summaryrefslogtreecommitdiffstats
path: root/src/H5B.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/H5B.c')
-rw-r--r--src/H5B.c2916
1 files changed, 1439 insertions, 1477 deletions
diff --git a/src/H5B.c b/src/H5B.c
index 6adf671..e7436c6 100644
--- a/src/H5B.c
+++ b/src/H5B.c
@@ -1,717 +1,705 @@
/*-------------------------------------------------------------------------
- * Copyright (C) 1997 National Center for Supercomputing Applications.
+ * Copyright (C) 1997 National Center for Supercomputing Applications.
* All rights reserved.
*
*-------------------------------------------------------------------------
*
- * Created: hdf5btree.c
- * Jul 10 1997
- * Robb Matzke <matzke@llnl.gov>
+ * Created: hdf5btree.c
+ * Jul 10 1997
+ * Robb Matzke <matzke@llnl.gov>
*
- * Purpose: Implements balanced, sibling-linked, N-ary trees
- * capable of storing any type of data with unique key
- * values.
+ * Purpose: Implements balanced, sibling-linked, N-ary trees
+ * capable of storing any type of data with unique key
+ * values.
*
- * A B-link-tree is a balanced tree where each node has
- * a pointer to its left and right siblings. A
- * B-link-tree is a rooted tree having the following
- * properties:
+ * A B-link-tree is a balanced tree where each node has
+ * a pointer to its left and right siblings. A
+ * B-link-tree is a rooted tree having the following
+ * properties:
*
- * 1. Every node, x, has the following fields:
+ * 1. Every node, x, has the following fields:
*
- * a. level[x], the level in the tree at which node
- * x appears. Leaf nodes are at level zero.
+ * a. level[x], the level in the tree at which node
+ * x appears. Leaf nodes are at level zero.
*
- * b. n[x], the number of children pointed to by the
- * node. Internal nodes point to subtrees while
- * leaf nodes point to arbitrary data.
+ * b. n[x], the number of children pointed to by the
+ * node. Internal nodes point to subtrees while
+ * leaf nodes point to arbitrary data.
*
- * c. The child pointers themselves, child[x,i] such
- * that 0 <= i < n[x].
+ * c. The child pointers themselves, child[x,i] such
+ * that 0 <= i < n[x].
*
- * d. n[x]+1 key values stored in increasing
- * order:
+ * d. n[x]+1 key values stored in increasing
+ * order:
*
- * key[x,0] < key[x,1] < ... < key[x,n[x]].
+ * key[x,0] < key[x,1] < ... < key[x,n[x]].
*
- * e. left[x] is a pointer to the node's left sibling
- * or the null pointer if this is the left-most
- * node at this level in the tree.
- *
- * f. right[x] is a pointer to the node's right
- * sibling or the null pointer if this is the
- * right-most node at this level in the tree.
+ * e. left[x] is a pointer to the node's left sibling
+ * or the null pointer if this is the left-most
+ * node at this level in the tree.
+ *
+ * f. right[x] is a pointer to the node's right
+ * sibling or the null pointer if this is the
+ * right-most node at this level in the tree.
*
- * 3. The keys key[x,i] partition the key spaces of the
- * children of x:
+ * 3. The keys key[x,i] partition the key spaces of the
+ * children of x:
*
- * key[x,i] <= key[child[x,i],j] <= key[x,i+1]
+ * key[x,i] <= key[child[x,i],j] <= key[x,i+1]
*
- * for any valid combination of i and j.
+ * for any valid combination of i and j.
*
- * 4. There are lower and upper bounds on the number of
- * child pointers a node can contain. These bounds
- * can be expressed in terms of a fixed integer k>=2
- * called the `minimum degree' of the B-tree.
+ * 4. There are lower and upper bounds on the number of
+ * child pointers a node can contain. These bounds
+ * can be expressed in terms of a fixed integer k>=2
+ * called the `minimum degree' of the B-tree.
*
- * a. Every node other than the root must have at least
- * k child pointers and k+1 keys. If the tree is
- * nonempty, the root must have at least one child
- * pointer and two keys.
+ * a. Every node other than the root must have at least
+ * k child pointers and k+1 keys. If the tree is
+ * nonempty, the root must have at least one child
+ * pointer and two keys.
*
- * b. Every node can contain at most 2k child pointers
- * and 2k+1 keys. A node is `full' if it contains
- * exactly 2k child pointers and 2k+1 keys.
+ * b. Every node can contain at most 2k child pointers
+ * and 2k+1 keys. A node is `full' if it contains
+ * exactly 2k child pointers and 2k+1 keys.
*
- * 5. When searching for a particular value, V, and
- * key[V] = key[x,i] for some node x and entry i,
- * then:
+ * 5. When searching for a particular value, V, and
+ * key[V] = key[x,i] for some node x and entry i,
+ * then:
*
- * a. If i=0 the child[0] is followed.
+ * a. If i=0 the child[0] is followed.
*
- * b. If i=n[x] the child[n[x]-1] is followed.
+ * b. If i=n[x] the child[n[x]-1] is followed.
*
- * c. Otherwise, the child that is followed
- * (either child[x,i-1] or child[x,i]) is
- * determined by the type of object to which the
- * leaf nodes of the tree point and is controlled
- * by the key comparison function registered for
- * that type of B-tree.
+ * c. Otherwise, the child that is followed
+ * (either child[x,i-1] or child[x,i]) is
+ * determined by the type of object to which the
+ * leaf nodes of the tree point and is controlled
+ * by the key comparison function registered for
+ * that type of B-tree.
*
*
* Modifications:
*
- * Robb Matzke, 4 Aug 1997
- * Added calls to H5E.
+ * Robb Matzke, 4 Aug 1997
+ * Added calls to H5E.
*
*-------------------------------------------------------------------------
*/
/* private headers */
-#include <H5private.h> /*library */
-#include <H5ACprivate.h> /*cache */
-#include <H5Bprivate.h> /*B-link trees */
-#include <H5Eprivate.h> /*error handling */
-#include <H5MFprivate.h> /*File memory management */
-#include <H5MMprivate.h> /*Core memory management */
+#include <H5private.h> /*library */
+#include <H5ACprivate.h> /*cache */
+#include <H5Bprivate.h> /*B-link trees */
+#include <H5Eprivate.h> /*error handling */
+#include <H5MFprivate.h> /*File memory management */
+#include <H5MMprivate.h> /*Core memory management */
-#define PABLO_MASK H5B_mask
+#define PABLO_MASK H5B_mask
#define BOUND(MIN,X,MAX) ((X)<(MIN)?(MIN):((X)>(MAX)?(MAX):(X)))
/* PRIVATE PROTOTYPES */
-static H5B_ins_t H5B_insert_helper (H5F_t *f, const haddr_t *addr,
- const H5B_class_t *type,
- uint8 *lt_key, hbool_t *lt_key_changed,
- uint8 *md_key, void *udata,
- uint8 *rt_key, hbool_t *rt_key_changed,
- haddr_t *retval);
-static herr_t H5B_insert_child (H5F_t *f, const H5B_class_t *type,
- H5B_t *bt, intn idx, const haddr_t *child,
- H5B_ins_t anchor, void *md_key);
-static herr_t H5B_flush (H5F_t *f, hbool_t destroy, const haddr_t *addr,
- H5B_t *b);
-static H5B_t *H5B_load (H5F_t *f, const haddr_t *addr, const void *_type,
- void *udata);
-static herr_t H5B_decode_key (H5F_t *f, H5B_t *bt, intn idx);
-static herr_t H5B_decode_keys (H5F_t *f, H5B_t *bt, intn idx);
-static size_t H5B_nodesize (H5F_t *f, const H5B_class_t *type,
- size_t *total_nkey_size, size_t sizeof_rkey);
-static herr_t H5B_split (H5F_t *f, const H5B_class_t *type, H5B_t *old_bt,
- const haddr_t *old_addr, void *udata,
- haddr_t *new_addr /*out*/);
+static H5B_ins_t H5B_insert_helper(H5F_t *f, const haddr_t *addr,
+ const H5B_class_t *type,
+ uint8 *lt_key, hbool_t *lt_key_changed,
+ uint8 *md_key, void *udata,
+ uint8 *rt_key, hbool_t *rt_key_changed,
+ haddr_t *retval);
+static herr_t H5B_insert_child(H5F_t *f, const H5B_class_t *type,
+ H5B_t *bt, intn idx, const haddr_t *child,
+ H5B_ins_t anchor, void *md_key);
+static herr_t H5B_flush(H5F_t *f, hbool_t destroy, const haddr_t *addr,
+ H5B_t *b);
+static H5B_t *H5B_load(H5F_t *f, const haddr_t *addr, const void *_type,
+ void *udata);
+static herr_t H5B_decode_key(H5F_t *f, H5B_t *bt, intn idx);
+static herr_t H5B_decode_keys(H5F_t *f, H5B_t *bt, intn idx);
+static size_t H5B_nodesize(H5F_t *f, const H5B_class_t *type,
+ size_t *total_nkey_size, size_t sizeof_rkey);
+static herr_t H5B_split(H5F_t *f, const H5B_class_t *type, H5B_t *old_bt,
+ const haddr_t *old_addr, void *udata,
+ haddr_t *new_addr /*out */ );
#ifdef H5B_DEBUG
-static herr_t H5B_assert (H5F_t *f, const haddr_t *addr,
- const H5B_class_t *type, void *udata);
+static herr_t H5B_assert(H5F_t *f, const haddr_t *addr,
+ const H5B_class_t *type, void *udata);
#endif
/* H5B inherits cache-like properties from H5AC */
-static const H5AC_class_t H5AC_BT[1] = {{
- H5AC_BT_ID,
- (void*(*)(H5F_t*,const haddr_t*,const void*,void*))H5B_load,
- (herr_t(*)(H5F_t*,hbool_t,const haddr_t*,void*))H5B_flush,
-}};
+static const H5AC_class_t H5AC_BT[1] =
+{
+ {
+ H5AC_BT_ID,
+ (void *(*)(H5F_t *, const haddr_t *, const void *, void *)) H5B_load,
+ (herr_t (*)(H5F_t *, hbool_t, const haddr_t *, void *)) H5B_flush,
+ }};
/* Interface initialization? */
#define INTERFACE_INIT NULL
-static interface_initialize_g = FALSE;
-
+static interface_initialize_g = FALSE;
/*-------------------------------------------------------------------------
- * Function: H5B_create
+ * Function: H5B_create
*
- * Purpose: Creates a new empty B-tree leaf node. The UDATA pointer is
- * passed as an argument to the sizeof_rkey() method for the
- * B-tree.
+ * Purpose: Creates a new empty B-tree leaf node. The UDATA pointer is
+ * passed as an argument to the sizeof_rkey() method for the
+ * B-tree.
*
- * Return: Success: SUCCEED, address of new node is returned
- * through the RETVAL argument.
+ * Return: Success: SUCCEED, address of new node is returned
+ * through the RETVAL argument.
*
- * Failure: FAIL
+ * Failure: FAIL
*
- * Programmer: Robb Matzke
- * matzke@llnl.gov
- * Jun 23 1997
+ * Programmer: Robb Matzke
+ * matzke@llnl.gov
+ * Jun 23 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
-H5B_create (H5F_t *f, const H5B_class_t *type, void *udata, haddr_t *retval)
+H5B_create(H5F_t *f, const H5B_class_t *type, void *udata, haddr_t *retval)
{
- H5B_t *bt=NULL;
- size_t size, sizeof_rkey;
- size_t total_native_keysize;
- intn offset, i;
-
- FUNC_ENTER (H5B_create, FAIL);
-
- /*
- * Check arguments.
- */
- assert (f);
- assert (type);
- assert (retval);
-
- /*
- * Allocate file and memory data structures.
- */
- sizeof_rkey = (type->get_sizeof_rkey)(f, udata);
- size = H5B_nodesize (f, type, &total_native_keysize, sizeof_rkey);
- if (H5MF_alloc (f, H5MF_META, size, retval)<0) {
- HRETURN_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL,
- "can't allocate file space for B-tree root node");
- }
- bt = H5MM_xmalloc (sizeof(H5B_t));
- bt->type = type;
- bt->sizeof_rkey = sizeof_rkey;
- bt->dirty = TRUE;
- bt->ndirty = 0;
- bt->type = type;
- bt->level = 0;
- H5F_addr_undef (&(bt->left));
- H5F_addr_undef (&(bt->right));
- bt->nchildren = 0;
- bt->page = H5MM_xcalloc (1, size); /*use calloc() to keep file clean*/
- bt->native = H5MM_xmalloc (total_native_keysize);
- bt->child = H5MM_xmalloc (2*H5B_K(f,type) * sizeof(haddr_t));
- bt->key = H5MM_xmalloc ((2*H5B_K(f,type)+1) * sizeof(H5B_key_t));
-
- /*
- * Initialize each entry's raw child and key pointers to point into the
- * `page' buffer. Each native key pointer should be null until the key is
- * translated to native format.
- */
- for (i=0,offset=H5B_SIZEOF_HDR(f);
- i<2*H5B_K(f,type);
- i++,offset+=bt->sizeof_rkey+H5F_SIZEOF_ADDR(f)) {
-
- bt->key[i].dirty = FALSE;
- bt->key[i].rkey = bt->page + offset;
- bt->key[i].nkey = NULL;
- H5F_addr_undef (bt->child+i);
- }
-
- /*
- * The last possible key...
