summaryrefslogtreecommitdiffstats
path: root/c++/src/H5Object.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'c++/src/H5Object.cpp')
0 files changed, 0 insertions, 0 deletions
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
.. _tut-morecontrol:

***********************
More Control Flow Tools
***********************

Besides the :keyword:`while` statement just introduced, Python uses the usual
flow control statements known from other languages, with some twists.


.. _tut-if:

:keyword:`!if` Statements
=========================

Perhaps the most well-known statement type is the :keyword:`if` statement.  For
example::

   >>> x = int(input("Please enter an integer: "))
   Please enter an integer: 42
   >>> if x < 0:
   ...     x = 0
   ...     print('Negative changed to zero')
   ... elif x == 0:
   ...     print('Zero')
   ... elif x == 1:
   ...     print('Single')
   ... else:
   ...     print('More')
   ...
   More

There can be zero or more :keyword:`elif` parts, and the :keyword:`else` part is
optional.  The keyword ':keyword:`!elif`' is short for 'else if', and is useful
to avoid excessive indentation.  An  :keyword:`!if` ... :keyword:`!elif` ...
:keyword:`!elif` ... sequence is a substitute for the ``switch`` or
``case`` statements found in other languages.

If you're comparing the same value to several constants, or checking for specific types or
attributes, you may also find the :keyword:`!match` statement useful. For more
details see :ref:`tut-match`.

.. _tut-for:

:keyword:`!for` Statements
==========================

.. index::
   statement: for

The :keyword:`for` statement in Python differs a bit from what you may be used
to in C or Pascal.  Rather than always iterating over an arithmetic progression
of numbers (like in Pascal), or giving the user the ability to define both the
iteration step and halting condition (as C), Python's :keyword:`!for` statement
iterates over the items of any sequence (a list or a string), in the order that
they appear in the sequence.  For example (no pun intended):

.. One suggestion was to give a real C example here, but that may only serve to
   confuse non-C programmers.

::

   >>> # Measure some strings:
   ... words = ['cat', 'window', 'defenestrate']
   >>> for w in words:
   ...     print(w, len(w))
   ...
   cat 3
   window 6
   defenestrate 12

Code that modifies a collection while iterating over that same collection can
be tricky to get right.  Instead, it is usually more straight-forward to loop
over a copy of the collection or to create a new collection::

    # Create a sample collection
    users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}

    # Strategy:  Iterate over a copy
    for user, status in users.copy().items():
        if status == 'inactive':
            del users[user]

    # Strategy:  Create a new collection
    active_users = {}
    for user, status in users.items():
        if status == 'active':
            active_users[user] = status


.. _tut-range:

The :func:`range` Function
==========================

If you do need to iterate over a sequence of numbers, the built-in function
:func:`range` comes in handy.  It generates arithmetic progressions::

    >>> for i in range(5):
    ...     print(i)
    ...
    0
    1
    2
    3
    4

The given end point is never part of the generated sequence; ``range(10)`` generates
10 values, the legal indices for items of a sequence of length 10.  It
is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the 'step')::

    >>> list(range(5, 10))
    [5, 6, 7, 8, 9]

    >>> list(range(0, 10, 3))
    [0, 3, 6, 9]

    >>> list(range(-10, -100, -30))
    [-10, -40, -70]

To iterate over the indices of a sequence, you can combine :func:`range` and
:func:`len` as follows::

   >>> a = ['Mary', 'had', 'a', 'little', 'lamb']
   >>> for i in range(len(a)):
   ...     print(i, a[i])
   ...
   0 Mary
   1 had
   2 a
   3 little
   4 lamb

In most such cases, however, it is convenient to use the :func:`enumerate`
function, see :ref:`tut-loopidioms`.

A strange thing happens if you just print a range::

   >>> range(10)
   range(0, 10)

In many ways the object returned by :func:`range` behaves as if it is a list,
but in fact it isn't. It is an object which returns the successive items of
the desired sequence when you iterate over it, but it doesn't really make
the list, thus saving space.

