diff options
Diffstat (limited to 'src/H5B.c')
-rw-r--r-- | src/H5B.c | 2916 |
1 files changed, 1439 insertions, 1477 deletions
@@ -1,717 +1,705 @@ /*------------------------------------------------------------------------- - * Copyright (C) 1997 National Center for Supercomputing Applications. + * Copyright (C) 1997 National Center for Supercomputing Applications. * All rights reserved. * *------------------------------------------------------------------------- * - * Created: hdf5btree.c - * Jul 10 1997 - * Robb Matzke <matzke@llnl.gov> + * Created: hdf5btree.c + * Jul 10 1997 + * Robb Matzke <matzke@llnl.gov> * - * Purpose: Implements balanced, sibling-linked, N-ary trees - * capable of storing any type of data with unique key - * values. + * Purpose: Implements balanced, sibling-linked, N-ary trees + * capable of storing any type of data with unique key + * values. * - * A B-link-tree is a balanced tree where each node has - * a pointer to its left and right siblings. A - * B-link-tree is a rooted tree having the following - * properties: + * A B-link-tree is a balanced tree where each node has + * a pointer to its left and right siblings. A + * B-link-tree is a rooted tree having the following + * properties: * - * 1. Every node, x, has the following fields: + * 1. Every node, x, has the following fields: * - * a. level[x], the level in the tree at which node - * x appears. Leaf nodes are at level zero. + * a. level[x], the level in the tree at which node + * x appears. Leaf nodes are at level zero. * - * b. n[x], the number of children pointed to by the - * node. Internal nodes point to subtrees while - * leaf nodes point to arbitrary data. + * b. n[x], the number of children pointed to by the + * node. Internal nodes point to subtrees while + * leaf nodes point to arbitrary data. * - * c. The child pointers themselves, child[x,i] such - * that 0 <= i < n[x]. + * c. The child pointers themselves, child[x,i] such + * that 0 <= i < n[x]. * - * d. n[x]+1 key values stored in increasing - * order: + * d. n[x]+1 key values stored in increasing + * order: * - * key[x,0] < key[x,1] < ... < key[x,n[x]]. + * key[x,0] < key[x,1] < ... < key[x,n[x]]. * - * e. left[x] is a pointer to the node's left sibling - * or the null pointer if this is the left-most - * node at this level in the tree. - * - * f. right[x] is a pointer to the node's right - * sibling or the null pointer if this is the - * right-most node at this level in the tree. + * e. left[x] is a pointer to the node's left sibling + * or the null pointer if this is the left-most + * node at this level in the tree. + * + * f. right[x] is a pointer to the node's right + * sibling or the null pointer if this is the + * right-most node at this level in the tree. * - * 3. The keys key[x,i] partition the key spaces of the - * children of x: + * 3. The keys key[x,i] partition the key spaces of the + * children of x: * - * key[x,i] <= key[child[x,i],j] <= key[x,i+1] + * key[x,i] <= key[child[x,i],j] <= key[x,i+1] * - * for any valid combination of i and j. + * for any valid combination of i and j. * - * 4. There are lower and upper bounds on the number of - * child pointers a node can contain. These bounds - * can be expressed in terms of a fixed integer k>=2 - * called the `minimum degree' of the B-tree. + * 4. There are lower and upper bounds on the number of + * child pointers a node can contain. These bounds + * can be expressed in terms of a fixed integer k>=2 + * called the `minimum degree' of the B-tree. * - * a. Every node other than the root must have at least - * k child pointers and k+1 keys. If the tree is - * nonempty, the root must have at least one child - * pointer and two keys. + * a. Every node other than the root must have at least + * k child pointers and k+1 keys. If the tree is + * nonempty, the root must have at least one child + * pointer and two keys. * - * b. Every node can contain at most 2k child pointers - * and 2k+1 keys. A node is `full' if it contains - * exactly 2k child pointers and 2k+1 keys. + * b. Every node can contain at most 2k child pointers + * and 2k+1 keys. A node is `full' if it contains + * exactly 2k child pointers and 2k+1 keys. * - * 5. When searching for a particular value, V, and - * key[V] = key[x,i] for some node x and entry i, - * then: + * 5. When searching for a particular value, V, and + * key[V] = key[x,i] for some node x and entry i, + * then: * - * a. If i=0 the child[0] is followed. + * a. If i=0 the child[0] is followed. * - * b. If i=n[x] the child[n[x]-1] is followed. + * b. If i=n[x] the child[n[x]-1] is followed. * - * c. Otherwise, the child that is followed - * (either child[x,i-1] or child[x,i]) is - * determined by the type of object to which the - * leaf nodes of the tree point and is controlled - * by the key comparison function registered for - * that type of B-tree. + * c. Otherwise, the child that is followed + * (either child[x,i-1] or child[x,i]) is + * determined by the type of object to which the + * leaf nodes of the tree point and is controlled + * by the key comparison function registered for + * that type of B-tree. * * * Modifications: * - * Robb Matzke, 4 Aug 1997 - * Added calls to H5E. + * Robb Matzke, 4 Aug 1997 + * Added calls to H5E. * *------------------------------------------------------------------------- */ /* private headers */ -#include <H5private.h> /*library */ -#include <H5ACprivate.h> /*cache */ -#include <H5Bprivate.h> /*B-link trees */ -#include <H5Eprivate.h> /*error handling */ -#include <H5MFprivate.h> /*File memory management */ -#include <H5MMprivate.h> /*Core memory management */ +#include <H5private.h> /*library */ +#include <H5ACprivate.h> /*cache */ +#include <H5Bprivate.h> /*B-link trees */ +#include <H5Eprivate.h> /*error handling */ +#include <H5MFprivate.h> /*File memory management */ +#include <H5MMprivate.h> /*Core memory management */ -#define PABLO_MASK H5B_mask +#define PABLO_MASK H5B_mask #define BOUND(MIN,X,MAX) ((X)<(MIN)?(MIN):((X)>(MAX)?(MAX):(X))) /* PRIVATE PROTOTYPES */ -static H5B_ins_t H5B_insert_helper (H5F_t *f, const haddr_t *addr, - const H5B_class_t *type, - uint8 *lt_key, hbool_t *lt_key_changed, - uint8 *md_key, void *udata, - uint8 *rt_key, hbool_t *rt_key_changed, - haddr_t *retval); -static herr_t H5B_insert_child (H5F_t *f, const H5B_class_t *type, - H5B_t *bt, intn idx, const haddr_t *child, - H5B_ins_t anchor, void *md_key); -static herr_t H5B_flush (H5F_t *f, hbool_t destroy, const haddr_t *addr, - H5B_t *b); -static H5B_t *H5B_load (H5F_t *f, const haddr_t *addr, const void *_type, - void *udata); -static herr_t H5B_decode_key (H5F_t *f, H5B_t *bt, intn idx); -static herr_t H5B_decode_keys (H5F_t *f, H5B_t *bt, intn idx); -static size_t H5B_nodesize (H5F_t *f, const H5B_class_t *type, - size_t *total_nkey_size, size_t sizeof_rkey); -static herr_t H5B_split (H5F_t *f, const H5B_class_t *type, H5B_t *old_bt, - const haddr_t *old_addr, void *udata, - haddr_t *new_addr /*out*/); +static H5B_ins_t H5B_insert_helper(H5F_t *f, const haddr_t *addr, + const H5B_class_t *type, + uint8 *lt_key, hbool_t *lt_key_changed, + uint8 *md_key, void *udata, + uint8 *rt_key, hbool_t *rt_key_changed, + haddr_t *retval); +static herr_t H5B_insert_child(H5F_t *f, const H5B_class_t *type, + H5B_t *bt, intn idx, const haddr_t *child, + H5B_ins_t anchor, void *md_key); +static herr_t H5B_flush(H5F_t *f, hbool_t destroy, const haddr_t *addr, + H5B_t *b); +static H5B_t *H5B_load(H5F_t *f, const haddr_t *addr, const void *_type, + void *udata); +static herr_t H5B_decode_key(H5F_t *f, H5B_t *bt, intn idx); +static herr_t H5B_decode_keys(H5F_t *f, H5B_t *bt, intn idx); +static size_t H5B_nodesize(H5F_t *f, const H5B_class_t *type, + size_t *total_nkey_size, size_t sizeof_rkey); +static herr_t H5B_split(H5F_t *f, const H5B_class_t *type, H5B_t *old_bt, + const haddr_t *old_addr, void *udata, + haddr_t *new_addr /*out */ ); #ifdef H5B_DEBUG -static herr_t H5B_assert (H5F_t *f, const haddr_t *addr, - const H5B_class_t *type, void *udata); +static herr_t H5B_assert(H5F_t *f, const haddr_t *addr, + const H5B_class_t *type, void *udata); #endif /* H5B inherits cache-like properties from H5AC */ -static const H5AC_class_t H5AC_BT[1] = {{ - H5AC_BT_ID, - (void*(*)(H5F_t*,const haddr_t*,const void*,void*))H5B_load, - (herr_t(*)(H5F_t*,hbool_t,const haddr_t*,void*))H5B_flush, -}}; +static const H5AC_class_t H5AC_BT[1] = +{ + { + H5AC_BT_ID, + (void *(*)(H5F_t *, const haddr_t *, const void *, void *)) H5B_load, + (herr_t (*)(H5F_t *, hbool_t, const haddr_t *, void *)) H5B_flush, + }}; /* Interface initialization? */ #define INTERFACE_INIT NULL -static interface_initialize_g = FALSE; - +static interface_initialize_g = FALSE; /*------------------------------------------------------------------------- - * Function: H5B_create + * Function: H5B_create * - * Purpose: Creates a new empty B-tree leaf node. The UDATA pointer is - * passed as an argument to the sizeof_rkey() method for the - * B-tree. + * Purpose: Creates a new empty B-tree leaf node. The UDATA pointer is + * passed as an argument to the sizeof_rkey() method for the + * B-tree. * - * Return: Success: SUCCEED, address of new node is returned - * through the RETVAL argument. + * Return: Success: SUCCEED, address of new node is returned + * through the RETVAL argument. * - * Failure: FAIL + * Failure: FAIL * - * Programmer: Robb Matzke - * matzke@llnl.gov - * Jun 23 1997 + * Programmer: Robb Matzke + * matzke@llnl.gov + * Jun 23 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t -H5B_create (H5F_t *f, const H5B_class_t *type, void *udata, haddr_t *retval) +H5B_create(H5F_t *f, const H5B_class_t *type, void *udata, haddr_t *retval) { - H5B_t *bt=NULL; - size_t size, sizeof_rkey; - size_t total_native_keysize; - intn offset, i; - - FUNC_ENTER (H5B_create, FAIL); - - /* - * Check arguments. - */ - assert (f); - assert (type); - assert (retval); - - /* - * Allocate file and memory data structures. - */ - sizeof_rkey = (type->get_sizeof_rkey)(f, udata); - size = H5B_nodesize (f, type, &total_native_keysize, sizeof_rkey); - if (H5MF_alloc (f, H5MF_META, size, retval)<0) { - HRETURN_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, - "can't allocate file space for B-tree root node"); - } - bt = H5MM_xmalloc (sizeof(H5B_t)); - bt->type = type; - bt->sizeof_rkey = sizeof_rkey; - bt->dirty = TRUE; - bt->ndirty = 0; - bt->type = type; - bt->level = 0; - H5F_addr_undef (&(bt->left)); - H5F_addr_undef (&(bt->right)); - bt->nchildren = 0; - bt->page = H5MM_xcalloc (1, size); /*use calloc() to keep file clean*/ - bt->native = H5MM_xmalloc (total_native_keysize); - bt->child = H5MM_xmalloc (2*H5B_K(f,type) * sizeof(haddr_t)); - bt->key = H5MM_xmalloc ((2*H5B_K(f,type)+1) * sizeof(H5B_key_t)); - - /* - * Initialize each entry's raw child and key pointers to point into the - * `page' buffer. Each native key pointer should be null until the key is - * translated