- */
- bt->key[2*H5B_K(f,type)].dirty = FALSE;
- bt->key[2*H5B_K(f,type)].rkey = bt->page + offset;
- bt->key[2*H5B_K(f,type)].nkey = NULL;
-
- /*
- * Cache the new B-tree node.
- */
- if (H5AC_set (f, H5AC_BT, retval, bt)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTINIT, FAIL,
- "can't add B-tree root node to cache");
- }
-
+ H5B_t *bt = NULL;
+ size_t size, sizeof_rkey;
+ size_t total_native_keysize;
+ intn offset, i;
+
+ FUNC_ENTER(H5B_create, FAIL);
+
+ /*
+ * Check arguments.
+ */
+ assert(f);
+ assert(type);
+ assert(retval);
+
+ /*
+ * Allocate file and memory data structures.
+ */
+ sizeof_rkey = (type->get_sizeof_rkey) (f, udata);
+ size = H5B_nodesize(f, type, &total_native_keysize, sizeof_rkey);
+ if (H5MF_alloc(f, H5MF_META, size, retval) < 0) {
+ HRETURN_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
+ "can't allocate file space for B-tree root node");
+ }
+ bt = H5MM_xmalloc(sizeof(H5B_t));
+ bt->type = type;
+ bt->sizeof_rkey = sizeof_rkey;
+ bt->dirty = TRUE;
+ bt->ndirty = 0;
+ bt->type = type;
+ bt->level = 0;
+ H5F_addr_undef(&(bt->left));
+ H5F_addr_undef(&(bt->right));
+ bt->nchildren = 0;
+ bt->page = H5MM_xcalloc(1, size); /*use calloc() to keep file clean */
+ bt->native = H5MM_xmalloc(total_native_keysize);
+ bt->child = H5MM_xmalloc(2 * H5B_K(f, type) * sizeof(haddr_t));
+ bt->key = H5MM_xmalloc((2 * H5B_K(f, type) + 1) * sizeof(H5B_key_t));
+
+ /*
+ * Initialize each entry's raw child and key pointers to point into the
+ * `page' buffer. Each native key pointer should be null until the key is
+ * translated to native format.
+ */
+ for (i = 0, offset = H5B_SIZEOF_HDR(f);
+ i < 2 * H5B_K(f, type);
+ i++, offset += bt->sizeof_rkey + H5F_SIZEOF_ADDR(f)) {
+
+ bt->key[i].dirty = FALSE;
+ bt->key[i].rkey = bt->page + offset;
+ bt->key[i].nkey = NULL;
+ H5F_addr_undef(bt->child + i);
+ }
+
+ /*
+ * The last possible key...
+ */
+ bt->key[2 * H5B_K(f, type)].dirty = FALSE;
+ bt->key[2 * H5B_K(f, type)].rkey = bt->page + offset;
+ bt->key[2 * H5B_K(f, type)].nkey = NULL;
+
+ /*
+ * Cache the new B-tree node.
+ */
+ if (H5AC_set(f, H5AC_BT, retval, bt) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL,
+ "can't add B-tree root node to cache");
+ }
#ifdef H5B_DEBUG
- H5B_assert (f, retval, type, udata);
+ H5B_assert(f, retval, type, udata);
#endif
- FUNC_LEAVE (SUCCEED);
+ FUNC_LEAVE(SUCCEED);
}
-
/*-------------------------------------------------------------------------
- * Function: H5B_load
+ * Function: H5B_load
*
- * Purpose: Loads a B-tree node from the disk.
+ * Purpose: Loads a B-tree node from the disk.
*
- * Return: Success: Pointer to a new B-tree node.
+ * Return: Success: Pointer to a new B-tree node.
*
- * Failure: NULL
+ * Failure: NULL
*
- * Programmer: Robb Matzke
- * matzke@llnl.gov
- * Jun 23 1997
+ * Programmer: Robb Matzke
+ * matzke@llnl.gov
+ * Jun 23 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
-static H5B_t *
-H5B_load (H5F_t *f, const haddr_t *addr, const void *_type, void *udata)
+static H5B_t *
+H5B_load(H5F_t *f, const haddr_t *addr, const void *_type, void *udata)
{
- const H5B_class_t *type = (const H5B_class_t *)_type;
- size_t size, total_nkey_size;
- H5B_t *bt = NULL;
- intn i;
- uint8 *p;
- H5B_t *ret_value = NULL;
-
- FUNC_ENTER (H5B_load, NULL);
-
- /* Check arguments */
- assert (f);
- assert (addr && H5F_addr_defined (addr));
- assert (type);
- assert (type->get_sizeof_rkey);
-
- bt = H5MM_xmalloc (sizeof(H5B_t));
- bt->sizeof_rkey = (type->get_sizeof_rkey)(f, udata);
- size = H5B_nodesize (f, type, &total_nkey_size, bt->sizeof_rkey);
- bt->type = type;
- bt->dirty = FALSE;
- bt->ndirty = 0;
- bt->page = H5MM_xmalloc (size);
- bt->native = H5MM_xmalloc (total_nkey_size);
- bt->key = H5MM_xmalloc ((2*H5B_K(f,type)+1) * sizeof(H5B_key_t));
- bt->child = H5MM_xmalloc (2 * H5B_K(f,type) * sizeof(haddr_t));
- if (H5F_block_read (f, addr, size, bt->page)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_READERROR, NULL,
- "can't read B-tree node");
- }
- p = bt->page;
-
- /* magic number */
- if (HDmemcmp (p, H5B_MAGIC, H5B_SIZEOF_MAGIC)) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, NULL,
- "wrong B-tree signature");
- }
- p += 4;
-
- /* node type and level */
- if (*p++ != type->id) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, NULL,
- "incorrect B-tree node level");
- }
- bt->level = *p++;
-
- /* entries used */
- UINT16DECODE (p, bt->nchildren);
-
- /* sibling pointers */
- H5F_addr_decode (f, (const uint8**)&p, &(bt->left));
- H5F_addr_decode (f, (const uint8**)&p, &(bt->right));
-
- /* the child/key pairs */
- for (i=0; i<2*H5B_K(f,type); i++) {
-
- bt->key[i].dirty = FALSE;
- bt->key[i].rkey = p;
- p += bt->sizeof_rkey;
- bt->key[i].nkey = NULL;
-
- if (i<bt->nchildren) {
- H5F_addr_decode (f, (const uint8**)&p, bt->child+i);
- } else {
- H5F_addr_undef (bt->child+i);
- p += H5F_SIZEOF_ADDR(f);
- }
- }
-
- bt->key[2*H5B_K(f,type)].dirty = FALSE;
- bt->key[2*H5B_K(f,type)].rkey = p;
- bt->key[2*H5B_K(f,type)].nkey = NULL;
- ret_value = bt;
-
- done:
- if (!ret_value && bt) {
- H5MM_xfree (bt->child);
- H5MM_xfree (bt->key);
- H5MM_xfree (bt->page);
- H5MM_xfree (bt->native);
- H5MM_xfree (bt);
- }
-
- FUNC_LEAVE (ret_value);
+ const H5B_class_t *type = (const H5B_class_t *) _type;
+ size_t size, total_nkey_size;
+ H5B_t *bt = NULL;
+ intn i;
+ uint8 *p;
+ H5B_t *ret_value = NULL;
+
+ FUNC_ENTER(H5B_load, NULL);
+
+ /* Check arguments */
+ assert(f);
+ assert(addr && H5F_addr_defined(addr));
+ assert(type);
+ assert(type->get_sizeof_rkey);
+
+ bt = H5MM_xmalloc(sizeof(H5B_t));
+ bt->sizeof_rkey = (type->get_sizeof_rkey) (f, udata);
+ size = H5B_nodesize(f, type, &total_nkey_size, bt->sizeof_rkey);
+ bt->type = type;
+ bt->dirty = FALSE;
+ bt->ndirty = 0;
+ bt->page = H5MM_xmalloc(size);
+ bt->native = H5MM_xmalloc(total_nkey_size);
+ bt->key = H5MM_xmalloc((2 * H5B_K(f, type) + 1) * sizeof(H5B_key_t));
+ bt->child = H5MM_xmalloc(2 * H5B_K(f, type) * sizeof(haddr_t));
+ if (H5F_block_read(f, addr, size, bt->page) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_READERROR, NULL,
+ "can't read B-tree node");
+ }
+ p = bt->page;
+
+ /* magic number */
+ if (HDmemcmp(p, H5B_MAGIC, H5B_SIZEOF_MAGIC)) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, NULL,
+ "wrong B-tree signature");
+ }
+ p += 4;
+
+ /* node type and level */
+ if (*p++ != type->id) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, NULL,
+ "incorrect B-tree node level");
+ }
+ bt->level = *p++;
+
+ /* entries used */
+ UINT16DECODE(p, bt->nchildren);
+
+ /* sibling pointers */
+ H5F_addr_decode(f, (const uint8 **) &p, &(bt->left));
+ H5F_addr_decode(f, (const uint8 **) &p, &(bt->right));
+
+ /* the child/key pairs */
+ for (i = 0; i < 2 * H5B_K(f, type); i++) {
+
+ bt->key[i].dirty = FALSE;
+ bt->key[i].rkey = p;
+ p += bt->sizeof_rkey;
+ bt->key[i].nkey = NULL;
+
+ if (i < bt->nchildren) {
+ H5F_addr_decode(f, (const uint8 **) &p, bt->child + i);
+ } else {
+ H5F_addr_undef(bt->child + i);
+ p += H5F_SIZEOF_ADDR(f);
+ }
+ }
+
+ bt->key[2 * H5B_K(f, type)].dirty = FALSE;
+ bt->key[2 * H5B_K(f, type)].rkey = p;
+ bt->key[2 * H5B_K(f, type)].nkey = NULL;
+ ret_value = bt;
+
+ done:
+ if (!ret_value && bt) {
+ H5MM_xfree(bt->child);
+ H5MM_xfree(bt->key);
+ H5MM_xfree(bt->page);
+ H5MM_xfree(bt->native);
+ H5MM_xfree(bt);
+ }
+ FUNC_LEAVE(ret_value);
}
-
/*-------------------------------------------------------------------------
- * Function: H5B_flush
+ * Function: H5B_flush
*
- * Purpose: Flushes a dirty B-tree node to disk.
+ * Purpose: Flushes a dirty B-tree node to disk.
*
- * Return: Success: SUCCEED
+ * Return: Success: SUCCEED
*
- * Failure: FAIL
+ * Failure: FAIL
*
- * Programmer: Robb Matzke
- * matzke@llnl.gov
- * Jun 23 1997
+ * Programmer: Robb Matzke
+ * matzke@llnl.gov
+ * Jun 23 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
-H5B_flush (H5F_t *f, hbool_t destroy, const haddr_t *addr, H5B_t *bt)
+H5B_flush(H5F_t *f, hbool_t destroy, const haddr_t *addr, H5B_t *bt)
{
- intn i;
- size_t size = 0;
- uint8 *p = bt->page;
-
- FUNC_ENTER (H5B_flush, FAIL);
-
- /*
- * Check arguments.
- */
- assert (f);
- assert (addr && H5F_addr_defined (addr));
- assert (bt);
- assert (bt->type);
- assert (bt->type->encode);
-
- size = H5B_nodesize (f, bt->type, NULL, bt->sizeof_rkey);
-
- if (bt->dirty) {
-
- /* magic number */
- HDmemcpy (p, H5B_MAGIC, H5B_SIZEOF_MAGIC);
- p += 4;
-
- /* node type and level */
- *p++ = bt->type->id;
- *p++ = bt->level;
-
- /* entries used */
- UINT16ENCODE (p, bt->nchildren);
-
- /* sibling pointers */
- H5F_addr_encode (f, &p, &(bt->left));
- H5F_addr_encode (f, &p, &(bt->right));
-
- /* child keys and pointers */
- for (i=0; i<=bt->nchildren; i++) {
-
- /* encode the key */
- assert (bt->key[i].rkey == p);
- if (bt->key[i].dirty) {
- if (bt->key[i].nkey) {
- if ((bt->type->encode)(f, bt, bt->key[i].rkey,
- bt->key[i].nkey)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTENCODE, FAIL,
- "unable to encode B-tree key");
- }
- }
- bt->key[i].dirty = FALSE;
- }
- p += bt->sizeof_rkey;
-
- /* encode the child address */
- if (i<bt->ndirty) {
- H5F_addr_encode (f, &p, &(bt->child[i]));
- } else {
- p += H5F_SIZEOF_ADDR(f);
- }
- }
-
- /*
- * Write the disk page. We always write the header, but we don't
- * bother writing data for the child entries that don't exist or
- * for the final unchanged children.
- */
- if (H5F_block_write (f, addr, size, bt->page)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTFLUSH, FAIL,
- "unable to save B-tree node to disk");
- }
- bt->dirty = FALSE;
- bt->ndirty = 0;
- }
-
- if (destroy) {
- H5MM_xfree (bt->child);
- H5MM_xfree (bt->key);
- H5MM_xfree (bt->page);
- H5MM_xfree (bt->native);
- H5MM_xfree (bt);
- }
-
- FUNC_LEAVE (SUCCEED);
+ intn i;
+ size_t size = 0;
+ uint8 *p = bt->page;
+
+ FUNC_ENTER(H5B_flush, FAIL);
+
+ /*
+ * Check arguments.