We say such an object is :term:`iterable`, that is, suitable as a target for
functions and constructs that expect something from which they can
obtain successive items until the supply is exhausted.  We have seen that
the :keyword:`for` statement is such a construct, while an example of a function
that takes an iterable is :func:`sum`::

    >>> sum(range(4))  # 0 + 1 + 2 + 3
    6

Later we will see more functions that return iterables and take iterables as
arguments.  In chapter :ref:`tut-structures`, we will discuss in more detail about
:func:`list`.

.. _tut-break:

:keyword:`!break` and :keyword:`!continue` Statements, and :keyword:`!else` Clauses on Loops
============================================================================================

The :keyword:`break` statement, like in C, breaks out of the innermost enclosing
:keyword:`for` or :keyword:`while` loop.

Loop statements may have an :keyword:`!else` clause; it is executed when the loop
terminates through exhaustion of the iterable (with :keyword:`for`) or when the
condition becomes false (with :keyword:`while`), but not when the loop is
terminated by a :keyword:`break` statement.  This is exemplified by the
following loop, which searches for prime numbers::

   >>> for n in range(2, 10):
   ...     for x in range(2, n):
   ...         if n % x == 0:
   ...             print(n, 'equals', x, '*', n//x)
   ...             break
   ...     else:
   ...         # loop fell through without finding a factor
   ...         print(n, 'is a prime number')
   ...
   2 is a prime number
   3 is a prime number
   4 equals 2 * 2
   5 is a prime number
   6 equals 2 * 3
   7 is a prime number
   8 equals 2 * 4
   9 equals 3 * 3

(Yes, this is the correct code.  Look closely: the ``else`` clause belongs to
the :keyword:`for` loop, **not** the :keyword:`if` statement.)

When used with a loop, the ``else`` clause has more in common with the
``else`` clause of a :keyword:`try` statement than it does with that of
:keyword:`if` statements: a :keyword:`try` statement's ``else`` clause runs
when no exception occurs, and a loop's ``else`` clause runs when no ``break``
occurs. For more on the :keyword:`!try` statement and exceptions, see
:ref:`tut-handling`.

The :keyword:`continue` statement, also borrowed from C, continues with the next
iteration of the loop::

    >>> for num in range(2, 10):
    ...     if num % 2 == 0:
    ...         print("Found an even number", num)
    ...         continue
    ...     print("Found an odd number", num)
    ...
    Found an even number 2
    Found an odd number 3
    Found an even number 4
    Found an odd number 5
    Found an even number 6
    Found an odd number 7
    Found an even number 8
    Found an odd number 9

.. _tut-pass:

:keyword:`!pass` Statements
===========================

The :keyword:`pass` statement does nothing. It can be used when a statement is
required syntactically but the program requires no action. For example::

   >>> while True:
   ...     pass  # Busy-wait for keyboard interrupt (Ctrl+C)
   ...

This is commonly used for creating minimal classes::

   >>> class MyEmptyClass:
   ...     pass
   ...

Another place :keyword:`pass` can be used is as a place-holder for a function or
conditional body when you are working on new code, allowing you to keep thinking
at a more abstract level.  The :keyword:`!pass` is silently ignored::

   >>> def initlog(*args):
   ...     pass   # Remember to implement this!
   ...


.. _tut-match:

:keyword:`!match` Statements
============================

A match statement takes an expression and compares its value to successive
patterns given as one or more case blocks.  This is superficially
similar to a switch statement in C, Java or JavaScript (and many
other languages), but it can also extract components (sequence elements or
object attributes) from the value into variables.

The simplest form compares a subject value against one or more literals::

    def http_error(status):
        match status:
            case 400:
                return "Bad request"
            case 404:
                return "Not found"
            case 418:
                return "I'm a teapot"
            case _:
                return "Something's wrong with the internet"

Note the last block: the "variable name" ``_`` acts as a *wildcard* and
never fails to match. If no case matches, none of the branches is executed.

