes,nseq,nbytes,off,len); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* end H5S_select_get_seq_list() */ @@ -221,14 +222,14 @@ H5S_select_serial_size(const H5S_t *space) { hssize_t ret_value; /* Return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_select_serial_size); + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_serial_size) assert(space); /* Call the selection type's serial_size function */ ret_value=(*space->select.type->serial_size)(space); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* end H5S_select_serial_size() */ @@ -259,7 +260,7 @@ H5S_select_serialize(const H5S_t *space, uint8_t *buf) { herr_t ret_value=SUCCEED; /* Return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_select_serialize); + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_serialize) assert(space); assert(buf); @@ -267,7 +268,7 @@ H5S_select_serialize(const H5S_t *space, uint8_t *buf) /* Call the selection type's serialize function */ ret_value=(*space->select.type->serialize)(space,buf); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* end H5S_select_serialize() */ @@ -410,13 +411,13 @@ H5S_select_valid(const H5S_t *space) { htri_t ret_value; /* Return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_select_valid); + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_valid) assert(space); ret_value = (*space->select.type->is_valid)(space); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_valid() */ @@ -449,7 +450,7 @@ H5S_select_deserialize (H5S_t *space, const uint8_t *buf) uint32_t sel_type; /* Pointer to the selection type */ herr_t ret_value=FAIL; /* return value */ - FUNC_ENTER_NOAPI(H5S_select_deserialize, FAIL); + FUNC_ENTER_NOAPI(H5S_select_deserialize, FAIL) assert(space); @@ -476,10 +477,10 @@ H5S_select_deserialize (H5S_t *space, const uint8_t *buf) break; } if(ret_value<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTLOAD, FAIL, "can't deserialize selection"); + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTLOAD, FAIL, "can't deserialize selection") done: - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_deserialize() */ @@ -567,7 +568,7 @@ H5S_get_select_bounds(const H5S_t *space, hsize_t *start, hsize_t *end) { herr_t ret_value; /* return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_get_select_bounds); + FUNC_ENTER_NOAPI_NOFUNC(H5S_get_select_bounds) /* Check args */ assert(space); @@ -576,7 +577,7 @@ H5S_get_select_bounds(const H5S_t *space, hsize_t *start, hsize_t *end) ret_value = (*space->select.type->bounds)(space,start,end); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_get_select_bounds() */ @@ -646,14 +647,14 @@ H5S_select_is_contiguous(const H5S_t *space) { herr_t ret_value; /* return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_select_is_contiguous); + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_is_contiguous) /* Check args */ assert(space); ret_value = (*space->select.type->is_contiguous)(space); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_is_contiguous() */ @@ -683,14 +684,14 @@ H5S_select_is_single(const H5S_t *space) { herr_t ret_value; /* return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_select_is_single); + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_is_single) /* Check args */ assert(space); ret_value = (*space->select.type->is_single)(space); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_is_single() */ @@ -720,14 +721,14 @@ H5S_select_is_regular(const H5S_t *space) { herr_t ret_value; /* return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_select_is_regular); + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_is_regular) /* Check args */ assert(space); ret_value = (*space->select.type->is_regular)(space); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_is_regular() */ @@ -770,6 +771,86 @@ H5S_select_adjust_u(H5S_t *space, const hsize_t *offset) /*-------------------------------------------------------------------------- NAME + H5S_select_project_scalar + PURPOSE + Project a single element selection for a scalar dataspace + USAGE + herr_t H5S_select_project_scalar(space, offset) + const H5S_t *space; IN: Pointer to dataspace to project + hsize_t *offset; IN/OUT: Offset of projected point + RETURNS + Non-negative on success, negative on failure + DESCRIPTION + Projects a selection of a single element into a scalar dataspace, computing + the offset of the element in the original selection. + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + This routine participates in the "Inlining C function pointers" + pattern, don't call it directly, use the appropriate macro + defined in H5Sprivate.h. + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +herr_t +H5S_select_project_scalar(const H5S_t *space, hsize_t *offset) +{ + herr_t ret_value; /* Return value */ + + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_project_scalar) + + /* Check args */ + HDassert(space); + HDassert(offset); + + ret_value = (*space->select.type->project_scalar)(space, offset); + + FUNC_LEAVE_NOAPI(ret_value) +} /* H5S_select_project_scalar() */ + + +/*-------------------------------------------------------------------------- + NAME + H5S_select_project_simple + PURPOSE + Project a selection onto/into a dataspace of different rank + USAGE + herr_t H5S_select_project_simple(space, new_space, offset) + const H5S_t *space; IN: Pointer to dataspace to project + H5S_t *new_space; IN/OUT: Pointer to dataspace projected onto + hsize_t *offset; IN/OUT: Offset of projected point + RETURNS + Non-negative on success, negative on failure + DESCRIPTION + Projects a selection onto/into a simple dataspace, computing + the offset of the first element in the original selection. + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + This routine participates in the "Inlining C function pointers" + pattern, don't call it directly, use the appropriate macro + defined in H5Sprivate.h. + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +herr_t +H5S_select_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset) +{ + herr_t ret_value; /* Return value */ + + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_project_simple) + + /* Check args */ + HDassert(space); + HDassert(new_space); + HDassert(offset); + + ret_value = (*space->select.type->project_simple)(space, new_space, offset); + + FUNC_LEAVE_NOAPI(ret_value) +} /* H5S_select_project_simple() */ + + +/*-------------------------------------------------------------------------- + NAME H5S_select_iter_init PURPOSE Initializes iteration information for a selection. @@ -790,7 +871,7 @@ H5S_select_iter_init(H5S_sel_iter_t *sel_iter, const H5S_t *space, size_t elmt_s { herr_t ret_value; /* Return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_init); + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_init) /* Check args */ assert(sel_iter); @@ -813,7 +894,7 @@ H5S_select_iter_init(H5S_sel_iter_t *sel_iter, const H5S_t *space, size_t elmt_s /* Call initialization routine for selection type */ ret_value= (*space->select.type->iter_init)(sel_iter, space); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_iter_init() */ @@ -844,7 +925,7 @@ H5S_select_iter_coords (const H5S_sel_iter_t *sel_iter, hsize_t *coords) { herr_t ret_value; /* return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_coords); + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_coords) /* Check args */ assert(sel_iter); @@ -853,7 +934,7 @@ H5S_select_iter_coords (const H5S_sel_iter_t *sel_iter, hsize_t *coords) /* Call iter_coords routine for selection type */ ret_value = (*sel_iter->type->iter_coords)(sel_iter,coords); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_iter_coords() */ #ifdef LATER @@ -886,7 +967,7 @@ H5S_select_iter_block (const H5S_sel_iter_t *iter, hsize_t *start, hsize_t *end) { herr_t ret_value; /* return value */ - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_select_iter_block); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_select_iter_block) /* Check args */ assert(iter); @@ -896,7 +977,7 @@ H5S_select_iter_block (const H5S_sel_iter_t *iter, hsize_t *start, hsize_t *end) /* Call iter_block routine for selection type */ ret_value = (*iter->type->iter_block)(iter,start,end); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_iter_block() */ #endif /* LATER */ @@ -926,7 +1007,7 @@ H5S_select_iter_nelmts (const H5S_sel_iter_t *sel_iter) { hsize_t ret_value; /* return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_nelmts); + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_nelmts) /* Check args */ assert(sel_iter); @@ -934,7 +1015,7 @@ H5S_select_iter_nelmts (const H5S_sel_iter_t *sel_iter) /* Call iter_nelmts routine for selection type */ ret_value = (*sel_iter->type->iter_nelmts)(sel_iter); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_iter_nelmts() */ #ifdef LATER @@ -965,7 +1046,7 @@ H5S_select_iter_has_next_block (const H5S_sel_iter_t *iter) { herr_t ret_value; /* return value */ - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_select_iter_has_next_block); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_select_iter_has_next_block) /* Check args */ assert(iter); @@ -973,7 +1054,7 @@ H5S_select_iter_has_next_block (const H5S_sel_iter_t *iter) /* Call iter_has_next_block routine for selection type */ ret_value = (*iter->type->iter_has_next_block)(iter); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_iter_has_next_block() */ #endif /* LATER */ @@ -1005,7 +1086,7 @@ H5S_select_iter_next(H5S_sel_iter_t *iter, size_t nelem) { herr_t ret_value; /* return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_next); + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_next) /* Check args */ assert(iter); @@ -1017,7 +1098,7 @@ H5S_select_iter_next(H5S_sel_iter_t *iter, size_t nelem) /* Decrement the number of elements left in selection */ iter->elmt_left-=nelem; - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_iter_next() */ #ifdef LATER @@ -1050,7 +1131,7 @@ H5S_select_iter_next_block(H5S_sel_iter_t *iter) { herr_t ret_value; /* return value */ - FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_select_iter_next_block); + FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5S_select_iter_next_block) /* Check args */ assert(iter); @@ -1058,7 +1139,7 @@ H5S_select_iter_next_block(H5S_sel_iter_t *iter) /* Call iter_next_block routine for selection type */ ret_value = (*iter->type->iter_next_block)(iter); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_iter_next_block() */ #endif /* LATER */ @@ -1088,7 +1169,7 @@ H5S_select_iter_release(H5S_sel_iter_t *sel_iter) { herr_t ret_value; /* return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_release); + FUNC_ENTER_NOAPI_NOFUNC(H5S_select_iter_release) /* Check args */ assert(sel_iter); @@ -1096,7 +1177,7 @@ H5S_select_iter_release(H5S_sel_iter_t *sel_iter) /* Call selection type-specific release routine */ ret_value = (*sel_iter->type->iter_release)(sel_iter); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* H5S_select_iter_release() */ @@ -1154,7 +1235,7 @@ H5S_select_iterate(void *buf, hid_t type_id, const H5S_t *space, H5D_operator_t herr_t user_ret=0; /* User's return value */ herr_t ret_value=SUCCEED; /* Return value */ - FUNC_ENTER_NOAPI(H5S_select_iterate, FAIL); + FUNC_ENTER_NOAPI(H5S_select_iterate, FAIL) /* Check args */ HDassert(buf); @@ -1302,7 +1383,7 @@ H5S_get_select_type(const H5S_t *space) { H5S_sel_type ret_value; /* Return value */ - FUNC_ENTER_NOAPI_NOFUNC(H5S_get_select_type); + FUNC_ENTER_NOAPI_NOFUNC(H5S_get_select_type) /* Check args */ assert(space); @@ -1310,7 +1391,7 @@ H5S_get_select_type(const H5S_t *space) /* Set return value */ ret_value=H5S_GET_SELECT_TYPE(space); - FUNC_LEAVE_NOAPI(ret_value); + FUNC_LEAVE_NOAPI(ret_value) } /* end H5S_get_select_type() */ @@ -1334,16 +1415,17 @@ H5S_get_select_type(const H5S_t *space) Assumes that there is only a single "block" for hyperslab selections. EXAMPLES REVISION LOG + Modified function to view identical shapes with different dimensions + as being the same under some circumstances. --------------------------------------------------------------------------*/ htri_t H5S_select_shape_same(const H5S_t *space1, const H5S_t *space2) { - H5S_sel_iter_t iter1; /* Selection #1 iteration info */ - H5S_sel_iter_t iter2; /* Selection #2 iteration info */ - hbool_t iter1_init = 0; /* Selection #1 iteration info has been initialized */ - hbool_t iter2_init = 0; /* Selection #2 iteration info has been initialized */ - unsigned u; /* Index variable */ - htri_t ret_value = TRUE; /* Return value */ + H5S_sel_iter_t iter_a; /* Selection a iteration info */ + H5S_sel_iter_t iter_b; /* Selection b iteration info */ + hbool_t iter_a_init = 0; /* Selection a iteration info has been initialized */ + hbool_t iter_b_init = 0; /* Selection b iteration info has been initialized */ + htri_t ret_value = TRUE; /* Return value */ FUNC_ENTER_NOAPI(H5S_select_shape_same, FAIL) @@ -1358,139 +1440,527 @@ H5S_select_shape_same(const H5S_t *space1, const H5S_t *space2) HGOTO_DONE(FALSE) } /* end if */ else { - /* Check for different dimensionality */ - if(space1->extent.rank != space2->extent.rank) - HGOTO_DONE(FALSE) + const H5S_t *space_a; /* Dataspace with larger rank */ + const H5S_t *space_b; /* Dataspace with smaller rank */ + unsigned space_a_rank; /* Number of dimensions of dataspace A */ + unsigned space_b_rank; /* Number of dimensions of dataspace B */ + + /* need to be able to handle spaces of different rank: + * + * To simplify logic, let space_a point to the element of the set + * {space1, space2} with the largest rank or space1 if the ranks + * are identical. + * + * Similarly, let space_b point to the element of {space1, space2} + * with the smallest rank, or space2 if they are identical. + * + * Let: space_a_rank be the rank of space_a, + * space_b_rank be the rank of space_b, + * delta_rank = space_a_rank - space_b_rank. + * + * Set all this up below. + */ + if(space1->extent.rank >= space2->extent.rank) { + space_a = space1; + space_a_rank = space_a->extent.rank; + + space_b = space2; + space_b_rank = space_b->extent.rank; + } /* end if */ + else { + space_a = space2; + space_a_rank = space_a->extent.rank; + + space_b = space1; + space_b_rank = space_b->extent.rank; + } /* end else */ + HDassert(space_a_rank >= space_b_rank); + HDassert(space_b_rank > 0); /* Check for different number of elements selected */ - if(H5S_GET_SELECT_NPOINTS(space1) != H5S_GET_SELECT_NPOINTS(space2)) + if(H5S_GET_SELECT_NPOINTS(space_a) != H5S_GET_SELECT_NPOINTS(space_b)) HGOTO_DONE(FALSE) /* Check for "easy" cases before getting into generalized block iteration code */ - if(H5S_GET_SELECT_TYPE(space1)==H5S_SEL_ALL && H5S_GET_SELECT_TYPE(space2)==H5S_SEL_ALL) { - hsize_t dims1[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace #1 */ - hsize_t dims2[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace #2 */ - - if(H5S_get_simple_extent_dims(space1, dims1, NULL)<0) - HGOTO_ERROR (H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get dimensionality"); - if(H5S_get_simple_extent_dims(space2, dims2, NULL)<0) - HGOTO_ERROR (H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get dimensionality"); - - /* Check that the sizes are the same */ - for (u=0; u<space1->extent.rank; u++) - if(dims1[u]!=dims2[u]) - HGOTO_DONE(FALSE); + if((H5S_GET_SELECT_TYPE(space_a) == H5S_SEL_ALL) && (H5S_GET_SELECT_TYPE(space_b) == H5S_SEL_ALL)) { + hsize_t dims1[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace #1 */ + hsize_t dims2[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace #2 */ + int space_a_dim; /* Current dimension in dataspace A */ + int space_b_dim; /* Current dimension in dataspace B */ + + if(H5S_get_simple_extent_dims(space_a, dims1, NULL) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get dimensionality") + if(H5S_get_simple_extent_dims(space_b, dims2, NULL) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get dimensionality") + + space_a_dim = (int)space_a_rank - 1; + space_b_dim = (int)space_b_rank - 1; + + /* recall that space_a_rank >= space_b_rank. + * + * In the following while loop, we test to see if space_a and space_b + * have identical size in all dimensions they have in common. + */ + while(space_b_dim >= 0) { + if(dims1[space_a_dim] != dims2[space_b_dim]) + HGOTO_DONE(FALSE) + + space_a_dim--; + space_b_dim--; + } /* end while */ + + /* Since we are selecting the entire spaces, we must also verify that space_a + * has size 1 in all dimensions that it does not share with space_b. + */ + while(space_a_dim >= 0) { + if(dims1[space_a_dim] != 1) + HGOTO_DONE(FALSE) + + space_a_dim--; + } /* end while */ } /* end if */ - else if(H5S_GET_SELECT_TYPE(space1)==H5S_SEL_NONE || H5S_GET_SELECT_TYPE(space2)==H5S_SEL_NONE) { - HGOTO_DONE(TRUE); + else if((H5S_GET_SELECT_TYPE(space1) == H5S_SEL_NONE) || (H5S_GET_SELECT_TYPE(space2) == H5S_SEL_NONE)) { + HGOTO_DONE(TRUE) } /* end if */ - else if((H5S_GET_SELECT_TYPE(space1)==H5S_SEL_HYPERSLABS && space1->select.sel_info.hslab->diminfo_valid) - && (H5S_GET_SELECT_TYPE(space2)==H5S_SEL_HYPERSLABS && space2->select.sel_info.hslab->diminfo_valid)) { - - /* Check that the shapes are the same */ - for (u=0; u<space1->extent.rank; u++) { - if(space1->select.sel_info.hslab->opt_diminfo[u].stride!=space2->select.sel_info.hslab->opt_diminfo[u].stride) - HGOTO_DONE(FALSE); - if(space1->select.sel_info.hslab->opt_diminfo[u].count!=space2->select.sel_info.hslab->opt_diminfo[u].count) - HGOTO_DONE(FALSE); - if(space1->select.sel_info.hslab->opt_diminfo[u].block!=space2->select.sel_info.hslab->opt_diminfo[u].block) - HGOTO_DONE(FALSE); - } /* end for */ + else if((H5S_GET_SELECT_TYPE(space_a) == H5S_SEL_HYPERSLABS && space_a->select.sel_info.hslab->diminfo_valid) + && (H5S_GET_SELECT_TYPE(space_b) == H5S_SEL_HYPERSLABS && space_b->select.sel_info.hslab->diminfo_valid)) { + int space_a_dim; /* Current dimension in dataspace A */ + int space_b_dim; /* Current dimension in dataspace B */ + + space_a_dim = (int)space_a_rank - 1; + space_b_dim = (int)space_b_rank - 1; + + /* check that the shapes are the same in the common dimensions, and that + * block == 1 in all dimensions that appear only in space_a. + */ + while(space_b_dim >= 0) { + if(space_a->select.sel_info.hslab->opt_diminfo[space_a_dim].stride != + space_b->select.sel_info.hslab->opt_diminfo[space_b_dim].stride) + HGOTO_DONE(FALSE) + + if(space_a->select.sel_info.hslab->opt_diminfo[space_a_dim].count != + space_b->select.sel_info.hslab->opt_diminfo[space_b_dim].count) + HGOTO_DONE(FALSE) + + if(space_a->select.sel_info.hslab->opt_diminfo[space_a_dim].block != + space_b->select.sel_info.hslab->opt_diminfo[space_b_dim].block) + HGOTO_DONE(FALSE) + + space_a_dim--; + space_b_dim--; + } /* end while */ + + while(space_a_dim >= 0) { + if(space_a->select.sel_info.hslab->opt_diminfo[space_a_dim].block != 1) + HGOTO_DONE(FALSE) + + space_a_dim--; + } /* end while */ } /* end if */ /* Iterate through all the blocks in the selection */ else { - hsize_t start1[H5O_LAYOUT_NDIMS]; /* Start point of selection block in dataspace #1 */ - hsize_t start2[H5O_LAYOUT_NDIMS]; /* Start point of selection block in dataspace #2 */ - hsize_t end1[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace #1 */ - hsize_t end2[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace #2 */ - hsize_t off1[H5O_LAYOUT_NDIMS]; /* Offset of selection #1 blocks */ - hsize_t off2[H5O_LAYOUT_NDIMS]; /* Offset of selection #2 blocks */ - htri_t status1,status2; /* Status from next block checks */ - unsigned first_block=1; /* Flag to indicate the first block */ + hsize_t start_a[H5O_LAYOUT_NDIMS]; /* Start point of selection block in dataspace a */ + hsize_t start_b[H5O_LAYOUT_NDIMS]; /* Start point of selection block in dataspace b */ + hsize_t end_a[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace a */ + hsize_t end_b[H5O_LAYOUT_NDIMS]; /* End point of selection block in dataspace b */ + hsize_t off_a[H5O_LAYOUT_NDIMS]; /* Offset of selection a blocks */ + hsize_t off_b[H5O_LAYOUT_NDIMS]; /* Offset of selection b blocks */ + hbool_t first_block = TRUE; /* Flag to indicate the first block */ /* Initialize iterator for each dataspace selection * Use '0' for element size instead of actual element size to indicate * that the selection iterator shouldn't be "flattened", since we * aren't actually going to be doing I/O with the iterators. */ - if(H5S_select_iter_init(&iter1, space1, (size_t)0) < 0) - HGOTO_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator"); - iter1_init = 1; - if(H5S_select_iter_init(&iter2, space2, (size_t)0) < 0) - HGOTO_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator"); - iter2_init = 1; + if(H5S_select_iter_init(&iter_a, space_a, (size_t)0) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator a") + iter_a_init = 1; + if(H5S_select_iter_init(&iter_b, space_b, (size_t)0) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator b") + iter_b_init = 1; /* Iterate over all the blocks in each selection */ while(1) { + int space_a_dim; /* Current dimension in dataspace A */ + int space_b_dim; /* Current dimension in dataspace B */ + htri_t status_a, status_b; /* Status from next block checks */ + /* Get the current block for each selection iterator */ - if(H5S_SELECT_ITER_BLOCK(&iter1,start1,end1)<0) - HGOTO_ERROR (H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get iterator block"); - if(H5S_SELECT_ITER_BLOCK(&iter2,start2,end2)<0) - HGOTO_ERROR (H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get iterator block"); + if(H5S_SELECT_ITER_BLOCK(&iter_a, start_a, end_a) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get iterator block a") + if(H5S_SELECT_ITER_BLOCK(&iter_b, start_b, end_b) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get iterator block b") - /* The first block only compares the sizes and sets the relative offsets for later blocks */ + space_a_dim = (int)space_a_rank - 1; + space_b_dim = (int)space_b_rank - 1; + + /* The first block only compares the sizes and sets the + * relative offsets for later blocks + */ if(first_block) { - /* If the block sizes from each selection doesn't match, get out */ - for (u=0; u<space1->extent.rank; u++) { - if((end1[u]-start1[u])!=(end2[u]-start2[u])) - HGOTO_DONE(FALSE); + /* If the block sizes in the common dimensions from + * each selection don't match, get out + */ + while(space_b_dim >= 0) { + if((end_a[space_a_dim] - start_a[space_a_dim]) != + (end_b[space_b_dim] - start_b[space_b_dim])) + HGOTO_DONE(FALSE) + + /* Set the relative locations of the selections */ + off_a[space_a_dim] = start_a[space_a_dim]; + off_b[space_b_dim] = start_b[space_b_dim]; + + space_a_dim--; + space_b_dim--; + } /* end while */ + + /* similarly, if the block size in any dimension that appears only + * in space_a is not equal to 1, get out. + */ + while(space_a_dim >= 0) { + if((end_a[space_a_dim] - start_a[space_a_dim]) != 0) + HGOTO_DONE(FALSE) /* Set the relative locations of the selections */ - off1[u]=start1[u]; - off2[u]=start2[u]; - } /* end for */ + off_a[space_a_dim] = start_a[space_a_dim]; + + space_a_dim--; + } /* end while */ /* Reset "first block" flag */ - first_block=0; + first_block = FALSE; } /* end if */ + /* Check over the blocks for each selection */ else { - /* Check over the blocks for each selection */ - for (u=0; u<space1->extent.rank; u++) { + /* for dimensions that space_a and space_b have in common: */ + while(space_b_dim >= 0) { /* Check if the blocks are in the same relative location */ - if((start1[u]-off1[u])!=(start2[u]-off2[u])) - HGOTO_DONE(FALSE); + if((start_a[space_a_dim] - off_a[space_a_dim]) != + (start_b[space_b_dim] - off_b[space_b_dim])) + HGOTO_DONE(FALSE) /* If the block sizes from each selection doesn't match, get out */ - if((end1[u]-start1[u])!=(end2[u]-start2[u])) - HGOTO_DONE(FALSE); - } /* end for */ + if((end_a[space_a_dim] - start_a[space_a_dim]) != + (end_b[space_b_dim] - start_b[space_b_dim])) + HGOTO_DONE(FALSE) + + space_a_dim--; + space_b_dim--; + } /* end while */ + + /* For dimensions that appear only in space_a: */ + while(space_a_dim >= 0) { + /* If the block size isn't 1, get out */ + if((end_a[space_a_dim] - start_a[space_a_dim]) != 0) + HGOTO_DONE(FALSE) + + space_a_dim--; + } /* end while */ } /* end else */ /* Check if we are able to advance to the next selection block */ - if((status1=H5S_SELECT_ITER_HAS_NEXT_BLOCK(&iter1))<0) - HGOTO_ERROR (H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to check iterator block"); - if((status2=H5S_SELECT_ITER_HAS_NEXT_BLOCK(&iter2))<0) - HGOTO_ERROR (H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to check iterator block"); + if((status_a = H5S_SELECT_ITER_HAS_NEXT_BLOCK(&iter_a)) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to check iterator block a") + + if((status_b = H5S_SELECT_ITER_HAS_NEXT_BLOCK(&iter_b)) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to check iterator block b") /* Did we run out of blocks at the same time? */ - if(status1==FALSE && status2==FALSE) + if((status_a == FALSE) && (status_b == FALSE)) break; - else if(status1!=status2) { - HGOTO_DONE(FALSE); - } /* end if */ + else if(status_a != status_b) + HGOTO_DONE(FALSE) else { /* Advance to next block in selection iterators */ - if(H5S_SELECT_ITER_NEXT_BLOCK(&iter1)<0) - HGOTO_ERROR (H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to advance to next iterator block"); - if(H5S_SELECT_ITER_NEXT_BLOCK(&iter2)<0) - HGOTO_ERROR (H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to advance to next iterator block"); + if(H5S_SELECT_ITER_NEXT_BLOCK(&iter_a) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to advance to next iterator block a") + + if(H5S_SELECT_ITER_NEXT_BLOCK(&iter_b) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTNEXT, FAIL, "unable to advance to next iterator block b") } /* end else */ } /* end while */ } /* end else */ } /* end else */ done: - if(iter1_init) { - if (H5S_SELECT_ITER_RELEASE(&iter1)<0) - HDONE_ERROR (H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator"); + if(iter_a_init) + if(H5S_SELECT_ITER_RELEASE(&iter_a) < 0) + HDONE_ERROR(H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator a") + if(iter_b_init) + if(H5S_SELECT_ITER_RELEASE(&iter_b) < 0) + HDONE_ERROR(H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator b") + + FUNC_LEAVE_NOAPI(ret_value) +} /* H5S_select_shape_same() */ + + +/*-------------------------------------------------------------------------- + NAME + H5S_select_construct_projection + + PURPOSE + Given a dataspace a of rank n with some selection, construct a new + dataspace b of rank m (m != n), with the selection in a being + topologically identical to that in b (as verified by + H5S_select_shape_same(). + + This function exists, as some I/O code chokes of topologically + identical selections with different ranks. At least to begin + with, we will deal with the issue by constructing projections + of the memory dataspace with ranks equaling those of the file + dataspace. + + Note that if m > n, it is possible that the starting point in the + buffer associated with the memory dataspace will have to be + adjusted to match the projected dataspace. If the buf parameter + is not NULL, the function must return an adjusted buffer base + address in *adj_buf_ptr. + + USAGE + htri_t H5S_select_construct_projection(base_space, + new_space_ptr, + new_space_rank, + buf, + adj_buf_ptr) + const H5S_t *base_space; IN: Ptr to Dataspace to project + H5S_t ** new_space_ptr; OUT: Ptr to location in which to return + the address of the projected space + int new_space_rank; IN: Rank of the projected space. + const void * buf; IN: Base address of the buffer + associated with the base space. + May be NULL. + void ** adj_buf_ptr; OUT: If buf != NULL, store the base + address of the section of buf + that is described by *new_space_ptr + in *adj_buf_ptr. + + RETURNS + Non-negative on success/Negative on failure. + + DESCRIPTION + Construct a new dataspace and associated selection which is a + projection of the supplied dataspace and associated selection into + the specified rank. Return it in *new_space_ptr. + + If buf is supplied, computes the base address of the projected + selection in buf, and stores the base address in *adj_buf_ptr. + + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + The selection in the supplied base_space has thickness 1 in all + dimensions greater than new_space_rank. Note that here we count + dimensions from the fastest changing coordinate to the slowest + changing changing coordinate. + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +herr_t +H5S_select_construct_projection(const H5S_t *base_space, H5S_t **new_space_ptr, + unsigned new_space_rank, const void *buf, void **adj_buf_ptr, hsize_t element_size) +{ + H5S_t * new_space = NULL; /* New dataspace constructed */ + hsize_t base_space_dims[H5S_MAX_RANK]; /* Current dimensions of base dataspace */ + hsize_t base_space_maxdims[H5S_MAX_RANK]; /* Maximum dimensions of base dataspace */ + int sbase_space_rank; /* Signed # of dimensions of base dataspace */ + unsigned base_space_rank; /* # of dimensions of base dataspace */ + hsize_t projected_space_element_offset = 0; /* Offset of selected element in projected buffer */ + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_NOAPI(H5S_select_construct_projection, FAIL) + + /* Sanity checks */ + HDassert(base_space != NULL); + HDassert((H5S_GET_EXTENT_TYPE(base_space) == H5S_SCALAR) || (H5S_GET_EXTENT_TYPE(base_space) == H5S_SIMPLE)); + HDassert(new_space_ptr != NULL); + HDassert((new_space_rank != 0) || (H5S_GET_SELECT_NPOINTS(base_space) <= 1)); + HDassert(new_space_rank <= H5S_MAX_RANK); + HDassert((buf == NULL) || (adj_buf_ptr != NULL)); + HDassert(element_size > 0 ); + + /* Get the extent info for the base dataspace */ + if((sbase_space_rank = H5S_get_simple_extent_dims(base_space, base_space_dims, base_space_maxdims)) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get dimensionality of base space") + base_space_rank = (unsigned)sbase_space_rank; + HDassert(base_space_rank != new_space_rank); + + /* Check if projected space is scalar */ + if(new_space_rank == 0) { + hssize_t npoints; /* Number of points selected */ + + /* Retreve the number of elements selected */ + if((npoints = (hssize_t)H5S_GET_SELECT_NPOINTS(base_space)) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "unable to get number of points selected") + HDassert(npoints <= 1); + + /* Create new scalar dataspace */ + if(NULL == (new_space = H5S_create(H5S_SCALAR))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCREATE, FAIL, "unable to create scalar dataspace") + + /* No need to register the dataspace(i.e. get an ID) as + * we will just be discarding it shortly. + */ + + /* Selection for the new space will be either all or + * none, depending on whether the base space has 0 or + * 1 elements selected. + * + * Observe that the base space can't have more than + * one selected element, since its selection has the + * same shape as the file dataspace, and that data + * space is scalar. + */ + if(1 == npoints) { + /* Assuming that the selection in the base dataspace is not + * empty, we must compute the offset of the selected item in + * the buffer associated with the base dataspace. + * + * Since the new space rank is zero, we know that the + * the base space must have rank at least 1 -- and + * hence it is a simple dataspace. However, the + * selection, may be either point, hyperspace, or all. + * + */ + if(H5S_SELECT_PROJECT_SCALAR(base_space, &projected_space_element_offset) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "unable to project scalar selection") + } /* end if */ + else { + HDassert(0 == npoints); + + if(H5S_select_none(new_space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't delete default selection") + } /* end else */ + } /* end if */ + else { /* projected space must be simple */ + hsize_t new_space_dims[H5S_MAX_RANK]; /* Current dimensions for new dataspace */ + hsize_t new_space_maxdims[H5S_MAX_RANK];/* Maximum dimensions for new dataspace */ + unsigned rank_diff; /* Difference in ranks */ + + /* Set up the dimensions of the new, projected dataspace. + * + * How we do this depends on whether we are projecting up into + * increased dimensions, or down into a reduced number of + * dimensions. + * + * If we are projecting up (the first half of the following + * if statement), we copy the dimensions of the base data + * space into the fastest changing dimensions of the new + * projected dataspace, and set the remaining dimensions to + * one. + * + * If we are projecting down (the second half of the following + * if statement), we just copy the dimensions with the most + * quickly changing dimensions into the dims for the projected + * data set. + * + * This works, because H5S_select_shape_same() will return + * true on selections of different rank iff: + * + * 1) the selection in the lower rank dataspace matches that + * in the dimensions with the fastest changing indicies in + * the larger rank dataspace, and + * + * 2) the selection has thickness 1 in all ranks that appear + * only in the higher rank dataspace (i.e. those with + * more slowly changing indicies). + */ + if(new_space_rank > base_space_rank) { + hsize_t tmp_dim_size = 1; /* Temporary dimension value, for filling arrays */ + + /* we must copy the dimensions of the base space into + * the fastest changing dimensions of the new space, + * and set the remaining dimensions to 1 + */ + rank_diff = new_space_rank - base_space_rank; + H5V_array_fill(new_space_dims, &tmp_dim_size, sizeof(tmp_dim_size), rank_diff); + H5V_array_fill(new_space_maxdims, &tmp_dim_size, sizeof(tmp_dim_size), rank_diff); + HDmemcpy(&new_space_dims[rank_diff], base_space_dims, sizeof(new_space_dims[0]) * base_space_rank); + HDmemcpy(&new_space_maxdims[rank_diff], base_space_maxdims, sizeof(new_space_maxdims[0]) * base_space_rank); + } /* end if */ + else { /* new_space_rank < base_space_rank */ + /* we must copy the fastest changing dimension of the + * base space into the dimensions of the new space. + */ + rank_diff = base_space_rank - new_space_rank; + HDmemcpy(new_space_dims, &base_space_dims[rank_diff], sizeof(new_space_dims[0]) * new_space_rank); + HDmemcpy(new_space_maxdims, &base_space_maxdims[rank_diff], sizeof(new_space_maxdims[0]) * new_space_rank); + } /* end else */ + + /* now have the new space rank and dimensions set up -- + * so we can create the new simple dataspace. + */ + if(NULL == (new_space = H5S_create_simple(new_space_rank, new_space_dims, new_space_maxdims))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCREATE, FAIL, "can't create simple dataspace") + + /* No need to register the dataspace(i.e. get an ID) as + * we will just be discarding it shortly. + */ + + /* If we get this far, we have successfully created the projected + * dataspace. We must now project the selection in the base + * dataspace into the projected dataspace. + */ + if(H5S_SELECT_PROJECT_SIMPLE(base_space, new_space, &projected_space_element_offset) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "unable to project simple selection") + + /* If we get this far, we have created the new dataspace, and projected + * the selection in the base dataspace into the new dataspace. + * + * If the base dataspace is simple, check to see if the + * offset_changed flag on the base selection has been set -- if so, + * project the offset into the new dataspace and set the + * offset_changed flag. + */ + if(H5S_GET_EXTENT_TYPE(base_space) == H5S_SIMPLE && base_space->select.offset_changed) { + if(new_space_rank > base_space_rank) { + HDmemset(new_space->select.offset, 0, sizeof(new_space->select.offset[0]) * rank_diff); + HDmemcpy(&new_space->select.offset[rank_diff], base_space->select.offset, sizeof(new_space->select.offset[0]) * base_space_rank); + } /* end if */ + else + HDmemcpy(new_space->select.offset, &base_space->select.offset[rank_diff], sizeof(new_space->select.offset[0]) * new_space_rank); + + /* Propagate the offset changed flag into the new dataspace. */ + new_space->select.offset_changed = TRUE; + } /* end if */ + } /* end else */ + + /* If we have done the projection correctly, the following assertion + * should hold. + */ + HDassert(TRUE == H5S_select_shape_same(base_space, new_space)); + + /* load the address of the new space into *new_space_ptr */ + *new_space_ptr = new_space; + + /* now adjust the buffer if required */ + if(buf != NULL) { + if(new_space_rank < base_space_rank) { + /* a bit of pointer magic here: + * + * Since we can't do pointer arithmetic on void pointers, we first + * cast buf to a pointer to byte -- i.e. uint8_t. + * + * We then multiply the projected space element offset we + * calculated earlier by the supplied element size, add this + * value to the type cast buf pointer, cast the result back + * to a pointer to void, and assign the result to *adj_buf_ptr. + */ + *adj_buf_ptr = (void *)(((const uint8_t *)buf) + + ((size_t)(projected_space_element_offset * element_size))); + } /* end if */ + else + /* No adjustment necessary */ + *adj_buf_ptr = buf; } /* end if */ - if(iter2_init) { - if (H5S_SELECT_ITER_RELEASE(&iter2)<0) - HDONE_ERROR (H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release selection iterator"); + +done: + /* Cleanup on error */ + if(ret_value < 0) { + if(new_space && H5S_close(new_space) < 0) + HDONE_ERROR(H5E_DATASPACE, H5E_CANTRELEASE, FAIL, "unable to release dataspace") } /* end if */ FUNC_LEAVE_NOAPI(ret_value) -} /* H5S_select_shape_same() */ +} /* H5S_select_construct_projection() */ /*-------------------------------------------------------------------------- @@ -1536,7 +2006,7 @@ H5S_select_fill(const void *fill, size_t fill_size, const H5S_t *space, void *_b /* Initialize iterator */ if(H5S_select_iter_init(&iter, space, fill_size) < 0) - HGOTO_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator") + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator") iter_init = 1; /* Selection iteration info has been initialized */ /* Get the number of elements in selection */ @@ -1556,7 +2026,7 @@ H5S_select_fill(const void *fill, size_t fill_size, const H5S_t *space, void *_b /* Get the sequences of bytes */ if(H5S_SELECT_GET_SEQ_LIST(space, 0, &iter, (size_t)H5D_IO_VECTOR_SIZE, max_elem, &nseq, &nelem, off, len) < 0) - HGOTO_ERROR (H5E_INTERNAL, H5E_UNSUPPORTED, FAIL, "sequence length generation failed") + HGOTO_ERROR(H5E_INTERNAL, H5E_UNSUPPORTED, FAIL, "sequence length generation failed") /* Loop over sequences */ for(curr_seq = 0; curr_seq < nseq; curr_seq++) { diff --git a/test/testframe.c b/test/testframe.c index f0d94d8..201f569 100644 --- a/test/testframe.c +++ b/test/testframe.c @@ -26,7 +26,7 @@ /* * Definitions for the testing structure. */ -#define MAXNUMOFTESTS 45 +#define MAXNUMOFTESTS 50 #define MAXTESTNAME 16 #define MAXTESTDESC 64 diff --git a/test/tselect.c b/test/tselect.c index b8c59d8..89cd9e5 100644 --- a/test/tselect.c +++ b/test/tselect.c @@ -159,6 +159,9 @@ #define SPACERE5_DIM3 12 #define SPACERE5_DIM4 8 +/* #defines for shape same / different rank tests */ +#define SS_DR_MAX_RANK 5 + /* Location comparison function */ @@ -1585,6 +1588,2031 @@ test_select_hyper_contig3(hid_t dset_type, hid_t xfer_plist) HDfree(rbuf); } /* test_select_hyper_contig3() */ + +/**************************************************************** +** +** verify_select_hyper_contig_dr__run_test(): Verify data from +** test_select_hyper_contig_dr__run_test() +** +****************************************************************/ +static void +verify_select_hyper_contig_dr__run_test(const uint16_t *cube_buf, + size_t cube_size, unsigned edge_size, unsigned cube_rank) +{ + const uint16_t *cube_ptr; /* Pointer into the cube buffer */ + uint16_t expected_value; /* Expected value in dataset */ + unsigned i, j, k, l, m; /* Local index variables */ + size_t s; /* Local index variable */ + hbool_t mis_match; /* Flag to indicate mis-match in expected value */ + + HDassert(cube_buf); + HDassert(cube_size > 0); + + expected_value = 0; + mis_match = FALSE; + cube_ptr = cube_buf; + s = 0; + i = 0; + do { + j = 0; + do { + k = 0; + do { + l = 0; + do { + m = 0; + do { + /* Sanity check */ + HDassert(s < cube_size); + + /* Check for correct value */ + if(*cube_ptr != expected_value) + mis_match = TRUE; + + /* Advance to next element */ + cube_ptr++; + expected_value++; + s++; + m++; + } while((cube_rank > 0) && (m < edge_size)); + l++; + } while((cube_rank > 1) && (l < edge_size)); + k++; + } while((cube_rank > 2) && (k < edge_size)); + j++; + } while((cube_rank > 3) && (j < edge_size)); + i++; + } while((cube_rank > 4) && (i < edge_size)); + if(mis_match) + TestErrPrintf("Initial cube data don't match! Line = %d\n", __LINE__); +} /* verify_select_hyper_contig_dr__run_test() */ + + +/**************************************************************** +** +** test_select_hyper_contig_dr__run_test(): Test H5S (dataspace) +** selection code with contiguous source and target having +** different ranks but the same shape. We have already +** tested H5S_shape_same in isolation, so now we try to do +** I/O. +** +****************************************************************/ +static void +test_select_hyper_contig_dr__run_test(int test_num, const uint16_t *cube_buf, + const uint16_t *zero_buf, unsigned edge_size, unsigned chunk_edge_size, + unsigned small_rank, unsigned large_rank, hid_t dset_type, hid_t xfer_plist) +{ + hbool_t mis_match; /* Flag indicating a value read in wasn't what was expected */ + hid_t fapl; /* File access property list */ + hid_t fid1; /* File ID */ + hid_t small_cube_sid; /* Dataspace ID for small cube in memory & file */ + hid_t mem_large_cube_sid; /* Dataspace ID for large cube in memory */ + hid_t file_large_cube_sid; /* Dataspace ID for large cube in file */ + hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */ + hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */ + hid_t small_cube_dataset; /* Dataset ID */ + hid_t large_cube_dataset; /* Dataset ID */ + size_t start_index; /* Offset within buffer to begin inspecting */ + size_t stop_index; /* Offset within buffer to end inspecting */ + uint16_t expected_value; /* Expected value in dataset */ + uint16_t * small_cube_buf_1; /* Buffer for small cube data */ + uint16_t * large_cube_buf_1; /* Buffer for large cube data */ + uint16_t * ptr_1; /* Temporary pointer into cube data */ + hsize_t dims[SS_DR_MAX_RANK]; /* Dataspace dimensions */ + hsize_t start[SS_DR_MAX_RANK]; /* Shared hyperslab start offset */ + hsize_t stride[SS_DR_MAX_RANK]; /* Shared hyperslab stride */ + hsize_t count[SS_DR_MAX_RANK]; /* Shared hyperslab count */ + hsize_t block[SS_DR_MAX_RANK]; /* Shared hyperslab block size */ + hsize_t * start_ptr; /* Actual hyperslab start offset */ + hsize_t * stride_ptr; /* Actual hyperslab stride */ + hsize_t * count_ptr; /* Actual hyperslab count */ + hsize_t * block_ptr; /* Actual hyperslab block size */ + size_t small_cube_size; /* Number of elements in small cube */ + size_t large_cube_size; /* Number of elements in large cube */ + unsigned u, v, w, x; /* Local index variables */ + size_t s; /* Local index variable */ + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num)); + MESSAGE(7, ("\tranks = %u/%u, edge_size = %u, chunk_edge_size = %u.