+ */
+ assert(f);
+ assert(addr && H5F_addr_defined(addr));
+ assert(bt);
+ assert(bt->type);
+ assert(bt->type->encode);
+
+ size = H5B_nodesize(f, bt->type, NULL, bt->sizeof_rkey);
+
+ if (bt->dirty) {
+
+ /* magic number */
+ HDmemcpy(p, H5B_MAGIC, H5B_SIZEOF_MAGIC);
+ p += 4;
+
+ /* node type and level */
+ *p++ = bt->type->id;
+ *p++ = bt->level;
+
+ /* entries used */
+ UINT16ENCODE(p, bt->nchildren);
+
+ /* sibling pointers */
+ H5F_addr_encode(f, &p, &(bt->left));
+ H5F_addr_encode(f, &p, &(bt->right));
+
+ /* child keys and pointers */
+ for (i = 0; i <= bt->nchildren; i++) {
+
+ /* encode the key */
+ assert(bt->key[i].rkey == p);
+ if (bt->key[i].dirty) {
+ if (bt->key[i].nkey) {
+ if ((bt->type->encode) (f, bt, bt->key[i].rkey,
+ bt->key[i].nkey) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTENCODE, FAIL,
+ "unable to encode B-tree key");
+ }
+ }
+ bt->key[i].dirty = FALSE;
+ }
+ p += bt->sizeof_rkey;
+
+ /* encode the child address */
+ if (i < bt->ndirty) {
+ H5F_addr_encode(f, &p, &(bt->child[i]));
+ } else {
+ p += H5F_SIZEOF_ADDR(f);
+ }
+ }
+
+ /*
+ * Write the disk page. We always write the header, but we don't
+ * bother writing data for the child entries that don't exist or
+ * for the final unchanged children.
+ */
+ if (H5F_block_write(f, addr, size, bt->page) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTFLUSH, FAIL,
+ "unable to save B-tree node to disk");
+ }
+ bt->dirty = FALSE;
+ bt->ndirty = 0;
+ }
+ if (destroy) {
+ H5MM_xfree(bt->child);
+ H5MM_xfree(bt->key);
+ H5MM_xfree(bt->page);
+ H5MM_xfree(bt->native);
+ H5MM_xfree(bt);
+ }
+ FUNC_LEAVE(SUCCEED);
}
-
/*-------------------------------------------------------------------------
- * Function: H5B_find
+ * Function: H5B_find
*
- * Purpose: Locate the specified information in a B-tree and return
- * that information by filling in fields of the caller-supplied
- * UDATA pointer depending on the type of leaf node
- * requested. The UDATA can point to additional data passed
- * to the key comparison function.
+ * Purpose: Locate the specified information in a B-tree and return
+ * that information by filling in fields of the caller-supplied
+ * UDATA pointer depending on the type of leaf node
+ * requested. The UDATA can point to additional data passed
+ * to the key comparison function.
*
- * Note: This function does not follow the left/right sibling
- * pointers since it assumes that all nodes can be reached
- * from the parent node.
+ * Note: This function does not follow the left/right sibling
+ * pointers since it assumes that all nodes can be reached
+ * from the parent node.
*
- * Return: Success: SUCCEED if found, values returned through the
- * UDATA argument.
+ * Return: Success: SUCCEED if found, values returned through the
+ * UDATA argument.
*
- * Failure: FAIL if not found, UDATA is undefined.
+ * Failure: FAIL if not found, UDATA is undefined.
*
- * Programmer: Robb Matzke
- * matzke@llnl.gov
- * Jun 23 1997
+ * Programmer: Robb Matzke
+ * matzke@llnl.gov
+ * Jun 23 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
-H5B_find (H5F_t *f, const H5B_class_t *type, const haddr_t *addr, void *udata)
+H5B_find(H5F_t *f, const H5B_class_t *type, const haddr_t *addr, void *udata)
{
- H5B_t *bt=NULL;
- intn idx=-1, lt=0, rt, cmp=1;
- int ret_value = FAIL;
-
- FUNC_ENTER (H5B_find, FAIL);
-
- /*
- * Check arguments.
- */
- assert (f);
- assert (type);
- assert (type->decode);
- assert (type->cmp3);
- assert (type->found);
- assert (addr && H5F_addr_defined (addr));
-
- /*
- * Perform a binary search to locate the child which contains
- * the thing for which we're searching.
- */
- if (NULL==(bt=H5AC_protect (f, H5AC_BT, addr, type, udata))) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL,
- "unable to load B-tree node");
- }
- rt = bt->nchildren;
-
- while (lt<rt && cmp) {
- idx = (lt + rt) / 2;
- if (H5B_decode_keys (f, bt, idx)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, FAIL,
- "unable to decode B-tree key(s)");
- }
-
- /* compare */
- if ((cmp=(type->cmp3)(f, bt->key[idx].nkey, udata,
- bt->key[idx+1].nkey))<0) {
- rt = idx;
- } else {
- lt = idx+1;
- }
- }
- if (cmp) {
- HGOTO_ERROR (H5E_BTREE, H5E_NOTFOUND, FAIL,
- "B-tree key not found");
- }
-
- /*
- * Follow the link to the subtree or to the data node.
- */
- assert (idx>=0 && idx<bt->nchildren);
- if (bt->level > 0) {
- if ((ret_value = H5B_find (f, type, bt->child+idx, udata))<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_NOTFOUND, FAIL,
- "key not found in subtree");
- }
- } else {
- ret_value = (type->found)(f, bt->child+idx, bt->key[idx].nkey,
- udata, bt->key[idx+1].nkey);
- if (ret_value<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_NOTFOUND, FAIL,
- "key not found in leaf node");
- }
- }
-
-done:
- if (bt && H5AC_unprotect (f, H5AC_BT, addr, bt)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_PROTECT, FAIL,
- "unable to release node");
- }
- FUNC_LEAVE (ret_value);
+ H5B_t *bt = NULL;
+ intn idx = -1, lt = 0, rt, cmp = 1;
+ int ret_value = FAIL;
+
+ FUNC_ENTER(H5B_find, FAIL);
+
+ /*
+ * Check arguments.
+ */
+ assert(f);
+ assert(type);
+ assert(type->decode);
+ assert(type->cmp3);
+ assert(type->found);
+ assert(addr && H5F_addr_defined(addr));
+
+ /*
+ * Perform a binary search to locate the child which contains
+ * the thing for which we're searching.
+ */
+ if (NULL == (bt = H5AC_protect(f, H5AC_BT, addr, type, udata))) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
+ "unable to load B-tree node");
+ }
+ rt = bt->nchildren;
+
+ while (lt < rt && cmp) {
+ idx = (lt + rt) / 2;
+ if (H5B_decode_keys(f, bt, idx) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
+ "unable to decode B-tree key(s)");
+ }
+ /* compare */
+ if ((cmp = (type->cmp3) (f, bt->key[idx].nkey, udata,
+ bt->key[idx + 1].nkey)) < 0) {
+ rt = idx;
+ } else {
+ lt = idx + 1;
+ }
+ }
+ if (cmp) {
+ HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL,
+ "B-tree key not found");
+ }
+ /*
+ * Follow the link to the subtree or to the data node.
+ */
+ assert(idx >= 0 && idx < bt->nchildren);
+ if (bt->level > 0) {
+ if ((ret_value = H5B_find(f, type, bt->child + idx, udata)) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL,
+ "key not found in subtree");
+ }
+ } else {
+ ret_value = (type->found) (f, bt->child + idx, bt->key[idx].nkey,
+ udata, bt->key[idx + 1].nkey);
+ if (ret_value < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL,
+ "key not found in leaf node");
+ }
+ }
+
+ done:
+ if (bt && H5AC_unprotect(f, H5AC_BT, addr, bt) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL,
+ "unable to release node");
+ }
+ FUNC_LEAVE(ret_value);
}
-
/*-------------------------------------------------------------------------
- * Function: H5B_split
+ * Function: H5B_split
*
- * Purpose: Split a single node into two nodes. The old node will
- * contain the left children and the new node will contain the
- * right children.
+ * Purpose: Split a single node into two nodes. The old node will
+ * contain the left children and the new node will contain the
+ * right children.
*
- * The UDATA pointer is passed to the sizeof_rkey() method but is
- * otherwise unused.
+ * The UDATA pointer is passed to the sizeof_rkey() method but is
+ * otherwise unused.
*
- * The OLD_BT argument is a pointer to a protected B-tree
- * node.
+ * The OLD_BT argument is a pointer to a protected B-tree
+ * node.
*
- * Return: Success: SUCCEED. The address of the new node is
- * returned through the NEW_ADDR argument.
+ * Return: Success: SUCCEED. The address of the new node is
+ * returned through the NEW_ADDR argument.
*
- * Failure: FAIL
+ * Failure: FAIL
*
- * Programmer: Robb Matzke
- * matzke@llnl.gov
- * Jul 3 1997
+ * Programmer: Robb Matzke
+ * matzke@llnl.gov
+ * Jul 3 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
-H5B_split (H5F_t *f, const H5B_class_t *type, H5B_t *old_bt,
- const haddr_t *old_addr, void *udata, haddr_t *new_addr /*out*/)
+H5B_split(H5F_t *f, const H5B_class_t *type, H5B_t *old_bt,
+ const haddr_t *old_addr, void *udata, haddr_t *new_addr /*out */ )
{
- H5B_t *new_bt=NULL, *tmp_bt=NULL;
- herr_t ret_value=FAIL;
- intn i, k;
- size_t recsize = 0;
-
- FUNC_ENTER (H5B_split, FAIL);
-
- /*
- * Check arguments.
- */
- assert (f);
- assert (type);
- assert (old_addr && H5F_addr_defined (old_addr));
-
- /*
- * Initialize variables.
- */
- assert (old_bt->nchildren == 2*H5B_K(f,type));
- recsize = old_bt->sizeof_rkey + H5F_SIZEOF_ADDR(f);
- k = H5B_K(f,type);
-
- /*
- * Create the new B-tree node.
- */
- if (H5B_create (f, type, udata, new_addr/*out*/)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTINIT, FAIL,
- "unable to create B-tree");
- }
- if (NULL==(new_bt=H5AC_protect (f, H5AC_BT, new_addr, type, udata))) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL,
- "unable to protect B-tree");
- }
- new_bt->level = old_bt->level;
-
- /*
- * Copy data from the old node to the new node.
- */
- HDmemcpy (new_bt->page + H5B_SIZEOF_HDR(f),
- old_bt->page + H5B_SIZEOF_HDR(f) + k*recsize,
- k*recsize + new_bt->sizeof_rkey);
- HDmemcpy (new_bt->native,
- old_bt->native + k*type->sizeof_nkey,
- (k+1) * type->sizeof_nkey);
-
- for (i=0; i<=k; i++) {
- /* key */
- new_bt->key[i].dirty = old_bt->key[k+i].dirty;
- if (old_bt->key[k+i].nkey) {
- new_bt->key[i].nkey = new_bt->native + i*type->sizeof_nkey;
- }
- /* child */
- if (i<k) {
- new_bt->child[i] = old_bt->child[k+i];
- }
- }
- new_bt->ndirty = new_bt->nchildren = k;
-
- /*
- * Truncate the old node.
- */
- old_bt->dirty = TRUE;
- old_bt->ndirty = old_bt->nchildren = k;
-
- /*
- * Update sibling pointers.
- */
- new_bt->left = *old_addr;
- new_bt->right = old_bt->right;
-
- if (H5F_addr_defined (&(old_bt->right))) {
- if (NULL==(tmp_bt=H5AC_find (f, H5AC_BT, &(old_bt->right), type,
- udata))) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL,
- "unable to load right sibling");
- }
- tmp_bt->dirty = TRUE;
- tmp_bt->left = *new_addr;
- }
- old_bt->right = *new_addr;
-
- HGOTO_DONE (SUCCEED);
-
-done:
- {
- if (new_bt && H5AC_unprotect (f, H5AC_BT, new_addr, new_bt)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_PROTECT, FAIL,
- "unable to release B-tree node");
- }
- }
- FUNC_LEAVE (ret_value);
+ H5B_t *new_bt = NULL, *tmp_bt = NULL;
+ herr_t ret_value = FAIL;
+ intn i, k;
+ size_t recsize = 0;
+
+ FUNC_ENTER(H5B_split, FAIL);
+
+ /*
+ * Check arguments.
+ */
+ assert(f);
+ assert(type);
+ assert(old_addr && H5F_addr_defined(old_addr));
+
+ /*
+ * Initialize variables.
+ */
+ assert(old_bt->nchildren == 2 * H5B_K(f, type));
+ recsize = old_bt->sizeof_rkey + H5F_SIZEOF_ADDR(f);
+ k = H5B_K(f, type);
+
+ /*
+ * Create the new B-tree node.
+ */
+ if (H5B_create(f, type, udata, new_addr /*out */ ) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL,
+ "unable to create B-tree");
+ }
+ if (NULL == (new_bt = H5AC_protect(f, H5AC_BT, new_addr, type, udata))) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
+ "unable to protect B-tree");
+ }
+ new_bt->level = old_bt->level;
+
+ /*
+ * Copy data from the old node to the new node.
+ */
+ HDmemcpy(new_bt->page + H5B_SIZEOF_HDR(f),
+ old_bt->page + H5B_SIZEOF_HDR(f) + k * recsize,
+ k * recsize + new_bt->sizeof_rkey);
+ HDmemcpy(new_bt->native,
+ old_bt->native + k * type->sizeof_nkey,
+ (k + 1) * type->sizeof_nkey);
+
+ for (i = 0; i <= k; i++) {
+ /* key */
+ new_bt->key[i].dirty = old_bt->key[k + i].dirty;
+ if (old_bt->key[k + i].nkey) {
+ new_bt->key[i].nkey = new_bt->native + i * type->sizeof_nkey;
+ }
+ /* child */
+ if (i < k) {
+ new_bt->child[i] = old_bt->child[k + i];
+ }
+ }
+ new_bt->ndirty = new_bt->nchildren = k;
+
+ /*
+ * Truncate the old node.