You can combine several literals in a single pattern using ``|`` ("or")::

            case 401 | 403 | 404:
                return "Not allowed"

Patterns can look like unpacking assignments, and can be used to bind
variables::

    # point is an (x, y) tuple
    match point:
        case (0, 0):
            print("Origin")
        case (0, y):
            print(f"Y={y}")
        case (x, 0):
            print(f"X={x}")
        case (x, y):
            print(f"X={x}, Y={y}")
        case _:
            raise ValueError("Not a point")

Study that one carefully!  The first pattern has two literals, and can
be thought of as an extension of the literal pattern shown above.  But
the next two patterns combine a literal and a variable, and the
variable *binds* a value from the subject (``point``).  The fourth
pattern captures two values, which makes it conceptually similar to
the unpacking assignment ``(x, y) = point``.

If you are using classes to structure your data
you can use the class name followed by an argument list resembling a
constructor, but with the ability to capture attributes into variables::

    class Point:
        x: int
        y: int

    def where_is(point):
        match point:
            case Point(x=0, y=0):
                print("Origin")
            case Point(x=0, y=y):
                print(f"Y={y}")
            case Point(x=x, y=0):
                print(f"X={x}")
            case Point():
                print("Somewhere else")
            case _:
                print("Not a point")

You can use positional parameters with some builtin classes that provide an
ordering for their attributes (e.g. dataclasses). You can also define a specific
position for attributes in patterns by setting the ``__match_args__`` special
attribute in your classes. If it's set to ("x", "y"), the following patterns are all
equivalent (and all bind the ``y`` attribute to the ``var`` variable)::

    Point(1, var)
    Point(1, y=var)
    Point(x=1, y=var)
    Point(y=var, x=1)

A recommended way to read patterns is to look at them as an extended form of what you
would put on the left of an assignment, to understand which variables would be set to
what.
Only the standalone names (like ``var`` above) are assigned to by a match statement.
Dotted names (like ``foo.bar``), attribute names (the ``x=`` and ``y=`` above) or class names
(recognized by the "(...)" next to them like ``Point`` above) are never assigned to.

Patterns can be arbitrarily nested.  For example, if we have a short
list of points, we could match it like this::

    match points:
        case []:
            print("No points")
        case [Point(0, 0)]:
            print("The origin")
        case [Point(x, y)]:
            print(f"Single point {x}, {y}")
        case [Point(0, y1), Point(0, y2)]:
            print(f"Two on the Y axis at {y1}, {y2}")
        case _:
            print("Something else")

We can add an ``if`` clause to a pattern, known as a "guard".  If the
guard is false, ``match`` goes on to try the next case block.  Note
that value capture happens before the guard is evaluated::

    match point:
        case Point(x, y) if x == y:
            print(f"Y=X at {x}")
        case Point(x, y):
            print(f"Not on the diagonal")

Several other key features of this statement:

- Like unpacking assignments, tuple and list patterns have exactly the
  same meaning and actually match arbitrary sequences.  An important
  exception is that they don't match iterators or strings.

- Sequence patterns support extended unpacking: ``[x, y, *rest]`` and ``(x, y,
  *rest)`` work similar to unpacking assignments.  The
  name after ``*`` may also be ``_``, so ``(x, y, *_)`` matches a sequence
  of at least two items without binding the remaining items.

- Mapping patterns: ``{"bandwidth": b, "latency": l}`` captures the
  ``"bandwidth"`` and ``"latency"`` values from a dictionary.  Unlike sequence
  patterns, extra keys are ignored.  An unpacking like ``**rest`` is also
  supported.  (But ``**_`` would be redundant, so it is not allowed.)

- Subpatterns may be captured using the ``as`` keyword::

      case (Point(x1, y1), Point(x2, y2) as p2): ...

  will capture the second element of the input as ``p2`` (as long as the input is
  a sequence of two points)

- Most literals are compared by equality, however the singletons ``True``,
  ``False`` and ``None`` are compared by identity.

- Patterns may use named constants.  These must be dotted names
  to prevent them from being interpreted as capture variable::

      from enum import Enum
      class Color(Enum):
          RED = 'red'
          GREEN = 'green'
          BLUE = 'blue'

      color = Color(input("Enter your choice of 'red', 'blue' or 'green': "))

      match color:
          case Color.RED:
              print("I see red!")
          case Color.GREEN:
              print("Grass is green")
          case Color.BLUE:
              print("I'm feeling the blues :(")

For a more detailed explanation and additional examples, you can look into
:pep:`636` which is written in a tutorial format.