\n", small_rank, large_rank, edge_size, chunk_edge_size)); + + HDassert(edge_size >= 6); + HDassert(edge_size >= chunk_edge_size); + HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3)); + HDassert(small_rank > 0); + HDassert(small_rank < large_rank); + HDassert(large_rank <= SS_DR_MAX_RANK); + + /* Compute cube sizes */ + small_cube_size = large_cube_size = (size_t)1; + for(u = 0; u < large_rank; u++) { + if(u < small_rank) + small_cube_size *= (size_t)edge_size; + + large_cube_size *= (size_t)edge_size; + } /* end for */ + + HDassert(large_cube_size < (size_t)UINT_MAX); + + /* set up the start, stride, count, and block pointers */ + start_ptr = &(start[SS_DR_MAX_RANK - large_rank]); + stride_ptr = &(stride[SS_DR_MAX_RANK - large_rank]); + count_ptr = &(count[SS_DR_MAX_RANK - large_rank]); + block_ptr = &(block[SS_DR_MAX_RANK - large_rank]); + + /* Allocate buffers */ + small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size); + CHECK(small_cube_buf_1, NULL, "HDcalloc"); + large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size); + CHECK(large_cube_buf_1, NULL, "HDcalloc"); + + /* Create a dataset transfer property list */ + fapl = H5Pcreate(H5P_FILE_ACCESS); + CHECK(fapl, FAIL, "H5Pcreate"); + + /* Use the 'core' VFD for this test */ + ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE); + CHECK(ret, FAIL, "H5Pset_fapl_core"); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Close file access property list */ + ret = H5Pclose(fapl); + CHECK(ret, FAIL, "H5Pclose"); + + /* setup dims: */ + dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = (hsize_t)edge_size; + + /* Create small cube dataspaces */ + small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); + CHECK(small_cube_sid, FAIL, "H5Screate_simple"); + + /* Create large cube dataspace */ + mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple"); + file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(file_large_cube_sid, FAIL, "H5Screate_simple"); + + /* if chunk edge size is greater than zero, set up the small and + * large data set creation property lists to specify chunked + * datasets. + */ + if(chunk_edge_size > 0) { + hsize_t chunk_dims[SS_DR_MAX_RANK]; /* Chunk dimensions */ + + chunk_dims[0] = chunk_dims[1] = + chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = (hsize_t)chunk_edge_size; + + small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate"); + + ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED); + CHECK(ret, FAIL, "H5Pset_layout"); + + ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + + + large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate"); + + ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED); + CHECK(ret, FAIL, "H5Pset_layout"); + + ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + } /* end if */ + + /* create the small cube dataset */ + small_cube_dataset = H5Dcreate2(fid1, "small_cube_dataset", dset_type, + small_cube_sid, H5P_DEFAULT, small_cube_dcpl_id, H5P_DEFAULT); + CHECK(small_cube_dataset, FAIL, "H5Dcreate2"); + + /* Close non-default small dataset DCPL */ + if(small_cube_dcpl_id != H5P_DEFAULT) { + ret = H5Pclose(small_cube_dcpl_id); + CHECK(ret, FAIL, "H5Pclose"); + } /* end if */ + + /* create the large cube dataset */ + large_cube_dataset = H5Dcreate2(fid1, "large_cube_dataset", dset_type, + file_large_cube_sid, H5P_DEFAULT, large_cube_dcpl_id, H5P_DEFAULT); + CHECK(large_cube_dataset, FAIL, "H5Dcreate2"); + + /* Close non-default large dataset DCPL */ + if(large_cube_dcpl_id != H5P_DEFAULT) { + ret = H5Pclose(large_cube_dcpl_id); + CHECK(ret, FAIL, "H5Pclose"); + } /* end if */ + + + /* write initial data to the on disk datasets */ + ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, + small_cube_sid, xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, + file_large_cube_sid, xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* read initial data from disk and verify that it is as expected. */ + ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, + small_cube_sid, xfer_plist, small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the data is valid */ + verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, + edge_size, small_rank); + + ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, + file_large_cube_sid, xfer_plist, large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the data is valid */ + verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, + edge_size, large_rank); + + + /* first, verify that we can read from disk correctly using selections + * of different rank that H5S_select_shape_same() views as being of the + * same shape. + * + * Start by reading small_rank-D slice from the on disk large cube, and + * verifying that the data read is correct. Verify that H5S_select_shape_same() + * returns true on the memory and file selections. + */ + + + /* set up start, stride, count, and block -- note that we will + * change start[] so as to read slices of the large cube. + */ + for(u = 0; u < SS_DR_MAX_RANK; u++) { + start[u] = 0; + stride[u] = 1; + count[u] = 1; + if((SS_DR_MAX_RANK - u) > small_rank) + block[u] = 1; + else + block[u] = (hsize_t)edge_size; + } /* end for */ + + u = 0; + do { + v = 0; + do { + w = 0; + do { + x = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + start[0] = (hsize_t)u; + start[1] = (hsize_t)v; + start[2] = (hsize_t)w; + start[3] = (hsize_t)x; + start[4] = (hsize_t)0; + + ret = H5Sselect_hyperslab(file_large_cube_sid, + H5S_SELECT_SET, + start_ptr, + stride_ptr, + count_ptr, + block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(small_cube_sid, + file_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + /* Read selection from disk */ + ret = H5Dread(large_cube_dataset, + H5T_NATIVE_UINT16, + small_cube_sid, + file_large_cube_sid, + xfer_plist, + small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* verify that expected data is retrieved */ + mis_match = FALSE; + ptr_1 = small_cube_buf_1; + expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size)); + for(s = 0; s < small_cube_size; s++ ) { + if(*ptr_1 != expected_value ) + mis_match = TRUE; + ptr_1++; + expected_value++; + } /* end for */ + if(mis_match) + TestErrPrintf("small cube read from largecube has bad data! Line=%d\n",__LINE__); + + x++; + } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); + w++; + } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); + v++; + } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); + u++; + } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); + + + /* similarly, read the on disk small cube into slices through the in memory + * large cube, and verify that the correct data (and only the correct data) + * is read. + */ + + /* zero out the in-memory large cube */ + HDmemset(large_cube_buf_1, 0, large_cube_size * sizeof(uint16_t)); + + u = 0; + do { + v = 0; + do { + w = 0; + do { + x = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + start[0] = (hsize_t)u; + start[1] = (hsize_t)v; + start[2] = (hsize_t)w; + start[3] = (hsize_t)x; + start[4] = (hsize_t)0; + + ret = H5Sselect_hyperslab(mem_large_cube_sid, + H5S_SELECT_SET, + start_ptr, + stride_ptr, + count_ptr, + block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(small_cube_sid, + mem_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* Read selection from disk */ + ret = H5Dread(small_cube_dataset, + H5T_NATIVE_UINT16, + mem_large_cube_sid, + small_cube_sid, + xfer_plist, + large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + + /* verify that the expected data and only the + * expected data was read. + */ + start_index = (u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size); + stop_index = start_index + small_cube_size - 1; + + HDassert(start_index < stop_index); + HDassert(stop_index <= large_cube_size); + + mis_match = FALSE; + ptr_1 = large_cube_buf_1; + expected_value = 0; + for(s = 0; s < start_index; s++) { + if(*ptr_1 != 0) + mis_match = TRUE; + ptr_1++; + } /* end for */ + for(; s <= stop_index; s++) { + if(*ptr_1 != expected_value) + mis_match = TRUE; + expected_value++; + ptr_1++; + } /* end for */ + for(; s < large_cube_size; s++) { + if(*ptr_1 != 0) + mis_match = TRUE; + ptr_1++; + } /* end for */ + if(mis_match) + TestErrPrintf("large cube read from small cube has bad data! Line=%u\n", __LINE__); + + /* Zero out the buffer for the next pass */ + HDmemset(large_cube_buf_1 + start_index, 0, small_cube_size * sizeof(uint16_t)); + + x++; + } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); + w++; + } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); + v++; + } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); + u++; + } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); + + + /* now we go in the opposite direction, verifying that we can write + * from memory to file using selections of different rank that + * H5S_select_shape_same() views as being of the same shape. + * + * Start by writing small_rank D slices from the in memory large cube, to + * the the on disk small cube dataset. After each write, read the small + * cube dataset back from disk, and verify that it contains the expected + * data. Verify that H5S_select_shape_same() returns true on the + * memory and file selections. + */ + + u = 0; + do { + v = 0; + do { + w = 0; + do { + x = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + /* zero out the on disk small cube */ + ret = H5Dwrite(small_cube_dataset, + H5T_NATIVE_UINT16, + small_cube_sid, + small_cube_sid, + xfer_plist, + zero_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* select the portion of the in memory large cube from which we + * are going to write data. + */ + start[0] = (hsize_t)u; + start[1] = (hsize_t)v; + start[2] = (hsize_t)w; + start[3] = (hsize_t)x; + start[4] = (hsize_t)0; + + ret = H5Sselect_hyperslab(mem_large_cube_sid, + H5S_SELECT_SET, + start_ptr, + stride_ptr, + count_ptr, + block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* verify that H5S_select_shape_same() reports the in + * memory slice through the cube selection and the + * on disk full small cube selections as having the same shape. + */ + check = H5S_select_shape_same_test(small_cube_sid, + mem_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* write the slice from the in memory large cube to the on disk small cube */ + ret = H5Dwrite(small_cube_dataset, + H5T_NATIVE_UINT16, + mem_large_cube_sid, + small_cube_sid, + xfer_plist, + cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* read the on disk small cube into memory */ + ret = H5Dread(small_cube_dataset, + H5T_NATIVE_UINT16, + small_cube_sid, + small_cube_sid, + xfer_plist, + small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + + /* verify that expected data is retrieved */ + mis_match = FALSE; + ptr_1 = small_cube_buf_1; + expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size)); + for(s = 0; s < small_cube_size; s++) { + if(*ptr_1 != expected_value) + mis_match = TRUE; + expected_value++; + ptr_1++; + } /* end for */ + if(mis_match ) + TestErrPrintf("small cube data don't match! Line=%d\n",__LINE__); + + x++; + } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); + w++; + } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); + v++; + } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); + u++; + } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); + + + /* Now write the contents of the in memory small cube to slices of + * the on disk cube. After each write, read the on disk cube + * into memeory, and verify that it contains the expected + * data. Verify that H5S_select_shape_same() returns true on + * the memory and file selections. + */ + + /* select the entire memory and file cube dataspaces */ + ret = H5Sselect_all(mem_large_cube_sid); + CHECK(ret, FAIL, "H5Sselect_all"); + + ret = H5Sselect_all(file_large_cube_sid); + CHECK(ret, FAIL, "H5Sselect_all"); + + u = 0; + do { + v = 0; + do { + w = 0; + do { + x = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + /* zero out the on disk cube */ + ret = H5Dwrite(large_cube_dataset, + H5T_NATIVE_USHORT, + mem_large_cube_sid, + file_large_cube_sid, + xfer_plist, + zero_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* select the portion of the in memory large cube to which we + * are going to write data. + */ + start[0] = (hsize_t)u; + start[1] = (hsize_t)v; + start[2] = (hsize_t)w; + start[3] = (hsize_t)x; + start[4] = (hsize_t)0; + + ret = H5Sselect_hyperslab(file_large_cube_sid, + H5S_SELECT_SET, + start_ptr, + stride_ptr, + count_ptr, + block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* verify that H5S_select_shape_same() reports the in + * memory full selection of the small cube and the + * on disk slice through the large cube selection + * as having the same shape. + */ + check = H5S_select_shape_same_test(small_cube_sid, + file_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* write the cube from memory to the target slice of the disk cube */ + ret = H5Dwrite(large_cube_dataset, + H5T_NATIVE_UINT16, + small_cube_sid, + file_large_cube_sid, + xfer_plist, + cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* read the on disk cube into memory */ + ret = H5Sselect_all(file_large_cube_sid); + CHECK(ret, FAIL, "H5Sselect_all"); + + ret = H5Dread(large_cube_dataset, + H5T_NATIVE_UINT16, + mem_large_cube_sid, + file_large_cube_sid, + xfer_plist, + large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + + /* verify that the expected data and only the + * expected data was read. + */ + start_index = (u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size); + stop_index = start_index + small_cube_size - 1; + + HDassert(start_index < stop_index); + HDassert(stop_index <= large_cube_size); + + mis_match = FALSE; + ptr_1 = large_cube_buf_1; + expected_value = 0; + for(s = 0; s < start_index; s++) { + if(*ptr_1 != 0) + mis_match = TRUE; + ptr_1++; + } /* end for */ + for(; s <= stop_index; s++) { + if(*ptr_1 != expected_value) + mis_match = TRUE; + expected_value++; + ptr_1++; + } /* end for */ + for(; s < large_cube_size; s++) { + if(*ptr_1 != 0) + mis_match = TRUE; + ptr_1++; + } /* end for */ + if(mis_match) + TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__); + + x++; + } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); + w++; + } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); + v++; + } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); + u++; + } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); + + /* Close memory dataspaces */ + ret = H5Sclose(small_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(mem_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + /* Close disk dataspace */ + ret = H5Sclose(file_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + /* Close Datasets */ + ret = H5Dclose(small_cube_dataset); + CHECK(ret, FAIL, "H5Dclose"); + + ret = H5Dclose(large_cube_dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(small_cube_buf_1); + HDfree(large_cube_buf_1); + +} /* test_select_hyper_contig_dr__run_test() */ + + +/**************************************************************** +** +** test_select_hyper_contig_dr(): Test H5S (dataspace) +** selection code with contiguous source and target having +** different ranks but the same shape. We have already +** tested H5S_shape_same in isolation, so now we try to do +** I/O. +** +****************************************************************/ +static void +test_select_hyper_contig_dr(hid_t dset_type, hid_t xfer_plist) +{ + int test_num = 0; + unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */ + unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */ + unsigned small_rank; /* Current rank of small dataset */ + unsigned large_rank; /* Current rank of large dataset */ + uint16_t *cube_buf; /* Buffer for writing cube data */ + uint16_t *zero_buf; /* Buffer for writing zeroed cube data */ + uint16_t *cube_ptr; /* Temporary pointer into cube data */ + unsigned max_rank = 5; /* Max. rank to use */ + size_t max_cube_size; /* Max. number of elements in largest cube */ + size_t s; /* Local index variable */ + unsigned u; /* Local index variable */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Contiguous Hyperslabs With Different Rank I/O Functionality\n")); + + /* Compute max. cube size */ + max_cube_size = (size_t)1; + for(u = 0; u < max_rank; u++) + max_cube_size *= (size_t)edge_size; + + /* Allocate cube buffer for writing values */ + cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size); + CHECK(cube_buf, NULL, "HDmalloc"); + + /* Initialize the cube buffer */ + cube_ptr = cube_buf; + for(s = 0; s < max_cube_size; s++) + *cube_ptr++ = (uint16_t)s; + + /* Allocate cube buffer for zeroing values on disk */ + zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size); + CHECK(zero_buf, NULL, "HDcalloc"); + + for(large_rank = 1; large_rank <= max_rank; large_rank++) { + for(small_rank = 1; small_rank < large_rank; small_rank++) { + chunk_edge_size = 0; + test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, + edge_size, chunk_edge_size, small_rank, large_rank, + dset_type, xfer_plist); + test_num++; + + chunk_edge_size = 3; + test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, + edge_size, chunk_edge_size, small_rank, large_rank, + dset_type, xfer_plist); + test_num++; + } /* for loop on small rank */ + } /* for loop on large rank */ + + HDfree(cube_buf); + HDfree(zero_buf); + +} /* test_select_hyper_contig_dr() */ + + +/**************************************************************** +** +** test_select_hyper_checker_board_dr__select_checker_board(): +** Given an n-cube data space with each edge of length +** edge_size, and a checker_edge_size either select a checker +** board selection of the entire cube(if sel_rank == n), +** or select a checker board selection of a +** sel_rank dimensional slice through n-cube parallel to the +** sel_rank fastest changing indices, with origin (in the +** higher indices) as indicated by the start array. +** +** Note that this function, like all its relatives, is +** hard coded to presume a maximum n-cube rank of 5. +** While this maximum is declared as a constant, increasing +** it will require extensive coding in addition to changing +** the value of the constant. +** +** JRM -- 9/9/09 +** +****************************************************************/ +static void +test_select_hyper_checker_board_dr__select_checker_board(hid_t tgt_n_cube_sid, + unsigned tgt_n_cube_rank, unsigned edge_size, unsigned checker_edge_size, + unsigned sel_rank, hsize_t sel_start[]) +{ + hbool_t first_selection = TRUE; + unsigned n_cube_offset; + unsigned sel_offset; + hsize_t base_count; + hsize_t offset_count; + hsize_t start[SS_DR_MAX_RANK]; /* Offset of hyperslab selection */ + hsize_t stride[SS_DR_MAX_RANK]; /* Stride of hyperslab selection */ + hsize_t count[SS_DR_MAX_RANK]; /* Count of hyperslab selection */ + hsize_t block[SS_DR_MAX_RANK]; /* Block size of hyperslab selection */ + unsigned i, j, k, l, m; /* Local index variable */ + unsigned u; /* Local index variables */ + herr_t ret; /* Generic return value */ + + HDassert(edge_size >= 6); + HDassert(0 < checker_edge_size); + HDassert(checker_edge_size <= edge_size); + HDassert(0 < sel_rank); + HDassert(sel_rank <= tgt_n_cube_rank); + HDassert(tgt_n_cube_rank <= SS_DR_MAX_RANK); + + sel_offset = SS_DR_MAX_RANK - sel_rank; + n_cube_offset = SS_DR_MAX_RANK - tgt_n_cube_rank; + HDassert(n_cube_offset <= sel_offset); + + /* First, compute the base count (which assumes start == 0 + * for the associated offset) and offset_count (which + * assumes start == checker_edge_size for the associated + * offset). + */ + base_count = edge_size / (checker_edge_size * 2); + if((edge_size % (checker_edge_size * 2)) > 0) + base_count++; + + offset_count = (edge_size - checker_edge_size) / (checker_edge_size * 2); + if(((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0) + offset_count++; + + /* Now set up the stride and block arrays, and portions of the start + * and count arrays that will not be altered during the selection of + * the checker board. + */ + u = 0; + while(u < n_cube_offset) { + /* these values should never be used */ + start[u] = 0; + stride[u] = 0; + count[u] = 0; + block[u] = 0; + + u++; + } /* end while */ + + while(u < sel_offset) { + start[u] = sel_start[u]; + stride[u] = 2 * edge_size; + count[u] = 1; + block[u] = 1; + + u++; + } /* end while */ + + while(u < SS_DR_MAX_RANK) { + stride[u] = 2 * checker_edge_size; + block[u] = checker_edge_size; + + u++; + } /* end while */ + + i = 0; + do { + if(0 >= sel_offset) { + if(i == 0) { + start[0] = 0; + count[0] = base_count; + } /* end if */ + else { + start[0] = checker_edge_size; + count[0] = offset_count; + } /* end else */ + } /* end if */ + + j = 0; + do { + if(1 >= sel_offset) { + if(j == 0 ) { + start[1] = 0; + count[1] = base_count; + } /* end if */ + else { + start[1] = checker_edge_size; + count[1] = offset_count; + } /* end else */ + } /* end if */ + + k = 0; + do { + if(2 >= sel_offset) { + if(k == 0) { + start[2] = 0; + count[2] = base_count; + } /* end if */ + else { + start[2] = checker_edge_size; + count[2] = offset_count; + } /* end else */ + } /* end if */ + + l = 0; + do { + if(3 >= sel_offset) { + if(l == 0) { + start[3] = 0; + count[3] = base_count; + } /* end if */ + else { + start[3] = checker_edge_size; + count[3] = offset_count; + } /* end else */ + } /* end if */ + + m = 0; + do { + if(4 >= sel_offset) { + if(m == 0) { + start[4] = 0; + count[4] = base_count; + } /* end if */ + else { + start[4] = checker_edge_size; + count[4] = offset_count; + } /* end else */ + } /* end if */ + + if(((i + j + k + l + m) % 2) == 0) { + if(first_selection) { + first_selection = FALSE; + + ret = H5Sselect_hyperslab(tgt_n_cube_sid, + H5S_SELECT_SET, + &(start[n_cube_offset]), + &(stride[n_cube_offset]), + &(count[n_cube_offset]), + &(block[n_cube_offset])); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end if */ + else { + ret = H5Sselect_hyperslab(tgt_n_cube_sid, + H5S_SELECT_OR, + &(start[n_cube_offset]), + &(stride[n_cube_offset]), + &(count[n_cube_offset]), + &(block[n_cube_offset])); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end else */ + } /* end if */ + + m++; + } while((m <= 1) && (4 >= sel_offset)); + l++; + } while((l <= 1) && (3 >= sel_offset)); + k++; + } while((k <= 1) && (2 >= sel_offset)); + j++; + } while((j <= 1) && (1 >= sel_offset)); + i++; + } while((i <= 1) && (0 >= sel_offset)); + + /* Wierdness alert: + * + * Some how, it seems that selections can extend beyond the + * boundaries of the target data space -- hence the following + * code to manually clip the selection back to the data space + * proper. + */ + for(u = 0; u < SS_DR_MAX_RANK; u++) { + start[u] = 0; + stride[u] = edge_size; + count[u] = 1; + block[u] = edge_size; + } /* end for */ + + ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_AND, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +} /* test_select_hyper_checker_board_dr__select_checker_board() */ + + +/**************************************************************** +** +** test_select_hyper_checker_board_dr__verify_data(): +** +** Examine the supplied buffer to see if it contains the +** expected data. Return TRUE if it does, and FALSE +** otherwise. +** +** The supplied buffer is presumed to contain the results +** of read or writing a checkerboard selection of an +** n-cube, or a checkerboard selection of an m (1 <= m < n) +** dimensional slice through an n-cube parallel to the +** fastest changing indices. +** +** It is further presumed that the buffer was zeroed before +** the read, and that the n-cube was initialize with the +** natural numbers listed in order from the origin along +** the fastest changing axis. +** +** Thus for a 10x10x10 3-cube, the value stored in location +** (x, y, z) (assuming that z is the fastest changing index +** and x the slowest) is assumed to be: +** +** (10 * 10 * x) + (10 * y) + z +** +** Thus, if the buffer contains the result of reading a +** checker board selection of a 10x10x10 3-cube, location +** (x, y, z) will contain zero if it is not in a checker, +** and 100x + 10y + z if (x, y, z) is in a checker. +** +** If the buffer contains the result of reading a 3 +** dimensional slice (parallel to the three fastest changing +** indices) through an n cube (n > 3), then the expected +** values in the buffer will be the same, save that we will +** add a constant determined by the origin of the 3-cube +** in the n-cube. +** +** Finally, the function presumes that the first element +** of the buffer resides either at the origin of either +** a selected or an unselected checker. +** +****************************************************************/ +static hbool_t +test_select_hyper_checker_board_dr__verify_data(uint16_t * buf_ptr, + unsigned rank, unsigned edge_size, unsigned checker_edge_size, + uint16_t first_expected_val, hbool_t buf_starts_in_checker) +{ + hbool_t good_data = TRUE; + hbool_t in_checker; + hbool_t start_in_checker[5]; + uint16_t expected_value; + uint16_t * val_ptr; + unsigned i, j, k, l, m; /* to track position in n-cube */ + unsigned v, w, x, y, z; /* to track position in checker */ + const unsigned test_max_rank = 5; /* code changes needed if this is increased */ + + HDassert(buf_ptr != NULL); + HDassert(0 < rank); + HDassert(rank <= test_max_rank); + HDassert(edge_size >= 6); + HDassert(0 < checker_edge_size); + HDassert(checker_edge_size <= edge_size); + HDassert(test_max_rank <= SS_DR_MAX_RANK); + + val_ptr = buf_ptr; + expected_value = first_expected_val; + + i = 0; + v = 0; + start_in_checker[0] = buf_starts_in_checker; + do { + if(v >= checker_edge_size) { + start_in_checker[0] = !start_in_checker[0]; + v = 0; + } /* end if */ + + j = 0; + w = 0; + start_in_checker[1] = start_in_checker[0]; + do { + if(w >= checker_edge_size) { + start_in_checker[1] = !start_in_checker[1]; + w = 0; + } /* end if */ + + k = 0; + x = 0; + start_in_checker[2] = start_in_checker[1]; + do { + if(x >= checker_edge_size) { + start_in_checker[2] = !start_in_checker[2]; + x = 0; + } /* end if */ + + l = 0; + y = 0; + start_in_checker[3] = start_in_checker[2]; + do { + if(y >= checker_edge_size) { + start_in_checker[3] = ! start_in_checker[3]; + y = 0; + } /* end if */ + + m = 0; + z = 0; + in_checker = start_in_checker[3]; + do { + if(z >= checker_edge_size) { + in_checker = ! in_checker; + z = 0; + } /* end if */ + + if(in_checker) { + if(*val_ptr != expected_value) + good_data = FALSE; + } /* end if */ + else { + if(*val_ptr != 0) + good_data = FALSE; + } /* end else */ + + val_ptr++; + expected_value++; + + m++; + z++; + } while((rank >= (test_max_rank - 4)) && (m < edge_size)); + l++; + y++; + } while((rank >= (test_max_rank - 3)) && (l < edge_size)); + k++; + x++; + } while((rank >= (test_max_rank - 2)) && (k < edge_size)); + j++; + w++; + } while((rank >= (test_max_rank - 1)) && (j < edge_size)); + i++; + v++; + } while((rank >= test_max_rank) && (i < edge_size)); + + return(good_data); +} /* test_select_hyper_checker_board_dr__verify_data() */ + + +/**************************************************************** +** +** test_select_hyper_checker_board_dr__run_test(): Test H5S +** (dataspace) selection code with checker board source and +** target selections having different ranks but the same +** shape. We have already tested H5S_shape_same in +** isolation, so now we try to do I/O. +** +****************************************************************/ +static void +test_select_hyper_checker_board_dr__run_test(int test_num, const uint16_t *cube_buf, + const uint16_t *zero_buf, unsigned edge_size, unsigned checker_edge_size, + unsigned chunk_edge_size, unsigned small_rank, unsigned large_rank, + hid_t dset_type, hid_t xfer_plist) +{ + hbool_t data_ok; + hbool_t start_in_checker[5]; + hid_t fapl; /* File access property list */ + hid_t fid; /* HDF5 File IDs */ + hid_t full_small_cube_sid; /* Dataspace for small cube w/all selection */ + hid_t mem_small_cube_sid; + hid_t file_small_cube_sid; + hid_t full_large_cube_sid; /* Dataspace for large cube w/all selection */ + hid_t mem_large_cube_sid; + hid_t file_large_cube_sid; + hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */ + hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */ + hid_t small_cube_dataset; /* Dataset ID */ + hid_t large_cube_dataset; /* Dataset ID */ + unsigned small_rank_offset; /* Rank offset of slice */ + const unsigned test_max_rank = 5; /* must update code if this changes */ + size_t start_index; /* Offset within buffer to begin inspecting */ + size_t stop_index; /* Offset within buffer to end inspecting */ + uint16_t expected_value; + uint16_t * small_cube_buf_1; + uint16_t * large_cube_buf_1; + uint16_t * ptr_1; + size_t small_cube_size; /* Number of elements in small cube */ + size_t large_cube_size; /* Number of elements in large cube */ + hsize_t dims[SS_DR_MAX_RANK]; + hsize_t chunk_dims[SS_DR_MAX_RANK]; + hsize_t sel_start[SS_DR_MAX_RANK]; + unsigned u, v, w, x; /* Local index variables */ + size_t s; /* Local index variable */ + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num)); + MESSAGE(7, ("\tranks = %d/%d, edge_size = %d, checker_edge_size = %d, chunk_edge_size = %d.\n", small_rank, large_rank, edge_size, checker_edge_size, chunk_edge_size)); + + HDassert(edge_size >= 6); + HDassert(checker_edge_size > 0); + HDassert(checker_edge_size <= edge_size); + HDassert(edge_size >= chunk_edge_size); + HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3)); + HDassert(small_rank > 0); + HDassert(small_rank < large_rank); + HDassert(large_rank <= test_max_rank); + HDassert(test_max_rank <= SS_DR_MAX_RANK); + + /* Compute cube sizes */ + small_cube_size = large_cube_size = (size_t)1; + for(u = 0; u < large_rank; u++) { + if(u < small_rank) + small_cube_size *= (size_t)edge_size; + + large_cube_size *= (size_t)edge_size; + } /* end for */ + HDassert(large_cube_size < (size_t)(UINT_MAX)); + + small_rank_offset = test_max_rank - small_rank; + HDassert(small_rank_offset >= 1); + + /* also, at present, we use 16 bit values in this test -- + * hence the following assertion. Delete it if we convert + * to 32 bit values. + */ + HDassert(large_cube_size < (size_t)(UINT16_MAX)); + + + /* Allocate & initialize buffers */ + small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size); + CHECK(small_cube_buf_1, NULL, "HDcalloc"); + large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size); + CHECK(large_cube_buf_1, NULL, "HDcalloc"); + + + /* Create a dataset transfer property list */ + fapl = H5Pcreate(H5P_FILE_ACCESS); + CHECK(fapl, FAIL, "H5Pcreate"); + + /* Use the 'core' VFD for this test */ + ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE); + CHECK(ret, FAIL, "H5Pset_fapl_core"); + + /* Create file */ + fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); + CHECK(fid, FAIL, "H5Fcreate"); + + /* Close file access property list */ + ret = H5Pclose(fapl); + CHECK(ret, FAIL, "H5Pclose"); + + + /* setup dims: */ + dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = edge_size; + + + /* Create small cube dataspaces */ + full_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); + CHECK(full_small_cube_sid, FAIL, "H5Screate_simple"); + + mem_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); + CHECK(mem_small_cube_sid, FAIL, "H5Screate_simple"); + + file_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); + CHECK(file_small_cube_sid, FAIL, "H5Screate_simple"); + + + /* Create large cube dataspace */ + full_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(full_large_cube_sid, FAIL, "H5Screate_simple"); + + mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple"); + + file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(file_large_cube_sid, FAIL, "H5Screate_simple"); + + + /* if chunk edge size is greater than zero, set up the small and + * large data set creation property lists to specify chunked + * datasets. + */ + if(chunk_edge_size > 0) { + chunk_dims[0] = chunk_dims[1] = + chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = chunk_edge_size; + + small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate"); + + ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED); + CHECK(ret, FAIL, "H5Pset_layout"); + + ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + + + large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate"); + + ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED); + CHECK(ret, FAIL, "H5Pset_layout"); + + ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + } /* end if */ + + + /* create the small cube dataset */ + small_cube_dataset = H5Dcreate2(fid, "small_cube_dataset", dset_type, + file_small_cube_sid, H5P_DEFAULT, small_cube_dcpl_id, H5P_DEFAULT); + CHECK(small_cube_dataset, FAIL, "H5Dcreate2"); + + /* Close non-default small dataset DCPL */ + if(small_cube_dcpl_id != H5P_DEFAULT) { + ret = H5Pclose(small_cube_dcpl_id); + CHECK(ret, FAIL, "H5Pclose"); + } /* end if */ + + /* create the large cube dataset */ + large_cube_dataset = H5Dcreate2(fid, "large_cube_dataset", dset_type, + file_large_cube_sid, H5P_DEFAULT, large_cube_dcpl_id, H5P_DEFAULT); + CHECK(large_cube_dataset, FAIL, "H5Dcreate2"); + + /* Close non-default large dataset DCPL */ + if(large_cube_dcpl_id != H5P_DEFAULT) { + ret = H5Pclose(large_cube_dcpl_id); + CHECK(ret, FAIL, "H5Pclose"); + } /* end if */ + + + /* write initial data to the on disk datasets */ + ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, + full_small_cube_sid, xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, + full_large_cube_sid, xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* read initial small cube data from disk and verify that it is as expected. */ + ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, + full_small_cube_sid, xfer_plist, small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the data is valid */ + verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, + edge_size, small_rank); + + /* read initial large cube data from disk and verify that it is as expected. */ + ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, + full_large_cube_sid, xfer_plist, large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the data is valid */ + verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, + edge_size, large_rank); + + + /* first, verify that we can read from disk correctly using selections + * of different rank that H5S_select_shape_same() views as being of the + * same shape. + * + * Start by reading small_rank-D slice from the on disk large cube, and + * verifying that the data read is correct. Verify that H5S_select_shape_same() + * returns true on the memory and file selections. + * + * The first step is to set up the needed checker board selection in the + * in memory small small cube + */ + + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + + test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, + small_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start); + + /* now read slices from the large, on-disk cube into the small cube. + * Note how we adjust sel_start only in the dimensions peculiar to the + * large cube. + */ + + start_in_checker[0] = TRUE; + u = 0; + do { + if(small_rank_offset > 0) + sel_start[0] = u; + + v = 0; + do { + if(small_rank_offset > 1) + sel_start[1] = v; + + w = 0; + do { + if(small_rank_offset > 2) + sel_start[2] = w; + + x = 0; + do { + if(small_rank_offset > 3) + sel_start[3] = x; + + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); + HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); + HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); + HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); + HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); + + test_select_hyper_checker_board_dr__select_checker_board + ( + file_large_cube_sid, + large_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start + ); + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(mem_small_cube_sid, + file_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + /* zero the buffer that we will be using for reading */ + HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size); + + /* Read selection from disk */ + ret = H5Dread(large_cube_dataset, + H5T_NATIVE_UINT16, + mem_small_cube_sid, + file_large_cube_sid, + xfer_plist, + small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + expected_value = (uint16_t) + ((u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size)); + + data_ok = test_select_hyper_checker_board_dr__verify_data + ( + small_cube_buf_1, + small_rank, + edge_size, + checker_edge_size, + expected_value, + (hbool_t)TRUE + ); + if(!data_ok) + TestErrPrintf("small cube read from largecube has bad data! Line=%d\n",__LINE__); + + x++; + } while((large_rank >= (test_max_rank - 3)) && + (small_rank <= (test_max_rank - 4)) && (x < edge_size)); + w++; + } while((large_rank >= (test_max_rank - 2)) && + (small_rank <= (test_max_rank - 3)) && (w < edge_size)); + v++; + } while((large_rank >= (test_max_rank - 1)) && + (small_rank <= (test_max_rank - 2)) && (v < edge_size)); + u++; + } while((large_rank >= test_max_rank) && + (small_rank <= (test_max_rank - 1)) && (u < edge_size)); + + + /* similarly, read the on disk small cube into slices through the in memory + * large cube, and verify that the correct data (and only the correct data) + * is read. + */ + + /* select a checker board in the file small cube dataspace */ + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, + small_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start); + + + start_in_checker[0] = TRUE; + u = 0; + do { + if(0 < small_rank_offset) + sel_start[0] = u; + + v = 0; + do { + if(1 < small_rank_offset) + sel_start[1] = v; + + w = 0; + do { + if(2 < small_rank_offset) + sel_start[2] = w; + + x = 0; + do { + if(3 < small_rank_offset) + sel_start[3] = x; + + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); + HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); + HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); + HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); + HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); + + test_select_hyper_checker_board_dr__select_checker_board + ( + mem_large_cube_sid, + large_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start + ); + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(file_small_cube_sid, + mem_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* zero out the in memory large cube */ + HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size); + + /* Read selection from disk */ + ret = H5Dread(small_cube_dataset, + H5T_NATIVE_UINT16, + mem_large_cube_sid, + file_small_cube_sid, + xfer_plist, + large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + + /* verify that the expected data and only the + * expected data was read. + */ + data_ok = TRUE; + ptr_1 = large_cube_buf_1; + expected_value = 0; + start_index = (u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size); + stop_index = start_index + small_cube_size - 1; + + HDassert( start_index < stop_index ); + HDassert( stop_index <= large_cube_size ); + + /* verify that the large cube contains only zeros before the slice */ + for(s = 0; s < start_index; s++) { + if(*ptr_1 != 0) + data_ok = FALSE; + ptr_1++; + } /* end for */ + HDassert(s == start_index); + + data_ok &= test_select_hyper_checker_board_dr__verify_data + ( + ptr_1, + small_rank, + edge_size, + checker_edge_size, + (uint16_t)0, + (hbool_t)TRUE + ); + + ptr_1 += small_cube_size; + s += small_cube_size; + + HDassert(s == stop_index + 1); + + /* verify that the large cube contains only zeros after the slice */ + for(s = stop_index + 1; s < large_cube_size; s++) { + if(*ptr_1 != 0) + data_ok = FALSE; + ptr_1++; + } /* end for */ + if(!data_ok) + TestErrPrintf("large cube read from small cube has bad data! Line=%d\n",__LINE__); + + x++; + } while((large_rank >= (test_max_rank - 3)) && + (small_rank <= (test_max_rank - 4)) && (x < edge_size)); + w++; + } while((large_rank >= (test_max_rank - 2)) && + (small_rank <= (test_max_rank - 3)) && (w < edge_size)); + v++; + } while((large_rank >= (test_max_rank - 1)) && + (small_rank <= (test_max_rank - 2)) && (v < edge_size)); + u++; + } while((large_rank >= test_max_rank) && + (small_rank <= (test_max_rank - 1)) && (u < edge_size)); + + + /* now we go in the opposite direction, verifying that we can write + * from memory to file using selections of different rank that + * H5S_select_shape_same() views as being of the same shape. + * + * Start by writing small_rank D slices from the in memory large cube, to + * the the on disk small cube dataset. After each write, read the small + * cube dataset back from disk, and verify that it contains the expected + * data. Verify that H5S_select_shape_same() returns true on the + * memory and file selections. + */ + + /* select a checker board in the file small cube dataspace */ + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, + small_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start); + + start_in_checker[0] = TRUE; + u = 0; + do { + if(small_rank_offset > 0) + sel_start[0] = u; + + v = 0; + do { + if(small_rank_offset > 1) + sel_start[1] = v; + + w = 0; + do { + if(small_rank_offset > 2) + sel_start[2] = w; + + x = 0; + do { + if(small_rank_offset > 3) + sel_start[3] = x; + + /* zero out the on disk small cube */ + ret = H5Dwrite(small_cube_dataset, + H5T_NATIVE_UINT16, + full_small_cube_sid, + full_small_cube_sid, + xfer_plist, + zero_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); + HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); + HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); + HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); + HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); + + test_select_hyper_checker_board_dr__select_checker_board + ( + mem_large_cube_sid, + large_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start + ); + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(file_small_cube_sid, + mem_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* write the slice from the in memory large cube to the + * on disk small cube + */ + ret = H5Dwrite(small_cube_dataset, + H5T_NATIVE_UINT16, + mem_large_cube_sid, + file_small_cube_sid, + xfer_plist, + cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* zero the buffer that we will be using for reading */ + HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size); + + /* read the on disk small cube into memory */ + ret = H5Dread(small_cube_dataset, + H5T_NATIVE_UINT16, + full_small_cube_sid, + full_small_cube_sid, + xfer_plist, + small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + expected_value = (uint16_t) + ((u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size)); + + data_ok = test_select_hyper_checker_board_dr__verify_data + ( + small_cube_buf_1, + small_rank, + edge_size, + checker_edge_size, + expected_value, + (hbool_t)TRUE + ); + if(!data_ok) + TestErrPrintf("small cube read from largecube has bad data! Line=%d\n",__LINE__); + + x++; + } while((large_rank >= (test_max_rank - 3)) && + (small_rank <= (test_max_rank - 4)) && (x < edge_size)); + w++; + } while((large_rank >= (test_max_rank - 2)) && + (small_rank <= (test_max_rank - 3)) && (w < edge_size)); + v++; + } while((large_rank >= (test_max_rank - 1)) && + (small_rank <= (test_max_rank - 2)) && (v < edge_size)); + u++; + } while((large_rank >= test_max_rank) && + (small_rank <= (test_max_rank - 1)) && (u < edge_size)); + + + /* Now write checker board selections of the entries in memory + * small cube to slices of the on disk cube. After each write, + * read the on disk large cube * into memeory, and verify that + * it contains the expected * data. Verify that + * H5S_select_shape_same() returns true on the memory and file + * selections. + */ + + /* select a checker board in the in memory small cube dataspace */ + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, + small_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start); + + start_in_checker[0] = TRUE; + u = 0; + do { + if(small_rank_offset > 0) + sel_start[0] = u; + + v = 0; + do { + if(small_rank_offset > 1) + sel_start[1] = v; + + w = 0; + do { + if(small_rank_offset > 2) + sel_start[2] = w; + + x = 0; + do { + if(small_rank_offset > 3) + sel_start[3] = x; + + /* zero out the on disk cube */ + ret = H5Dwrite(large_cube_dataset, + H5T_NATIVE_USHORT, + full_large_cube_sid, + full_large_cube_sid, + xfer_plist, + zero_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); + HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); + HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); + HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); + HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); + + + test_select_hyper_checker_board_dr__select_checker_board + ( + file_large_cube_sid, + large_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start + ); + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(file_large_cube_sid, + mem_small_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* write the checker board selection of the in memory + * small cube to a slice through the on disk large + * cube. + */ + ret = H5Dwrite(large_cube_dataset, + H5T_NATIVE_UINT16, + mem_small_cube_sid, + file_large_cube_sid, + xfer_plist, + cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* zero out the in memory large cube */ + HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size); + + /* read the on disk large cube into memory */ + ret = H5Dread(large_cube_dataset, + H5T_NATIVE_UINT16, + full_large_cube_sid, + full_large_cube_sid, + xfer_plist, + large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + + /* verify that the expected data and only the + * expected data was written to the on disk large + * cube. + */ + data_ok = TRUE; + ptr_1 = large_cube_buf_1; + expected_value = 0; + start_index = (u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size); + stop_index = start_index + small_cube_size - 1; + + HDassert( start_index < stop_index ); + HDassert( stop_index <= large_cube_size ); + + /* verify that the large cube contains only zeros before the slice */ + for(s = 0; s < start_index; s++) { + if(*ptr_1 != 0) + data_ok = FALSE; + ptr_1++; + } /* end for */ + HDassert(s == start_index); + + /* verify that the slice contains the expected data */ + data_ok &= test_select_hyper_checker_board_dr__verify_data + ( + ptr_1, + small_rank, + edge_size, + checker_edge_size, + (uint16_t)0, + (hbool_t)TRUE + ); + + ptr_1 += small_cube_size; + s += small_cube_size; + + HDassert(s == stop_index + 1); + + /* verify that the large cube contains only zeros after the slice */ + for(s = stop_index + 1; s < large_cube_size; s++) { + if(*ptr_1 != 0) + data_ok = FALSE; + ptr_1++; + } /* end for */ + if(!data_ok) + TestErrPrintf("large cube written from small cube has bad data! Line=%d\n",__LINE__); + + x++; + } while((large_rank >= (test_max_rank - 3)) && + (small_rank <= (test_max_rank - 4)) && (x < edge_size)); + w++; + } while((large_rank >= (test_max_rank - 2)) && + (small_rank <= (test_max_rank - 3)) && (w < edge_size)); + v++; + } while((large_rank >= (test_max_rank - 1)) && + (small_rank <= (test_max_rank - 2)) && (v < edge_size)); + u++; + } while((large_rank >= test_max_rank) && + (small_rank <= (test_max_rank - 1)) && (u < edge_size)); + + + /* Close memory dataspaces */ + ret = H5Sclose(full_small_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(full_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(mem_small_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(mem_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + /* Close disk dataspace */ + ret = H5Sclose(file_small_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(file_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Datasets */ + ret = H5Dclose(small_cube_dataset); + CHECK(ret, FAIL, "H5Dclose"); + + ret = H5Dclose(large_cube_dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(small_cube_buf_1); + HDfree(large_cube_buf_1); + +} /* test_select_hyper_checker_board_dr__run_test() */ + + +/**************************************************************** +** +** test_select_hyper_checker_board_dr(): Test H5S (dataspace) +** selection code with checkerboard source and target having +** different ranks but the same shape. We have already +** tested H5S_shape_same in isolation, so now we try to do +** I/O. +** +** This is just an initial smoke check, so we will work +** with a slice through a cube only. +** +****************************************************************/ +static void +test_select_hyper_checker_board_dr(hid_t dset_type, hid_t xfer_plist) +{ + uint16_t *cube_buf; /* Buffer for writing cube data */ + uint16_t *cube_ptr; /* Temporary pointer into cube data */ + uint16_t *zero_buf; /* Buffer for writing zeroed cube data */ + int test_num = 0; + unsigned checker_edge_size = 2; /* Size of checkerboard dimension */ + unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */ + unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */ + unsigned small_rank; /* Current rank of small dataset */ + unsigned large_rank; /* Current rank of large dataset */ + unsigned max_rank = 5; /* Max. rank to use */ + size_t max_cube_size; /* Max. number of elements in largest cube */ + size_t s; /* Local index variable */ + unsigned u; /* Local index variable */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Checker Board Hyperslabs With Different Rank I/O Functionality\n")); + + /* Compute max. cube size */ + max_cube_size = (size_t)1; + for(u = 0; u < max_rank; u++) + max_cube_size *= (size_t)(edge_size + 1); + + /* Allocate cube buffer for writing values */ + cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size); + CHECK(cube_buf, NULL, "HDmalloc"); + + /* Initialize the cube buffer */ + cube_ptr = cube_buf; + for(s = 0; s < max_cube_size; s++) + *cube_ptr++ = (uint16_t)s; + + /* Allocate cube buffer for zeroing values on disk */ + zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size); + CHECK(zero_buf, NULL, "HDcalloc"); + + for(large_rank = 1; large_rank <= max_rank; large_rank++) { + for(small_rank = 1; small_rank < large_rank; small_rank++) { + chunk_edge_size = 0; + test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, + zero_buf, edge_size, checker_edge_size, chunk_edge_size, small_rank, + large_rank, dset_type, xfer_plist); + test_num++; + + test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, + zero_buf, + edge_size + 1, checker_edge_size, chunk_edge_size, small_rank, + large_rank, dset_type, xfer_plist); + test_num++; + + chunk_edge_size = 3; + test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, + zero_buf, + edge_size, checker_edge_size, chunk_edge_size, small_rank, + large_rank, dset_type, xfer_plist); + test_num++; + + test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, + zero_buf, + edge_size + 1, checker_edge_size, chunk_edge_size, small_rank, + large_rank, dset_type, xfer_plist); + test_num++; + } /* for loop on small rank */ + } /* for loop on large rank */ + + HDfree(cube_buf); + HDfree(zero_buf); + +} /* test_select_hyper_checker_board_dr() */ + + /**************************************************************** ** ** test_select_hyper_copy(): Test H5S (dataspace) selection code. @@ -2345,15 +4373,15 @@ test_select_point_offset(void) CHECK(ret, FAIL, "H5Sselect_elements"); /* Read selection from disk */ - ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,rbuf); + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ - for(i=0; i<POINT1_NPOINTS; i++) { - tbuf=wbuf+((coord2[i][0]+offset[0])*SPACE2_DIM2)+coord2[i][1]+offset[1]; - tbuf2=rbuf+(coord3[i][0]*SPACE3_DIM2)+coord3[i][1]; - if(*tbuf!=*tbuf2) - TestErrPrintf("element values don't match!, i=%d\n",i); + for(i = 0; i < POINT1_NPOINTS; i++) { + tbuf = wbuf + ((coord2[i][0] + (hsize_t)offset[0]) * SPACE2_DIM2) + coord2[i][1] + (hsize_t)offset[1]; + tbuf2 = rbuf + (coord3[i][0] * SPACE3_DIM2) + coord3[i][1]; + if(*tbuf != *tbuf2) + TestErrPrintf("element values don't match!, i=%d\n", i); } /* end for */ /* Close memory dataspace */ @@ -2410,7 +4438,7 @@ test_select_hyper_union(void) *tbuf2; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ - hsize_t npoints; /* Number of elements in selection */ + hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of hyperslabs\n")); @@ -2448,7 +4476,7 @@ test_select_hyper_union(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid1); - VERIFY(npoints, 2*15*13, "H5Sget_select_npoints"); + VERIFY(npoints, 2 * 15 * 13, "H5Sget_select_npoints"); /* Select 8x26 hyperslab for memory dataset */ start[0]=15; start[1]=0; @@ -2561,7 +4589,7 @@ test_select_hyper_union(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); - VERIFY(npoints, 15*26, "H5Sget_select_npoints"); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -2647,7 +4675,7 @@ test_select_hyper_union(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); - VERIFY(npoints, 15*26, "H5Sget_select_npoints"); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE3_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -2737,7 +4765,7 @@ test_select_hyper_union(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); - VERIFY(npoints, 15*26, "H5Sget_select_npoints"); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE4_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -2834,7 +4862,7 @@ test_select_hyper_union(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); - VERIFY(npoints, 15*26, "H5Sget_select_npoints"); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1,SPACE5_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -3277,7 +5305,7 @@ test_select_hyper_and_2d(void) *tbuf2; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ - hsize_t npoints; /* Number of elements in selection */ + hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with intersection of 2-D hyperslabs\n")); @@ -3322,7 +5350,7 @@ test_select_hyper_and_2d(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid1); - VERIFY(npoints, 5*5, "H5Sget_select_npoints"); + VERIFY(npoints, 5 * 5, "H5Sget_select_npoints"); /* Select 25 hyperslab for memory dataset */ start[0]=0; @@ -3333,7 +5361,7 @@ test_select_hyper_and_2d(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); - VERIFY(npoints, 5*5, "H5Sget_select_npoints"); + VERIFY(npoints, 5 * 5, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -3406,7 +5434,7 @@ test_select_hyper_xor_2d(void) *tbuf2; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ - hsize_t npoints; /* Number of elements in selection */ + hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with XOR of 2-D hyperslabs\n")); @@ -3537,7 +5565,7 @@ test_select_hyper_notb_2d(void) *tbuf2; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ - hsize_t npoints; /* Number of elements in selection */ + hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTB of 2-D hyperslabs\n")); @@ -3667,7 +5695,7 @@ test_select_hyper_nota_2d(void) *tbuf2; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ - hsize_t npoints; /* Number of elements in selection */ + hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTA of 2-D hyperslabs\n")); @@ -3878,7 +5906,7 @@ test_select_hyper_union_random_5d(hid_t read_plist) #else /* QAK */ seed=987909620; #endif /* QAK */ - HDsrand(seed); + HDsrandom(seed); #ifdef QAK printf("test_num=%d, seed=%u\n",test_num,seed); @@ -3893,26 +5921,26 @@ printf("hyperslab=%d\n",i); #endif /* QAK */ /* Select random hyperslab location & size for selection */ for(j=0; j<SPACE5_RANK; j++) { - start[j]=rand()%dims1[j]; - count[j]=(rand()%(dims1[j]-start[j]))+1; + start[j] = ((hsize_t)HDrandom() % dims1[j]); + count[j] = (((hsize_t)HDrandom() % (dims1[j] - start[j])) + 1); #ifdef QAK printf("start[%d]=%d, count[%d]=%d (end[%d]=%d)\n",j,(int)start[j],j,(int)count[j],j,(int)(start[j]+count[j]-1)); #endif /* QAK */ } /* end for */ /* Select hyperslab */ - ret = H5Sselect_hyperslab(sid1,(i==0 ? H5S_SELECT_SET : H5S_SELECT_OR),start,NULL,count,NULL); + ret = H5Sselect_hyperslab(sid1, (i == 0 ? H5S_SELECT_SET : H5S_SELECT_OR), start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end for */ /* Get the number of elements selected */ - npoints=H5Sget_select_npoints(sid1); + npoints = H5Sget_select_npoints(sid1); CHECK(npoints, 0, "H5Sget_select_npoints"); /* Select linear 1-D hyperslab for memory dataset */ - start[0]=0; - count[0]=npoints; - ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,NULL,count,NULL); + start[0] = 0; + count[0] = (hsize_t)npoints; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints2 = H5Sget_select_npoints(sid2); @@ -4973,24 +7001,24 @@ typedef struct { static herr_t test_select_hyper_iter3(void *_elem, hid_t UNUSED type_id, unsigned ndim, const hsize_t *point, void *_operator_data) { - unsigned short *tbuf=(unsigned short *)_elem; /* temporary buffer pointer */ - fill_iter_info *iter_info=(fill_iter_info *)_operator_data; /* Get the pointer to the iterator information */ + unsigned *tbuf = (unsigned *)_elem; /* temporary buffer pointer */ + fill_iter_info *iter_info = (fill_iter_info *)_operator_data; /* Get the pointer to the iterator information */ hsize_t *coord_ptr; /* Pointer to the coordinate information for a point*/ /* Check value in current buffer location */ - if(*tbuf!=iter_info->fill_value) + if(*tbuf != iter_info->fill_value) return(-1); else { /* Check number of dimensions */ - if(ndim!=SPACE7_RANK) + if(ndim != SPACE7_RANK) return(-1); else { /* Check Coordinates */ - coord_ptr=iter_info->coords+(2*iter_info->curr_coord); + coord_ptr = iter_info->coords + (2 * iter_info->curr_coord); iter_info->curr_coord++; - if(coord_ptr[0]!=point[0]) + if(coord_ptr[0] != point[0]) return(-1); - else if(coord_ptr[1]!=point[1]) + else if(coord_ptr[1] != point[1]) return(-1); else return(0); @@ -5009,25 +7037,25 @@ test_select_fill_all(void) { hid_t sid1; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; - int fill_value; /* Fill value */ + unsigned fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ hsize_t points[SPACE7_DIM1*SPACE7_DIM2][SPACE7_RANK]; /* Coordinates of selection */ - unsigned short *wbuf, /* buffer to write to disk */ + unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ - int i,j; /* Counters */ + unsigned u, v; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling 'all' Selections\n")); /* Allocate memory buffer */ - wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2); + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) - *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j; + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) + *tbuf++ = (u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); @@ -5036,32 +7064,32 @@ test_select_fill_all(void) /* Space defaults to "all" selection */ /* Set fill value */ - fill_value=SPACE7_FILL; + fill_value = SPACE7_FILL; /* Fill selection in memory */ - ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1); + ret = H5Dfill(&fill_value, H5T_NATIVE_UINT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) - if(*tbuf!=(unsigned short)fill_value) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%x, fill_value=%x\n",j,i,(unsigned)*tbuf,(unsigned)fill_value); + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) + if(*tbuf != fill_value) + TestErrPrintf("Error! v=%d, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, fill_value); /* Set the coordinates of the selection */ - for(i=0; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) { - points[(i*SPACE7_DIM2)+j][0]=i; - points[(i*SPACE7_DIM2)+j][1]=j; + for(u = 0; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) { + points[(u * SPACE7_DIM2) + v][0] = u; + points[(u * SPACE7_DIM2) + v][1] = v; } /* end for */ /* Initialize the iterator structure */ - iter_info.fill_value=SPACE7_FILL; - iter_info.curr_coord=0; - iter_info.coords=(hsize_t *)points; + iter_info.fill_value = SPACE7_FILL; + iter_info.curr_coord = 0; + iter_info.coords = (hsize_t *)points; /* Iterate through selection, verifying correct data */ - ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info); + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ @@ -5085,78 +7113,78 @@ test_select_fill_point(hssize_t *offset) hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ hsize_t points[5][SPACE7_RANK] = {{2,4}, {3,8}, {8,4}, {7,5}, {7,7}}; - size_t num_points=5; /* Number of points selected */ + size_t num_points = 5; /* Number of points selected */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ - unsigned short *wbuf, /* buffer to write to disk */ + unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ - int i,j,k; /* Counters */ + unsigned u, v, w; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling 'point' Selections\n")); /* Allocate memory buffer */ - wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2); + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) - *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j; + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) + *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select "point" selection */ - ret = H5Sselect_elements(sid1, H5S_SELECT_SET,num_points,(const hsize_t *)points); + ret = H5Sselect_elements(sid1, H5S_SELECT_SET, num_points, (const hsize_t *)points); CHECK(ret, FAIL, "H5Sselect_elements"); - if(offset!=NULL) { - HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t)); + if(offset != NULL) { + HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ - ret = H5Soffset_simple(sid1,real_offset); + ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else - HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t)); + HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ - fill_value=SPACE7_FILL; + fill_value = SPACE7_FILL; /* Fill selection in memory */ - ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1); + ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++, tbuf++) { - for(k=0; k<(int)num_points; k++) { - if(i==(int)(points[k][0]+real_offset[0]) && j==(int)(points[k][1]+real_offset[1])) { - if(*tbuf!=(unsigned short)fill_value) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value); + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++, tbuf++) { + for(w = 0; w < (unsigned)num_points; w++) { + if(u == (unsigned)(points[w][0] + (hsize_t)real_offset[0]) && v == (unsigned)(points[w][1] + (hsize_t)real_offset[1])) { + if(*tbuf != (unsigned)fill_value) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); break; } /* end if */ } /* end for */ - if(k==(int)num_points && *tbuf!=((unsigned short)(i*SPACE7_DIM2)+j)) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j)); + if(w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) + TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end for */ /* Initialize the iterator structure */ - iter_info.fill_value=SPACE7_FILL; - iter_info.curr_coord=0; - iter_info.coords=(hsize_t *)points; + iter_info.fill_value = SPACE7_FILL; + iter_info.curr_coord = 0; + iter_info.coords = (hsize_t *)points; /* Add in the offset */ - for(i=0; i<(int)num_points; i++) { - points[i][0]+=real_offset[0]; - points[i][1]+=real_offset[1]; + for(u = 0; u < (unsigned)num_points; u++) { + points[u][0] = (hsize_t)(points[u][0] + real_offset[0]); + points[u][1] = (hsize_t)(points[u][1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ - ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info); + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ @@ -5185,78 +7213,78 @@ test_select_fill_hyper_simple(hssize_t *offset) hsize_t points[16][SPACE7_RANK]; /* Coordinates selected */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ - unsigned short *wbuf, /* buffer to write to disk */ + unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ - int i,j; /* Counters */ + unsigned u, v; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling Simple 'hyperslab' Selections\n")); /* Allocate memory buffer */ - wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2); + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) - *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j; + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) + *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select "hyperslab" selection */ - start[0]=3; start[1]=3; - count[0]=4; count[1]=4; - ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET,start,NULL,count,NULL); + start[0] = 3; start[1] = 3; + count[0] = 4; count[1] = 4; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); - if(offset!=NULL) { - HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t)); + if(offset != NULL) { + HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ - ret = H5Soffset_simple(sid1,real_offset); + ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else - HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t)); + HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ - fill_value=SPACE7_FILL; + fill_value = SPACE7_FILL; /* Fill selection in memory */ - ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1); + ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++, tbuf++) { - if((i>=(int)(start[0]+real_offset[0]) && i<(int)(start[0]+count[0]+real_offset[0])) - && (j>=(int)(start[1]+real_offset[1]) && j<(int)(start[1]+count[1]+real_offset[1]))) { - if(*tbuf!=(unsigned short)fill_value) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value); + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++, tbuf++) { + if((u >= (unsigned)(start[0] + real_offset[0]) && u < (unsigned)(start[0] + count[0] + real_offset[0])) + && (v >= (unsigned)(start[1] + real_offset[1]) && v < (unsigned)(start[1] + count[1] + real_offset[1]))) { + if(*tbuf != (unsigned)fill_value) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); } /* end if */ else { - if(*tbuf!=((unsigned short)(i*SPACE7_DIM2)+j)) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j)); + if(*tbuf != ((unsigned)(u * SPACE7_DIM2) + v)) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end else */ } /* end for */ /* Initialize the iterator structure */ - iter_info.fill_value=SPACE7_FILL; - iter_info.curr_coord=0; - iter_info.coords=(hsize_t *)points; + iter_info.fill_value = SPACE7_FILL; + iter_info.curr_coord = 0; + iter_info.coords = (hsize_t *)points; /* Set the coordinates of the selection (with the offset) */ - for(i=0, num_points=0; i<(int)count[0]; i++) - for(j=0; j<(int)count[1]; j++, num_points++) { - points[num_points][0]=i+start[0]+real_offset[0]; - points[num_points][1]=j+start[1]+real_offset[1]; + for(u = 0, num_points = 0; u < (unsigned)count[0]; u++) + for(v = 0; v < (unsigned)count[1]; v++, num_points++) { + points[num_points][0] = (hsize_t)(u + start[0] + real_offset[0]); + points[num_points][1] = (hsize_t)(v + start[1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ - ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info); + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ @@ -5292,79 +7320,79 @@ test_select_fill_hyper_regular(hssize_t *offset) size_t num_points=16; /* Number of points selected */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ - unsigned short *wbuf, /* buffer to write to disk */ + unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ - int i,j,k; /* Counters */ + unsigned u, v, w; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling Regular 'hyperslab' Selections\n")); /* Allocate memory buffer */ - wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2); + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) - *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j; + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) + *tbuf++ =(u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select "hyperslab" selection */ - start[0]=2; start[1]=2; - stride[0]=4; stride[1]=4; - count[0]=2; count[1]=2; - block[0]=2; block[1]=2; - ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block); + start[0] = 2; start[1] = 2; + stride[0] = 4; stride[1] = 4; + count[0] = 2; count[1] = 2; + block[0] = 2; block[1] = 2; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); - if(offset!=NULL) { - HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t)); + if(offset != NULL) { + HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ - ret = H5Soffset_simple(sid1,real_offset); + ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else - HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t)); + HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ - fill_value=SPACE7_FILL; + fill_value = SPACE7_FILL; /* Fill selection in memory */ - ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1); + ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++, tbuf++) { - for(k=0; k<(int)num_points; k++) { - if(i==(int)(points[k][0]+real_offset[0]) && j==(int)(points[k][1]+real_offset[1])) { - if(*tbuf!=(unsigned short)fill_value) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value); + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++, tbuf++) { + for(w = 0; w < (unsigned)num_points; w++) { + if(u == (unsigned)(points[w][0] + real_offset[0]) && v == (unsigned)(points[w][1] + real_offset[1])) { + if(*tbuf != (unsigned)fill_value) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); break; } /* end if */ } /* end for */ - if(k==(int)num_points && *tbuf!=((unsigned short)(i*SPACE7_DIM2)+j)) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j)); + if(w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) + TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end for */ /* Initialize the iterator structure */ - iter_info.fill_value=SPACE7_FILL; - iter_info.curr_coord=0; - iter_info.coords=(hsize_t *)points; + iter_info.fill_value = SPACE7_FILL; + iter_info.curr_coord = 0; + iter_info.coords = (hsize_t *)points; /* Add in the offset */ - for(i=0; i<(int)num_points; i++) { - points[i][0] += real_offset[0]; - points[i][1] += real_offset[1]; + for(u = 0; u < (unsigned)num_points; u++) { + points[u][0] = (hsize_t)(points[u][0] + real_offset[0]); + points[u][1] = (hsize_t)(points[u][1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ - ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info); + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ @@ -5407,72 +7435,72 @@ test_select_fill_hyper_irregular(hssize_t *offset) {6,4}, {6,5}, {6,6}, {6,7}, {7,4}, {7,5}, {7,6}, {7,7}, }; - size_t num_points=32; /* Number of points selected */ - size_t num_iter_points=28; /* Number of resulting points */ + size_t num_points = 32; /* Number of points selected */ + size_t num_iter_points = 28; /* Number of resulting points */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ - unsigned short *wbuf, /* buffer to write to disk */ + unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ - int i,j,k; /* Counters */ + unsigned u, v, w; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling Irregular 'hyperslab' Selections\n")); /* Allocate memory buffer */ - wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2); + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) - *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j; + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) + *tbuf++ = (u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select first "hyperslab" selection */ - start[0]=2; start[1]=2; - count[0]=4; count[1]=4; - ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,NULL,count,NULL); + start[0] = 2; start[1] = 2; + count[0] = 4; count[1] = 4; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Combine with second "hyperslab" selection */ - start[0]=4; start[1]=4; - count[0]=4; count[1]=4; - ret = H5Sselect_hyperslab(sid1,H5S_SELECT_OR,start,NULL,count,NULL); + start[0] = 4; start[1] = 4; + count[0] = 4; count[1] = 4; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_OR, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); - if(offset!=NULL) { - HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t)); + if(offset != NULL) { + HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ - ret = H5Soffset_simple(sid1,real_offset); + ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else - HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t)); + HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ - fill_value=SPACE7_FILL; + fill_value = SPACE7_FILL; /* Fill selection in memory */ - ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1); + ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++, tbuf++) { - for(k=0; k<(int)num_points; k++) { - if(i==(int)(points[k][0]+real_offset[0]) && j==(int)(points[k][1]+real_offset[1])) { - if(*tbuf!=(unsigned short)fill_value) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value); + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++, tbuf++) { + for(w = 0; w < (unsigned)num_points; w++) { + if(u == (unsigned)(points[w][0] + real_offset[0]) && v == (unsigned)(points[w][1] + real_offset[1])) { + if(*tbuf != (unsigned)fill_value) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); break; } /* end if */ } /* end for */ - if(k==(int)num_points && *tbuf!=((unsigned short)(i*SPACE7_DIM2)+j)) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j)); + if(w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end for */ /* Initialize the iterator structure */ @@ -5481,13 +7509,13 @@ test_select_fill_hyper_irregular(hssize_t *offset) iter_info.coords = (hsize_t *)iter_points; /* Add in the offset */ - for(i=0; i<(int)num_iter_points; i++) { - iter_points[i][0] += real_offset[0]; - iter_points[i][1] += real_offset[1]; + for(u = 0; u < (unsigned)num_iter_points; u++) { + iter_points[u][0] = (hsize_t)(iter_points[u][0] + real_offset[0]); + iter_points[u][1] = (hsize_t)(iter_points[u][1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ - ret = H5Diterate(wbuf, H5T_NATIVE_USHORT, sid1, test_select_hyper_iter3, &iter_info); + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ @@ -7005,6 +9033,2855 @@ test_shape_same(void) CHECK(ret, FAIL, "H5Sclose"); } /* test_shape_same() */ +/**************************************************************** +** +** test_shape_same_dr__smoke_check_1(): +** +** Create a square, 2 D data space (10 X 10), and select +** all of it. +** +** Similarly, create nine, 3 D data spaces (10 X 10 X 10), +** and select (10 X 10 X 1) hyper slabs in each, three with +** the slab parallel to the xy plane, three parallel to the +** xz plane, and three parallel to the yz plane. +** +** Assuming that z is the fastest changing dimension, +** H5S_select_shape_same() should return TRUE when comparing +** the full 2 D space against any hyperslab parallel to the +** yz plane in the 3 D space, and FALSE when comparing the +** full 2 D space against the other two hyper slabs. +** +** Also create two additional 3 D data spaces (10 X 10 X 10), +** and select a (10 X 10 X 2) hyper slab parallel to the yz +** axis in one of them, and two parallel (10 X 10 X 1) hyper +** slabs parallel to the yz axis in the other. +** H5S_select_shape_same() should return FALSE when comparing +** each to the 2 D selection. +** +****************************************************************/ +static void +test_shape_same_dr__smoke_check_1(void) +{ + hid_t small_square_sid; + hid_t small_cube_xy_slice_0_sid; + hid_t small_cube_xy_slice_1_sid; + hid_t small_cube_xy_slice_2_sid; + hid_t small_cube_xz_slice_0_sid; + hid_t small_cube_xz_slice_1_sid; + hid_t small_cube_xz_slice_2_sid; + hid_t small_cube_yz_slice_0_sid; + hid_t small_cube_yz_slice_1_sid; + hid_t small_cube_yz_slice_2_sid; + hid_t small_cube_yz_slice_3_sid; + hid_t small_cube_yz_slice_4_sid; + hsize_t small_cube_dims[] = {10, 10, 10}; + hsize_t start[3]; + hsize_t stride[3]; + hsize_t count[3]; + hsize_t block[3]; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, (" Smoke check 1: Slices through a cube.\n")); + + /* Create the 10 x 10 dataspace */ + small_square_sid = H5Screate_simple(2, small_cube_dims, NULL); + CHECK(small_square_sid, FAIL, "H5Screate_simple"); + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */ + small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + /* stride is a bit silly here, since we are only selecting a single */ + /* contiguous plane, but include it anyway, with values large enough */ + /* to ensure that we will only get the single block selected. */ + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 10; /* x */ + block[1] = 10; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 5; + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 9; + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */ + small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + /* stride is a bit silly here, since we are only selecting a single */ + /* contiguous chunk, but include it anyway, with values large enough */ + /* to ensure that we will only get the single chunk. */ + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 10; /* x */ + block[1] = 1; /* y */ + block[2] = 10; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 4; + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 9; + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */ + small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_4_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_4_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + /* stride is a bit silly here, since we are only selecting a single */ + /* contiguous chunk, but include it anyway, with values large enough */ + /* to ensure that we will only get the single chunk. */ + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 1; /* x */ + block[1] = 10; /* y */ + block[2] = 10; /* z */ + + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 4; + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 9; + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 4; + block[0] = 2; + ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; + block[0] = 1; + ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 6; + ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* setup is done -- run the tests: */ + + /* Compare against "xy" selection */ + check = H5S_select_shape_same_test(small_cube_xy_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xy_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xy_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Compare against "xz" selection */ + check = H5S_select_shape_same_test(small_cube_xz_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xz_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xz_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Compare against "yz" selection */ + check = H5S_select_shape_same_test(small_cube_yz_slice_0_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_1_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_2_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_3_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_4_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Close dataspaces */ + ret = H5Sclose(small_square_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_xy_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_xz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_yz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_3_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_4_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__smoke_check_1() */ + +/**************************************************************** +** +** test_shape_same_dr__smoke_check_2(): +** +** Create a square, 2 D data space (10 X 10), and select +** a "checker board" hyper slab as follows: +** +** * * - - * * - - * * +** * * - - * * - - * * +** - - * * - - * * - - +** - - * * - - * * - - +** * * - - * * - - * * +** * * - - * * - - * * +** - - * * - - * * - - +** - - * * - - * * - - +** * * - - * * - - * * +** * * - - * * - - * * +** +** where asterisks indicate selected elements, and dashes +** indicate unselected elements. +** +** Similarly, create nine, 3 D data spaces (10 X 10 X 10), +** and select similar (10 X 10 X 1) checker board hyper +** slabs in each, three with the slab parallel to the xy +** plane, three parallel to the xz plane, and three parallel +** to the yz plane. +** +** Assuming that z is the fastest changing dimension, +** H5S_select_shape_same() should return TRUE when comparing +** the 2 D space checker board selection against a checker +** board hyperslab parallel to the yz plane in the 3 D +** space, and FALSE when comparing the 2 D checkerboard +** selection against two hyper slabs parallel to the xy +** or xz planes. +** +** Also create an additional 3 D data spaces (10 X 10 X 10), +** and select a checker board parallel with the yz axis, +** save with some squares being on different planes. +** H5S_select_shape_same() should return FALSE when +** comparing this selection to the 2 D selection. +** +****************************************************************/ +static void +test_shape_same_dr__smoke_check_2(void) +{ + hid_t small_square_sid; + hid_t small_cube_xy_slice_0_sid; + hid_t small_cube_xy_slice_1_sid; + hid_t small_cube_xy_slice_2_sid; + hid_t small_cube_xz_slice_0_sid; + hid_t small_cube_xz_slice_1_sid; + hid_t small_cube_xz_slice_2_sid; + hid_t small_cube_yz_slice_0_sid; + hid_t small_cube_yz_slice_1_sid; + hid_t small_cube_yz_slice_2_sid; + hid_t small_cube_yz_slice_3_sid; + hsize_t small_cube_dims[] = {10, 10, 10}; + hsize_t start[3]; + hsize_t stride[3]; + hsize_t count[3]; + hsize_t block[3]; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, (" Smoke check 2: Checker board slices through a cube.