+ */
+ old_bt->dirty = TRUE;
+ old_bt->ndirty = old_bt->nchildren = k;
+
+ /*
+ * Update sibling pointers.
+ */
+ new_bt->left = *old_addr;
+ new_bt->right = old_bt->right;
+
+ if (H5F_addr_defined(&(old_bt->right))) {
+ if (NULL == (tmp_bt = H5AC_find(f, H5AC_BT, &(old_bt->right), type,
+ udata))) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
+ "unable to load right sibling");
+ }
+ tmp_bt->dirty = TRUE;
+ tmp_bt->left = *new_addr;
+ }
+ old_bt->right = *new_addr;
+
+ HGOTO_DONE(SUCCEED);
+
+ done:
+ {
+ if (new_bt && H5AC_unprotect(f, H5AC_BT, new_addr, new_bt) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL,
+ "unable to release B-tree node");
+ }
+ }
+ FUNC_LEAVE(ret_value);
}
-
/*-------------------------------------------------------------------------
- * Function: H5B_decode_key
+ * Function: H5B_decode_key
*
- * Purpose: Decode the specified key into native format.
+ * Purpose: Decode the specified key into native format.
*
- * Return: Success: SUCCEED
+ * Return: Success: SUCCEED
*
- * Failure: FAIL
+ * Failure: FAIL
*
- * Programmer: Robb Matzke
- * matzke@llnl.gov
- * Jul 8 1997
+ * Programmer: Robb Matzke
+ * matzke@llnl.gov
+ * Jul 8 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
-H5B_decode_key (H5F_t *f, H5B_t *bt, intn idx)
+H5B_decode_key(H5F_t *f, H5B_t *bt, intn idx)
{
- FUNC_ENTER (H5B_decode_key, FAIL);
-
- bt->key[idx].nkey = bt->native + idx * bt->type->sizeof_nkey;
- if ((bt->type->decode)(f, bt, bt->key[idx].rkey,
- bt->key[idx].nkey)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTDECODE, FAIL,
- "unable to decode key");
- }
-
- FUNC_LEAVE (SUCCEED);
+ FUNC_ENTER(H5B_decode_key, FAIL);
+
+ bt->key[idx].nkey = bt->native + idx * bt->type->sizeof_nkey;
+ if ((bt->type->decode) (f, bt, bt->key[idx].rkey,
+ bt->key[idx].nkey) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
+ "unable to decode key");
+ }
+ FUNC_LEAVE(SUCCEED);
}
-
/*-------------------------------------------------------------------------
- * Function: H5B_decode_keys
+ * Function: H5B_decode_keys
*
- * Purpose: Decode keys on either side of the specified branch.
+ * Purpose: Decode keys on either side of the specified branch.
*
- * Return: Success: SUCCEED
+ * Return: Success: SUCCEED
*
- * Failure: FAIL
+ * Failure: FAIL
*
- * Programmer: Robb Matzke
+ * Programmer: Robb Matzke
* Tuesday, October 14, 1997
*
* Modifications:
@@ -719,912 +707,888 @@ H5B_decode_key (H5F_t *f, H5B_t *bt, intn idx)
*-------------------------------------------------------------------------
*/
static herr_t
-H5B_decode_keys (H5F_t *f, H5B_t *bt, intn idx)
+H5B_decode_keys(H5F_t *f, H5B_t *bt, intn idx)
{
- FUNC_ENTER (H5B_decode_keys, FAIL);
-
- assert (f);
- assert (bt);
- assert (idx>=0 && idx<bt->nchildren);
-
- if (!bt->key[idx].nkey && H5B_decode_key (f, bt, idx)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTDECODE, FAIL,
- "unable to decode key");
- }
- if (!bt->key[idx+1].nkey && H5B_decode_key (f, bt, idx+1)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTDECODE, FAIL,
- "unable to decode key");
- }
-
- FUNC_LEAVE (SUCCEED);
+ FUNC_ENTER(H5B_decode_keys, FAIL);
+
+ assert(f);
+ assert(bt);
+ assert(idx >= 0 && idx < bt->nchildren);
+
+ if (!bt->key[idx].nkey && H5B_decode_key(f, bt, idx) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
+ "unable to decode key");
+ }
+ if (!bt->key[idx + 1].nkey && H5B_decode_key(f, bt, idx + 1) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
+ "unable to decode key");
+ }
+ FUNC_LEAVE(SUCCEED);
}
-
/*-------------------------------------------------------------------------
- * Function: H5B_insert
+ * Function: H5B_insert
*
- * Purpose: Adds a new item to the B-tree. If the root node of
- * the B-tree splits then the B-tree gets a new address.
+ * Purpose: Adds a new item to the B-tree. If the root node of
+ * the B-tree splits then the B-tree gets a new address.
*
- * Return: Success: SUCCEED.
+ * Return: Success: SUCCEED.
*
- * Failure: FAIL
+ * Failure: FAIL
*
- * Programmer: Robb Matzke
- * matzke@llnl.gov
- * Jun 23 1997
+ * Programmer: Robb Matzke
+ * matzke@llnl.gov
+ * Jun 23 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
-H5B_insert (H5F_t *f, const H5B_class_t *type, const haddr_t *addr,
- void *udata)
+H5B_insert(H5F_t *f, const H5B_class_t *type, const haddr_t *addr,
+ void *udata)
{
- uint8 lt_key[1024], md_key[1024], rt_key[1024];
- hbool_t lt_key_changed=FALSE, rt_key_changed=FALSE;
- haddr_t child, old_root;
- intn level;
- H5B_t *bt;
- size_t size;
- uint8 *buf;
- H5B_ins_t my_ins = H5B_INS_ERROR;
-
- FUNC_ENTER (H5B_insert, FAIL);
-
- /*
- * Check arguments.
- */
- assert (f);
- assert (type);
- assert (type->sizeof_nkey <= sizeof lt_key);
- assert (addr && H5F_addr_defined (addr));
-
- if ((my_ins=H5B_insert_helper (f, addr, type, lt_key, &lt_key_changed,
- md_key, udata, rt_key, &rt_key_changed,
- &child/*out*/))<0 || my_ins<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTINIT, FAIL,
- "unable to insert key");
- }
- if (H5B_INS_NOOP==my_ins) HRETURN (SUCCEED);
- assert (H5B_INS_RIGHT==my_ins);
-
- /* the current root */
- if (NULL==(bt = H5AC_find (f, H5AC_BT, addr, type, udata))) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL,
- "unable to locate root of B-tree");
- }
- level = bt->level;
- if (!lt_key_changed) {
- if (!bt->key[0].nkey && H5B_decode_key (f, bt, 0)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTDECODE, FAIL,
- "unable to decode key");
- }
- HDmemcpy (lt_key, bt->key[0].nkey, type->sizeof_nkey);
- }
-
- /* the new node */
- if (NULL==(bt = H5AC_find (f, H5AC_BT, &child, type, udata))) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL,
- "unable to load new node");
- }
- if (!rt_key_changed) {
- if (!bt->key[bt->nchildren].nkey &&
- H5B_decode_key (f, bt, bt->nchildren)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTDECODE, FAIL,
- "unable to decode key");
- }
- HDmemcpy (rt_key, bt->key[bt->nchildren].nkey, type->sizeof_nkey);
- }
-
- /*
- * Copy the old root node to some other file location and make the new
- * root at the old root's previous address. This prevents the B-tree
- * from "moving".
- */
- size = H5B_nodesize (f, type, NULL, bt->sizeof_rkey);
- buf = H5MM_xmalloc (size);
- if (H5MF_alloc (f, H5MF_META, size, &old_root/*out*/)<0) {
- HRETURN_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL,
- "unable to allocate file space to move root");
- }
- if (H5AC_flush (f, H5AC_BT, addr, FALSE)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTFLUSH, FAIL,
- "unable to flush B-tree root node");
- }
- if (H5F_block_read (f, addr, size, buf)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_READERROR, FAIL,
- "unable to read B-tree root node");
- }
- if (H5F_block_write (f, &old_root, size, buf)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_WRITEERROR, FAIL,
- "unable to move B-tree root node");
- }
- if (H5AC_rename (f, H5AC_BT, addr, &old_root)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTSPLIT, FAIL,
- "unable to move B-tree root node");
- }
-
- buf = H5MM_xfree (buf);
-
- /* update the new child's left pointer */
- if (NULL==(bt=H5AC_find (f, H5AC_BT, &child, type, udata))) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL,
- "unable to load new child");
- }
- bt->dirty = TRUE;
- bt->left = old_root;
-
- /* clear the old root at the old address (we already copied it)*/
- if (NULL==(bt=H5AC_find (f, H5AC_BT, addr, type, udata))) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL,
- "unable to clear old root location");
- }
- bt->dirty = TRUE;
- bt->ndirty = 0;
- H5F_addr_undef (&(bt->left));
- H5F_addr_undef (&(bt->right));
- bt->nchildren = 0;
-
- /* the new root */
- if (NULL==(bt = H5AC_find (f, H5AC_BT, addr, type, udata))) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL,
- "unable to load new root");
- }
- bt->dirty = TRUE;
- bt->ndirty = 2;
- bt->level = level+1;
- bt->nchildren = 2;
-
- bt->child[0] = old_root;
- bt->key[0].dirty = TRUE;
- bt->key[0].nkey = bt->native;
- HDmemcpy (bt->key[0].nkey, lt_key, type->sizeof_nkey);
-
- bt->child[1] = child;
- bt->key[1].dirty = TRUE;
- bt->key[1].nkey = bt->native + type->sizeof_nkey;
- HDmemcpy (bt->key[1].nkey, md_key, type->sizeof_nkey);
-
- bt->key[2].dirty = TRUE;
- bt->key[2].nkey = bt->native + 2 * type->sizeof_nkey;
- HDmemcpy (bt->key[2].nkey, rt_key, type->sizeof_nkey);
+ uint8 lt_key[1024], md_key[1024], rt_key[1024];
+ hbool_t lt_key_changed = FALSE, rt_key_changed = FALSE;
+ haddr_t child, old_root;
+ intn level;
+ H5B_t *bt;
+ size_t size;
+ uint8 *buf;
+ H5B_ins_t my_ins = H5B_INS_ERROR;
+
+ FUNC_ENTER(H5B_insert, FAIL);
+
+ /*
+ * Check arguments.
+ */
+ assert(f);
+ assert(type);
+ assert(type->sizeof_nkey <= sizeof lt_key);
+ assert(addr && H5F_addr_defined(addr));
+
+ if ((my_ins = H5B_insert_helper(f, addr, type, lt_key, &lt_key_changed,
+ md_key, udata, rt_key, &rt_key_changed,
+ &child /*out */ )) < 0 || my_ins < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL,
+ "unable to insert key");
+ }
+ if (H5B_INS_NOOP == my_ins)
+ HRETURN(SUCCEED);
+ assert(H5B_INS_RIGHT == my_ins);
+
+ /* the current root */
+ if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
+ "unable to locate root of B-tree");
+ }
+ level = bt->level;
+ if (!lt_key_changed) {
+ if (!bt->key[0].nkey && H5B_decode_key(f, bt, 0) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
+ "unable to decode key");
+ }
+ HDmemcpy(lt_key, bt->key[0].nkey, type->sizeof_nkey);
+ }
+ /* the new node */
+ if (NULL == (bt = H5AC_find(f, H5AC_BT, &child, type, udata))) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
+ "unable to load new node");
+ }
+ if (!rt_key_changed) {
+ if (!bt->key[bt->nchildren].nkey &&
+ H5B_decode_key(f, bt, bt->nchildren) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
+ "unable to decode key");
+ }
+ HDmemcpy(rt_key, bt->key[bt->nchildren].nkey, type->sizeof_nkey);
+ }
+ /*
+ * Copy the old root node to some other file location and make the new
+ * root at the old root's previous address. This prevents the B-tree
+ * from "moving".