.. _tut-functions:

Defining Functions
==================

We can create a function that writes the Fibonacci series to an arbitrary
boundary::

   >>> def fib(n):    # write Fibonacci series up to n
   ...     """Print a Fibonacci series up to n."""
   ...     a, b = 0, 1
   ...     while a < n:
   ...         print(a, end=' ')
   ...         a, b = b, a+b
   ...     print()
   ...
   >>> # Now call the function we just defined:
   ... fib(2000)
   0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

.. index::
   single: documentation strings
   single: docstrings
   single: strings, documentation

The keyword :keyword:`def` introduces a function *definition*.  It must be
followed by the function name and the parenthesized list of formal parameters.
The statements that form the body of the function start at the next line, and
must be indented.

The first statement of the function body can optionally be a string literal;
this string literal is the function's documentation string, or :dfn:`docstring`.
(More about docstrings can be found in the section :ref:`tut-docstrings`.)
There are tools which use docstrings to automatically produce online or printed
documentation, or to let the user interactively browse through code; it's good
practice to include docstrings in code that you write, so make a habit of it.

The *execution* of a function introduces a new symbol table used for the local
variables of the function.  More precisely, all variable assignments in a
function store the value in the local symbol table; whereas variable references
first look in the local symbol table, then in the local symbol tables of
enclosing functions, then in the global symbol table, and finally in the table
of built-in names. Thus, global variables and variables of enclosing functions
cannot be directly assigned a value within a function (unless, for global
variables, named in a :keyword:`global` statement, or, for variables of enclosing
functions, named in a :keyword:`nonlocal` statement), although they may be
referenced.

The actual parameters (arguments) to a function call are introduced in the local
symbol table of the called function when it is called; thus, arguments are
passed using *call by value* (where the *value* is always an object *reference*,
not the value of the object). [#]_ When a function calls another function,
or calls itself recursively, a new
local symbol table is created for that call.

A function definition associates the function name with the function object in
the current symbol table.  The interpreter recognizes the object pointed to by
that name as a user-defined function.  Other names can also point to that same
function object and can also be used to access the function::

   >>> fib
   <function fib at 10042ed0>
   >>> f = fib
   >>> f(100)
   0 1 1 2 3 5 8 13 21 34 55 89

Coming from other languages, you might object that ``fib`` is not a function but
a procedure since it doesn't return a value.  In fact, even functions without a
:keyword:`return` statement do return a value, albeit a rather boring one.  This
value is called ``None`` (it's a built-in name).  Writing the value ``None`` is
normally suppressed by the interpreter if it would be the only value written.
You can see it if you really want to using :func:`print`::

   >>> fib(0)
   >>> print(fib(0))
   None

It is simple to write a function that returns a list of the numbers of the
Fibonacci series, instead of printing it::

   >>> def fib2(n):  # return Fibonacci series up to n
   ...     """Return a list containing the Fibonacci series up to n."""
   ...     result = []
   ...     a, b = 0, 1
   ...     while a < n:
   ...         result.append(a)    # see below
   ...         a, b = b, a+b
   ...     return result
   ...
   >>> f100 = fib2(100)    # call it
   >>> f100                # write the result
   [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

* The :keyword:`return` statement returns with a value from a function.
  :keyword:`!return` without an expression argument returns ``None``. Falling off
  the end of a function also returns ``None``.

* The statement ``result.append(a)`` calls a *method* of the list object
  ``result``.  A method is a function that 'belongs' to an object and is named
  ``obj.methodname``, where ``obj`` is some object (this may be an expression),
  and ``methodname`` is the name of a method that is defined by the object's type.
  Different types define different methods.  Methods of different types may have
  the same name without causing ambiguity.  (It is possible to define your own
  object types and methods, using *classes*, see :ref:`tut-classes`)
  The method :meth:`append` shown in the example is defined for list objects; it
  adds a new element at the end of the list.  In this example it is equivalent to
  ``result = result + [a]``, but more efficient.


.. _tut-defining:

More on Defining Functions
==========================

It is also possible to define functions with a variable number of arguments.