\n")); + + /* Create the 10 x 10 dataspace */ + small_square_sid = H5Screate_simple(2, small_cube_dims, NULL); + CHECK(small_square_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + + stride[0] = 4; /* x */ + stride[1] = 4; /* y */ + + count[0] = 3; /* x */ + count[1] = 3; /* y */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 2; /* x */ + start[1] = 2; /* y */ + + stride[0] = 4; /* x */ + stride[1] = 4; /* y */ + + count[0] = 2; /* x */ + count[1] = 2; /* y */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */ + small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple"); + + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + stride[0] = 4; /* x */ + stride[1] = 4; /* y */ + stride[2] = 20; /* z -- large enough that there will only be one slice */ + + count[0] = 3; /* x */ + count[1] = 3; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 3; + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 9; + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + start[0] = 2; /* x */ + start[1] = 2; /* y */ + start[2] = 0; /* z */ + + stride[0] = 4; /* x */ + stride[1] = 4; /* y */ + stride[2] = 20; /* z -- large enough that there will only be one slice */ + + count[0] = 2; /* x */ + count[1] = 2; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 3; + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 9; + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */ + small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple"); + + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + stride[0] = 4; /* x */ + stride[1] = 20; /* y -- large enough that there will only be one slice */ + stride[2] = 4; /* z */ + + count[0] = 3; /* x */ + count[1] = 1; /* y */ + count[2] = 3; /* z */ + + block[0] = 2; /* x */ + block[1] = 1; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 5; + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 9; + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 2; /* x */ + start[1] = 0; /* y */ + start[2] = 2; /* z */ + + stride[0] = 4; /* x */ + stride[1] = 20; /* y -- large enough that there will only be one slice */ + stride[2] = 4; /* z */ + + count[0] = 2; /* x */ + count[1] = 1; /* y */ + count[2] = 2; /* z */ + + block[0] = 2; /* x */ + block[1] = 1; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 5; + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 9; + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */ + small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + stride[0] = 20; /* x -- large enough that there will only be one slice */ + stride[1] = 4; /* y */ + stride[2] = 4; /* z */ + + count[0] = 1; /* x */ + count[1] = 3; /* y */ + count[2] = 3; /* z */ + + block[0] = 1; /* x */ + block[1] = 2; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 8; + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 9; + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; + ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + start[0] = 0; /* x */ + start[1] = 2; /* y */ + start[2] = 2; /* z */ + + stride[0] = 20; /* x -- large enough that there will only be one slice */ + stride[1] = 4; /* y */ + stride[2] = 4; /* z */ + + count[0] = 1; /* x */ + count[1] = 2; /* y */ + count[2] = 2; /* z */ + + block[0] = 1; /* x */ + block[1] = 2; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 8; + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 9; + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 4; + /* This test gets the right answer, but it fails the shape same + * test in an unexpected point. Bring this up with Quincey, as + * the oddness looks like it is not related to my code. + * -- JRM + */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* setup is done -- run the tests: */ + + /* Compare against "xy" selection */ + check = H5S_select_shape_same_test(small_cube_xy_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xy_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xy_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Compare against "xz" selection */ + check = H5S_select_shape_same_test(small_cube_xz_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xz_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xz_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Compare against "yz" selection */ + check = H5S_select_shape_same_test(small_cube_yz_slice_0_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_1_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_2_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_3_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Close dataspaces */ + ret = H5Sclose(small_square_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_xy_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_xz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_yz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_3_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__smoke_check_2() */ + + +/**************************************************************** +** +** test_shape_same_dr__smoke_check_3(): +** +** Create a square, 2 D data space (10 X 10), and select an +** irregular hyper slab as follows: +** +** y +** 9 - - - - - - - - - - +** 8 - - - - - - - - - - +** 7 - - - * * * * - - - +** 6 - - * * * * * - - - +** 5 - - * * - - - - - - +** 4 - - * * - * * - - - +** 3 - - * * - * * - - - +** 2 - - - - - - - - - - +** 1 - - - - - - - - - - +** 0 - - - - - - - - - - +** 0 1 2 3 4 5 6 7 8 9 x +** +** where asterisks indicate selected elements, and dashes +** indicate unselected elements. +** +** Similarly, create nine, 3 D data spaces (10 X 10 X 10), +** and select similar irregular hyper slabs in each, three +** with the slab parallel to the xy plane, three parallel +** to the xz plane, and three parallel to the yz plane. +** Further, translate the irregular slab in 2/3rds of the +** cases. +** +** Assuming that z is the fastest changing dimension, +** H5S_select_shape_same() should return TRUE when +** comparing the 2 D irregular hyperslab selection +** against the irregular hyperslab selections parallel +** to the yz plane in the 3 D space, and FALSE when +** comparing it against the irregular hyper slabs +** selections parallel to the xy or xz planes. +** +****************************************************************/ +static void +test_shape_same_dr__smoke_check_3(void) +{ + hid_t small_square_sid; + hid_t small_cube_xy_slice_0_sid; + hid_t small_cube_xy_slice_1_sid; + hid_t small_cube_xy_slice_2_sid; + hid_t small_cube_xz_slice_0_sid; + hid_t small_cube_xz_slice_1_sid; + hid_t small_cube_xz_slice_2_sid; + hid_t small_cube_yz_slice_0_sid; + hid_t small_cube_yz_slice_1_sid; + hid_t small_cube_yz_slice_2_sid; + hsize_t small_cube_dims[] = {10, 10, 10}; + hsize_t start[3]; + hsize_t stride[3]; + hsize_t count[3]; + hsize_t block[3]; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, (" Smoke check 3: Offset subsets of slices through a cube.\n")); + + /* Create the 10 x 10 dataspace */ + small_square_sid = H5Screate_simple(2, small_cube_dims, NULL); + CHECK(small_square_sid, FAIL, "H5Screate_simple"); + + start[0] = 2; /* x */ + start[1] = 3; /* y */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + + block[0] = 2; /* x */ + block[1] = 4; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; /* x */ + start[1] = 6; /* y */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + + block[0] = 4; /* x */ + block[1] = 2; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 5; /* x */ + start[1] = 3; /* y */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */ + small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple"); + + + start[0] = 2; /* x */ + start[1] = 3; /* y */ + start[2] = 5; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 4; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[1] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[1] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; /* x */ + start[1] = 6; /* y */ + start[2] = 5; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 4; /* x */ + block[1] = 2; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[1] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[1] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 5; /* x */ + start[1] = 3; /* y */ + start[2] = 5; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[1] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[1] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */ + small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 2; /* x */ + start[1] = 5; /* y */ + start[2] = 3; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 1; /* y */ + block[2] = 4; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; /* x */ + start[1] = 5; /* y */ + start[2] = 6; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 4; /* x */ + block[1] = 1; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 5; /* x */ + start[1] = 5; /* y */ + start[2] = 3; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 1; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + +/* QAK: Start here. + */ + /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */ + small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 8; /* x */ + start[1] = 2; /* y */ + start[2] = 3; /* z */ + + stride[0] = 20; /* x -- large enough that there will only be one slice */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 1; /* x */ + block[1] = 2; /* y */ + block[2] = 4; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[1] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 8; /* x */ + start[1] = 3; /* y */ + start[2] = 6; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 1; /* x */ + block[1] = 4; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[1] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 8; /* x */ + start[1] = 5; /* y */ + start[2] = 3; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 1; /* x */ + block[1] = 2; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[1] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* setup is done -- run the tests: */ + + /* Compare against "xy" selection */ + check = H5S_select_shape_same_test(small_cube_xy_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xy_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xy_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Compare against "xz" selection */ + check = H5S_select_shape_same_test(small_cube_xz_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xz_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xz_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Compare against "yz" selection */ + check = H5S_select_shape_same_test(small_cube_yz_slice_0_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_1_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_2_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* Close dataspaces */ + ret = H5Sclose(small_square_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_xy_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_xz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_yz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__smoke_check_3() */ + + +/**************************************************************** +** +** test_shape_same_dr__smoke_check_4(): +** +** Create a square, 2 D data space (10 X 10), and select +** the entire space. +** +** Similarly, create 3 D and 4 D data spaces: +** +** (1 X 10 X 10) +** (10 X 1 X 10) +** (10 X 10 X 1) +** (10 X 10 X 10) +** +** (1 X 1 X 10 X 10) +** (1 X 10 X 1 X 10) +** (1 X 10 X 10 X 1) +** (10 X 1 X 1 X 10) +** (10 X 1 X 10 X 1) +** (10 X 10 X 1 X 1) +** (10 X 1 X 10 X 10) +** +** And select these entire spaces as well. +** +** Compare the 2 D space against all the other spaces +** with H5S_select_shape_same(). The (1 X 10 X 10) & +** (1 X 1 X 10 X 10) should return TRUE. All others +** should return FALSE. +** +****************************************************************/ +static void +test_shape_same_dr__smoke_check_4(void) +{ + hid_t square_sid; + hid_t three_d_space_0_sid; + hid_t three_d_space_1_sid; + hid_t three_d_space_2_sid; + hid_t three_d_space_3_sid; + hid_t four_d_space_0_sid; + hid_t four_d_space_1_sid; + hid_t four_d_space_2_sid; + hid_t four_d_space_3_sid; + hid_t four_d_space_4_sid; + hid_t four_d_space_5_sid; + hid_t four_d_space_6_sid; + hsize_t dims[] = {10, 10, 10, 10}; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, (" Smoke check 4: Spaces of different dimension but same size.\n")); + + /* Create the 10 x 10 dataspace */ + square_sid = H5Screate_simple(2, dims, NULL); + CHECK(square_sid, FAIL, "H5Screate_simple"); + + /* create (1 X 10 X 10) data space */ + dims[0] = 1; + dims[1] = 10; + dims[2] = 10; + three_d_space_0_sid = H5Screate_simple(3, dims, NULL); + CHECK(three_d_space_0_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 1 X 10) data space */ + dims[0] = 10; + dims[1] = 1; + dims[2] = 10; + three_d_space_1_sid = H5Screate_simple(3, dims, NULL); + CHECK(three_d_space_1_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 10 X 1) data space */ + dims[0] = 10; + dims[1] = 10; + dims[2] = 1; + three_d_space_2_sid = H5Screate_simple(3, dims, NULL); + CHECK(three_d_space_2_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 10 X 10) data space */ + dims[0] = 10; + dims[1] = 10; + dims[2] = 10; + three_d_space_3_sid = H5Screate_simple(3, dims, NULL); + CHECK(three_d_space_3_sid, FAIL, "H5Screate_simple"); + + + /* create (1 X 1 X 10 X 10) data space */ + dims[0] = 1; + dims[1] = 1; + dims[2] = 10; + dims[3] = 10; + four_d_space_0_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_0_sid, FAIL, "H5Screate_simple"); + + /* create (1 X 10 X 1 X 10) data space */ + dims[0] = 1; + dims[1] = 10; + dims[2] = 1; + dims[3] = 10; + four_d_space_1_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_1_sid, FAIL, "H5Screate_simple"); + + /* create (1 X 10 X 10 X 1) data space */ + dims[0] = 1; + dims[1] = 10; + dims[2] = 10; + dims[3] = 1; + four_d_space_2_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_2_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 1 X 1 X 10) data space */ + dims[0] = 10; + dims[1] = 1; + dims[2] = 1; + dims[3] = 10; + four_d_space_3_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_3_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 1 X 10 X 1) data space */ + dims[0] = 10; + dims[1] = 1; + dims[2] = 10; + dims[3] = 1; + four_d_space_4_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_4_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 10 X 1 X 1) data space */ + dims[0] = 10; + dims[1] = 10; + dims[2] = 1; + dims[3] = 1; + four_d_space_5_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_5_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 1 X 10 X 10) data space */ + dims[0] = 10; + dims[1] = 1; + dims[2] = 10; + dims[3] = 10; + four_d_space_6_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_6_sid, FAIL, "H5Screate_simple"); + + + /* setup is done -- run the tests: */ + + check = H5S_select_shape_same_test(three_d_space_0_sid, square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(three_d_space_1_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(three_d_space_2_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(three_d_space_3_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + check = H5S_select_shape_same_test(four_d_space_0_sid, square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(four_d_space_1_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(four_d_space_2_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(four_d_space_3_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(four_d_space_4_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(four_d_space_5_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(four_d_space_6_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Close dataspaces */ + ret = H5Sclose(square_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(three_d_space_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(three_d_space_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(three_d_space_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(three_d_space_3_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(four_d_space_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_3_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_4_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_5_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_6_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__smoke_check_4() */ + +/**************************************************************** +** +** test_shape_same_dr__full_space_vs_slice(): Tests selection +** of a full n-cube data space vs an n-dimensional slice of +** of an m-cube (m > n) in a call to H5S_select_shape_same(). +** Note that this test does not require the n-cube and the +** n-dimensional slice to have the same rank (although +** H5S_select_shape_same() should always return FALSE if +** they don't). +** +** Per Quincey's suggestion, only test up to 5 dimensional +** spaces. +** +****************************************************************/ +static void +test_shape_same_dr__full_space_vs_slice(int test_num, + int small_rank, + int large_rank, + int offset, + hsize_t edge_size, + hbool_t dim_selected[], + hbool_t expected_result) +{ + char test_desc_0[128]; + char test_desc_1[128]; + int i; + hid_t n_cube_0_sid; /* the fully selected hyper cube */ + hid_t n_cube_1_sid; /* the hyper cube in which a slice is selected */ + hsize_t dims[SS_DR_MAX_RANK]; + hsize_t start[SS_DR_MAX_RANK]; + hsize_t * start_ptr; + hsize_t stride[SS_DR_MAX_RANK]; + hsize_t * stride_ptr; + hsize_t count[SS_DR_MAX_RANK]; + hsize_t * count_ptr; + hsize_t block[SS_DR_MAX_RANK]; + hsize_t * block_ptr; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + HDassert( 0 < small_rank ); + HDassert( small_rank <= large_rank ); + HDassert( large_rank <= SS_DR_MAX_RANK ); + HDassert( 0 <= offset ); + HDassert( offset < large_rank ); + HDassert( edge_size > 0 ); + HDassert( edge_size <= 1000 ); + + sprintf(test_desc_0, + "\tn-cube slice through m-cube (n <= m) test %d.\n", + test_num); + MESSAGE(7, (test_desc_0)); + + /* This statement must be updated if SS_DR_MAX_RANK is changed */ + sprintf(test_desc_1, + "\t\tranks: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d.\n", + small_rank, large_rank, offset, + (int)dim_selected[0], + (int)dim_selected[1], + (int)dim_selected[2], + (int)dim_selected[3], + (int)dim_selected[4]); + MESSAGE(7, (test_desc_1)); + + /* copy the edge size into the dims array */ + for(i = 0; i < SS_DR_MAX_RANK; i++) + dims[i] = edge_size; + + /* Create the small n-cube */ + n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); + CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); + + + /* Create the large n-cube */ + n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); + CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); + + /* set up start, stride, count, and block for the hyperslab selection */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + stride[i] = 2 * edge_size; /* a bit silly in this case */ + count[i] = 1; + if(dim_selected[i]) { + start[i] = 0; + block[i] = edge_size; + } /* end if */ + else { + start[i] = (hsize_t)offset; + block[i] = 1; + } /* end else */ + } /* end for */ + + /* since large rank may be less than SS_DR_MAX_RANK, we may not + * use the entire start, stride, count, and block arrays. This + * is a problem, since it is inconvenient to set up the dim_selected + * array to reflect the large rank, and thus if large_rank < + * SS_DR_MAX_RANK, we need to hide the lower index entries + * from H5Sselect_hyperslab(). + * + * Do this by setting up pointers to the first valid entry in start, + * stride, count, and block below, and pass these pointers in + * to H5Sselect_hyperslab() instead of the array base addresses. + */ + + i = SS_DR_MAX_RANK - large_rank; + HDassert(i >= 0); + + start_ptr = &(start[i]); + stride_ptr = &(stride[i]); + count_ptr = &(count[i]); + block_ptr = &(block[i]); + + + /* select the hyper slab */ + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, + start_ptr, stride_ptr, count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* setup is done -- run the test: */ + check = H5S_select_shape_same_test(n_cube_0_sid, n_cube_1_sid); + VERIFY(check, expected_result, "test_shape_same_dr__full_space_vs_slice"); + + + /* Close dataspaces */ + ret = H5Sclose(n_cube_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(n_cube_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__full_space_vs_slice() */ + + +/**************************************************************** +** +** test_shape_same_dr__run_full_space_vs_slice_tests(): +** +** Run the est_shape_same_dr__full_space_vs_slice() test +** over a variety of ranks and offsets. +** +** At present, we test H5S_select_shape_same() with +** fully selected 1, 2, 3, and 4 cubes as one parameter, and +** 1, 2, 3, and 4 dimensional slices through a n-cube of rank +** no more than 5 (and at least the rank of the slice). +** We stop at rank 5, as Quincey suggested that it would be +** sufficient. +** +** All the n-cubes will have lengths of the same size, so +** H5S_select_shape_same() should return true iff: +** +** 1) the rank for the fully selected n cube equals the +** number of dimensions selected in the slice through the +** m-cube (m >= n). +** +** 2) The dimensions selected in the slice through the m-cube +** are the dimesnions with the most quickly changing +** indices. +** +****************************************************************/ +static void +test_shape_same_dr__run_full_space_vs_slice_tests(void) +{ + hbool_t dim_selected[5]; + hbool_t expected_result; + int i, j; + int v, w, x, y, z; + int test_num = 0; + int small_rank; + int large_rank; + hsize_t edge_size = 10; + + for(large_rank = 1; large_rank <= 5; large_rank++) { + for(small_rank = 1; small_rank <= large_rank; small_rank++) { + v = 0; + do { + if(v == 0) + dim_selected[0] = FALSE; + else + dim_selected[0] = TRUE; + + w = 0; + do { + if(w == 0) + dim_selected[1] = FALSE; + else + dim_selected[1] = TRUE; + + x = 0; + do { + if(x == 0) + dim_selected[2] = FALSE; + else + dim_selected[2] = TRUE; + + y = 0; + do { + if(y == 0) + dim_selected[3] = FALSE; + else + dim_selected[3] = TRUE; + + z = 0; + do { + if(z == 0) + dim_selected[4] = FALSE; + else + dim_selected[4] = TRUE; + + /* compute the expected result: */ + i = 0; + j = 4; + expected_result = TRUE; + while((i < small_rank) && expected_result) { + if(!dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + while((i < large_rank) && expected_result) { + if(dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + + /* everything is set up -- run the tests */ + + test_shape_same_dr__full_space_vs_slice + ( + test_num++, + small_rank, + large_rank, + 0, + edge_size, + dim_selected, + expected_result + ); + + test_shape_same_dr__full_space_vs_slice + ( + test_num++, + small_rank, + large_rank, + large_rank / 2, + edge_size, + dim_selected, + expected_result + ); + + test_shape_same_dr__full_space_vs_slice + ( + test_num++, + small_rank, + large_rank, + large_rank - 1, + edge_size, + dim_selected, + expected_result + ); + + z++; + } while((z < 2) && (large_rank >= 1)); + + y++; + } while((y < 2) && (large_rank >= 2)); + + x++; + } while((x < 2) && (large_rank >= 3)); + + w++; + } while((w < 2) && (large_rank >= 4)); + + v++; + } while((v < 2) && (large_rank >= 5)); + } /* end for */ + } /* end for */ + +} /* test_shape_same_dr__run_full_space_vs_slice_tests() */ + + +/**************************************************************** +** +** test_shape_same_dr__checkerboard(): Tests selection of a +** "checker board" subset of a full n-cube data space vs +** a "checker board" n-dimensional slice of an m-cube (m > n). +** in a call to H5S_select_shape_same(). +** +** Note that this test does not require the n-cube and the +** n-dimensional slice to have the same rank (although +** H5S_select_shape_same() should always return FALSE if +** they don't). +** +** Per Quincey's suggestion, only test up to 5 dimensional +** spaces. +** +****************************************************************/ +static void +test_shape_same_dr__checkerboard(int test_num, + int small_rank, + int large_rank, + int offset, + hsize_t edge_size, + hsize_t checker_size, + hbool_t dim_selected[], + hbool_t expected_result) +{ + char test_desc_0[128]; + char test_desc_1[128]; + int i; + int dims_selected = 0; + hid_t n_cube_0_sid; /* the checker board selected + * hyper cube + */ + hid_t n_cube_1_sid; /* the hyper cube in which a + * checkerboard slice is selected + */ + hsize_t dims[SS_DR_MAX_RANK]; + hsize_t base_start[2]; + hsize_t start[SS_DR_MAX_RANK]; + hsize_t * start_ptr; + hsize_t base_stride[2]; + hsize_t stride[SS_DR_MAX_RANK]; + hsize_t * stride_ptr; + hsize_t base_count[2]; + hsize_t count[SS_DR_MAX_RANK]; + hsize_t * count_ptr; + hsize_t base_block[2]; + hsize_t block[SS_DR_MAX_RANK]; + hsize_t * block_ptr; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + HDassert( 0 < small_rank ); + HDassert( small_rank <= large_rank ); + HDassert( large_rank <= SS_DR_MAX_RANK ); + HDassert( 0 < checker_size ); + HDassert( checker_size <= edge_size ); + HDassert( edge_size <= 1000 ); + HDassert( 0 <= offset ); + HDassert( offset < (int)edge_size ); + + for(i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++) + if(dim_selected[i] == TRUE) + dims_selected++; + + HDassert( dims_selected >= 0 ); + HDassert( dims_selected <= large_rank ); + + sprintf(test_desc_0, + "\tcheckerboard n-cube slice through m-cube (n <= m) test %d.\n", + test_num); + MESSAGE(7, (test_desc_0)); + + /* This statement must be updated if SS_DR_MAX_RANK is changed */ + sprintf(test_desc_1, + "\tranks: %d/%d edge/chkr size: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d:%d.\n", + small_rank, large_rank, + (int)edge_size, (int)checker_size, + offset, + (int)dim_selected[0], + (int)dim_selected[1], + (int)dim_selected[2], + (int)dim_selected[3], + (int)dim_selected[4], + dims_selected); + MESSAGE(7, (test_desc_1)); + + /* copy the edge size into the dims array */ + for(i = 0; i < SS_DR_MAX_RANK; i++) + dims[i] = edge_size; + + /* Create the small n-cube */ + n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); + CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); + + /* Select a "checkerboard" pattern in the small n-cube. + * + * In the 1-D case, the "checkerboard" would look like this: + * + * * * - - * * - - * * + * + * and in the 2-D case, it would look like this: + * + * * * - - * * - - * * + * * * - - * * - - * * + * - - * * - - * * - - + * - - * * - - * * - - + * * * - - * * - - * * + * * * - - * * - - * * + * - - * * - - * * - - + * - - * * - - * * - - + * * * - - * * - - * * + * * * - - * * - - * * + * + * In both cases, asterisks indicate selected elements, + * and dashes indicate unselected elements. + * + * 3-D and 4-D ascii art is somewhat painful, so I'll + * leave those selections to your imagination. :-) + * + * Note, that since the edge_size and checker_size are + * parameters that are passed in, the selection need + * not look exactly like the selection shown above. + * At present, the function allows checker sizes that + * are not even divisors of the edge size -- thus + * something like the following is also possible: + * + * * * * - - - * * * - + * * * * - - - * * * - + * * * * - - - * * * - + * - - - * * * - - - * + * - - - * * * - - - * + * - - - * * * - - - * + * * * * - - - * * * - + * * * * - - - * * * - + * * * * - - - * * * - + * - - - * * * - - - * + * + * As the above pattern can't be selected in one + * call to H5Sselect_hyperslab(), and since the + * values in the start, stride, count, and block + * arrays will be repeated over all entries in + * the selected space case, and over all selected + * dimensions in the selected hyperslab case, we + * compute these values first and store them in + * in the base_start, base_stride, base_count, + * and base_block arrays. + */ + + base_start[0] = 0; + base_start[1] = checker_size; + + base_stride[0] = 2 * checker_size; + base_stride[1] = 2 * checker_size; + + /* Note that the following computation depends on the C99 + * requirement that integer division discard any fraction + * (truncation towards zero) to function correctly. As we + * now require C99, this shouldn't be a problem, but noting + * it may save us some pain if we are ever obliged to support + * pre-C99 compilers again. + */ + + base_count[0] = edge_size / (checker_size * 2); + if((edge_size % (checker_size * 2)) > 0) + base_count[0]++; + + base_count[1] = (edge_size - checker_size) / (checker_size * 2); + if(((edge_size - checker_size) % (checker_size * 2)) > 0) + base_count[1]++; + + base_block[0] = checker_size; + base_block[1] = checker_size; + + /* now setup start, stride, count, and block arrays for + * the first call to H5Sselect_hyperslab(). + */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + start[i] = base_start[0]; + stride[i] = base_stride[0]; + count[i] = base_count[0]; + block[i] = base_block[0]; + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* if small_rank == 1, or if edge_size == checker_size, we + * are done, as either there is no added dimension in which + * to place offset selected "checkers". + * + * Otherwise, set up start, stride, count and block, and + * make the additional selection. + */ + + if((small_rank > 1) && (checker_size < edge_size)) { + for(i = 0; i < SS_DR_MAX_RANK; i++) { + start[i] = base_start[1]; + stride[i] = base_stride[1]; + count[i] = base_count[1]; + block[i] = base_block[1]; + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end if */ + + /* Wierdness alert: + * + * Some how, it seems that selections can extend beyond the + * boundaries of the target data space -- hence the following + * code to manually clip the selection back to the data space + * proper. + */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + start[i] = 0; + stride[i] = edge_size; + count[i] = 1; + block[i] = edge_size; + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the large n-cube */ + n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); + CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); + + + /* Now select the checkerboard selection in the (possibly larger) n-cube. + * + * Since we have already calculated the base start, stride, count, + * and block, re-use the values in setting up start, stride, count, + * and block. + */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + if(dim_selected[i]) { + start[i] = base_start[0]; + stride[i] = base_stride[0]; + count[i] = base_count[0]; + block[i] = base_block[0]; + } /* end if */ + else { + start[i] = (hsize_t)offset; + stride[i] = (hsize_t)(2 * edge_size); + count[i] = 1; + block[i] = 1; + } /* end else */ + } /* end for */ + + /* Since large rank may be less than SS_DR_MAX_RANK, we may not + * use the entire start, stride, count, and block arrays. This + * is a problem, since it is inconvenient to set up the dim_selected + * array to reflect the large rank, and thus if large_rank < + * SS_DR_MAX_RANK, we need to hide the lower index entries + * from H5Sselect_hyperslab(). + * + * Do this by setting up pointers to the first valid entry in start, + * stride, count, and block below, and pass these pointers in + * to H5Sselect_hyperslab() instead of the array base addresses. + */ + + i = SS_DR_MAX_RANK - large_rank; + HDassert( i >= 0 ); + + start_ptr = &(start[i]); + stride_ptr = &(stride[i]); + count_ptr = &(count[i]); + block_ptr = &(block[i]); + + /* select the hyper slab */ + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, + start_ptr, stride_ptr, count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* As before, if the number of dimensions selected is less than or + * equal to 1, or if edge_size == checker_size, we are done, as + * either there is no added dimension in which to place offset selected + * "checkers", or the hyperslab is completely occupied by one + * "checker". + * + * Otherwise, set up start, stride, count and block, and + * make the additional selection. + */ + if((dims_selected > 1) && (checker_size < edge_size)) { + for(i = 0; i < SS_DR_MAX_RANK; i++) { + if(dim_selected[i]) { + start[i] = base_start[1]; + stride[i] = base_stride[1]; + count[i] = base_count[1]; + block[i] = base_block[1]; + } /* end if */ + else { + start[i] = (hsize_t)offset; + stride[i] = (hsize_t)(2 * edge_size); + count[i] = 1; + block[i] = 1; + } /* end else */ + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, + start_ptr, stride_ptr, count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end if */ + + + /* Wierdness alert: + * + * Again, it seems that selections can extend beyond the + * boundaries of the target data space -- hence the following + * code to manually clip the selection back to the data space + * proper. + */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + start[i] = 0; + stride[i] = edge_size; + count[i] = 1; + block[i] = edge_size; + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* setup is done -- run the test: */ + check = H5S_select_shape_same_test(n_cube_0_sid, n_cube_1_sid); + VERIFY(check, expected_result, "test_shape_same_dr__checkerboard"); + + + /* Close dataspaces */ + ret = H5Sclose(n_cube_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(n_cube_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__checkerboard() */ + + +/**************************************************************** +** +** test_shape_same_dr__run_checkerboard_tests(): +** +** In this set of tests, we test H5S_select_shape_same() +** with a "checkerboard" selection of 1, 2, 3, and 4 cubes as +** one parameter, and 1, 2, 3, and 4 dimensional checkerboard +** slices through a n-cube of rank no more than 5 (and at +** least the rank of the slice). +** +** All the n-cubes will have lengths of the same size, so +** H5S_select_shape_same() should return true iff: +** +** 1) the rank of the n cube equals the number of dimensions +** selected in the checker board slice through the m-cube +** (m >= n). +** +** 2) The dimensions selected in the checkerboard slice +** through the m-cube are the dimensions with the most +** quickly changing indices. +** +****************************************************************/ +static void +test_shape_same_dr__run_checkerboard_tests(void) +{ + hbool_t dim_selected[5]; + hbool_t expected_result; + int i, j; + int v, w, x, y, z; + int test_num = 0; + int small_rank; + int large_rank; + + for(large_rank = 1; large_rank <= 5; large_rank++) { + for(small_rank = 1; small_rank <= large_rank; small_rank++) { + v = 0; + do { + if(v == 0) + dim_selected[0] = FALSE; + else + dim_selected[0] = TRUE; + + w = 0; + do { + if(w == 0) + dim_selected[1] = FALSE; + else + dim_selected[1] = TRUE; + + x = 0; + do { + if(x == 0) + dim_selected[2] = FALSE; + else + dim_selected[2] = TRUE; + + y = 0; + do { + if(y == 0) + dim_selected[3] = FALSE; + else + dim_selected[3] = TRUE; + + z = 0; + do { + if(z == 0) + dim_selected[4] = FALSE; + else + dim_selected[4] = TRUE; + + + /* compute the expected result: */ + i = 0; + j = 4; + expected_result = TRUE; + while((i < small_rank) && expected_result) { + if(!dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + while((i < large_rank) && expected_result) { + if(dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + + /* everything is set up -- run the tests */ + + /* run test with edge size 16, checker + * size 1, and a variety of offsets + */ + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 0, + /* edge_size */ 16, + /* checker_size */ 1, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 5, + /* edge_size */ 16, + /* checker_size */ 1, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 15, + /* edge_size */ 16, + /* checker_size */ 1, + dim_selected, + expected_result + ); + + + /* run test with edge size 10, checker + * size 2, and a variety of offsets + */ + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 0, + /* edge_size */ 10, + /* checker_size */ 2, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 5, + /* edge_size */ 10, + /* checker_size */ 2, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 9, + /* edge_size */ 10, + /* checker_size */ 2, + dim_selected, + expected_result + ); + + + /* run test with edge size 10, checker + * size 3, and a variety of offsets + */ + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 0, + /* edge_size */ 10, + /* checker_size */ 3, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 5, + /* edge_size */ 10, + /* checker_size */ 3, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 9, + /* edge_size */ 10, + /* checker_size */ 3, + dim_selected, + expected_result + ); + + + /* run test with edge size 8, checker + * size 8, and a variety of offsets + */ + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 0, + /* edge_size */ 8, + /* checker_size */ 8, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 4, + /* edge_size */ 8, + /* checker_size */ 8, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 7, + /* edge_size */ 8, + /* checker_size */ 8, + dim_selected, + expected_result + ); + + z++; + } while((z < 2) && (large_rank >= 1)); + + y++; + } while((y < 2) && (large_rank >= 2)); + + x++; + } while((x < 2) && (large_rank >= 3)); + + w++; + } while((w < 2) && (large_rank >= 4)); + + v++; + } while((v < 2) && (large_rank >= 5)); + } /* end for */ + } /* end for */ + +} /* test_shape_same_dr__run_checkerboard_tests() */ + + +/**************************************************************** +** +** test_shape_same_dr__irregular(): +** +** Tests selection of an "irregular" subset of a full +** n-cube data space vs an identical "irregular" subset +** of an n-dimensional slice of an m-cube (m > n). +** in a call to H5S_select_shape_same(). +** +** Note that this test does not require the n-cube and the +** n-dimensional slice to have the same rank (although +** H5S_select_shape_same() should always return FALSE if +** they don't). +** +****************************************************************/ +static void +test_shape_same_dr__irregular(int test_num, + int small_rank, + int large_rank, + int pattern_offset, + int slice_offset, + hbool_t dim_selected[], + hbool_t expected_result) +{ + char test_desc_0[128]; + char test_desc_1[128]; + int edge_size = 10; + int i; + int j; + int k; + int dims_selected = 0; + hid_t n_cube_0_sid; /* the hyper cube containing + * an irregular selection + */ + hid_t n_cube_1_sid; /* the hyper cube in which a + * slice contains an irregular + * selection. + */ + hsize_t dims[SS_DR_MAX_RANK]; + hsize_t start_0[SS_DR_MAX_RANK] = { 2, 2, 2, 2, 5}; + hsize_t stride_0[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_0[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; + hsize_t block_0[SS_DR_MAX_RANK] = { 2, 2, 2, 2, 3}; + + hsize_t start_1[SS_DR_MAX_RANK] = { 2, 2, 2, 5, 2}; + hsize_t stride_1[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_1[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; + hsize_t block_1[SS_DR_MAX_RANK] = { 2, 2, 2, 3, 2}; + + hsize_t start_2[SS_DR_MAX_RANK] = { 2, 2, 5, 2, 2}; + hsize_t stride_2[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_2[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; + hsize_t block_2[SS_DR_MAX_RANK] = { 2, 2, 3, 2, 2}; + + hsize_t start_3[SS_DR_MAX_RANK] = { 2, 5, 2, 2, 2}; + hsize_t stride_3[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_3[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; + hsize_t block_3[SS_DR_MAX_RANK] = { 2, 3, 2, 2, 2}; + + hsize_t start_4[SS_DR_MAX_RANK] = { 5, 2, 2, 2, 2}; + hsize_t stride_4[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_4[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; + hsize_t block_4[SS_DR_MAX_RANK] = { 3, 2, 2, 2, 2}; + + hsize_t clip_start[SS_DR_MAX_RANK] = { 0, 0, 0, 0, 0}; + hsize_t clip_stride[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t clip_count[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; + hsize_t clip_block[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + + + hsize_t *(starts[SS_DR_MAX_RANK]) = + {start_0, start_1, start_2, start_3, start_4}; + hsize_t *(strides[SS_DR_MAX_RANK]) = + {stride_0, stride_1, stride_2, stride_3, stride_4}; + hsize_t *(counts[SS_DR_MAX_RANK]) = + {count_0, count_1, count_2, count_3, count_4}; + hsize_t *(blocks[SS_DR_MAX_RANK]) = + {block_0, block_1, block_2, block_3, block_4}; + + hsize_t start[SS_DR_MAX_RANK]; + hsize_t * start_ptr; + hsize_t stride[SS_DR_MAX_RANK]; + hsize_t * stride_ptr; + hsize_t count[SS_DR_MAX_RANK]; + hsize_t * count_ptr; + hsize_t block[SS_DR_MAX_RANK]; + hsize_t * block_ptr; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + HDassert( 0 < small_rank ); + HDassert( small_rank <= large_rank ); + HDassert( large_rank <= SS_DR_MAX_RANK ); + HDassert( 9 <= edge_size ); + HDassert( edge_size <= 1000 ); + HDassert( 0 <= slice_offset ); + HDassert( slice_offset < edge_size ); + HDassert( -2 <= pattern_offset ); + HDassert( pattern_offset <= 2 ); + + for(i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++) + if(dim_selected[i] == TRUE) + dims_selected++; + + HDassert( dims_selected >= 0 ); + HDassert( dims_selected <= large_rank ); + + sprintf(test_desc_0, + "\tirregular sub set of n-cube slice through m-cube (n <= m) test %d.\n", + test_num); + MESSAGE(7, (test_desc_0)); + + /* This statement must be updated if SS_DR_MAX_RANK is changed */ + sprintf(test_desc_1, + "\tranks: %d/%d edge: %d s/p offset: %d/%d dim_selected: %d/%d/%d/%d/%d:%d.