+ */
+ size = H5B_nodesize(f, type, NULL, bt->sizeof_rkey);
+ buf = H5MM_xmalloc(size);
+ if (H5MF_alloc(f, H5MF_META, size, &old_root /*out */ ) < 0) {
+ HRETURN_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
+ "unable to allocate file space to move root");
+ }
+ if (H5AC_flush(f, H5AC_BT, addr, FALSE) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTFLUSH, FAIL,
+ "unable to flush B-tree root node");
+ }
+ if (H5F_block_read(f, addr, size, buf) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_READERROR, FAIL,
+ "unable to read B-tree root node");
+ }
+ if (H5F_block_write(f, &old_root, size, buf) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_WRITEERROR, FAIL,
+ "unable to move B-tree root node");
+ }
+ if (H5AC_rename(f, H5AC_BT, addr, &old_root) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTSPLIT, FAIL,
+ "unable to move B-tree root node");
+ }
+ buf = H5MM_xfree(buf);
+
+ /* update the new child's left pointer */
+ if (NULL == (bt = H5AC_find(f, H5AC_BT, &child, type, udata))) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
+ "unable to load new child");
+ }
+ bt->dirty = TRUE;
+ bt->left = old_root;
+
+ /* clear the old root at the old address (we already copied it) */
+ if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
+ "unable to clear old root location");
+ }
+ bt->dirty = TRUE;
+ bt->ndirty = 0;
+ H5F_addr_undef(&(bt->left));
+ H5F_addr_undef(&(bt->right));
+ bt->nchildren = 0;
+
+ /* the new root */
+ if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
+ "unable to load new root");
+ }
+ bt->dirty = TRUE;
+ bt->ndirty = 2;
+ bt->level = level + 1;
+ bt->nchildren = 2;
+
+ bt->child[0] = old_root;
+ bt->key[0].dirty = TRUE;
+ bt->key[0].nkey = bt->native;
+ HDmemcpy(bt->key[0].nkey, lt_key, type->sizeof_nkey);
+
+ bt->child[1] = child;
+ bt->key[1].dirty = TRUE;
+ bt->key[1].nkey = bt->native + type->sizeof_nkey;
+ HDmemcpy(bt->key[1].nkey, md_key, type->sizeof_nkey);
+
+ bt->key[2].dirty = TRUE;
+ bt->key[2].nkey = bt->native + 2 * type->sizeof_nkey;
+ HDmemcpy(bt->key[2].nkey, rt_key, type->sizeof_nkey);
#ifdef H5B_DEBUG
- H5B_assert (f, addr, type, udata);
+ H5B_assert(f, addr, type, udata);
#endif
- FUNC_LEAVE (SUCCEED);
+ FUNC_LEAVE(SUCCEED);
}
-
/*-------------------------------------------------------------------------
- * Function: H5B_insert_child
+ * Function: H5B_insert_child
*
- * Purpose: Insert a child at the specified address with the
- * specified left or right key. The BT argument is a pointer
- * to a protected B-tree node.
+ * Purpose: Insert a child at the specified address with the
+ * specified left or right key. The BT argument is a pointer
+ * to a protected B-tree node.
*
- * Return: Success: SUCCEED
+ * Return: Success: SUCCEED
*
- * Failure: FAIL
+ * Failure: FAIL
*
- * Programmer: Robb Matzke
- * matzke@llnl.gov
- * Jul 8 1997
+ * Programmer: Robb Matzke
+ * matzke@llnl.gov
+ * Jul 8 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static herr_t
-H5B_insert_child (H5F_t *f, const H5B_class_t *type, H5B_t *bt,
- intn idx, const haddr_t *child, H5B_ins_t anchor,
- void *md_key)
+H5B_insert_child(H5F_t *f, const H5B_class_t *type, H5B_t *bt,
+ intn idx, const haddr_t *child, H5B_ins_t anchor,
+ void *md_key)
{
- size_t recsize;
- intn i;
-
- FUNC_ENTER (H5B_insert_child, FAIL);
- assert (bt);
- assert (child);
-
- bt->dirty = TRUE;
- recsize = bt->sizeof_rkey + H5F_SIZEOF_ADDR(f);
-
- if (H5B_INS_RIGHT==anchor) {
- /*
- * The MD_KEY is the left key of the new node.
- */
- HDmemmove (bt->page + H5B_SIZEOF_HDR(f) + (idx+1)*recsize,
- bt->page + H5B_SIZEOF_HDR(f) + idx*recsize,
- (bt->nchildren-idx)*recsize + bt->sizeof_rkey);
-
- HDmemmove (bt->native + (idx+1) * type->sizeof_nkey,
- bt->native + idx * type->sizeof_nkey,
- ((bt->nchildren-idx)+1) * type->sizeof_nkey);
-
- for (i=bt->nchildren; i>=idx; --i) {
- bt->key[i+1].dirty = bt->key[i].dirty;
- if (bt->key[i].nkey) {
- bt->key[i+1].nkey = bt->native + (i+1) * type->sizeof_nkey;
- } else {
- bt->key[i+1].nkey = NULL;
- }
- }
- bt->key[idx].dirty = TRUE;
- bt->key[idx].nkey = bt->native + idx * type->sizeof_nkey;
- HDmemcpy (bt->key[idx].nkey, md_key, type->sizeof_nkey);
-
- } else {
- /*
- * The MD_KEY is the right key of the new node.
- */
- HDmemmove (bt->page + (H5B_SIZEOF_HDR(f) +
- (idx+1)*recsize + bt->sizeof_rkey),
- bt->page + (H5B_SIZEOF_HDR(f) +
- idx*recsize + bt->sizeof_rkey),
- (bt->nchildren-idx) * recsize);
-
- HDmemmove (bt->native + (idx+2)*type->sizeof_nkey,
- bt->native + (idx+1)*type->sizeof_nkey,
- (bt->nchildren-idx) * type->sizeof_nkey);
-
- for (i=bt->nchildren; i>idx; --i) {
- bt->key[i+1].dirty = bt->key[i].dirty;
- if (bt->key[i].nkey) {
- bt->key[i+1].nkey = bt->native + (i+1) * type->sizeof_nkey;
- } else {
- bt->key[i+1].nkey = NULL;
- }
- }
- bt->key[idx+1].dirty = TRUE;
- bt->key[idx+1].nkey = bt->native + (idx+1) * type->sizeof_nkey;
- HDmemcpy (bt->key[idx+1].nkey, md_key, type->sizeof_nkey);
- }
-
- HDmemmove (bt->child + idx + 1,
- bt->child + idx,
- (bt->nchildren - idx) * sizeof(haddr_t));
-
- bt->child[idx] = *child;
- bt->nchildren += 1;
- bt->ndirty = bt->nchildren;
-
- FUNC_LEAVE (SUCCEED);
-}
-
-
+ size_t recsize;
+ intn i;
+
+ FUNC_ENTER(H5B_insert_child, FAIL);
+ assert(bt);
+ assert(child);
+
+ bt->dirty = TRUE;
+ recsize = bt->sizeof_rkey + H5F_SIZEOF_ADDR(f);
+
+ if (H5B_INS_RIGHT == anchor) {
+ /*
+ * The MD_KEY is the left key of the new node.
+ */
+ HDmemmove(bt->page + H5B_SIZEOF_HDR(f) + (idx + 1) * recsize,
+ bt->page + H5B_SIZEOF_HDR(f) + idx * recsize,
+ (bt->nchildren - idx) * recsize + bt->sizeof_rkey);
+
+ HDmemmove(bt->native + (idx + 1) * type->sizeof_nkey,
+ bt->native + idx * type->sizeof_nkey,
+ ((bt->nchildren - idx) + 1) * type->sizeof_nkey);
+
+ for (i = bt->nchildren; i >= idx; --i) {
+ bt->key[i + 1].dirty = bt->key[i].dirty;
+ if (bt->key[i].nkey) {
+ bt->key[i + 1].nkey = bt->native + (i + 1) * type->sizeof_nkey;
+ } else {
+ bt->key[i + 1].nkey = NULL;
+ }
+ }
+ bt->key[idx].dirty = TRUE;
+ bt->key[idx].nkey = bt->native + idx * type->sizeof_nkey;
+ HDmemcpy(bt->key[idx].nkey, md_key, type->sizeof_nkey);
+
+ } else {
+ /*
+ * The MD_KEY is the right key of the new node.
+ */
+ HDmemmove(bt->page + (H5B_SIZEOF_HDR(f) +
+ (idx + 1) * recsize + bt->sizeof_rkey),
+ bt->page + (H5B_SIZEOF_HDR(f) +
+ idx * recsize + bt->sizeof_rkey),
+ (bt->nchildren - idx) * recsize);
+
+ HDmemmove(bt->native + (idx + 2) * type->sizeof_nkey,
+ bt->native + (idx + 1) * type->sizeof_nkey,
+ (bt->nchildren - idx) * type->sizeof_nkey);
+
+ for (i = bt->nchildren; i > idx; --i) {
+ bt->key[i + 1].dirty = bt->key[i].dirty;
+ if (bt->key[i].nkey) {
+ bt->key[i + 1].nkey = bt->native + (i + 1) * type->sizeof_nkey;
+ } else {
+ bt->key[i + 1].nkey = NULL;
+ }
+ }
+ bt->key[idx + 1].dirty = TRUE;
+ bt->key[idx + 1].nkey = bt->native + (idx + 1) * type->sizeof_nkey;
+ HDmemcpy(bt->key[idx + 1].nkey, md_key, type->sizeof_nkey);
+ }
+
+ HDmemmove(bt->child + idx + 1,
+ bt->child + idx,
+ (bt->nchildren - idx) * sizeof(haddr_t));
+
+ bt->child[idx] = *child;
+ bt->nchildren += 1;
+ bt->ndirty = bt->nchildren;
+
+ FUNC_LEAVE(SUCCEED);
+}
/*-------------------------------------------------------------------------
- * Function: H5B_insert_helper
+ * Function: H5B_insert_helper
*
- * Purpose: Inserts the item UDATA into the tree rooted at ADDR and having
- * the specified type.
+ * Purpose: Inserts the item UDATA into the tree rooted at ADDR and having
+ * the specified type.
*
- * On return, if LT_KEY_CHANGED is non-zero, then LT_KEY is
- * the new native left key. Similarily for RT_KEY_CHANGED
- * and RT_KEY.
+ * On return, if LT_KEY_CHANGED is non-zero, then LT_KEY is
+ * the new native left key. Similarily for RT_KEY_CHANGED
+ * and RT_KEY.
*
- * If the node splits, then MD_KEY contains the key that
- * was split between the two nodes (that is, the key that
- * appears as the max key in the left node and the min key
- * in the right node).
+ * If the node splits, then MD_KEY contains the key that
+ * was split between the two nodes (that is, the key that
+ * appears as the max key in the left node and the min key
+ * in the right node).
*
- * Return: Success: A B-tree operation. The address of the new
- * node, if the node splits, is returned through
- * the NEW_NODE argument. The new node is always
- * to the right of the previous node.
+ * Return: Success: A B-tree operation. The address of the new
+ * node, if the node splits, is returned through
+ * the NEW_NODE argument. The new node is always
+ * to the right of the previous node.
*
- * Failure: H5B_INS_ERROR
+ * Failure: H5B_INS_ERROR
*
- * Programmer: Robb Matzke
- * matzke@llnl.gov
- * Jul 9 1997
+ * Programmer: Robb Matzke
+ * matzke@llnl.gov
+ * Jul 9 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static H5B_ins_t
-H5B_insert_helper (H5F_t *f, const haddr_t *addr, const H5B_class_t *type,
- uint8 *lt_key, hbool_t *lt_key_changed,
- uint8 *md_key, void *udata,
- uint8 *rt_key, hbool_t *rt_key_changed,
- haddr_t *new_node/*out*/)
+H5B_insert_helper(H5F_t *f, const haddr_t *addr, const H5B_class_t *type,
+ uint8 *lt_key, hbool_t *lt_key_changed,
+ uint8 *md_key, void *udata,
+ uint8 *rt_key, hbool_t *rt_key_changed,
+ haddr_t *new_node /*out */ )
{
- H5B_t *bt=NULL, *twin=NULL, *tmp_bt=NULL;
- intn lt=0, idx=-1, rt, cmp=-1;
- haddr_t child_addr;
- H5B_ins_t my_ins = H5B_INS_ERROR;
- H5B_ins_t ret_value = H5B_INS_ERROR;
-
- FUNC_ENTER (H5B_insert_helper, H5B_INS_ERROR);
-
- /*
- * Check arguments
- */
- assert (f);
- assert (addr && H5F_addr_defined (addr));
- assert (type);
- assert (type->decode);
- assert (type->cmp3);
- assert (type->new);
- assert (lt_key);
- assert (lt_key_changed);
- assert (rt_key);
- assert (rt_key_changed);
- assert (new_node);
-
- *lt_key_changed = FALSE;
- *rt_key_changed = FALSE;
-
- /*
- * Use a binary search to find the child that will receive the new
- * data. When the search completes IDX points to the child that
- * should get the new data.
- */
- if (NULL==(bt=H5AC_protect (f, H5AC_BT, addr, type, udata))) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR,
- "unable to load node");
- }
- rt = bt->nchildren;
-
- while (lt<rt && cmp) {
- idx = (lt + rt) / 2;
- if (H5B_decode_keys (f, bt, idx)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
- "unable to decode key");
- }
- if ((cmp=(type->cmp3)(f, bt->key[idx].nkey, udata,
- bt->key[idx+1].nkey))<0) {
- rt = idx;
- } else {
- lt = idx+1;
- }
- }
-
- if (0==bt->nchildren) {
- /*
- * The value being inserted will be the only value in this tree. We
- * must necessarily be at level zero.
- */
- assert (0==bt->level);
- bt->key[0].nkey = bt->native;
- bt->key[1].nkey = bt->native + type->sizeof_nkey;
- if ((type->new)(f, H5B_INS_FIRST, bt->key[0].nkey, udata,
- bt->key[1].nkey, bt->child+0/*out*/)<0) {
- bt->key[0].nkey = bt->key[1].nkey = NULL;
- HGOTO_ERROR (H5E_BTREE, H5E_CANTINIT, H5B_INS_ERROR,
- "unable to create leaf node");
- }
- bt->nchildren = 1;
- bt->dirty = TRUE;
- bt->ndirty = 1;
- bt->key[0].dirty = TRUE;
- bt->key[1].dirty = TRUE;
- idx = 0;
-
- if (type->follow_min) {
- if ((my_ins=(type->insert)(f, bt->child+idx,
- bt->key[idx].nkey, lt_key_changed,
- md_key, udata,
- bt->key[idx+1].nkey, rt_key_changed,
- &child_addr/*out*/))<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
- "can't insert first leaf node");
- }
- } else {
- my_ins = H5B_INS_NOOP;
- }
-
- } else if (cmp<0 && idx<=0 && bt->level>0) {
- /*
- * The value being inserted is less than any value in this tree. Follow
- * the minimum branch out of this node to a subtree.