to native format. - */ - for (i=0,offset=H5B_SIZEOF_HDR(f); - i<2*H5B_K(f,type); - i++,offset+=bt->sizeof_rkey+H5F_SIZEOF_ADDR(f)) { - - bt->key[i].dirty = FALSE; - bt->key[i].rkey = bt->page + offset; - bt->key[i].nkey = NULL; - H5F_addr_undef (bt->child+i); - } - - /* - * The last possible key... - */ - bt->key[2*H5B_K(f,type)].dirty = FALSE; - bt->key[2*H5B_K(f,type)].rkey = bt->page + offset; - bt->key[2*H5B_K(f,type)].nkey = NULL; - - /* - * Cache the new B-tree node. - */ - if (H5AC_set (f, H5AC_BT, retval, bt)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTINIT, FAIL, - "can't add B-tree root node to cache"); - } - + H5B_t *bt = NULL; + size_t size, sizeof_rkey; + size_t total_native_keysize; + intn offset, i; + + FUNC_ENTER(H5B_create, FAIL); + + /* + * Check arguments. + */ + assert(f); + assert(type); + assert(retval); + + /* + * Allocate file and memory data structures. + */ + sizeof_rkey = (type->get_sizeof_rkey) (f, udata); + size = H5B_nodesize(f, type, &total_native_keysize, sizeof_rkey); + if (H5MF_alloc(f, H5MF_META, size, retval) < 0) { + HRETURN_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, + "can't allocate file space for B-tree root node"); + } + bt = H5MM_xmalloc(sizeof(H5B_t)); + bt->type = type; + bt->sizeof_rkey = sizeof_rkey; + bt->dirty = TRUE; + bt->ndirty = 0; + bt->type = type; + bt->level = 0; + H5F_addr_undef(&(bt->left)); + H5F_addr_undef(&(bt->right)); + bt->nchildren = 0; + bt->page = H5MM_xcalloc(1, size); /*use calloc() to keep file clean */ + bt->native = H5MM_xmalloc(total_native_keysize); + bt->child = H5MM_xmalloc(2 * H5B_K(f, type) * sizeof(haddr_t)); + bt->key = H5MM_xmalloc((2 * H5B_K(f, type) + 1) * sizeof(H5B_key_t)); + + /* + * Initialize each entry's raw child and key pointers to point into the + * `page' buffer. Each native key pointer should be null until the key is + * translated to native format. + */ + for (i = 0, offset = H5B_SIZEOF_HDR(f); + i < 2 * H5B_K(f, type); + i++, offset += bt->sizeof_rkey + H5F_SIZEOF_ADDR(f)) { + + bt->key[i].dirty = FALSE; + bt->key[i].rkey = bt->page + offset; + bt->key[i].nkey = NULL; + H5F_addr_undef(bt->child + i); + } + + /* + * The last possible key... + */ + bt->key[2 * H5B_K(f, type)].dirty = FALSE; + bt->key[2 * H5B_K(f, type)].rkey = bt->page + offset; + bt->key[2 * H5B_K(f, type)].nkey = NULL; + + /* + * Cache the new B-tree node. + */ + if (H5AC_set(f, H5AC_BT, retval, bt) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL, + "can't add B-tree root node to cache"); + } #ifdef H5B_DEBUG - H5B_assert (f, retval, type, udata); + H5B_assert(f, retval, type, udata); #endif - FUNC_LEAVE (SUCCEED); + FUNC_LEAVE(SUCCEED); } - /*------------------------------------------------------------------------- - * Function: H5B_load + * Function: H5B_load * - * Purpose: Loads a B-tree node from the disk. + * Purpose: Loads a B-tree node from the disk. * - * Return: Success: Pointer to a new B-tree node. + * Return: Success: Pointer to a new B-tree node. * - * Failure: NULL + * Failure: NULL * - * Programmer: Robb Matzke - * matzke@llnl.gov - * Jun 23 1997 + * Programmer: Robb Matzke + * matzke@llnl.gov + * Jun 23 1997 * * Modifications: * *------------------------------------------------------------------------- */ -static H5B_t * -H5B_load (H5F_t *f, const haddr_t *addr, const void *_type, void *udata) +static H5B_t * +H5B_load(H5F_t *f, const haddr_t *addr, const void *_type, void *udata) { - const H5B_class_t *type = (const H5B_class_t *)_type; - size_t size, total_nkey_size; - H5B_t *bt = NULL; - intn i; - uint8 *p; - H5B_t *ret_value = NULL; - - FUNC_ENTER (H5B_load, NULL); - - /* Check arguments */ - assert (f); - assert (addr && H5F_addr_defined (addr)); - assert (type); - assert (type->get_sizeof_rkey); - - bt = H5MM_xmalloc (sizeof(H5B_t)); - bt->sizeof_rkey = (type->get_sizeof_rkey)(f, udata); - size = H5B_nodesize (f, type, &total_nkey_size, bt->sizeof_rkey); - bt->type = type; - bt->dirty = FALSE; - bt->ndirty = 0; - bt->page = H5MM_xmalloc (size); - bt->native = H5MM_xmalloc (total_nkey_size); - bt->key = H5MM_xmalloc ((2*H5B_K(f,type)+1) * sizeof(H5B_key_t)); - bt->child = H5MM_xmalloc (2 * H5B_K(f,type) * sizeof(haddr_t)); - if (H5F_block_read (f, addr, size, bt->page)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_READERROR, NULL, - "can't read B-tree node"); - } - p = bt->page; - - /* magic number */ - if (HDmemcmp (p, H5B_MAGIC, H5B_SIZEOF_MAGIC)) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, NULL, - "wrong B-tree signature"); - } - p += 4; - - /* node type and level */ - if (*p++ != type->id) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, NULL, - "incorrect B-tree node level"); - } - bt->level = *p++; - - /* entries used */ - UINT16DECODE (p, bt->nchildren); - - /* sibling pointers */ - H5F_addr_decode (f, (const uint8**)&p, &(bt->left)); - H5F_addr_decode (f, (const uint8**)&p, &(bt->right)); - - /* the child/key pairs */ - for (i=0; i<2*H5B_K(f,type); i++) { - - bt->key[i].dirty = FALSE; - bt->key[i].rkey = p; - p += bt->sizeof_rkey; - bt->key[i].nkey = NULL; - - if (i<bt->nchildren) { - H5F_addr_decode (f, (const uint8**)&p, bt->child+i); - } else { - H5F_addr_undef (bt->child+i); - p += H5F_SIZEOF_ADDR(f); - } - } - - bt->key[2*H5B_K(f,type)].dirty = FALSE; - bt->key[2*H5B_K(f,type)].rkey = p; - bt->key[2*H5B_K(f,type)].nkey = NULL; - ret_value = bt; - - done: - if (!ret_value && bt) { - H5MM_xfree (bt->child); - H5MM_xfree (bt->key); - H5MM_xfree (bt->page); - H5MM_xfree (bt->native); - H5MM_xfree (bt); - } - - FUNC_LEAVE (ret_value); + const H5B_class_t *type = (const H5B_class_t *) _type; + size_t size, total_nkey_size; + H5B_t *bt = NULL; + intn i; + uint8 *p; + H5B_t *ret_value = NULL; + + FUNC_ENTER(H5B_load, NULL); + + /* Check arguments */ + assert(f); + assert(addr && H5F_addr_defined(addr)); + assert(type); + assert(type->get_sizeof_rkey); + + bt = H5MM_xmalloc(sizeof(H5B_t)); + bt->sizeof_rkey = (type->get_sizeof_rkey) (f, udata); + size = H5B_nodesize(f, type, &total_nkey_size, bt->sizeof_rkey); + bt->type = type; + bt->dirty = FALSE; + bt->ndirty = 0; + bt->page = H5MM_xmalloc(size); + bt->native = H5MM_xmalloc(total_nkey_size); + bt->key = H5MM_xmalloc((2 * H5B_K(f, type) + 1) * sizeof(H5B_key_t)); + bt->child = H5MM_xmalloc(2 * H5B_K(f, type) * sizeof(haddr_t)); + if (H5F_block_read(f, addr, size, bt->page) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_READERROR, NULL, + "can't read B-tree node"); + } + p = bt->page; + + /* magic number */ + if (HDmemcmp(p, H5B_MAGIC, H5B_SIZEOF_MAGIC)) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, NULL, + "wrong B-tree signature"); + } + p += 4; + + /* node type and level */ + if (*p++ != type->id) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, NULL, + "incorrect B-tree node level"); + } + bt->level = *p++; + + /* entries used */ + UINT16DECODE(p, bt->nchildren); + + /* sibling pointers */ + H5F_addr_decode(f, (const uint8 **) &p, &(bt->left)); + H5F_addr_decode(f, (const uint8 **) &p, &(bt->right)); + + /* the child/key pairs */ + for (i = 0; i < 2 * H5B_K(f, type); i++) { + + bt->key[i].dirty = FALSE; + bt->key[i].rkey = p; + p += bt->sizeof_rkey; + bt->key[i].nkey = NULL; + + if (i < bt->nchildren) { + H5F_addr_decode(f, (const uint8 **) &p, bt->child + i); + } else { + H5F_addr_undef(bt->child + i); + p += H5F_SIZEOF_ADDR(f); + } + } + + bt->key[2 * H5B_K(f, type)].dirty = FALSE; + bt->key[2 * H5B_K(f, type)].rkey = p; + bt->key[2 * H5B_K(f, type)].nkey = NULL; + ret_value = bt; + + done: + if (!ret_value && bt) { + H5MM_xfree(bt->child); + H5MM_xfree(bt->key); + H5MM_xfree(bt->page); + H5MM_xfree(bt->native); + H5MM_xfree(bt); + } + FUNC_LEAVE(ret_value); } - /*------------------------------------------------------------------------- - * Function: H5B_flush + * Function: H5B_flush * - * Purpose: Flushes a dirty B-tree node to disk. + * Purpose: Flushes a dirty B-tree node to disk. * - * Return: Success: SUCCEED + * Return: Success: SUCCEED * - * Failure: FAIL + * Failure: FAIL * - * Programmer: Robb Matzke - * matzke@llnl.gov - * Jun 23 1997 + * Programmer: Robb Matzke + * matzke@llnl.gov + * Jun 23 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t -H5B_flush (H5F_t *f, hbool_t destroy, const haddr_t *addr, H5B_t *bt) +H5B_flush(H5F_t *f, hbool_t destroy, const haddr_t *addr, H5B_t *bt) { - intn i; - size_t size = 0; - uint8 *p = bt->page; - - FUNC_ENTER (H5B_flush, FAIL); - - /* - * Check arguments. - */ - assert (f); - assert (addr && H5F_addr_defined (addr)); - assert (bt); - assert (bt->type); - assert (bt->type->encode); - - size = H5B_nodesize (f, bt->type, NULL, bt->sizeof_rkey); - - if (bt->dirty) { - - /* magic number */ - HDmemcpy (p, H5B_MAGIC, H5B_SIZEOF_MAGIC); - p += 4; - - /* node type and level */ - *p++ = bt->type->id; - *p++ = bt->level; - - /* entries used */ - UINT16ENCODE (p, bt->nchildren); - - /* sibling pointers */ - H5F_addr_encode (f, &p, &(bt->left)); - H5F_addr_encode (f, &p, &(bt->right)); - - /* child keys and pointers */ - for (i=0; i<=bt->nchildren; i++) { - - /* encode the key */ - assert (bt->key[i].rkey == p); - if (bt->key[i].dirty) { - if (bt->key[i].nkey) { - if ((bt->type->encode)(f, bt, bt->key[i].rkey, - bt->key[i].nkey)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTENCODE, FAIL, - "unable to encode B-tree key"); - } - } - bt->key[i].dirty = FALSE; - } - p += bt->sizeof_rkey; - - /* encode the child address */ - if (i<bt->ndirty) { - H5F_addr_encode (f, &p, &(bt->child[i])); - } else { - p += H5F_SIZEOF_ADDR(f); - } - } - - /* - * Write the disk page. We always write the header, but we don't - * bother writing data for the child entries that don't exist or - * for the final unchanged children. - */ - if (H5F_block_write (f, addr, size, bt->page)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTFLUSH, FAIL, - "unable to save B-tree node to disk"); - } - bt->dirty = FALSE; - bt->ndirty = 0; - } - - if (destroy) { - H5MM_xfree (bt->child); - H5MM_xfree (bt->key); - H5MM_xfree (bt->page); - H5MM_xfree (bt->native); - H5MM_xfree (bt); - } - - FUNC_LEAVE (SUCCEED); + intn i; + size_t size = 0; + uint8 *p = bt->page; + + FUNC_ENTER(H5B_flush, FAIL); + + /* + * Check arguments. + */ + assert(f); + assert(addr && H5F_addr_defined(addr)); + assert(bt); + assert(bt->type); + assert(bt->type->encode); + + size = H5B_nodesize(f, bt->type, NULL, bt->sizeof_rkey); + + if (bt->dirty) { + + /* magic number */ + HDmemcpy(p, H5B_MAGIC, H5B_SIZEOF_MAGIC); + p += 4; + + /* node type and level */ + *p++ = bt->type->id; + *p++ = bt->level; + + /* entries used */ + UINT16ENCODE(p, bt->nchildren); + + /* sibling pointers */ + H5F_addr_encode(f, &p, &(bt->left)); + H5F_addr_encode(f, &p, &(bt->right)); + + /* child keys and pointers */ + for (i = 0; i <= bt->nchildren; i++) { + + /* encode the key */ + assert(bt->key[i].rkey == p); + if (bt->key[i].dirty) { + if (bt->key[i].nkey) { + if ((bt->type->encode) (f, bt, bt->key[i].rkey, + bt->key[i].nkey) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTENCODE, FAIL, + "unable to encode B-tree key"); + } + } + bt->key[i].dirty = FALSE; + } + p += bt->sizeof_rkey; + + /* encode the child address */ + if (i < bt->ndirty) { + H5F_addr_encode(f, &p, &(bt->child[i])); + } else { + p += H5F_SIZEOF_ADDR(f); + } + } + + /* + * Write the disk page. We always write the header, but we don't + * bother writing data for the child entries that don't exist or + * for the final unchanged children. + */ + if (H5F_block_write(f, addr, size, bt->page) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTFLUSH, FAIL, + "unable to save B-tree node to disk"); + } + bt->dirty = FALSE; + bt->ndirty = 0; + } + if (destroy) { + H5MM_xfree(bt->child); + H5MM_xfree(bt->key); + H5MM_xfree(bt->page); + H5MM_xfree(bt->native); + H5MM_xfree(bt); + } + FUNC_LEAVE(SUCCEED); } - /*------------------------------------------------------------------------- - * Function: H5B_find + * Function: H5B_find * - * Purpose: Locate the specified information in a B-tree and return - * that information by filling in fields of the caller-supplied - * UDATA pointer depending on the type of leaf node - * requested. The UDATA can point to additional data passed - * to the key comparison function. + * Purpose: Locate the specified information in a B-tree and return + * that information by filling in fields of the caller-supplied + * UDATA pointer depending on the type of leaf node + * requested. The UDATA can point to additional data passed + * to the key comparison function. * - * Note: This function does not follow the left/right sibling - * pointers since it assumes that all nodes can be reached - * from the parent node. + * Note: This function does not follow the left/right sibling + * pointers since it assumes that all nodes can be reached + * from the parent node. * - * Return: Success: SUCCEED if found, values returned through the - * UDATA argument. + * Return: Success: SUCCEED if found, values returned through the + * UDATA argument. * - * Failure: FAIL if not found, UDATA is undefined. + * Failure: FAIL if not found, UDATA is undefined. * - * Programmer: Robb Matzke - * matzke@llnl.gov - * Jun 23 1997 + * Programmer: Robb Matzke + * matzke@llnl.gov + * Jun 23 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t -H5B_find (H5F_t *f, const H5B_class_t *type, const haddr_t *addr, void *udata) +H5B_find(H5F_t *f, const H5B_class_t *type, const haddr_t *addr, void *udata) { - H5B_t *bt=NULL; - intn idx=-1, lt=0, rt, cmp=1; - int ret_value = FAIL; - - FUNC_ENTER (H5B_find, FAIL); - - /* - * Check arguments. - */ - assert (f); - assert (type); - assert (type->decode); - assert (type->cmp3); - assert (type->found); - assert (addr && H5F_addr_defined (addr)); - - /* - * Perform a binary search to locate the child which contains - * the thing for which we're searching. - */ - if (NULL==(bt=H5AC_protect (f, H5AC_BT, addr, type, udata))) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, - "unable to load B-tree node"); - } - rt = bt->nchildren; - - while (lt<rt && cmp) { - idx = (lt + rt) / 2; - if (H5B_decode_keys (f, bt, idx)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, FAIL, - "unable to decode B-tree key(s)"); - } - - /* compare */ - if ((cmp=(type->cmp3)(f, bt->key[idx].nkey, udata, - bt->key[idx+1].nkey))<0) { - rt = idx; - } else { - lt = idx+1; - } - } - if (cmp) { - HGOTO_ERROR (H5E_BTREE, H5E_NOTFOUND, FAIL, - "B-tree key not found"); - } - - /* - * Follow the link to the subtree or to the data node. - */ - assert (idx>=0 && idx<bt->nchildren); - if (bt->level > 0) { - if ((ret_value = H5B_find (f, type, bt->child+idx, udata))<0) { - HGOTO_ERROR (H5E_BTREE, H5E_NOTFOUND, FAIL, - "key not found in subtree"); - } - } else { - ret_value = (type->found)(f, bt->child+idx, bt->key[idx].nkey, - udata, bt->key[idx+1].nkey); - if (ret_value<0) { - HGOTO_ERROR (H5E_BTREE, H5E_NOTFOUND, FAIL, - "key not found in leaf node"); - } - } - -done: - if (bt && H5AC_unprotect (f, H5AC_BT, addr, bt)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_PROTECT, FAIL, - "unable to release node"); - } - FUNC_LEAVE (ret_value); + H5B_t *bt = NULL; + intn idx = -1, lt = 0, rt, cmp = 1; + int ret_value = FAIL; + + FUNC_ENTER(H5B_find, FAIL); + + /* + * Check arguments. + */ + assert(f); + assert(type); + assert(type->decode); + assert(type->cmp3); + assert(type->found); + assert(addr && H5F_addr_defined(addr)); + + /* + * Perform a binary search to locate the child which contains + * the thing for which we're searching. + */ + if (NULL == (bt = H5AC_protect(f, H5AC_BT, addr, type, udata))) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, + "unable to load B-tree node"); + } + rt = bt->nchildren; + + while (lt < rt && cmp) { + idx = (lt + rt) / 2; + if (H5B_decode_keys(f, bt, idx) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL, + "unable to decode B-tree key(s)"); + } + /* compare */ + if ((cmp = (type->cmp3) (f, bt->key[idx].nkey, udata, + bt->key[idx + 1].nkey)) < 0) { + rt = idx; + } else { + lt = idx + 1; + } + } + if (cmp) { + HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL, + "B-tree key not found"); + } + /* + * Follow the link to the subtree or to the data node. + */ + assert(idx >= 0 && idx < bt->nchildren); + if (bt->level > 0) { + if ((ret_value = H5B_find(f, type, bt->child + idx, udata)) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL, + "key not found in subtree"); + } + } else { + ret_value = (type->found) (f, bt->child + idx, bt->key[idx].nkey, + udata, bt->key[idx + 1].nkey); + if (ret_value < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL, + "key not found in leaf node"); + } + } + + done: + if (bt && H5AC_unprotect(f, H5AC_BT, addr, bt) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL, + "unable to release node"); + } + FUNC_LEAVE(ret_value); } - /*------------------------------------------------------------------------- - * Function: H5B_split + * Function: H5B_split * - * Purpose: Split a single node into two nodes. The old node will - * contain the left children and the new node will contain the - * right children. + * Purpose: Split a single node into two nodes. The old node will + * contain the left children and the new node will contain the + * right children. * - * The UDATA pointer is passed to the sizeof_rkey() method but is - * otherwise unused. + * The UDATA pointer is passed to the sizeof_rkey() method but is + * otherwise unused. * - * The OLD_BT argument is a pointer to a protected B-tree - * node. + * The OLD_BT argument is a pointer to a protected B-tree + * node. * - * Return: Success: SUCCEED. The address of the new node is - * returned through the NEW_ADDR argument. + * Return: Success: SUCCEED. The address of the new node is + * returned through the NEW_ADDR argument. * - * Failure: FAIL + * Failure: FAIL * - * Programmer: Robb Matzke - * matzke@llnl.gov - * Jul 3 1997 + * Programmer: Robb Matzke + * matzke@llnl.gov + * Jul 3 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t -H5B_split (H5F_t *f, const H5B_class_t *type, H5B_t *old_bt, - const haddr_t *old_addr, void *udata, haddr_t *new_addr /*out*/) +H5B_split(H5F_t *f, const H5B_class_t *type, H5B_t *old_bt, + const haddr_t *old_addr, void *udata, haddr_t *new_addr /*out */ ) { - H5B_t *new_bt=NULL, *tmp_bt=NULL; - herr_t ret_value=FAIL; - intn i, k; - size_t recsize = 0; - - FUNC_ENTER (H5B_split, FAIL); - - /* - * Check arguments. - */ - assert (f); - assert (type); - assert (old_addr && H5F_addr_defined (old_addr)); - - /* - * Initialize variables. - */ - assert (old_bt->nchildren == 2*H5B_K(f,type)); - recsize = old_bt->sizeof_rkey + H5F_SIZEOF_ADDR(f); - k = H5B_K(f,type); - - /* - * Create the new B-tree node. - */ - if (H5B_create (f, type, udata, new_addr/*out*/)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTINIT, FAIL, - "unable to create B-tree"); - } - if (NULL==(new_bt=H5AC_protect (f, H5AC_BT, new_addr, type, udata))) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, - "unable to protect B-tree"); - } - new_bt->level = old_bt->level; - - /* - * Copy data from the old node to the new node. - */ - HDmemcpy (new_bt->page + H5B_SIZEOF_HDR(f), - old_bt->page + H5B_SIZEOF_HDR(f) + k*recsize, - k*recsize + new_bt->sizeof_rkey); - HDmemcpy (new_bt->native, - old_bt->native + k*type->sizeof_nkey, - (k+1) * type->sizeof_nkey); - - for (i=0; i<=k; i++) { - /* key */ - new_bt->key[i].dirty = old_bt->key[k+i].dirty; - if (old_bt->key[k+i].nkey) { - new_bt->key[i].nkey = new_bt->native + i*type->sizeof_nkey; - } - /* child */ - if (i<k) { - new_bt->child[i] = old_bt->child[k+i]; - } - } - new_bt->ndirty = new_bt->nchildren = k; - - /* - * Truncate the old node. - */ - old_bt->dirty = TRUE; - old_bt->ndirty = old_bt->nchildren = k; - - /* - * Update sibling pointers. - */ - new_bt->left = *old_addr; - new_bt->right = old_bt->right; - - if (H5F_addr_defined (&(old_bt->right))) { - if (NULL==(tmp_bt=H5AC_find (f, H5AC_BT, &(old_bt->right), type, - udata))) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, - "unable to load right sibling"); - } - tmp_bt->dirty = TRUE; - tmp_bt->left = *new_addr; - } - old_bt->right = *new_addr; - - HGOTO_DONE (SUCCEED); - -done: - { - if (new_bt && H5AC_unprotect (f, H5AC_BT, new_addr, new_bt)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_PROTECT, FAIL, - "unable to release B-tree node"); - } - } - FUNC_LEAVE (ret_value); + H5B_t *new_bt = NULL, *tmp_bt = NULL; + herr_t ret_value = FAIL; + intn i, k; + size_t recsize = 0; + + FUNC_ENTER(H5B_split, FAIL); + + /* + * Check arguments. + */ + assert(f); + assert(type); + assert(old_addr && H5F_addr_defined(old_addr)); + + /* + * Initialize variables. + */ + assert(old_bt->nchildren == 2 * H5B_K(f, type)); + recsize = old_bt->sizeof_rkey + H5F_SIZEOF_ADDR(f); + k = H5B_K(f, type); + + /* + * Create the new B-tree node. + */ + if (H5B_create(f, type, udata, new_addr /*out */ ) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL, + "unable to create B-tree"); + } + if (NULL == (new_bt = H5AC_protect(f, H5AC_BT, new_addr, type, udata))) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, + "unable to protect B-tree"); + } + new_bt->level = old_bt->level; + + /* + * Copy data from the old node to the new node. + */ + HDmemcpy(new_bt->page + H5B_SIZEOF_HDR(f), + old_bt->page + H5B_SIZEOF_HDR(f) + k * recsize, + k * recsize + new_bt->sizeof_rkey); + HDmemcpy(new_bt->native, + old_bt->native + k * type->sizeof_nkey, + (k + 1) * type->sizeof_nkey); + + for (i = 0; i <= k; i++) { + /* key */ + new_bt->key[i].dirty = old_bt->key[k + i].dirty; + if (old_bt->key[k + i].nkey) { + new_bt->key[i].nkey = new_bt->native + i * type->sizeof_nkey; + } + /* child */ + if (i < k) { + new_bt->child[i] = old_bt->child[k + i]; + } + } + new_bt->ndirty = new_bt->nchildren = k; + + /* + * Truncate the old node. + */ + old_bt->dirty = TRUE; + old_bt->ndirty = old_bt->nchildren = k; + + /* + * Update sibling pointers. + */ + new_bt->left = *old_addr; + new_bt->right = old_bt->right; + + if (H5F_addr_defined(&(old_bt->right))) { + if (NULL == (tmp_bt = H5AC_find(f, H5AC_BT, &(old_bt->right), type, + udata))) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, + "unable to load right sibling"); + } + tmp_bt->dirty = TRUE; + tmp_bt->left = *new_addr; + } + old_bt->right = *new_addr; + + HGOTO_DONE(SUCCEED); + + done: + { + if (new_bt && H5AC_unprotect(f, H5AC_BT, new_addr, new_bt) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL, + "unable to release B-tree node"); + } + } + FUNC_LEAVE(ret_value); } - /*------------------------------------------------------------------------- - * Function: H5B_decode_key + * Function: H5B_decode_key * - * Purpose: Decode the specified key into native format. + * Purpose: Decode the specified key into native format. * - * Return: Success: SUCCEED + * Return: Success: SUCCEED * - * Failure: FAIL + * Failure: FAIL * - * Programmer: Robb Matzke - * matzke@llnl.gov - * Jul 8 1997 + * Programmer: Robb Matzke + * matzke@llnl.gov + * Jul 8 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t -H5B_decode_key (H5F_t *f, H5B_t *bt, intn idx) +H5B_decode_key(H5F_t *f, H5B_t *bt, intn idx) { - FUNC_ENTER (H5B_decode_key, FAIL); - - bt->key[idx].nkey = bt->native + idx * bt->type->sizeof_nkey; - if ((bt->type->decode)(f, bt, bt->key[idx].rkey, - bt->key[idx].nkey)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTDECODE, FAIL, - "unable to decode key"); - } - - FUNC_LEAVE (SUCCEED); + FUNC_ENTER(H5B_decode_key, FAIL); + + bt->key[idx].nkey = bt->native + idx * bt->type->sizeof_nkey; + if ((bt->type->decode) (f, bt, bt->key[idx].rkey, + bt->key[idx].nkey) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL, + "unable to decode key"); + } + FUNC_LEAVE(SUCCEED); } - /*------------------------------------------------------------------------- - * Function: H5B_decode_keys + * Function: H5B_decode_keys * - * Purpose: Decode keys on either side of the specified branch. + * Purpose: Decode keys on either side of the specified branch. * - * Return: Success: SUCCEED + * Return: Success: SUCCEED * - * Failure: FAIL + * Failure: FAIL * - * Programmer: Robb Matzke + * Programmer: Robb Matzke * Tuesday, October 14, 1997 * * Modifications: @@ -719,912 +707,888 @@ H5B_decode_key (H5F_t *f, H5B_t *bt, intn idx) *------------------------------------------------------------------------- */ static herr_t -H5B_decode_keys (H5F_t *f, H5B_t *bt, intn idx) +H5B_decode_keys(H5F_t *f, H5B_t *bt, intn idx) { - FUNC_ENTER (H5B_decode_keys, FAIL); - - assert (f); - assert (bt); - assert (idx>=0 && idx<bt->nchildren); - - if (!bt->key[idx].nkey && H5B_decode_key (f, bt, idx)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTDECODE, FAIL, - "unable to decode key"); - } - if (!bt->key[idx+1].nkey && H5B_decode_key (f, bt, idx+1)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTDECODE, FAIL, - "unable to decode key"); - } - - FUNC_LEAVE (SUCCEED); + FUNC_ENTER(H5B_decode_keys, FAIL); + + assert(f); + assert(bt); + assert(idx >= 0 && idx < bt->nchildren); + + if (!bt->key[idx].nkey && H5B_decode_key(f, bt, idx) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL, + "unable to decode key"); + } + if (!bt->key[idx + 1].nkey && H5B_decode_key(f, bt, idx + 1) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL, + "unable to decode key"); + } + FUNC_LEAVE(SUCCEED); } - /*------------------------------------------------------------------------- - * Function: H5B_insert + * Function: H5B_insert * - * Purpose: Adds a new item to the B-tree. If the root node of - * the B-tree splits then the B-tree gets a new address. + * Purpose: Adds a new item to the B-tree. If the root node of + * the B-tree splits then the B-tree gets a new address. * - * Return: Success: SUCCEED. + * Return: Success: SUCCEED. * - * Failure: FAIL + * Failure: FAIL * - * Programmer: Robb Matzke - * matzke@llnl.gov - * Jun 23 1997 + * Programmer: Robb Matzke + * matzke@llnl.gov + * Jun 23 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t -H5B_insert (H5F_t *f, const H5B_class_t *type, const haddr_t *addr, - void *udata) +H5B_insert(H5F_t *f, const H5B_class_t *type, const haddr_t *addr, + void *udata) { - uint8 lt_key[1024], md_key[1024], rt_key[1024]; - hbool_t lt_key_changed=FALSE, rt_key_changed=FALSE; - haddr_t child, old_root; - intn level; - H5B_t *bt; - size_t size; - uint8 *buf; - H5B_ins_t my_ins = H5B_INS_ERROR; - - FUNC_ENTER (H5B_insert, FAIL); - - /* - * Check arguments. - */ - assert (f); - assert (type); - assert (type->sizeof_nkey <= sizeof lt_key); - assert (addr && H5F_addr_defined (addr)); - - if ((my_ins=H5B_insert_helper (f, addr, type, lt_key, <_key_changed, - md_key, udata, rt_key, &rt_key_changed, - &child/*out*/))<0 || my_ins<0) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTINIT, FAIL, - "unable to insert key"); - } - if (H5B_INS_NOOP==my_ins) HRETURN (SUCCEED); - assert (H5B_INS_RIGHT==my_ins); - - /* the current root */ - if (NULL==(bt = H5AC_find (f, H5AC_BT, addr, type, udata))) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, - "unable to locate root of B-tree"); - } - level = bt->level; - if (!lt_key_changed) { - if (!bt->key[0].nkey && H5B_decode_key (f, bt, 0)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTDECODE, FAIL, - "unable to decode key"); - } - HDmemcpy (lt_key, bt->key[0].nkey, type->sizeof_nkey); - } - - /* the new node */ - if (NULL==(bt = H5AC_find (f, H5AC_BT, &child, type, udata))) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, - "unable to load new node"); - } - if (!rt_key_changed) { - if (!bt->key[bt->nchildren].nkey && - H5B_decode_key (f, bt, bt->nchildren)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTDECODE, FAIL, - "unable to decode key"); - } - HDmemcpy (rt_key, bt->key[bt->nchildren].nkey, type->sizeof_nkey); - } - - /* - * Copy the old root node to some other file location and make the new - * root at the old root's previous address. This prevents the B-tree - * from "moving". - */ - size = H5B_nodesize (f, type, NULL, bt->sizeof_rkey); - buf = H5MM_xmalloc (size); - if (H5MF_alloc (f, H5MF_META, size, &old_root/*out*/)<0) { - HRETURN_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, - "unable to allocate file space to move root"); - } - if (H5AC_flush (f, H5AC_BT, addr, FALSE)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTFLUSH, FAIL, - "unable to flush B-tree root node"); - } - if (H5F_block_read (f, addr, size, buf)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_READERROR, FAIL, - "unable to read B-tree root node"); - } - if (H5F_block_write (f, &old_root, size, buf)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_WRITEERROR, FAIL, - "unable to move B-tree root node"); - } - if (H5AC_rename (f, H5AC_BT, addr, &old_root)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTSPLIT, FAIL, - "unable to move B-tree root node"); - } - - buf = H5MM_xfree (buf); - - /* update the new child's left pointer */ - if (NULL==(bt=H5AC_find (f, H5AC_BT, &child, type, udata))) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, - "unable to load new child"); - } - bt->dirty = TRUE; - bt->left = old_root; - - /* clear the old root at the old address (we already copied it)*/ - if (NULL==(bt=H5AC_find (f, H5AC_BT, addr, type, udata))) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, - "unable to clear old root location"); - } - bt->dirty = TRUE; - bt->ndirty = 0; - H5F_addr_undef (&(bt->left)); - H5F_addr_undef (&(bt->right)); - bt->nchildren = 0; - - /* the new root */ - if (NULL==(bt = H5AC_find (f, H5AC_BT, addr, type, udata))) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, - "unable to load new root"); - } - bt->dirty = TRUE; - bt->ndirty = 2; - bt->level = level+1; - bt->nchildren = 2; - - bt->child[0] = old_root; - bt->key[0].dirty = TRUE; - bt->key[0].nkey = bt->native; - HDmemcpy (bt->key[0].nkey, lt_key, type->sizeof_nkey); - - bt->child[1] = child; - bt->key[1].dirty = TRUE; - bt->key[1].nkey = bt->native + type->sizeof_nkey; - HDmemcpy (bt->key[1].nkey, md_key, type->sizeof_nkey); - - bt->key[2].dirty = TRUE; - bt->key[2].nkey = bt->native + 2 * type->sizeof_nkey; - HDmemcpy (bt->key[2].nkey, rt_key, type->sizeof_nkey); + uint8 lt_key[1024], md_key[1024], rt_key[1024]; + hbool_t lt_key_changed = FALSE, rt_key_changed = FALSE; + haddr_t child, old_root; + intn level; + H5B_t *bt; + size_t size; + uint8 *buf; + H5B_ins_t my_ins = H5B_INS_ERROR; + + FUNC_ENTER(H5B_insert, FAIL); + + /* + * Check arguments. + */ + assert(f); + assert(type); + assert(type->sizeof_nkey <= sizeof lt_key); + assert(addr && H5F_addr_defined(addr)); + + if ((my_ins = H5B_insert_helper(f, addr, type, lt_key, <_key_changed, + md_key, udata, rt_key, &rt_key_changed, + &child /*out */ )) < 0 || my_ins < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL, + "unable to insert key"); + } + if (H5B_INS_NOOP == my_ins) + HRETURN(SUCCEED); + assert(H5B_INS_RIGHT == my_ins); + + /* the current root */ + if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, + "unable to locate root of B-tree"); + } + level = bt->level; + if (!lt_key_changed) { + if (!bt->key[0].nkey && H5B_decode_key(f, bt, 0) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL, + "unable to decode key"); + } + HDmemcpy(lt_key, bt->key[0].nkey, type->sizeof_nkey); + } + /* the new node */ + if (NULL == (bt = H5AC_find(f, H5AC_BT, &child, type, udata))) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, + "unable to load new node"); + } + if (!rt_key_changed) { + if (!bt->key[bt->nchildren].nkey && + H5B_decode_key(f, bt, bt->nchildren) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL, + "unable to decode key"); + } + HDmemcpy(rt_key, bt->key[bt->nchildren].nkey, type->sizeof_nkey); + } + /* + * Copy the old root node to some other file location and make the new + * root at the old root's previous address. This prevents the B-tree + * from "moving". + */ + size = H5B_nodesize(f, type, NULL, bt->sizeof_rkey); + buf = H5MM_xmalloc(size); + if (H5MF_alloc(f, H5MF_META, size, &old_root /*out */ ) < 0) { + HRETURN_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, + "unable to allocate file space to move root"); + } + if (H5AC_flush(f, H5AC_BT, addr, FALSE) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTFLUSH, FAIL, + "unable to flush B-tree root node"); + } + if (H5F_block_read(f, addr, size, buf) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_READERROR, FAIL, + "unable to read B-tree root node"); + } + if (H5F_block_write(f, &old_root, size, buf) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_WRITEERROR, FAIL, + "unable to move B-tree root node"); + } + if (H5AC_rename(f, H5AC_BT, addr, &old_root) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTSPLIT, FAIL, + "unable to move B-tree root node"); + } + buf = H5MM_xfree(buf); + + /* update