\n", + small_rank, large_rank, + edge_size, + slice_offset, pattern_offset, + (int)dim_selected[0], + (int)dim_selected[1], + (int)dim_selected[2], + (int)dim_selected[3], + (int)dim_selected[4], + dims_selected); + MESSAGE(7, (test_desc_1)); + + /* copy the edge size into the dims array */ + for(i = 0; i < SS_DR_MAX_RANK; i++) + dims[i] = (hsize_t)edge_size; + + /* Create the small n-cube */ + n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); + CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); + + /* Select an "irregular" pattern in the small n-cube. This + * pattern can be though of a set of four 3 x 2 x 2 X 2 + * four dimensional prisims, each parallel to one of the + * axies and none of them intersecting with the other. + * + * In the lesser dimensional cases, this 4D pattern is + * projected onto the lower dimensional space. + * + * In the 1-D case, the projection of the pattern looks + * like this: + * + * - - * * - * * * - - + * 0 1 2 3 4 5 6 7 8 9 x + * + * and in the 2-D case, it would look like this: + * + * + * y + * 9 - - - - - - - - - - + * 8 - - - - - - - - - - + * 7 - - * * - - - - - - + * 6 - - * * - - - - - - + * 5 - - * * - - - - - - + * 4 - - - - - - - - - - + * 3 - - * * - * * * - - + * 2 - - * * - * * * - - + * 1 - - - - - - - - - - + * 0 - - - - - - - - - - + * 0 1 2 3 4 5 6 7 8 9 x + * + * In both cases, asterisks indicate selected elements, + * and dashes indicate unselected elements. + * + * Note that is this case, since the edge size is fixed, + * the pattern does not change. However, we do use the + * displacement parameter to allow it to be moved around + * within the n-cube or hyper slab. + */ + + /* first, ensure that the small n-cube has no selection */ + ret = H5Sselect_none(n_cube_0_sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* now, select the irregular pattern */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, + starts[i], strides[i], counts[i], blocks[i]); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end for */ + + /* finally, clip the selection to ensure that it lies fully + * within the n-cube. + */ + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, + clip_start, clip_stride, clip_count, clip_block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the large n-cube */ + n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); + CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); + + /* Ensure that the large n-cube has no selection */ + H5Sselect_none(n_cube_1_sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + + /* Since large rank may be less than SS_DR_MAX_RANK, we may not + * use the entire start, stride, count, and block arrays. This + * is a problem, since it is inconvenient to set up the dim_selected + * array to reflect the large rank, and thus if large_rank < + * SS_DR_MAX_RANK, we need to hide the lower index entries + * from H5Sselect_hyperslab(). + * + * Do this by setting up pointers to the first valid entry in start, + * stride, count, and block below, and pass these pointers in + * to H5Sselect_hyperslab() instead of the array base addresses. + */ + + i = SS_DR_MAX_RANK - large_rank; + HDassert( i >= 0 ); + + start_ptr = &(start[i]); + stride_ptr = &(stride[i]); + count_ptr = &(count[i]); + block_ptr = &(block[i]); + + + /* Now select the irregular selection in the (possibly larger) n-cube. + * + * Basic idea is to project the pattern used in the smaller n-cube + * onto the dimensions selected in the larger n-cube, with the displacement + * specified. + */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + j = 0; + for(k = 0; k < SS_DR_MAX_RANK; k++) { + if(dim_selected[k]) { + start[k] = (starts[i])[j] + (hsize_t)pattern_offset; + stride[k] = (strides[i])[j]; + count[k] = (counts[i])[j]; + block[k] = (blocks[i])[j]; + j++; + } /* end if */ + else { + start[k] = (hsize_t)slice_offset; + stride[k] = (hsize_t)(2 * edge_size); + count[k] = 1; + block[k] = 1; + } /* end else */ + } /* end for */ + + /* select the hyper slab */ + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, + start_ptr, stride_ptr, count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end for */ + + /* it is possible that the selection extends beyond the data space. + * clip the selection to ensure that it doesn't. + */ + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, + clip_start, clip_stride, clip_count, clip_block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* setup is done -- run the test: */ + check = H5S_select_shape_same_test(n_cube_0_sid, n_cube_1_sid); + VERIFY(check, expected_result, "test_shape_same_dr__checkerboard"); + + + /* Close dataspaces */ + ret = H5Sclose(n_cube_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(n_cube_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__irregular() */ + + +/**************************************************************** +** +** test_shape_same_dr__run_irregular_tests(): +** +** In this set of tests, we test H5S_select_shape_same() +** with an "irregular" subselection of 1, 2, 3, and 4 cubes as +** one parameter, and irregular subselections of 1, 2, 3, +** and 4 dimensional slices through a n-cube of rank no more +** than 5 (and at least the rank of the slice) as the other. +** Note that the "irregular" selection may be offset between +** the n-cube and the slice. +** +** All the irregular selections will be identical (modulo rank) +** so H5S_select_shape_same() should return true iff: +** +** 1) the rank of the n cube equals the number of dimensions +** selected in the irregular slice through the m-cube +** (m >= n). +** +** 2) The dimensions selected in the irregular slice +** through the m-cube are the dimensions with the most +** quickly changing indices. +** +****************************************************************/ +static void +test_shape_same_dr__run_irregular_tests(void) +{ + hbool_t dim_selected[5]; + hbool_t expected_result; + int i, j; + int v, w, x, y, z; + int test_num = 0; + int small_rank; + int large_rank; + + for(large_rank = 1; large_rank <= 5; large_rank++) { + for(small_rank = 1; small_rank <= large_rank; small_rank++) { + v = 0; + do { + if(v == 0) + dim_selected[0] = FALSE; + else + dim_selected[0] = TRUE; + + w = 0; + do { + if(w == 0) + dim_selected[1] = FALSE; + else + dim_selected[1] = TRUE; + + x = 0; + do { + if(x == 0) + dim_selected[2] = FALSE; + else + dim_selected[2] = TRUE; + + y = 0; + do { + if(y == 0) + dim_selected[3] = FALSE; + else + dim_selected[3] = TRUE; + + z = 0; + do { + if(z == 0) + dim_selected[4] = FALSE; + else + dim_selected[4] = TRUE; + + + /* compute the expected result: */ + i = 0; + j = 4; + expected_result = TRUE; + while((i < small_rank) && expected_result) { + if(!dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + while((i < large_rank) && expected_result) { + if(dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + + /* everything is set up -- run the tests */ + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ -2, + /* slice_offset */ 0, + dim_selected, + expected_result + ); + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ -2, + /* slice_offset */ 4, + dim_selected, + expected_result + ); + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ -2, + /* slice_offset */ 9, + dim_selected, + expected_result + ); + + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ 0, + /* slice_offset */ 0, + dim_selected, + expected_result + ); + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ 0, + /* slice_offset */ 6, + dim_selected, + expected_result + ); + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ 0, + /* slice_offset */ 9, + dim_selected, + expected_result + ); + + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ 2, + /* slice_offset */ 0, + dim_selected, + expected_result + ); + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ 2, + /* slice_offset */ 5, + dim_selected, + expected_result + ); + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ 2, + /* slice_offset */ 9, + dim_selected, + expected_result + ); + + z++; + } while((z < 2) && (large_rank >= 1)); + + y++; + } while((y < 2) && (large_rank >= 2)); + + x++; + } while((x < 2) && (large_rank >= 3)); + + w++; + } while((w < 2) && (large_rank >= 4)); + + v++; + } while((v < 2 ) && (large_rank >= 5)); + } /* end for */ + } /* end for */ + +} /* test_shape_same_dr__run_irregular_tests() */ + + +/**************************************************************** +** +** test_shape_same_dr(): Tests selections on dataspace with +** different ranks, to verify that "shape same" routine +** is now handling this case correctly. +** +****************************************************************/ +static void +test_shape_same_dr(void) +{ + /* Output message about test being performed */ + MESSAGE(6, ("Testing Same Shape/Different Rank Comparisons\n")); + + + /* first run some smoke checks */ + test_shape_same_dr__smoke_check_1(); + test_shape_same_dr__smoke_check_2(); + test_shape_same_dr__smoke_check_3(); + test_shape_same_dr__smoke_check_4(); + + + /* now run more intensive tests. */ + test_shape_same_dr__run_full_space_vs_slice_tests(); + test_shape_same_dr__run_checkerboard_tests(); + test_shape_same_dr__run_irregular_tests(); + +} /* test_shape_same_dr() */ + /**************************************************************** ** @@ -8241,6 +13118,14 @@ test_select(void) test_select_hyper_contig3(H5T_STD_U16LE,plist_id); /* Test yet more contiguous hyperslab selection cases */ test_select_hyper_contig3(H5T_STD_U16BE,H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */ test_select_hyper_contig3(H5T_STD_U16BE,plist_id); /* Test yet more contiguous hyperslab selection cases */ + test_select_hyper_contig_dr(H5T_STD_U16LE, H5P_DEFAULT); + test_select_hyper_contig_dr(H5T_STD_U16LE, plist_id); + test_select_hyper_contig_dr(H5T_STD_U16BE, H5P_DEFAULT); + test_select_hyper_contig_dr(H5T_STD_U16BE, plist_id); + test_select_hyper_checker_board_dr(H5T_STD_U16LE, H5P_DEFAULT); + test_select_hyper_checker_board_dr(H5T_STD_U16LE, plist_id); + test_select_hyper_checker_board_dr(H5T_STD_U16BE, H5P_DEFAULT); + test_select_hyper_checker_board_dr(H5T_STD_U16BE, plist_id); test_select_hyper_copy(); /* Test hyperslab selection copying code */ test_select_point_copy(); /* Test point selection copying code */ test_select_hyper_offset(); /* Test selection offset code with hyperslabs */ @@ -8320,6 +13205,9 @@ test_select(void) /* Test "same shape" routine */ test_shape_same(); + /* Test "same shape" routine for selections of different rank */ + test_shape_same_dr(); + /* Test "re-build" routine */ test_space_rebuild(); diff --git a/testpar/Makefile.am b/testpar/Makefile.am index 3c39989..6e76e88 100644 --- a/testpar/Makefile.am +++ b/testpar/Makefile.am @@ -32,7 +32,8 @@ check_PROGRAMS = $(TEST_PROG_PARA) check_SCRIPTS= $(TEST_SCRIPT) testphdf5_SOURCES=testphdf5.c t_dset.c t_file.c t_mdset.c t_ph5basic.c \ - t_coll_chunk.c t_span_tree.c t_chunk_alloc.c t_filter_read.c + t_coll_chunk.c t_span_tree.c t_chunk_alloc.c t_filter_read.c \ + t_rank_projection.c # The tests all depend on the hdf5 library and the test library LDADD = $(LIBH5TEST) $(LIBHDF5) diff --git a/testpar/Makefile.in b/testpar/Makefile.in index 02fea3d..4f92776 100644 --- a/testpar/Makefile.in +++ b/testpar/Makefile.in @@ -90,7 +90,8 @@ t_posix_compliant_DEPENDENCIES = $(LIBH5TEST) $(LIBHDF5) am_testphdf5_OBJECTS = testphdf5.$(OBJEXT) t_dset.$(OBJEXT) \ t_file.$(OBJEXT) t_mdset.$(OBJEXT) t_ph5basic.$(OBJEXT) \ t_coll_chunk.$(OBJEXT) t_span_tree.$(OBJEXT) \ - t_chunk_alloc.$(OBJEXT) t_filter_read.$(OBJEXT) + t_chunk_alloc.$(OBJEXT) t_filter_read.$(OBJEXT) \ + t_rank_projection.$(OBJEXT) testphdf5_OBJECTS = $(am_testphdf5_OBJECTS) testphdf5_LDADD = $(LDADD) testphdf5_DEPENDENCIES = $(LIBH5TEST) $(LIBHDF5) @@ -390,7 +391,8 @@ TEST_PROG_PARA = t_mpi t_posix_compliant testphdf5 t_cache t_pflush1 t_pflush2 TEST_SCRIPT_PARA = testph5.sh check_SCRIPTS = $(TEST_SCRIPT) testphdf5_SOURCES = testphdf5.c t_dset.c t_file.c t_mdset.c t_ph5basic.c \ - t_coll_chunk.c t_span_tree.c t_chunk_alloc.c t_filter_read.c + t_coll_chunk.c t_span_tree.c t_chunk_alloc.c t_filter_read.c \ + t_rank_projection.c # The tests all depend on the hdf5 library and the test library @@ -494,6 +496,7 @@ distclean-compile: @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/t_pflush2.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/t_ph5basic.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/t_posix_compliant.Po@am__quote@ +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/t_rank_projection.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/t_span_tree.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/testphdf5.Po@am__quote@ diff --git a/testpar/t_rank_projection.c b/testpar/t_rank_projection.c new file mode 100644 index 0000000..bbc0a1f --- /dev/null +++ b/testpar/t_rank_projection.c @@ -0,0 +1,4041 @@ + +/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + * Copyright by The HDF Group. * + * Copyright by the Board of Trustees of the University of Illinois. * + * All rights reserved. * + * * + * This file is part of HDF5. The full HDF5 copyright notice, including * + * terms governing use, modification, and redistribution, is contained in * + * the files COPYING and Copyright.html. COPYING can be found at the root * + * of the source code distribution tree; Copyright.html can be found at the * + * root level of an installed copy of the electronic HDF5 document set and * + * is linked from the top-level documents page. It can also be found at * + * http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have * + * access to either file, you may request a copy from help@hdfgroup.org. * + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ + +/* + This program will test independant and collective reads and writes between + selections of different rank that non-the-less are deemed as having the + same shape by H5Sselect_shape_same(). + */ + +#define H5S_PACKAGE /*suppress error about including H5Spkg */ + + +#include "hdf5.h" +#include "H5private.h" +#include "testphdf5.h" +#include "H5Spkg.h" /* Dataspaces */ + + +/*------------------------------------------------------------------------- + * Function: contig_hyperslab_dr_pio_test__run_test() + * + * Purpose: Test I/O to/from hyperslab selections of different rank in + * the parallel. + * + * Return: void + * + * Programmer: JRM -- 9/18/09 + * + * Modifications: + * + *------------------------------------------------------------------------- + */ + +#define PAR_SS_DR_MAX_RANK 5 +#define CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG 0 + +void +contig_hyperslab_dr_pio_test__run_test(const int test_num, + const int edge_size, + const int chunk_edge_size, + const int small_rank, + const int large_rank, + const hbool_t use_collective_io, + const hid_t dset_type) +{ + const char *fcnName = "contig_hyperslab_dr_pio_test()"; + const char *filename; + hbool_t use_gpfs = FALSE; /* Use GPFS hints */ + hbool_t mis_match = FALSE; + int i, j, k, l, m, n; + int mrc; + int mpi_size = -1; + int mpi_rank = -1; + int start_index; + int stop_index; + const int test_max_rank = 5; /* must update code if this changes */ + uint32_t expected_value; + uint32_t * small_ds_buf_0 = NULL; + uint32_t * small_ds_buf_1 = NULL; + uint32_t * small_ds_buf_2 = NULL; + uint32_t * small_ds_slice_buf = NULL; + uint32_t * large_ds_buf_0 = NULL; + uint32_t * large_ds_buf_1 = NULL; + uint32_t * large_ds_buf_2 = NULL; + uint32_t * large_ds_slice_buf = NULL; + uint32_t * ptr_0; + uint32_t * ptr_1; + uint32_t * ptr_2; + MPI_Comm mpi_comm = MPI_COMM_NULL; + MPI_Info mpi_info = MPI_INFO_NULL; + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist = H5P_DEFAULT; + hid_t full_mem_small_ds_sid; + hid_t full_file_small_ds_sid; + hid_t mem_small_ds_sid; + hid_t file_small_ds_sid; + hid_t small_ds_slice_sid; + hid_t full_mem_large_ds_sid; + hid_t full_file_large_ds_sid; + hid_t mem_large_ds_sid; + hid_t file_large_ds_sid; + hid_t file_large_ds_process_slice_sid; + hid_t mem_large_ds_process_slice_sid; + hid_t large_ds_slice_sid; + hid_t small_ds_dcpl_id = H5P_DEFAULT; + hid_t large_ds_dcpl_id = H5P_DEFAULT; + hid_t small_dataset; /* Dataset ID */ + hid_t large_dataset; /* Dataset ID */ + size_t small_ds_size = 1; + size_t small_ds_slice_size = 1; + size_t large_ds_size = 1; + size_t large_ds_slice_size = 1; + hsize_t dims[PAR_SS_DR_MAX_RANK]; + hsize_t chunk_dims[PAR_SS_DR_MAX_RANK]; + hsize_t start[PAR_SS_DR_MAX_RANK]; + hsize_t stride[PAR_SS_DR_MAX_RANK]; + hsize_t count[PAR_SS_DR_MAX_RANK]; + hsize_t block[PAR_SS_DR_MAX_RANK]; + hsize_t * start_ptr = NULL; + hsize_t * stride_ptr = NULL; + hsize_t * count_ptr = NULL; + hsize_t * block_ptr = NULL; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + HDassert( edge_size >= 6 ); + HDassert( edge_size >= chunk_edge_size ); + HDassert( ( chunk_edge_size == 0 ) || ( chunk_edge_size >= 3 ) ); + HDassert( 1 < small_rank ); + HDassert( small_rank < large_rank ); + HDassert( large_rank <= test_max_rank ); + HDassert( test_max_rank <= PAR_SS_DR_MAX_RANK ); + + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); + + HDassert( mpi_size >= 1 ); + + mpi_comm = MPI_COMM_WORLD; + mpi_info = MPI_INFO_NULL; + + for ( i = 0; i < small_rank - 1; i++ ) + { + small_ds_size *= (size_t)edge_size; + small_ds_slice_size *= (size_t)edge_size; + } + small_ds_size *= (size_t)(mpi_size + 1); + + + for ( i = 0; i < large_rank - 1; i++ ) { + + large_ds_size *= (size_t)edge_size; + large_ds_slice_size *= (size_t)edge_size; + } + large_ds_size *= (size_t)(mpi_size + 1); + + + /* set up the start, stride, count, and block pointers */ + start_ptr = &(start[PAR_SS_DR_MAX_RANK - large_rank]); + stride_ptr = &(stride[PAR_SS_DR_MAX_RANK - large_rank]); + count_ptr = &(count[PAR_SS_DR_MAX_RANK - large_rank]); + block_ptr = &(block[PAR_SS_DR_MAX_RANK - large_rank]); + + + /* Allocate buffers */ + small_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size); + VRFY((small_ds_buf_0 != NULL), "malloc of small_ds_buf_0 succeeded"); + + small_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size); + VRFY((small_ds_buf_1 != NULL), "malloc of small_ds_buf_1 succeeded"); + + small_ds_buf_2 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size); + VRFY((small_ds_buf_2 != NULL), "malloc of small_ds_buf_2 succeeded"); + + small_ds_slice_buf = + (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_slice_size); + VRFY((small_ds_slice_buf != NULL), "malloc of small_ds_slice_buf succeeded"); + + large_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size); + VRFY((large_ds_buf_0 != NULL), "malloc of large_ds_buf_0 succeeded"); + + large_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size); + VRFY((large_ds_buf_1 != NULL), "malloc of large_ds_buf_1 succeeded"); + + large_ds_buf_2 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size); + VRFY((large_ds_buf_2 != NULL), "malloc of large_ds_buf_2 succeeded"); + + large_ds_slice_buf = + (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_slice_size); + VRFY((large_ds_slice_buf != NULL), "malloc of large_ds_slice_buf succeeded"); + + /* initialize the buffers */ + + ptr_0 = small_ds_buf_0; + ptr_1 = small_ds_buf_1; + ptr_2 = small_ds_buf_2; + + for ( i = 0; i < (int)small_ds_size; i++ ) { + + *ptr_0 = (uint32_t)i; + *ptr_1 = 0; + *ptr_2 = 0; + + ptr_0++; + ptr_1++; + ptr_2++; + } + + ptr_0 = small_ds_slice_buf; + + for ( i = 0; i < (int)small_ds_slice_size; i++ ) { + + *ptr_0 = (uint32_t)0; + ptr_0++; + } + + ptr_0 = large_ds_buf_0; + ptr_1 = large_ds_buf_1; + ptr_2 = large_ds_buf_2; + + for ( i = 0; i < (int)large_ds_size; i++ ) { + + *ptr_0 = (uint32_t)i; + *ptr_1 = 0; + *ptr_2 = 0; + + ptr_0++; + ptr_1++; + ptr_2++; + } + + ptr_0 = large_ds_slice_buf; + + for ( i = 0; i < (int)large_ds_slice_size; i++ ) { + + *ptr_0 = (uint32_t)0; + ptr_0++; + } + + filename = (const char *)GetTestParameters(); + HDassert( filename != NULL ); +#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + if ( MAINPROCESS ) { + + HDfprintf(stdout, "%d: test num = %d.\n", mpi_rank, test_num); + HDfprintf(stdout, "%d: mpi_size = %d.\n", mpi_rank, mpi_size); + HDfprintf(stdout, + "%d: small/large rank = %d/%d, use_collective_io = %d.\n", + mpi_rank, small_rank, large_rank, (int)use_collective_io); + HDfprintf(stdout, "%d: edge_size = %d, chunk_edge_size = %d.\n", + mpi_rank, edge_size, chunk_edge_size); + HDfprintf(stdout, "%d: small_ds_size = %d, large_ds_size = %d.\n", + mpi_rank, (int)small_ds_size, (int)large_ds_size); + HDfprintf(stdout, "%d: filename = %s.\n", mpi_rank, filename); + } +#endif + /* ---------------------------------------- + * CREATE AN HDF5 FILE WITH PARALLEL ACCESS + * ---------------------------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(mpi_comm, mpi_info, facc_type, use_gpfs); + VRFY((acc_tpl >= 0), "create_faccess_plist() succeeded"); + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + MESG("File opened."); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded"); + + + /* setup dims: */ + dims[0] = (int)(mpi_size + 1); + dims[1] = dims[2] = dims[3] = dims[4] = edge_size; + + + /* Create small ds dataspaces */ + full_mem_small_ds_sid = H5Screate_simple(small_rank, dims, NULL); + VRFY((full_mem_small_ds_sid != 0), + "H5Screate_simple() full_mem_small_ds_sid succeeded"); + + full_file_small_ds_sid = H5Screate_simple(small_rank, dims, NULL); + VRFY((full_file_small_ds_sid != 0), + "H5Screate_simple() full_file_small_ds_sid succeeded"); + + mem_small_ds_sid = H5Screate_simple(small_rank, dims, NULL); + VRFY((mem_small_ds_sid != 0), + "H5Screate_simple() mem_small_ds_sid succeeded"); + + file_small_ds_sid = H5Screate_simple(small_rank, dims, NULL); + VRFY((file_small_ds_sid != 0), + "H5Screate_simple() file_small_ds_sid succeeded"); + + small_ds_slice_sid = H5Screate_simple(small_rank - 1, &(dims[1]), NULL); + VRFY((small_ds_slice_sid != 0), + "H5Screate_simple() small_ds_slice_sid succeeded"); + + + /* Create large ds dataspaces */ + full_mem_large_ds_sid = H5Screate_simple(large_rank, dims, NULL); + VRFY((full_mem_large_ds_sid != 0), + "H5Screate_simple() full_mem_large_ds_sid succeeded"); + + full_file_large_ds_sid = H5Screate_simple(large_rank, dims, NULL); + VRFY((full_file_large_ds_sid != FAIL), + "H5Screate_simple() full_file_large_ds_sid succeeded"); + + mem_large_ds_sid = H5Screate_simple(large_rank, dims, NULL); + VRFY((mem_large_ds_sid != FAIL), + "H5Screate_simple() mem_large_ds_sid succeeded"); + + file_large_ds_sid = H5Screate_simple(large_rank, dims, NULL); + VRFY((file_large_ds_sid != FAIL), + "H5Screate_simple() file_large_ds_sid succeeded"); + + mem_large_ds_process_slice_sid = H5Screate_simple(large_rank, dims, NULL); + VRFY((mem_large_ds_process_slice_sid != FAIL), + "H5Screate_simple() mem_large_ds_process_slice_sid succeeded"); + + file_large_ds_process_slice_sid = H5Screate_simple(large_rank, dims, NULL); + VRFY((file_large_ds_process_slice_sid != FAIL), + "H5Screate_simple() file_large_ds_process_slice_sid succeeded"); + + + large_ds_slice_sid = H5Screate_simple(large_rank - 1, &(dims[1]), NULL); + VRFY((large_ds_slice_sid != 0), + "H5Screate_simple() large_ds_slice_sid succeeded"); + + + /* Select the entire extent of the full small ds, and ds slice dataspaces */ + ret = H5Sselect_all(full_mem_small_ds_sid); + VRFY((ret != FAIL), "H5Sselect_all(full_mem_small_ds_sid) succeeded"); + + ret = H5Sselect_all(full_file_small_ds_sid); + VRFY((ret != FAIL), "H5Sselect_all(full_file_small_ds_sid) succeeded"); + + ret = H5Sselect_all(small_ds_slice_sid); + VRFY((ret != FAIL), "H5Sselect_all(small_ds_slice_sid) succeeded"); + + + /* Select the entire extent of the full large ds, and ds slice dataspaces */ + ret = H5Sselect_all(full_mem_large_ds_sid); + VRFY((ret != FAIL), "H5Sselect_all(full_mem_large_ds_sid) succeeded"); + + ret = H5Sselect_all(full_file_large_ds_sid); + VRFY((ret != FAIL), "H5Sselect_all(full_file_large_ds_sid) succeeded"); + + ret = H5Sselect_all(large_ds_slice_sid); + VRFY((ret != FAIL), "H5Sselect_all(large_ds_slice_sid) succeeded"); + + + /* if chunk edge size is greater than zero, set up the small and + * large data set creation property lists to specify chunked + * datasets. + */ + if ( chunk_edge_size > 0 ) { + + chunk_dims[0] = mpi_size + 1; + chunk_dims[1] = chunk_dims[2] = + chunk_dims[3] = chunk_dims[4] = chunk_edge_size; + + small_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + VRFY((ret != FAIL), "H5Pcreate() small_ds_dcpl_id succeeded"); + + ret = H5Pset_layout(small_ds_dcpl_id, H5D_CHUNKED); + VRFY((ret != FAIL), "H5Pset_layout() small_ds_dcpl_id succeeded"); + + ret = H5Pset_chunk(small_ds_dcpl_id, small_rank, chunk_dims); + VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded"); + + + large_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + VRFY((ret != FAIL), "H5Pcreate() large_ds_dcpl_id succeeded"); + + ret = H5Pset_layout(large_ds_dcpl_id, H5D_CHUNKED); + VRFY((ret != FAIL), "H5Pset_layout() large_ds_dcpl_id succeeded"); + + ret = H5Pset_chunk(large_ds_dcpl_id, large_rank, chunk_dims); + VRFY((ret != FAIL), "H5Pset_chunk() large_ds_dcpl_id succeeded"); + } + + /* create the small dataset */ + small_dataset = H5Dcreate2(fid, "small_dataset", dset_type, + file_small_ds_sid, H5P_DEFAULT, + small_ds_dcpl_id, H5P_DEFAULT); + VRFY((ret != FAIL), "H5Dcreate2() small_dataset succeeded"); + + /* create the large dataset */ + large_dataset = H5Dcreate2(fid, "large_dataset", dset_type, + file_large_ds_sid, H5P_DEFAULT, + large_ds_dcpl_id, H5P_DEFAULT); + VRFY((ret != FAIL), "H5Dcreate2() large_dataset succeeded"); + + + + /* setup xfer property list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); + + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + if ( ! use_collective_io ) { + + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, + H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0), "H5Pset_dxpl_mpio_collective_opt() suceeded"); + } + + /* setup selection to write initial data to the small and large data sets */ + start[0] = mpi_rank; + stride[0] = 2 * (mpi_size + 1); + count[0] = 1; + block[0] = 1; + + for ( i = 1; i < large_rank; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + block[i] = edge_size; + } + + /* setup selections for writing initial data to the small data set */ + ret = H5Sselect_hyperslab(mem_small_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded"); + + ret = H5Sselect_hyperslab(file_small_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid, set) suceeded"); + + if ( MAINPROCESS ) { /* add an additional slice to the selections */ + + start[0] = mpi_size; + + ret = H5Sselect_hyperslab(mem_small_ds_sid, + H5S_SELECT_OR, + start, + stride, + count, + block); + VRFY((ret>= 0), "H5Sselect_hyperslab(mem_small_ds_sid, or) suceeded"); + + ret = H5Sselect_hyperslab(file_small_ds_sid, + H5S_SELECT_OR, + start, + stride, + count, + block); + VRFY((ret>= 0), "H5Sselect_hyperslab(file_small_ds_sid, or) suceeded"); + } + + + /* write the initial value of the small data set to file */ + ret = H5Dwrite(small_dataset, dset_type, mem_small_ds_sid, file_small_ds_sid, + xfer_plist, small_ds_buf_0); + + VRFY((ret >= 0), "H5Dwrite() small_dataset initial write succeeded"); + + + /* sync with the other processes before checking data */ + mrc = MPI_Barrier(MPI_COMM_WORLD); + VRFY((mrc==MPI_SUCCESS), "Sync after small dataset writes"); + + + /* read the small data set back to verify that it contains the + * expected data. Note that each process reads in the entire + * data set. + */ + ret = H5Dread(small_dataset, + H5T_NATIVE_UINT32, + full_mem_small_ds_sid, + full_file_small_ds_sid, + xfer_plist, + small_ds_buf_1); + VRFY((ret >= 0), "H5Dread() small_dataset initial read succeeded"); + + + /* verify that the correct data was written to the small data set */ + expected_value = 0; + mis_match = FALSE; + ptr_1 = small_ds_buf_1; + + i = 0; + for ( i = 0; i < (int)small_ds_size; i++ ) { + + if ( *ptr_1 != expected_value ) { + + mis_match = TRUE; + } + ptr_1++; + expected_value++; + } + VRFY( (mis_match == FALSE), "small ds init data good."); + + + + /* setup selections for writing initial data to the large data set */ + + start[0] = mpi_rank; + + ret = H5Sselect_hyperslab(mem_large_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, set) suceeded"); + + ret = H5Sselect_hyperslab(file_large_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid, set) suceeded"); + + /* In passing, setup the process slice data spaces as well */ + + ret = H5Sselect_hyperslab(mem_large_ds_process_slice_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), + "H5Sselect_hyperslab(mem_large_ds_process_slice_sid, set) suceeded"); + + ret = H5Sselect_hyperslab(file_large_ds_process_slice_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), + "H5Sselect_hyperslab(file_large_ds_process_slice_sid, set) suceeded"); + + if ( MAINPROCESS ) { /* add an additional slice to the selections */ + + start[0] = mpi_size; + + ret = H5Sselect_hyperslab(mem_large_ds_sid, + H5S_SELECT_OR, + start, + stride, + count, + block); + VRFY((ret>= 0), "H5Sselect_hyperslab(mem_large_ds_sid, or) suceeded"); + + ret = H5Sselect_hyperslab(file_large_ds_sid, + H5S_SELECT_OR, + start, + stride, + count, + block); + VRFY((ret>= 0), "H5Sselect_hyperslab(file_large_ds_sid, or) suceeded"); + } + + + /* write the initial value of the large data set to file */ + ret = H5Dwrite(large_dataset, dset_type, mem_large_ds_sid, file_large_ds_sid, + xfer_plist, large_ds_buf_0); + if ( ret < 0 ) H5Eprint(H5E_DEFAULT, stderr); + VRFY((ret >= 0), "H5Dwrite() large_dataset initial write succeeded"); + + + /* sync with the other processes before checking data */ + mrc = MPI_Barrier(MPI_COMM_WORLD); + VRFY((mrc==MPI_SUCCESS), "Sync after large dataset writes"); + + + /* read the small data set back to verify that it contains the + * expected data. Note that each process reads in the entire + * data set. + */ + ret = H5Dread(large_dataset, + H5T_NATIVE_UINT32, + full_mem_large_ds_sid, + full_file_large_ds_sid, + xfer_plist, + large_ds_buf_1); + VRFY((ret >= 0), "H5Dread() large_dataset initial read succeeded"); + + + /* verify that the correct data was written to the small data set */ + expected_value = 0; + mis_match = FALSE; + ptr_1 = large_ds_buf_1; + + i = 0; + for ( i = 0; i < (int)large_ds_size; i++ ) { + + if ( *ptr_1 != expected_value ) { + + mis_match = TRUE; + } + ptr_1++; + expected_value++; + } + VRFY( (mis_match == FALSE), "large ds init data good."); + + + /* first, verify that we can read from disk correctly using selections + * of different rank that H5S_select_shape_same() views as being of the + * same shape. + * + * Start by reading small_rank-D - 1 slice from the on disk large cube, + * and verifying that the data read is correct. Verify that + * H5S_select_shape_same() returns true on the memory and file selections. + */ + + /* We have already done a H5Sselect_all() on the data space + * small_ds_slice_sid, so no need to call H5Sselect_all() again. + */ + + /* set up start, stride, count, and block -- note that we will + * change start[] so as to read slices of the large cube. + */ + for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) { + + block[i] = 1; + + } else { + + block[i] = edge_size; + } + } + + /* zero out the buffer we will be reading into */ + ptr_0 = small_ds_slice_buf; + + for ( i = 0; i < (int)small_ds_slice_size; i++ ) { + + *ptr_0 = (uint32_t)0; + ptr_0++; + } + +#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, + "%s reading slices from big cube on disk into small cube slice.\n", + fcnName); +#endif + /* in serial versions of this test, we loop through all the dimensions + * of the large data set. However, in the parallel version, each + * process only works with that slice of the large cube indicated + * by its rank -- hence we set the most slowly changing index to + * mpi_rank, and don't itterate over it. + */ + + if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) { + + i = mpi_rank; + + } else { + + i = 0; + } + + /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to + * loop over it -- either we are setting i to mpi_rank, or + * we are setting it to zero. It will not change during the + * test. + */ + + if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) { + + j = mpi_rank; + + } else { + + j = 0; + } + + do { + if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) { + + k = mpi_rank; + + } else { + + k = 0; + } + + do { + /* since small rank >= 2 and large_rank > small_rank, we + * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5 + * (baring major re-orgaization), this gives us: + * + * (PAR_SS_DR_MAX_RANK - large_rank) <= 2 + * + * so no need to repeat the test in the outer loops -- + * just set l = 0. + */ + + l = 0; + do { + /* we know that small_rank - 1 >= 1 and that + * large_rank > small_rank by the assertions at the head + * of this function. Thus no need for another inner loop. + */ + start[0] = i; + start[1] = j; + start[2] = k; + start[3] = l; + start[4] = 0; + + ret = H5Sselect_hyperslab(file_large_ds_sid, + H5S_SELECT_SET, + start_ptr, + stride_ptr, + count_ptr, + block_ptr); + VRFY((ret != FAIL), + "H5Sselect_hyperslab(file_large_cube_sid) succeeded"); + + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(small_ds_slice_sid, + file_large_ds_sid); + VRFY((check == TRUE), "H5S_select_shape_same_test passed"); + + + /* Read selection from disk */ +#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", + fcnName, (int)mpi_rank, + (int)start[0], (int)start[1], (int)start[2], + (int)start[3], (int)start[4]); + HDfprintf(stdout, "%s slice/file extent dims = %d/%d.\n", + fcnName, + H5Sget_simple_extent_ndims(small_ds_slice_sid), + H5Sget_simple_extent_ndims(file_large_ds_sid)); +#endif + ret = H5Dread(large_dataset, + H5T_NATIVE_UINT32, + small_ds_slice_sid, + file_large_ds_sid, + xfer_plist, + small_ds_slice_buf); + VRFY((ret >= 0), "H5Sread() slice from large ds succeeded."); + + + /* verify that expected data is retrieved */ + + mis_match = FALSE; + ptr_1 = small_ds_slice_buf; + expected_value = + (i * edge_size * edge_size * edge_size * edge_size) + + (j * edge_size * edge_size * edge_size) + + (k * edge_size * edge_size) + + (l * edge_size); + + for ( n = 0; n < (int)small_ds_slice_size; n++ ) { + + if ( *ptr_1 != expected_value ) { + + mis_match = TRUE; + } + + *ptr_1 = 0; /* zero data for next use */ + + ptr_1++; + expected_value++; + } + + VRFY((mis_match == FALSE), + "small slice read from large ds data good."); + l++; + + } while ( ( large_rank > 2 ) && + ( (small_rank - 1) <= 1 ) && + ( l < edge_size ) ); + k++; + } while ( ( large_rank > 3 ) && + ( (small_rank - 1) <= 2 ) && + ( k < edge_size ) ); + j++; + } while ( ( large_rank > 4 ) && + ( (small_rank - 1) <= 3 ) && + ( j < edge_size ) ); + + + /* similarly, read slices of the on disk small data set into slices + * through the in memory large data set, and verify that the correct + * data (and only the correct data) is read. + */ + + start[0] = mpi_rank; + stride[0] = 2 * (mpi_size + 1); + count[0] = 1; + block[0] = 1; + + for ( i = 1; i < large_rank; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + block[i] = edge_size; + } + + ret = H5Sselect_hyperslab(file_small_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid, set) suceeded"); + + +#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, + "%s reading slices of on disk small data set into slices of big data set.\n", + fcnName); +#endif + + /* zero out the in memory large ds */ + ptr_1 = large_ds_buf_1; + for ( n = 0; n < (int)large_ds_size; n++ ) { + + *ptr_1 = 0; + ptr_1++; + } + + /* set up start, stride, count, and block -- note that we will + * change start[] so as to read slices of the large cube. + */ + for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) { + + block[i] = 1; + + } else { + + block[i] = edge_size; + } + } + + + /* in serial versions of this test, we loop through all the dimensions + * of the large data set that don't appear in the small data set. + * + * However, in the parallel version, each process only works with that + * slice of the large (and small) data set indicated by its rank -- hence + * we set the most slowly changing index to mpi_rank, and don't itterate + * over it. + */ + + + if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) { + + i = mpi_rank; + + } else { + + i = 0; + } + + /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to + * loop over it -- either we are setting i to mpi_rank, or + * we are setting it to zero. It will not change during the + * test. + */ + + if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) { + + j = mpi_rank; + + } else { + + j = 0; + } + + do { + if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) { + + k = mpi_rank; + + } else { + + k = 0; + } + + do { + /* since small rank >= 2 and large_rank > small_rank, we + * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5 + * (baring major re-orgaization), this gives us: + * + * (PAR_SS_DR_MAX_RANK - large_rank) <= 2 + * + * so no need to repeat the test in the outer loops -- + * just set l = 0. + */ + + l = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + start[0] = i; + start[1] = j; + start[2] = k; + start[3] = l; + start[4] = 0; + + ret = H5Sselect_hyperslab(mem_large_ds_sid, + H5S_SELECT_SET, + start_ptr, + stride_ptr, + count_ptr, + block_ptr); + VRFY((ret != FAIL), + "H5Sselect_hyperslab(mem_large_ds_sid) succeeded"); + + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(file_small_ds_sid, + mem_large_ds_sid); + VRFY((check == TRUE), "H5S_select_shape_same_test passed"); + + + /* Read selection from disk */ +#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", + fcnName, (int)mpi_rank, + (int)start[0], (int)start[1], (int)start[2], + (int)start[3], (int)start[4]); + HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", + fcnName, mpi_rank, + H5Sget_simple_extent_ndims(mem_large_ds_sid), + H5Sget_simple_extent_ndims(file_small_ds_sid)); +#endif + ret = H5Dread(small_dataset, + H5T_NATIVE_UINT32, + mem_large_ds_sid, + file_small_ds_sid, + xfer_plist, + large_ds_buf_1); + VRFY((ret >= 0), "H5Sread() slice from small ds succeeded."); + + /* verify that the expected data and only the + * expected data was read. + */ + ptr_1 = large_ds_buf_1; + expected_value = mpi_rank * small_ds_slice_size; + start_index = + (i * edge_size * edge_size * edge_size * edge_size) + + (j * edge_size * edge_size * edge_size) + + (k * edge_size * edge_size) + + (l * edge_size); + stop_index = start_index + (int)small_ds_slice_size - 1; + + HDassert( 0 <= start_index ); + HDassert( start_index < stop_index ); + HDassert( stop_index <= (int)large_ds_size ); + + for ( n = 0; n < (int)large_ds_size; n++ ) { + + if ( ( n >= start_index ) && ( n <= stop_index ) ) { + + if ( *ptr_1 != expected_value ) { + + mis_match = TRUE; + } + expected_value++; + + } else { + + if ( *ptr_1 != 0 ) { + + mis_match = TRUE; + } + } + /* zero out the value for the next pass */ + *ptr_1 = 0; + + ptr_1++; + } + + VRFY((mis_match == FALSE), + "small slice read from large ds data good."); + + l++; + + } while ( ( large_rank > 2 ) && + ( (small_rank - 1) <= 1 ) && + ( l < edge_size ) ); + k++; + } while ( ( large_rank > 3 ) && + ( (small_rank - 1) <= 2 ) && + ( k < edge_size ) ); + j++; + } while ( ( large_rank > 4 ) && + ( (small_rank - 1) <= 3 ) && + ( j < edge_size ) ); + + + /* now we go in the opposite direction, verifying that we can write + * from memory to file using selections of different rank that + * H5S_select_shape_same() views as being of the same shape. + * + * Start by writing small_rank - 1 D slices from the in memory large data + * set to the on disk small cube dataset. After each write, read the + * slice of the small dataset back from disk, and verify that it contains + * the expected data. Verify that H5S_select_shape_same() returns true on + * the memory and file selections. + */ + + start[0] = mpi_rank; + stride[0] = 2 * (mpi_size + 1); + count[0] = 1; + block[0] = 1; + + for ( i = 1; i < large_rank; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + block[i] = edge_size; + } + + ret = H5Sselect_hyperslab(file_small_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid, set) suceeded"); + + ret = H5Sselect_hyperslab(mem_small_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded"); + + + /* set up start, stride, count, and block -- note that we will + * change start[] so as to read slices of the large cube. + */ + for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) { + + block[i] = 1; + + } else { + + block[i] = edge_size; + } + } + + /* zero out the in memory small ds */ + ptr_1 = small_ds_buf_1; + for ( n = 0; n < (int)small_ds_size; n++ ) { + + *ptr_1 = 0; + ptr_1++; + } + + +#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, + "%s writing slices from big ds to slices of small ds on disk.