- */
- idx = 0;
- if (H5B_decode_keys (f, bt, idx)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
- "unable to decode key");
- }
- if ((my_ins=H5B_insert_helper (f, bt->child+idx, type,
- bt->key[idx].nkey, lt_key_changed,
- md_key, udata,
- bt->key[idx+1].nkey, rt_key_changed,
- &child_addr/*out*/))<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
- "can't insert minimum subtree");
- }
-
- } else if (cmp<0 && idx<=0 && type->follow_min) {
- /*
- * The value being inserted is less than any leaf node out of this
- * current node. Follow the minimum branch to a leaf node and let the
- * subclass handle the problem.
- */
- idx = 0;
- if (H5B_decode_keys (f, bt, idx)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
- "unable to decode key");
- }
- if ((my_ins=(type->insert)(f, bt->child+idx,
- bt->key[idx].nkey, lt_key_changed,
- md_key, udata,
- bt->key[idx+1].nkey, rt_key_changed,
- &child_addr/*out*/))<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
- "can't insert minimum leaf node");
- }
-
- } else if (cmp<0 && idx<=0) {
- /*
- * The value being inserted is less than any leaf node out of the
- * current node. Create a new minimum leaf node out of this B-tree
- * node. This node is not empty (handled above).
- */
- idx = 0;
- if (H5B_decode_keys (f, bt, idx)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
- "unable to decode key");
- }
- my_ins = H5B_INS_LEFT;
- HDmemcpy (md_key, bt->key[idx].nkey, type->sizeof_nkey);
- if ((type->new)(f, H5B_INS_LEFT, bt->key[idx].nkey, udata, md_key,
- &child_addr/*out*/)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
- "can't insert minimum leaf node");
- }
- *lt_key_changed = TRUE;
-
- } else if (cmp>0 && idx+1>=bt->nchildren && bt->level>0) {
- /*
- * The value being inserted is larger than any value in this tree.
- * Follow the maximum branch out of this node to a subtree.
- */
- idx = bt->nchildren - 1;
- if (H5B_decode_keys (f, bt, idx)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
- "unable to decode key");
- }
- if ((my_ins=H5B_insert_helper (f, bt->child+idx, type,
- bt->key[idx].nkey, lt_key_changed,
- md_key, udata,
- bt->key[idx+1].nkey, rt_key_changed,
- &child_addr/*out*/))<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
- "can't insert maximum subtree");
- }
-
- } else if (cmp>0 && idx+1>=bt->nchildren && type->follow_max) {
- /*
- * The value being inserted is larger than any leaf node out of the
- * current node. Follow the maximum branch to a leaf node and let the
- * subclass handle the problem.
- */
- idx = bt->nchildren - 1;
- if (H5B_decode_keys (f, bt, idx)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
- "unable to decode key");
- }
- if ((my_ins=(type->insert)(f, bt->child+idx,
- bt->key[idx].nkey, lt_key_changed,
- md_key, udata,
- bt->key[idx+1].nkey, rt_key_changed,
- &child_addr/*out*/))<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
- "can't insert maximum leaf node");
- }
-
- } else if (cmp>0 && idx+1>=bt->nchildren) {
- /*
- * The value being inserted is larger than any leaf node out of the
- * current node. Create a new maximum leaf node out of this B-tree
- * node.
- */
- idx = bt->nchildren - 1;
- if (H5B_decode_keys (f, bt, idx)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
- "unable to decode key");
- }
- my_ins = H5B_INS_RIGHT;
- HDmemcpy (md_key, bt->key[idx+1].nkey, type->sizeof_nkey);
- if ((type->new)(f, H5B_INS_RIGHT, md_key, udata, bt->key[idx+1].nkey,
- &child_addr/*out*/)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
- "can't insert maximum leaf node");
- }
- *rt_key_changed = TRUE;
-
- } else if (cmp) {
- /*
- * We couldn't figure out which branch to follow out of this node. THIS
- * IS A MAJOR PROBLEM THAT NEEDS TO BE FIXED --rpm.
- */
- assert ("INTERNAL HDF5 ERROR (see rpm)" && 0);
-
- } else if (bt->level>0) {
- /*
- * Follow a branch out of this node to another subtree.
- */
- assert (idx>=0 && idx<bt->nchildren);
- if ((my_ins=H5B_insert_helper (f, bt->child+idx, type,
- bt->key[idx].nkey, lt_key_changed,
- md_key, udata,
- bt->key[idx+1].nkey, rt_key_changed,
- &child_addr/*out*/))<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
- "can't insert subtree");
- }
-
- } else {
- /*
- * Follow a branch out of this node to a leaf node of some other type.
- */
- assert (idx>=0 && idx<bt->nchildren);
- if ((my_ins=(type->insert)(f, bt->child+idx,
- bt->key[idx].nkey, lt_key_changed,
- md_key, udata,
- bt->key[idx+1].nkey, rt_key_changed,
- &child_addr/*out*/))<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
- "can't insert leaf node");
- }
-
- }
- assert (my_ins>=0);
-
- /*
- * Update the left and right keys of the current node.
- */
- if (*lt_key_changed) {
- bt->dirty = TRUE;
- bt->key[idx].dirty = TRUE;
- if (idx>0) {
- *lt_key_changed = FALSE;
- } else {
- HDmemcpy (lt_key, bt->key[idx].nkey, type->sizeof_nkey);
- }
- }
- if (*rt_key_changed) {
- bt->dirty = TRUE;
- bt->key[idx+1].dirty = TRUE;
- if (idx+1<bt->nchildren) {
- *rt_key_changed = FALSE;
- } else {
- HDmemcpy (rt_key, bt->key[idx+1].nkey, type->sizeof_nkey);
- }
- }
-
- if (H5B_INS_CHANGE==my_ins) {
- /*
- * The insertion simply changed the address for the child.
- */
- bt->child[idx] = child_addr;
- bt->dirty = TRUE;
- bt->ndirty = MAX (bt->ndirty, idx+1);
- ret_value = H5B_INS_NOOP;
-
- } else if (H5B_INS_LEFT==my_ins || H5B_INS_RIGHT==my_ins) {
- /* Make sure IDX is the slot number for the new node. */
- if (H5B_INS_RIGHT==my_ins) idx++;
-
- /* If this node is full then split it before inserting the new child. */
- if (bt->nchildren==2*H5B_K (f, type)) {
- if (H5B_split (f, type, bt, addr, udata, new_node/*out*/)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTSPLIT, H5B_INS_ERROR,
- "can't split node");
- }
- if (NULL==(twin=H5AC_protect (f, H5AC_BT, new_node, type, udata))) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR,
- "can't load B-tree");
- }
- if (idx<=H5B_K (f, type)) {
- tmp_bt = bt;
- } else {
- idx -= H5B_K (f, type);
- tmp_bt = twin;
- }
- } else {
- tmp_bt = bt;
- }
-
- /* Insert the child */
- if (H5B_insert_child (f, type, tmp_bt, idx, &child_addr, my_ins,
- md_key)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
- "can't insert child");
- }
- }
-
-
- /*
- * If this node split, return the mid key (the one that is shared
- * by the left and right node).
- */
- if (twin) {
- if (!twin->key[0].nkey && H5B_decode_key (f, twin, 0)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
- "unable to decode key");
- }
- HDmemcpy (md_key, twin->key[0].nkey, type->sizeof_nkey);
- ret_value = H5B_INS_RIGHT;
+ H5B_t *bt = NULL, *twin = NULL, *tmp_bt = NULL;
+ intn lt = 0, idx = -1, rt, cmp = -1;
+ haddr_t child_addr;
+ H5B_ins_t my_ins = H5B_INS_ERROR;
+ H5B_ins_t ret_value = H5B_INS_ERROR;
+
+ FUNC_ENTER(H5B_insert_helper, H5B_INS_ERROR);
+
+ /*
+ * Check arguments
+ */
+ assert(f);
+ assert(addr && H5F_addr_defined(addr));
+ assert(type);
+ assert(type->decode);
+ assert(type->cmp3);
+ assert(type->new);
+ assert(lt_key);
+ assert(lt_key_changed);
+ assert(rt_key);
+ assert(rt_key_changed);
+ assert(new_node);
+
+ *lt_key_changed = FALSE;
+ *rt_key_changed = FALSE;
+
+ /*
+ * Use a binary search to find the child that will receive the new
+ * data. When the search completes IDX points to the child that
+ * should get the new data.
+ */
+ if (NULL == (bt = H5AC_protect(f, H5AC_BT, addr, type, udata))) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR,
+ "unable to load node");
+ }
+ rt = bt->nchildren;
+
+ while (lt < rt && cmp) {
+ idx = (lt + rt) / 2;
+ if (H5B_decode_keys(f, bt, idx) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
+ "unable to decode key");
+ }
+ if ((cmp = (type->cmp3) (f, bt->key[idx].nkey, udata,
+ bt->key[idx + 1].nkey)) < 0) {
+ rt = idx;
+ } else {
+ lt = idx + 1;
+ }
+ }
+
+ if (0 == bt->nchildren) {
+ /*
+ * The value being inserted will be the only value in this tree. We
+ * must necessarily be at level zero.
+ */
+ assert(0 == bt->level);
+ bt->key[0].nkey = bt->native;
+ bt->key[1].nkey = bt->native + type->sizeof_nkey;
+ if ((type->new) (f, H5B_INS_FIRST, bt->key[0].nkey, udata,
+ bt->key[1].nkey, bt->child + 0 /*out */ ) < 0) {
+ bt->key[0].nkey = bt->key[1].nkey = NULL;
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, H5B_INS_ERROR,
+ "unable to create leaf node");
+ }
+ bt->nchildren = 1;
+ bt->dirty = TRUE;
+ bt->ndirty = 1;
+ bt->key[0].dirty = TRUE;
+ bt->key[1].dirty = TRUE;
+ idx = 0;
+
+ if (type->follow_min) {
+ if ((my_ins = (type->insert) (f, bt->child + idx,
+ bt->key[idx].nkey, lt_key_changed,
+ md_key, udata,
+ bt->key[idx + 1].nkey, rt_key_changed,
+ &child_addr /*out */ )) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
+ "can't insert first leaf node");
+ }
+ } else {
+ my_ins = H5B_INS_NOOP;
+ }
+
+ } else if (cmp < 0 && idx <= 0 && bt->level > 0) {
+ /*
+ * The value being inserted is less than any value in this tree. Follow
+ * the minimum branch out of this node to a subtree.
+ */
+ idx = 0;
+ if (H5B_decode_keys(f, bt, idx) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
+ "unable to decode key");
+ }
+ if ((my_ins = H5B_insert_helper(f, bt->child + idx, type,
+ bt->key[idx].nkey, lt_key_changed,
+ md_key, udata,
+ bt->key[idx + 1].nkey, rt_key_changed,
+ &child_addr /*out */ )) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
+ "can't insert minimum subtree");
+ }
+ } else if (cmp < 0 && idx <= 0 && type->follow_min) {
+ /*
+ * The value being inserted is less than any leaf node out of this
+ * current node. Follow the minimum branch to a leaf node and let the
+ * subclass handle the problem.
+ */
+ idx = 0;
+ if (H5B_decode_keys(f, bt, idx) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
+ "unable to decode key");
+ }
+ if ((my_ins = (type->insert) (f, bt->child + idx,
+ bt->key[idx].nkey, lt_key_changed,
+ md_key, udata,
+ bt->key[idx + 1].nkey, rt_key_changed,
+ &child_addr /*out */ )) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
+ "can't insert minimum leaf node");
+ }
+ } else if (cmp < 0 && idx <= 0) {
+ /*
+ * The value being inserted is less than any leaf node out of the
+ * current node. Create a new minimum leaf node out of this B-tree
+ * node. This node is not empty (handled above).
+ */
+ idx = 0;
+ if (H5B_decode_keys(f, bt, idx) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
+ "unable to decode key");
+ }
+ my_ins = H5B_INS_LEFT;
+ HDmemcpy(md_key, bt->key[idx].nkey, type->sizeof_nkey);
+ if ((type->new) (f, H5B_INS_LEFT, bt->key[idx].nkey, udata, md_key,
+ &child_addr /*out */ ) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
+ "can't insert minimum leaf node");
+ }
+ *lt_key_changed = TRUE;
+
+ } else if (cmp > 0 && idx + 1 >= bt->nchildren && bt->level > 0) {
+ /*
+ * The value being inserted is larger than any value in this tree.
+ * Follow the maximum branch out of this node to a subtree.
+ */
+ idx = bt->nchildren - 1;
+ if (H5B_decode_keys(f, bt, idx) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
+ "unable to decode key");
+ }
+ if ((my_ins = H5B_insert_helper(f, bt->child + idx, type,
+ bt->key[idx].nkey, lt_key_changed,
+ md_key, udata,
+ bt->key[idx + 1].nkey, rt_key_changed,
+ &child_addr /*out */ )) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
+ "can't insert maximum subtree");
+ }
+ } else if (cmp > 0 && idx + 1 >= bt->nchildren && type->follow_max) {
+ /*
+ * The value being inserted is larger than any leaf node out of the
+ * current node. Follow the maximum branch to a leaf node and let the
+ * subclass handle the problem.