the new child's left pointer */ + if (NULL == (bt = H5AC_find(f, H5AC_BT, &child, type, udata))) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, + "unable to load new child"); + } + bt->dirty = TRUE; + bt->left = old_root; + + /* clear the old root at the old address (we already copied it) */ + if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, + "unable to clear old root location"); + } + bt->dirty = TRUE; + bt->ndirty = 0; + H5F_addr_undef(&(bt->left)); + H5F_addr_undef(&(bt->right)); + bt->nchildren = 0; + + /* the new root */ + if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, + "unable to load new root"); + } + bt->dirty = TRUE; + bt->ndirty = 2; + bt->level = level + 1; + bt->nchildren = 2; + + bt->child[0] = old_root; + bt->key[0].dirty = TRUE; + bt->key[0].nkey = bt->native; + HDmemcpy(bt->key[0].nkey, lt_key, type->sizeof_nkey); + + bt->child[1] = child; + bt->key[1].dirty = TRUE; + bt->key[1].nkey = bt->native + type->sizeof_nkey; + HDmemcpy(bt->key[1].nkey, md_key, type->sizeof_nkey); + + bt->key[2].dirty = TRUE; + bt->key[2].nkey = bt->native + 2 * type->sizeof_nkey; + HDmemcpy(bt->key[2].nkey, rt_key, type->sizeof_nkey); #ifdef H5B_DEBUG - H5B_assert (f, addr, type, udata); + H5B_assert(f, addr, type, udata); #endif - FUNC_LEAVE (SUCCEED); + FUNC_LEAVE(SUCCEED); } - /*------------------------------------------------------------------------- - * Function: H5B_insert_child + * Function: H5B_insert_child * - * Purpose: Insert a child at the specified address with the - * specified left or right key. The BT argument is a pointer - * to a protected B-tree node. + * Purpose: Insert a child at the specified address with the + * specified left or right key. The BT argument is a pointer + * to a protected B-tree node. * - * Return: Success: SUCCEED + * Return: Success: SUCCEED * - * Failure: FAIL + * Failure: FAIL * - * Programmer: Robb Matzke - * matzke@llnl.gov - * Jul 8 1997 + * Programmer: Robb Matzke + * matzke@llnl.gov + * Jul 8 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t -H5B_insert_child (H5F_t *f, const H5B_class_t *type, H5B_t *bt, - intn idx, const haddr_t *child, H5B_ins_t anchor, - void *md_key) +H5B_insert_child(H5F_t *f, const H5B_class_t *type, H5B_t *bt, + intn idx, const haddr_t *child, H5B_ins_t anchor, + void *md_key) { - size_t recsize; - intn i; - - FUNC_ENTER (H5B_insert_child, FAIL); - assert (bt); - assert (child); - - bt->dirty = TRUE; - recsize = bt->sizeof_rkey + H5F_SIZEOF_ADDR(f); - - if (H5B_INS_RIGHT==anchor) { - /* - * The MD_KEY is the left key of the new node. - */ - HDmemmove (bt->page + H5B_SIZEOF_HDR(f) + (idx+1)*recsize, - bt->page + H5B_SIZEOF_HDR(f) + idx*recsize, - (bt->nchildren-idx)*recsize + bt->sizeof_rkey); - - HDmemmove (bt->native + (idx+1) * type->sizeof_nkey, - bt->native + idx * type->sizeof_nkey, - ((bt->nchildren-idx)+1) * type->sizeof_nkey); - - for (i=bt->nchildren; i>=idx; --i) { - bt->key[i+1].dirty = bt->key[i].dirty; - if (bt->key[i].nkey) { - bt->key[i+1].nkey = bt->native + (i+1) * type->sizeof_nkey; - } else { - bt->key[i+1].nkey = NULL; - } - } - bt->key[idx].dirty = TRUE; - bt->key[idx].nkey = bt->native + idx * type->sizeof_nkey; - HDmemcpy (bt->key[idx].nkey, md_key, type->sizeof_nkey); - - } else { - /* - * The MD_KEY is the right key of the new node. - */ - HDmemmove (bt->page + (H5B_SIZEOF_HDR(f) + - (idx+1)*recsize + bt->sizeof_rkey), - bt->page + (H5B_SIZEOF_HDR(f) + - idx*recsize + bt->sizeof_rkey), - (bt->nchildren-idx) * recsize); - - HDmemmove (bt->native + (idx+2)*type->sizeof_nkey, - bt->native + (idx+1)*type->sizeof_nkey, - (bt->nchildren-idx) * type->sizeof_nkey); - - for (i=bt->nchildren; i>idx; --i) { - bt->key[i+1].dirty = bt->key[i].dirty; - if (bt->key[i].nkey) { - bt->key[i+1].nkey = bt->native + (i+1) * type->sizeof_nkey; - } else { - bt->key[i+1].nkey = NULL; - } - } - bt->key[idx+1].dirty = TRUE; - bt->key[idx+1].nkey = bt->native + (idx+1) * type->sizeof_nkey; - HDmemcpy (bt->key[idx+1].nkey, md_key, type->sizeof_nkey); - } - - HDmemmove (bt->child + idx + 1, - bt->child + idx, - (bt->nchildren - idx) * sizeof(haddr_t)); - - bt->child[idx] = *child; - bt->nchildren += 1; - bt->ndirty = bt->nchildren; - - FUNC_LEAVE (SUCCEED); -} - - + size_t recsize; + intn i; + + FUNC_ENTER(H5B_insert_child, FAIL); + assert(bt); + assert(child); + + bt->dirty = TRUE; + recsize = bt->sizeof_rkey + H5F_SIZEOF_ADDR(f); + + if (H5B_INS_RIGHT == anchor) { + /* + * The MD_KEY is the left key of the new node. + */ + HDmemmove(bt->page + H5B_SIZEOF_HDR(f) + (idx + 1) * recsize, + bt->page + H5B_SIZEOF_HDR(f) + idx * recsize, + (bt->nchildren - idx) * recsize + bt->sizeof_rkey); + + HDmemmove(bt->native + (idx + 1) * type->sizeof_nkey, + bt->native + idx * type->sizeof_nkey, + ((bt->nchildren - idx) + 1) * type->sizeof_nkey); + + for (i = bt->nchildren; i >= idx; --i) { + bt->key[i + 1].dirty = bt->key[i].dirty; + if (bt->key[i].nkey) { + bt->key[i + 1].nkey = bt->native + (i + 1) * type->sizeof_nkey; + } else { + bt->key[i + 1].nkey = NULL; + } + } + bt->key[idx].dirty = TRUE; + bt->key[idx].nkey = bt->native + idx * type->sizeof_nkey; + HDmemcpy(bt->key[idx].nkey, md_key, type->sizeof_nkey); + + } else { + /* + * The MD_KEY is the right key of the new node. + */ + HDmemmove(bt->page + (H5B_SIZEOF_HDR(f) + + (idx + 1) * recsize + bt->sizeof_rkey), + bt->page + (H5B_SIZEOF_HDR(f) + + idx * recsize + bt->sizeof_rkey), + (bt->nchildren - idx) * recsize); + + HDmemmove(bt->native + (idx + 2) * type->sizeof_nkey, + bt->native + (idx + 1) * type->sizeof_nkey, + (bt->nchildren - idx) * type->sizeof_nkey); + + for (i = bt->nchildren; i > idx; --i) { + bt->key[i + 1].dirty = bt->key[i].dirty; + if (bt->key[i].nkey) { + bt->key[i + 1].nkey = bt->native + (i + 1) * type->sizeof_nkey; + } else { + bt->key[i + 1].nkey = NULL; + } + } + bt->key[idx + 1].dirty = TRUE; + bt->key[idx + 1].nkey = bt->native + (idx + 1) * type->sizeof_nkey; + HDmemcpy(bt->key[idx + 1].nkey, md_key, type->sizeof_nkey); + } + + HDmemmove(bt->child + idx + 1, + bt->child + idx, + (bt->nchildren - idx) * sizeof(haddr_t)); + + bt->child[idx] = *child; + bt->nchildren += 1; + bt->ndirty = bt->nchildren; + + FUNC_LEAVE(SUCCEED); +} /*------------------------------------------------------------------------- - * Function: H5B_insert_helper + * Function: H5B_insert_helper * - * Purpose: Inserts the item UDATA into the tree rooted at ADDR and having - * the specified type. + * Purpose: Inserts the item UDATA into the tree rooted at ADDR and having + * the specified type. * - * On return, if LT_KEY_CHANGED is non-zero, then LT_KEY is - * the new native left key. Similarily for RT_KEY_CHANGED - * and RT_KEY. + * On return, if LT_KEY_CHANGED is non-zero, then LT_KEY is + * the new native left key. Similarily for RT_KEY_CHANGED + * and RT_KEY. * - * If the node splits, then MD_KEY contains the key that - * was split between the two nodes (that is, the key that - * appears as the max key in the left node and the min key - * in the right node). + * If the node splits, then MD_KEY contains the key that + * was split between the two nodes (that is, the key that + * appears as the max key in the left node and the min key + * in the right node). * - * Return: Success: A B-tree operation. The address of the new - * node, if the node splits, is returned through - * the NEW_NODE argument. The new node is always - * to the right of the previous node. + * Return: Success: A B-tree operation. The address of the new + * node, if the node splits, is returned through + * the NEW_NODE argument. The new node is always + * to the right of the previous node. * - * Failure: H5B_INS_ERROR + * Failure: H5B_INS_ERROR * - * Programmer: Robb Matzke - * matzke@llnl.gov - * Jul 9 1997 + * Programmer: Robb Matzke + * matzke@llnl.gov + * Jul 9 1997 * * Modifications: * *------------------------------------------------------------------------- */ static H5B_ins_t -H5B_insert_helper (H5F_t *f, const haddr_t *addr, const H5B_class_t *type, - uint8 *lt_key, hbool_t *lt_key_changed, - uint8 *md_key, void *udata, - uint8 *rt_key, hbool_t *rt_key_changed, - haddr_t *new_node/*out*/) +H5B_insert_helper(H5F_t *f, const haddr_t *addr, const H5B_class_t *type, + uint8 *lt_key, hbool_t *lt_key_changed, + uint8 *md_key, void *udata, + uint8 *rt_key, hbool_t *rt_key_changed, + haddr_t *new_node /*out */ ) { - H5B_t *bt=NULL, *twin=NULL, *tmp_bt=NULL; - intn lt=0, idx=-1, rt, cmp=-1; - haddr_t child_addr; - H5B_ins_t my_ins = H5B_INS_ERROR; - H5B_ins_t ret_value = H5B_INS_ERROR; - - FUNC_ENTER (H5B_insert_helper, H5B_INS_ERROR); - - /* - * Check arguments - */ - assert (f); - assert (addr && H5F_addr_defined (addr)); - assert (type); - assert (type->decode); - assert (type->cmp3); - assert (type->new); - assert (lt_key); - assert (lt_key_changed); - assert (rt_key); - assert (rt_key_changed); - assert (new_node); - - *lt_key_changed = FALSE; - *rt_key_changed = FALSE; - - /* - * Use a binary search to find the child that will receive the new - * data. When the search completes IDX points to the child that - * should get the new data. - */ - if (NULL==(bt=H5AC_protect (f, H5AC_BT, addr, type, udata))) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR, - "unable to load node"); - } - rt = bt->nchildren; - - while (lt<rt && cmp) { - idx = (lt + rt) / 2; - if (H5B_decode_keys (f, bt, idx)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, - "unable to decode key"); - } - if ((cmp=(type->cmp3)(f, bt->key[idx].nkey, udata, - bt->key[idx+1].nkey))<0) { - rt = idx; - } else { - lt = idx+1; - } - } - - if (0==bt->nchildren) { - /* - * The value being inserted will be the only value in this tree. We - * must necessarily be at level zero. - */ - assert (0==bt->level); - bt->key[0].nkey = bt->native; - bt->key[1].nkey = bt->native + type->sizeof_nkey; - if ((type->new)(f, H5B_INS_FIRST, bt->key[0].nkey, udata, - bt->key[1].nkey, bt->child+0/*out*/)<0) { - bt->key[0].nkey = bt->key[1].nkey = NULL; - HGOTO_ERROR (H5E_BTREE, H5E_CANTINIT, H5B_INS_ERROR, - "unable to create leaf node"); - } - bt->nchildren = 1; - bt->dirty = TRUE; - bt->ndirty = 1; - bt->key[0].dirty = TRUE; - bt->key[1].dirty = TRUE; - idx = 0; - - if (type->follow_min) { - if ((my_ins=(type->insert)(f, bt->child+idx, - bt->key[idx].nkey, lt_key_changed, - md_key, udata, - bt->key[idx+1].nkey, rt_key_changed, - &child_addr/*out*/))<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, - "can't insert first leaf node"); - } - } else { - my_ins = H5B_INS_NOOP; - } - - } else if (cmp<0 && idx<=0 && bt->level>0) { - /* - * The value being inserted is less than any value in this tree. Follow - * the minimum branch out of this node to a subtree. - */ - idx = 0; - if (H5B_decode_keys (f, bt, idx)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, - "unable to decode key"); - } - if ((my_ins=H5B_insert_helper (f, bt->child+idx, type, - bt->key[idx].nkey, lt_key_changed, - md_key, udata, - bt->key[idx+1].nkey, rt_key_changed, - &child_addr/*out*/))<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, - "can't insert minimum subtree"); - } - - } else if (cmp<0 && idx<=0 && type->follow_min) { - /* - * The value being inserted is less than any leaf node out of this - * current node. Follow the minimum branch to a leaf node and let the - * subclass handle the problem. - */ - idx = 0; - if (H5B_decode_keys (f, bt, idx)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, - "unable to decode key"); - } - if ((my_ins=(type->insert)(f, bt->child+idx, - bt->key[idx].nkey, lt_key_changed, - md_key, udata, - bt->key[idx+1].nkey, rt_key_changed, - &child_addr/*out*/))<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, - "can't insert minimum leaf node"); - } - - } else if (cmp<0 && idx<=0) { - /* - * The value being inserted is less than any leaf node out of the - * current node. Create a new minimum leaf node out of this B-tree - * node. This node is not empty (handled above). - */ - idx = 0; - if (H5B_decode_keys (f, bt, idx)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, - "unable to decode key"); - } - my_ins = H5B_INS_LEFT; - HDmemcpy (md_key, bt->key[idx].nkey, type->sizeof_nkey); - if ((type->new)(f, H5B_INS_LEFT, bt->key[idx].nkey, udata, md_key, - &child_addr/*out*/)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, - "can't insert minimum leaf node"); - } - *lt_key_changed = TRUE; - - } else if (cmp>0 && idx+1>=bt->nchildren && bt->level>0) { - /* - * The value being inserted is larger than any value in this tree. - * Follow the maximum branch out of this node to a subtree. - */ - idx = bt->nchildren - 1; - if (H5B_decode_keys (f, bt, idx)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, - "unable to decode key"); - } - if ((my_ins=H5B_insert_helper (f, bt->child+idx, type, - bt->key[idx].nkey, lt_key_changed, - md_key, udata, - bt->key[idx+1].nkey, rt_key_changed, - &child_addr/*out*/))<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, - "can't insert maximum subtree"); - } - - } else if (cmp>0 && idx+1>=bt->nchildren && type->follow_max) { - /* - * The value being inserted is larger than any leaf node out of the - * current node. Follow the maximum branch to a leaf node and let the - * subclass handle the problem. - */ - idx = bt->nchildren - 1; - if (H5B_decode_keys (f, bt, idx)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, - "unable to decode key"); - } - if ((my_ins=(type->insert)(f, bt->child+idx, - bt->key[idx].nkey, lt_key_changed, - md_key, udata, - bt->key[idx+1].nkey, rt_key_changed, - &child_addr/*out*/))<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, - "can't insert maximum leaf node"); - } - - } else if (cmp>0 && idx+1>=bt->nchildren) { - /* - * The value being inserted is larger than any leaf node out of the - * current node. Create a new maximum leaf node out of this B-tree - * node. - */ - idx = bt->nchildren - 1; - if (H5B_decode_keys (f, bt, idx)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, - "unable to decode key"); - } - my_ins = H5B_INS_RIGHT; - HDmemcpy (md_key, bt->key[idx+1].nkey, type->sizeof_nkey); - if ((type->new)(f, H5B_INS_RIGHT, md_key, udata, bt->key[idx+1].nkey, - &child_addr/*out*/)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, - "can't insert maximum leaf node"); - } - *rt_key_changed = TRUE; - - } else if (cmp) { - /* - * We couldn't figure out which branch to follow out of this node. THIS - * IS A MAJOR PROBLEM THAT NEEDS TO BE FIXED --rpm. - */ - assert ("INTERNAL HDF5 ERROR (see rpm)" && 0); - - } else if (bt->level>0) { - /* - * Follow a branch out of this node to another subtree. - */ - assert (idx>=0 && idx<bt->nchildren); - if ((my_ins=H5B_insert_helper (f, bt->child+idx, type, - bt->key[idx].nkey, lt_key_changed, - md_key, udata, - bt->key[idx+1].nkey, rt_key_changed, - &child_addr/*out*/))<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, - "can't insert subtree"); - } - - } else { - /* - * Follow a branch out of this node to a leaf node of some other type. - */ - assert (idx>=0 && idx<bt->nchildren); - if ((my_ins=(type->insert)(f, bt->child+idx, - bt->key[idx].nkey, lt_key_changed, - md_key, udata, - bt->key[idx+1].nkey, rt_key_changed, - &child_addr/*out*/))<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, - "can't insert leaf node"); - } - - } - assert (my_ins>=0); - - /* - * Update the left and right keys of the current node. - */ - if (*lt_key_changed) { - bt->dirty = TRUE; - bt->key[idx].dirty = TRUE; - if (idx>0) { - *lt_key_changed = FALSE; - } else { - HDmemcpy (lt_key, bt->key[idx].nkey, type->sizeof_nkey); - } - } - if (*rt_key_changed) { - bt->dirty = TRUE; - bt->key[idx+1].dirty = TRUE; - if (idx+1<bt->nchildren) { - *rt_key_changed = FALSE; - } else { - HDmemcpy (rt_key, bt->key[idx+1].nkey, type->sizeof_nkey); - } - } - - if (H5B_INS_CHANGE==my_ins) { - /* - * The insertion simply changed the address for the child. - */ - bt->child[idx] = child_addr; - bt->dirty = TRUE; - bt->ndirty = MAX (bt->ndirty, idx+1); - ret_value = H5B_INS_NOOP; - - } else if (H5B_INS_LEFT==my_ins || H5B_INS_RIGHT==my_ins) { - /* Make sure IDX is the slot number for the new node. */ - if (H5B_INS_RIGHT==my_ins) idx++; - - /* If this node is full then split it before inserting the new child. */ - if (bt->nchildren==2*H5B_K (f, type)) { - if (H5B_split (f, type, bt, addr, udata, new_node/*out*/)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTSPLIT, H5B_INS_ERROR, - "can't split node"); - } - if (NULL==(twin=H5AC_protect (f, H5AC_BT, new_node, type, udata))) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR, - "can't load B-tree"); - } - if (idx<=H5B_K (f, type)) { - tmp_bt = bt; - } else { - idx -= H5B_K (f, type); - tmp_bt = twin; - } - } else { - tmp_bt = bt; - } - - /* Insert the child */ - if (H5B_insert_child (f, type, tmp_bt, idx, &child_addr, my_ins, - md_key)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, - "can't insert child"); - } - } - - - /* - * If this node split, return the mid key (the one that is shared - * by the left and right node). - */ - if (twin) { - if (!twin->key[0].nkey && H5B_decode_key (f, twin, 0)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, - "unable to decode key"); - } - HDmemcpy (md_key, twin->key[0].nkey, type->sizeof_nkey); - ret_value = H5B_INS_RIGHT; + H5B_t *bt = NULL, *twin = NULL, *tmp_bt = NULL; + intn lt = 0, idx = -1, rt, cmp = -1; + haddr_t child_addr; + H5B_ins_t my_ins = H5B_INS_ERROR; + H5B_ins_t ret_value = H5B_INS_ERROR; + + FUNC_ENTER(H5B_insert_helper, H5B_INS_ERROR); + + /* + * Check arguments + */ + assert(f); + assert(addr && H5F_addr_defined(addr)); + assert(type); + assert(type->decode); + assert(type->cmp3); + assert(type->new); + assert(lt_key); + assert(lt_key_changed); + assert(rt_key); + assert(rt_key_changed); + assert(new_node); + + *lt_key_changed = FALSE; + *rt_key_changed = FALSE; + + /* + * Use a binary search to find the child that will receive the new + * data. When the search completes IDX points to the child that + * should get the new data. + */ + if (NULL == (bt = H5AC_protect(f, H5AC_BT, addr, type, udata))) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR, + "unable to load node"); + } + rt = bt->nchildren; + + while (lt < rt && cmp) { + idx = (lt + rt) / 2; + if (H5B_decode_keys(f, bt, idx) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, + "unable to decode key"); + } + if ((cmp = (type->cmp3) (f, bt->key[idx].nkey, udata, + bt->key[idx + 1].nkey)) < 0) { + rt = idx; + } else { + lt = idx + 1; + } + } + + if (0 == bt->nchildren) { + /* + * The value being inserted will be the only value in this tree. We + * must necessarily be at level zero. + */ + assert(0 == bt->level); + bt->key[0].nkey = bt->native; + bt->key[1].nkey = bt->native + type->sizeof_nkey; + if ((type->new) (f, H5B_INS_FIRST, bt->key[0].nkey, udata, + bt->key[1].nkey, bt->child + 0 /*out */ ) < 0) { + bt->key[0].nkey = bt->key[1].nkey = NULL; + HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, H5B_INS_ERROR, + "unable to create leaf node"); + } + bt->nchildren = 1; + bt->dirty = TRUE; + bt->ndirty = 1; + bt->key[0].dirty = TRUE; + bt->key[1].dirty = TRUE; + idx = 0; + + if (type->follow_min) { + if ((my_ins = (type->insert) (f, bt->child + idx, + bt->key[idx].nkey, lt_key_changed, + md_key, udata, + bt->key[idx + 1].nkey, rt_key_changed, + &child_addr /*out */ )) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, + "can't insert first leaf node"); + } + } else { + my_ins = H5B_INS_NOOP; + } + + } else if (cmp < 0 && idx <= 0 && bt->level > 0) { + /* + * The value being inserted is less than any value in this tree. Follow + * the minimum branch out of this node to a subtree. + */ + idx = 0; + if (H5B_decode_keys(f, bt, idx) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, + "unable to decode key"); + } + if ((my_ins = H5B_insert_helper(f, bt->child + idx, type, + bt->key[idx].nkey, lt_key_changed, + md_key, udata, + bt->key[idx + 1].nkey, rt_key_changed, + &child_addr /*out */ )) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, + "can't insert minimum subtree"); + } + } else if (cmp < 0 && idx <= 0 && type->follow_min) { + /* + * The value being inserted is less than any leaf node out of this + * current node. Follow the minimum branch to a leaf node and let the + * subclass handle the problem. + */ + idx = 0; + if (H5B_decode_keys(f, bt, idx) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, + "unable to decode key"); + } + if ((my_ins = (type->insert) (f, bt->child + idx, + bt->key[idx].nkey, lt_key_changed, + md_key, udata, + bt->key[idx + 1].nkey, rt_key_changed, + &child_addr /*out */ )) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, + "can't insert minimum leaf node"); + } + } else if (cmp < 0 && idx <= 0) { + /* + * The value being inserted is less than any leaf node out of the + * current node. Create a new minimum leaf node out of this B-tree + * node. This node is not empty (handled above). + */ + idx = 0; + if (H5B_decode_keys(f, bt, idx) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, + "unable to decode key"); + } + my_ins = H5B_INS_LEFT; + HDmemcpy(md_key, bt->key[idx].nkey, type->sizeof_nkey); + if ((type->new) (f, H5B_INS_LEFT, bt->key[idx].nkey, udata, md_key, + &child_addr /*out */ ) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, + "can't insert minimum leaf node"); + } + *lt_key_changed = TRUE; + + } else if (cmp > 0 && idx + 1 >= bt->nchildren && bt->level > 0) { + /* + * The value being inserted is larger than any value in this tree. + * Follow the maximum branch out of this node to a subtree. + */ + idx = bt->nchildren - 1; + if (H5B_decode_keys(f, bt, idx) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, + "unable to decode key"); + } + if ((my_ins = H5B_insert_helper(f, bt->child + idx, type, + bt->key[idx].nkey, lt_key_changed, + md_key, udata, + bt->key[idx + 