\n", + fcnName); +#endif + + /* in serial versions of this test, we loop through all the dimensions + * of the large data set that don't appear in the small data set. + * + * However, in the parallel version, each process only works with that + * slice of the large (and small) data set indicated by its rank -- hence + * we set the most slowly changing index to mpi_rank, and don't itterate + * over it. + */ + + + if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) { + + i = mpi_rank; + + } else { + + i = 0; + } + + /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to + * loop over it -- either we are setting i to mpi_rank, or + * we are setting it to zero. It will not change during the + * test. + */ + + if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) { + + j = mpi_rank; + + } else { + + j = 0; + } + + j = 0; + do { + if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) { + + k = mpi_rank; + + } else { + + k = 0; + } + + do { + /* since small rank >= 2 and large_rank > small_rank, we + * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5 + * (baring major re-orgaization), this gives us: + * + * (PAR_SS_DR_MAX_RANK - large_rank) <= 2 + * + * so no need to repeat the test in the outer loops -- + * just set l = 0. + */ + + l = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + /* zero out this rank's slice of the on disk small data set */ + ret = H5Dwrite(small_dataset, + H5T_NATIVE_UINT32, + mem_small_ds_sid, + file_small_ds_sid, + xfer_plist, + small_ds_buf_2); + VRFY((ret >= 0), "H5Dwrite() zero slice to small ds succeeded."); + + /* select the portion of the in memory large cube from which we + * are going to write data. + */ + start[0] = i; + start[1] = j; + start[2] = k; + start[3] = l; + start[4] = 0; + + ret = H5Sselect_hyperslab(mem_large_ds_sid, + H5S_SELECT_SET, + start_ptr, + stride_ptr, + count_ptr, + block_ptr); + VRFY((ret >= 0), + "H5Sselect_hyperslab() mem_large_ds_sid succeeded."); + + + /* verify that H5S_select_shape_same() reports the in + * memory slice through the cube selection and the + * on disk full square selections as having the same shape. + */ + check = H5S_select_shape_same_test(file_small_ds_sid, + mem_large_ds_sid); + VRFY((check == TRUE), "H5S_select_shape_same_test passed."); + + + /* write the slice from the in memory large data set to the + * slice of the on disk small dataset. */ +#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", + fcnName, (int)mpi_rank, + (int)start[0], (int)start[1], (int)start[2], + (int)start[3], (int)start[4]); + HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", + fcnName, mpi_rank, + H5Sget_simple_extent_ndims(mem_large_ds_sid), + H5Sget_simple_extent_ndims(file_small_ds_sid)); +#endif + ret = H5Dwrite(small_dataset, + H5T_NATIVE_UINT32, + mem_large_ds_sid, + file_small_ds_sid, + xfer_plist, + large_ds_buf_0); + VRFY((ret >= 0), "H5Dwrite() slice to large ds succeeded."); + + + /* read the on disk square into memory */ + ret = H5Dread(small_dataset, + H5T_NATIVE_UINT32, + mem_small_ds_sid, + file_small_ds_sid, + xfer_plist, + small_ds_buf_1); + VRFY((ret >= 0), "H5Dread() slice from small ds succeeded."); + + + /* verify that expected data is retrieved */ + + mis_match = FALSE; + ptr_1 = small_ds_buf_1; + + expected_value = + (i * edge_size * edge_size * edge_size * edge_size) + + (j * edge_size * edge_size * edge_size) + + (k * edge_size * edge_size) + + (l * edge_size); + + start_index = mpi_rank * small_ds_slice_size; + stop_index = start_index + small_ds_slice_size - 1; + + HDassert( 0 <= start_index ); + HDassert( start_index < stop_index ); + HDassert( stop_index <= (int)small_ds_size ); + + for ( n = 0; n < (int)small_ds_size; n++ ) { + + if ( ( n >= start_index ) && ( n <= stop_index ) ) { + + if ( *ptr_1 != expected_value ) { + + mis_match = TRUE; + } + expected_value++; + + } else { + + if ( *ptr_1 != 0 ) { + + mis_match = TRUE; + } + } + /* zero out the value for the next pass */ + *ptr_1 = 0; + + ptr_1++; + } + + VRFY((mis_match == FALSE), + "small slice write from large ds data good."); + + l++; + + } while ( ( large_rank > 2 ) && + ( (small_rank - 1) <= 1 ) && + ( l < edge_size ) ); + k++; + } while ( ( large_rank > 3 ) && + ( (small_rank - 1) <= 2 ) && + ( k < edge_size ) ); + j++; + } while ( ( large_rank > 4 ) && + ( (small_rank - 1) <= 3 ) && + ( j < edge_size ) ); + + + /* Now write the contents of the process's slice of the in memory + * small data set to slices of the on disk large data set. After + * each write, read the process's slice of the large data set back + * into memory, and verify that it contains the expected data. + * Verify that H5S_select_shape_same() returns true on the memory + * and file selections. + */ + + /* select the slice of the in memory small data set associated with + * the process's mpi rank. + */ + start[0] = mpi_rank; + stride[0] = 2 * (mpi_size + 1); + count[0] = 1; + block[0] = 1; + + for ( i = 1; i < large_rank; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + block[i] = edge_size; + } + + ret = H5Sselect_hyperslab(mem_small_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded"); + + + /* set up start, stride, count, and block -- note that we will + * change start[] so as to write slices of the small data set to + * slices of the large data set. + */ + for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) { + + block[i] = 1; + + } else { + + block[i] = edge_size; + } + } + + /* zero out the in memory large ds */ + ptr_1 = large_ds_buf_1; + for ( n = 0; n < (int)large_ds_size; n++ ) { + + *ptr_1 = 0; + ptr_1++; + } + +#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, + "%s writing process slices of small ds to slices of large ds on disk.\n", + fcnName); +#endif + + if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) { + + i = mpi_rank; + + } else { + + i = 0; + } + + /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to + * loop over it -- either we are setting i to mpi_rank, or + * we are setting it to zero. It will not change during the + * test. + */ + + if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) { + + j = mpi_rank; + + } else { + + j = 0; + } + + do { + if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) { + + k = mpi_rank; + + } else { + + k = 0; + } + + do { + /* since small rank >= 2 and large_rank > small_rank, we + * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5 + * (baring major re-orgaization), this gives us: + * + * (PAR_SS_DR_MAX_RANK - large_rank) <= 2 + * + * so no need to repeat the test in the outer loops -- + * just set l = 0. + */ + + l = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + /* Zero out this processes slice of the on disk large data set. + * Note that this will leave one slice with its original data + * as there is one more slice than processes. + */ + ret = H5Dwrite(large_dataset, + H5T_NATIVE_UINT32, + large_ds_slice_sid, + file_large_ds_process_slice_sid, + xfer_plist, + large_ds_buf_2); + VRFY((ret != FAIL), "H5Dwrite() to zero large ds suceeded"); + + + /* select the portion of the in memory large cube to which we + * are going to write data. + */ + start[0] = i; + start[1] = j; + start[2] = k; + start[3] = l; + start[4] = 0; + + ret = H5Sselect_hyperslab(file_large_ds_sid, + H5S_SELECT_SET, + start_ptr, + stride_ptr, + count_ptr, + block_ptr); + VRFY((ret != FAIL), + "H5Sselect_hyperslab() target large ds slice succeeded"); + + + /* verify that H5S_select_shape_same() reports the in + * memory small data set slice selection and the + * on disk slice through the large data set selection + * as having the same shape. + */ + check = H5S_select_shape_same_test(mem_small_ds_sid, + file_large_ds_sid); + VRFY((check == TRUE), "H5S_select_shape_same_test passed"); + + + /* write the small data set slice from memory to the + * target slice of the disk data set + */ +#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", + fcnName, (int)mpi_rank, + (int)start[0], (int)start[1], (int)start[2], + (int)start[3], (int)start[4]); + HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", + fcnName, mpi_rank, + H5Sget_simple_extent_ndims(mem_small_ds_sid), + H5Sget_simple_extent_ndims(file_large_ds_sid)); +#endif + ret = H5Dwrite(large_dataset, + H5T_NATIVE_UINT32, + mem_small_ds_sid, + file_large_ds_sid, + xfer_plist, + small_ds_buf_0); + VRFY((ret != FAIL), + "H5Dwrite of small ds slice to large ds succeeded"); + + + /* read this processes slice on the on disk large + * data set into memory. + */ + + ret = H5Dread(large_dataset, + H5T_NATIVE_UINT32, + mem_large_ds_process_slice_sid, + file_large_ds_process_slice_sid, + xfer_plist, + large_ds_buf_1); + VRFY((ret != FAIL), + "H5Dread() of process slice of large ds succeeded"); + + + /* verify that the expected data and only the + * expected data was read. + */ + ptr_1 = large_ds_buf_1; + expected_value = (uint32_t)(mpi_rank) * small_ds_slice_size; + + + start_index = (i * edge_size * edge_size * edge_size * edge_size) + + (j * edge_size * edge_size * edge_size) + + (k * edge_size * edge_size) + + (l * edge_size); + stop_index = start_index + (int)small_ds_slice_size - 1; + + HDassert( 0 <= start_index ); + HDassert( start_index < stop_index ); + HDassert( stop_index < (int)large_ds_size ); + + for ( n = 0; n < (int)large_ds_size; n++ ) { + + if ( ( n >= start_index ) && ( n <= stop_index ) ) { + + if ( *ptr_1 != expected_value ) { + + mis_match = TRUE; + } + + expected_value++; + + } else { + + if ( *ptr_1 != 0 ) { + + mis_match = TRUE; + } + } + /* zero out buffer for next test */ + *ptr_1 = 0; + ptr_1++; + } + + VRFY((mis_match == FALSE), + "small ds slice write to large ds slice data good."); + + l++; + + } while ( ( large_rank > 2 ) && + ( (small_rank - 1) <= 1 ) && + ( l < edge_size ) ); + k++; + } while ( ( large_rank > 3 ) && + ( (small_rank - 1) <= 2 ) && + ( k < edge_size ) ); + j++; + } while ( ( large_rank > 4 ) && + ( (small_rank - 1) <= 3 ) && + ( j < edge_size ) ); + + + /* Close dataspaces */ + ret = H5Sclose(full_mem_small_ds_sid); + VRFY((ret != FAIL), "H5Sclose(full_mem_small_ds_sid) succeeded"); + + ret = H5Sclose(full_file_small_ds_sid); + VRFY((ret != FAIL), "H5Sclose(full_file_small_ds_sid) succeeded"); + + ret = H5Sclose(mem_small_ds_sid); + VRFY((ret != FAIL), "H5Sclose(mem_small_ds_sid) succeeded"); + + ret = H5Sclose(file_small_ds_sid); + VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid) succeeded"); + + ret = H5Sclose(small_ds_slice_sid); + VRFY((ret != FAIL), "H5Sclose(small_ds_slice_sid) succeeded"); + + ret = H5Sclose(full_mem_large_ds_sid); + VRFY((ret != FAIL), "H5Sclose(full_mem_large_ds_sid) succeeded"); + + ret = H5Sclose(full_file_large_ds_sid); + VRFY((ret != FAIL), "H5Sclose(full_file_large_ds_sid) succeeded"); + + ret = H5Sclose(mem_large_ds_sid); + VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded"); + + ret = H5Sclose(file_large_ds_sid); + VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded"); + + ret = H5Sclose(mem_large_ds_process_slice_sid); + VRFY((ret != FAIL), "H5Sclose(mem_large_ds_process_slice_sid) succeeded"); + + ret = H5Sclose(file_large_ds_process_slice_sid); + VRFY((ret != FAIL), "H5Sclose(file_large_ds_process_slice_sid) succeeded"); + + ret = H5Sclose(large_ds_slice_sid); + VRFY((ret != FAIL), "H5Sclose(large_ds_slice_sid) succeeded"); + + + /* Close Datasets */ + ret = H5Dclose(small_dataset); + VRFY((ret != FAIL), "H5Dclose(small_dataset) succeeded"); + + ret = H5Dclose(large_dataset); + VRFY((ret != FAIL), "H5Dclose(large_dataset) succeeded"); + + + /* close the file collectively */ + MESG("about to close file."); + ret = H5Fclose(fid); + VRFY((ret != FAIL), "file close succeeded"); + + /* Free memory buffers */ + + if ( small_ds_buf_0 != NULL ) HDfree(small_ds_buf_0); + if ( small_ds_buf_1 != NULL ) HDfree(small_ds_buf_1); + if ( small_ds_buf_2 != NULL ) HDfree(small_ds_buf_2); + if ( small_ds_slice_buf != NULL ) HDfree(small_ds_slice_buf); + + if ( large_ds_buf_0 != NULL ) HDfree(large_ds_buf_0); + if ( large_ds_buf_1 != NULL ) HDfree(large_ds_buf_1); + if ( large_ds_buf_2 != NULL ) HDfree(large_ds_buf_2); + if ( large_ds_slice_buf != NULL ) HDfree(large_ds_slice_buf); + + return; + +} /* contig_hyperslab_dr_pio_test__run_test() */ + + +/*------------------------------------------------------------------------- + * Function: contig_hyperslab_dr_pio_test() + * + * Purpose: Test I/O to/from hyperslab selections of different rank in + * the parallel case. + * + * Return: void + * + * Programmer: JRM -- 9/18/09 + * + * Modifications: + * + *------------------------------------------------------------------------- + */ + +void +contig_hyperslab_dr_pio_test(void) +{ + const char *fcnName = "contig_hyperslab_dr_pio_test()"; + int test_num = 0; + int edge_size = 10; + int chunk_edge_size = 0; + int small_rank; + int large_rank; + int use_collective_io; + hid_t dset_type = H5T_STD_U32LE; + + for ( large_rank = 3; large_rank <= PAR_SS_DR_MAX_RANK; large_rank++ ) { + + for ( small_rank = 2; small_rank < large_rank; small_rank++ ) { + + for ( use_collective_io = 0; + use_collective_io <= 1; + use_collective_io++ ) { + + chunk_edge_size = 0; + contig_hyperslab_dr_pio_test__run_test(test_num, + edge_size, + chunk_edge_size, + small_rank, + large_rank, + (hbool_t)use_collective_io, + dset_type); + test_num++; +#if 1 + chunk_edge_size = 5; + contig_hyperslab_dr_pio_test__run_test(test_num, + edge_size, + chunk_edge_size, + small_rank, + large_rank, + (hbool_t)use_collective_io, + dset_type); + test_num++; +#endif + } + } + } + + return; + +} /* contig_hyperslab_dr_pio_test() */ + + +/**************************************************************** +** +** checker_board_hyperslab_dr_pio_test__select_checker_board(): +** Given a data space of tgt_rank, and dimensions: +** +** (mpi_size + 1), edge_size, ... , edge_size +** +** edge_size, and a checker_edge_size, select a checker +** board selection of a sel_rank (sel_rank < tgt_rank) +** dimensional slice through the data space parallel to the +** sel_rank fastest changing indicies, with origin (in the +** higher indicies) as indicated by the start array. +** +** Note that this function, like all its relatives, is +** hard coded to presume a maximum data space rank of 5. +** While this maximum is declared as a constant, increasing +** it will require extensive coding in addition to changing +** the value of the constant. +** +** JRM -- 10/8/09 +** +****************************************************************/ + +#define CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG 0 + +static void +checker_board_hyperslab_dr_pio_test__select_checker_board( + const int mpi_rank, + const hid_t tgt_sid, + const int tgt_rank, + const int edge_size, + const int checker_edge_size, + const int sel_rank, + hsize_t sel_start[]) +{ +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG + const char * fcnName = + "checker_board_hyperslab_dr_pio_test__select_checker_board():"; +#endif + hbool_t first_selection = TRUE; + int i, j, k, l, m; + int n_cube_offset; + int sel_offset; + const int test_max_rank = PAR_SS_DR_MAX_RANK; /* must update code if */ + /* this changes */ + hsize_t base_count; + hsize_t offset_count; + hsize_t start[PAR_SS_DR_MAX_RANK]; + hsize_t stride[PAR_SS_DR_MAX_RANK]; + hsize_t count[PAR_SS_DR_MAX_RANK]; + hsize_t block[PAR_SS_DR_MAX_RANK]; + herr_t ret; /* Generic return value */ + + HDassert( edge_size >= 6 ); + HDassert( 0 < checker_edge_size ); + HDassert( checker_edge_size <= edge_size ); + HDassert( 0 < sel_rank ); + HDassert( sel_rank <= tgt_rank ); + HDassert( tgt_rank <= test_max_rank ); + HDassert( test_max_rank <= PAR_SS_DR_MAX_RANK ); + + sel_offset = test_max_rank - sel_rank; + HDassert( sel_offset >= 0 ); + + n_cube_offset = test_max_rank - tgt_rank; + HDassert( n_cube_offset >= 0 ); + HDassert( n_cube_offset <= sel_offset ); + +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG + HDfprintf(stdout, "%s:%d: edge_size/checker_edge_size = %d/%d\n", + fcnName, mpi_rank, edge_size, checker_edge_size); + HDfprintf(stdout, "%s:%d: sel_rank/sel_offset = %d/%d.\n", + fcnName, mpi_rank, sel_rank, sel_offset); + HDfprintf(stdout, "%s:%d: tgt_rank/n_cube_offset = %d/%d.\n", + fcnName, mpi_rank, tgt_rank, n_cube_offset); +#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */ + + /* First, compute the base count (which assumes start == 0 + * for the associated offset) and offset_count (which + * assumes start == checker_edge_size for the associated + * offset). + * + * Note that the following computation depends on the C99 + * requirement that integer division discard any fraction + * (truncation towards zero) to function correctly. As we + * now require C99, this shouldn't be a problem, but noting + * it may save us some pain if we are ever obliged to support + * pre-C99 compilers again. + */ + + base_count = edge_size / (checker_edge_size * 2); + + if ( (edge_size % (checker_edge_size * 2)) > 0 ) { + + base_count++; + } + + offset_count = (edge_size - checker_edge_size) / (checker_edge_size * 2); + + if ( ((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0 ) { + + offset_count++; + } + + /* Now set up the stride and block arrays, and portions of the start + * and count arrays that will not be altered during the selection of + * the checker board. + */ + i = 0; + while ( i < n_cube_offset ) { + + /* these values should never be used */ + start[i] = 0; + stride[i] = 0; + count[i] = 0; + block[i] = 0; + + i++; + } + + while ( i < sel_offset ) { + + start[i] = sel_start[i]; + stride[i] = 2 * edge_size; + count[i] = 1; + block[i] = 1; + + i++; + } + + while ( i < test_max_rank ) { + + stride[i] = 2 * checker_edge_size; + block[i] = checker_edge_size; + + i++; + } + + i = 0; + do { + if ( 0 >= sel_offset ) { + + if ( i == 0 ) { + + start[0] = 0; + count[0] = base_count; + + } else { + + start[0] = checker_edge_size; + count[0] = offset_count; + + } + } + + j = 0; + do { + if ( 1 >= sel_offset ) { + + if ( j == 0 ) { + + start[1] = 0; + count[1] = base_count; + + } else { + + start[1] = checker_edge_size; + count[1] = offset_count; + + } + } + + k = 0; + do { + if ( 2 >= sel_offset ) { + + if ( k == 0 ) { + + start[2] = 0; + count[2] = base_count; + + } else { + + start[2] = checker_edge_size; + count[2] = offset_count; + + } + } + + l = 0; + do { + if ( 3 >= sel_offset ) { + + if ( l == 0 ) { + + start[3] = 0; + count[3] = base_count; + + } else { + + start[3] = checker_edge_size; + count[3] = offset_count; + + } + } + + m = 0; + do { + if ( 4 >= sel_offset ) { + + if ( m == 0 ) { + + start[4] = 0; + count[4] = base_count; + + } else { + + start[4] = checker_edge_size; + count[4] = offset_count; + + } + } + + if ( ((i + j + k + l + m) % 2) == 0 ) { + +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG + HDfprintf(stdout, "%s%d: *** first_selection = %d ***\n", + fcnName, mpi_rank, (int)first_selection); + HDfprintf(stdout, "%s:%d: i/j/k/l/m = %d/%d/%d/%d/%d\n", + fcnName, mpi_rank, i, j, k, l, m); + HDfprintf(stdout, + "%s:%d: start = %d %d %d %d %d.\n", + fcnName, mpi_rank, (int)start[0], (int)start[1], + (int)start[2], (int)start[3], (int)start[4]); + HDfprintf(stdout, + "%s:%d: stride = %d %d %d %d %d.\n", + fcnName, mpi_rank, (int)stride[0], (int)stride[1], + (int)stride[2], (int)stride[3], (int)stride[4]); + HDfprintf(stdout, + "%s:%d: count = %d %d %d %d %d.\n", + fcnName, mpi_rank, (int)count[0], (int)count[1], + (int)count[2], (int)count[3], (int)count[4]); + HDfprintf(stdout, + "%s:%d: block = %d %d %d %d %d.\n", + fcnName, mpi_rank, (int)block[0], (int)block[1], + (int)block[2], (int)block[3], (int)block[4]); + HDfprintf(stdout, "%s:%d: n-cube extent dims = %d.\n", + fcnName, mpi_rank, + H5Sget_simple_extent_ndims(tgt_sid)); + HDfprintf(stdout, "%s:%d: selection rank = %d.\n", + fcnName, mpi_rank, sel_rank); +#endif + + if ( first_selection ) { + + first_selection = FALSE; + + ret = H5Sselect_hyperslab + ( + tgt_sid, + H5S_SELECT_SET, + &(start[n_cube_offset]), + &(stride[n_cube_offset]), + &(count[n_cube_offset]), + &(block[n_cube_offset]) + ); + + VRFY((ret != FAIL), "H5Sselect_hyperslab(SET) succeeded"); + + } else { + + ret = H5Sselect_hyperslab + ( + tgt_sid, + H5S_SELECT_OR, + &(start[n_cube_offset]), + &(stride[n_cube_offset]), + &(count[n_cube_offset]), + &(block[n_cube_offset]) + ); + + VRFY((ret != FAIL), "H5Sselect_hyperslab(OR) succeeded"); + + } + } + + m++; + + } while ( ( m <= 1 ) && + ( 4 >= sel_offset ) ); + + l++; + + } while ( ( l <= 1 ) && + ( 3 >= sel_offset ) ); + + k++; + + } while ( ( k <= 1 ) && + ( 2 >= sel_offset ) ); + + j++; + + } while ( ( j <= 1 ) && + ( 1 >= sel_offset ) ); + + + i++; + + } while ( ( i <= 1 ) && + ( 0 >= sel_offset ) ); + +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG + HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", + fcnName, mpi_rank, (int)H5Sget_select_npoints(tgt_sid)); +#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */ + + /* Clip the selection back to the data space proper. */ + + for ( i = 0; i < test_max_rank; i++ ) { + + start[i] = 0; + stride[i] = edge_size; + count[i] = 1; + block[i] = edge_size; + } + + ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_AND, + start, stride, count, block); + + VRFY((ret != FAIL), "H5Sselect_hyperslab(AND) succeeded"); + +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG + HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", + fcnName, mpi_rank, (int)H5Sget_select_npoints(tgt_sid)); + HDfprintf(stdout, "%s%d: done.\n", fcnName, mpi_rank); +#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */ + + return; + +} /* checker_board_hyperslab_dr_pio_test__select_checker_board() */ + + +/**************************************************************** +** +** checker_board_hyperslab_dr_pio_test__verify_data(): +** +** Examine the supplied buffer to see if it contains the +** expected data. Return TRUE if it does, and FALSE +** otherwise. +** +** The supplied buffer is presumed to this process's slice +** of the target data set. Each such slice will be an +** n-cube of rank (rank -1) and the supplied edge_size with +** origin (mpi_rank, 0, ... , 0) in the target data set. +** +** Further, the buffer is presumed to be the result of reading +** or writing a checker board selection of an m (1 <= m < +** rank) dimensional slice through this processes slice +** of the target data set. Also, this slice must be parallel +** to the fastest changing indicies. +** +** It is further presumed that the buffer was zeroed before +** the read/write, and that the full target data set (i.e. +** the buffer/data set for all processes) was initialized +** with the natural numbers listed in order from the origin +** along the fastest changing axis. +** +** Thus for a 20x10x10 dataset, the value stored in location +** (x, y, z) (assuming that z is the fastest changing index +** and x the slowest) is assumed to be: +** +** (10 * 10 * x) + (10 * y) + z +** +** Further, supposing that this is process 10, this process's +** slice of the dataset would be a 10 x 10 2-cube with origin +** (10, 0, 0) in the data set, and would be initialize (prior +** to the checkerboard selection) as follows: +** +** 1000, 1001, 1002, ... 1008, 1009 +** 1010, 1011, 1012, ... 1018, 1019 +** . . . . . +** . . . . . +** . . . . . +** 1090, 1091, 1092, ... 1098, 1099 +** +** In the case of a read from the processors slice of another +** data set of different rank, the values expected will have +** to be adjusted accordingly. This is done via the +** first_expected_val parameter. +** +** Finally, the function presumes that the first element +** of the buffer resides either at the origin of either +** a selected or an unselected checker. (Translation: +** if partial checkers appear in the buffer, they will +** intersect the edges of the n-cube oposite the origin.) +** +****************************************************************/ + +#define CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__VERIFY_DATA__DEBUG 0 + +static hbool_t +checker_board_hyperslab_dr_pio_test__verify_data(uint32_t * buf_ptr, + const int mpi_rank, + const int rank, + const int edge_size, + const int checker_edge_size, + uint32_t first_expected_val, + hbool_t buf_starts_in_checker) +{ +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__VERIFY_DATA__DEBUG + const char * fcnName = + "checker_board_hyperslab_dr_pio_test__verify_data():"; +#endif + hbool_t good_data = TRUE; + hbool_t in_checker; + hbool_t start_in_checker[5]; + uint32_t expected_value; + uint32_t * val_ptr; + int i, j, k, l, m; /* to track position in n-cube */ + int v, w, x, y, z; /* to track position in checker */ + const int test_max_rank = 5; /* code changes needed if this is increased */ + + HDassert( buf_ptr != NULL ); + HDassert( 0 < rank ); + HDassert( rank <= test_max_rank ); + HDassert( edge_size >= 6 ); + HDassert( 0 < checker_edge_size ); + HDassert( checker_edge_size <= edge_size ); + HDassert( test_max_rank <= PAR_SS_DR_MAX_RANK ); + +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__VERIFY_DATA__DEBUG + HDfprintf(stdout, "%s mpi_rank = %d.\n", fcnName, mpi_rank); + HDfprintf(stdout, "%s rank = %d.\n", fcnName, rank); + HDfprintf(stdout, "%s edge_size = %d.\n", fcnName, edge_size); + HDfprintf(stdout, "%s checker_edge_size = %d.\n", fcnName, checker_edge_size); + HDfprintf(stdout, "%s first_expected_val = %d.\n", fcnName, (int)first_expected_val); + HDfprintf(stdout, "%s starts_in_checker = %d.\n", fcnName, (int)buf_starts_in_checker); +#endif + + val_ptr = buf_ptr; + expected_value = first_expected_val; + + i = 0; + v = 0; + start_in_checker[0] = buf_starts_in_checker; + do + { + if ( v >= checker_edge_size ) { + + start_in_checker[0] = ! start_in_checker[0]; + v = 0; + } + + j = 0; + w = 0; + start_in_checker[1] = start_in_checker[0]; + do + { + if ( w >= checker_edge_size ) { + + start_in_checker[1] = ! start_in_checker[1]; + w = 0; + } + + k = 0; + x = 0; + start_in_checker[2] = start_in_checker[1]; + do + { + if ( x >= checker_edge_size ) { + + start_in_checker[2] = ! start_in_checker[2]; + x = 0; + } + + l = 0; + y = 0; + start_in_checker[3] = start_in_checker[2]; + do + { + if ( y >= checker_edge_size ) { + + start_in_checker[3] = ! start_in_checker[3]; + y = 0; + } + + m = 0; + z = 0; +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__VERIFY_DATA__DEBUG + HDfprintf(stdout, "%d, %d, %d, %d, %d:", i, j, k, l, m); +#endif + in_checker = start_in_checker[3]; + do + { +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__VERIFY_DATA__DEBUG + HDfprintf(stdout, " %d", (int)(*val_ptr)); +#endif + if ( z >= checker_edge_size ) { + + in_checker = ! in_checker; + z = 0; + } + + if ( in_checker ) { + + if ( *val_ptr != expected_value ) { + + good_data = FALSE; + } + + /* zero out buffer for re-use */ + *val_ptr = 0; + + } else if ( *val_ptr != 0 ) { + + good_data = FALSE; + + /* zero out buffer for re-use */ + *val_ptr = 0; + + } + + val_ptr++; + expected_value++; + m++; + z++; + + } while ( ( rank >= (test_max_rank - 4) ) && + ( m < edge_size ) ); +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__VERIFY_DATA__DEBUG + HDfprintf(stdout, "\n"); +#endif + l++; + y++; + } while ( ( rank >= (test_max_rank - 3) ) && + ( l < edge_size ) ); + k++; + x++; + } while ( ( rank >= (test_max_rank - 2) ) && + ( k < edge_size ) ); + j++; + w++; + } while ( ( rank >= (test_max_rank - 1) ) && + ( j < edge_size ) ); + i++; + v++; + } while ( ( rank >= test_max_rank ) && + ( i < edge_size ) ); + + return(good_data); + +} /* checker_board_hyperslab_dr_pio_test__verify_data() */ + + +/*------------------------------------------------------------------------- + * Function: checker_board_hyperslab_dr_pio_test__run_test() + * + * Purpose: Test I/O to/from checkerboard selections of hyperslabs of + * different rank in the parallel. + * + * Return: void + * + * Programmer: JRM -- 10/10/09 + * + * Modifications: + * + *------------------------------------------------------------------------- + */ + +#define PAR_SS_DR_MAX_RANK 5 +#define CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG 0 + +void +checker_board_hyperslab_dr_pio_test__run_test(const int test_num, + const int edge_size, + const int checker_edge_size, + const int chunk_edge_size, + const int small_rank, + const int large_rank, + const hbool_t use_collective_io, + const hid_t dset_type) +{ + const char *fcnName = "checker_board_hyperslab_dr_pio_test__run_test()"; + const char *filename; + hbool_t use_gpfs = FALSE; /* Use GPFS hints */ + hbool_t data_ok = FALSE; + hbool_t mis_match = FALSE; + int i, j, k, l, m, n; + int mrc; + int start_index; + int stop_index; + int small_ds_offset; + int large_ds_offset; + const int test_max_rank = 5; /* must update code if this changes */ + uint32_t expected_value; + uint32_t * small_ds_buf_0 = NULL; + uint32_t * small_ds_buf_1 = NULL; + uint32_t * small_ds_buf_2 = NULL; + uint32_t * small_ds_slice_buf = NULL; + uint32_t * large_ds_buf_0 = NULL; + uint32_t * large_ds_buf_1 = NULL; + uint32_t * large_ds_buf_2 = NULL; + uint32_t * large_ds_slice_buf = NULL; + uint32_t * ptr_0; + uint32_t * ptr_1; + uint32_t * ptr_2; + int mpi_rank; + int mpi_size; + MPI_Comm mpi_comm = MPI_COMM_NULL; + MPI_Info mpi_info = MPI_INFO_NULL; + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist = H5P_DEFAULT; + hid_t full_mem_small_ds_sid; + hid_t full_file_small_ds_sid; + hid_t mem_small_ds_sid; + hid_t file_small_ds_sid_0; + hid_t file_small_ds_sid_1; + hid_t small_ds_slice_sid; + hid_t full_mem_large_ds_sid; + hid_t full_file_large_ds_sid; + hid_t mem_large_ds_sid; + hid_t file_large_ds_sid_0; + hid_t file_large_ds_sid_1; + hid_t file_large_ds_process_slice_sid; + hid_t mem_large_ds_process_slice_sid; + hid_t large_ds_slice_sid; + hid_t small_ds_dcpl_id = H5P_DEFAULT; + hid_t large_ds_dcpl_id = H5P_DEFAULT; + hid_t small_dataset; /* Dataset ID */ + hid_t large_dataset; /* Dataset ID */ + size_t small_ds_size = 1; + size_t small_ds_slice_size = 1; + size_t large_ds_size = 1; + size_t large_ds_slice_size = 1; + hsize_t dims[PAR_SS_DR_MAX_RANK]; + hsize_t chunk_dims[PAR_SS_DR_MAX_RANK]; + hsize_t start[PAR_SS_DR_MAX_RANK]; + hsize_t stride[PAR_SS_DR_MAX_RANK]; + hsize_t count[PAR_SS_DR_MAX_RANK]; + hsize_t block[PAR_SS_DR_MAX_RANK]; + hsize_t sel_start[PAR_SS_DR_MAX_RANK]; + hsize_t * start_ptr = NULL; + hsize_t * stride_ptr = NULL; + hsize_t * count_ptr = NULL; + hsize_t * block_ptr = NULL; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + HDassert( edge_size >= 6 ); + HDassert( edge_size >= chunk_edge_size ); + HDassert( ( chunk_edge_size == 0 ) || ( chunk_edge_size >= 3 ) ); + HDassert( 1 < small_rank ); + HDassert( small_rank < large_rank ); + HDassert( large_rank <= test_max_rank ); + HDassert( test_max_rank <= PAR_SS_DR_MAX_RANK ); + + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); + + HDassert( mpi_size >= 1 ); + + mpi_comm = MPI_COMM_WORLD; + mpi_info = MPI_INFO_NULL; + + for ( i = 0; i < small_rank - 1; i++ ) + { + small_ds_size *= (size_t)edge_size; + small_ds_slice_size *= (size_t)edge_size; + } + small_ds_size *= (size_t)(mpi_size + 1); + + small_ds_offset = PAR_SS_DR_MAX_RANK - small_rank; + + HDassert( 0 < small_ds_offset ); + HDassert( small_ds_offset < PAR_SS_DR_MAX_RANK ); + + + for ( i = 0; i < large_rank - 1; i++ ) { + + large_ds_size *= (size_t)edge_size; + large_ds_slice_size *= (size_t)edge_size; + } + large_ds_size *= (size_t)(mpi_size + 1); + + large_ds_offset = PAR_SS_DR_MAX_RANK - large_rank; + + HDassert( 0 <= large_ds_offset ); + HDassert( large_ds_offset < PAR_SS_DR_MAX_RANK ); + + + /* set up the start, stride, count, and block pointers */ + start_ptr = &(start[PAR_SS_DR_MAX_RANK - large_rank]); + stride_ptr = &(stride[PAR_SS_DR_MAX_RANK - large_rank]); + count_ptr = &(count[PAR_SS_DR_MAX_RANK - large_rank]); + block_ptr = &(block[PAR_SS_DR_MAX_RANK - large_rank]); + + + /* Allocate buffers */ + small_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size); + VRFY((small_ds_buf_0 != NULL), "malloc of small_ds_buf_0 succeeded"); + + small_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size); + VRFY((small_ds_buf_1 != NULL), "malloc of small_ds_buf_1 succeeded"); + + small_ds_buf_2 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size); + VRFY((small_ds_buf_2 != NULL), "malloc of small_ds_buf_2 succeeded"); + + small_ds_slice_buf = + (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_slice_size); + VRFY((small_ds_slice_buf != NULL), "malloc of small_ds_slice_buf succeeded"); + + large_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size); + VRFY((large_ds_buf_0 != NULL), "malloc of large_ds_buf_0 succeeded"); + + large_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size); + VRFY((large_ds_buf_1 != NULL), "malloc of large_ds_buf_1 succeeded"); + + large_ds_buf_2 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size); + VRFY((large_ds_buf_2 != NULL), "malloc of large_ds_buf_2 succeeded"); + + large_ds_slice_buf = + (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_slice_size); + VRFY((large_ds_slice_buf != NULL), "malloc of large_ds_slice_buf succeeded"); + + /* initialize the buffers */ + + ptr_0 = small_ds_buf_0; + ptr_1 = small_ds_buf_1; + ptr_2 = small_ds_buf_2; + + for ( i = 0; i < (int)small_ds_size; i++ ) { + + *ptr_0 = (uint32_t)i; + *ptr_1 = 0; + *ptr_2 = 0; + + ptr_0++; + ptr_1++; + ptr_2++; + } + + ptr_0 = small_ds_slice_buf; + + for ( i = 0; i < (int)small_ds_slice_size; i++ ) { + + *ptr_0 = (uint32_t)i; + ptr_0++; + } + + ptr_0 = large_ds_buf_0; + ptr_1 = large_ds_buf_1; + ptr_2 = large_ds_buf_2; + + for ( i = 0; i < (int)large_ds_size; i++ ) { + + *ptr_0 = (uint32_t)i; + *ptr_1 = 0; + *ptr_2 = 0; + + ptr_0++; + ptr_1++; + ptr_2++; + } + + ptr_0 = large_ds_slice_buf; + + for ( i = 0; i < (int)large_ds_slice_size; i++ ) { + + *ptr_0 = (uint32_t)0; + ptr_0++; + } + + filename = (const char *)GetTestParameters(); + HDassert( filename != NULL ); + +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + if ( MAINPROCESS ) { + + HDfprintf(stdout, "%s:%d: test num = %d.\n", fcnName, mpi_rank, test_num); + HDfprintf(stdout, "%s:%d: mpi_size = %d.\n", fcnName, mpi_rank, mpi_size); + HDfprintf(stdout, + "%s:%d: small/large rank = %d/%d, use_collective_io = %d.\n", + fcnName, mpi_rank, small_rank, large_rank, (int)use_collective_io); + HDfprintf(stdout, "%s:%d: edge_size = %d, chunk_edge_size = %d.\n", + fcnName, mpi_rank, edge_size, chunk_edge_size); + HDfprintf(stdout, "%s:%d: checker_edge_size = %d.\n", + fcnName, mpi_rank, checker_edge_size); + HDfprintf(stdout, "%s:%d: small_ds_size = %d, large_ds_size = %d.\n", + fcnName, mpi_rank, (int)small_ds_size, (int)large_ds_size); + HDfprintf(stdout, "%s:%d: filename = %s.\n", fcnName, mpi_rank, filename); + } +#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG */ + + /* ---------------------------------------- + * CREATE AN HDF5 FILE WITH PARALLEL ACCESS + * ---------------------------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(mpi_comm, mpi_info, facc_type, use_gpfs); + VRFY((acc_tpl >= 0), "create_faccess_plist() succeeded"); + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + MESG("File opened."); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded"); + + + /* setup dims: */ + dims[0] = (int)(mpi_size + 1); + dims[1] = dims[2] = dims[3] = dims[4] = edge_size; + + + /* Create small ds dataspaces */ + full_mem_small_ds_sid = H5Screate_simple(small_rank, dims, NULL); + VRFY((full_mem_small_ds_sid != 0), + "H5Screate_simple() full_mem_small_ds_sid succeeded"); + + full_file_small_ds_sid = H5Screate_simple(small_rank, dims, NULL); + VRFY((full_file_small_ds_sid != 0), + "H5Screate_simple() full_file_small_ds_sid succeeded"); + + mem_small_ds_sid = H5Screate_simple(small_rank, dims, NULL); + VRFY((mem_small_ds_sid != 0), + "H5Screate_simple() mem_small_ds_sid succeeded"); + + file_small_ds_sid_0 = H5Screate_simple(small_rank, dims, NULL); + VRFY((file_small_ds_sid_0 != 0), + "H5Screate_simple() file_small_ds_sid_0 succeeded"); + + file_small_ds_sid_1 = H5Screate_simple(small_rank, dims, NULL); + VRFY((file_small_ds_sid_1 != 0), + "H5Screate_simple() file_small_ds_sid_1 succeeded"); + + small_ds_slice_sid = H5Screate_simple(small_rank - 1, &(dims[1]), NULL); + VRFY((small_ds_slice_sid != 0), + "H5Screate_simple() small_ds_slice_sid succeeded"); + + + /* Create large ds dataspaces */ + full_mem_large_ds_sid = H5Screate_simple(large_rank, dims, NULL); + VRFY((full_mem_large_ds_sid != 0), + "H5Screate_simple() full_mem_large_ds_sid succeeded"); + + full_file_large_ds_sid = H5Screate_simple(large_rank, dims, NULL); + VRFY((full_file_large_ds_sid != FAIL), + "H5Screate_simple() full_file_large_ds_sid succeeded"); + + mem_large_ds_sid = H5Screate_simple(large_rank, dims, NULL); + VRFY((mem_large_ds_sid != FAIL), + "H5Screate_simple() mem_large_ds_sid succeeded"); + + file_large_ds_sid_0 = H5Screate_simple(large_rank, dims, NULL); + VRFY((file_large_ds_sid_0 != FAIL), + "H5Screate_simple() file_large_ds_sid_0 succeeded"); + + file_large_ds_sid_1 = H5Screate_simple(large_rank, dims, NULL); + VRFY((file_large_ds_sid_1 != FAIL), + "H5Screate_simple() file_large_ds_sid_1 succeeded"); + + mem_large_ds_process_slice_sid = H5Screate_simple(large_rank, dims, NULL); + VRFY((mem_large_ds_process_slice_sid != FAIL), + "H5Screate_simple() mem_large_ds_process_slice_sid succeeded"); + + file_large_ds_process_slice_sid = H5Screate_simple(large_rank, dims, NULL); + VRFY((file_large_ds_process_slice_sid != FAIL), + "H5Screate_simple() file_large_ds_process_slice_sid succeeded"); + + + large_ds_slice_sid = H5Screate_simple(large_rank - 1, &(dims[1]), NULL); + VRFY((large_ds_slice_sid != 0), + "H5Screate_simple() large_ds_slice_sid succeeded"); + + + /* Select the entire extent of the full small ds, and ds slice dataspaces */ + ret = H5Sselect_all(full_mem_small_ds_sid); + VRFY((ret != FAIL), "H5Sselect_all(full_mem_small_ds_sid) succeeded"); + + ret = H5Sselect_all(full_file_small_ds_sid); + VRFY((ret != FAIL), "H5Sselect_all(full_file_small_ds_sid) succeeded"); + + ret = H5Sselect_all(small_ds_slice_sid); + VRFY((ret != FAIL), "H5Sselect_all(small_ds_slice_sid) succeeded"); + + + /* Select the entire extent of the full large ds, and ds slice dataspaces */ + ret = H5Sselect_all(full_mem_large_ds_sid); + VRFY((ret != FAIL), "H5Sselect_all(full_mem_large_ds_sid) succeeded"); + + ret = H5Sselect_all(full_file_large_ds_sid); + VRFY((ret != FAIL), "H5Sselect_all(full_file_large_ds_sid) succeeded"); + + ret = H5Sselect_all(large_ds_slice_sid); + VRFY((ret != FAIL), "H5Sselect_all(large_ds_slice_sid) succeeded"); + + + /* if chunk edge size is greater than zero, set up the small and + * large data set creation property lists to specify chunked + * datasets. + */ + if ( chunk_edge_size > 0 ) { + + chunk_dims[0] = mpi_size + 1; + chunk_dims[1] = chunk_dims[2] = + chunk_dims[3] = chunk_dims[4] = chunk_edge_size; + + small_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + VRFY((ret != FAIL), "H5Pcreate() small_ds_dcpl_id succeeded"); + + ret = H5Pset_layout(small_ds_dcpl_id, H5D_CHUNKED); + VRFY((ret != FAIL), "H5Pset_layout() small_ds_dcpl_id succeeded"); + + ret = H5Pset_chunk(small_ds_dcpl_id, small_rank, chunk_dims); + VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded"); + + + large_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + VRFY((ret != FAIL), "H5Pcreate() large_ds_dcpl_id succeeded"); + + ret = H5Pset_layout(large_ds_dcpl_id, H5D_CHUNKED); + VRFY((ret != FAIL), "H5Pset_layout() large_ds_dcpl_id succeeded"); + + ret = H5Pset_chunk(large_ds_dcpl_id, large_rank, chunk_dims); + VRFY((ret != FAIL), "H5Pset_chunk() large_ds_dcpl_id succeeded"); + } + + /* create the small dataset */ + small_dataset = H5Dcreate2(fid, "small_dataset", dset_type, + file_small_ds_sid_0, H5P_DEFAULT, + small_ds_dcpl_id, H5P_DEFAULT); + VRFY((ret != FAIL), "H5Dcreate2() small_dataset succeeded"); + + /* create the large dataset */ + large_dataset = H5Dcreate2(fid, "large_dataset", dset_type, + file_large_ds_sid_0, H5P_DEFAULT, + large_ds_dcpl_id, H5P_DEFAULT); + VRFY((ret != FAIL), "H5Dcreate2() large_dataset succeeded"); + + + + /* setup xfer property list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); + + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + if ( ! use_collective_io ) { + + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, + H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0), "H5Pset_dxpl_mpio_collective_opt() suceeded"); + } + + /* setup selection to write initial data to the small and large data sets */ + start[0] = mpi_rank; + stride[0] = 2 * (mpi_size + 1); + count[0] = 1; + block[0] = 1; + + for ( i = 1; i < large_rank; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + block[i] = edge_size; + } + + /* setup selections for writing initial data to the small data set */ + ret = H5Sselect_hyperslab(mem_small_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded"); + + ret = H5Sselect_hyperslab(file_small_ds_sid_0, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) suceeded"); + + if ( MAINPROCESS ) { /* add an additional slice to the selections */ + + start[0] = mpi_size; + + ret = H5Sselect_hyperslab(mem_small_ds_sid, + H5S_SELECT_OR, + start, + stride, + count, + block); + VRFY((ret>= 0), "H5Sselect_hyperslab(mem_small_ds_sid, or) suceeded"); + + ret = H5Sselect_hyperslab(file_small_ds_sid_0, + H5S_SELECT_OR, + start, + stride, + count, + block); + VRFY((ret>= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, or) suceeded"); + } + + + /* write the initial value of the small data set to file */ + ret = H5Dwrite(small_dataset, dset_type, mem_small_ds_sid, file_small_ds_sid_0, + xfer_plist, small_ds_buf_0); + VRFY((ret >= 0), "H5Dwrite() small_dataset initial write succeeded"); + + + /* sync with the other processes before checking data */ + mrc = MPI_Barrier(MPI_COMM_WORLD); + VRFY((mrc==MPI_SUCCESS), "Sync after small dataset writes"); + + + /* read the small data set back to verify that it contains the + * expected data. Note that each process reads in the entire + * data set and verifies it. + */ + ret = H5Dread(small_dataset, + H5T_NATIVE_UINT32, + full_mem_small_ds_sid, + full_file_small_ds_sid, + xfer_plist, + small_ds_buf_1); + VRFY((ret >= 0), "H5Dread() small_dataset initial read succeeded"); + + + /* verify that the correct data was written to the small data set */ + expected_value = 0; + mis_match = FALSE; + ptr_1 = small_ds_buf_1; + + i = 0; + for ( i = 0; i < (int)small_ds_size; i++ ) { + + if ( *ptr_1 != expected_value ) { + + mis_match = TRUE; + } + ptr_1++; + expected_value++; + } + VRFY( (mis_match == FALSE), "small ds init data good."); + + + + /* setup selections for writing initial data to the large data set */ + + start[0] = mpi_rank; + + ret = H5Sselect_hyperslab(mem_large_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, set) suceeded"); + + ret = H5Sselect_hyperslab(file_large_ds_sid_0, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, set) suceeded"); + + /* In passing, setup the process slice data spaces as well */ + + ret = H5Sselect_hyperslab(mem_large_ds_process_slice_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), + "H5Sselect_hyperslab(mem_large_ds_process_slice_sid, set) suceeded"); + + ret = H5Sselect_hyperslab(file_large_ds_process_slice_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), + "H5Sselect_hyperslab(file_large_ds_process_slice_sid, set) suceeded"); + + if ( MAINPROCESS ) { /* add an additional slice to the selections */ + + start[0] = mpi_size; + + ret = H5Sselect_hyperslab(mem_large_ds_sid, + H5S_SELECT_OR, + start, + stride, + count, + block); + VRFY((ret>= 0), "H5Sselect_hyperslab(mem_large_ds_sid, or) suceeded"); + + ret = H5Sselect_hyperslab(file_large_ds_sid_0, + H5S_SELECT_OR, + start, + stride, + count, + block); + VRFY((ret>= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, or) suceeded"); + } + + + /* write the initial value of the large data set to file */ + ret = H5Dwrite(large_dataset, dset_type, mem_large_ds_sid, file_large_ds_sid_0, + xfer_plist, large_ds_buf_0); + if ( ret < 0 ) H5Eprint(H5E_DEFAULT, stderr); + VRFY((ret >= 0), "H5Dwrite() large_dataset initial write succeeded"); + + + /* sync with the other processes before checking data */ + mrc = MPI_Barrier(MPI_COMM_WORLD); + VRFY((mrc==MPI_SUCCESS), "Sync after large dataset writes"); + + + /* read the small data set back to verify that it contains the + * expected data. Note that each process reads in the entire + * data set. + */ + ret = H5Dread(large_dataset, + H5T_NATIVE_UINT32, + full_mem_large_ds_sid, + full_file_large_ds_sid, + xfer_plist, + large_ds_buf_1); + VRFY((ret >= 0), "H5Dread() large_dataset initial read succeeded"); + + + /* verify that the correct data was written to the small data set */ + expected_value = 0; + mis_match = FALSE; + ptr_1 = large_ds_buf_1; + + i = 0; + for ( i = 0; i < (int)large_ds_size; i++ ) { + + if ( *ptr_1 != expected_value ) { + + mis_match = TRUE; + } + ptr_1++; + expected_value++; + } + VRFY( (mis_match == FALSE), "large ds init data good."); + + /***********************************/ + /***** INITIALIZATION COMPLETE *****/ + /***********************************/ + + /* first, verify that we can read from disk correctly using selections + * of different rank that H5S_select_shape_same() views as being of the + * same shape. + * + * Start by reading a (small_rank - 1)-D slice from this processes slice + * of the on disk large data set, and verifying that the data read is + * correct. Verify that H5S_select_shape_same() returns true on the + * memory and file selections. + * + * The first step is to set up the needed checker board selection in the + * in memory small small cube + */ + + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + sel_start[small_ds_offset] = mpi_rank; + + checker_board_hyperslab_dr_pio_test__select_checker_board(mpi_rank, + small_ds_slice_sid, + small_rank - 1, + edge_size, + checker_edge_size, + small_rank - 1, + sel_start); + + /* zero out the buffer we will be reading into */ + + ptr_0 = small_ds_slice_buf; + + for ( i = 0; i < (int)small_ds_slice_size; i++ ) { + + *ptr_0 = (uint32_t)0; + ptr_0++; + } + +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, "%s:%d: initial small_ds_slice_buf = ", + fcnName, mpi_rank); + ptr_0 = small_ds_slice_buf; + for ( i = 0; i < (int)small_ds_slice_size; i++ ) { + HDfprintf(stdout, "%d ", (int)(*ptr_0)); + ptr_0++; + } + HDfprintf(stdout, "\n"); +#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG */ + + /* set up start, stride, count, and block -- note that we will + * change start[] so as to read slices of the large cube. + */ + for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) { + + block[i] = 1; + + } else { + + block[i] = edge_size; + } + } + +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, + "%s:%d: reading slice from big ds on disk into small ds slice.