+ */
+ idx = bt->nchildren - 1;
+ if (H5B_decode_keys(f, bt, idx) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
+ "unable to decode key");
+ }
+ if ((my_ins = (type->insert) (f, bt->child + idx,
+ bt->key[idx].nkey, lt_key_changed,
+ md_key, udata,
+ bt->key[idx + 1].nkey, rt_key_changed,
+ &child_addr /*out */ )) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
+ "can't insert maximum leaf node");
+ }
+ } else if (cmp > 0 && idx + 1 >= bt->nchildren) {
+ /*
+ * The value being inserted is larger than any leaf node out of the
+ * current node. Create a new maximum leaf node out of this B-tree
+ * node.
+ */
+ idx = bt->nchildren - 1;
+ if (H5B_decode_keys(f, bt, idx) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
+ "unable to decode key");
+ }
+ my_ins = H5B_INS_RIGHT;
+ HDmemcpy(md_key, bt->key[idx + 1].nkey, type->sizeof_nkey);
+ if ((type->new) (f, H5B_INS_RIGHT, md_key, udata, bt->key[idx + 1].nkey,
+ &child_addr /*out */ ) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
+ "can't insert maximum leaf node");
+ }
+ *rt_key_changed = TRUE;
+
+ } else if (cmp) {
+ /*
+ * We couldn't figure out which branch to follow out of this node. THIS
+ * IS A MAJOR PROBLEM THAT NEEDS TO BE FIXED --rpm.
+ */
+ assert("INTERNAL HDF5 ERROR (see rpm)" && 0);
+
+ } else if (bt->level > 0) {
+ /*
+ * Follow a branch out of this node to another subtree.
+ */
+ assert(idx >= 0 && idx < bt->nchildren);
+ if ((my_ins = H5B_insert_helper(f, bt->child + idx, type,
+ bt->key[idx].nkey, lt_key_changed,
+ md_key, udata,
+ bt->key[idx + 1].nkey, rt_key_changed,
+ &child_addr /*out */ )) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
+ "can't insert subtree");
+ }
+ } else {
+ /*
+ * Follow a branch out of this node to a leaf node of some other type.
+ */
+ assert(idx >= 0 && idx < bt->nchildren);
+ if ((my_ins = (type->insert) (f, bt->child + idx,
+ bt->key[idx].nkey, lt_key_changed,
+ md_key, udata,
+ bt->key[idx + 1].nkey, rt_key_changed,
+ &child_addr /*out */ )) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
+ "can't insert leaf node");
+ }
+ }
+ assert(my_ins >= 0);
+
+ /*
+ * Update the left and right keys of the current node.
+ */
+ if (*lt_key_changed) {
+ bt->dirty = TRUE;
+ bt->key[idx].dirty = TRUE;
+ if (idx > 0) {
+ *lt_key_changed = FALSE;
+ } else {
+ HDmemcpy(lt_key, bt->key[idx].nkey, type->sizeof_nkey);
+ }
+ }
+ if (*rt_key_changed) {
+ bt->dirty = TRUE;
+ bt->key[idx + 1].dirty = TRUE;
+ if (idx + 1 < bt->nchildren) {
+ *rt_key_changed = FALSE;
+ } else {
+ HDmemcpy(rt_key, bt->key[idx + 1].nkey, type->sizeof_nkey);
+ }
+ }
+ if (H5B_INS_CHANGE == my_ins) {
+ /*
+ * The insertion simply changed the address for the child.
+ */
+ bt->child[idx] = child_addr;
+ bt->dirty = TRUE;
+ bt->ndirty = MAX(bt->ndirty, idx + 1);
+ ret_value = H5B_INS_NOOP;
+
+ } else if (H5B_INS_LEFT == my_ins || H5B_INS_RIGHT == my_ins) {
+ /* Make sure IDX is the slot number for the new node. */
+ if (H5B_INS_RIGHT == my_ins)
+ idx++;
+
+ /* If this node is full then split it before inserting the new child. */
+ if (bt->nchildren == 2 * H5B_K(f, type)) {
+ if (H5B_split(f, type, bt, addr, udata, new_node /*out */ ) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTSPLIT, H5B_INS_ERROR,
+ "can't split node");
+ }
+ if (NULL == (twin = H5AC_protect(f, H5AC_BT, new_node, type, udata))) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR,
+ "can't load B-tree");
+ }
+ if (idx <= H5B_K(f, type)) {
+ tmp_bt = bt;
+ } else {
+ idx -= H5B_K(f, type);
+ tmp_bt = twin;
+ }
+ } else {
+ tmp_bt = bt;
+ }
+
+ /* Insert the child */
+ if (H5B_insert_child(f, type, tmp_bt, idx, &child_addr, my_ins,
+ md_key) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
+ "can't insert child");
+ }
+ }
+ /*
+ * If this node split, return the mid key (the one that is shared
+ * by the left and right node).
+ */
+ if (twin) {
+ if (!twin->key[0].nkey && H5B_decode_key(f, twin, 0) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
+ "unable to decode key");
+ }
+ HDmemcpy(md_key, twin->key[0].nkey, type->sizeof_nkey);
+ ret_value = H5B_INS_RIGHT;
#ifdef H5B_DEBUG
- /*
- * The max key in the original left node must be equal to the min key
- * in the new node.
- */
- if (!bt->key[bt->nchildren].nkey) {
- herr_t status = H5B_decode_key (f, bt, bt->nchildren);
- assert (status>=0);
- }
- cmp = (type->cmp2)(f, bt->key[bt->nchildren].nkey, udata,
- twin->key[0].nkey);
- assert (0==cmp);
+ /*
+ * The max key in the original left node must be equal to the min key
+ * in the new node.
+ */
+ if (!bt->key[bt->nchildren].nkey) {
+ herr_t status = H5B_decode_key(f, bt, bt->nchildren);
+ assert(status >= 0);
+ }
+ cmp = (type->cmp2) (f, bt->key[bt->nchildren].nkey, udata,
+ twin->key[0].nkey);
+ assert(0 == cmp);
#endif
- } else {
- ret_value = H5B_INS_NOOP;
- }
-
-done:
- {
- herr_t e1 = (bt && H5AC_unprotect (f, H5AC_BT, addr, bt)<0);
- herr_t e2 = (twin && H5AC_unprotect (f, H5AC_BT, new_node, twin)<0);
- if (e1 || e2) { /*use vars to prevent short-circuit of side effects*/
- HRETURN_ERROR (H5E_BTREE, H5E_PROTECT, H5B_INS_ERROR,
- "unable to release node(s)");
- }
- }
-
- FUNC_LEAVE (ret_value);
+ } else {
+ ret_value = H5B_INS_NOOP;
+ }
+
+ done:
+ {
+ herr_t e1 = (bt && H5AC_unprotect(f, H5AC_BT, addr, bt) < 0);
+ herr_t e2 = (twin && H5AC_unprotect(f, H5AC_BT, new_node, twin) < 0);
+ if (e1 || e2) { /*use vars to prevent short-circuit of side effects */
+ HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, H5B_INS_ERROR,
+ "unable to release node(s)");
+ }
+ }
+
+ FUNC_LEAVE(ret_value);
}
-
/*-------------------------------------------------------------------------
- * Function: H5B_list
+ * Function: H5B_list
*
- * Purpose: Calls the list callback for each leaf node of the
- * B-tree, passing it the UDATA structure.
+ * Purpose: Calls the list callback for each leaf node of the
+ * B-tree, passing it the UDATA structure.
*
- * Return: Success: SUCCEED
+ * Return: Success: SUCCEED
*
- * Failure: FAIL
+ * Failure: FAIL
*
- * Programmer: Robb Matzke
- * matzke@llnl.gov
- * Jun 23 1997
+ * Programmer: Robb Matzke
+ * matzke@llnl.gov
+ * Jun 23 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
-H5B_list (H5F_t *f, const H5B_class_t *type, const haddr_t *addr, void *udata)
+H5B_list(H5F_t *f, const H5B_class_t *type, const haddr_t *addr, void *udata)
{
- H5B_t *bt=NULL;
- haddr_t next_addr;
- const haddr_t *cur_addr=NULL;
- intn i;
- herr_t ret_value = FAIL;
-
- FUNC_ENTER (H5B_list, FAIL);
-
- /*
- * Check arguments.
- */
- assert (f);
- assert (type);
- assert (type->list);
- assert (addr && H5F_addr_defined (addr));
- assert (udata);
-
- if (NULL==(bt = H5AC_find (f, H5AC_BT, addr, type, udata))) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL,
- "unable to load B-tree node");
- }
-
- if (bt->level>0) {
- if (H5B_list (f, type, bt->child+0, udata)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTLIST, FAIL,
- "unable to list B-tree node");
- } else {
- HRETURN (SUCCEED);
- }
- } else {
-
- for (cur_addr=addr; !H5F_addr_defined (cur_addr); cur_addr=&next_addr) {
- if (NULL==(bt=H5AC_protect (f, H5AC_BT, cur_addr, type, udata))) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL,
- "unable to protect B-tree node");
- }
-
- for (i=0; i<bt->nchildren; i++) {
- if ((type->list)(f, bt->child+i, udata)<0) {
- HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL,
- "unable to list leaf node");
- }
- }
-
- next_addr = bt->right;
- if (H5AC_unprotect (f, H5AC_BT, addr, bt)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_PROTECT, FAIL,
- "unable to release B-tree node");
- }
- bt = NULL;
- }
- }
- HGOTO_DONE (SUCCEED);
-
-done:
- if (bt && H5AC_unprotect (f, H5AC_BT, cur_addr, bt)<0) {
- HRETURN_ERROR (H5E_BTREE, H5E_PROTECT, FAIL,
- "unable to release B-tree node");
- }
- FUNC_LEAVE (ret_value);
+ H5B_t *bt = NULL;
+ haddr_t next_addr;
+ const haddr_t *cur_addr = NULL;
+ intn i;
+ herr_t ret_value = FAIL;
+
+ FUNC_ENTER(H5B_list, FAIL);
+
+ /*
+ * Check arguments.
+ */
+ assert(f);
+ assert(type);
+ assert(type->list);
+ assert(addr && H5F_addr_defined(addr));
+ assert(udata);
+
+ if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
+ "unable to load B-tree node");
+ }
+ if (bt->level > 0) {
+ if (H5B_list(f, type, bt->child + 0, udata) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTLIST, FAIL,
+ "unable to list B-tree node");
+ } else {
+ HRETURN(SUCCEED);
+ }
+ } else {
+
+ for (cur_addr = addr; !H5F_addr_defined(cur_addr); cur_addr = &next_addr) {
+ if (NULL == (bt = H5AC_protect(f, H5AC_BT, cur_addr, type, udata))) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
+ "unable to protect B-tree node");
+ }
+ for (i = 0; i < bt->nchildren; i++) {
+ if ((type->list) (f, bt->child + i, udata) < 0) {
+ HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
+ "unable to list leaf node");
+ }
+ }
+
+ next_addr = bt->right;
+ if (H5AC_unprotect(f, H5AC_BT, addr, bt) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL,
+ "unable to release B-tree node");
+ }
+ bt = NULL;
+ }
+ }
+ HGOTO_DONE(SUCCEED);
+
+ done:
+ if (bt && H5AC_unprotect(f, H5AC_BT, cur_addr, bt) < 0) {
+ HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL,
+ "unable to release B-tree node");
+ }
+ FUNC_LEAVE(ret_value);
}
-
/*-------------------------------------------------------------------------
- * Function: H5B_nodesize
+ * Function: H5B_nodesize
*
- * Purpose: Returns the number of bytes needed for this type of
- * B-tree node. The size is the size of the header plus
- * enough space for 2t child pointers and 2t+1 keys.
+ * Purpose: Returns the number of bytes needed for this type of
+ * B-tree node. The size is the size of the header plus
+ * enough space for 2t child pointers and 2t+1 keys.
*
- * If TOTAL_NKEY_SIZE is non-null, what it points to will
- * be initialized with the total number of bytes required to
- * hold all the key values in native order.
+ * If TOTAL_NKEY_SIZE is non-null, what it points to will
+ * be initialized with the total number of bytes required to
+ * hold all the key values in native order.
*
- * Return: Success: Size of node in file.
+ * Return: Success: Size of node in file.
*
- * Failure: 0
+ * Failure: 0
*
- * Programmer: Robb Matzke
- * matzke@llnl.gov
- * Jul 3 1997
+ * Programmer: Robb Matzke
+ * matzke@llnl.gov
+ * Jul 3 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static size_t
-H5B_nodesize (H5F_t *f, const H5B_class_t *type,
- size_t *total_nkey_size, size_t sizeof_rkey)
+H5B_nodesize(H5F_t *f, const H5B_class_t *type,
+ size_t *total_nkey_size, size_t sizeof_rkey)
{
- size_t size;
-
- FUNC_ENTER (H5B_nodesize, (size_t)0);
-
- /*
- * Check arguments.
- */
- assert (f);
- assert (type);
- assert (sizeof_rkey>0);
- assert (H5B_K (f, type)>0);
-
- /*
- * Total native key size.
- */
- if (total_nkey_size) {
- *total_nkey_size = (2 * H5B_K(f,type) + 1) * type->sizeof_nkey;
- }
-
- /*
- * Total node size.
- */
- size = (H5B_SIZEOF_HDR(f) + /*node header */
- 2 * H5B_K(f,type) * H5F_SIZEOF_ADDR(f) + /*child pointers*/
- (2*H5B_K(f,type)+1) * sizeof_rkey); /*keys */
-
- FUNC_LEAVE (size);
+ size_t size;
+
+ FUNC_ENTER(H5B_nodesize, (size_t) 0);
+
+ /*
+ * Check arguments.
+ */
+ assert(f);
+ assert(type);
+ assert(sizeof_rkey > 0);
+ assert(H5B_K(f, type) > 0);
+
+ /*
+ * Total native key size.