1].nkey, rt_key_changed, + &child_addr /*out */ )) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, + "can't insert maximum subtree"); + } + } else if (cmp > 0 && idx + 1 >= bt->nchildren && type->follow_max) { + /* + * The value being inserted is larger than any leaf node out of the + * current node. Follow the maximum branch to a leaf node and let the + * subclass handle the problem. + */ + idx = bt->nchildren - 1; + if (H5B_decode_keys(f, bt, idx) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, + "unable to decode key"); + } + if ((my_ins = (type->insert) (f, bt->child + idx, + bt->key[idx].nkey, lt_key_changed, + md_key, udata, + bt->key[idx + 1].nkey, rt_key_changed, + &child_addr /*out */ )) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, + "can't insert maximum leaf node"); + } + } else if (cmp > 0 && idx + 1 >= bt->nchildren) { + /* + * The value being inserted is larger than any leaf node out of the + * current node. Create a new maximum leaf node out of this B-tree + * node. + */ + idx = bt->nchildren - 1; + if (H5B_decode_keys(f, bt, idx) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, + "unable to decode key"); + } + my_ins = H5B_INS_RIGHT; + HDmemcpy(md_key, bt->key[idx + 1].nkey, type->sizeof_nkey); + if ((type->new) (f, H5B_INS_RIGHT, md_key, udata, bt->key[idx + 1].nkey, + &child_addr /*out */ ) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, + "can't insert maximum leaf node"); + } + *rt_key_changed = TRUE; + + } else if (cmp) { + /* + * We couldn't figure out which branch to follow out of this node. THIS + * IS A MAJOR PROBLEM THAT NEEDS TO BE FIXED --rpm. + */ + assert("INTERNAL HDF5 ERROR (see rpm)" && 0); + + } else if (bt->level > 0) { + /* + * Follow a branch out of this node to another subtree. + */ + assert(idx >= 0 && idx < bt->nchildren); + if ((my_ins = H5B_insert_helper(f, bt->child + idx, type, + bt->key[idx].nkey, lt_key_changed, + md_key, udata, + bt->key[idx + 1].nkey, rt_key_changed, + &child_addr /*out */ )) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, + "can't insert subtree"); + } + } else { + /* + * Follow a branch out of this node to a leaf node of some other type. + */ + assert(idx >= 0 && idx < bt->nchildren); + if ((my_ins = (type->insert) (f, bt->child + idx, + bt->key[idx].nkey, lt_key_changed, + md_key, udata, + bt->key[idx + 1].nkey, rt_key_changed, + &child_addr /*out */ )) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, + "can't insert leaf node"); + } + } + assert(my_ins >= 0); + + /* + * Update the left and right keys of the current node. + */ + if (*lt_key_changed) { + bt->dirty = TRUE; + bt->key[idx].dirty = TRUE; + if (idx > 0) { + *lt_key_changed = FALSE; + } else { + HDmemcpy(lt_key, bt->key[idx].nkey, type->sizeof_nkey); + } + } + if (*rt_key_changed) { + bt->dirty = TRUE; + bt->key[idx + 1].dirty = TRUE; + if (idx + 1 < bt->nchildren) { + *rt_key_changed = FALSE; + } else { + HDmemcpy(rt_key, bt->key[idx + 1].nkey, type->sizeof_nkey); + } + } + if (H5B_INS_CHANGE == my_ins) { + /* + * The insertion simply changed the address for the child. + */ + bt->child[idx] = child_addr; + bt->dirty = TRUE; + bt->ndirty = MAX(bt->ndirty, idx + 1); + ret_value = H5B_INS_NOOP; + + } else if (H5B_INS_LEFT == my_ins || H5B_INS_RIGHT == my_ins) { + /* Make sure IDX is the slot number for the new node. */ + if (H5B_INS_RIGHT == my_ins) + idx++; + + /* If this node is full then split it before inserting the new child. */ + if (bt->nchildren == 2 * H5B_K(f, type)) { + if (H5B_split(f, type, bt, addr, udata, new_node /*out */ ) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTSPLIT, H5B_INS_ERROR, + "can't split node"); + } + if (NULL == (twin = H5AC_protect(f, H5AC_BT, new_node, type, udata))) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR, + "can't load B-tree"); + } + if (idx <= H5B_K(f, type)) { + tmp_bt = bt; + } else { + idx -= H5B_K(f, type); + tmp_bt = twin; + } + } else { + tmp_bt = bt; + } + + /* Insert the child */ + if (H5B_insert_child(f, type, tmp_bt, idx, &child_addr, my_ins, + md_key) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, + "can't insert child"); + } + } + /* + * If this node split, return the mid key (the one that is shared + * by the left and right node). + */ + if (twin) { + if (!twin->key[0].nkey && H5B_decode_key(f, twin, 0) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, + "unable to decode key"); + } + HDmemcpy(md_key, twin->key[0].nkey, type->sizeof_nkey); + ret_value = H5B_INS_RIGHT; #ifdef H5B_DEBUG - /* - * The max key in the original left node must be equal to the min key - * in the new node. - */ - if (!bt->key[bt->nchildren].nkey) { - herr_t status = H5B_decode_key (f, bt, bt->nchildren); - assert (status>=0); - } - cmp = (type->cmp2)(f, bt->key[bt->nchildren].nkey, udata, - twin->key[0].nkey); - assert (0==cmp); + /* + * The max key in the original left node must be equal to the min key + * in the new node. + */ + if (!bt->key[bt->nchildren].nkey) { + herr_t status = H5B_decode_key(f, bt, bt->nchildren); + assert(status >= 0); + } + cmp = (type->cmp2) (f, bt->key[bt->nchildren].nkey, udata, + twin->key[0].nkey); + assert(0 == cmp); #endif - } else { - ret_value = H5B_INS_NOOP; - } - -done: - { - herr_t e1 = (bt && H5AC_unprotect (f, H5AC_BT, addr, bt)<0); - herr_t e2 = (twin && H5AC_unprotect (f, H5AC_BT, new_node, twin)<0); - if (e1 || e2) { /*use vars to prevent short-circuit of side effects*/ - HRETURN_ERROR (H5E_BTREE, H5E_PROTECT, H5B_INS_ERROR, - "unable to release node(s)"); - } - } - - FUNC_LEAVE (ret_value); + } else { + ret_value = H5B_INS_NOOP; + } + + done: + { + herr_t e1 = (bt && H5AC_unprotect(f, H5AC_BT, addr, bt) < 0); + herr_t e2 = (twin && H5AC_unprotect(f, H5AC_BT, new_node, twin) < 0); + if (e1 || e2) { /*use vars to prevent short-circuit of side effects */ + HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, H5B_INS_ERROR, + "unable to release node(s)"); + } + } + + FUNC_LEAVE(ret_value); } - /*------------------------------------------------------------------------- - * Function: H5B_list + * Function: H5B_list * - * Purpose: Calls the list callback for each leaf node of the - * B-tree, passing it the UDATA structure. + * Purpose: Calls the list callback for each leaf node of the + * B-tree, passing it the UDATA structure. * - * Return: Success: SUCCEED + * Return: Success: SUCCEED * - * Failure: FAIL + * Failure: FAIL * - * Programmer: Robb Matzke - * matzke@llnl.gov - * Jun 23 1997 + * Programmer: Robb Matzke + * matzke@llnl.gov + * Jun 23 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t -H5B_list (H5F_t *f, const H5B_class_t *type, const haddr_t *addr, void *udata) +H5B_list(H5F_t *f, const H5B_class_t *type, const haddr_t *addr, void *udata) { - H5B_t *bt=NULL; - haddr_t next_addr; - const haddr_t *cur_addr=NULL; - intn i; - herr_t ret_value = FAIL; - - FUNC_ENTER (H5B_list, FAIL); - - /* - * Check arguments. - */ - assert (f); - assert (type); - assert (type->list); - assert (addr && H5F_addr_defined (addr)); - assert (udata); - - if (NULL==(bt = H5AC_find (f, H5AC_BT, addr, type, udata))) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, - "unable to load B-tree node"); - } - - if (bt->level>0) { - if (H5B_list (f, type, bt->child+0, udata)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTLIST, FAIL, - "unable to list B-tree node"); - } else { - HRETURN (SUCCEED); - } - } else { - - for (cur_addr=addr; !H5F_addr_defined (cur_addr); cur_addr=&next_addr) { - if (NULL==(bt=H5AC_protect (f, H5AC_BT, cur_addr, type, udata))) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, - "unable to protect B-tree node"); - } - - for (i=0; i<bt->nchildren; i++) { - if ((type->list)(f, bt->child+i, udata)<0) { - HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, - "unable to list leaf node"); - } - } - - next_addr = bt->right; - if (H5AC_unprotect (f, H5AC_BT, addr, bt)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_PROTECT, FAIL, - "unable to release B-tree node"); - } - bt = NULL; - } - } - HGOTO_DONE (SUCCEED); - -done: - if (bt && H5AC_unprotect (f, H5AC_BT, cur_addr, bt)<0) { - HRETURN_ERROR (H5E_BTREE, H5E_PROTECT, FAIL, - "unable to release B-tree node"); - } - FUNC_LEAVE (ret_value); + H5B_t *bt = NULL; + haddr_t next_addr; + const haddr_t *cur_addr = NULL; + intn i; + herr_t ret_value = FAIL; + + FUNC_ENTER(H5B_list, FAIL); + + /* + * Check arguments. + */ + assert(f); + assert(type); + assert(type->list); + assert(addr && H5F_addr_defined(addr)); + assert(udata); + + if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, + "unable to load B-tree node"); + } + if (bt->level > 0) { + if (H5B_list(f, type, bt->child + 0, udata) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTLIST, FAIL, + "unable to list B-tree node"); + } else { + HRETURN(SUCCEED); + } + } else { + + for (cur_addr = addr; !H5F_addr_defined(cur_addr); cur_addr = &next_addr) { + if (NULL == (bt = H5AC_protect(f, H5AC_BT, cur_addr, type, udata))) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, + "unable to protect B-tree node"); + } + for (i = 0; i < bt->nchildren; i++) { + if ((type->list) (f, bt->child + i, udata) < 0) { + HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, + "unable to list leaf node"); + } + } + + next_addr = bt->right; + if (H5AC_unprotect(f, H5AC_BT, addr, bt) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL, + "unable to release B-tree node"); + } + bt = NULL; + } + } + HGOTO_DONE(SUCCEED); + + done: + if (bt && H5AC_unprotect(f, H5AC_BT, cur_addr, bt) < 0) { + HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL, + "unable to release B-tree node"); + } + FUNC_LEAVE(ret_value); } - /*------------------------------------------------------------------------- - * Function: H5B_nodesize + * Function: H5B_nodesize * - * Purpose: Returns the number of bytes needed for this type of - * B-tree node. The size is the size of the header plus - * enough space for 2t child pointers and 2t+1 keys. + * Purpose: Returns the number of bytes needed for this type of + * B-tree node. The size is the size of the header plus + * enough space for 2t child pointers and 2t+1 keys. * - * If TOTAL_NKEY_SIZE is non-null, what it points to will - * be initialized with the total number of bytes required to - * hold all the key values in native order. + * If TOTAL_NKEY_SIZE is non-null, what it points to will + * be initialized with the total number of bytes required to + * hold all the key values in native order. * - * Return: Success: Size of node in file. + * Return: Success: Size of node in file. * - * Failure: 0 + * Failure: 0 * - * Programmer: Robb Matzke - * matzke@llnl.gov - * Jul 3 1997 + * Programmer: Robb Matzke + * matzke@llnl.gov + * Jul 3 1997 * * Modifications: * *------------------------------------------------------------------------- */ static size_t -H5B_nodesize (H5F_t *f, const H5B_class_t *type, - size_t *total_nkey_size, size_t sizeof_rkey) +H5B_nodesize(H5F_t *f, const