\n", + fcnName, mpi_rank); +#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG */ + /* in serial versions of this test, we loop through all the dimensions + * of the large data set. However, in the parallel version, each + * process only works with that slice of the large cube indicated + * by its rank -- hence we set the most slowly changing index to + * mpi_rank, and don't itterate over it. + */ + + if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) { + + i = mpi_rank; + + } else { + + i = 0; + } + + /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to + * loop over it -- either we are setting i to mpi_rank, or + * we are setting it to zero. It will not change during the + * test. + */ + + if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) { + + j = mpi_rank; + + } else { + + j = 0; + } + + do { + if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) { + + k = mpi_rank; + + } else { + + k = 0; + } + + do { + /* since small rank >= 2 and large_rank > small_rank, we + * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5 + * (baring major re-orgaization), this gives us: + * + * (PAR_SS_DR_MAX_RANK - large_rank) <= 2 + * + * so no need to repeat the test in the outer loops -- + * just set l = 0. + */ + + l = 0; + do { + /* we know that small_rank - 1 >= 1 and that + * large_rank > small_rank by the assertions at the head + * of this function. Thus no need for another inner loop. + */ + start[0] = i; + start[1] = j; + start[2] = k; + start[3] = l; + start[4] = 0; + + HDassert( ( start[0] == 0 ) || ( 0 < small_ds_offset + 1 ) ); + HDassert( ( start[1] == 0 ) || ( 1 < small_ds_offset + 1 ) ); + HDassert( ( start[2] == 0 ) || ( 2 < small_ds_offset + 1 ) ); + HDassert( ( start[3] == 0 ) || ( 3 < small_ds_offset + 1 ) ); + HDassert( ( start[4] == 0 ) || ( 4 < small_ds_offset + 1 ) ); + + checker_board_hyperslab_dr_pio_test__select_checker_board + ( + mpi_rank, + file_large_ds_sid_0, + large_rank, + edge_size, + checker_edge_size, + small_rank - 1, + start + ); + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(small_ds_slice_sid, + file_large_ds_sid_0); + VRFY((check == TRUE), "H5S_select_shape_same_test passed"); + + + /* Read selection from disk */ +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, + mpi_rank, start[0], start[1], start[2], start[3], + start[4]); + HDfprintf(stdout, "%s slice/file extent dims = %d/%d.\n", + fcnName, + H5Sget_simple_extent_ndims(small_ds_slice_sid), + H5Sget_simple_extent_ndims(file_large_ds_sid_0)); +#endif /* CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG */ + + ret = H5Dread(large_dataset, + H5T_NATIVE_UINT32, + small_ds_slice_sid, + file_large_ds_sid_0, + xfer_plist, + small_ds_slice_buf); + VRFY((ret >= 0), "H5Sread() slice from large ds succeeded."); + +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, "%s:%d: H5Dread() returns.\n", + fcnName, mpi_rank); +#endif + + /* verify that expected data is retrieved */ + + expected_value = (uint32_t) + ((i * edge_size * edge_size * edge_size * edge_size) + + (j * edge_size * edge_size * edge_size) + + (k * edge_size * edge_size) + + (l * edge_size)); + + data_ok = checker_board_hyperslab_dr_pio_test__verify_data + ( + small_ds_slice_buf, + mpi_rank, + small_rank - 1, + edge_size, + checker_edge_size, + expected_value, + (hbool_t)TRUE + ); + + VRFY((data_ok == TRUE), + "small slice read from large ds data good."); + l++; + + } while ( ( large_rank > 2 ) && + ( (small_rank - 1) <= 1 ) && + ( l < edge_size ) ); + k++; + } while ( ( large_rank > 3 ) && + ( (small_rank - 1) <= 2 ) && + ( k < edge_size ) ); + j++; + } while ( ( large_rank > 4 ) && + ( (small_rank - 1) <= 3 ) && + ( j < edge_size ) ); + + + /* similarly, read slices of the on disk small data set into slices + * through the in memory large data set, and verify that the correct + * data (and only the correct data) is read. + */ + + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + sel_start[small_ds_offset] = mpi_rank; + + checker_board_hyperslab_dr_pio_test__select_checker_board(mpi_rank, + file_small_ds_sid_0, + small_rank, + edge_size, + checker_edge_size, + small_rank - 1, + sel_start); + +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, + "%s reading slices of on disk small data set into slices of big data set.\n", + fcnName); +#endif + + /* zero out the buffer we will be reading into */ + ptr_0 = large_ds_buf_1; + for ( i = 0; i < (int)large_ds_size; i++ ) { + + *ptr_0 = (uint32_t)0; + ptr_0++; + } + + /* set up start, stride, count, and block -- note that we will + * change start[] so as to read the slice of the small data set + * into different slices of the process slice of the large data + * set. + */ + for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) { + + block[i] = 1; + + } else { + + block[i] = edge_size; + } + } + + + /* in serial versions of this test, we loop through all the dimensions + * of the large data set that don't appear in the small data set. + * + * However, in the parallel version, each process only works with that + * slice of the large (and small) data set indicated by its rank -- hence + * we set the most slowly changing index to mpi_rank, and don't itterate + * over it. + */ + + + if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) { + + i = mpi_rank; + + } else { + + i = 0; + } + + /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to + * loop over it -- either we are setting i to mpi_rank, or + * we are setting it to zero. It will not change during the + * test. + */ + + if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) { + + j = mpi_rank; + + } else { + + j = 0; + } + + do { + if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) { + + k = mpi_rank; + + } else { + + k = 0; + } + + do { + /* since small rank >= 2 and large_rank > small_rank, we + * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5 + * (baring major re-orgaization), this gives us: + * + * (PAR_SS_DR_MAX_RANK - large_rank) <= 2 + * + * so no need to repeat the test in the outer loops -- + * just set l = 0. + */ + + l = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + start[0] = i; + start[1] = j; + start[2] = k; + start[3] = l; + start[4] = 0; + + HDassert( ( start[0] == 0 ) || ( 0 < small_ds_offset + 1 ) ); + HDassert( ( start[1] == 0 ) || ( 1 < small_ds_offset + 1 ) ); + HDassert( ( start[2] == 0 ) || ( 2 < small_ds_offset + 1 ) ); + HDassert( ( start[3] == 0 ) || ( 3 < small_ds_offset + 1 ) ); + HDassert( ( start[4] == 0 ) || ( 4 < small_ds_offset + 1 ) ); + + checker_board_hyperslab_dr_pio_test__select_checker_board + ( + mpi_rank, + mem_large_ds_sid, + large_rank, + edge_size, + checker_edge_size, + small_rank - 1, + start + ); + + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(file_small_ds_sid_0, + mem_large_ds_sid); + VRFY((check == TRUE), "H5S_select_shape_same_test passed"); + + + /* Read selection from disk */ +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", + fcnName, mpi_rank, + start[0], start[1], start[2], start[3], start[4]); + HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", + fcnName, mpi_rank, + H5Sget_simple_extent_ndims(large_ds_slice_sid), + H5Sget_simple_extent_ndims(file_small_ds_sid_0)); +#endif + ret = H5Dread(small_dataset, + H5T_NATIVE_UINT32, + mem_large_ds_sid, + file_small_ds_sid_0, + xfer_plist, + large_ds_buf_1); + VRFY((ret >= 0), "H5Sread() slice from small ds succeeded."); + + /* verify that the expected data and only the + * expected data was read. + */ + data_ok = TRUE; + ptr_1 = large_ds_buf_1; + expected_value = mpi_rank * small_ds_slice_size; + start_index = + (i * edge_size * edge_size * edge_size * edge_size) + + (j * edge_size * edge_size * edge_size) + + (k * edge_size * edge_size) + + (l * edge_size); + stop_index = start_index + (int)small_ds_slice_size - 1; + +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, "%s:%d: expected_value = %d.\n", + fcnName, mpi_rank, expected_value); + HDfprintf(stdout, "%s:%d: start/stop index = %d/%d.\n", + fcnName, mpi_rank, start_index, stop_index); + n = 0; + for ( m = 0; m < large_ds_size; m ++ ) { + HDfprintf(stdout, "%d ", (int)(*ptr_1)); + ptr_1++; + n++; + if ( n >= edge_size ) { + HDfprintf(stdout, "\n"); + n = 0; + } + } + HDfprintf(stdout, "\n"); + fsync(stdout); + ptr_1 = large_ds_buf_1; +#endif + + HDassert( 0 <= start_index ); + HDassert( start_index < stop_index ); + HDassert( stop_index <= (int)large_ds_size ); + + for ( n = 0; n < (int)start_index; n++ ) { + + if ( *ptr_1 != 0 ) { + + data_ok = FALSE; + } + + /* zero out the value for the next pass */ + *ptr_1 = 0; + + *ptr_1++; + } + + VRFY((data_ok == TRUE), + "slice read from small to large ds data good(1)."); + + data_ok = checker_board_hyperslab_dr_pio_test__verify_data + ( + ptr_1, + mpi_rank, + small_rank - 1, + edge_size, + checker_edge_size, + expected_value, + (hbool_t)TRUE + ); + + VRFY((data_ok == TRUE), + "slice read from small to large ds data good(2)."); + + + ptr_1 = large_ds_buf_1 + stop_index + 1; + for ( n = stop_index + 1; n < large_ds_size; n++ ) { + + if ( *ptr_1 != 0 ) { + + data_ok = FALSE; + } + + /* zero out the value for the next pass */ + *ptr_1 = 0; + + *ptr_1++; + } + + VRFY((data_ok == TRUE), + "slice read from small to large ds data good(3)."); + + l++; + + } while ( ( large_rank > 2 ) && + ( (small_rank - 1) <= 1 ) && + ( l < edge_size ) ); + k++; + } while ( ( large_rank > 3 ) && + ( (small_rank - 1) <= 2 ) && + ( k < edge_size ) ); + j++; + } while ( ( large_rank > 4 ) && + ( (small_rank - 1) <= 3 ) && + ( j < edge_size ) ); + + + /* now we go in the opposite direction, verifying that we can write + * from memory to file using selections of different rank that + * H5S_select_shape_same() views as being of the same shape. + * + * Start by writing small_rank - 1 D slices from the in memory large data + * set to the on disk small dataset. After each write, read the slice of + * the small dataset back from disk, and verify that it contains the + * expected data. Verify that H5S_select_shape_same() returns true on + * the memory and file selections. + */ + + start[0] = mpi_rank; + stride[0] = 2 * (mpi_size + 1); + count[0] = 1; + block[0] = 1; + + for ( i = 1; i < large_rank; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + block[i] = edge_size; + } + + ret = H5Sselect_hyperslab(file_small_ds_sid_0, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) suceeded"); + + ret = H5Sselect_hyperslab(mem_small_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded"); + + + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + sel_start[small_ds_offset] = mpi_rank; + + checker_board_hyperslab_dr_pio_test__select_checker_board(mpi_rank, + file_small_ds_sid_1, + small_rank, + edge_size, + checker_edge_size, + small_rank - 1, + sel_start); + + + /* set up start, stride, count, and block -- note that we will + * change start[] so as to read slices of the large cube. + */ + for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) { + + block[i] = 1; + + } else { + + block[i] = edge_size; + } + } + + /* zero out the in memory small ds */ + ptr_1 = small_ds_buf_1; + for ( n = 0; n < (int)small_ds_size; n++ ) { + + *ptr_1 = 0; + ptr_1++; + } + + +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, + "%s writing checker boards selections of slices from big ds to slices of small ds on disk.\n", + fcnName); +#endif + + /* in serial versions of this test, we loop through all the dimensions + * of the large data set that don't appear in the small data set. + * + * However, in the parallel version, each process only works with that + * slice of the large (and small) data set indicated by its rank -- hence + * we set the most slowly changing index to mpi_rank, and don't itterate + * over it. + */ + + + if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) { + + i = mpi_rank; + + } else { + + i = 0; + } + + /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to + * loop over it -- either we are setting i to mpi_rank, or + * we are setting it to zero. It will not change during the + * test. + */ + + if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) { + + j = mpi_rank; + + } else { + + j = 0; + } + + j = 0; + do { + if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) { + + k = mpi_rank; + + } else { + + k = 0; + } + + do { + /* since small rank >= 2 and large_rank > small_rank, we + * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5 + * (baring major re-orgaization), this gives us: + * + * (PAR_SS_DR_MAX_RANK - large_rank) <= 2 + * + * so no need to repeat the test in the outer loops -- + * just set l = 0. + */ + + l = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + /* zero out this rank's slice of the on disk small data set */ + ret = H5Dwrite(small_dataset, + H5T_NATIVE_UINT32, + mem_small_ds_sid, + file_small_ds_sid_0, + xfer_plist, + small_ds_buf_2); + VRFY((ret >= 0), "H5Dwrite() zero slice to small ds succeeded."); + + /* select the portion of the in memory large cube from which we + * are going to write data. + */ + start[0] = i; + start[1] = j; + start[2] = k; + start[3] = l; + start[4] = 0; + + HDassert( ( start[0] == 0 ) || ( 0 < small_ds_offset + 1 ) ); + HDassert( ( start[1] == 0 ) || ( 1 < small_ds_offset + 1 ) ); + HDassert( ( start[2] == 0 ) || ( 2 < small_ds_offset + 1 ) ); + HDassert( ( start[3] == 0 ) || ( 3 < small_ds_offset + 1 ) ); + HDassert( ( start[4] == 0 ) || ( 4 < small_ds_offset + 1 ) ); + + checker_board_hyperslab_dr_pio_test__select_checker_board + ( + mpi_rank, + mem_large_ds_sid, + large_rank, + edge_size, + checker_edge_size, + small_rank - 1, + start + ); + + + /* verify that H5S_select_shape_same() reports the in + * memory checkerboard selection of the slice through the + * large dataset and the checkerboard selection of the process + * slice of the small data set as having the same shape. + */ + check = H5S_select_shape_same_test(file_small_ds_sid_1, + mem_large_ds_sid); + VRFY((check == TRUE), "H5S_select_shape_same_test passed."); + + + /* write the checker board selection of the slice from the in + * memory large data set to the slice of the on disk small + * dataset. + */ +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", + fcnName, mpi_rank, + start[0], start[1], start[2], start[3], start[4]); + HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", + fcnName, mpi_rank, + H5Sget_simple_extent_ndims(mem_large_ds_sid), + H5Sget_simple_extent_ndims(file_small_ds_sid_1)); +#endif + ret = H5Dwrite(small_dataset, + H5T_NATIVE_UINT32, + mem_large_ds_sid, + file_small_ds_sid_1, + xfer_plist, + large_ds_buf_0); + VRFY((ret >= 0), "H5Dwrite() slice to large ds succeeded."); + + + /* read the on disk process slice of the small dataset into memory */ + ret = H5Dread(small_dataset, + H5T_NATIVE_UINT32, + mem_small_ds_sid, + file_small_ds_sid_0, + xfer_plist, + small_ds_buf_1); + VRFY((ret >= 0), "H5Dread() slice from small ds succeeded."); + + + /* verify that expected data is retrieved */ + + mis_match = FALSE; + ptr_1 = small_ds_buf_1; + + expected_value = + (i * edge_size * edge_size * edge_size * edge_size) + + (j * edge_size * edge_size * edge_size) + + (k * edge_size * edge_size) + + (l * edge_size); + + start_index = mpi_rank * small_ds_slice_size; + stop_index = start_index + small_ds_slice_size - 1; + + HDassert( 0 <= start_index ); + HDassert( start_index < stop_index ); + HDassert( stop_index <= (int)small_ds_size ); + + data_ok = TRUE; + + for ( n = 0; n < start_index; n++ ) { + + if ( *(ptr_1 + n) != 0 ) { + + data_ok = FALSE; + *(ptr_1 + n) = 0; + } + } + + data_ok &= checker_board_hyperslab_dr_pio_test__verify_data + ( + ptr_1 + start_index, + mpi_rank, + small_rank - 1, + edge_size, + checker_edge_size, + expected_value, + (hbool_t)TRUE + ); + + + for ( n = stop_index; n < small_ds_size; n++ ) { + + if ( *(ptr_1 + n) != 0 ) { + + data_ok = FALSE; + *(ptr_1 + n) = 0; + } + } + + VRFY((data_ok == TRUE), + "large slice write slice to small slice data good."); + + l++; + + } while ( ( large_rank > 2 ) && + ( (small_rank - 1) <= 1 ) && + ( l < edge_size ) ); + k++; + } while ( ( large_rank > 3 ) && + ( (small_rank - 1) <= 2 ) && + ( k < edge_size ) ); + j++; + } while ( ( large_rank > 4 ) && + ( (small_rank - 1) <= 3 ) && + ( j < edge_size ) ); + + + /* Now write the contents of the process's slice of the in memory + * small data set to slices of the on disk large data set. After + * each write, read the process's slice of the large data set back + * into memory, and verify that it contains the expected data. + * Verify that H5S_select_shape_same() returns true on the memory + * and file selections. + */ + + start[0] = mpi_rank; + stride[0] = 2 * (mpi_size + 1); + count[0] = 1; + block[0] = 1; + + for ( i = 1; i < large_rank; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + block[i] = edge_size; + } + + ret = H5Sselect_hyperslab(file_large_ds_sid_0, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, set) suceeded"); + + ret = H5Sselect_hyperslab(mem_large_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded"); + + /* setup a checkerboard selection of the slice of the in memory small + * data set associated with the process's mpi rank. + */ + + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + sel_start[small_ds_offset] = mpi_rank; + + checker_board_hyperslab_dr_pio_test__select_checker_board(mpi_rank, + mem_small_ds_sid, + small_rank, + edge_size, + checker_edge_size, + small_rank - 1, + sel_start); + + /* set up start, stride, count, and block -- note that we will + * change start[] so as to write checkerboard selections of slices + * of the small data set to slices of the large data set. + */ + for ( i = 0; i < PAR_SS_DR_MAX_RANK; i++ ) { + + start[i] = 0; + stride[i] = 2 * edge_size; + count[i] = 1; + if ( (PAR_SS_DR_MAX_RANK - i) > (small_rank - 1) ) { + + block[i] = 1; + + } else { + + block[i] = edge_size; + } + } + + /* zero out the in memory large ds */ + ptr_1 = large_ds_buf_1; + for ( n = 0; n < (int)large_ds_size; n++ ) { + + *ptr_1 = 0; + ptr_1++; + } + +#if CONTIG_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, + "%s writing process checkerboard selections of slices of small ds to process slices of large ds on disk.\n", + fcnName); +#endif + + if ( PAR_SS_DR_MAX_RANK - large_rank == 0 ) { + + i = mpi_rank; + + } else { + + i = 0; + } + + /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to + * loop over it -- either we are setting i to mpi_rank, or + * we are setting it to zero. It will not change during the + * test. + */ + + if ( PAR_SS_DR_MAX_RANK - large_rank == 1 ) { + + j = mpi_rank; + + } else { + + j = 0; + } + + do { + if ( PAR_SS_DR_MAX_RANK - large_rank == 2 ) { + + k = mpi_rank; + + } else { + + k = 0; + } + + do { + /* since small rank >= 2 and large_rank > small_rank, we + * have large_rank >= 3. Since PAR_SS_DR_MAX_RANK == 5 + * (baring major re-orgaization), this gives us: + * + * (PAR_SS_DR_MAX_RANK - large_rank) <= 2 + * + * so no need to repeat the test in the outer loops -- + * just set l = 0. + */ + + l = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + /* Zero out this processes slice of the on disk large data set. + * Note that this will leave one slice with its original data + * as there is one more slice than processes. + */ + ret = H5Dwrite(large_dataset, + H5T_NATIVE_UINT32, + mem_large_ds_sid, + file_large_ds_sid_0, + xfer_plist, + large_ds_buf_2); + VRFY((ret != FAIL), "H5Dwrite() to zero large ds suceeded"); + + + /* select the portion of the in memory large cube to which we + * are going to write data. + */ + start[0] = i; + start[1] = j; + start[2] = k; + start[3] = l; + start[4] = 0; + + HDassert( ( start[0] == 0 ) || ( 0 < small_ds_offset + 1 ) ); + HDassert( ( start[1] == 0 ) || ( 1 < small_ds_offset + 1 ) ); + HDassert( ( start[2] == 0 ) || ( 2 < small_ds_offset + 1 ) ); + HDassert( ( start[3] == 0 ) || ( 3 < small_ds_offset + 1 ) ); + HDassert( ( start[4] == 0 ) || ( 4 < small_ds_offset + 1 ) ); + + checker_board_hyperslab_dr_pio_test__select_checker_board + ( + mpi_rank, + file_large_ds_sid_1, + large_rank, + edge_size, + checker_edge_size, + small_rank - 1, + start + ); + + + /* verify that H5S_select_shape_same() reports the in + * memory small data set slice selection and the + * on disk slice through the large data set selection + * as having the same shape. + */ + check = H5S_select_shape_same_test(mem_small_ds_sid, + file_large_ds_sid_1); + VRFY((check == TRUE), "H5S_select_shape_same_test passed"); + + + /* write the small data set slice from memory to the + * target slice of the disk data set + */ +#if CHECKER_BOARD_HYPERSLAB_DR_PIO_TEST__RUN_TEST__DEBUG + HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", + fcnName, mpi_rank, + start[0], start[1], start[2], start[3], start[4]); + HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", + fcnName, mpi_rank, + H5Sget_simple_extent_ndims(mem_small_ds_sid), + H5Sget_simple_extent_ndims(file_large_ds_sid_1)); +#endif + ret = H5Dwrite(large_dataset, + H5T_NATIVE_UINT32, + mem_small_ds_sid, + file_large_ds_sid_1, + xfer_plist, + small_ds_buf_0); + VRFY((ret != FAIL), + "H5Dwrite of small ds slice to large ds succeeded"); + + + /* read this processes slice on the on disk large + * data set into memory. + */ + + ret = H5Dread(large_dataset, + H5T_NATIVE_UINT32, + mem_large_ds_sid, + file_large_ds_sid_0, + xfer_plist, + large_ds_buf_1); + VRFY((ret != FAIL), + "H5Dread() of process slice of large ds succeeded"); + + + /* verify that the expected data and only the + * expected data was read. + */ + ptr_1 = large_ds_buf_1; + expected_value = (uint32_t)(mpi_rank) * small_ds_slice_size; + + + start_index = (i * edge_size * edge_size * edge_size * edge_size) + + (j * edge_size * edge_size * edge_size) + + (k * edge_size * edge_size) + + (l * edge_size); + stop_index = start_index + (int)small_ds_slice_size - 1; + + HDassert( 0 <= start_index ); + HDassert( start_index < stop_index ); + HDassert( stop_index < (int)large_ds_size ); + + + mis_match = FALSE; + + data_ok = TRUE; + + for ( n = 0; n < start_index; n++ ) { + + if ( *(ptr_1 + n) != 0 ) { + + data_ok = FALSE; + *(ptr_1 + n) = 0; + } + } + + data_ok &= checker_board_hyperslab_dr_pio_test__verify_data + ( + ptr_1 + start_index, + mpi_rank, + small_rank - 1, + edge_size, + checker_edge_size, + expected_value, + (hbool_t)TRUE + ); + + + for ( n = stop_index; n < small_ds_size; n++ ) { + + if ( *(ptr_1 + n) != 0 ) { + + data_ok = FALSE; + *(ptr_1 + n) = 0; + } + } + + VRFY((data_ok == TRUE), + "small ds cb slice write to large ds slice data good."); + + l++; + + } while ( ( large_rank > 2 ) && + ( (small_rank - 1) <= 1 ) && + ( l < edge_size ) ); + k++; + } while ( ( large_rank > 3 ) && + ( (small_rank - 1) <= 2 ) && + ( k < edge_size ) ); + j++; + } while ( ( large_rank > 4 ) && + ( (small_rank - 1) <= 3 ) && + ( j < edge_size ) ); + + + /* Close dataspaces */ + ret = H5Sclose(full_mem_small_ds_sid); + VRFY((ret != FAIL), "H5Sclose(full_mem_small_ds_sid) succeeded"); + + ret = H5Sclose(full_file_small_ds_sid); + VRFY((ret != FAIL), "H5Sclose(full_file_small_ds_sid) succeeded"); + + ret = H5Sclose(mem_small_ds_sid); + VRFY((ret != FAIL), "H5Sclose(mem_small_ds_sid) succeeded"); + + ret = H5Sclose(file_small_ds_sid_0); + VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid_0) succeeded"); + + ret = H5Sclose(file_small_ds_sid_1); + VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid_1) succeeded"); + + ret = H5Sclose(small_ds_slice_sid); + VRFY((ret != FAIL), "H5Sclose(small_ds_slice_sid) succeeded"); + + ret = H5Sclose(full_mem_large_ds_sid); + VRFY((ret != FAIL), "H5Sclose(full_mem_large_ds_sid) succeeded"); + + ret = H5Sclose(full_file_large_ds_sid); + VRFY((ret != FAIL), "H5Sclose(full_file_large_ds_sid) succeeded"); + + ret = H5Sclose(mem_large_ds_sid); + VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded"); + + ret = H5Sclose(file_large_ds_sid_0); + VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded"); + + ret = H5Sclose(file_large_ds_sid_1); + VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded"); + + ret = H5Sclose(mem_large_ds_process_slice_sid); + VRFY((ret != FAIL), "H5Sclose(mem_large_ds_process_slice_sid) succeeded"); + + ret = H5Sclose(file_large_ds_process_slice_sid); + VRFY((ret != FAIL), "H5Sclose(file_large_ds_process_slice_sid) succeeded"); + + ret = H5Sclose(large_ds_slice_sid); + VRFY((ret != FAIL), "H5Sclose(large_ds_slice_sid) succeeded"); + + + /* Close Datasets */ + ret = H5Dclose(small_dataset); + VRFY((ret != FAIL), "H5Dclose(small_dataset) succeeded"); + + ret = H5Dclose(large_dataset); + VRFY((ret != FAIL), "H5Dclose(large_dataset) succeeded"); + + + /* close the file collectively */ + MESG("about to close file."); + ret = H5Fclose(fid); + VRFY((ret != FAIL), "file close succeeded"); + + /* Free memory buffers */ + if ( small_ds_buf_0 != NULL ) HDfree(small_ds_buf_0); + if ( small_ds_buf_1 != NULL ) HDfree(small_ds_buf_1); + if ( small_ds_buf_2 != NULL ) HDfree(small_ds_buf_2); + if ( small_ds_slice_buf != NULL ) HDfree(small_ds_slice_buf); + + if ( large_ds_buf_0 != NULL ) HDfree(large_ds_buf_0); + if ( large_ds_buf_1 != NULL ) HDfree(large_ds_buf_1); + if ( large_ds_buf_2 != NULL ) HDfree(large_ds_buf_2); + if ( large_ds_slice_buf != NULL ) HDfree(large_ds_slice_buf); + + return; + +} /* contig_hyperslab_dr_pio_test__run_test() */ + + +/*------------------------------------------------------------------------- + * Function: checker_board_hyperslab_dr_pio_test() + * + * Purpose: Test I/O to/from hyperslab selections of different rank in + * the parallel case. + * + * Return: void + * + * Programmer: JRM -- 9/18/09 + * + * Modifications: + * + *------------------------------------------------------------------------- + */ + +void +checker_board_hyperslab_dr_pio_test(void) +{ + const char *fcnName = "checker_board_hyperslab_dr_pio_test()"; + int test_num = 0; + int edge_size = 10; + int checker_edge_size = 3; + int chunk_edge_size = 0; + int small_rank = 3; + int large_rank = 4; + int use_collective_io = 1; + hid_t dset_type = H5T_STD_U32LE; +#if 0 + int DebugWait = 1; + + while (DebugWait) ; +#endif + + for ( large_rank = 3; large_rank <= PAR_SS_DR_MAX_RANK; large_rank++ ) { + + for ( small_rank = 2; small_rank < large_rank; small_rank++ ) { + + for ( use_collective_io = 0; + use_collective_io <= 1; + use_collective_io++ ) { + + chunk_edge_size = 0; + checker_board_hyperslab_dr_pio_test__run_test(test_num, + edge_size, + checker_edge_size, + chunk_edge_size, + small_rank, + large_rank, + (hbool_t)use_collective_io, + dset_type); + test_num++; + + chunk_edge_size = 5; + checker_board_hyperslab_dr_pio_test__run_test(test_num, + edge_size, + checker_edge_size, + chunk_edge_size, + small_rank, + large_rank, + (hbool_t)use_collective_io, + dset_type); + test_num++; + + } + } + } + + return; + +} /* checker_board_hyperslab_dr_pio_test() */ + diff --git a/testpar/t_span_tree.c b/testpar/t_span_tree.c index 667872c..5425377 100644 --- a/testpar/t_span_tree.c +++ b/testpar/t_span_tree.c @@ -934,3 +934,1930 @@ coll_read_test(int chunk_factor) return ; } + +/**************************************************************** +** +** lower_dim_size_comp_test__select_checker_board(): +** +** Given a data space of tgt_rank, and dimensions: +** +** (mpi_size + 1), edge_size, ... , edge_size +** +** edge_size, and a checker_edge_size, select a checker +** board selection of a sel_rank (sel_rank < tgt_rank) +** dimensional slice through the data space parallel to the +** sel_rank fastest changing indicies, with origin (in the +** higher indicies) as indicated by the start array. +** +** Note that this function, is hard coded to presume a +** maximum data space rank of 5. +** +** While this maximum is declared as a constant, increasing +** it will require extensive coding in addition to changing +** the value of the constant. +** +** JRM -- 11/11/09 +** +****************************************************************/ + +#define LDSCT_DS_RANK 5 +#define LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK 0 + +#define LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG 0 + +static void +lower_dim_size_comp_test__select_checker_board( + const int mpi_rank, + const hid_t tgt_sid, + const int tgt_rank, + const hsize_t dims[LDSCT_DS_RANK], + const int checker_edge_size, + const int sel_rank, + hsize_t sel_start[]) +{ +#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG + const char * fcnName = + "lower_dim_size_comp_test__select_checker_board():"; +#endif + hbool_t first_selection = TRUE; + int i, j, k, l, m; + int ds_offset; + int sel_offset; + const int test_max_rank = LDSCT_DS_RANK; /* must update code if */ + /* this changes */ + hsize_t base_count; + hsize_t offset_count; + hsize_t start[LDSCT_DS_RANK]; + hsize_t stride[LDSCT_DS_RANK]; + hsize_t count[LDSCT_DS_RANK]; + hsize_t block[LDSCT_DS_RANK]; + herr_t ret; /* Generic return value */ + +#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, + "%s:%d: dims/checker_edge_size = %d %d %d %d %d / %d\n", + fcnName, mpi_rank, (int)dims[0], (int)dims[1], (int)dims[2], + (int)dims[3], (int)dims[4], checker_edge_size); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */ + + HDassert( 0 < checker_edge_size ); + HDassert( 0 < sel_rank ); + HDassert( sel_rank <= tgt_rank ); + HDassert( tgt_rank <= test_max_rank ); + HDassert( test_max_rank <= LDSCT_DS_RANK ); + + sel_offset = test_max_rank - sel_rank; + HDassert( sel_offset >= 0 ); + + ds_offset = test_max_rank - tgt_rank; + HDassert( ds_offset >= 0 ); + HDassert( ds_offset <= sel_offset ); + + HDassert( (hsize_t)checker_edge_size <= dims[sel_offset] ); + HDassert( dims[sel_offset] == 10 ); + +#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s:%d: sel_rank/sel_offset = %d/%d.\n", + fcnName, mpi_rank, sel_rank, sel_offset); + HDfprintf(stdout, "%s:%d: tgt_rank/ds_offset = %d/%d.\n", + fcnName, mpi_rank, tgt_rank, ds_offset); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */ + + /* First, compute the base count (which assumes start == 0 + * for the associated offset) and offset_count (which + * assumes start == checker_edge_size for the associated + * offset). + * + * Note that the following computation depends on the C99 + * requirement that integer division discard any fraction + * (truncation towards zero) to function correctly. As we + * now require C99, this shouldn't be a problem, but noting + * it may save us some pain if we are ever obliged to support + * pre-C99 compilers again. + */ + + base_count = dims[sel_offset] / (checker_edge_size * 2); + + if ( (dims[sel_rank] % (checker_edge_size * 2)) > 0 ) { + + base_count++; + } + + offset_count = + (hsize_t)((dims[sel_offset] - (hsize_t)checker_edge_size) / + ((hsize_t)(checker_edge_size * 2))); + + if ( ((dims[sel_rank] - (hsize_t)checker_edge_size) % + ((hsize_t)(checker_edge_size * 2))) > 0 ) { + + offset_count++; + } + +#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s:%d: base_count/offset_count = %d/%d.\n", + fcnName, mpi_rank, base_count, offset_count); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */ + + /* Now set up the stride and block arrays, and portions of the start + * and count arrays that will not be altered during the selection of + * the checker board. + */ + i = 0; + while ( i < ds_offset ) { + + /* these values should never be used */ + start[i] = 0; + stride[i] = 0; + count[i] = 0; + block[i] = 0; + + i++; + } + + while ( i < sel_offset ) { + + start[i] = sel_start[i]; + stride[i] = 2 * dims[i]; + count[i] = 1; + block[i] = 1; + + i++; + } + + while ( i < test_max_rank ) { + + stride[i] = (hsize_t)(2 * checker_edge_size); + block[i] = (hsize_t)checker_edge_size; + + i++; + } + + i = 0; + do { + if ( 0 >= sel_offset ) { + + if ( i == 0 ) { + + start[0] = 0; + count[0] = base_count; + + } else { + + start[0] = (hsize_t)checker_edge_size; + count[0] = offset_count; + + } + } + + j = 0; + do { + if ( 1 >= sel_offset ) { + + if ( j == 0 ) { + + start[1] = 0; + count[1] = base_count; + + } else { + + start[1] = (hsize_t)checker_edge_size; + count[1] = offset_count; + + } + } + + k = 0; + do { + if ( 2 >= sel_offset ) { + + if ( k == 0 ) { + + start[2] = 0; + count[2] = base_count; + + } else { + + start[2] = (hsize_t)checker_edge_size; + count[2] = offset_count; + + } + } + + l = 0; + do { + if ( 3 >= sel_offset ) { + + if ( l == 0 ) { + + start[3] = 0; + count[3] = base_count; + + } else { + + start[3] = (hsize_t)checker_edge_size; + count[3] = offset_count; + + } + } + + m = 0; + do { + if ( 4 >= sel_offset ) { + + if ( m == 0 ) { + + start[4] = 0; + count[4] = base_count; + + } else { + + start[4] = (hsize_t)checker_edge_size; + count[4] = offset_count; + + } + } + + if ( ((i + j + k + l + m) % 2) == 0 ) { + +#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG + if ( mpi_rank == + LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + + HDfprintf(stdout, + "%s%d: *** first_selection = %d ***\n", + fcnName, mpi_rank, (int)first_selection); + HDfprintf(stdout, + "%s:%d: i/j/k/l/m = %d/%d/%d/%d/%d\n", + fcnName, mpi_rank, i, j, k, l, m); + HDfprintf(stdout, + "%s:%d: start = %d %d %d %d %d.\n", + fcnName, mpi_rank, + (int)start[0], (int)start[1], + (int)start[2], (int)start[3], + (int)start[4]); + HDfprintf(stdout, + "%s:%d: stride = %d %d %d %d %d.\n", + fcnName, mpi_rank, + (int)stride[0], (int)stride[1], + (int)stride[2], (int)stride[3], + (int)stride[4]); + HDfprintf(stdout, + "%s:%d: count = %d %d %d %d %d.\n", + fcnName, mpi_rank, + (int)count[0], (int)count[1], + (int)count[2], (int)count[3], + (int)count[4]); + HDfprintf(stdout, + "%s:%d: block = %d %d %d %d %d.\n", + fcnName, mpi_rank, + (int)block[0], (int)block[1], + (int)block[2], (int)block[3], + (int)block[4]); + HDfprintf(stdout, + "%s:%d: n-cube extent dims = %d.\n", + fcnName, mpi_rank, + H5Sget_simple_extent_ndims(tgt_sid)); + HDfprintf(stdout, + "%s:%d: selection rank = %d.\n", + fcnName, mpi_rank, sel_rank); + } +#endif + + if ( first_selection ) { + + first_selection = FALSE; + + ret = H5Sselect_hyperslab + ( + tgt_sid, + H5S_SELECT_SET, + &(start[ds_offset]), + &(stride[ds_offset]), + &(count[ds_offset]), + &(block[ds_offset]) + ); + + VRFY((ret != FAIL), "H5Sselect_hyperslab(SET) succeeded"); + + } else { + + ret = H5Sselect_hyperslab + ( + tgt_sid, + H5S_SELECT_OR, + &(start[ds_offset]), + &(stride[ds_offset]), + &(count[ds_offset]), + &(block[ds_offset]) + ); + + VRFY((ret != FAIL), "H5Sselect_hyperslab(OR) succeeded"); + + } + } + + m++; + + } while ( ( m <= 1 ) && + ( 4 >= sel_offset ) ); + + l++; + + } while ( ( l <= 1 ) && + ( 3 >= sel_offset ) ); + + k++; + + } while ( ( k <= 1 ) && + ( 2 >= sel_offset ) ); + + j++; + + } while ( ( j <= 1 ) && + ( 1 >= sel_offset ) ); + + + i++; + + } while ( ( i <= 1 ) && + ( 0 >= sel_offset ) ); + +#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", + fcnName, mpi_rank, (int)H5Sget_select_npoints(tgt_sid)); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */ + + /* Clip the selection back to the data space proper. */ + + for ( i = 0; i < test_max_rank; i++ ) { + + start[i] = 0; + stride[i] = dims[i]; + count[i] = 1; + block[i] = dims[i]; + } + + ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_AND, + start, stride, count, block); + + VRFY((ret != FAIL), "H5Sselect_hyperslab(AND) succeeded"); + +#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", + fcnName, mpi_rank, (int)H5Sget_select_npoints(tgt_sid)); + HDfprintf(stdout, "%s%d: done.\n", fcnName, mpi_rank); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */ + + return; + +} /* lower_dim_size_comp_test__select_checker_board() */ + + +/**************************************************************** +** +** lower_dim_size_comp_test__verify_data(): +** +** Examine the supplied buffer to see if it contains the +** expected data. Return TRUE if it does, and FALSE +** otherwise. +** +** The supplied buffer is presumed to this process's slice +** of the target data set. Each such slice will be an +** n-cube of rank (rank -1) and the supplied edge_size with +** origin (mpi_rank, 0, ... , 0) in the target data set. +** +** Further, the buffer is presumed to be the result of reading +** or writing a checker board selection of an m (1 <= m < +** rank) dimensional slice through this processes slice +** of the target data set. Also, this slice must be parallel +** to the fastest changing indicies. +** +** It is further presumed that the buffer was zeroed before +** the read/write, and that the full target data set (i.e. +** the buffer/data set for all processes) was initialized +** with the natural numbers listed in order from the origin +** along the fastest changing axis. +** +** Thus for a 20x10x10 dataset, the value stored in location +** (x, y, z) (assuming that z is the fastest changing index +** and x the slowest) is assumed to be: +** +** (10 * 10 * x) + (10 * y) + z +** +** Further, supposing that this is process 10, this process's +** slice of the dataset would be a 10 x 10 2-cube with origin +** (10, 0, 0) in the data set, and would be initialize (prior +** to the checkerboard selection) as follows: +** +** 1000, 1001, 1002, ... 1008, 1009 +** 1010, 1011, 1012, ... 1018, 1019 +** . . . . . +** . . . . . +** . . . . . +** 1090, 1091, 1092, ... 1098, 1099 +** +** In the case of a read from the processors slice of another +** data set of different rank, the values expected will have +** to be adjusted accordingly. This is done via the +** first_expected_val parameter. +** +** Finally, the function presumes that the first element +** of the buffer resides either at the origin of either +** a selected or an unselected checker. (Translation: +** if partial checkers appear in the buffer, they will +** intersect the edges of the n-cube oposite the origin.) +** +****************************************************************/ + +#define LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG 0 + +static hbool_t +lower_dim_size_comp_test__verify_data(uint32_t * buf_ptr, +#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG + const int mpi_rank, +#endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */ + const int rank, + const int edge_size, + const int checker_edge_size, + uint32_t first_expected_val, + hbool_t buf_starts_in_checker) +{ +#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG + const char * fcnName = + "lower_dim_size_comp_test__verify_data():"; +#endif + hbool_t good_data = TRUE; + hbool_t in_checker; + hbool_t start_in_checker[5]; + uint32_t expected_value; + uint32_t * val_ptr; + int i, j, k, l, m; /* to track position in n-cube */ + int v, w, x, y, z; /* to track position in checker */ + const int test_max_rank = 5; /* code changes needed if this is increased */ + + HDassert( buf_ptr != NULL ); + HDassert( 0 < rank ); + HDassert( rank <= test_max_rank ); + HDassert( edge_size >= 6 ); + HDassert( 0 < checker_edge_size ); + HDassert( checker_edge_size <= edge_size ); + HDassert( test_max_rank <= LDSCT_DS_RANK ); + +#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s mpi_rank = %d.