+ */
+ if (total_nkey_size) {
+ *total_nkey_size = (2 * H5B_K(f, type) + 1) * type->sizeof_nkey;
+ }
+ /*
+ * Total node size.
+ */
+ size = (H5B_SIZEOF_HDR(f) + /*node header */
+ 2 * H5B_K(f, type) * H5F_SIZEOF_ADDR(f) + /*child pointers */
+ (2 * H5B_K(f, type) + 1) * sizeof_rkey); /*keys */
+
+ FUNC_LEAVE(size);
}
-
/*-------------------------------------------------------------------------
- * Function: H5B_debug
+ * Function: H5B_debug
*
- * Purpose: Prints debugging info about a B-tree.
+ * Purpose: Prints debugging info about a B-tree.
*
- * Return: Success: SUCCEED
+ * Return: Success: SUCCEED
*
- * Failure: FAIL
+ * Failure: FAIL
*
- * Programmer: Robb Matzke
- * matzke@llnl.gov
- * Aug 4 1997
+ * Programmer: Robb Matzke
+ * matzke@llnl.gov
+ * Aug 4 1997
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
-H5B_debug (H5F_t *f, const haddr_t *addr, FILE *stream, intn indent,
- intn fwidth, const H5B_class_t *type, void *udata)
+H5B_debug(H5F_t *f, const haddr_t *addr, FILE * stream, intn indent,
+ intn fwidth, const H5B_class_t *type, void *udata)
{
- H5B_t *bt = NULL;
- int i;
-
- FUNC_ENTER (H5B_debug, FAIL);
-
- /*
- * Check arguments.
- */
- assert (f);
- assert (addr && H5F_addr_defined (addr));
- assert (stream);
- assert (indent>=0);
- assert (fwidth>=0);
- assert (type);
-
- /*
- * Load the tree node.
- */
- if (NULL==(bt=H5AC_find (f, H5AC_BT, addr, type, udata))) {
- HRETURN_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL,
- "unable to load B-tree node");
- }
-
- /*
- * Print the values.
- */
- fprintf (stream, "%*s%-*s %d\n", indent, "", fwidth,
- "Tree type ID:",
- (int)(bt->type->id));
- fprintf (stream, "%*s%-*s %lu\n", indent, "", fwidth,
- "Size of raw (disk) key:",
- (unsigned long)(bt->sizeof_rkey));
- fprintf (stream, "%*s%-*s %s\n", indent, "", fwidth,
- "Dirty flag:",
- bt->dirty?"True":"False");
- fprintf (stream, "%*s%-*s %d\n", indent, "", fwidth,
- "Number of initial dirty children:",
- (int)(bt->ndirty));
- fprintf (stream, "%*s%-*s %d\n", indent, "", fwidth,
- "Level:",
- (int)(bt->level));
-
- fprintf (stream, "%*s%-*s ", indent, "", fwidth,
- "Address of left sibling:");
- H5F_addr_print (stream, &(bt->left));
- fprintf (stream, "\n");
-
- fprintf (stream, "%*s%-*s ", indent, "", fwidth,
- "Address of right sibling:");
- H5F_addr_print (stream, &(bt->right));
- fprintf (stream, "\n");
-
- fprintf (stream, "%*s%-*s %d (%d)\n", indent, "", fwidth,
- "Number of children (max):",
- (int)(bt->nchildren),
- (int)(2*H5B_K(f,type)));
-
- /*
- * Print the child addresses
- */
- for (i=0; i<bt->nchildren; i++) {
- fprintf (stream, "%*sChild %d...\n", indent, "", i);
- fprintf (stream, "%*s%-*s ", indent+3, "", MAX(0,fwidth-3),
- "Address:");
- H5F_addr_print (stream, bt->child+i);
- fprintf (stream, "\n");
- }
-
- FUNC_LEAVE (SUCCEED);
+ H5B_t *bt = NULL;
+ int i;
+
+ FUNC_ENTER(H5B_debug, FAIL);
+
+ /*
+ * Check arguments.
+ */
+ assert(f);
+ assert(addr && H5F_addr_defined(addr));
+ assert(stream);
+ assert(indent >= 0);
+ assert(fwidth >= 0);
+ assert(type);
+
+ /*
+ * Load the tree node.
+ */
+ if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) {
+ HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
+ "unable to load B-tree node");
+ }
+ /*
+ * Print the values.
+ */
+ fprintf(stream, "%*s%-*s %d\n", indent, "", fwidth,
+ "Tree type ID:",
+ (int) (bt->type->id));
+ fprintf(stream, "%*s%-*s %lu\n", indent, "", fwidth,
+ "Size of raw (disk) key:",
+ (unsigned long) (bt->sizeof_rkey));
+ fprintf(stream, "%*s%-*s %s\n", indent, "", fwidth,
+ "Dirty flag:",
+ bt->dirty ? "True" : "False");
+ fprintf(stream, "%*s%-*s %d\n", indent, "", fwidth,
+ "Number of initial dirty children:",
+ (int) (bt->ndirty));
+ fprintf(stream, "%*s%-*s %d\n", indent, "", fwidth,
+ "Level:",
+ (int) (bt->level));
+
+ fprintf(stream, "%*s%-*s ", indent, "", fwidth,
+ "Address of left sibling:");
+ H5F_addr_print(stream, &(bt->left));
+ fprintf(stream, "\n");
+
+ fprintf(stream, "%*s%-*s ", indent, "", fwidth,
+ "Address of right sibling:");
+ H5F_addr_print(stream, &(bt->right));
+ fprintf(stream, "\n");
+
+ fprintf(stream, "%*s%-*s %d (%d)\n", indent, "", fwidth,
+ "Number of children (max):",
+ (int) (bt->nchildren),
+ (int) (2 * H5B_K(f, type)));
+
+ /*
+ * Print the child addresses
+ */
+ for (i = 0; i < bt->nchildren; i++) {
+ fprintf(stream, "%*sChild %d...\n", indent, "", i);
+ fprintf(stream, "%*s%-*s ", indent + 3, "", MAX(0, fwidth - 3),
+ "Address:");
+ H5F_addr_print(stream, bt->child + i);
+ fprintf(stream, "\n");
+ }
+
+ FUNC_LEAVE(SUCCEED);
}
-
-
/*-------------------------------------------------------------------------
- * Function: H5B_assert
+ * Function: H5B_assert
*
- * Purpose: Verifies that the tree is structured correctly.
+ * Purpose: Verifies that the tree is structured correctly.
*
- * Return: Success: SUCCEED
+ * Return: Success: SUCCEED
*
- * Failure: aborts if something is wrong.
+ * Failure: aborts if something is wrong.
*
- * Programmer: Robb Matzke
+ * Programmer: Robb Matzke
* Tuesday, November 4, 1997
*
* Modifications:
@@ -1633,100 +1597,98 @@ H5B_debug (H5F_t *f, const haddr_t *addr, FILE *stream, intn indent,
*/
#ifdef H5B_DEBUG
static herr_t
-H5B_assert (H5F_t *f, const haddr_t *addr, const H5B_class_t *type,
- void *udata)
+H5B_assert(H5F_t *f, const haddr_t *addr, const H5B_class_t *type,
+ void *udata)
{
- H5B_t *bt = NULL;
- intn i, ncell, cmp;
- static int ncalls=0;
- herr_t status;
-
- /* A queue of child data */
- struct child_t {
- haddr_t addr;
- int level;
- struct child_t *next;
- } *head=NULL, *tail=NULL, *prev=NULL, *cur=NULL, *tmp=NULL;
-
- FUNC_ENTER (H5B_assert, FAIL);
- if (0==ncalls++) {
- fprintf (stderr, "HDF5-DIAG: debugging B-trees (expensive)\n");
- }
-
- /* Initialize the queue */
- bt = H5AC_find (f, H5AC_BT, addr, type, udata);
- assert (bt);
- cur = H5MM_xcalloc (1, sizeof(struct child_t));
- cur->addr = *addr;
- cur->level = bt->level;
- head = tail = cur;
-
- /*
- * Do a breadth-first search of the tree. New nodes are added to the end
- * of the queue as the `cur' pointer is advanced toward the end. We don't
- * remove any nodes from the queue because we need them in the uniqueness
- * test.
- */
- for (ncell=0; cur; ncell++) {
- bt = H5AC_protect (f, H5AC_BT, &(cur->addr), type, udata);
- assert (bt);
-
- /* Check node header */
- assert (bt->ndirty>=0 && bt->ndirty<=bt->nchildren);
- assert (bt->level==cur->level);
- if (cur->next && cur->next->level==bt->level) {
- assert (H5F_addr_eq (&(bt->right), &(cur->next->addr)));
- } else {
- assert (!H5F_addr_defined (&(bt->right)));
- }
- if (prev && prev->level==bt->level) {
- assert (H5F_addr_eq (&(bt->left), &(prev->addr)));
- } else {
- assert (!H5F_addr_defined (&(bt->left)));
- }
-
- if (cur->level>0) {
- for (i=0; i<bt->nchildren; i++) {
-
- /*
- * Check that child nodes haven't already been seen. If they
- * have then the tree has a cycle.
- */
- for (tmp=head; tmp; tmp=tmp->next) {
- assert (H5F_addr_ne (&(tmp->addr), bt->child+i));
- }
-
- /* Add the child node to the end of the queue */
- tmp = H5MM_xcalloc (1, sizeof(struct child_t));
- tmp->addr = bt->child[i];
- tmp->level = bt->level - 1;
- tail->next = tmp;
- tail = tmp;
-
- /* Check that the keys are monotonically increasing */
- status = H5B_decode_keys (f, bt, i);
- assert (status>=0);
- cmp = (type->cmp2)(f, bt->key[i].nkey, udata, bt->key[i+1].nkey);
- assert (cmp<0);
- }
- }
-
- /* Release node */
- status = H5AC_unprotect (f, H5AC_BT, &(cur->addr), bt);
- assert (status>=0);
-
- /* Advance current location in queue */
- prev = cur;
- cur = cur->next;
- }
-
- /* Free all entries from queue */
- while (head) {
- tmp = head->next;
- H5MM_xfree (head);
- head = tmp;
- }
-
- FUNC_LEAVE (SUCCEED);
+ H5B_t *bt = NULL;
+ intn i, ncell, cmp;
+ static int ncalls = 0;
+ herr_t status;
+
+ /* A queue of child data */
+ struct child_t {
+ haddr_t addr;
+ int level;
+ struct child_t *next;
+ } *head = NULL, *tail = NULL, *prev = NULL, *cur = NULL, *tmp = NULL;
+
+ FUNC_ENTER(H5B_assert, FAIL);
+ if (0 == ncalls++) {
+ fprintf(stderr, "HDF5-DIAG: debugging B-trees (expensive)\n");
+ }
+ /* Initialize the queue */
+ bt = H5AC_find(f, H5AC_BT, addr, type, udata);
+ assert(bt);
+ cur = H5MM_xcalloc(1, sizeof(struct child_t));
+ cur->addr = *addr;
+ cur->level = bt->level;
+ head = tail = cur;
+
+ /*
+ * Do a breadth-first search of the tree. New nodes are added to the end
+ * of the queue as the `cur' pointer is advanced toward the end. We don't
+ * remove any nodes from the queue because we need them in the uniqueness
+ * test.
+ */
+ for (ncell = 0; cur; ncell++) {
+ bt = H5AC_protect(f, H5AC_BT, &(cur->addr), type, udata);
+ assert(bt);
+
+ /* Check node header */
+ assert(bt->ndirty >= 0 && bt->ndirty <= bt->nchildren);
+ assert(bt->level == cur->level);
+ if (cur->next && cur->next->level == bt->level) {
+ assert(H5F_addr_eq(&(bt->right), &(cur->next->addr)));
+ } else {
+ assert(!H5F_addr_defined(&(bt->right)));
+ }
+ if (prev && prev->level == bt->level) {
+ assert(H5F_addr_eq(&(bt->left), &(prev->addr)));
+ } else {
+ assert(!H5F_addr_defined(&(bt->left)));
+ }
+
+ if (cur->level > 0) {
+ for (i = 0; i < bt->nchildren; i++) {
+
+ /*
+ * Check that child nodes haven't already been seen. If they
+ * have then the tree has a cycle.
+ */
+ for (tmp = head; tmp; tmp = tmp->next) {
+ assert(H5F_addr_ne(&(tmp->addr), bt->child + i));
+ }
+
+ /* Add the child node to the end of the queue */
+ tmp = H5MM_xcalloc(1, sizeof(struct child_t));
+ tmp->addr = bt->child[i];
+ tmp->level = bt->level - 1;
+ tail->next = tmp;
+ tail = tmp;
+
+ /* Check that the keys are monotonically increasing */
+ status = H5B_decode_keys(f, bt, i);
+ assert(status >= 0);
+ cmp = (type->cmp2) (f, bt->key[i].nkey, udata, bt->key[i + 1].nkey);
+ assert(cmp < 0);
+ }
+ }
+ /* Release node */
+ status = H5AC_unprotect(f, H5AC_BT, &(cur->addr), bt);
+ assert(status >= 0);
+
+ /* Advance current location in queue */
+ prev = cur;
+ cur = cur->next;
+ }
+
+ /* Free all entries from queue */
+ while (head) {
+ tmp = head->next;
+ H5MM_xfree(head);
+ head = tmp;
+ }
+
+ FUNC_LEAVE(SUCCEED);
}
#endif /* H5B_DEBUG */