H5B_class_t *type, + size_t *total_nkey_size, size_t sizeof_rkey) { - size_t size; - - FUNC_ENTER (H5B_nodesize, (size_t)0); - - /* - * Check arguments. - */ - assert (f); - assert (type); - assert (sizeof_rkey>0); - assert (H5B_K (f, type)>0); - - /* - * Total native key size. - */ - if (total_nkey_size) { - *total_nkey_size = (2 * H5B_K(f,type) + 1) * type->sizeof_nkey; - } - - /* - * Total node size. - */ - size = (H5B_SIZEOF_HDR(f) + /*node header */ - 2 * H5B_K(f,type) * H5F_SIZEOF_ADDR(f) + /*child pointers*/ - (2*H5B_K(f,type)+1) * sizeof_rkey); /*keys */ - - FUNC_LEAVE (size); + size_t size; + + FUNC_ENTER(H5B_nodesize, (size_t) 0); + + /* + * Check arguments. + */ + assert(f); + assert(type); + assert(sizeof_rkey > 0); + assert(H5B_K(f, type) > 0); + + /* + * Total native key size. + */ + if (total_nkey_size) { + *total_nkey_size = (2 * H5B_K(f, type) + 1) * type->sizeof_nkey; + } + /* + * Total node size. + */ + size = (H5B_SIZEOF_HDR(f) + /*node header */ + 2 * H5B_K(f, type) * H5F_SIZEOF_ADDR(f) + /*child pointers */ + (2 * H5B_K(f, type) + 1) * sizeof_rkey); /*keys */ + + FUNC_LEAVE(size); } - /*------------------------------------------------------------------------- - * Function: H5B_debug + * Function: H5B_debug * - * Purpose: Prints debugging info about a B-tree. + * Purpose: Prints debugging info about a B-tree. * - * Return: Success: SUCCEED + * Return: Success: SUCCEED * - * Failure: FAIL + * Failure: FAIL * - * Programmer: Robb Matzke - * matzke@llnl.gov - * Aug 4 1997 + * Programmer: Robb Matzke + * matzke@llnl.gov + * Aug 4 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t -H5B_debug (H5F_t *f, const haddr_t *addr, FILE *stream, intn indent, - intn fwidth, const H5B_class_t *type, void *udata) +H5B_debug(H5F_t *f, const haddr_t *addr, FILE * stream, intn indent, + intn fwidth, const H5B_class_t *type, void *udata) { - H5B_t *bt = NULL; - int i; - - FUNC_ENTER (H5B_debug, FAIL); - - /* - * Check arguments. - */ - assert (f); - assert (addr && H5F_addr_defined (addr)); - assert (stream); - assert (indent>=0); - assert (fwidth>=0); - assert (type); - - /* - * Load the tree node. - */ - if (NULL==(bt=H5AC_find (f, H5AC_BT, addr, type, udata))) { - HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, - "unable to load B-tree node"); - } - - /* - * Print the values. - */ - fprintf (stream, "%*s%-*s %d\n", indent, "", fwidth, - "Tree type ID:", - (int)(bt->type->id)); - fprintf (stream, "%*s%-*s %lu\n", indent, "", fwidth, - "Size of raw (disk) key:", - (unsigned long)(bt->sizeof_rkey)); - fprintf (stream, "%*s%-*s %s\n", indent, "", fwidth, - "Dirty flag:", - bt->dirty?"True":"False"); - fprintf (stream, "%*s%-*s %d\n", indent, "", fwidth, - "Number of initial dirty children:", - (int)(bt->ndirty)); - fprintf (stream, "%*s%-*s %d\n", indent, "", fwidth, - "Level:", - (int)(bt->level)); - - fprintf (stream, "%*s%-*s ", indent, "", fwidth, - "Address of left sibling:"); - H5F_addr_print (stream, &(bt->left)); - fprintf (stream, "\n"); - - fprintf (stream, "%*s%-*s ", indent, "", fwidth, - "Address of right sibling:"); - H5F_addr_print (stream, &(bt->right)); - fprintf (stream, "\n"); - - fprintf (stream, "%*s%-*s %d (%d)\n", indent, "", fwidth, - "Number of children (max):", - (int)(bt->nchildren), - (int)(2*H5B_K(f,type))); - - /* - * Print the child addresses - */ - for (i=0; i<bt->nchildren; i++) { - fprintf (stream, "%*sChild %d...\n", indent, "", i); - fprintf (stream, "%*s%-*s ", indent+3, "", MAX(0,fwidth-3), - "Address:"); - H5F_addr_print (stream, bt->child+i); - fprintf (stream, "\n"); - } - - FUNC_LEAVE (SUCCEED); + H5B_t *bt = NULL; + int i; + + FUNC_ENTER(H5B_debug, FAIL); + + /* + * Check arguments. + */ + assert(f); + assert(addr && H5F_addr_defined(addr)); + assert(stream); + assert(indent >= 0); + assert(fwidth >= 0); + assert(type); + + /* + * Load the tree node. + */ + if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) { + HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, + "unable to load B-tree node"); + } + /* + * Print the values. + */ + fprintf(stream, "%*s%-*s %d\n", indent, "", fwidth, + "Tree type ID:", + (int) (bt->type->id)); + fprintf(stream, "%*s%-*s %lu\n", indent, "", fwidth, + "Size of raw (disk) key:", + (unsigned long) (bt->sizeof_rkey)); + fprintf(stream, "%*s%-*s %s\n", indent, "", fwidth, + "Dirty flag:", + bt->dirty ? "True" : "False"); + fprintf(stream, "%*s%-*s %d\n", indent, "", fwidth, + "Number of initial dirty children:", + (int) (bt->ndirty)); + fprintf(stream, "%*s%-*s %d\n", indent, "", fwidth, + "Level:", + (int) (bt->level)); + + fprintf(stream, "%*s%-*s ", indent, "", fwidth, + "Address of left sibling:"); + H5F_addr_print(stream, &(bt->left)); + fprintf(stream, "\n"); + + fprintf(stream, "%*s%-*s ", indent, "", fwidth, + "Address of right sibling:"); + H5F_addr_print(stream, &(bt->right)); + fprintf(stream, "\n"); + + fprintf(stream, "%*s%-*s %d (%d)\n", indent, "", fwidth, + "Number of children (max):", + (int) (bt->nchildren), + (int) (2 * H5B_K(f, type))); + + /* + * Print the child addresses + */ + for (i = 0; i < bt->nchildren; i++) { + fprintf(stream, "%*sChild %d...\n", indent, "", i); + fprintf(stream, "%*s%-*s ", indent + 3, "", MAX(0, fwidth - 3), + "Address:"); + H5F_addr_print(stream, bt->child + i); + fprintf(stream, "\n"); + } + + FUNC_LEAVE(SUCCEED); } - - /*------------------------------------------------------------------------- - * Function: H5B_assert + * Function: H5B_assert * - * Purpose: Verifies that the tree is structured correctly. + * Purpose: Verifies that the tree is structured correctly. * - * Return: Success: SUCCEED + * Return: Success: SUCCEED * - * Failure: aborts if something is wrong. + * Failure: aborts if something is wrong. * - * Programmer: Robb Matzke + * Programmer: Robb Matzke * Tuesday, November 4, 1997 * * Modifications: @@ -1633,100 +1597,98 @@ H5B_debug (H5F_t *f, const haddr_t *addr, FILE *stream, intn indent, */ #ifdef H5B_DEBUG static herr_t -H5B_assert (H5F_t *f, const haddr_t *addr, const H5B_class_t *type, - void *udata) +H5B_assert(H5F_t *f, const haddr_t *addr, const H5B_class_t *type, + void *udata) { - H5B_t *bt = NULL; - intn i, ncell, cmp; - static int ncalls=0; - herr_t status; - - /* A queue of child data */ - struct child_t { - haddr_t addr; - int level; - struct child_t *next; - } *head=NULL, *tail=NULL, *prev=NULL, *cur=NULL, *tmp=NULL; - - FUNC_ENTER (H5B_assert, FAIL); - if (0==ncalls++) { - fprintf (stderr, "HDF5-DIAG: debugging B-trees (expensive)\n"); - } - - /* Initialize the queue */ - bt = H5AC_find (f, H5AC_BT, addr, type, udata); - assert (bt); - cur = H5MM_xcalloc (1, sizeof(struct child_t)); - cur->addr = *addr; - cur->level = bt->level; - head = tail = cur; - - /* - * Do a breadth-first search of the tree. New nodes are added to the end - * of the queue as the `cur' pointer is advanced toward the end. We don't - * remove any nodes from the queue because we need them in the uniqueness - * test. - */ - for (ncell=0; cur; ncell++) { - bt = H5AC_protect (f, H5AC_BT, &(cur->addr), type, udata); - assert (bt); - - /* Check node header */ - assert (bt->ndirty>=0 && bt->ndirty<=bt->nchildren); - assert (bt->level==cur->level); - if (cur->next && cur->next->level==bt->level) { - assert (H5F_addr_eq (&(bt->right), &(cur->next->addr))); - } else { - assert (!H5F_addr_defined (&(bt->right))); - } - if (prev && prev->level==bt->level) { - assert (H5F_addr_eq (&(bt->left), &(prev->addr))); - } else { - assert (!H5F_addr_defined (&(bt->left))); - } - - if (cur->level>0) { - for (i=0; i<bt->nchildren; i++) { - - /* - * Check that child nodes haven't already been seen. If they - * have then the tree has a cycle. - */ - for (tmp=head; tmp; tmp=tmp->next) { - assert (H5F_addr_ne (&(tmp->addr), bt->child+i)); - } - - /* Add the child node to the end of the queue */ - tmp = H5MM_xcalloc (1, sizeof(struct child_t)); - tmp->addr = bt->child[i]; - tmp->level = bt->level - 1; - tail->next = tmp; - tail = tmp; - - /* Check that the keys are monotonically increasing */ - status = H5B_decode_keys (f, bt, i); - assert (status>=0); - cmp = (type->cmp2)(f, bt->key[i].nkey, udata, bt->key[i+1].nkey); - assert (cmp<0); - } - } - - /* Release node */ - status = H5AC_unprotect (f, H5AC_BT, &(cur->addr), bt); - assert (status>=0); - - /* Advance current location in queue */ - prev = cur; - cur = cur->next; - } - - /* Free all entries from queue */ - while (head) { - tmp = head->next; - H5MM_xfree (head); - head = tmp; - } - - FUNC_LEAVE (SUCCEED); + H5B_t *bt = NULL; + intn i, ncell, cmp; + static int ncalls = 0; + herr_t status; + + /* A queue of child data */ + struct child_t { + haddr_t addr; + int level; + struct child_t *next; + } *head = NULL, *tail = NULL, *prev = NULL, *cur = NULL, *tmp = NULL; + + FUNC_ENTER(H5B_assert, FAIL); + if (0 == ncalls++) { + fprintf(stderr, "HDF5-DIAG: debugging B-trees (expensive)\n"); + } + /* Initialize the queue */ + bt = H5AC_find(f, H5AC_BT, addr, type, udata); + assert(bt); + cur = H5MM_xcalloc(1, sizeof(struct child_t)); + cur->addr = *addr; + cur->level = bt->level; + head = tail = cur; + + /* + * Do a breadth-first search of the tree. New nodes are added to the end + * of the queue as the `cur' pointer is advanced toward the end. We don't + * remove any nodes from the queue because we need them in the uniqueness + * test. + */ + for (ncell = 0; cur; ncell++) { + bt = H5AC_protect(f, H5AC_BT, &(cur->addr), type, udata); + assert(bt); + + /* Check node header */ + assert(bt->ndirty >= 0 && bt->ndirty <= bt->nchildren); + assert(bt->level == cur->level); + if (cur->next && cur->next->level == bt->level) { + assert(H5F_addr_eq(&(bt->right), &(cur->next->addr))); + } else { + assert(!H5F_addr_defined(&(bt->right))); + } + if (prev && prev->level == bt->level) { + assert(H5F_addr_eq(&(bt->left), &(prev->addr))); + } else { + assert(!H5F_addr_defined(&(bt->left))); + } + + if (cur->level > 0) { + for (i = 0; i < bt->nchildren; i++) { + + /* + * Check that child nodes haven't already been seen. If they + * have then the tree has a cycle. + */ + for (tmp = head; tmp; tmp = tmp->next) { + assert(H5F_addr_ne(&(tmp->addr), bt->child + i)); + } + + /* Add the child node to the end of the queue */ + tmp = H5MM_xcalloc(1, sizeof(struct child_t)); + tmp->addr = bt->child[i]; + tmp->level = bt->level - 1; + tail->next = tmp; + tail = tmp; + + /* Check that the keys are monotonically increasing */ + status = H5B_decode_keys(f, bt, i); + assert(status >= 0); + cmp = (type->cmp2) (f, bt->key[i].nkey, udata, bt->key[i + 1].nkey); + assert(cmp < 0); + } + } + /* Release node */ + status = H5AC_unprotect(f, H5AC_BT, &(cur->addr), bt); + assert(status >= 0); + + /* Advance current location in queue */ + prev = cur; + cur = cur->next; + } + + /* Free all entries from queue */ + while (head) { + tmp = head->next; + H5MM_xfree(head); + head = tmp; + } + + FUNC_LEAVE(SUCCEED); } #endif /* H5B_DEBUG */ |