\n", fcnName, mpi_rank); + HDfprintf(stdout, "%s rank = %d.\n", fcnName, rank); + HDfprintf(stdout, "%s edge_size = %d.\n", fcnName, edge_size); + HDfprintf(stdout, "%s checker_edge_size = %d.\n", + fcnName, checker_edge_size); + HDfprintf(stdout, "%s first_expected_val = %d.\n", + fcnName, (int)first_expected_val); + HDfprintf(stdout, "%s starts_in_checker = %d.\n", + fcnName, (int)buf_starts_in_checker); + } +#endif + + val_ptr = buf_ptr; + expected_value = first_expected_val; + + i = 0; + v = 0; + start_in_checker[0] = buf_starts_in_checker; + do + { + if ( v >= checker_edge_size ) { + + start_in_checker[0] = ! start_in_checker[0]; + v = 0; + } + + j = 0; + w = 0; + start_in_checker[1] = start_in_checker[0]; + do + { + if ( w >= checker_edge_size ) { + + start_in_checker[1] = ! start_in_checker[1]; + w = 0; + } + + k = 0; + x = 0; + start_in_checker[2] = start_in_checker[1]; + do + { + if ( x >= checker_edge_size ) { + + start_in_checker[2] = ! start_in_checker[2]; + x = 0; + } + + l = 0; + y = 0; + start_in_checker[3] = start_in_checker[2]; + do + { + if ( y >= checker_edge_size ) { + + start_in_checker[3] = ! start_in_checker[3]; + y = 0; + } + + m = 0; + z = 0; +#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG + if ( mpi_rank == + LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%d, %d, %d, %d, %d:", i, j, k, l, m); + } +#endif + in_checker = start_in_checker[3]; + do + { +#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG + if ( mpi_rank == + LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, " %d", (int)(*val_ptr)); + } +#endif + if ( z >= checker_edge_size ) { + + in_checker = ! in_checker; + z = 0; + } + + if ( in_checker ) { + + if ( *val_ptr != expected_value ) { + + good_data = FALSE; + } + + /* zero out buffer for re-use */ + *val_ptr = 0; + + } else if ( *val_ptr != 0 ) { + + good_data = FALSE; + + /* zero out buffer for re-use */ + *val_ptr = 0; + + } + + val_ptr++; + expected_value++; + m++; + z++; + + } while ( ( rank >= (test_max_rank - 4) ) && + ( m < edge_size ) ); +#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG + if ( mpi_rank == + LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "\n"); + } +#endif + l++; + y++; + } while ( ( rank >= (test_max_rank - 3) ) && + ( l < edge_size ) ); + k++; + x++; + } while ( ( rank >= (test_max_rank - 2) ) && + ( k < edge_size ) ); + j++; + w++; + } while ( ( rank >= (test_max_rank - 1) ) && + ( j < edge_size ) ); + i++; + v++; + } while ( ( rank >= test_max_rank ) && + ( i < edge_size ) ); + + return(good_data); + +} /* lower_dim_size_comp_test__verify_data() */ + + +/*------------------------------------------------------------------------- + * Function: lower_dim_size_comp_test__run_test() + * + * Purpose: Verify that a bug in the computation of the size of the + * lower dimensions of a data space in H5S_obtain_datatype() + * has been corrected. + * + * Return: void + * + * Programmer: JRM -- 11/11/09 + * + * Modifications: + * + *------------------------------------------------------------------------- + */ + +#define LDSCT_DS_RANK 5 +#define LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG 0 + +void +lower_dim_size_comp_test__run_test(const int chunk_edge_size, + const hbool_t use_collective_io, + const hid_t dset_type) +{ +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + const char *fcnName = "lower_dim_size_comp_test__run_test()"; + int rank; + hsize_t dims[32]; + hsize_t max_dims[32]; +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + const char *filename; + hbool_t use_gpfs = FALSE; /* Use GPFS hints */ + hbool_t data_ok = FALSE; + hbool_t mis_match = FALSE; + int i; + int start_index; + int stop_index; + int mrc; + int mpi_rank; + int mpi_size; + MPI_Comm mpi_comm = MPI_COMM_NULL; + MPI_Info mpi_info = MPI_INFO_NULL; + hid_t fid; /* HDF5 file ID */ + hid_t acc_tpl; /* File access templates */ + hid_t xfer_plist = H5P_DEFAULT; + size_t small_ds_size; + size_t small_ds_slice_size; + size_t large_ds_size; + size_t large_ds_slice_size; + uint32_t expected_value; + uint32_t * small_ds_buf_0 = NULL; + uint32_t * small_ds_buf_1 = NULL; + uint32_t * large_ds_buf_0 = NULL; + uint32_t * large_ds_buf_1 = NULL; + uint32_t * ptr_0; + uint32_t * ptr_1; + hsize_t small_chunk_dims[LDSCT_DS_RANK]; + hsize_t large_chunk_dims[LDSCT_DS_RANK]; + hsize_t small_dims[LDSCT_DS_RANK]; + hsize_t large_dims[LDSCT_DS_RANK]; + hsize_t start[LDSCT_DS_RANK]; + hsize_t stride[LDSCT_DS_RANK]; + hsize_t count[LDSCT_DS_RANK]; + hsize_t block[LDSCT_DS_RANK]; + hsize_t small_sel_start[LDSCT_DS_RANK]; + hsize_t large_sel_start[LDSCT_DS_RANK]; + hid_t full_mem_small_ds_sid; + hid_t full_file_small_ds_sid; + hid_t mem_small_ds_sid; + hid_t file_small_ds_sid; + hid_t full_mem_large_ds_sid; + hid_t full_file_large_ds_sid; + hid_t mem_large_ds_sid; + hid_t file_large_ds_sid; + hid_t small_ds_dcpl_id = H5P_DEFAULT; + hid_t large_ds_dcpl_id = H5P_DEFAULT; + hid_t small_dataset; /* Dataset ID */ + hid_t large_dataset; /* Dataset ID */ + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); + + HDassert( mpi_size >= 1 ); + + mpi_comm = MPI_COMM_WORLD; + mpi_info = MPI_INFO_NULL; + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s:%d: chunk_edge_size = %d.\n", + fcnName, mpi_rank, (int)chunk_edge_size); + HDfprintf(stdout, "%s:%d: use_collective_io = %d.\n", + fcnName, mpi_rank, (int)use_collective_io); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + + + small_ds_size = (size_t)((mpi_size + 1) * 1 * 1 * 10 * 10); + small_ds_slice_size = (size_t) ( 1 * 1 * 10 * 10); + large_ds_size = (size_t)((mpi_size + 1) * 10 * 10 * 10 * 10); + large_ds_slice_size = (size_t) (10 * 10 * 10 * 10); + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s:%d: small ds size / slice size = %d / %d.\n", + fcnName, mpi_rank, + (int)small_ds_size, (int)small_ds_slice_size); + HDfprintf(stdout, "%s:%d: large ds size / slice size = %d / %d.\n", + fcnName, mpi_rank, + (int)large_ds_size, (int)large_ds_slice_size); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + + /* Allocate buffers */ + small_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size); + VRFY((small_ds_buf_0 != NULL), "malloc of small_ds_buf_0 succeeded"); + + small_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size); + VRFY((small_ds_buf_1 != NULL), "malloc of small_ds_buf_1 succeeded"); + + large_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size); + VRFY((large_ds_buf_0 != NULL), "malloc of large_ds_buf_0 succeeded"); + + large_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size); + VRFY((large_ds_buf_1 != NULL), "malloc of large_ds_buf_1 succeeded"); + + + /* initialize the buffers */ + + ptr_0 = small_ds_buf_0; + ptr_1 = small_ds_buf_1; + + for ( i = 0; i < (int)small_ds_size; i++ ) { + + *ptr_0 = (uint32_t)i; + *ptr_1 = 0; + + ptr_0++; + ptr_1++; + } + + ptr_0 = large_ds_buf_0; + ptr_1 = large_ds_buf_1; + + for ( i = 0; i < (int)large_ds_size; i++ ) { + + *ptr_0 = (uint32_t)i; + *ptr_1 = 0; + + ptr_0++; + ptr_1++; + } + + + /* get the file name */ + + filename = (const char *)GetTestParameters(); + HDassert( filename != NULL ); + + + /* ---------------------------------------- + * CREATE AN HDF5 FILE WITH PARALLEL ACCESS + * ---------------------------------------*/ + /* setup file access template */ + acc_tpl = create_faccess_plist(mpi_comm, mpi_info, facc_type, use_gpfs); + VRFY((acc_tpl >= 0), "create_faccess_plist() succeeded"); + + /* create the file collectively */ + fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((fid >= 0), "H5Fcreate succeeded"); + + MESG("File opened."); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded"); + + + /* setup dims: */ + small_dims[0] = (hsize_t)(mpi_size + 1); + small_dims[1] = 1; + small_dims[2] = 1; + small_dims[3] = 10; + small_dims[4] = 10; + + large_dims[0] = (hsize_t)(mpi_size + 1); + large_dims[1] = 10; + large_dims[2] = 10; + large_dims[3] = 10; + large_dims[4] = 10; + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s:%d: small_dims[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)small_dims[0], (int)small_dims[1], + (int)small_dims[2], (int)small_dims[3], (int)small_dims[4]); + HDfprintf(stdout, "%s:%d: large_dims[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)large_dims[0], (int)large_dims[1], + (int)large_dims[2], (int)large_dims[3], (int)large_dims[4]); + } +#endif + + /* create data spaces */ + + full_mem_small_ds_sid = H5Screate_simple(5, small_dims, NULL); + VRFY((full_mem_small_ds_sid != 0), + "H5Screate_simple() full_mem_small_ds_sid succeeded"); + + full_file_small_ds_sid = H5Screate_simple(5, small_dims, NULL); + VRFY((full_file_small_ds_sid != 0), + "H5Screate_simple() full_file_small_ds_sid succeeded"); + + mem_small_ds_sid = H5Screate_simple(5, small_dims, NULL); + VRFY((mem_small_ds_sid != 0), + "H5Screate_simple() mem_small_ds_sid succeeded"); + + file_small_ds_sid = H5Screate_simple(5, small_dims, NULL); + VRFY((file_small_ds_sid != 0), + "H5Screate_simple() file_small_ds_sid succeeded"); + + + full_mem_large_ds_sid = H5Screate_simple(5, large_dims, NULL); + VRFY((full_mem_large_ds_sid != 0), + "H5Screate_simple() full_mem_large_ds_sid succeeded"); + + full_file_large_ds_sid = H5Screate_simple(5, large_dims, NULL); + VRFY((full_file_large_ds_sid != 0), + "H5Screate_simple() full_file_large_ds_sid succeeded"); + + mem_large_ds_sid = H5Screate_simple(5, large_dims, NULL); + VRFY((mem_large_ds_sid != 0), + "H5Screate_simple() mem_large_ds_sid succeeded"); + + file_large_ds_sid = H5Screate_simple(5, large_dims, NULL); + VRFY((file_large_ds_sid != 0), + "H5Screate_simple() file_large_ds_sid succeeded"); + + + /* Select the entire extent of the full small ds dataspaces */ + ret = H5Sselect_all(full_mem_small_ds_sid); + VRFY((ret != FAIL), "H5Sselect_all(full_mem_small_ds_sid) succeeded"); + + ret = H5Sselect_all(full_file_small_ds_sid); + VRFY((ret != FAIL), "H5Sselect_all(full_file_small_ds_sid) succeeded"); + + + /* Select the entire extent of the full large ds dataspaces */ + ret = H5Sselect_all(full_mem_large_ds_sid); + VRFY((ret != FAIL), "H5Sselect_all(full_mem_large_ds_sid) succeeded"); + + ret = H5Sselect_all(full_file_large_ds_sid); + VRFY((ret != FAIL), "H5Sselect_all(full_file_large_ds_sid) succeeded"); + + + /* if chunk edge size is greater than zero, set up the small and + * large data set creation property lists to specify chunked + * datasets. + */ + if ( chunk_edge_size > 0 ) { + + small_chunk_dims[0] = (hsize_t)(1); + small_chunk_dims[1] = small_chunk_dims[2] = (hsize_t)1; + small_chunk_dims[3] = small_chunk_dims[4] = (hsize_t)chunk_edge_size; + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s:%d: small chunk dims[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)small_chunk_dims[0], + (int)small_chunk_dims[1], (int)small_chunk_dims[2], + (int)small_chunk_dims[3], (int)small_chunk_dims[4]); + } +#endif + + small_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + VRFY((ret != FAIL), "H5Pcreate() small_ds_dcpl_id succeeded"); + + ret = H5Pset_layout(small_ds_dcpl_id, H5D_CHUNKED); + VRFY((ret != FAIL), "H5Pset_layout() small_ds_dcpl_id succeeded"); + + ret = H5Pset_chunk(small_ds_dcpl_id, 5, small_chunk_dims); + VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded"); + + large_chunk_dims[0] = (hsize_t)(1); + large_chunk_dims[1] = large_chunk_dims[2] = + large_chunk_dims[3] = large_chunk_dims[4] = (hsize_t)chunk_edge_size; + + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s:%d: large chunk dims[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)large_chunk_dims[0], + (int)large_chunk_dims[1], (int)large_chunk_dims[2], + (int)large_chunk_dims[3], (int)large_chunk_dims[4]); + } +#endif + + large_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + VRFY((ret != FAIL), "H5Pcreate() large_ds_dcpl_id succeeded"); + + ret = H5Pset_layout(large_ds_dcpl_id, H5D_CHUNKED); + VRFY((ret != FAIL), "H5Pset_layout() large_ds_dcpl_id succeeded"); + + ret = H5Pset_chunk(large_ds_dcpl_id, 5, large_chunk_dims); + VRFY((ret != FAIL), "H5Pset_chunk() large_ds_dcpl_id succeeded"); + } + + + /* create the small dataset */ + small_dataset = H5Dcreate2(fid, "small_dataset", dset_type, + file_small_ds_sid, H5P_DEFAULT, + small_ds_dcpl_id, H5P_DEFAULT); + VRFY((ret >= 0), "H5Dcreate2() small_dataset succeeded"); + + + /* create the large dataset */ + large_dataset = H5Dcreate2(fid, "large_dataset", dset_type, + file_large_ds_sid, H5P_DEFAULT, + large_ds_dcpl_id, H5P_DEFAULT); + VRFY((ret >= 0), "H5Dcreate2() large_dataset succeeded"); + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, + "%s:%d: small/large ds id = %d / %d.\n", + fcnName, mpi_rank, (int)small_dataset, + (int)large_dataset); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + + + /* setup xfer property list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); + + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + if ( ! use_collective_io ) { + + ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, + H5FD_MPIO_INDIVIDUAL_IO); + VRFY((ret>= 0), "H5Pset_dxpl_mpio_collective_opt() suceeded"); + } + + + /* setup selection to write initial data to the small data sets */ + start[0] = (hsize_t)(mpi_rank + 1); + start[1] = start[2] = start[3] = start[4] = 0; + + stride[0] = (hsize_t)(2 * (mpi_size + 1)); + stride[1] = stride[2] = 2; + stride[3] = stride[4] = 2 * 10; + + count[0] = count[1] = count[2] = count[3] = count[4] = 1; + + block[0] = block[1] = block[2] = 1; + block[3] = block[4] = 10; + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, + "%s:%d: settings for small data set initialization.\n", + fcnName, mpi_rank); + HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)start[0], (int)start[1], + (int)start[2], (int)start[3], (int)start[4]); + HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)stride[0], (int)stride[1], + (int)stride[2], (int)stride[3], (int)stride[4]); + HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)count[0], (int)count[1], + (int)count[2], (int)count[3], (int)count[4]); + HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)block[0], (int)block[1], + (int)block[2], (int)block[3], (int)block[4]); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + + /* setup selections for writing initial data to the small data set */ + ret = H5Sselect_hyperslab(mem_small_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) suceeded"); + + ret = H5Sselect_hyperslab(file_small_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid, set) suceeded"); + + if ( MAINPROCESS ) { /* add an additional slice to the selections */ + + start[0] = 0; + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, + "%s:%d: added settings for main process.\n", + fcnName, mpi_rank); + HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)start[0], (int)start[1], + (int)start[2], (int)start[3], (int)start[4]); + HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)stride[0], (int)stride[1], + (int)stride[2], (int)stride[3], (int)stride[4]); + HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)count[0], (int)count[1], + (int)count[2], (int)count[3], (int)count[4]); + HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)block[0], (int)block[1], + (int)block[2], (int)block[3], (int)block[4]); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + + ret = H5Sselect_hyperslab(mem_small_ds_sid, + H5S_SELECT_OR, + start, + stride, + count, + block); + VRFY((ret>= 0), "H5Sselect_hyperslab(mem_small_ds_sid, or) suceeded"); + + ret = H5Sselect_hyperslab(file_small_ds_sid, + H5S_SELECT_OR, + start, + stride, + count, + block); + VRFY((ret>= 0), "H5Sselect_hyperslab(file_small_ds_sid, or) suceeded"); + } + + check = H5Sselect_valid(mem_small_ds_sid); + VRFY((check == TRUE),"H5Sselect_valid(mem_small_ds_sid) returns TRUE"); + + check = H5Sselect_valid(file_small_ds_sid); + VRFY((check == TRUE),"H5Sselect_valid(file_small_ds_sid) returns TRUE"); + + + /* write the initial value of the small data set to file */ +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s:%d: writing init value of small ds to file.\n", + fcnName, mpi_rank); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + ret = H5Dwrite(small_dataset, + dset_type, + mem_small_ds_sid, + file_small_ds_sid, + xfer_plist, + small_ds_buf_0); + VRFY((ret >= 0), "H5Dwrite() small_dataset initial write succeeded"); + + + /* read the small data set back to verify that it contains the + * expected data. Note that each process reads in the entire + * data set and verifies it. + */ + ret = H5Dread(small_dataset, + H5T_NATIVE_UINT32, + full_mem_small_ds_sid, + full_file_small_ds_sid, + xfer_plist, + small_ds_buf_1); + VRFY((ret >= 0), "H5Dread() small_dataset initial read succeeded"); + + + /* sync with the other processes before checking data */ + mrc = MPI_Barrier(MPI_COMM_WORLD); + VRFY((mrc==MPI_SUCCESS), "Sync after small dataset writes"); + + + /* verify that the correct data was written to the small data set, + * and reset the buffer to zero in passing. + */ + expected_value = 0; + mis_match = FALSE; + ptr_1 = small_ds_buf_1; + + i = 0; + for ( i = 0; i < (int)small_ds_size; i++ ) { + + if ( *ptr_1 != expected_value ) { + + mis_match = TRUE; + } + + *ptr_1 = (uint32_t)0; + + ptr_1++; + expected_value++; + } + VRFY( (mis_match == FALSE), "small ds init data good."); + + + + /* setup selections for writing initial data to the large data set */ + start[0] = (hsize_t)(mpi_rank + 1); + start[1] = start[2] = start[3] = start[4] = (hsize_t)0; + + stride[0] = (hsize_t)(2 * (mpi_size + 1)); + stride[1] = stride[2] = stride[3] = stride[4] = (hsize_t)(2 * 10); + + count[0] = count[1] = count[2] = count[3] = count[4] = (hsize_t)1; + + block[0] = (hsize_t)1; + block[1] = block[2] = block[3] = block[4] = (hsize_t)10; + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, + "%s:%d: settings for large data set initialization.\n", + fcnName, mpi_rank); + HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)start[0], (int)start[1], + (int)start[2], (int)start[3], (int)start[4]); + HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)stride[0], (int)stride[1], + (int)stride[2], (int)stride[3], (int)stride[4]); + HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)count[0], (int)count[1], + (int)count[2], (int)count[3], (int)count[4]); + HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)block[0], (int)block[1], + (int)block[2], (int)block[3], (int)block[4]); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + + ret = H5Sselect_hyperslab(mem_large_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, set) suceeded"); + + ret = H5Sselect_hyperslab(file_large_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid, set) suceeded"); + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, + "%s%d: H5Sget_select_npoints(mem_large_ds_sid) = %d.\n", + fcnName, mpi_rank, + (int)H5Sget_select_npoints(mem_large_ds_sid)); + HDfprintf(stdout, + "%s%d: H5Sget_select_npoints(file_large_ds_sid) = %d.\n", + fcnName, mpi_rank, + (int)H5Sget_select_npoints(file_large_ds_sid)); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + + if ( MAINPROCESS ) { /* add an additional slice to the selections */ + + start[0] = (hsize_t)0; + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, + "%s:%d: added settings for main process.\n", + fcnName, mpi_rank); + HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)start[0], (int)start[1], + (int)start[2], (int)start[3], (int)start[4]); + HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)stride[0], (int)stride[1], + (int)stride[2], (int)stride[3], (int)stride[4]); + HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)count[0], (int)count[1], + (int)count[2], (int)count[3], (int)count[4]); + HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", + fcnName, mpi_rank, (int)block[0], (int)block[1], + (int)block[2], (int)block[3], (int)block[4]); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + + ret = H5Sselect_hyperslab(mem_large_ds_sid, + H5S_SELECT_OR, + start, + stride, + count, + block); + VRFY((ret>= 0), "H5Sselect_hyperslab(mem_large_ds_sid, or) suceeded"); + + ret = H5Sselect_hyperslab(file_large_ds_sid, + H5S_SELECT_OR, + start, + stride, + count, + block); + VRFY((ret>= 0), "H5Sselect_hyperslab(file_large_ds_sid, or) suceeded"); + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, + "%s%d: H5Sget_select_npoints(mem_large_ds_sid) = %d.\n", + fcnName, mpi_rank, + (int)H5Sget_select_npoints(mem_large_ds_sid)); + HDfprintf(stdout, + "%s%d: H5Sget_select_npoints(file_large_ds_sid) = %d.\n", + fcnName, mpi_rank, + (int)H5Sget_select_npoints(file_large_ds_sid)); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + } + + /* try clipping the selection back to the large data space proper */ + start[0] = start[1] = start[2] = start[3] = start[4] = (hsize_t)0; + + stride[0] = (hsize_t)(2 * (mpi_size + 1)); + stride[1] = stride[2] = stride[3] = stride[4] = (hsize_t)(2 * 10); + + count[0] = count[1] = count[2] = count[3] = count[4] = (hsize_t)1; + + block[0] = (hsize_t)(mpi_size + 1); + block[1] = block[2] = block[3] = block[4] = (hsize_t)10; + + ret = H5Sselect_hyperslab(mem_large_ds_sid, H5S_SELECT_AND, + start, stride, count, block); + VRFY((ret != FAIL),"H5Sselect_hyperslab(mem_large_ds_sid, and) succeeded"); + + ret = H5Sselect_hyperslab(file_large_ds_sid, H5S_SELECT_AND, + start, stride, count, block); + VRFY((ret != FAIL),"H5Sselect_hyperslab(file_large_ds_sid, and) succeeded"); + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + + rank = H5Sget_simple_extent_dims(mem_large_ds_sid, dims, max_dims); + HDfprintf(stdout, + "%s:%d: mem_large_ds_sid dims[%d] = %d %d %d %d %d\n", + fcnName, mpi_rank, rank, (int)dims[0], (int)dims[1], + (int)dims[2], (int)dims[3], (int)dims[4]); + + rank = H5Sget_simple_extent_dims(file_large_ds_sid, dims, max_dims); + HDfprintf(stdout, + "%s:%d: file_large_ds_sid dims[%d] = %d %d %d %d %d\n", + fcnName, mpi_rank, rank, (int)dims[0], (int)dims[1], + (int)dims[2], (int)dims[3], (int)dims[4]); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + + check = H5Sselect_valid(mem_large_ds_sid); + VRFY((check == TRUE),"H5Sselect_valid(mem_large_ds_sid) returns TRUE"); + + check = H5Sselect_valid(file_large_ds_sid); + VRFY((check == TRUE),"H5Sselect_valid(file_large_ds_sid) returns TRUE"); + + + /* write the initial value of the large data set to file */ +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s:%d: writing init value of large ds to file.\n", + fcnName, mpi_rank); + HDfprintf(stdout, + "%s:%d: large_dataset = %d.\n", + fcnName, mpi_rank, + (int)large_dataset); + HDfprintf(stdout, + "%s:%d: mem_large_ds_sid = %d, file_large_ds_sid = %d.\n", + fcnName, mpi_rank, + (int)mem_large_ds_sid, (int)file_large_ds_sid); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + + ret = H5Dwrite(large_dataset, + dset_type, + mem_large_ds_sid, + file_large_ds_sid, + xfer_plist, + large_ds_buf_0); + + if ( ret < 0 ) H5Eprint(H5E_DEFAULT, stderr); + VRFY((ret >= 0), "H5Dwrite() large_dataset initial write succeeded"); + + + /* sync with the other processes before checking data */ + mrc = MPI_Barrier(MPI_COMM_WORLD); + VRFY((mrc==MPI_SUCCESS), "Sync after large dataset writes"); + + /* read the large data set back to verify that it contains the + * expected data. Note that each process reads in the entire + * data set. + */ + ret = H5Dread(large_dataset, + H5T_NATIVE_UINT32, + full_mem_large_ds_sid, + full_file_large_ds_sid, + xfer_plist, + large_ds_buf_1); + VRFY((ret >= 0), "H5Dread() large_dataset initial read succeeded"); + + + /* verify that the correct data was written to the large data set. + * in passing, reset the buffer to zeros + */ + expected_value = 0; + mis_match = FALSE; + ptr_1 = large_ds_buf_1; + + i = 0; + for ( i = 0; i < (int)large_ds_size; i++ ) { + + if ( *ptr_1 != expected_value ) { + + mis_match = TRUE; + } + + *ptr_1 = (uint32_t)0; + + ptr_1++; + expected_value++; + } + VRFY( (mis_match == FALSE), "large ds init data good."); + + /***********************************/ + /***** INITIALIZATION COMPLETE *****/ + /***********************************/ + + + /* read a checkerboard selection of the process slice of the + * small on disk data set into the process slice of the large + * in memory data set, and verify the data read. + */ + + small_sel_start[0] = (hsize_t)(mpi_rank + 1); + small_sel_start[1] = small_sel_start[2] = + small_sel_start[3] = small_sel_start[4] = 0; + + lower_dim_size_comp_test__select_checker_board(mpi_rank, + file_small_ds_sid, + /* tgt_rank = */ 5, + small_dims, + /* checker_edge_size = */ 3, + /* sel_rank */ 2, + small_sel_start); + + expected_value = (uint32_t) + ((small_sel_start[0] * small_dims[1] * small_dims[2] * + small_dims[3] * small_dims[4]) + + (small_sel_start[1] * small_dims[2] * small_dims[3] * + small_dims[4]) + + (small_sel_start[2] * small_dims[3] * small_dims[4]) + + (small_sel_start[3] * small_dims[4]) + + (small_sel_start[4])); + + + large_sel_start[0] = (hsize_t)(mpi_rank + 1); + large_sel_start[1] = 5; + large_sel_start[2] = large_sel_start[3] = large_sel_start[4] = 0; + + lower_dim_size_comp_test__select_checker_board(mpi_rank, + mem_large_ds_sid, + /* tgt_rank = */ 5, + large_dims, + /* checker_edge_size = */ 3, + /* sel_rank = */ 2, + large_sel_start); + + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(mem_large_ds_sid, + file_small_ds_sid); + VRFY((check == TRUE), "H5S_select_shape_same_test passed (1)"); + + + ret = H5Dread(small_dataset, + H5T_NATIVE_UINT32, + mem_large_ds_sid, + file_small_ds_sid, + xfer_plist, + large_ds_buf_1); + + VRFY((ret >= 0), "H5Sread() slice from small ds succeeded."); + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s:%d: H5Dread() returns.\n", fcnName, mpi_rank); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + + /* verify that expected data is retrieved */ + + data_ok = TRUE; + + start_index = (int)((large_sel_start[0] * large_dims[1] * large_dims[2] * + large_dims[3] * large_dims[4]) + + (large_sel_start[1] * large_dims[2] * large_dims[3] * + large_dims[4]) + + (large_sel_start[2] * large_dims[3] * large_dims[4]) + + (large_sel_start[3] * large_dims[4]) + + (large_sel_start[4])); + + stop_index = start_index + (int)small_ds_slice_size; + + HDassert( 0 <= start_index ); + HDassert( start_index < stop_index ); + HDassert( stop_index <= (int)large_ds_size ); + + ptr_1 = large_ds_buf_1; + + for ( i = 0; i < start_index; i++ ) { + + if ( *ptr_1 != (uint32_t)0 ) { + + data_ok = FALSE; + *ptr_1 = (uint32_t)0; + } + + ptr_1++; + } + + VRFY((data_ok == TRUE), "slice read from small ds data good(1)."); + + + data_ok = lower_dim_size_comp_test__verify_data(ptr_1, +#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG + mpi_rank, +#endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */ + /* rank */ 2, + /* edge_size */ 10, + /* checker_edge_size */ 3, + expected_value, + /* buf_starts_in_checker */ TRUE); + + VRFY((data_ok == TRUE), "slice read from small ds data good(2)."); + + data_ok = TRUE; + + ptr_1 += small_ds_slice_size; + + + for ( i = stop_index; i < (int)large_ds_size; i++ ) { + + if ( *ptr_1 != (uint32_t)0 ) { + + data_ok = FALSE; + *ptr_1 = (uint32_t)0; + } + + ptr_1++; + } + + VRFY((data_ok == TRUE), "slice read from small ds data good(3)."); + + + + + + /* read a checkerboard selection of a slice of the process slice of + * the large on disk data set into the process slice of the small + * in memory data set, and verify the data read. + */ + + small_sel_start[0] = (hsize_t)(mpi_rank + 1); + small_sel_start[1] = small_sel_start[2] = + small_sel_start[3] = small_sel_start[4] = 0; + + lower_dim_size_comp_test__select_checker_board(mpi_rank, + mem_small_ds_sid, + /* tgt_rank = */ 5, + small_dims, + /* checker_edge_size = */ 3, + /* sel_rank */ 2, + small_sel_start); + + large_sel_start[0] = (hsize_t)(mpi_rank + 1); + large_sel_start[1] = 5; + large_sel_start[2] = large_sel_start[3] = large_sel_start[4] = 0; + + lower_dim_size_comp_test__select_checker_board(mpi_rank, + file_large_ds_sid, + /* tgt_rank = */ 5, + large_dims, + /* checker_edge_size = */ 3, + /* sel_rank = */ 2, + large_sel_start); + + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(mem_small_ds_sid, + file_large_ds_sid); + VRFY((check == TRUE), "H5S_select_shape_same_test passed (2)"); + + + ret = H5Dread(large_dataset, + H5T_NATIVE_UINT32, + mem_small_ds_sid, + file_large_ds_sid, + xfer_plist, + small_ds_buf_1); + + VRFY((ret >= 0), "H5Sread() slice from large ds succeeded."); + +#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s:%d: H5Dread() returns.\n", fcnName, mpi_rank); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */ + + /* verify that expected data is retrieved */ + + data_ok = TRUE; + + expected_value = (uint32_t) + ((large_sel_start[0] * large_dims[1] * large_dims[2] * + large_dims[3] * large_dims[4]) + + (large_sel_start[1] * large_dims[2] * large_dims[3] * + large_dims[4]) + + (large_sel_start[2] * large_dims[3] * large_dims[4]) + + (large_sel_start[3] * large_dims[4]) + + (large_sel_start[4])); + + start_index = (int)(mpi_rank + 1) * (int)small_ds_slice_size; + + stop_index = start_index + (int)small_ds_slice_size; + + HDassert( 0 <= start_index ); + HDassert( start_index < stop_index ); + HDassert( stop_index <= (int)small_ds_size ); + + ptr_1 = small_ds_buf_1; + + for ( i = 0; i < start_index; i++ ) { + + if ( *ptr_1 != (uint32_t)0 ) { + + data_ok = FALSE; + *ptr_1 = (uint32_t)0; + } + + ptr_1++; + } + + VRFY((data_ok == TRUE), "slice read from large ds data good(1)."); + + + data_ok = lower_dim_size_comp_test__verify_data(ptr_1, +#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG + mpi_rank, +#endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */ + /* rank */ 2, + /* edge_size */ 10, + /* checker_edge_size */ 3, + expected_value, + /* buf_starts_in_checker */ TRUE); + + VRFY((data_ok == TRUE), "slice read from large ds data good(2)."); + + data_ok = TRUE; + + ptr_1 += small_ds_slice_size; + + + for ( i = stop_index; i < (int)small_ds_size; i++ ) { + + if ( *ptr_1 != (uint32_t)0 ) { + +#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG + if ( mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK ) { + HDfprintf(stdout, "%s:%d: unexpected value at index %d: %d.\n", + fcnName, mpi_rank, (int)i, (int)(*ptr_1)); + } +#endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */ + + data_ok = FALSE; + *ptr_1 = (uint32_t)0; + } + + ptr_1++; + } + + VRFY((data_ok == TRUE), "slice read from large ds data good(3)."); + + + /* Close dataspaces */ + ret = H5Sclose(full_mem_small_ds_sid); + VRFY((ret != FAIL), "H5Sclose(full_mem_small_ds_sid) succeeded"); + + ret = H5Sclose(full_file_small_ds_sid); + VRFY((ret != FAIL), "H5Sclose(full_file_small_ds_sid) succeeded"); + + ret = H5Sclose(mem_small_ds_sid); + VRFY((ret != FAIL), "H5Sclose(mem_small_ds_sid) succeeded"); + + ret = H5Sclose(file_small_ds_sid); + VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid) succeeded"); + + + ret = H5Sclose(full_mem_large_ds_sid); + VRFY((ret != FAIL), "H5Sclose(full_mem_large_ds_sid) succeeded"); + + ret = H5Sclose(full_file_large_ds_sid); + VRFY((ret != FAIL), "H5Sclose(full_file_large_ds_sid) succeeded"); + + ret = H5Sclose(mem_large_ds_sid); + VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded"); + + ret = H5Sclose(file_large_ds_sid); + VRFY((ret != FAIL), "H5Sclose(file_large_ds_sid) succeeded"); + + + /* Close Datasets */ + ret = H5Dclose(small_dataset); + VRFY((ret != FAIL), "H5Dclose(small_dataset) succeeded"); + + ret = H5Dclose(large_dataset); + VRFY((ret != FAIL), "H5Dclose(large_dataset) succeeded"); + + + /* close the file collectively */ + MESG("about to close file."); + ret = H5Fclose(fid); + VRFY((ret != FAIL), "file close succeeded"); + + /* Free memory buffers */ + if ( small_ds_buf_0 != NULL ) HDfree(small_ds_buf_0); + if ( small_ds_buf_1 != NULL ) HDfree(small_ds_buf_1); + + if ( large_ds_buf_0 != NULL ) HDfree(large_ds_buf_0); + if ( large_ds_buf_1 != NULL ) HDfree(large_ds_buf_1); + + return; + +} /* lower_dim_size_comp_test__run_test() */ + + +/*------------------------------------------------------------------------- + * Function: lower_dim_size_comp_test() + * + * Purpose: Test to see if an error in the computation of the size + * of the lower dimensions in H5S_obtain_datatype() has + * been corrected. + * + * Return: void + * + * Programmer: JRM -- 11/11/09 + * + * Modifications: + * + *------------------------------------------------------------------------- + */ + +void +lower_dim_size_comp_test(void) +{ + /* const char *fcnName = "lower_dim_size_comp_test()"; */ + int chunk_edge_size = 0; + int use_collective_io = 1; + hid_t dset_type = H5T_STD_U32LE; +#if 0 + sleep(60); +#endif + for ( use_collective_io = (hbool_t)0; + (int)use_collective_io <= 1; + (hbool_t)(use_collective_io++) ) { + + chunk_edge_size = 0; + lower_dim_size_comp_test__run_test(chunk_edge_size, + (hbool_t)use_collective_io, + dset_type); + + + chunk_edge_size = 5; + lower_dim_size_comp_test__run_test(chunk_edge_size, + (hbool_t)use_collective_io, + dset_type); + } + + return; + +} /* lower_dim_size_comp_test() */ + + +/*------------------------------------------------------------------------- + * Function: link_chunk_collective_io_test() + * + * Purpose: Test to verify that an error in MPI type management in + * H5D_link_chunk_collective_io() has been corrected. + * In this bug, we used to free MPI types regardless of + * whether they were basic or derived. + * + * This test is based on a bug report kindly provided by + * Rob Latham of the MPICH team and ANL. + * + * The basic thrust of the test is to cause a process + * to participate in a collective I/O in which it: + * + * 1) Reads or writes exactly one chunk, + * + * 2) Has no in memory buffer for any other chunk. + * + * The test differers from Rob Latham's bug report in + * that is runs with an arbitrary number of proceeses, + * and uses a 1 dimensional dataset. + * + * Return: void + * + * Programmer: JRM -- 12/16/09 + * + * Modifications: + * + *------------------------------------------------------------------------- + */ + +#define LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE 16 + +void +link_chunk_collective_io_test(void) +{ + /* const char *fcnName = "link_chunk_collective_io_test()"; */ + const char *filename; + hbool_t mis_match = FALSE; + hbool_t use_gpfs = FALSE; /* Use GPFS hints */ + int i; + int mrc; + int mpi_rank; + int mpi_size; + MPI_Comm mpi_comm = MPI_COMM_WORLD; + MPI_Info mpi_info = MPI_INFO_NULL; + hsize_t count[1] = {1}; + hsize_t stride[1] = {2 * LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE}; + hsize_t block[1] = {LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE}; + hsize_t start[1]; + hsize_t dims[1]; + hsize_t chunk_dims[1] = {LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE}; + herr_t ret; /* Generic return value */ + hid_t file_id; + hid_t acc_tpl; + hid_t dset_id; + hid_t file_ds_sid; + hid_t write_mem_ds_sid; + hid_t read_mem_ds_sid; + hid_t ds_dcpl_id; + hid_t xfer_plist; + double diff; + double expected_value; + double local_data_written[LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE]; + double local_data_read[LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE]; + + MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); + MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); + + HDassert( mpi_size > 0 ); + + /* get the file name */ + filename = (const char *)GetTestParameters(); + HDassert( filename != NULL ); + + /* setup file access template */ + acc_tpl = create_faccess_plist(mpi_comm, mpi_info, facc_type, use_gpfs); + VRFY((acc_tpl >= 0), "create_faccess_plist() succeeded"); + + /* create the file collectively */ + file_id = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl); + VRFY((file_id >= 0), "H5Fcreate succeeded"); + + MESG("File opened."); + + /* Release file-access template */ + ret = H5Pclose(acc_tpl); + VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded"); + + /* setup dims */ + dims[0] = ((hsize_t)mpi_size) * ((hsize_t)(LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE)); + + /* setup mem and file data spaces */ + write_mem_ds_sid = H5Screate_simple(1, chunk_dims, NULL); + VRFY((write_mem_ds_sid != 0), + "H5Screate_simple() write_mem_ds_sid succeeded"); + + read_mem_ds_sid = H5Screate_simple(1, chunk_dims, NULL); + VRFY((read_mem_ds_sid != 0), + "H5Screate_simple() read_mem_ds_sid succeeded"); + + file_ds_sid = H5Screate_simple(1, dims, NULL); + VRFY((file_ds_sid != 0), + "H5Screate_simple() file_ds_sid succeeded"); + + /* setup data set creation property list */ + ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + VRFY((ds_dcpl_id != FAIL), "H5Pcreate() ds_dcpl_id succeeded"); + + ret = H5Pset_layout(ds_dcpl_id, H5D_CHUNKED); + VRFY((ret != FAIL), "H5Pset_layout() ds_dcpl_id succeeded"); + + ret = H5Pset_chunk(ds_dcpl_id, 1, chunk_dims); + VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded"); + + /* create the data set */ + dset_id = H5Dcreate2(file_id, "dataset", H5T_NATIVE_DOUBLE, + file_ds_sid, H5P_DEFAULT, + ds_dcpl_id, H5P_DEFAULT); + VRFY((dset_id >= 0), "H5Dcreate2() dataset succeeded"); + + /* close the dataset creation property list */ + ret = H5Pclose(ds_dcpl_id); + VRFY((ret >= 0), "H5Pclose(ds_dcpl_id) succeeded"); + + /* setup local data */ + expected_value = (double)(LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE) * + (double)(mpi_rank); + for ( i = 0; i < LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE; i++ ) { + + local_data_written[i] = expected_value; + local_data_read[i] = 0.0; + expected_value += 1.0; + } + + /* select the file and mem spaces */ + start[0] = (hsize_t)(mpi_rank * LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE); + ret = H5Sselect_hyperslab(file_ds_sid, + H5S_SELECT_SET, + start, + stride, + count, + block); + VRFY((ret >= 0), "H5Sselect_hyperslab(file_ds_sid, set) suceeded"); + + ret = H5Sselect_all(write_mem_ds_sid); + VRFY((ret != FAIL), "H5Sselect_all(mem_ds_sid) succeeded"); + + /* Note that we use NO SELECTION on the read memory dataspace */ + + /* setup xfer property list */ + xfer_plist = H5Pcreate(H5P_DATASET_XFER); + VRFY((xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded"); + + ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); + VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded"); + + /* write the data set */ + ret = H5Dwrite(dset_id, + H5T_NATIVE_DOUBLE, + write_mem_ds_sid, + file_ds_sid, + xfer_plist, + local_data_written); + + VRFY((ret >= 0), "H5Dwrite() dataset initial write succeeded"); + + /* sync with the other processes before checking data */ + mrc = MPI_Barrier(MPI_COMM_WORLD); + VRFY((mrc==MPI_SUCCESS), "Sync after dataset write"); + + /* read this processes slice of the dataset back in */ + ret = H5Dread(dset_id, + H5T_NATIVE_DOUBLE, + read_mem_ds_sid, + file_ds_sid, + xfer_plist, + local_data_read); + VRFY((ret >= 0), "H5Dread() dataset read succeeded"); + + /* close the xfer property list */ + ret = H5Pclose(xfer_plist); + VRFY((ret >= 0), "H5Pclose(xfer_plist) succeeded"); + + /* verify the data */ + mis_match = FALSE; + for ( i = 0; i < LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE; i++ ) { + + diff = local_data_written[i] - local_data_read[i]; + diff = fabs(diff); + + if ( diff >= 0.001 ) { + + mis_match = TRUE; + } + } + VRFY( (mis_match == FALSE), "dataset data good."); + + /* Close dataspaces */ + ret = H5Sclose(write_mem_ds_sid); + VRFY((ret != FAIL), "H5Sclose(write_mem_ds_sid) succeeded"); + + ret = H5Sclose(read_mem_ds_sid); + VRFY((ret != FAIL), "H5Sclose(read_mem_ds_sid) succeeded"); + + ret = H5Sclose(file_ds_sid); + VRFY((ret != FAIL), "H5Sclose(file_ds_sid) succeeded"); + + /* Close Dataset */ + ret = H5Dclose(dset_id); + VRFY((ret != FAIL), "H5Dclose(dset_id) succeeded"); + + /* close the file collectively */ + ret = H5Fclose(file_id); + VRFY((ret != FAIL), "file close succeeded"); + + return; + +} /* link_chunk_collective_io_test() */ + diff --git a/testpar/testphdf5.c b/testpar/testphdf5.c index 4dabada..0864b11 100644 --- a/testpar/testphdf5.c +++ b/testpar/testphdf5.c @@ -462,7 +462,6 @@ int main(int argc, char **argv) coll_irregular_complex_chunk_read,NULL, "collective irregular complex chunk read",PARATESTFILE); - AddTest("null", null_dataset, NULL, "null dataset test", PARATESTFILE); @@ -473,6 +472,26 @@ int main(int argc, char **argv) "I/O mode confusion test -- hangs quickly on failure", &io_mode_confusion_params); + AddTest("tldsc", + lower_dim_size_comp_test, NULL, + "test lower dim size comp in span tree to mpi derived type", + PARATESTFILE); + + AddTest("lccio", + link_chunk_collective_io_test, NULL, + "test mpi derived type management", + PARATESTFILE); + + /* rank projections / shape same tests */ + + AddTest("chsssdrpio", + contig_hyperslab_dr_pio_test, NULL, + "contiguous hyperslab shape same different rank PIO",PARATESTFILE); + + AddTest("cbhsssdrpio", + checker_board_hyperslab_dr_pio_test, NULL, + "checker board hyperslab shape same different rank PIO",PARATESTFILE); + /* Display testing information */ TestInfo(argv[0]); diff --git a/testpar/testphdf5.h b/testpar/testphdf5.h index 24c4432..ba46e4d 100644 --- a/testpar/testphdf5.h +++ b/testpar/testphdf5.h @@ -237,6 +237,10 @@ void coll_irregular_simple_chunk_write(void); void coll_irregular_complex_chunk_read(void); void coll_irregular_complex_chunk_write(void); void io_mode_confusion(void); +void lower_dim_size_comp_test(void); +void link_chunk_collective_io_test(void); +void contig_hyperslab_dr_pio_test(void); +void checker_board_hyperslab_dr_pio_test(void); #ifdef H5_HAVE_FILTER_DEFLATE void compress_readAll(void); #endif /* H5_HAVE_FILTER_DEFLATE */ |